WorldWideScience

Sample records for oil recovery improvement

  1. A field laboratory for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  2. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  3. Sand Production during Improved Oil Recovery in Unconsolidated Cores

    OpenAIRE

    Mohammad A. J. Ali.; S. M. Kholosy; A. A. Al-Haddad; K. K. AL-Hamad

    2012-01-01

    Steam injection is a mechanisms used for improved oil recovery (IOR) in heavy oil reservoirs. Heating the reservoir reduces the oil viscosity and causes the velocity of the moving oil to increase; and thus, the heated zone around the injection well will have high velocity. The increase of velocity in an unconsolidated formation is usually accompanied with sand movement in the reservoir creating a potential problem. Core samples from different wells in Kuwait were used to examine sand producti...

  4. Economics, new technology improve Danish offshore oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mortensgaard, A. [Danish Energy Agency, Copenhagen (Denmark)

    1996-06-10

    Cost-efficient development concepts and technologies, such as horizontal wells and water injection, have almost tripled the expected ultimate oil recovery from Danish offshore fields. All currently produced Danish oil and gas is from chalk reservoirs. The Danish Energy Agency`s strategies for research and development of improved recovery techniques is related to classifying Danish calk fields into three different reservoir types according to flow characteristics and initial oil saturation. This paper reviews these classification techniques and the methods of extraction for each.

  5. Improved oil recovery in nanopores: NanoIOR

    Science.gov (United States)

    de Almeida, James Moraes; Miranda, Caetano Rodrigues

    2016-06-01

    Fluid flow through minerals pores occurs in underground aquifers, oil and shale gas reservoirs. In this work, we explore water and oil flow through silica nanopores. Our objective is to model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological nanoporous media and the displacement of oil with and without previous contact with water by water flooding to emulate an improved oil recovery process at nanoscale (NanoIOR). We have observed a barrier-less infiltration of water and oil on the empty (vacuum) simulated 4 nm diameter nanopores. For the water displacement with oil, we have obtained a critical pressure of 600 atm for the oil infiltration, and after the flow was steady, a water layer was still adsorbed to the surface, thus, hindering the direct contact of the oil with the surface. In addition, oil displacement with water was assessed, with and without an adsorbed water layer (AWL). Without the AWL, the pressure needed for oil infiltration was 5000 atm, whereas, with the AWL the infiltration was observed for pressures as low as 10 atm. Hence, the infiltration is greatly affected by the AWL, significantly lowering the critical pressure for oil displacement.

  6. A field laboratory for improved oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  7. On the economics of improved oil recovery. The optimal recovery factor from oil and gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nystad, A.N.

    1985-06-01

    We investigate an oil company's optimal depletion of oil and gas reservoirs, taking into account that the depletion policy itself influences the recoverable reserves (recovery factor) and that we have up-front capital costs. The depletion policy is defined by the amount of investment in production and in injection projects. 6 refs., 8 figs., 2 tabs.

  8. Ultrasound-assisted CO2 flooding to improve oil recovery.

    Science.gov (United States)

    Hamidi, Hossein; Sharifi Haddad, Amin; Mohammadian, Erfan; Rafati, Roozbeh; Azdarpour, Amin; Ghahri, Panteha; Ombewa, Peter; Neuert, Tobias; Zink, Aaron

    2017-03-01

    CO2 flooding process as a common enhanced oil recovery method may suffer from interface instability due to fingering and gravity override, therefore, in this study a method to improve the performance of CO2 flooding through an integrated ultraosund-CO2 flooding process is presented. Ultrasonic waves can deliver energy from a generator to oil and affect its properties such as internal energy and viscosity. Thus, a series of CO2 flooding experiments in the presence of ultrasonic waves were performed for controlled and uncontrolled temperature conditions. Results indicate that oil recovery was improved by using ultrasound-assisted CO2 flooding compared to conventional CO2 flooding. However, the changes were more pronounced for uncontrolled temperature conditions of ultrasound-assisted CO2 flooding. It was found that ultrasonic waves create a more stable interface between displacing and displaced fluids that could be due to the reductions in viscosity, capillary pressure and interfacial tension. In addition, higher CO2 injection rates, increases the recovery factor in all the experiments which highlights the importance of injection rate as another factor on reduction of the fingering effects and improvement of the sweep efficiency.

  9. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  10. Alkyl polyglycoside-sorbitan ester formulations for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y. [Power Environmental Energy Research Institute (PEERI), Covina, CA (United States); Goddard, W.A. III [California Inst. of Technology, Pasadena, CA (US). Div. of Chemistry and Chemical Engineering, Materials and Process Simulation Center (MSC)

    2010-09-15

    We measured interfacial tensions (IFT) of aqueous alkyl polyglucoside (APG) systems formulated with sorbitan ester-type cosurfactants against n-octane. The study focused on low to ultra-low IFT systems which are relevant for enhanced oil recovery (EOR). In addition, we measured equilibrium adsorption concentrations of these surfactants and cosurfactants onto kaolinite clay, commonly found in oil reservoirs. We present one surfactant EOR laboratory flood experiment with one selected APG-sorbitan ester formulation with which we recovered 94% of initial oil in place (IOIP). (orig.)

  11. Branched alkyl alcohol propoxylated sulfate surfactants for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y. [California Institute of Technology, Covina, CA (US). Power, Environmental and Energy Research (PEER) Center; Goddard, W.A. III [California Institute of Technology, Pasadena, CA (United States). Materials and Process Simulation Center

    2010-05-15

    This investigation considers branched alkyl alcohol propoxylated sulfate surfactants as candidates for chemical enhanced oil recovery (EOR) applications. Results show that these anionic surfactants may be preferred candidates for EOR as they can be effective at creating low interfacial tension (IFT) at dilute concentrations, without requiring an alkaline agent or cosurfactant. In addition, some of the formulations exhibit a low IFT at high salinity, and hence may be suitable for use in more saline reservoirs. Adsorption tests onto kaolinite clay indicate that the loss of these surfactants can be comparable to or greater than other types of anionic surfactants. Surfactant performance was evaluated in oil recovery core flood tests. Selected formulations recovered 35-50% waterflood residual oil even with dilute 0.2 wt% surfactant concentrations from Berea sandstone cores. (orig.)

  12. Surfactant-Polymer Interaction for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  13. Experimental application of ultrasound waves to improved oil recovery during waterflooding

    OpenAIRE

    Emad Alhomadhi; Mohammad Amro; Mohammad Almobarky

    2014-01-01

    In oil reservoirs about 40% of the original oil in place is produced and the rest remains as residual oil after primary and secondary oil recovery due to geological and physical factors. Additional oil can be mobilized by applying some improved oil recovery methods. However, there is no universal IOR method to be implemented in any reservoir. Efforts are made to develop IOR methods with lower risk. One of these methods is the application of sound/ultrasound waves in the reservoirs to overcome...

  14. Utilization of carbon dioxide for improving the performance of waterflooding in heavy oil recovery

    Science.gov (United States)

    Nasehi Araghi, Majid

    For several years, heavy oil reserves of Western Canada, which are amongst the largest in the world and total more than 5 billion m 3, have been under waterflooding and oil has been produced at very high water-oil-ratios. Despite its shortcomings, waterflooding has been employed because it is relatively a low cost process and is easier to operate compared to other techniques. In many cases waterflooding has been the only easy and low risk option due to the reservoir conditions which have made it impossible for any enhanced oil recovery techniques to be employed. Heavy oil waterflooding is always associated with low recoveries and poor efficiencies and therefore, there is a need for improving the performance of heavy oil waterflooding. Due to its favourable effects, CO2 injection has been accepted in the industry as an effective method of recovery for light to medium oils. But due to the immiscible nature of CO2 and heavy oil, CO 2 injection has not been looked at as a method of recovery improvement in heavy oil reserves of Western Canada. CO2 is highly soluble in both water and oil and therefore, it might be possible to improve the overall heavy oil waterflooding recoveries of these reserves by the utilization of CO2. This study consists of twelve core flood tests designed to investigate the effects of CO2 utilization on improving the performance of waterflooding in heavy oil recovery. Two injection methods are used; 1) injection of a slug of 10 to 25% pore volume of CO2 followed by a soak period and then waterflooding, and 2) injection of carbonated water which is prepared by dissolving CO2 in 1% wt. NaCl brine. Experiments were performed at temperatures of 30°C, and at pressures of 500 and 1000 psi. Water injection rates of 1 to 50 ft/day were used to recover heavy oils of 1000 to 2000 cp viscosities. The results show that, CO2 can be effectively used to make significant improvements in the overall recovery of heavy oil by waterflooding. Post CO2 waterfloodings

  15. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  16. Improved oil recovery (IOR). Possibility and challenges on the Norwegian continental shelf

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    Recently, estimates of the oil reserves on the Norwegian continental shelf have been substantially adjusted upwards due to technological development. In this report, the Norwegian Petroleum Directorate presents the current status. Based on current technology and recovery plans, an average of 41% of the oil that was originally in place in Norwegian fields will be recovered. Of these reserves, totaling just over 3 billion Sm{sup 3} of oil, about half have been produced. The potential for improved oil recovery is estimated at 1 billion Sm{sup 3} and it is anticipated that this potential can be realised. The objective is to attain an average recovery factor of at least 50%. Among the great technological advances that have taken place are developments within drilling and well technology and better techniques for reservoir management and reservoir monitoring. Technology using chemicals is available that will counteract increased water production and unwanted breakthrough of gas in oil producing wells. A significant part of the development of improved oil recovery technology is made jointly by the oil companies, often with the authorities as active providers. FORCE (FOrum for Reservoir Characterisation and reservoir Engineering) has been established in this context as a central forum for exchange of experience. Gas injection will be an efficient way of achieving high recovery factors for a number of fields. The foremost objective in projects for improved oil recovery is to be capable of achieving a total value creation while also ensuring that environmental considerations are taken into account. 21 figs., 2 tabs.

  17. Improved techniques for fluid diversion in oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.

    1996-01-01

    This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

  18. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan;

    2012-01-01

    In recent years, many core displacement experiments of oil by seawater performed on chalk rock samples have reported SO42–, Ca2+, and Mg2+ as potential determining ions for improving oil recovery. Most of these studies were carried out with outcrop chalk core plugs. The objective of this study...... is to investigate the potential of the advanced waterflooding process by carrying out experiments with reservoir chalk samples. The study results in a better understanding of the mechanisms involved in increasing the oil recovery with potential determining ions. We carried out waterflooding instead of spontaneous...... with the following injecting fluids: distilled water, brine with and without sulfate, and brine containing only magnesium ions. The total oil recovery, recovery rate, and interaction mechanisms of ions with rock were studied for different injecting fluids at different temperatures and wettability conditions. Studies...

  19. Improving oil recovery in the CO2 flooding process by utilizing nonpolar chemical modifiers☆

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Xiangliang Li; Ping Guo; Yayun Zhuo; Yong Sha

    2016-01-01

    By means of experiments of CO2 miscibility with crude oil, four nonpolar chemicals were evaluated in order to enhance the miscibility of CO2 with crude oil. Through pre-slug injection and joint injection of toluene in CO2, crude oil displacement experiments in the slim-tube were conducted to investigate effects of the toluene-enhanced CO2 flooding under simulated subterranean reservoir conditions. Experimental results showed that toluene can enhance extraction of oil into CO2 and dissolution of CO2 into oil with the increment of 251%and 64%respectively. Addition of toluene can obviously improve the oil recovery in either pre-slug injection or joint injection, and the crude oil recovery increased with the increase of the toluene concentration. The oil recov-ery can increase by 22.5%in pre-slug injection with the high toluene concentration. Pre-slug injection was recom-mended because it can consume less toluene than joint injection. This work could be useful to development and application of the CO2 flooding in the oil recovery as wel as CO2 emission reduction.

  20. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    Science.gov (United States)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  1. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Energy Technology Data Exchange (ETDEWEB)

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.

    1976-10-01

    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  2. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    Science.gov (United States)

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.

    2015-07-01

    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  3. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  4. Improved Oil Recovery in Chalk. Spontaneous Imbibition affected by Wettability, Rock Framework and Interfacial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Milter, J.

    1996-12-31

    The author of this doctoral thesis aims to improve the oil recovery from fractured chalk reservoirs, i.e., maximize the area of swept zones and their displacement efficiencies. In order to identify an improved oil recovery method in chalk, it is necessary to study wettability of calcium carbonate and spontaneous imbibition potential. The thesis contains an investigation of thin films and wettability of single calcite surfaces. The results of thin film experiments are used to evaluate spontaneous imbibition experiments in different chalk types. The chalk types were described detailed enough to permit considering the influence of texture, pore size and pore throat size distributions, pore geometry, and surface roughness on wettability and spontaneous imbibition. Finally, impacts of interfacial tension by adding anionic and cationic surfactants to the imbibing water phase are studied at different wettabilities of a well known chalk material. 232 refs., 97 figs., 13 tabs.

  5. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    Science.gov (United States)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  6. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Davey, R.A.; Lappin-Scott, H. [Univ. of Exeter (United Kingdom)

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  7. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  8. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    Energy Technology Data Exchange (ETDEWEB)

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An

  9. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

    2003-02-07

    This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

  10. Fifth DOE symposium on enhanced oil and gas recovery and improved drilling technology. Volume 2. Oil

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. [ed.

    1979-01-01

    Volume 2 contains papers from the following sessions: residual oil determination; thermal methods; heavy oil-tar sands; technology transfer; and carbon dioxide flooding. Individual papers were processed.

  11. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  12. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  13. Measurement of emulsion flow in porous media: Improvements in heavy oil recovery

    Science.gov (United States)

    Bryan, J.; Wang, J.; Kantzas, A.

    2009-02-01

    Many heavy oil and bitumen reservoirs in the world are too small or thin for thermal enhanced oil recovery methods to be economic. In these fields, novel methods of less energy intensive, non-thermal technologies are required. Previous experience has shown that the injection of low concentrations of aqueous alkali-surfactant solutions into the reservoir can significantly improve the oil recovery, beyond that of waterflooding. This is due to the in-situ formation of emulsions, which plug off the water channels and lead to improved sweep efficiency in the reservoir. The proper control of these floods requires methods for monitoring the formation and effect of these emulsions. In this paper, the results of laboratory core floods are interpreted to demonstrate how the pressure and flow response can be related to the formation of these emulsions. A new technique (low field NMR) is also used to directly measure W/O emulsions in porous media. Finally, a numerical study is performed in order to demonstrate how the in-situ formation of emulsions can be simply represented in simulation software.

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  15. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  16. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    Energy Technology Data Exchange (ETDEWEB)

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An

  17. Enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Chakma, A.; Rafiq Islam, M.; Berruti, F.

    1991-01-01

    Some forty to sixty percent of the original oil in place typically remains trapped in the reservoir after primary and secondary recoveries. Enhanced oil recovery refers to the recovery of the residual oil by different techniques. Many of the existing and proposed enhanced oil recovery techniques require sound understanding of basic chemical engineering principles such as fluid flow, heat and mass transfer, interfacial phenomena etc. Chemical EOR techniques require a good understanding of interfacial phenomena, chemical reaction, multicomponent absorption. Understanding of the fundamentals of the various EOR processes is not adequate. EOR is increasingly attracting a growing number of chemical engineers and, as a result, some of the fundamental aspect of EOR are now being investigated. However, much more remains to be done and chemical engineers can play an important role in providing a better understanding of EOR fundamentals. This volume presents selected papers on EOR presented at AICHE meetings.

  18. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher

  19. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  20. Physical modeling of a sidetrack horizontal wellproduction to improve oil recovery

    Institute of Scientific and Technical Information of China (English)

    王家禄; 江如意

    2002-01-01

    The scaling criteria of physical modeling of a horizontal well production are discussed. A scaled experimental model was designed and realized. The experiments of a sidetrack horizontal well production have been carried out in the system, and the production curve variation is analyzed. The oil recovery of a sidetrack horizontal well production is compared with that of a vertical well, and the effect of factors such as sidetrack drilling time, water driving rate and the length of horizontal section on oil recovery are discussed. The production of a horizontal well changed both the fluid flow direction and pressure distribution in the reservoir; as a result the remaining oil in the dead oil region is recovered, and the ultimate oil output is raised.

  1. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  2. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  3. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in

  4. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  5. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and

  6. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    Science.gov (United States)

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  7. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS--NEAR TERM--CLASS 2

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    1999-06-01

    This annual report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  8. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class 2

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    1999-07-08

    This report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  9. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small

  10. Increasing oil recovery from heavy oil waterfloods

    Energy Technology Data Exchange (ETDEWEB)

    Brice, B.W. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[BP Exploration, Calgary, AB (Canada)

    2008-10-15

    In an effort to optimize waterflood strategies in Alaska, the authors examined the results of up to 50 years of waterflooding on 166 western Canadian waterfloods recovering oil of less than 30 degrees API. The study determined the best operating practices for heavy oil waterflooding by investigating the difference between waterflooding of heavy oil and lighter oil counterparts. Operators of light oil waterflooding are advised to begin waterflooding early and maintain the voidage replacement ratio (VRR) at 1. However, this study showed that it is beneficial to delay the start of waterflooding until a certain fraction of the original oil in place was recovered. Varying the VRR was also shown to correlate with increased ultimate recovery. This statistical study of 166 western Canadian waterfloods also examined the effect of injection strategy and the effect of primary production before waterflooding. Some pre-waterflood production and under injection time is advantageous for ultimate recovery by waterfloods. Specific recommendations were presented for waterfloods in reservoirs with both high and low API gravity ranges. Each range showed a narrow sweet spot window where improved recovery occurred. 27 refs., 13 figs.

  11. Evening primrose oil ameliorates platelet aggregation and improves cardiac recovery in myocardial-infarct hypercholesterolemic rats.

    Science.gov (United States)

    Abo-Gresha, Noha M; Abel-Aziz, Eman Z; Greish, Sahar M

    2014-01-01

    Omega-6 polyunsaturated fatty acids (n-6 PUFA) are well known for their role in cardiovascular disease (CVD). We proposed that Evening prime rose oil (EPO) can improve the outcome of a heart with myocardial infarction (MI) in the presence of diet-induced hyperaggregability. This study was designed to examine its cholesterol lowering, antithrombotic and anti-inflammatory effects. High fat diet was administered for 4 weeks then MI was induced by isoproterenol (85 mg/kg/s.c./24 h). Treatment with EPO (5 or 10 gm/kg/day) for 6 weeks improved the electrocardiographic pattern, serum lipid profile, cardiac biomarkers as well as Platelet aggregation percent. We reported decreased serum level of TNF-α, IL-6 and COX-2 with attenuation of TNF-α and TGF-β in the cardiac homogenate. Moreover, histopathology revealed marked amelioration. Finally, we provide evidence that EPO improve cardiac recovery in hypercholesterolemic myocardial infarct rats. These effects are attributed to direct hypocholesterolemic effect and indirect effect on the synthesis of eicosanoids (prostaglandins, cytokines).

  12. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  13. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  14. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah

  15. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  16. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    Science.gov (United States)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  17. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. (ed.)

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  18. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    Science.gov (United States)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  19. High efficiency shale oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  20. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2005-04-30

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in

  1. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  2. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  3. Sesame oil improves functional recovery by attenuating nerve oxidative stress in a mouse model of acute peripheral nerve injury: role of Nrf-2.

    Science.gov (United States)

    Hsu, Che-Chia; Huang, Hui-Cheng; Wu, Po-Ting; Tai, Ta-Wei; Jou, I-Ming

    2016-12-01

    Peripheral nervous injury (PNI) is a common form of trauma in modern society, especially in sport players. Despite the advance of therapy for PNI, the recovery of function can never reach the preinjury level after treatments. Recently, inhibiting neural oxidative stress shows a beneficial effect in improving functional recovery after PNI. In addition, sesame oil has been reported to possess the excellent antioxidative properties. However, whether sesame oil can improve the functional recovery after PNI by its antioxidative effect has never been investigated. Thirty mice were randomly divided into five groups of six: group I mice received sham operation; group II mice received sciatic nerve crush; and groups III-V mice daily ingested 0.5, 1 and 2 ml/kg of sesame oil for 6 days, respectively, after sciatic nerve crush. Oxidative stress, GAP43 and nuclear Nrf2 levels as well as spinal somatosensory evoked potentials were assessed on day 6, while paw withdrawal latency and sciatic function index were assessed on days 0, 3, and 6. Sesame oil significantly decreased lipid peroxidation and increased nuclear factor erythroid 2-related factor 2 and GAP43 expression in sciatic nerve. Furthermore, sesame oil improved electrophysiological and functional assessments in mice with sciatic nerve crush. In conclusion, sesame oil may improve nerve functional recovery by attenuating nerve oxidative stress in mouse acute peripheral nerve injury. Further, application of natural product sesame oil may be an alternative approach for improving nerve functional recovery in the clinical setting. Copyright © 2016. Published by Elsevier Inc.

  4. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  5. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2006-04-30

    During this reporting period, further fundamental studies were conducted to understand the mechanism of the interactions between surfactants and minerals with the aim of minimizing chemical loss by adsorption. The effects of pH and mixing ratio on the chemical loss by adsorption were investigated. Some preliminary modeling work has been done towards the aim of developing a guide book to design optimal polymer/surfactant formula based on the understanding of adsorption and orientation of surfactants and their aggregates at solid/liquid interfaces. The study of adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) was continued during this period. Based on the adsorption results, the effects of pH and mixing ratio on reagent loss were quantitatively evaluated. Adsorption of dodecyl maltoside showed a maximum at certain mixing ratio at low pH (3{approx}5), while adsorption of dodecyl maltoside steadily decreased with the increase in C{sub 12}SO{sub 3}Na. Analytical ultracentrifuge technique was employed to study the micellization of DM/C{sub 12}SO{sub 3}Na mixtures. Compositional changes of the aggregates were observed the mixing ratio of the components. Surfactant mixture micellization affects the conformation and orientation of adsorption layer at mineral/water interface and thus the wettability and as a result, the oil release efficiency of the chemical flooding processes. A preliminary term, Reagent Loss Index (RLI), has been proposed to represent the adsorption of all the surfactants in a standardized framework for the development of the models. Previously reported adsorption data have been analyzed using the theoretical framework for the preparation of a guidebook to help optimization of chemical combinations and selection of reagent scheme for enhanced oil recovery.

  6. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  7. Microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Brown, Lewis R

    2010-06-01

    Two-thirds of the oil ever found is still in the ground even after primary and secondary production. Microbial enhanced oil recovery (MEOR) is one of the tertiary methods purported to increase oil recovery. Since 1946 more than 400 patents on MEOR have been issued, but none has gained acceptance by the oil industry. Most of the literature on MEOR is from laboratory experiments or from field trials of insufficient duration or that lack convincing proof of the process. Several authors have made recommendations required to establish MEOR as a viable method to enhance oil recovery, and until these tests are performed, MEOR will remain an unproven concept rather than a highly desirable reality. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, M.

    1995-12-01

    This research studied the oil recovery potential of flooding light oil reservoirs by combining interfacial tension reducing agent(s) with a mobility control agent. The specific objectives were: To define the mechanisms and limitations of co-injecting interfacial tension reduction agent(s) and a mobility control agent to recover incremental oil. Specifically, the study focused on the fluid-fluid and fluid-rock interactions. To evaluate the economics of the combination technology and investigate methods to make the process more profitable. Specific areas of study were to evaluate different chemical concentration tapers and the volume of chemical injection required to give optimal oil recovery.

  9. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  10. Experimental application of ultrasound waves to improved oil recovery during waterflooding

    Directory of Open Access Journals (Sweden)

    Emad Alhomadhi

    2014-01-01

    Results show that the rate of oil displacement increases due to various identified mechanisms, and the interaction of the generated waves with the fluids in porous media causes changes in relative permeability and in water breakthrough. Wave stimulation at residual oil saturation was more effective than the case of original oil in place. Therefore, this method is advised to be used in depleted reservoirs. Moreover, wave stimulation on core sample with a compressive strength of <150 psi (unconsolidated is not recommended due to sand production.

  11. Improved techniques for fluid diversion in oil recovery. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.

    1993-12-01

    This three-year project has two general objectives. The first objective is to compare the effectiveness of gels in fluid diversion with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application, and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. Another objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. This report describes work performed during the first year of the project. Following the introduction, Chapters 2 through 5 present several surveys concerning field applications of gel treatments. Based on the results of the surveys, guidelines are proposed in Chapter 5 for the selection of candidates for gel treatments (both injection wells and production wells). Chapters 6, 7, 8, and 11 discuss theoretical work that was performed during the project. Chapter 6 examines whether Hall plots indicated selectivity during gelant placement. Chapter 7 discusses several important theoretical aspects of gel treatments in production wells with water-coning problems. Chapter 8 considers exploitation of density differences during gelant placement. Chapter 11 presents a preliminary consideration of the use of precipitates as blocking agents. Chapters 9 and 10 detail the experimental work for the project. Chapter 9 describes an experimental investigation of gelant placement in fractured systems. Chapter 10 describes experiments that probe the mechanisms for disproportionate permeability reduction by gels.

  12. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  13. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, M.J.

    1994-06-01

    Investigation of Oil Recovery Improvement by Coupling and Interfacial Tension Agent and a Mobility Control Agent in Light Oil Reservoirs will study two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent. The first area defines the interactions of alkaline agent, surfactants, and polymers on a fluid-fluid and fluid-rock basis. The second area concerns the economic improvement of the combined technology. This report examines the interactions of different alkaline agents, surfactants, and polymer combinations on a fluid-fluid basis. Alkali and surfactant combine to reduce the interfacial tension between a low acid number, 42 API gravity crude oil and the aqueous solution to values lower than either agent alone. Surfactant structure can vary from linear chain sulfonates to alkyl aryl sulfonates to produce low interfacial tension values when combined with alkali. However as a class, the alkyl aryl sulfonates were the most effective surfactants. Surfactant olefinic character appears to be critical in developing low interfacial tensions. For the 42 API gravity crude oil, surfactants with molecular weights ranging from 370 to 450 amu are more effective in lowering interfacial tension. Ultra low interfacial tensions were achieved with all of the alkaline agents evaluated when combined with appropriate surfactants. Different interfacial tension reduction characteristics with the various alkali types indicates alkali interacts synergistically with the surfactants to develop interfacial tension reduction. The solution pH is not a determining factor in lowering interfacial tension. Surfactant is the dominant agent for interfacial tension reduction.

  14. Wettability Improvement with Enzymes: Application to Enhanced Oil Recovery under Conditions of the North Sea Reservoirs

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    , proteases and oxidoreductases, provided by Novozymes, have been investigated. Two commercial mixtures containing enzymes: Apollo-GreenZyme™ and EOR-ZYMAX™ have also been applied. The North Sea dead oil and the synthetic sea water were used as test fluids. Internal surface of a carbonate rock has been...... interfacially active oil compounds. Application of the commercial product Apollo-GreenZyme™ has also resulted in positive wettability changes, but according to the observations the working mechanisms are different. In an attempt to assess validity of the proposed mechanisms, the reference experiments have been...

  15. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  16. Wettability Improvement with Enzymes: Application to Enhanced Oil Recovery under Conditions of the North Sea Reservoirs

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    , proteases and oxidoreductases, provided by Novozymes, have been investigated. Two commercial mixtures containing enzymes: Apollo-GreenZyme™ and EOR-ZYMAX™ have also been applied. The North Sea dead oil and the synthetic sea water were used as test fluids. Internal surface of a carbonate rock has been...

  17. Improved techniques for fluid diversion in oil recovery. Second annual report, October 1, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.

    1995-03-01

    This project is directed at reducing water production and increasing oil recovery efficiency. Today, the cost of water disposal is typically between $0.25 and $0.50 per bbl. Therefore, there is a tremendous economic incentive to reduce water production if that can be accomplished without sacrificing hydrocarbon production. Environmental considerations also provide a significant incentive to reduce water production during oilfield operations. This three-year project has two technical objectives. The first objective is to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. Topics covered in this report include (1) comparisons of the use of gels, foams, emulsions, and particulates as blocking agents; (2) propagation of aluminum-citrate-HPAM gels through porous rock; (3) gel properties in fractured systems; (4) gel placement in unfractured anisotropic flow systems; and (5) an investigation of why some gels can reduce water permeability more than oil permeability.

  18. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  19. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  20. The Vapex process: non-thermal recovery of bitumen and heavy oil for improved economics and climate change advantage

    Energy Technology Data Exchange (ETDEWEB)

    Luhning, R.W. [Petroleum Recovery Inst., Calgary, AB (Canada); Luhning, C.P. [Suncor Energy Inc., Calgary, AB (Canada)

    1999-07-01

    The Vapex process, the injection of a combination of vaporized solvents into heavy oil and bitumen reservoirs for in situ recovery of the oil is discussed. In the process, the oil is diluted with the solvent, causing the oil's viscosity to be reduced thus enabling the oil to drain into the horizontal production well. The process is non-thermal, i.e. it does not require the reservoir to be heated, hence it has the potential to greatly reduce greenhouse gas emissions, a necessary feature of thermal processes used to enhance the recovery of oil sands and heavy oils. The economic advantages of the Vapex process are demonstrated on the basis of experimental results from three reservoirs and field scale numerical simulation. An overview of the integrated physical model, numerical simulation, facilities design, well specifications and production/transportation/marketing work that underlie the economic calculations is provided. A substantial experimental field pilot plant to validate the preliminary results and to test the assumptions about the Vapex process is under consideration. 15 refs., 6 tabs, 13 figs.

  1. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs....

  2. Research on oil recovery mechanisms in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  3. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Jill S.

    2002-01-29

    The objectives of this five-year project were: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding.

  4. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  5. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-31

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

  6. Oil recovery apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, J.G.

    1981-05-19

    An oil recovery apparatus and method, particularly for removing oil and grease from the discharge of dishwashing machines or the like, provides a small size assembly employing the same principle as in U.S. Pat. No. 4,051,024. This apparatus and method employs single rotating discs of plastic or plastic coated material and each disk has a pair of scraper blades arranged to scrape opposite sides of the rotating blade. Exterior of the container for the oil recovery apparatus is at least one filter basket adapted to receive the flow into the strainer container of large particles of food and other waste such as cigarette butts and the like. Each filter is disposed for the ready cleaning of accumulated matter from the basket. There is shown plural filters, valve controls, auxiliary heating and disc support means to be more fully described.

  7. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  8. Immiscible foam for enhancing oil recovery

    NARCIS (Netherlands)

    Simjoo, M.

    2012-01-01

    Growing worldwide oil demand increased the need of new and efficient oil recovery methods. Gas injection in oil reservoirs is deemed one of the most widely used methods to increase oil recovery. However, the full potential of gas injection is often not realized due to poor vertical and areal sweep e

  9. Immiscible foam for enhancing oil recovery

    NARCIS (Netherlands)

    Simjoo, M.

    2012-01-01

    Growing worldwide oil demand increased the need of new and efficient oil recovery methods. Gas injection in oil reservoirs is deemed one of the most widely used methods to increase oil recovery. However, the full potential of gas injection is often not realized due to poor vertical and areal sweep e

  10. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types

  11. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  12. Thermal method of oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, A.I.; Sheinman, A.B.; Malofeev, G.E.

    1963-08-02

    In a thermal method of oil recovery, an oxidizer is fed through one hole so that the air expels the water from the formation and starts to circulate between this and a second hole. The combustion heat is formed so that as air is added and the combustion products are drawn off through the other, the heat of combustion will in fact move along the oil formation toward the flow of oxidizing agent. The highly heated zone of rock which forms lies perpendicular to the water flow. When air is stopped, pressure is reduced and the water is re-admitted to this zone. It evaporates and fills the cavity in the rock, cools the area behind, while the heated zone moves on and heats the area in front. The water vapor and hot water expel the oil.

  13. PRIORITY. Improved oil recovery and productivity from Lower Cretaceous Carbonates. Sub-project 2.3.e: Improved water injectivity

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Stenby, E.; Vu, D.T. [Tech. Univ. of Denmark, Dept. of Chem. Eng. (Denmark)

    2002-08-01

    The effect of drag reduction additives seen as lowering of inlet pressure at constant flow rate has been investigated in relation to water injection in reservoir rock. The mechanism is well known from flow lines but has not previously been described for porous material. In this work both polymer based and surfactant based additives have been investigated. It has been found that surfactants based additives at concentrations between 100 and 300 ppm may lower the inlet pressure by up to 10 % when no oil is present, while polymers may have negative effects on the permeability due to plugging of pores. In some cores a drag reduction of up to 50 % was found. The presence of oil lowers the effect significantly probably due to swelling and destruction of the micellar structure responsible for the drag reduction. The commercial surfactant based additive was seen to decrease emulsion stability (work as demulsifiers). Caution should be exercised in designing the right mixing procedure for surfactant and injection brine. (au)

  14. Sulfur recovery further improved

    Energy Technology Data Exchange (ETDEWEB)

    Borsboom, J.; Grinsven, M. van; Warners, A. van [Jacobs Nederland B.V., (Netherlands); Nisselrooy, P. van [Gastec N.V., (Netherlands)

    2002-04-01

    The original 100-year-old Claus process for producing sulfur from hydrogen sulfide in acid gas is described together with improvements which have been made over the years. The most recent modification, EUROCLAUS, achieves sulfur recoveries of 99-99.9 per cent. Five commercial units are being designed.

  15. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled...... “smart” waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows...

  16. CO2 enhanced oil recovery economics

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, C.W.

    1983-01-01

    Realistic estimates of potential enhanced oil recovery (EOR) reserve additions range from 15 to 50 billion bbl. Oil price, technical advancements, and taxation will strongly influence how much of this potential can be realized. EOR can be implemented on a large scale in the near term, and can contribute significantly to domestic oil production by the late 1980s. The contribution of CO2 injection recovery processes to this enhancement of oil reserves is examined with regard to economics and technology.

  17. Starting up microbial enhanced oil recovery.

    Science.gov (United States)

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  18. Microbial enhanced oil recovery: Entering the log phase

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  19. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  20. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  1. Improved oil recovery in Mississippian carbonate reservoirs of Kansas -- near term -- Class 2. Quarterly report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carr, T.; Green, D.W.; Willhite, G.P.; Schoeling, L.; Reynolds, R.

    1995-07-01

    The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian (Mississippian) dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile oil. The project addresses producibility problems in two fields: specific reservoirs target the Schaben Field in Ness County, Kansas, and the Bindley Field in Hodgeman County, Kansas. The producibility problems to be addressed include inadequate reservoir characterization, drilling and completion design problems, non-optimum recovery efficiency. The results of this project will be disseminated through various technology transfer activities. General overview--progress is reported for the period from 1 April 1995 to 30 June 1995. Work in this quarter has concentrated on reservoir characterization with the initiation of technology transfer. Difficulties still remain in the drilling of the final two wells. Some preliminary work on reservoir characterization has been completed, and related technology transfer has been initiated.

  2. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    Science.gov (United States)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  3. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  4. Sonochemical approaches to enhanced oil recovery.

    Science.gov (United States)

    Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Altunina, Lyubov K; Gerasin, Artyom S; Pashin, Dmitriy M; Mason, Timothy J

    2015-07-01

    Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Seismic techniques of enhanced oil recovery: experimental and field results

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, O.L.; Simkin, E.M.; Chilingar, G.V.; Gorfunkel, M.V.; Robertson, J.O. Jr.

    2002-09-15

    Application of secondary and tertiary oil recovery techniques during late field development stages usually yields poor results. The reasons are principally due to the low efficiency of these technologies, probably because the gravity and capillary forces are not properly considered. Improved efficiency for hydrocarbon recovery produced by seismic vibration is discussed. (author)

  6. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  7. Effect of Brine Composition on Wettability Alteration and Oil Recovery from Oil-wet Carbonate Rocks

    Science.gov (United States)

    Purswani, P.; Karpyn, Z.

    2016-12-01

    Brine composition is known to affect the effectiveness of waterflooding during enhanced oil recovery from carbonate reservoirs. Recent studies have identified Mg2+, Ca2+ and SO42- as critical ions, responsible for incremental oil recovery via wettability alteration. To investigate the underlying mechanism of wettability alteration and, to evaluate the individual contribution of these ions towards improving oil recovery, a series of coreflooding experiments are performed. Various characterization techniques like zeta potential (ZP), drop angle analysis and inductively coupled plasma mass spectrometry (ICP MS) analysis are performed to evaluate the surface interactions taking place at the carbonate core samples, brine solution and crude oil interfaces. Total dissolved solids and electrical conductivity measurements confirm the ionic strength of the brine samples. Acid number calculations, ZP and contact angle measurements confirm the initial oil-wetting state of the core. ICP MS analysis of the effluent brine, confirm the relationship between the ionic interactions and oil recovery.

  8. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of

  9. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  10. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  11. Viability of Biopolymers for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Sveistrup, Marte; van Mastrigt, Frank; Norrman, Jens; Picchioni, Francesco; Paso, Kristofer

    2016-01-01

    Xanthan gum and scleroglucan are assessed as environmentally friendly enhanced oil recovery (EOR) agents. Viscometric and interfacial tension measurements show that the polysaccharides exhibit favorable viscosifying performance, robust shear tolerance, electrolyte tolerance, and moderate interaction

  12. Viability of Biopolymers for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Sveistrup, Marte; van Mastrigt, Frank; Norrman, Jens; Picchioni, Francesco; Paso, Kristofer

    2016-01-01

    Xanthan gum and scleroglucan are assessed as environmentally friendly enhanced oil recovery (EOR) agents. Viscometric and interfacial tension measurements show that the polysaccharides exhibit favorable viscosifying performance, robust shear tolerance, electrolyte tolerance, and moderate interaction

  13. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    In this project, a generic model has been set up to include the two main mechanisms in the microbial enhanced oil recovery (MEOR) process; reduction of the interfacial tension (IFT) due to surfactant production, and microscopic fluid diversion as a part of the overall fluid diversion mechanism due......, bacterial growth, substrate consumption, and surfactant production in one dimension. The system comprises oil, water, bacteria, substrate, and surfactant. There are two flowing phases: Water and oil. We introduce the partition of surfactant between these two phases determined by a partitioning constant......, the curve levels off. Partitioning of surfactant between the oil and water phase is a novel effect in the context of microbial enhanced oil recovery. The partitioning coefficient determines the time lag before the surfactant effect can be seen. The surfactant partitioning does not change final recovery...

  14. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  15. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Jill S.

    1999-07-01

    The objective of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the second year of this project we have tested the generality of the proposed mechanisms by which crude oil components can alter wetting. Using these mechanisms, we have begun a program of characterizing crude oils with respect to their wettability altering potential. Wettability assessment has been improved by replacing glass with mica as a standard surface material and crude oils have been used to alter wetting in simple square glass capillary tubes in which the subsequent imbibition of water can be followed visually.

  16. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical

  17. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical me

  18. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical me

  19. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  20. Chemical enhanced recovery of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Soveran, D.W.; Scoular, R.J.; Kurucz, L.; Renouf, G.; Verkoczy, B. [Saskatchewan Research Council, Regina, SK (Canada)

    2003-09-01

    A unique chemical/emulsion enhanced oil recovery (EOR) process was laboratory tested to determine its suitability for field demonstration purposes in 3 heavy oil reservoirs in the Lloydminster area of Saskatchewan. The promising chemical agents for the process were identified and optimized. The 3 reservoirs selected represented a cross-section of crude oil qualities typical for the region. The ultimate objective was to develop a process to replace waterflooding as the standard for post-primary production. Several modified core screening tests were conducted to formulate a chemical mixture for the lowest viscosity crude oil. This proved to be the best candidate among the 3 reservoirs. The mixture resulted in additional oil recovery of 26 per cent original oil in place, which is better than a typical waterflood. Two conventional core displacement tests confirmed the success of the modified core flood method. A new polymer was then used in combination with the new coreflood method to produce an additional oil recovery of 30 per cent. Laboratory studies indicate that the lowest viscosity crude oil field is a good candidate for the chemical EOR field study. Results show that the method can recover even the most highly viscous crude oil at a cost below C$10 per barrel. The field shows good potential for chemical EOR even though produced water from the reservoir formed heavy precipitate. 3 tabs., 6 figs.

  1. Physicochemical methods for enhancing oil recovery from oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Altunina, L K; Kuvshinov, V A [Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation)

    2007-10-31

    Physicochemical methods for enhancing oil recovery from oil fields that are developed using water flooding and thermal steam treatment are considered. The results of pilot testing of processes based on these methods carried out at West Siberian and Chinese oil fields are analysed. The attention is focused on the processes that make use of surfactant blends and alkaline buffer solutions and thermotropic gel-forming systems.

  2. Physicochemical methods for enhancing oil recovery from oil fields

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, V. A.

    2007-10-01

    Physicochemical methods for enhancing oil recovery from oil fields that are developed using water flooding and thermal steam treatment are considered. The results of pilot testing of processes based on these methods carried out at West Siberian and Chinese oil fields are analysed. The attention is focused on the processes that make use of surfactant blends and alkaline buffer solutions and thermotropic gel-forming systems.

  3. Recovery rates, enhanced oil recovery and technological limits.

    Science.gov (United States)

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  4. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Biosurfactants and their role in oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, Michael J. [University of Oklahoma (United States)

    2011-07-01

    This paper presents the role of biosurfactants in oil recovery. Types of biosurfactants include, among others, lipopeptides, rhamnolipids, sophorolipids. The process of oil recovery and the involvement of microbes are explained. The objective is to know if lipopeptide biosurfactants lower interfacial tension. Fatty acid composition is important for lipopeptide biosurfactant activity and microbial surfactants are hydrophilic and Interfacial Tension (IFT) values are high. Examples of biosurfactants with lower IFT values with mixtures are also given. An experiment was conducted to determine whether lipopeptides recovery entrapped oil or not. The procedure and experimental setup are shown. It is seen that with higher concentration of biosurfactants, the percentage of residual oil recovery is higher. Another experiment was conducted to see if biosurfactants greater than 40 mg/l can be produced in oil reservoirs. The experimental design and the analysis with the results are given. It was seen that more oil was produced. Conclusions from the study were, among other findings, that, in situ biosurfactant production and inoculation are possible.

  6. Enhanced oil recovery with polymer flooding

    Science.gov (United States)

    Parsa, Shima; Weitz, David

    2016-11-01

    Polymer flooding is a method for enhanced oil recovery, however the mechanism responsible for the effectiveness of polymer flooding is not well understood. We use confocal microscopy and bulk transport measurements to probe the effectiveness of different molecular weight and concentrations of Polyacrylamide solution in imbibition of crude oil in 3D micromodel. We show that large molecular weight and moderate to high concentration of polymer is required for enhanced recovery. By directly measuring the pore level velocities in the medium, we show that polymer retention in the medium results in diversion of flow in some pores. The inhomogeneous changes in the flow velocities result in redistribution of viscous forces and enhanced recovery of oil.

  7. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  8. Simultaneous injection of polymer and surfactant for improving oil recovery; Injecao simultanea de polimero e surfactante para aumento da recuperacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Ana C.R.; Valentim, Adriano C.M.; Marcelino, Cleuton P.; Fagundes, Fabio P.; Girao, Joaquim H.S.; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo (LAPET)

    2004-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the volumetric efficiency of swept of the oil with the decrease of the mobility of the injection water. In the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was used samples of commercial polyacrylamide, which were characterized through hydrolysis degree, molecular weight and rheological behavior. From these results it was chosen one sample to be used associated to a polymeric surfactant. Through a core flood system, the following tests were done: injection of polymer solution; injection of surfactant solution followed by polymer solution and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  9. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    OpenAIRE

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical methods, (partially) miscible methods and thermal methods. Air injection is categorized as a thermal recovery method as it leads to combustion and therefore high temperature in the reservoir. However...

  10. Development of Bottom Oil Recovery Systems. Revised

    Science.gov (United States)

    2014-02-01

    Athos I), open-ocean (T/V Prestige), and oil-field deep ocean drilling (Deepwater Horizon) related spills, the problems associated with tracking... mud . Probably the least sensitive bottom types are sand and mud bottoms in areas that already suffer from pollution such as industrial areas. Note...Capping Coral Reef Sea Grass Beds Kelp Forest Rocky Bottom Sand Mud Recommended Provisional Not Recommended Development of Bottom Oil Recovery Systems

  11. ENHANCED OIL RECOVERY BY FLOODING WITH HYDROPHILIC NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Binshan Ju; Tailiang Fan; Mingxue Ma

    2006-01-01

    In this paper, the mechanism of enhanced oil recovery using lipophobic and hydrophilic polysilicon (LHP)nanoparticles ranging in size from 10 to 500 nm for changing the wettability of porous media was analysed theoretically. A one-dimensional two-phase mathematical model considering the migration and adsorption of LHP and wettability change in reservoir rock was proposed, and a simulator was developed to quantitatively predict the changes in relative and effective permeability of the oil and water phases and the oil recovery in sandstone after water driving. Numerical simulations were conducted to study the distribution of the particle concentration, the reduction in porosity and absolute permeability, the LHP volume retention on pore walls and in pore throats along a dimensionless distance, and oil production performance. In conclusion, oil recovery can obviously be improved by flooding with hydrophilic nanometer powders though permeability declines for the retention of nanoparticles in porous media. It is suggested that an LHP concentration ranging from 0.02 to 0.03 is preferable to enhance oil recovery.

  12. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  13. A parametric study of VAPEX process as improved oil recovery method; Estudo parametrico do processo VAPEX como metodo de recuperaco avancada de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.; Barillas, J.L.M.; Mata, W.; Dutra Junior, T.V. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    There is still a large amount of natural resources in heavy oil reservoirs which can be explored using new methods. The world estimate of resources as heavy oil and bitumen may be 6 trillion barrels of OOIP. However, this enormous amount of hydrocarbon resources which are in these reservoirs may be explored with new concepts. The VAPEX process is a promising recovery method since its invention in 1991 by Dr. Roger Butler. The process consists of two horizontal wells, parallel between themselves, producer and injector, where vaporized solvent is injected with the objective of reducing the oil or bitumen viscosity. The purpose of this study is to examine how some important operational parameters influence the VAPEX process, in the produced oil rates, the cumulative produced oil and the recovery factor. Parameters such as the spacing between wells, the injection pressure and the type of solvent are addressed in this study. The choice of solvent to be used was the factor that showed more influence in the process and this allowed a greater recovery factor. Another important parameter was the injection pressure. (author)

  14. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  15. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    Directory of Open Access Journals (Sweden)

    Scott Zengel

    Full Text Available The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control, as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by

  16. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    Science.gov (United States)

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  17. Improved oil recovery in Mississippian carbonate reservoirs of Kansas near term Class 2. Annual report, September 18, 1994--March 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Carr, T.R.; Green, D.W.; Willhite, G.P.

    1998-04-01

    This annual report describes progress during the second year of the project entitled {open_quotes}Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas{close_quotes}. This project funded under the Department of Energy`s Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, several tools and techniques for reservoir description and management were developed, modified and demonstrated. These include: (1) a new approach to subsurface visualization using electric logs ({open_quotes}Pseudoseismic{open_quotes}); (2) a low-cost easy-to-use spreadsheet log analysis software (PfEFFER); and (3) an extension of the BOAST-3 computer program for full field reservoir simulation. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). These results include an outline of the reservoir description based on available and newly acquired data and reservoir simulation results. Detailed information is available on-line through the Internet. Based on the reservoir simulation, three infill wells will be drilled to validate the reservoir description and demonstrate the effectiveness of the proposed reservoir management strategies. The demonstration phase of the project has just begun and will be presented in the next annual report.

  18. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  19. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  20. Improved polymers for enhanced oil recovery: synthesis and rheology. Final report. [Copolymers of acrylamide with sodium-3-acrylamido-3-methyl-butanoate

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.L.; Hester, R.D.

    1985-10-01

    Research during FY-84 was centered on synthesis, characterization, and rheological behavior of copolymers of acrylamide (AM) with sodium-3-acrylamido-3-methyl-butanoate (NaAMB). Reactivity ratios were determined and copolymers with designated microstructures were synthesized in order to assess solution properties. Polymers were characterized by C-13 NMR and Infrared Spectroscopy, low angle laser light scattering, quasielastic light scattering, viscometry, turbidimetry, and potentiometric titration. New light scattering and size exclusion chromatographic (SEC) techniques have been developed for more accurately measuring molecular size of high molecular weight, water-soluble copolymers. The improved sensitivity of SEC methods is attributable to the development of a new syringe pump, a sensitive pressure detector, and deconvolution techniques in conjuction with the utilization of efficient column packing materials. The AM/NaAMB copolymers show immense potential for use as mobility control agents in enhanced oil recovery due to their remarkable calcium tolerance and unusually high molecular weights as compared to conventional acrylamide-sodium acrylate copolymers of similar microstructure. 133 refs., 34 figs., 26 tabs.

  1. CT imaging of enhanced oil recovery experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  2. CT imaging of enhanced oil recovery experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  3. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek

    2003-01-01

    This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

  4. Review of EOR (enhanced oil recovery) project trends and thermal EOR (enhanced oil recovery) technology

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J. F.; Sarathi, P.; Thomas, R.

    1990-03-01

    Information on United States (US) enhanced oil recovery (EOR) projects is analyzed to discern trends in applications of EOR technologies. This work is based on an evaluation of current literature and analysis of the Department of Energy (DOE) EOR project data base which contains information on over 1,300 projects. Three-quarters of current US oil production attributed to EOR is derived from thermal EOR processes (TEOR). Changes in the technology of TEOR since the 1984 Enhanced Oil Recovery'' study by the National Petroleum Council (NPC) are reviewed in terms of the current applied technology and reported research. 87 refs., 4 figs., 20 tabs.

  5. Enhanced oil recovery projects data base

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  6. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  7. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  8. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Andrew Lowe

    2007-03-20

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  9. Evaluation of Reservoir Wettability and its Effect on Oil Recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.S.

    1998-01-15

    We report on the first year of the project, `Evaluation of Reservoir Wettability and its Effect on Oil Recovery.` The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. As background, mixed-wetting and our current understanding of the influence of stable and unstable brine films are reviewed. The components that are likely to adsorb and alter wetting are divided into two groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. Finally, the test procedures used to assess the extent of wetting alteration-tests of adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media are introduced. In Part 1, we report on studies aimed at characterizing both the acid/base and asphaltene components. Standard acid and base number procedures were modified and 22 crude oil samples were tested. Our approach to characterizing the asphaltenes is to focus on their solvent environment. We quantify solvent properties by refractive index measurements and report the onset of asphaltene precipitation at ambient conditions for nine oil samples. Four distinct categories of interaction mechanisms have been identified that can be demonstrated to occur when crude oils contact solid surfaces: polar interactions can occur on dry surfaces, surface precipitation is important if the oil is a poor solvent for its

  10. Reservoir characterization and enhanced oil recovery research

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  11. Enhanced Oil Recovery: An Update Review

    Directory of Open Access Journals (Sweden)

    Vladimir Alvarado

    2010-08-01

    Full Text Available With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. This paper presents a comprehensive review of EOR status and opportunities to increase final recovery factors in reservoirs ranging from extra heavy oil to gas condensate. Specifically, the paper discusses EOR status and opportunities organized by reservoir lithology (sandstone and carbonates formations and turbiditic reservoirs to a lesser extent and offshore and onshore fields. Risk and rewards of EOR methods including growing trends in recent years such as CO2 injection, high pressure air injection (HPAI and chemical flooding are addressed including a brief overview of CO2-EOR project economics.

  12. Electrokinetics in oil recovery. Progress report 2

    Energy Technology Data Exchange (ETDEWEB)

    Moeller Nielsen, C.; Laursen, S. [DTU, Fysisk-Kemisk Inst. (Denmark); Jensen, A.B.; Reffstrup, J. [DTU, Lab. for Energiteknik (Denmark); Springer, N. [GEUS, Kerneanalyse Lab. (Denmark)

    1996-03-01

    The elaborate definitions of the different types of phenomenological coefficients of use in studies of complicated transport processes are developed. These constitute the basis for discussing experimental results of the electrokinetics experiments. Temperature dependence of the electric transport coefficients was determined in the range from laboratory temperature to reservoir temperature. The results are compared with calculated temperature dependences obtained by using simple theories and literature data of solution properties. Seemingly the temperature dependence of solution conductivity dominates the picture. Simple Helmholtz-Smoluchowski-Poisson-Boltzmann theory cannot account for the experimental findings. To test the applicability of the scheme of linear equations to describe the flow in the measurement cell, simultaneous application of a pressure difference and a voltage was studied. The results are reasonably satisfying. The linear approach with constant coefficients is found to be appropriate for small flows. The influence of plug treatment was investigated in a series of flushing experiments. Different kinds of oil and water flushing procedures were carried out as were flushings with different solvents. A steady-state of the oil displacement process seems to be reproducible. Some treatments do not influence the permeability but change the electric coefficients. Thus there are changes which cannot be detected by permeability measurements. The two-phase flow experiments were made to show the influence of applying an electric current to a plug in which spontaneous imbibition takes place. Evidently the electrokinetics lowers the residual oil saturation and increases the oil recovery rate. (EG) 13 refs.

  13. Electrokinetics in oil recovery. Progress report 2

    Energy Technology Data Exchange (ETDEWEB)

    Moeller Nielsen, C.; Laursen, S. [DTU, Fysisk-Kemisk Inst. (Denmark); Jensen, A.B.; Reffstrup, J. [DTU, Lab. for Energiteknik (Denmark); Springer, N. [GEUS, Kerneanalyse Lab. (Denmark)

    1996-03-01

    The elaborate definitions of the different types of phenomenological coefficients of use in studies of complicated transport processes are developed. These constitute the basis for discussing experimental results of the electrokinetics experiments. Temperature dependence of the electric transport coefficients was determined in the range from laboratory temperature to reservoir temperature. The results are compared with calculated temperature dependences obtained by using simple theories and literature data of solution properties. Seemingly the temperature dependence of solution conductivity dominates the picture. Simple Helmholtz-Smoluchowski-Poisson-Boltzmann theory cannot account for the experimental findings. To test the applicability of the scheme of linear equations to describe the flow in the measurement cell, simultaneous application of a pressure difference and a voltage was studied. The results are reasonably satisfying. The linear approach with constant coefficients is found to be appropriate for small flows. The influence of plug treatment was investigated in a series of flushing experiments. Different kinds of oil and water flushing procedures were carried out as were flushings with different solvents. A steady-state of the oil displacement process seems to be reproducible. Some treatments do not influence the permeability but change the electric coefficients. Thus there are changes which cannot be detected by permeability measurements. The two-phase flow experiments were made to show the influence of applying an electric current to a plug in which spontaneous imbibition takes place. Evidently the electrokinetics lowers the residual oil saturation and increases the oil recovery rate. (EG) 13 refs.

  14. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  15. Environmental regulations handbook for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Blatchford, R.P.; Spears, R.B. (Spears and Associates, Inc., Tulsa, OK (United States))

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  16. Economic analysis of secondary and enhanced oil recovery techniques in Wyoming

    Science.gov (United States)

    Kara, Erdal

    This dissertation primarily aims to theoretically analyze a firm's optimization of enhanced oil recovery (EOR) and carbon dioxide sequestration under different social policies and empirically analyze the firm's optimization of enhanced oil recovery. The final part of the dissertation empirically analyzes how geological factors and water injection management influence oil recovery. The first chapter builds a theoretical model to analyze economic optimization of EOR and geological carbon sequestration under different social policies. Specifically, it analyzes how social policies on sequestration influence the extent of oil operations, optimal oil production and CO2 sequestration. The theoretical results show that the socially optimal policy is a subsidy on the net CO2 sequestration, assuming negative net emissions from EOR. Such a policy is expected to increase a firm's total carbon dioxide sequestration. The second chapter statistically estimates the theoretical oil production model and its different versions. Empirical results are not robust over different estimation techniques and not in line with the theoretical production model. The last part of the second chapter utilizes a simplified version of theoretical model and concludes that EOR via CO2 injection improves oil recovery. The final chapter analyzes how a contemporary oil recovery technology (water flooding of oil reservoirs) and various reservoir-specific geological factors influence oil recovery in Wyoming. The results show that there is a positive concave relationship between cumulative water injection and cumulative oil recovery and also show that certain geological factors affect the oil recovery. Moreover, the curvature of the concave functional relationship between cumulative water injection and oil recovery is reservoir-specific due to heterogeneities among different reservoirs.

  17. Fundamental research in the chemistry of industrial oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N.M.

    1984-01-01

    The causes of low oil recovery from formations and physiochemical methods for increasing oil recovery are analyzed. A survey of results from research in this field at the chemical institutes of the Academy of Sciences of the USSR is given. The primary concepts of interformation combustion are examined together with the possibilities for using this method to control the combustion processes and enhance oil recovery as well as to optimize combustion processes.

  18. Enhanced oil recovery using electrical methods

    Science.gov (United States)

    Rehman, Muhammad Moshin

    Heavy Oil Recovery is gaining much popularity because of huge consumption of oil in the modern industry. Main concern in the extraction of heavy oil is its high viscosity. Heating heavy oil by different electrical means has come out to be a promising solution for viscosity reduction. This includes the low frequency resistive heating, induction heating and high frequency microwave heating or the dielectric heating. Application of low frequency resistive heating is limited by the requirement of brine (conducting fluid) inside the reservoir while Induction heating is only applicable in the presence of ferrous elements in the reservoir. High frequency microwave heating can be used effectively for enhancing the oil productivity. Ultrasonic stimulation is another technique capable of reducing the viscosity of heavy oil without employing the heating techniques. Although many models have been presented addressing microwave heating of heavy oil but, no model has been found in the literature addressing the design of microwave sources and the experimental verification of the results. Similarly some authors have also addressed the ultrasonic stimulation of heavy oil but no one has discussed the behavior of ultrasonic waves at different power level along with the experimental verification. This thesis presents complete mathematical modeling of microwave heating, with numerical solution by considering two-dimensional radial model. In addition, the design, positioning, and orientation of the array of microwave antennas have also been considered in numerical simulations while results of some of the cases are also verified experimentally. Similarly, the Thesis discusses the ultrasonic modeling with numerical solution and experimental verification at different power levels and positioning of the ultrasonic transducer. These models present the results in the form of temperature & pressure distribution and productivity enhancement. For numerical simulations, a Finite Element Analysis

  19. Major S&T Issues in Enhanced Oil Recovery

    Institute of Scientific and Technical Information of China (English)

    Yu Jiayong

    2001-01-01

    This article deals with the strategic significance of developing enhanced oil recovery technology, its current research situation, developing trend and the related important problems in science and technology.

  20. Novel Application of the Flotation Technique To Measure the Wettability Changes by Ionically Modified Water for Improved Oil Recovery in Carbonates

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2016-01-01

    imbibition tests take months, and chromatographic separation is feasible only for core flooding in sulfate free carbonates at low temperature. A novel application of the well-established technique known as flotation was used in this study to measure the oil-wet and water-wet percent of pure biogenic chalk (Dan...... Chalk from Denmark). It is an accurate, fast, and most reliable method to quantitatively measure the water-wet and oil-wet fractions of a reservoir rock. It determines the potential of advanced water to improve wettability within days, instead of measurements that can take months and require expensive...... alteration and the amount of oil attached to the water-wet percent of rock was also determined....

  1. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  2. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    National Research Council Canada - National Science Library

    Shuang Cindy Cao; Bate Bate; Jong Wan Hu; Jongwon Jung

    2016-01-01

      Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil...

  3. Essays on carbon policy and enhanced oil recovery

    Science.gov (United States)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil

  4. Direct Oil Recovery from Saturated Carbon Nanotube Sponges.

    Science.gov (United States)

    Li, Xiying; Xue, Yahui; Zou, Mingchu; Zhang, Dongxiao; Cao, Anyuan; Duan, Huiling

    2016-05-18

    Oil adsorption by porous materials is a major strategy for water purification and industrial spill cleanup; it is of great interest if the adsorbed oil can be safely recovered from those porous media. Here, direct oil recovery from fully saturated bulk carbon nanotube (CNT) sponges by displacing oil with water in controlled manner is shown. Surfactant-assisted electrocapillary imbibition is adopted to drive aqueous electrolyte into the sponge and extrude organic oil out continuously at low potentials (up to -1.2 V). More than 95 wt % of oil adsorbed within the sponge can be recovered, via a single electrocapillary process. Recovery of different oils with a wide range of viscosities is demonstrated, and the remaining CNT sponge can be reused with similar recovery capacity. A direct and efficient method is provided to recover oil from CNT sponges by water imbibition, which has many potential environmental and energy applications.

  5. Novel Application of the Flotation Technique To Measure the Wettability Changes by Ionically Modified Water for Improved Oil Recovery in Carbonates

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2016-01-01

    , then there is no need for ionically modified water. A number of methods have been devised to identify the wetting conditions including contact angle measurements, spontaneous imbibition, and chromatographic separation, etc. But contact angle measurement requires surfaces that lack natural surface roughness, spontaneous...... equipment. Using this technique we were able to quantify the wettability alteration caused by low salinity and potential determining anions (PDAs) such as SO42−, BO33−, and PO43−. The wettability data show maximum oil recovery by dilution is coincident with maximum wettability alteration. The experiments...... also show that the presence of sulfate or borate enhances wettability alteration by dilution. Moreover, the combined and individual effect of potential scale forming ions (Ba2+ and Sr2+) on wettability restoration was identified. The effect of interfacial tension (IFT) on the measured wettability...

  6. Nuclear energy as a subsurface heavy oil recovery technique (Project Athabasca). [Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.D.

    1976-01-01

    Nuclear energy may become an acceptable thermal recovery technique in the subsurface heavy oil deposits of N. Alberta. The subterranean detonation cavern also may facilitate secondary and tertiary in situ recovery methods, steam injection, and fireflood. Less than 5% of Canada's heavy oil reserves, variously estimated at up to 600-billion bbl, are producible by surface mining. Recovery theory is simple--the nuclear detonation releases both thermal and shock energy to convert otherwise immobile viscous heavy oil deposits into conventionally recoverable hydrocarbons. The proposed Project Athabaska, to employ a 10-kt device, requires exhaustive planning to overcome formidable technical, political, and environmental concerns. Technically, precedent shows that project cost is practically indepencent of yield. The crude oil production unit will comprise a central detonation or emplacement well and several peripheral production wells. Each successive recovery technique will benefit from vastly improved permeability resulting from the prior recovery method.

  7. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Andrew Lowe

    2005-10-15

    Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

  8. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  9. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  10. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  11. 泡沫辅助蒸汽驱提高采收率实验%EXPERIMENT OF IMPROVING OIL RECOVERY BY FOAM ASSISTED STEAM FLOODING

    Institute of Scientific and Technical Information of China (English)

    刘薇薇; 刘永建; 胡绍彬; 董龙

    2013-01-01

    The key to foam assisted steam flooding is to search for the foaming agent with good thermal stability and high-temperature foaming property. Through the studies, the high-temperature resistant foaming agent system for heavy oil steam flooding is achieved and furthermore the performances and practical effects of this system are investigated. At room temperature, the half-life of the high-temperature resistant foaming agent with foam stabilizer can reach 273 min. The resistance factors decrease with the increases of the temperature and the oil saturation in the core. After the oil saturation exceeding 15% , the controlling ability of the foam on the steam mobility reduces sharply, the foam has much better steam-mobility controlling ability in the high-permeability reservoirs. The resistance factor is much bigger when the gas fluid ratio is in the range from 0. 5 to 1.5. The three-tube model test for steam / foam flooding shows that this system can block those steam-crossed channels and moreover divert the injected steam from high-permeability blocks to low ones, finally the oil recovery in the low-permeability blocks can be further enhanced.%泡沫辅助蒸汽驱的关键在于寻找热稳定性和高温发泡性能良好的发泡剂,通过研究得到了适用于稠油蒸汽驱的耐高温发泡剂体系并考察了该体系的性能及其应用效果.常温下,加入稳泡剂的耐高温发泡剂的半衰期可达273 min.阻力因子随温度的升高及岩心含油饱和度的增加而降低,含油饱和度超过15%时泡沫控制蒸汽流度的能力急剧降低,泡沫在高渗透层中控制蒸汽流度的能力良好,气液比为0.5 ~1.5时的阻力因子较高.用于蒸汽+泡沫驱的三管模型实验表明,该体系可封堵汽窜通道,使蒸汽从高渗区转向低渗区而提高其采收率.

  12. Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Norman R. Morrow; Jill Buckley

    2006-04-01

    About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

  13. Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel

    Institute of Scientific and Technical Information of China (English)

    Mingzhe Dong; Qiang Liu; Aifen Li

    2012-01-01

    Enhanced oil recovery (EOR) by alkaline flooding for conventional oils has been extensively studied.For heavy oils,investigations are very limited due to the unfavorable mobility ratio between the water and oil phases.In this study,the displacement mechanisms of alkaline flooding for heavy oil EOR are investigated by conducting flood tests in a micromodel.Two different displacement mechanisms are observed for enhancing heavy oil recovery.One is in situ water-in-oil (W/O) emulsion formation and partial wettability alteration.The W/O emulsion formed during the injection of alkaline solution plugs high permeability water channels,and pore walls are altered to become partially oil-wetted,leading to an improvement in sweep efficiency and high tertiary oil recovery.The other mechanism is the formation of an oil-in-water (O/W) emulsion.Heavy oil is dispersed into the water phase by injecting an alkaline solution containing a very dilute surfactant.The oil is then entrained in the water phase and flows out of the model with the water phase.

  14. Effect of neglecting geothermal gradient on calculated oil recovery

    Science.gov (United States)

    Safari, Mehdi; Mohammadi, Majid; Sedighi, Mehdi

    2017-03-01

    Reduced recovery rate with time is a common challenge for most of the oil producing reservoirs. Water flooding is one of the most common methods used for enhanced oil recovery. Simulating water-flooding process is sometimes carried out without considering the effect of geothermal gradient, and an average temperature is assumed for all the grid blocks. However, the gradient plays a significant role on the reservoir fluid properties. So neglecting its effect might result in a large error in the calculated oil recovery results, especially for the thick reservoirs, which in theory can show significant variations in temperature with depth. In this paper, first, advancing the waterfront during injection into a geothermal oil reservoir is discussed. Then, the performance of considering either an average temperature or gradient temperature, are considered and compared with each other. The results suggest that assuming a fixed average reservoir temperature with no geothermal gradient, can lead to a pronounced error for calculated oil recovery.

  15. Enhanced oil recovery by CO{sub 2} injection

    Energy Technology Data Exchange (ETDEWEB)

    Moctezuma Berthier, Andres E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2008-07-15

    Firstly are presented some basic concepts on the enhanced oil recovery; then a description is made of where the oil deposits in Mexico are located; comments are made over what has been done in Mexico in terms of enhanced oil recovery, the projects of the Instituto Mexicano del Petroleo that have dealt with the subject of enhanced oil recovery, and finally an approach is presented towards the problem of oil recovery using CO{sub 2}. [Spanish] Primeramente se presentan unos conceptos basicos sobre la recuperacion mejorada de petroleo; luego se hace una descripcion de donde se encuentran los yacimientos de petroleo en Mexico; se comenta sobre que se ha hecho en Mexico en terminos de recuperacion mejorada de petroleo; se mencionan los proyectos del Instituto Mexicano del Petroleo que han abordado el tema de la recuperacion mejorada del petroleo y por ultimo se presenta un enfoque hacia el problema de la recuperacion del petroleo usando CO{sub 2}.

  16. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  17. Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.

    Science.gov (United States)

    Awang, Mariyamni; Seng, Goh Meng

    2008-01-01

    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.

  18. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander

    2010-01-01

    , with all the relevant physical processes included. We have developed a mathematical model describing the process of MEOR, where reactive transport is combined with a simple compositional approach. The model describes the displacement of oil by water containing bacteria, substrate, and the produced......Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is required...... metabolite, surfactant. The metabolite is allowed to partition between the oil and water phases according to a distribution coefficient. Production of surfactant decreases the oil/water interfacial tension, reduces the residual oil saturation, and provides additional oil recovery. In this work, we have...

  19. Physical Constraints on Microbially Enhanced Oil Recovery

    Science.gov (United States)

    Marshall, S. L.

    2007-12-01

    Secondary and tertiary oil recovery from mature or depleted reservoirs usually involves modification of fluid properties (especially the oil-water interfacial tension), or increasing the efficiency of water flooding by selective permeability reduction. The use of microbes for both of these strategies - through production of biosurfactants and extracellular polymeric material, respectively - is the subject of considerable current interest, but as pointed out by Bryant and Lockhart [SPE paper 79719, 2002] is constrained by chemical reaction kinetics. Continuing in the spirit of the engineering analysis presented by these authors, the purpose of this paper is to consider, on the basis of simplified physical models, the constraints that apply to the injection of microbes as a concentrated slurry and their subsequent dispersion through the pores of the formation. This involves solution of the advection-dispersion equation in conjunction with the Newtonian flow distribution between an injection well and a production well, and a more general flow distribution based on a non-Newtonian (power-law) constitutive equation used to describe the rheological properties of concentrated suspensions. By analogy with the better-known example of blood flow through capillaries, such deviations from Newtonian flow behavior are expected to become more significant in flow through media of low permeabilities, where the diameters of the suspended particles are non-negligible in relation to the mean diameters of the flow channels. The nature and extent of these deviations from Newtonian behavior are examined by calculating the pressure drops corresponding to a given flow rate in one dimension at different suspension concentrations, and the nonlinearities resulting from retention or `filtration' of bacteria by the porous medium are investigated by performing a population-balance analysis to determine the evolving profiles of retained bacteria as a function of distance and time. These

  20. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2000-01-19

    This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

  1. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  2. Solar technology application to enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

    1979-12-01

    One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

  3. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2016-06-01

    Full Text Available This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil swelling, the reduction of oil viscosity and density and the vaporization of oil hydrocarbons. Therefore, CO2-EOR can be used to enhance the two major oil recovery mechanisms in the field: miscible and immiscible oil recovery, which can be further increased by increasing the amount of CO2 injected, applying innovative flood design and well placement, improving the mobility ratio, extending miscibility, and controlling reservoir depth and temperature. A 3-D numerical model was developed using the CO2-Prophet simulator to examine the effective factors in the CO2-EOR process. According to that, in pure CO2 injection, oil production generally exhibits increasing trends with increasing CO2 injection rate and volume (in HCPV (Hydrocarbon pore volume and reservoir temperature. In the WAG (Water alternating gas process, oil production generally increases with increasing CO2 and water injection rates, the total amount of flood injected in HCPV and the distance between the injection wells, and reduces with WAG flood ratio and initial reservoir pressure. Compared to other factors, the water injection rate creates the minimum influence on oil production, and the CO2 injection rate, flood volume and distance between the flood wells have almost equally important influence on oil production.

  4. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  5. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    CERN Document Server

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  6. Life cycle inventory of CO2 in an enhanced oil recovery system.

    Science.gov (United States)

    Jaramillo, Paulina; Griffin, W Michael; McCoy, Sean T

    2009-11-01

    Enhanced oil recovery (EOR) has been identified as a method of sequestering CO(2) recovered from power plants. In CO(2)-flood EOR, CO(2) is injected into an oil reservoir to reduce oil viscosity, reduce interfacial tension, and cause oil swelling which improves oil recovery. Previous studies suggest that substantial amounts of CO(2) from power plants could be sequestered in EOR projects, thus reducing the amount of CO(2) emitted into the atmosphere. This claim, however, ignores the fact that oil, a carbon rich fuel, is produced and 93% of the carbon in petroleum is refined into combustible products ultimately emitted into the atmosphere. In this study we analyze the net life cycle CO(2)emissions in an EOR system. This study assesses the overall life cycle emissions associated with sequestration via CO(2)-flood EOR under a number of different scenarios and explores the impact of various methods for allocating CO(2) system emissions and the benefits of sequestration.

  7. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    Science.gov (United States)

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    behaviour of enzymes/proteins on the reservoir rocks was studied by application of the static adhesion tests and adsorption experiments on powders, as well as of dynamic flow-through experiments. It was established that enzymes are indeed significantly lost during the transport in the porous media due...... to detach oil from the calcite surface and was identified as the most promising group for further investigations. Wettability improvement due to protein adsorption on to the mineral was proposed as the main mechanism for EEOR. It was also proved that the enzyme molecules themselves caused change...... of the wetting state of calcite, while presence of stabilising ingredients did not interfere the results. Implementation of such a mechanism of enzymatic action under reservoir conditions might be limited by retention of the protein molecules in the porous medium. In order to verify this hypothesis, adsorption...

  9. Microbial enhanced oil recovery and wettability research program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  10. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  11. Characteristics of operation and possible oil recovery from the sixth formation of Arlansk oil field. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Viktorov, P.F.; Teterev, I.G.

    1970-01-01

    This field is characterized by complex geological variations, high viscosity oil (16 to 39 cp), and extreme heterogeneity. The field has been under a peripheral waterflood for 10 yr, however even at high water-cut (50 to 75%), only 40% of the reserve has been recovered. The high water-cut results from premature water breakthrough in high-permeability zones and from water coning. As cumulative oil recovery increases, water production increases exponentially. Oil recovery can be increased only 3 to 4%, by increasing the removal of fluids from wells. Consideration is being given to use of hot water and high-pressure gas to increase oil recovery.

  12. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  13. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  14. Laboratory methods for enhanced oil recovery core floods

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  15. Enhanced oil recovery by surfactant-enhanced volumetric sweep efficiency: Second annual report, September 30, 1986-September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J H; Scamehorn, J F

    1988-04-01

    It is widely known that heterogeneities in oil reservoirs occurring as a result of permeability variations in the rock can have a detrimental effect on an oil recovery process; preferential diversion of injected displacement fluid occurs through the high-permeability zones, leaving the lower-permeability zones at a high residual oil content at a time when it is no longer economically viable to continue the oil recovery process. A novel oil recovery process is described which aims to improve the volumetric sweep efficiency of oil recovery. High-permeability zones are partially or completely plugged off by using the chromatographic and phase behavior of surfactants and their mixtures and the preferential invasion of high-permeability areas by low-viscosity injected fluids. The plugging will divert flow into regions of higher oil saturation. 85 refs., 46 figs., 6 tabs.

  16. High-order simulation of foam enhanced oil recovery

    NARCIS (Netherlands)

    Van der Meer, J.M.; Van Odyck, D.E.A.; Wirnsberger, P.; Jansen, J.D.

    2014-01-01

    If secondary hydrocarbon recovery methods fail because of the occurrence of gravity override or viscous fingering one can turn to an enhanced oil recovery method like the injection of foam. The generation of foam can be described by a set of partial differential equations with strongly nonlinear fun

  17. High-order simulation of foam enhanced oil recovery

    NARCIS (Netherlands)

    Van der Meer, J.M.; Van Odyck, D.E.A.; Wirnsberger, P.; Jansen, J.D.

    2014-01-01

    If secondary hydrocarbon recovery methods fail because of the occurrence of gravity override or viscous fingering one can turn to an enhanced oil recovery method like the injection of foam. The generation of foam can be described by a set of partial differential equations with strongly nonlinear fun

  18. The recovery of oil from spent bleaching earth

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassuoni, A.A.; Sherief, H.M.; Tayeb, A.M.; Ahmed, K.K. [Minia Univ., Minia (Egypt). Dept. of Chemical Engineering

    2000-07-01

    Four solvent based extraction methods to recover oil from spent bleached earth were presented. Spent bleaching earth is a solid waste that is generated during the processing of vegetable oils. It is removed from the oil with filters and contains approximately 25-29 per cent oil by weight. At the onset of the study, the oil entrained with the spent bleaching earth filtration was determined to be 25 per cent. Four solvents, N-hexane, carbon tetra chloride, benzene and 1,2 dichloroethane were used in this study. The per cent recovery of oil was calculated by measuring the concentration of oil by spectrophotometer. The effect of temperature on the recovery of oil and different solid:liquid ratios was also studied for the four solvents. The following four methods were used for the recovery of oil were solvent extraction, extraction with 1 per cent sodium carbonate solution, extraction with 4.5 per cent sodium dodecyl sulphite solution and boiling with 12 per cent sodium hydroxide solution. All methods gave satisfactory results indicating that the earth could be reused. 12 refs., 3 tabs.

  19. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    OpenAIRE

    1995-01-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids {LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The pumping approach is developed using detailed simulations, multiple linear regression and graphical plots. The approach uses ARMOS©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic sim...

  20. Recovery of aroma compounds from orange essential oil

    Directory of Open Access Journals (Sweden)

    Haypek E.

    2000-01-01

    Full Text Available The objective of this work was to study the recovery of aroma compounds present in the orange essential oil using experimental data from CUTRALE (a Brazilian Industry of Concentrated Orange Juice. The intention was to reproduce the industrial unit and afterwards to optimize the recovery of aroma compounds from orange essential oil by liquid-liquid extraction. The orange oil deterpenation was simulated using the commercial software PRO/II 4.0 version 1.0. The UNIFAC model was chosen for the calculation of the activity coefficients.

  1. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.

  2. Recovery studies for plutonium machining oil coolant

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, J. D.; Baldwin, C. E.

    1977-04-27

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products.

  3. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.

    Science.gov (United States)

    Bordoloi, N K; Konwar, B K

    2008-05-01

    Microbial enhanced oil recovery (MEOR) is potentially useful to recover incremental oil from a reservoir being beyond primary and secondary recovery operations. Effort has been made to isolate and characterize natural biosurfactant produced by bacterial isolates collected from various oil fields of ONGC in Assam. Production of biosurfactant has been considered to be an effective major index for the purpose of enhanced oil recovery. On the basis of the index, four promising bacterial isolates: Pseudomonas aeruginosa (MTCC7815), P. aeruginosa (MTCC7814), P. aeruginosa (MTCC7812) and P. aeruginosa (MTCC8165) were selected for subsequent testing. Biosurfactant produced by the promising bacterial isolates have been found to be effective in the recovery of crude oil from saturated column under laboratory conditions. Two bacterial strains: P. aeruginosa (MTCC7815) and P. aeruginosa (MTCC7812) have been found to be the highest producer of biosurfactant. Tensiometer studies revealed that biosurfactants produced by these bacterial strains could reduce the surface tension (sigma) of the growth medium from 68 to 30 mN m(-1) after 96 h of growth. The bacterial biosurfactants were found to be functionally stable at varying pH (2.5-11) conditions and temperature of 100 degrees C. The treatment of biosurfactant containing, cell free culture broth in crude oil saturated sand pack column could release about 15% more crude oil at 90 degrees C than at room temperature and 10% more than at 70 degrees C under laboratory condition.

  4. Rheological behaviour of hydrocolloids for oil recovery; Comportamento reologico de hidrocoloides para recuperacao de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Denise Z.; Franca, Francisca P. de; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Dutra, Eduardo S.S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil); Naccache, Monica F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    In crude oil extraction, water can be injected into the well (secondary oil recovery). The amount of the oil extracted decrease after some operation time. In order to improve the oil recovery, polymer flooding would subsequently be used (tertiary oil recovery). The aim of this work was to study the rheological behavior of polyacrylamide, xanthan gum, guar gum and their blends in seawater solutions, and the rheology of a crude oil. Dynamic measurements of the pure polymers (1000 ppm) and blends (2000 ppm) exhibited G' values lower than G'' in low frequencies, and inversion of G' and G'' curves in frequencies between 20 and 30 rad/s. The xanthan gum presented the greatest values of G' when compared to the other polymers, which means that its structure is more rigid. The oil showed G' values lower than G'' values in low and high frequencies of oscillation. Steady measurements revealed pseudoplastic behavior for polymers and Newtonian behavior for the oil. In shear rates around 10 s{sup -1}, polyacrylamide/xanthan blend would be the most appropriate for the extraction of the oil presented. (author)

  5. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Science.gov (United States)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-09-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil-water interface properties and oil recovery is examined. Oil-water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  6. Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Wan Adibah Wan Mahari

    2016-09-01

    Full Text Available This study investigated the use of microwave pyrolysis as a recovery method for waste shipping oil. The influence of different process temperatures on the yield and composition of the pyrolysis products was investigated. The use of microwave heating provided a fast heating rate (40 °C/min to heat the waste oil at 600 °C. The waste oil was pyrolyzed and decomposed to form products dominated by pyrolysis oil (up to 66 wt. % and smaller amounts of pyrolysis gases (24 wt. % and char residue (10 wt. %. The pyrolysis oil contained light C9–C30 hydrocarbons and was detected to have a calorific value of 47–48 MJ/kg which is close to those traditional liquid fuels derived from fossil fuel. The results show that microwave pyrolysis of waste shipping oil generated an oil product that could be used as a potential fuel.

  7. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Peike eGao

    2016-02-01

    Full Text Available This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous Bacillus subtilis and indigenous microbial populations. The exogenous Bacillus subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The Bacillus subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous Bacillus subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  8. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  9. Laboratory Experiments on Enhanced Oil Recovery with Nitrogen Injection

    Directory of Open Access Journals (Sweden)

    S. Siregar

    2007-05-01

    Full Text Available Based on previous studies, nitrogen injection could recover oil up to 45-90% of initial reserves. Although this method has a very good ability to produce oil, sometimes the operation pressure is higher than leak off formation pressure. In this study, operation pressure used a low pressure to solve this problem under immiscible process. Objective of this study is to determine the effect of injection pressure and displacement rate on oil recovery performance of continuous one dimensional nitrogen gas injection with a slim tube apparatus. The effect of nitrogen gas-oil contact on the gas composition was investigated using Gas Chromatograph Mass Spectrometer apparatus. In the experiments, nitrogen gas was injected into an oil sample of 38.5 oAPI gravity at various rates: 20 cc/hr, 30 cc/hr and 36.66/hr under 1500 psi pressure, and then at 20 cc/hr undr 2500 psi pressure. The results showed that an increase in injection rate increased oil recovery factor. The recovery factor lies between 40-54% of original oil in place. Gas analysis before injection and at the injection outlet showed a change of composition. when oil was contacted by nitrogen, indicating that some molecular mass transfer had taken place.

  10. Microfluidic and micro-core methods for enhanced oil recovery and carbon storage applications

    Science.gov (United States)

    Nguyen, Phong

    Injection of CO2 into the subsurface, for both storage and oil recovery, is an emerging strategy to mitigate atmospheric CO2 emissions and associated climate change. In this thesis microfluidic and micro-core methods were developed to inform combined CO2-storage and oil recovery operations and determine relevant fluid properties. Pore scale studies of nanoparticle stabilized CO2-in-water foam and its application in oil recovery to show significant improvement in oil recovery rate with different oils from around the world (light, medium, and heavy). The CO2 nanoparticle-stabilized CO2 foams generate a three-fold increase in oil recovery (an additional 15% of initial oil in place) as compared to an otherwise similar CO2 gas flood. Nanoparticle-stabilized CO2 foam flooding also results in significantly smaller oil-in-water emulsion sizes. All three oils show substantial additional oil recovery and a positive reservoir homogenization effect. A supporting microfluidic approach is developed to quantify the minimum miscibility pressure (MMP) -- a critical parameter for combined CO 2 storage and enhanced oil recovery. The method leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. In terms of speed, a pressure scan for a single minimum miscibility pressure measurement required less than 30 min, in stark contrast to days or weeks with existing rising bubble and slimtube methods. In practice, subsurface geology also interacts with injected CO 2. Commonly carbonate dissolution results in pore structure, porosity, and permeability changes. These changes are measured by x-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium. This work leverages established advantages of

  11. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery, Annual Report, September 30, 1999-September 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, Prof. P.

    2001-04-04

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  12. The Status and Prospects of Enhancing Oil Recovery Technology for Waterflooding Oilfields in China

    Institute of Scientific and Technical Information of China (English)

    Shen Pingping; Yuan Shiyi

    1994-01-01

    @@ The water injection method has been used in most of oilfields in China even at the beginning of development, meanwhile the laboratory research on enhancing oil recovery (EOR) for these oilfields simultareously started too. Oilfields developed in 1960's have mostly been at a high watercut stage since 1990.Tasks in face of petroleum reservoir engineers are on the one hand, further improving recovery of waterflooding by integrated adjustments such as infill well drilling, water/oil ratio controlling, injection profile adjusting, etc. On the other hand, EOR techniques for waterflooding oilfields must be studied and applied to improve mostly the potential of underground resources and to increase recoverable reserves.

  13. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1992-04-01

    This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

  14. Heavy Oil Recovery Ohmsett Test Report

    Science.gov (United States)

    2012-06-01

    run the optical window of the fixed focus FP instrument became coated with oil, which resulted in a constant FP response even when no oil was being...at Ohmsett we tested the BlueView MB1350 and MB2250 systems (both multibeam line scanners) for oil detection and the BlueView P900-130 system... multibeam field) for tracking the Sea Horse from the “decanting barge.” C.3 Concept of Operations Detection Phase: During the initial detection phase

  15. Reservoir Screening Criteria for Heavy Oil Thermal Recovery in Liaohe Oilfield

    Institute of Scientific and Technical Information of China (English)

    Lin Yuqiu; Zhang Yali

    2009-01-01

    @@ Characteristics of heavy oil reservoirsin Liaohe Oilfield Liaohe Oilfield is rich in heavy oil and is the largest base of heavy oil recovery in China. Its heavy oil reservoirs have following characteristics:

  16. Polymers for enhanced oil recovery: fundamentals and selection criteria.

    Science.gov (United States)

    Rellegadla, Sandeep; Prajapat, Ganshyam; Agrawal, Akhil

    2017-06-01

    With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.

  17. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  18. Floating Heavy Oil Recovery: Current State Analysis

    Science.gov (United States)

    2006-07-27

    have taken place over the past seven years on a series of pumps known as positive displacement Archimedes ’ screw pumps commonly used in the oil spill...current research into containment strategies and equipment for heavy viscous oil was uncovered during this study. General principles used to...rotated in the water, it created small waves that caused the trail of bitumen to “break” and be pushed away from the skimmer. Operating the drum at

  19. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate.

  20. ENHANCED OIL RECOVERY USING LOCAL ALKALINE

    African Journals Online (AJOL)

    user

    trapped in the reservoir even after primary and secondary recovery process have been completed, ... concerns that most of the newly discovered hydrocarbon .... free sandstone cores. ..... Porous Media: A Review”, SPE 8799, presented at.

  1. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding

    Science.gov (United States)

    Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-11-01

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified.

  2. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    Science.gov (United States)

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  4. Water Flooding Development and Enhanced Oil Recovery of Daqing Oilfields

    Institute of Scientific and Technical Information of China (English)

    Cao Zefu; Yue Dengtai; Rong Jiashu

    1997-01-01

    @@ The Daqing oil region consists of typical sand oilfields formed by a large inland shallow water lake basin and riverdelta. It is characterized by multiple reservoirs, extreme heterogeneity, and insufficient natural oil reservoir energy. A comparatively long period of high stable yield and high efficiency recovery was achieved in the initial stage of development through the use of the hydraulic pressure drive technique, which manually injected water to maintain formation pressure.

  5. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion...

  6. Laboratory investigation of novel oil recovery method for carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, A.A.; Al-Saleh, S.; Al-Kaabi, A.; Al-Jawfi, M. [Saudi Aramco, Riyadh (Saudi Arabia)

    2010-07-01

    This paper described a core flooding laboratory study conducted using composite rock samples from a carbonate reservoir. The aim of the study was to investigate the impact of salinity and ionic composition on oil, brine and rock interactions. Experimental parameters and procedures were designed to replicate reservoir conditions and current field injection practices. Results of the study demonstrated that alterations in the salinity and ionic composition of injected water can have a significant impact on the wettability of the rock surface. Nuclear magnetic resonance (NMR) studies confirmed that injecting different salinity slugs of seawater in carbonate core samples can cause a significant alteration in the surface charges of the rock, and lead to increased interactions with water molecules. The constant reduction of pressure drop across the composite cores with the injection of different diluted versions of water also provided proof of brine, oil and rock alterations. Results of the study indicated that the driving mechanism for waterflooding recovery processes is wettability alteration, which can be triggered by alterations in carbonate rock surface charges, and improvements in the connectivity between rock pore systems that coexist in carbonate rock samples. 41 refs., 8 tabs., 16 figs.

  7. New technologies of enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Paweł Wojnarowski

    2006-10-01

    Full Text Available It is known from the literature that up to 27 % of oil in oilfields can be produced using primary and hydration methods. The efficiency of production can be increased by employing more advanced methods, i.e. EOR. The Polish Oil and Gas Company iwork with Polish oilfields, where currently primary methods are applied, but the Polish experiences with EOR date back to the years 1932-1987. In view of high oil prices, reconsidering EOR as a production method is economically justifiable. Therefore, it is purposeful to implement new pilot technologies, aimed at implementing new technologies, understanding accompanying phenomena, and calibrating of simulation models, including economical models for an optimal control of the oilfield exploitation. World’s new exploitation methods worked out in the last few years and suggestions for their implementation in Polish conditions are presented in the paper

  8. The influence of diffusion and dispersion on heavy oil recovery by VAPEX

    Energy Technology Data Exchange (ETDEWEB)

    Alkindi, A. [Imperial College, London (United Kingdom); Muggeridge, A. [Society of Petroleum Engineers, London (United Kingdom)]|[Imperial College, London (United Kingdom); Al-Wahaibi, Y. [Society of Petroleum Engineers, Dubai (United Arab Emirates)]|[Sultan Qaboos Univ., Muscat (Oman)

    2008-10-15

    Heavy oil recovery using vapour extraction (VAPEX) is a promising improved oil recovery technique. However, field application of this process has been limited due to concerns that favourable laboratory recoveries may not scale up to the field level. Previous laboratory studies of VAPEX in porous media have obtained much higher production rates than predicted either by analytic models derived from Hele-Shaw experiments or numerical simulation. The difference between experimental and simulation models has been explained by assuming greater mixing between vapour and oil than would be expected from molecular diffusion. Convective dispersion is a plausible justification for this increase. This paper investigated the role of convective dispersion on oil recovery by VAPEX using a combination of well characterized laboratory experiments and numerical simulation. So that all mechanisms contributing to increased-mixing apart from convective dispersion were eliminated, a first contact miscible fluid system was used. Longitudinal and transverse dispersion coefficients were experimentally measured as a function of flow-rate and viscosity ratio. VAPEX drainage experiments were then conducted over a range of injection rates. The paper also discussed the comparison of laboratory measurements of oil drainage rates with those predicted by the Butler-Mokrys analytical model and numerical simulation using either molecular diffusion or convective dispersion. Last, the paper discussed the use of the numerical model in investigating the impact of rate, well separation, and reservoir geometry on recovery. 21 refs., 4 tabs., 12 figs.

  9. An evaluation of known remaining oil resources in the state of Louisiana and Texas. Volume 3, Project on Advanced Oil Recovery and the States

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Louisiana and Texas. Individual reports for six other oil producing states and a national report have been separately published. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS).

  10. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  11. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.

    Science.gov (United States)

    Mohammadian, Erfan; Junin, Radzuan; Rahmani, Omeid; Idris, Ahmad Kamal

    2013-02-01

    Due to partial understanding of mechanisms involved in application of ultrasonic waves as enhanced oil recovery method, series of straight (normal), and ultrasonic stimulated water-flooding experiments were conducted on a long unconsolidated sand pack using ultrasonic transducers. Kerosene, vaseline, and SAE-10 (engine oil) were used as non-wet phase in the system. In addition, a series of fluid flow and temperature rise experiments were conducted using ultrasonic bath in order to enhance the understanding about contributing mechanisms. 3-16% increase in the recovery of water-flooding was observed. Emulsification, viscosity reduction, and cavitation were identified as contributing mechanisms. The findings of this study are expected to increase the insight to involving mechanisms which lead to improving the recovery of oil as a result of application of ultrasound waves.

  12. Recovery of mineral oil from waste emulsion using electrocoagulation method

    Directory of Open Access Journals (Sweden)

    Razali Mohd Najib

    2016-01-01

    Full Text Available This paper presents a research to recover mineral oil from industrial waste emulsion. This research also evaluates the standard of water produced after the oil recovery. The ecosystem could be polluted if this waste is not treated prior to discharge. The equipment needed for this experiment is power supply (generator, connecting wire and metal plate for providing the coagulant. The chosen plates were aluminium and iron plate. The power supply will be connected to the plate producing anode (positive terminal and cathode (negative terminal. Both plates are immersed into a beaker containing waste emulsion. The charge supplied by the current will cause the aluminium or ferum to dissisipate and became ions. These ions will attract the oil to flock together and float at the surface. The water will then filter by using filter paper. Electrocoagulation was done without addition of chemical thus can prevent the hazard from the chemicals. The samples was sent for oil and grease test. The optimum time needed for recovery of oil was 3 hours. The percentage recovery reach constant trend of 95% afterwards. When the power consumption increases, the percentage recovery also increases. However, the current should be lower than 0.5 ampere as it is the limit that human body can withstand. Thus, power consumption of 27.5 Watt was chosen as optimum value. The oil recovery of at power consumption at 27.5W is 96%. The best plate in the process was the aluminium pair which can recover more than ferum plate. The present work concludes the promising future for waste water treatment by usage of electrocoagulation technique.

  13. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  14. Energy supply strategy: getting technology commercialized, shale oil and enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Steger, J.E.; Sullo, P.; Michaelis, M.; Nason, H.K.

    1979-12-01

    Purpose is to identify factors inhibiting the near-term investment of industrial funds for producing oil from shale and through enhanced oil recovery, and to estimate the investment and production which would result if these deterrents were removed and suitable incentives provided. The barriers are discussed under the following categories: economic, environmental, institutional/regulatory, and technical. (DLC)

  15. Recent advancement of hybrid materials used in chemical enhanced oil recovery (CEOR): A review

    Science.gov (United States)

    Hamza, M. F.; Sinnathambi, C. M.; Merican, Z. M. A.

    2017-06-01

    Depletion of natural oil reserves has forced oil industries to focus on tertiary recovery methods to extract residual oil after exhausting the primary and secondary methods. Among the Enhance Oil Recovery (EOR) technologies, Chemical EOR (CEOR) is gaining popularity. Despite research efforts to increase the recovery using CEOR, increasing complexity in extraction methods are encountered. With changes in reservoir conditions (high temperature, pressure and salinity) and crude oil properties, existing chemicals used in CEOR, such as alkali, polymers and surfactants do not function desirably. These conditions have detrimental effects on the performance of EOR chemicals, like precipitation, degradation, etc. Development and utilization of effective EOR hybrids such as surfactant-polymer, polymer-nanomaterial, surfactant-nanomaterial and polymer-surfactant-nanomaterial had prevailed the effects of harsh reservoir conditions, and their applications in oil fields in recent years have increased the success of EOR. The synergistic effects between the hybrid components play major roles in improving the properties that could withstand the effect of extreme reservoir conditions and changes in crude oil properties. Therefore, this paper is aimed at reviewing recent advances in CEOR hybrid technologies, and discusses the basic concept, applications, advancement and limitations of different hybrid materials used in CEOR processes.

  16. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  17. Comblike Polyacrylamides as Flooding Agent in Enhanced Oil Recovery

    NARCIS (Netherlands)

    Wever, Diego A. Z.; Picchioni, Francesco; Broekhuis, Antonius A.

    2013-01-01

    The oil recovery from core material and a specifically designed flow cell using novel branched (comblike) polyacrylamides (PAM) has been investigated. The injectivity characteristics of the different branched PAMs were evaluated by filtration tests and core-flow experiments. The number of arms of th

  18. Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo

  19. Maximal oil recovery by simultaneous condensation of alkane and steam

    NARCIS (Netherlands)

    Bruining, J.; Marchesin, D.

    2007-01-01

    This paper deals with the application of steam to enhance the recovery from petroleum reservoirs. We formulate a mathematical and numerical model that simulates coinjection of volatile oil with steam into a porous rock in a one-dimensional setting. We utilize the mathematical theory of conservation

  20. Comblike Polyacrylamides as Flooding Agent in Enhanced Oil Recovery

    NARCIS (Netherlands)

    Wever, Diego A. Z.; Picchioni, Francesco; Broekhuis, Antonius A.

    2013-01-01

    The oil recovery from core material and a specifically designed flow cell using novel branched (comblike) polyacrylamides (PAM) has been investigated. The injectivity characteristics of the different branched PAMs were evaluated by filtration tests and core-flow experiments. The number of arms of th

  1. Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo

  2. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  3. Miscibility Development Computation in Enhanced Oil Recovery by Flare Gas Flooding

    OpenAIRE

    Tjokorde Walmiki Samadhi; Utjok W.R. Siagian; Angga P. Budiono

    2012-01-01

    The use of flare gas as injection gas in miscible gas flooding enhanced oil recovery (MGF-EOR) presents a potential synergy between oil production improvement and greenhouse gases emission mitigation. This work is a preliminary evaluation of the feasibility of miscible flare gas injection based on phase behavior computations of a model oil (43%n-C5H12 : 57%n-C16H34) and a model flare gas (91%CH4 : 9%C2H6). The computations employed the multiple mixing-cell model with Peng-Robinson and PC-SAFT...

  4. Increased Oil Recovery Prize for work on Troll; Fikk pris for Troll-arbeid

    Energy Technology Data Exchange (ETDEWEB)

    Steensen, Anders J.

    2007-07-01

    Halliburton and Baker Hughes have developed tools that ensures increased oil recovery from the Troll platform. For this work, the companies were awarded the Increased Oil Recovery (IOR) Prize. Details on the technical principles are provided (ml)

  5. Carbon dioxide enhanced oil recovery performance according to the literature

    Science.gov (United States)

    Olea, Ricardo A.

    2017-07-17

    IntroductionThe need to increase the efficiency of oil recovery and environmental concerns are bringing to prominence the use of carbon dioxide (CO2) as a tertiary recovery agent. Assessment of the impact of flooding with CO2 all eligible reservoirs in the United States not yet undergoing enhanced oil recovery (EOR) requires making the best possible use of the experience gained in 40 years of applications. Review of the publicly available literature has located relevant CO2-EOR information for 53 units (fields, reservoirs, pilot areas) in the United States and 17 abroad.As the world simultaneously faces an increasing concentration of CO2 in the atmosphere and a higher demand for fossil fuels, the CO2-EOR process continues to gain popularity for its efficiency as a tertiary recovery agent and for the potential for having some CO2 trapped in the subsurface as an unintended consequence of the enhanced production (Advanced Resources International and Melzer Consulting, 2009). More extensive application of CO2-EOR worldwide, however, is not making it significantly easier to predict the exact outcome of the CO2 flooding in new reservoirs. The standard approach to examine and manage risks is to analyze the intended target by conducting laboratory work, running simulation models, and, finally, gaining field experience with a pilot test. This approach, though, is not always possible. For example, assessment of the potential of CO2-EOR at the national level in a vast country such as the United States requires making forecasts based on information already available.Although many studies are proprietary, the published literature has provided reviews of CO2-EOR projects. Yet, there is always interest in updating reports and analyzing the information under new perspectives. Brock and Bryan (1989) described results obtained during the earlier days of CO2-EOR from 1972 to 1987. Most of the recovery predictions, however, were based on intended injections of 30 percent the size of

  6. Uncertainty Quantification for CO2-Enhanced Oil Recovery

    Science.gov (United States)

    Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.

    2013-12-01

    CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.

  7. Investigating the effect of steam, CO{sub 2}, and surfactant on the recovery of heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.; He, S. [China Univ. of Petroleum, Beijing (China). MOE Key Laboratory of Petroleum Engineering; Qu, L. [Shengli Oil Field Co. (China)]|[SINOPEC, Shengli (China)

    2008-10-15

    This paper presented the results of a laboratory study and numerical simulation in which the mechanisms of steam injection with carbon dioxide (CO{sub 2}) and surfactant were investigated. The incremental recoveries of 4 different scenarios were compared and analyzed in terms of phase behaviour. The study also investigated the effect of CO{sub 2} dissolution in oil and water; variation of properties of CO{sub 2}-oil phase equilibrium and CO{sub 2}-water phase equilibrium; variation of viscosity; and, oil volume and interfacial tension (IFT) during the recovery process. The expansion of a steam and CO{sub 2} front was also examined. A field application case of a horizontal well in a heavy oil reservoir in Shengli Oilfield in China was used to determine the actual dynamic performance of the horizontal well and to optimize the injection parameters of the CO{sub 2} and surfactant. The study revealed that oil recovery with the simultaneous injection of steam, CO{sub 2} and surfactant was higher than that of steam injection, steam with CO{sub 2} and steam with surfactant. The improved flow performance in super heavy oil reservoirs could be attributed to CO{sub 2} dissolution in oil which can swell the oil and reduce oil viscosity significantly. The proportion of CO{sub 2} in the free gas phase, oil phase and water phase varies with changes in reservoir pressure and temperature. CO{sub 2} decreases the temperature of the steam slightly, while the surfactant decreases the interfacial tension and helps to improve oil recovery. The study showed that the amount of injected CO{sub 2} and steam has a large effect on heavy oil recovery. Although oil production was found to increase with an increase in injected amounts, the ratio of oil to injected fluids must be considered to achieve optimum recovery. High steam quality and temperature can also improve super heavy oil recovery. The oil recovery was less influenced by the effect of the surfactant than by the effect of CO{sub 2

  8. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true The enhanced oil recovery credit-general rules. 1... INCOME TAXES Credits Against Tax § 1.43-1 The enhanced oil recovery credit—general rules. (a) Claiming the credit—(1) In general. The enhanced oil recovery credit (the “credit”) is a component of the...

  9. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  10. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  11. The Design of Double Embedded Oil Spill Recovery System for Oil Carrier%运油船双内嵌收油机系统的研制

    Institute of Scientific and Technical Information of China (English)

    刘宗江; 王世刚

    2012-01-01

    溢油回收是改善海洋环境,实现石油资源回收重复利用的有效手段。专业收油船内嵌收油机,收油能力大,但应途单一,闲置时间长,购买和维护成本太高。为了提高溢油回收船的应用效率,发挥其最大效能,对运油船和收油机一体式设计进行了研究,提出了运油船双内嵌收油机系统的设计方法、工作原理、操作方法以及应用特点,并对其进行了经济性分析,为内嵌收油机式运油船的设计提供参考,在今后的溢油回收应用中具有广阔的应用前景。%Oil spill recovery is an effective measure to improve ocean environment and realize recovery rouse of the oil resources. The professional tanker for oil spill recovery embeds the oil spill recovery machine in the middle of tanker which has the great capacity of oil spill recovery, but its application is relatively single, the idle time is long, the cost is also high. In order to improve the application efficiency of oil spill recovery tanker and maximize its effectiveness, the paper has a study for integrated design of oil carrier and oil spill recovery machine, puts forward the design method, working principle, operation method and application characteristics of double embedded oil spill recovery system for oil carrier, and also conducts the economic analysis, which provides a reference for the design of double embedded oil spill recovery system for oil carrier and will have the broad application prospect in the future of oil spill recovery application.

  12. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  13. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  14. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  15. Investigating the Potential of Nanomaterials for Enhanced Oil Recovery: State of Art

    Directory of Open Access Journals (Sweden)

    Adel Moh. Salem Ragab

    2014-07-01

    Full Text Available Petroleum industry has been changed by the introduction of the nanotechnology. Nanotechnology has been tried in exploration. Drilling, production, and finally in enhanced oil recovery. For EOR, nanomaterials are considered an additive to the fluid used to displace the residual oil from the reservoir, which changes the characteristics of these solutions. These nano solutions have unique properties for a wide range of applications in oil field industry.   There are several approaches for preparations of the nanomaterials; namely chemical and mechanical methods. Of course there a big difference between both of them and one can detect these variations by measuring its characterization and properties. From these methods, SEM, TEM, and EDX. The size and shape of the powder particles normally examined by x-ray diffraction (XRD and scanning electron microscope (SEM while their microanalysis are normally measured energy dispersive system (EDX.   The initial stage used to investigate the performance of the nano materials for improving the oil recovery is normally done by displacing the crude oil in a flooding system and compare the final recovery factor to that of other EOR techniques such as water flooding or polymer flooding. The second step is to try to explain and interpret the results.   This work offers an extensive literature review for assessing the applications of nano materials for improving oil recovery and investigating the current recovery problems, and then evaluating the potential technical and economic benefits that nanomaterials could provide to the reservoir engineering. Several nano materials are addressed and discussed. Moreover, it investigates the effect of nano materials on the relative permeability, the retention and loss of these materials inside the formation, and the numerical simulation of the nano material flowing in the pores. 

  16. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.

    Science.gov (United States)

    Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y

    2014-07-01

    The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.

  17. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1996-12-31

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this past quarter, work continued on: the development of relative permeabilities during steam displacement; the optimization of recovery processes in heterogeneous reservoirs by using optical control methods; and in the area of chemical additives, work continued on the behavior of non-Newtonian fluid flow and on foam displacements in porous media.

  18. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter work continued on: development of relative permeabilities during steam injection; optimization of recovery processes in heterogeneous reservoirs by using optimal control methods; and behavior of non-Newtonian fluid flow and on foam displacements in porous media.

  19. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    Science.gov (United States)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  20. Oil Products Quality Improvement by Adsorption Method

    Directory of Open Access Journals (Sweden)

    Kulash K. Syrmanova

    2017-02-01

    Full Text Available Petroleum takes the leading place in fuel and energy sector. It is a basis of fuel and energy balance of advanced countries economics. Light oil proven reserves reducing is a general trend of modern oil industry development. Almost the entire increase in reserves is due to viscous heavy sour oil [1-2]. Nowadays quality of the most important oil products is a crucial problem in refinery industry. The problem of oil products quality is connected with their using and operation in engines and machines. Requirements increasing to stability and effective technics maintenance leads to oil products running abilities significant hardening. In order to protect the environment, the task to obtain oil products with improved environmental properties was assigned. Properties of the oil determine the direction and condition of its processing and directly affect the quality of the oil products [3-4].

  1. Depth controller utilized in a mechanical pump system for the recovery of high viscosity oil. [Secondary recovery

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.S.; Reza, M.G.

    1972-12-01

    The purpose of this study was to find a solution to the problem of more effectively producing high viscosity oil which is found in the fields of Ebano and Cacalilao of the Northern District, and also to improve the system of secondary recovery. The device utilized is, in effect, a type of anchor or landing nipple. It is described in detail, together with mechanical drawings with the specifications shown for 3-1/2-in. tubing. Two types of well installations are described, the difference being, essentially, the gas/oil ratio. The limitations for the application of this system rests on the diameter of the well casing. In general, the use of the depth controller or anchor device, will result in the following: (1) eliminate the effects of flotation; (2) increase the velocity of the pump; (3) increase the production of oil; and (4) savings in the consumption of fuel.

  2. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  3. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  4. Combined heating and chemical treatment for oil recovery from aging crude oil.

    Science.gov (United States)

    Hou, Chunjuan; Jiang, Qingzhe; Song, Zhaozheng; Tan, Guorong; Shi, Zhan

    2016-07-01

    With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil. © The Author(s) 2016.

  5. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  6. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  7. An evaluation of known remaining oil resources in the state of Kansas and Oklahoma. Volume 5, Project on Advanced Oil Recovery and the States

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Kansas, Illinois and Oklahoma for five other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to Kansas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of Kansas, Illinois and Oklahoma and the nation as a whole.

  8. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  9. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  10. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  11. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  12. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  13. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  14. Microbial enhancement of oil recovery: Recent advances. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  15. Environmental regulations handbook for enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.D.

    1980-08-01

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  16. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    Energy Technology Data Exchange (ETDEWEB)

    none

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  17. Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  18. New type flooding systems in enhanced oil recovery

    Institute of Scientific and Technical Information of China (English)

    Xin Ping Li; Li Yu; Yong Qiang Ji; Bo Wu; Gan Zuo Li; Li Qiang Zheng

    2009-01-01

    Wormlike micelles, obtained in anionic surfactant sodium oleate (NaOA) solutions in the presence of sodium phosphate (Na_3PO_4), were studied using the steady and dynamic rheological methods. The laboratory simulation flooding experiments were used to investigate the effects of flooding for the wormlike micelles system. The results show that the oil recovery is 32.7%. This flooding system is a new type and has high activity with a low cost.

  19. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  20. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-01-01

    Full Text Available The application of enhanced oil recovery (EOR in offshore oil fields has received significant attention due to the potentially enormous amount of recoverable oil. However, EOR application offshore is in its very early stage due to conditions that are more complex than onshore oil fields, owing to the unique parameters present offshore. Therefore, successful EOR applications in offshore oil fields require different screening criteria than those for conventional onshore applications. A comprehensive database for onshore applications of EOR processes together with a limited offshore EOR application database are analyzed in this paper, and the important parameters for successful offshore application are incorporated into the new EOR screening criteria. In this paper, screening criteria to determine acceptable EOR processes for offshore fields, including hydrocarbon gas miscible, CO2 miscible, and polymer processes, are presented. Suggested screening criteria for these EOR processes comprise quantitative boundaries and qualitative considerations. Quantitative screening criteria are predominantly based on quantifiable data, such as oil and reservoir properties. Qualitative screening considerations mainly focus on the operational issues present offshore, including platform space constraints, limited disposal options, injectant availability, and flow assurance matters (including hydrate formation and difficulties in emulsion separation.

  1. Investigation of CO2 Enhanced Oil Recovery Using Dimensionless Groups in Wettability Modified Chalk and Sandstone Rocks

    Directory of Open Access Journals (Sweden)

    Vahid Alipour Tabrizy

    2014-01-01

    Full Text Available The paper addresses enhanced oil recovery in chalk and sandstone rocks by CO2 injection, with different wettability, porosity, and permeability as well as injection rate and flooding conditions. Results indicate that an increase in Bond number has a positive effect on oil recovery whereas for capillary number, there is a limit in which recovery is improving. This limit is estimated when the pressure drop by viscous force is approximately equal to the threshold balance between capillary and gravity forces. A dimensionless group is proposed that combines the effect of capillarity, injection rate, permeability, and CO2 diffusion on the oil recovery. Recovery from all experiments in this study and reported data in the literature shows a satisfactory relationship with the proposed group.

  2. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N2-CO2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Application of nanotechnology for enhancing oil recovery – A review

    Directory of Open Access Journals (Sweden)

    Chegenizadeh Negin

    2016-12-01

    Full Text Available Nanotechnology has attracted a great attention in enhancing oil recovery (EOR due to the cost-effective and environmental friendly manner. The size of nanoparticles for EOR usually is in a range of 1–100 nm, which may slightly differ from various international organisations. Nanoparticles exhibit significantly different properties compared to the same fine or bulk molecules because of much higher concentration of atoms at their surface as a result of ultra-small size. In particular, one of the most useful and fascinating properties of these particles is to creating a massive diffusion driving force due to the large surface area, especially at high temperatures. Previous studies have shown that nanoparticles can enhance oil recovery by shifting reservoir wettability towards more water-wet and reducing interfacial tension, yet this area is still open for discussion. It is worth noting that the potential of nanoparticles to reduce the oil viscosity, increase the mobility ratio, and to alter the reservoir permeability has not been investigated to date. Depending on the operational conditions of the EOR process, some nanoparticles perform more effectively than others, thus leading to different levels of enhanced recovery. In this study, we aim to provide a summary on each of the popular and available nanoparticles in the market and list their optimum operational conditions. We classified nanoparticles into the three categories of metal oxide, organic and inorganic particles in this article.

  4. On the use of sodium lignosulphonate for enhanced oil recovery

    Science.gov (United States)

    Azis, M. M.; Rachmadi, H.; Wintoko, J.; Yuliansyah, A. T.; Hasokowati, W.; Purwono, S.; Rochmadi, W.; Murachman, B.

    2017-05-01

    There has been large interest to utilize oil reservoirs in Indonesia by using Enhanced Oil Recovery (EOR) processes. Injection of surfactant as a part of chemical injection technique in EOR is known to aid the mobility and reduction in surface tension. One potential surfactant for EOR application is Sodium Lignosulphonate (SLS) which can be made from various sources particularly empty fruit bunch of oil palm and black liquor from kraft pulp production. Here, we will discuss a number of methods for SLS production which includes lignin isolation techniques and sulphonation reaction. The use of SLS alone as EOR surfactant, however, is often not feasible as the Interfacial Tension (IFT) value of SLS is typically above the order of 10-3 dyne/cm which is mandated for EOR application. Hence, brief discussion on SLS formulation screening is provided which illustrates an extensive labwork experience during the SLS development in our lab.

  5. Use of highly saline ethoxylated surfactant system for oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Reisberg, J.

    1970-03-17

    An aqueous solution of a sulfated polyoxylated primary alcohol and a soluble inorganic electrolyte was used for enhanced oil recovery. The electrolyte should be present in a concentration exceeding the critical concentration for forming a two-phase coacervate system, by an amount sufficient to convert the two-phase system to a turbid dispersion. The dispersion permits an interfacial tension with petroleum of 10/sup -4/ dynes/cm. A berea core (400 md) was flooded to residual oil saturation before flooding with a 4 M sodium chloride brine which contained Tergitol 15-S4 (4 ethylene oxide units, sodium salt). A 1 PV slug of the surfactant solution left only about 7 percent PV of oil.

  6. Olive oil waste waters: Controlled fermentation and materials recovery

    Energy Technology Data Exchange (ETDEWEB)

    Federici, F.; Montedoro, G.F.; Pozzi, V. (Tuscia Univ., Viterbo (Italy). Detp. di Agrobiologia e Agrochimica Perugia Univ. (Italy). Ist. di Industrie Agrarie UNIECO s.c.r.l., Reggio Emilia (Italy))

    Land and water pollution due to waste water and oils deriving from the processing of olives to produce oil represents a serious environmental problem for Spain, Italy and Greece. This paper reports and discusses the results (time dependent enzyme activity) of performance tests on an innovative fermentation process to be used in olive oil waste water anaerobic digestion. An outline is then given of a demonstration depolymerization/materials recovery (including polyphenols, enzymes, etc.) process scheme based on the the tested fermentation method. The fermentation process tests involved the use of an albidus yeast in an Applikon bench scale experimental device. Process parameters were varied to determine optimum fermentation conditions. The European Communities sponsored one cubic meter/day demonstration plant utilizes a preliminary treatment process based on the use of gelatin, bentonite and polyclar.

  7. Fermentation assisted byproduct recovery in the palm oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, W.R.

    1983-05-01

    The production of palm oil from Elaeis guineensis is a leading natural product industry in Malaysia, giving rise to a number of residues, including a rich, fruity liquor from the pulp. The liquor, of which 7-10 million tonnes a year are currently produced, has some 6% organic solids, including 0.7-1.0% or more of oil which physical processing has failed to extract. Present anaerobic digestion processes exploit only the energy and fertiliser value. Methods are described in this paper for thermophilic, microbially assisted digestion for component separation and recovery, exploiting the widely used techniques for fruit juice extraction involving enzymic breakdown of starch, pectin and other cell components. Anaerobiosis and acidogenesis help protect and release residual oil, concomitantly preserving the solids against rancidity and spoilage by ensilage. The separated wet solids are nutritive (17% protein on dry matter), biologically safe and attractive to livestock. Downstream use of the liquor is aided by the thermophilic digestion. (Refs. 33).

  8. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    Science.gov (United States)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  9. CO2 for enhanced oil recovery and secure storage of CO2 in reservoirs

    OpenAIRE

    Li, Yunhang

    2015-01-01

    CO2-EOR(Enhanced Oil Recovery) is an effective and useful technology that can not only increase the oil production to meet the increasing need for energy around the world, but also mitigate the negtive influence of global green house effect. Different categories of oil recovery methods including primary recovery, secondary recovery, and EOR technologies are introduced at first. Then the history, global distribution, screening criteria, mechanisms, advantages and disadvantages of CO2-EOR are d...

  10. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  11. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    Science.gov (United States)

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  12. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    Science.gov (United States)

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  13. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  14. Simulation Study on Miscibility Effect of CO2/Solvent Injection for Enhanced Oil Recovery at Nonisothermal Conditions

    Directory of Open Access Journals (Sweden)

    Moon Sik Jeong

    2016-01-01

    Full Text Available The minimum miscibility pressure (MMP determines the main mechanism of CO2 flooding, which is either an immiscible or miscible process. This paper examines the recovery improvements of CO2 flooding in terms of both the injection temperature and solvent composition. The results show that a lower temperature injection and LPG (liquefied petroleum gas mixture can considerably improve oil recovery due to the reduced MMP in the swept area caused by the injected solvent. For the pure CO2 injection at the reservoir temperature, oil recovery is 59% after 1.0 PV CO2 injection. The oil recoveries by CO2-LPG mixtures are improved to 73% with 0.1 mole fractions of LPG and 81% with 0.2 mole fractions of LPG. The recovery factor from low-temperature CO2 injection is 78%, which is 32% higher compared to the isothermal case. The recoveries obtained by low-temperature CO2-LPG injection increase up to 87% of the initial oil. Heat transfer between the reservoir and the formation of over/underburden should be considered in order to describe the process more accurately. Additionally, the recovery factors from the heat transfer models are decreased by 4–12% in comparison with the original nonisothermal models.

  15. An overview of heavy oil properties and its recovery and transportation methods

    Directory of Open Access Journals (Sweden)

    R. G. Santos

    2014-09-01

    Full Text Available Unconventional oils - mainly heavy oils, extra heavy oils and bitumens - represent a significant share of the total oil world reserves. Oil companies have expressed interest in unconventional oil as alternative resources for the energy supply. These resources are composed usually of viscous oils and, for this reason, their use requires additional efforts to guarantee the viability of the oil recovery from the reservoir and its subsequent transportation to production wells and to ports and refineries. This review describes the main properties of high-viscosity crude oils, as well as compares traditional and emergent methods for their recovery and transportation. The main characteristics of viscous oils are discussed to highlight the oil properties that affect their flowability in the processes of recovery and pipeline transportation. Chemical composition is the starting point for the oil characterization and it has major impact on other properties, including key properties for their dynamics, such as density and viscosity. Next, enhanced oil recovery (EOR methods are presented, followed by a discussion about pipeline and transportation methods. In addition, the main challenges to achieve viable recovery and transportation of unconventional oils are compared for the different alternatives proposed. The work is especially focused on the heavy oils, while other hydrocarbon solid sources, such as oil sands and shale oil, are outside of the scope of this review.

  16. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir

  17. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  18. An evaluation of known remaining oil resources in the state of Illinois: Project on advanced oil recovery and the states. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Illinois. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Illinois oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Illinois and the nation as a whole.

  19. An evaluation of known remaining oil resources in the state of Texas: Project on advanced oil recovery and the states. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Texas. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to Texas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Texas oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Texas and the nation as a whole.

  20. How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor's Premise to Currently Proposed Inter- and Intra-Molecular Mixtures.

    Science.gov (United States)

    Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny

    2013-01-01

    The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.

  1. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  2. Enhanced Oil Recovery by Horizontal Waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scott Robinowitz; Dwight Dauben; June Schmeling

    2005-09-05

    Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The U.S. Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities. At Lawrence Berkeley Laboratory (LBL), projects are in progress that span a wide range of activities, with the emphasis on research to extend the scientific basis for solar energy applications, and on preliminary development of new approaches to solar energy conversion. To assess various solar applications, it is important to quantify the solar resource. Special instruments have been developed and are now in use to measure both direct solar radiation and circum-solar radiation, i.e., the radiation from near the sun resulting from the scattering of sunlight by small particles in the atmosphere. These measurements serve to predict the performance of solar designs that use focusing collectors employing mirrors or lenses to concentrate the sunlight. Efforts have continued at a low level to assist DOE in demonstrating existing solar technology by providing the San Francisco Operations Office (SAN) with technical support for its management of commercial-building solar demonstration projects. Also, a hot water and space-heating system has been installed on an LBL building as part of the DOE facilities Solar Demonstration Program. LBL continues to provide support for the DOE Appropriate Energy Technology grants program. Evaluations are made of the program's effectiveness by, for example, estimating the resulting potential energy savings. LBL also documents innovative features and improvements in economic feasibility as compared to existing conventional systems or applications. In the near future, we expect that LBL research will have a substantial impact in the areas of solar heating and cooling. Conventional and new types of high-performance absorption air conditioners are being developed that are air

  3. A Field-Scale Simulation of the Reversible Nanoparticle Adsorption for Enhancing Oil Recovery Using Hydrophilic Nanofluids

    Science.gov (United States)

    Cao, Liyuan

    In order to develop and apply nanotechnology in oil industry, nanoparticles transport in porous media has been studied in the past few years. Theoretical modeling were carried out to evaluate nanoparticle mobility and investigate nanoparticle retention mechanism. In this study, a simulator based on Ju and Fan's mathematical model was used to study nanoparticles transport in porous media on a reservoir scale. The simulator was verified with two simulation software, Eclipse from Schlumberger and MNM1D (Micro- and Nanoparticle transport Model in porous media in 1D geometry) developed by Tosco et al. Different injection scenarios were simulated: continuous injection, slug injection, and postflush. The effect of injection time, injection rate, and slug size on oil recovery were studied. The result discovered that when nanofluids flooding is used after water flooding as tertiary recovery method, early nanofluids injection will lead to higher oil recovery, but with more nanoparticle loss. Higher injection rate of nanofluids could help improve the flooding efficiency, but not the ultimate oil recovery for field development. Also, it can cause more nanoparticle loss. Brine water postflush is recommended when doing nanoflooding. It can significantly improve the recovery of nanoparticles, and for a homogeneous or heterogeneous reservoir, oil recovery is better compared to water flooding.

  4. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  5. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  6. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  7. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  8. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  9. Microbial enhanced oil recovery research. Final report, Annex 5

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

  10. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real

  11. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1982-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  12. Islet cryopreservation: improved recovery following taurine pretreatment.

    Science.gov (United States)

    Hardikar, A A; Risbud, M V; Remacle, C; Reusens, B; Hoet, J J; Bhonde, R R

    2001-01-01

    Simple and efficient freezing methods with maximal postthawing recovery form the basis of ideal cryopreservation. Taurine (2-amino ethanesulfonic acid), an end-product of sulphur amino acid metabolism, is one of the most abundant free amino acids in the body. The membrane stabilizing, free radical scavenging, and osmoregulatory roles of taurine have been well documented. We studied the effect of physiological and supra-physiological concentrations (0.3 and 3.0 mM) of taurine on islet cryopreservation. Islet viability on cryopreservation was significantly improved in both the taurine-treated groups (91.9 +/- 2.3% in 0.3 mM and 94.6 +/- 1.58% in 3.0 mM group, p taurine group, as examined under phase contrast and quantified by islet morphometric analysis (p Taurine-treated islets showed significant reduction in lipid peroxidation (0.905 and 0.848 nM MDA/microg protein for 0.3 and 3.0 mM taurine, respectively, p 200 mg/dl) following removal of the graft. Suboptimal islet transplantation using 250 IE suggests that the grafted islet mass was inadequate for diabetes reversal. In addition, no significant differences were observed in the islet insulin content between the three groups following cryopreservation of the islets at -196 degrees C. Our studies indicate that taurine pretreatment and its continued presence during islet cryopreservation improves the postthawing viable recovery of islets.

  13. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  14. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  15. Sulfonated phenolic material and its use in post primary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pardue, J. E.; Stapp, P. R.

    1984-09-04

    Sulfonated phenolic compounds as well as sulfomethylated phenolic compounds, surfactant systems containing such compound and the use of such surfactant systems in post primary oil recovery are disclosed.

  16. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  17. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems

    Science.gov (United States)

    Hendraningrat, Luky; Torsæter, Ole

    2015-02-01

    This paper presents systematic studies of hydrophilic metal oxide nanoparticles (NPs) dispersed in brine intended to reveal their potential to enhance oil recovery (EOR) in various rock wettability systems. The stability in suspension (nanofluid) of the NPs has been identified as a key factor related to their use as an EOR agent. Experimental techniques have been developed for nanofluid stability using three coupled methods: direct visual observation, surface conductivity and particle size measurements. The use of a dispersant has been investigated and has been shown to successfully improve metal oxide nanofluid stability as a function of its concentration. The dispersant alters the nanofluid properties, i.e. surface conductivity, pH and particle size distribution. A two-phase coreflood experiment was conducted by injecting the stable nanofluids as a tertiary process (nano-EOR) through core plugs with various wettabilities ranging from water-wet to oil-wet. The combination of metal oxide nanofluid and dispersant improved the oil recovery to a greater extent than either silica-based nanofluid or dispersant alone in all wettability systems. The contact angle, interfacial tension (IFT) and effluent were also measured. It was observed that metal oxide-based nanofluids altered the quartz plates to become more water-wet, and the results are consistent with those of the coreflood experiment. The particle adsorption during the transport process was identified from effluent analysis. The presence of NPs and dispersant reduced the IFT, but its reduction is sufficient to yield significant additional oil recovery. Hence, wettability alteration plays a dominant role in the oil displacement mechanism using nano-EOR.

  18. Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Carrell, L.A.; Sippel, M.A.

    1996-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  19. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  20. Thermal numerical simulator for laboratory evaluation of steamflood oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sarathi, P.

    1991-04-01

    A thermal numerical simulator running on an IBM AT compatible personal computer is described. The simulator was designed to assist laboratory design and evaluation of steamflood oil recovery. An overview of the historical evolution of numerical thermal simulation, NIPER's approach to solving these problems with a desk top computer, the derivation of equations and a description of approaches used to solve these equations, and verification of the simulator using published data sets and sensitivity analysis are presented. The developed model is a three-phase, two-dimensional multicomponent simulator capable of being run in one or two dimensions. Mass transfer among the phases and components is dictated by pressure- and temperature-dependent vapor-liquid equilibria. Gravity and capillary pressure phenomena were included. Energy is transferred by conduction, convection, vaporization and condensation. The model employs a block centered grid system with a five-point discretization scheme. Both areal and vertical cross-sectional simulations are possible. A sequential solution technique is employed to solve the finite difference equations. The study clearly indicated the importance of heat loss, injected steam quality, and injection rate to the process. Dependence of overall recovery on oil volatility and viscosity is emphasized. The process is very sensitive to relative permeability values. Time-step sensitivity runs indicted that the current version is time-step sensitive and exhibits conditional stability. 75 refs., 19 figs., 19 tabs.

  1. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    Science.gov (United States)

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL(-1). The biosurfactant exhibited a maximum emulsification activity (E24) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca(2+) ions to the biosurfactant solution. The oil recovery efficiency of Ca(2+) conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca(2+) concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL(-1) was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  3. strong water sensitivity; heavy oil reservoir; thermal recovery; thermal compound chemical flooding; electron microscope analysisA study on a thermal compound chemical method for improving development efficiency of heavy-oil reservoirs with strong sensiti%热复合化学方法改善极强敏感性稠油油藏开发效果机理

    Institute of Scientific and Technical Information of China (English)

    曹嫣镔; 于田田; 林吉生; 刘冬青; 何绍群; 王全; 夏道宏

    2013-01-01

    Heavy-oil reservoirs with extremely strong water sensitivity in the Shengli oilfield are mainly distributed in the Jinjia oilfield and their reserves amount to more than 20 million tons. In addition, the thermal recovery effect only by steam injection seems poor and it is difficult to effectively produce these reserves because the water sensitivity index for this kind of reservoirs exceeds 0. 9. In view of the above contradiction, a thermal compound chemical method research was carried out, in which real cores from the Jinjia oilfield were used to evaluate different displacement manners based on thermal compound chemical flooding, such as the vapor + high-temperature antiswelling agent, steam + high-performance oil displacement agent, and steam + high-performance oil displacement a-gent + high-temperature condensation agent. Composition changes of clay minerals, clay distributions in pore throats and radius distributions of pore throats were measured by means of X diffraction, scanning electron microscope, cast thin section and mercury-injection in order to explore principle mechanisms of the enhanced oil recovery with the thermal compound chemical method under high-temperature conditions. The results showed that the thermal compound chemical displacement manner with the steam + high-temperature oil displacement agent + high-temperature condensation agent can promote the transformation of montmorillonite to illite and the dissolution of part kaolinite at the same time, which can greatly improve pore-throat flow channels of reservoirs to form large "hot-wormholes" that remarkably increase the permeability and flooding displacement efficiency of heavy-oil reservoirs with strong water sensitivity.%胜利油田极强水敏性稠油油藏主要分布在金家油田,储量在2 000×104 t以上,该类油藏水敏指数在0.9以上,单纯注蒸汽热采开发效果差,无法实现有效动用.笔者针对以上矛盾,开展了热复合化学方法开采技术研究.利用

  4. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  5. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst;

    2015-01-01

    Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) acting at the liquid-solid interface. One way to assess this is via measuring the wettability of calcite surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have experiment......Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) acting at the liquid-solid interface. One way to assess this is via measuring the wettability of calcite surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have...... experimentally investigated the effect of enzymes on the wettability of calcite mineral surfaces with oil-brine systems. The action of various enzymes, including esterases/lipases, carbohydrases, proteases and oxidoreductases (along with two commercial mixtures) was studied by contact angle measurements.......1% of the enzyme product (corresponding to 0.002-0.005% protein). Likewise, proteases could also improve wettability, although the effect was not consistent and was dependent on impurities. Other enzymes had no effect on the wettability of calcite at the concentration studied. The main mechanism of enzymatic...

  6. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  7. A Predictive Model of Enhanced Oil Recovery by Infill Drilling and Its Application

    Institute of Scientific and Technical Information of China (English)

    Xu Jianhong; Cheng Linsong; Ma Lili

    2007-01-01

    Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. This paper proposes a hybrid predictive model of stream tube simulation and numerical simulation by using the contemporary theory of fluid flow in porous media. The model calculates the geometries of stream tubes, remaining oil distribution and water cut at different development stages in the near future, and uses a three-dimensional simulation to track fluid movement in each stream tube slice. This will help reservoir engineers to determine the feasibility of infill drilling. This predictive model is used to forecast the degree of control of well pattern, the ultimate incremental recovery of infill wells within an inverted 5-spot case in an oilfield and the economic benefit is also analyzed.

  8. Evaluation of reservoir wettability and its effect on oil recovery. Annual report, February 1, 1996--January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.S.

    1998-03-01

    We report on the first year of the project, {open_quotes}Evaluation of Reservoir Wettability and its Effect on Oil Recovery.{close_quotes} The objectives of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. Mixed-wetting can occur in oil reservoirs as a consequence of the initial fluid distribution. Water existing as thick films on flat surfaces and as wedges in comers can prevent contact of oil and mineral. Water-wet pathways are thus preserved. Depending on the balance of surface forces-which depend on oil, solid, and brine compositions-thick water films can be either stable or unstable. Water film stability has important implications for subsequent alteration of wetting in a reservoir. On surfaces exposed to oil, the components that are likely to adsorb and alter wetting can divided into two main groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. In order to understand how crude oils interact with mineral surfaces, we must first gather information about both these classes of compounds in a crude oil. Test procedures used to assess the extent of wetting alteration include adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media. Part 1 of this project is devoted to determining the mechanisms by which crude oils alter wetting.

  9. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-06

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered.

  10. Interaction between Fingering and Heterogeneity during Viscous Oil Recovery in Carbonate Rocks (Invited)

    Science.gov (United States)

    Mohanty, K. K.; Doorwar, S.

    2013-12-01

    Due to the fast depleting conventional oil reserves, research in the field of petroleum engineering has shifted focus towards unconventional (viscous and heavy) oils. Many of the viscous oil reserves are in carbonate rocks. Thermal methods in carbonate formations are complicated by mineral dissolution and precipitation. Non-thermal methods should be developed for viscous oils in carbonates. In viscous oil reservoirs, oil recovery due to water flood is low due to viscous fingering. Polymer flood is an attractive process, but the timing of the polymer flood start is an important parameter in the optimization of polymer floods. Vuggy Silurian dolomite cores were saturated with formation brine and reservoir oil (150-200 cp). They were then displaced by either a polymeric solution (secondary polymer flood) or brine followed the polymeric solution (tertiary polymer flood). The amount of brine injection was varied as a parameter. Oil recovery and pressure drop was monitored as a function of the starting point of the polymer flood. To visualize the displacement at the pore-scale, two types of micromodels were prepared: one with isolated heterogeneity and the other with connected heterogeneity. The wettability of the micromodels was either water-wet or oil-wet. The micromodels were saturated with formation brine and oil. A series of water flood and polymer flood was conducted to identify the mechanism of fluid flow. Dolomite corefloods show that a tertiary polymer flood following a secondary water flood recovers a substantial amount of oil unlike what is observed in typical sandstone cores with light oil. The tertiary oil recovery plus the secondary waterflood recovery can exceed the oil recovery in a secondary polymer flood in dolomite-viscous oil-brine system. These experiments were repeated in a Berea-oil-brine system which showed that the oil recovered in the secondary polymer flood was similar to the cumulative oil recovery in the tertiary polymer flood. The high

  11. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns.

    Science.gov (United States)

    Gudiña, Eduardo J; Pereira, Jorge F B; Costa, Rita; Coutinho, João A P; Teixeira, José A; Rodrigues, Lígia R

    2013-10-15

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of residual oil by the selected microorganisms. Four different hydrocarbon mixtures and three Bacillus subtilis strains isolated from crude oil samples were used. Additional oil recoveries ranged from 6 to 24% depending on the hydrocarbon mixture and microorganism used. Biosurfactant production was observed with all the microorganisms and hydrocarbon mixtures studied. The oils recovered after incubation with B. subtilis isolates showed a reduction in the percentage of long-chain n-alkanes and lower viscosity when compared with the original oils. The results obtained suggest that stimulation of the selected B. subtilis strains in situ can contribute to mobilize entrapped oil in mature reservoirs. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Thomas, R.D.

    1991-01-01

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  13. Investigation of spore forming bacterial flooding for enhanced oil recovery in a North Sea chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focuses on core flooding experiments designed to see microbial plugging and its effect on oil recovery. A pressure tapped core holder was used for this purpose. A spore forming bacteria...

  14. Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage.

    Science.gov (United States)

    de Haas, Thomas W; Fadaei, Hossein; Guerrero, Uriel; Sinton, David

    2013-10-07

    We present a lab-on-a-chip approach to informing thermal oil recovery processes. Bitumen - a major global resource - is an extremely viscous oil which is extracted by injecting steam underground in a process known as Steam Assisted Gravity Drainage (SAGD). Here, a microfluidic network saturated with bitumen provides a physical model of the SAGD reservoir; steam is injected into the chip, and the oil recovery dynamics are visualized and quantified in real-time. The unique advantage of this approach is the pore-scale quantification of fluid phase dynamics under relevant reservoir conditions and pore sizes. High resolution is achieved by leveraging the inherent fluorescence of the native bitumen. The approach is applied to quantify the efficacy of an alkaline steam additive. With the additive, the mean characteristic size of oil-in-water emulsions formed during SAGD is reduced from 150 μm to 6 μm, and the corresponding recovery effectiveness is improved by ~50%. These results demonstrate that pore-scale process quantification enabled by lab-on-a-chip methods can improve the efficacy, and the associated carbon footprint, of energy intensive thermal oil recovery processes.

  15. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  16. Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2014-09-01

    In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques. Under batch equilibrium mode, a systematic study was performed to optimize the various equilibrium parameters viz., contact time, pH, dosage, initial concentration of oil, and temperature. The adsorption process reached equilibrium at 40 min of contact time and the percentage removal of oil was found to be higher (90%) in the acidic medium. The Freundlich and Langmuir models were applied to describe the equilibrium isotherms and the isotherm constants were calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to find out the nature of the sorption mechanism. The kinetic studies were investigated with reaction-based and diffusion-based models. The suitable mechanism for the removal of oil has been established.

  17. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  18. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  19. Microfluidic Study of Foams Flow for Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Quennouz N.

    2014-05-01

    Full Text Available In this paper, we report an experimental study of foam flow in different channel geometries using microfluidic devices in the framework of Enhanced Oil Recovery (EOR. Two different processes of foam formation are studied. The first corresponds to co-injection of gas and water through a cross junction which gives rise to a monodisperse foam. The second one corresponds to the fragmentation of large bubbles by a porous media, a foam formation process simulating multiphase flows in rocks. The foam formation is completely controlled and characterized varying both the water and gas pressure applied. We also use a microdevice with two permeabilities that permits to highlight the diversion of the continuous phase in the low permeability channels. The observations are important for a better understanding of the implied phenomena in EOR as well as to determine pertinent data to feed flow simulators.

  20. Bitumen recovery from surface mined oil sands recycle water ponds

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.J.; Munoz, V.A.; Elliott, G. L. [Natural Resources Canada, CanmetENERGY, Devon, Alberta (Canada)

    2011-07-01

    In surface mined oil sands, high bitumen recovery can be achieved but tailings have accumulated over the years. Several technologies have been proposed for recovering bitumen from tailings, but because this bitumen carries high surfactant concentrations there have been processing problems. This paper presents the application of oxidized ore characterization and processing methods to process tailings pond bitumen. Laboratory tests were carried out to characterize bitumen samples coming from four different tailings sources and tests were run with caustic additive. Results showed that high caustic additions can be applied to surfactant rich tailings pond bitumen to avoid downstream froth treatment emulsion problems; the oxidation degree should be carefully monitored. This study demonstrated that the use of caustic additive, already used for oxidized ores, can be applied to treat the bitumen recovered from tailings streams.

  1. Evaluation of the potential of alkali-surfactant-polymer (ASP) foams in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. A.; Romer-Zeron, L.; Kantzas, A. [University of Calgary, Dept. of Chemical and Petroleum Engineering, Calgary, AB (Canada)

    2004-07-01

    Results of a study of a new enhanced oil recovery technology, known as alkali-surfactant-polymer foams (ASPF), are discussed. The study was carried out through a series of laboratory core floods using sand packs and dead crude oil. The foaming solution was formulated using synthetic brine; a polycrylamide (AC 935) combined with the foaming surfactant (CD 1045) was chosen to provide the greatest gas mobility control capability and foam stability. Results demonstrated very high oil recovery efficiency resulting from ASPF flooding. Various combination of water flooding, foam flooding and gas flooding were investigated in an effort to determine the optimum injection scenarios for maximum oil recovery.

  2. A Sugar-Based Gelator for Marine Oil-Spill Recovery.

    Science.gov (United States)

    Vibhute, Amol M; Muvvala, Venkatanarayana; Sureshan, Kana M

    2016-06-27

    Marine oil spills constitute an environmental disaster with severe adverse effects on the economy and ecosystem. Phase-selective organogelators (PSOGs), molecules that can congeal oil selectively from oil-water mixtures, have been proposed to be useful for oil-spill recovery. However, a major drawback lies in the mode of application of the PSOG to an oil spill spread over a large area. The proposed method of using carrier solvents is impractical for various reasons. Direct application of the PSOG as a solid, although it would be ideal, is unknown, presumably owing to poor dispersion of the solid through the oil. We have designed five cheap and easy-to-make glucose-derived PSOGs that disperse in the oil phase uniformly when applied as a fine powder. These gelators were shown to selectively congeal many oils, including crude oil, from oil-water mixtures to form stable gels, which is an essential property for efficient oil-spill recovery. We have demonstrated that these PSOGs can be applied aerially as a solid powder onto a mixture of crude oil and sea water and the congealed oil can then be scooped out. Our innovative mode of application and low cost of the PSOG offers a practical solution to oil-spill recovery.

  3. Alkyl polyglycoside/1-naphthol formulations. A case study of surfactant enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Iglauer, Stefan; Wu, Yongfu; Shuler, Patrick; Tang, Yongchun [California Institute of Technology, Covina, CA (United States). Div. of Chemistry and Chemical Engineering; Goddard, William A. III [California Institute of Technology, Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering

    2011-03-15

    We present a case study of surfactant enhanced oil recovery using Alkyl polyglucoside/1-naphthol formulations. Alkyl polyglucosides are a green, non-toxic and renewable surfactant class synthesized out of agricultural raw materials. We measured interfacial tensions versus n-octane and viscosities of these formulations and conducted one coreflood enhanced oil recovery (EOR) experiment where we recovered 82.6 % of initial oil in place demonstrating that these formulations are efficient EOR agents. (orig.)

  4. Developing High Water-cut Oil Fields Deeply to Enhance Their Oil Recovery

    Institute of Scientific and Technical Information of China (English)

    Han Dakuang

    1994-01-01

    @@ There are 283 developed oil fields in China onshore area by the end of 1993. Most of them are in the later development stage with high water cut. The overall average water cut in these oilfields reaches 80.4%.Some old ones, such as Shengtuo, Gudao and Zhengdong,which have been put on production since 60's or 70's, have a water cut of higher than 90%and are in the extra high water-cut development stage. The recovery factors of these oilfields in terms of the recoverable reserves, which is 63.1%on average and even higher than 80% in some old fields, are also high. A lot of field data show that the distribution of oil and water in the reservoir exhibits new features differing from that in the earlier development stage. Because of the serious interlayer and intralayer heterogeneity of non--marine sandbodies both horizontally and vertically, and the complicated structural features due to the cross cutting of numerous faults, the distribution of the remaining oil in the case of such high recovery and high water cut is in a very dispersed state forming a very complex picture just like the stars in the sky. However some regularities and some relatively abundant regions still exist.

  5. A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

    Science.gov (United States)

    Hendraningrat, Luky; Torsæter, Ole

    2016-01-01

    Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, water-based fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluid-fluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silica-based nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

  6. Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention.

    Science.gov (United States)

    Abramov, Vladimir O; Mullakaev, Marat S; Abramova, Anna V; Esipov, Igor B; Mason, Timothy J

    2013-09-01

    A new method for the ultrasonic enhancement of oil recovery from failing wells is described. The technology involves lowering a source of power ultrasound to the bottom of the well either for a short treatment before removal or as a permanent placement for intermittent use. In wells where the permeability is above 20 mD and the porosity is greater than 15% ultrasonic treatment can increase oil production by up to 50% and in some cases even more. For wells of lower permeability and porosity ultrasonic treatment alone is less successful but high production rates can be achieved when ultrasound is applied in conjunction with chemicals. An average productivity increase of nearly 3 fold can be achieved for this type of production well using the combined ultrasound with chemical treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    OpenAIRE

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael Q.

    2015-01-01

    Background Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and...

  8. Improving vegetable oil properties for lubrication methods

    Science.gov (United States)

    The inherent problems of vegetable oils, such as poor oxidation and low-temperature properties, can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, you will see how functionalization helps overcome these disadvantages....

  9. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Science.gov (United States)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  10. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  11. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    Science.gov (United States)

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  12. Carbon dioxide enhanced oil recovery, offshore North Sea: carbon accounting, residual oil zones and CO2 storage security

    OpenAIRE

    Stewart, Robert Jamie

    2016-01-01

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields. Although this technology has been used successfully onshore in North America and Europe, projects have maximised oil recovery and not CO2 storage. While the majority of onshore CO2EOR projects to date have used CO2 from natural sources, CO2EOR is now more and more being considered as a storage option for captured anthropogenic CO2. In the N...

  13. Carbon dioxide enhanced oil recovery, offshore North Sea: carbon accounting, residual oil zones and CO2 storage security

    OpenAIRE

    Stewart, Robert Jamie

    2016-01-01

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields. Although this technology has been used successfully onshore in North America and Europe, projects have maximised oil recovery and not CO2 storage. While the majority of onshore CO2EOR projects to date have used CO2 from natural sources, CO2EOR is now more and more being considered as a storage option for captured anthropogenic CO2. In the N...

  14. Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Jahediesfanjani, Hossein

    2017-07-17

    IntroductionIn the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

  15. Miscibility Development Computation in Enhanced Oil Recovery by Flare Gas Flooding

    Directory of Open Access Journals (Sweden)

    Tjokorde Walmiki Samadhi

    2012-11-01

    Full Text Available The use of flare gas as injection gas in miscible gas flooding enhanced oil recovery (MGF-EOR presents a potential synergy between oil production improvement and greenhouse gases emission mitigation. This work is a preliminary evaluation of the feasibility of miscible flare gas injection based on phase behavior computations of a model oil (43%n-C5H12 : 57%n-C16H34 and a model flare gas (91%CH4 : 9%C2H6. The computations employed the multiple mixing-cell model with Peng-Robinson and PC-SAFT equations of state, and compared the minimum miscibility pressure (MMP value in the cases of flare gas injection and CO2 injection. For CO2 injection, both equations of state produced MMP values close to the measured value of 10.55 MPa. Flare gas injection MMP values were predicted to be 3.6-4.5 times those of CO2 injection. This very high MMP implies high gas compression costs, and may compromise the integrity of the reservoir. Subsequent studies shall explore the gas-oil miscibility behavior of mixtures of flare gas with intermediate hydrocarbon gases and CO2, in order to identify a suitable approach for rendering flare gas feasible as an injection gas in MGF-EOR.

  16. Maximizing heavy-oil recovery by containing steam through optimized cementing

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, K.; Hunter, B.; Kulakofsky, D [Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    As the world's oil and gas reserves decline, interest in unconventional sources, such as heavy oil, is increasing in response to global energy demand. Conventional methods are not sufficient to produce highly viscous heavy oil, and measures must be taken to decrease its viscosity. Although steam injection is an option, steam heats the casing and the cement sheath posing considerable thermal stress on the casing and the cement sheath. This paper described the design procedures that are required for evaluating the properties needed in the cement sheath in order to assist in withstanding thermal stresses. The steps needed to deliver an optimized cement system were presented. The paper presented an illustration of a typical wellbore for heavy-oil application and listed the parameters responsible for the extent of heat loss. These included formation properties; cement sheath thermal conductivity; steam-injection rate; and steam quality. The paper also described the Zhang unified mechanistic model which involved the temperature, pressure, steam quality, and heat loss changes as a function of the depth and the surroundings. Recommendations for withstanding well operations, hole cleaning, and slurry placement were also presented. Insurance for incomplete drilling fluid displacement and cement with the ability to react and respond were also proposed. It was concluded that in thermal recovery wells, energy loss to the surroundings could be reduced by lowering the thermal conductivity of the cement sheath. This could greatly improve the economics of such wells. 9 refs., 5 figs.

  17. Enhanced oil recovery & carbon sequestration building on successful experience

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  18. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    Science.gov (United States)

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  19. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  20. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  1. Monitoring habitat recovery and toxicity reduction in an oiled freshwater wetland to determine remediation success

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Wohlgeschaffen, G.; Cobanli, S.E.; Gauthier, J. [Fisheries and Oceans Canada, Maurice Lamontagne Inst., Mont Joli, PQ (Canada); Venosa, A.D. [Environmental Protection Agency, Cincinnati, OH (United States); Doe, K.G.; Jackman, P.M. [Environment Canada, Moncton, NB (Canada); Lee, L.E.J. [Wilfred Laurier Univ., Waterloo, ON (Canada). Dept. of Biology; Suidan, M.T.; Garcia-Blanco, S. [Cincinnati Univ., Cincinnati, OH (United States)

    2001-07-01

    Oil spill responders have suggested that there is a need to improve oil spill countermeasures in wetlands. A controlled experiment was performed in a tidal freshwater marsh located along the St. Lawrence River, Canada, in which a weathered light crude oil was spilled on 16 of 20 plots at a rate of 12 litres per plot. The objective was to evaluate the following remediation strategies: (1) natural attenuation, (2) nutrient amendment with granular ammonium nitrate and super triple phosphate, (3) an identical treatment with plants continuously cut back to evaluate the influence of plant growth on remediation, and (4) nutrient amendment with sodium nitrate and super triple phosphate. The remaining four unoiled plots were fertilized with ammonium nitrate and triple super phosphate to determine the effect of nutrient amendments. Sediment samples were recovered on a regular basis for a period of 65 weeks to acquire background data for chemical and toxicological analysis. Gas chromatography and mass spectrometry revealed that both physical and biological processes removed residual hydrocarbon components. Elevated nutrient levels were sustained within the interstitial porewater by occasional applications of the fertilizer formulations being evaluated. However, biomarkers showed that there was little or no change in the composition of the residual oil due to experimental treatments. The dominant plant species appeared to be tolerant to the oil and its growth was stimulated by the addition of nutrients. A variety of responses, from detrimental effects to enhanced recovery, was observed in a series of biotests with bacteria and invertebrates. It was concluded that the apparent differences may be due to a range of factors including intrinsic variations in species sensitivity, induced tolerance on exposure to contaminant hydrocarbons, changes in bioavailability of the residual oil as a result of vegetative growth, or detrimental effects of the nutrient amendment products used in

  2. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  3. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    Science.gov (United States)

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  4. Distribution and Recovery of Crude Oil in Various Types of Porous Media and Heterogeneity Configurations

    Science.gov (United States)

    Tick, G. R.; Ghosh, J.; Greenberg, R. R.; Akyol, N. H.

    2015-12-01

    A series of pore-scale experiments were conducted to understand the interfacial processes contributing to the removal of crude oil from various porous media during surfactant-induced remediation. Effects of physical heterogeneity (i.e. media uniformity) and carbonate soil content on oil recovery and distribution were evaluated through pore scale quantification techniques. Additionally, experiments were conducted to evaluate impacts of tetrachloroethene (PCE) content on crude oil distribution and recovery under these same conditions. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was likely responsible for mobilization and recovery of lighter fractions of crude oil. Corresponding increases in viscous forces were insufficient to initiate and maintain the displacement of the heavy crude oil in more homogeneous porous media systems during surfactant flushing. Interestingly, higher relative recoveries of heavy oil fractions were observed within more heterogeneous porous media indicating that wettability may be responsible for controlling mobilization in these systems. Compared to the "pure" crude oil experiments, preliminary results show that crude oil with PCE produced variability in oil distribution and recovery before and after each surfactant-flooding event. Such effects were likely influenced by viscosity and interfacial tension modifications associated with the crude-oil/solvent mixed systems.

  5. Development of epoxide compound from kapok oil for enhanced oil recovery

    Science.gov (United States)

    Anam, M. K.; Supranto; Murachman, B.; Purwono, S.

    2017-06-01

    Epoxide compound is made by reacting Kapok Oil with acetic acid and hydrogen peroxide with in situ method. The epoxidation reaction was varied at temperatures of 60 °C, 70 °C and 80 °C, while the time of reaction time was varied at 15 minutes, 30 minutes, 60 minutes and 90 minutes. The reaction rate coefficient for the epoxide was obtained as {\\boldsymbol{k}}{\\boldsymbol{=}}{{124}}{\\boldsymbol{,}}{{82}} {{\\exp }} {\\boldsymbol{\\bigg(}}\\frac{{\\boldsymbol-}{{24}}{\\boldsymbol{,}}{{14}}}{{\\boldsymbol{R}}{\\boldsymbol{T}}}{\\boldsymbol{\\bigg)}}. The addition of the epoxide compound 0.5 w/w in the formulation of SLS was able to reduce the IFT value up to 9.95 x 10-2 m N/m. The addition of co-surfactant (1-octanol) was varied between 0.1 and 0.4 of the total mass of the main formulation (SLS + epoxide + water formation). The smallest interfacial tension value is obtained on the addition of co-surfactants as much as 0.2 w/w, with the IFT value is 2.43 x 10-3 m N/m. The effectiveness of the chemicals was tested through micro displacement using artificial porous medium. The experimental results show that some chemicals developed in the laboratory can be used as EOR chemicals. The oil displacement experiments show that as much as 20 to 80 of remaining oil can be recovered by flooding it with the chemicals. The results also show that the oil recovery depends on type of chemicals and chemical concentration.

  6. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  7. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  8. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  9. Affecting Factors and Improving Measures for Converter Gas Recovery

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To change the undesirable present situation of recovering and using converter gas in steel plants in China,the basic approaches to improving the converter gas recovery rate were analyzed theoretically along with the change curves of the converter gas component content, based on the converter gas recovery system of Baosteel No. 2 steelmaking plant. The effects of converter device, raw material, air imbibed quantity, recovery restricted condition, and intensity of oxygen blowing on the converter gas recovery rate were studied. Among these, the effects of the air imbibed quantity, recovery restricted condition, and intensity of oxygen blowing are remarkable. Comprehensive measures were put forward for improving the converter gas recovery from the point of devices, etc. , and good results were achieved.

  10. A mathematical modelling of imbibition phenomenon in inclined homogenous porous media during oil recovery process

    Directory of Open Access Journals (Sweden)

    Shreekant Pathak

    2016-09-01

    Full Text Available The approximate solution of imbibition phenomenon governed by non-linear partial differential equation is discussed in the present paper. Primary oil recovery process due to natural soil pressure, but in the secondary oil recovery process water flooding plays an important role. When water is injected in the injection well for recovering the reaming oil after primary oil recovery process, it comes to contact with the native oil and at that time the imbibition phenomenon occurs due to different viscosity. For the mathematical modelling, we consider the homogeneous porous medium and optimal homotopy analysis method has been used to solve the partial differential equation governed by it. The graphical representation of the solution is given by MATHEMATICA and physically interpreted.

  11. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Cheng; SONG Kao-Ping; LIU Li; YANG Er-Long

    2008-01-01

    Polymer flooding is an efficient technique to enhance oil recovery over water flooding.There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep effciency alone,or can increase both of sweep efficiency and displacement efficiency.We present a study on this problem.Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water.Moreover,photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding,which show remaining oil saturation distribution at the middle cross section and the central longitudinal section.Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency.

  12. Determination of technology transfer requirements for enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.D.; Scott, J.P.

    1980-09-01

    A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

  13. Developing High Water-cut Oil Fields Deeply to Enhance Their Oil Recovery(Continued from page 14 in the third issure)

    Institute of Scientific and Technical Information of China (English)

    Han Dakuang

    1994-01-01

    @@ Development of new EOR techniques with tertiary production as a main technique As stated above, the ultimate recovery of conventional oil in our country is estimated to be 33.6%, i.e., about 66.4% of the oil reserves cannot be recovered by water injection and may only be targeted for tertiary oil recovery or for other types of new technologies.

  14. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  15. Recovery of low temperature heat in oil mills

    Directory of Open Access Journals (Sweden)

    Carré Patrick

    2012-11-01

    Full Text Available Energy consumption in oil mills is a major item of costs and a sensitive point in the production of biofuels. To improve their performance, industrials can recover lowtemperature heat thanks to a new technology of heat exchangers suitable for treating granular solid materials. Information about the energy requirements of the rapeseed crushing being not readily available, the article gives a detailed assessment of consumption items (per ton of seed: 263 MJ for preparation operations and 284 MJ for solvent extraction. These exchangers used as pre-conditioners saves about 55 MJ.t−1 of heat by use of steam condensates. We could go further in use of these devices on the one hand to recover heat from press cake and meal, and secondly to use recovered energy to dry and warm up the seeds before pre-pressing. In this configuration, the energy savings could reach 38% of current needs.

  16. Oil recovery from refinery oily sludge via ultrasound and freeze/thaw.

    Science.gov (United States)

    Zhang, Ju; Li, Jianbing; Thring, Ronald W; Hu, Xuan; Song, Xinyuan

    2012-02-15

    The effective disposal of oily sludge generated from the petroleum industry has received increasing concerns, and oil recovery from such waste was considered as one feasible option. In this study, three different approaches for oil recovery were investigated, including ultrasonic treatment alone, freeze/thaw alone and combined ultrasonic and freeze/thaw treatment. The results revealed that the combined process could achieve satisfactory performance by considering the oil recovery rate and the total petroleum hydrocarbon (TPH) concentrations in the recovered oil and wastewater. The individual impacts of five different factors on the combined process were further examined, including ultrasonic power, ultrasonic treatment duration, sludge/water ratio in the slurry, as well as bio-surfactant (rhamnolipids) and salt (NaCl) concentrations. An oil recovery rate of up to 80.0% was observed with an ultrasonic power of 66 W and an ultrasonic treatment duration of 10 min when the sludge/water ratio was 1:2 without the addition of bio-surfactant and salt. The examination of individual factors revealed that the addition of low concentration of rhamnolipids (recovery from the combined treatment process. The experimental results also indicated that ultrasound and freeze/thaw could promote the efficiency of each other, and the main mechanism of oil recovery enhancement using ultrasound was through enhanced desorption of petroleum hydrocarbons (PHCs) from solid particles. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.

    Science.gov (United States)

    González, Manuel; Uriarte, Adolfo; Pozo, Rogelio; Collins, Michael

    2006-01-01

    On 19th November 2002, the oil tanker Prestige (containing 77,000 tonnes of heavy fuel no. 2 (M100)) sank in 3500 m of water, off the coast of northwestern Spain. Intermittent discharge of oil from the stricken tanker, combined with large-scale sea surface dispersion, created a tracking and recovery problem. Initially, conventional oil recovery approaches were adopted, close to the wreck. With time and distance from the source, the oil dispersed dramatically and became less viscous. Consequently, a unique monitoring, prediction and data dissemination system was established, based upon the principles of 'operational oceanography'; this utilised in situ tracked buoys and numerical (spill trajectory) modelling outputs, in combination with remote sensing (satellite sensors and visual observation). Overall, wind effects on the surface waters were found to be the most important mechanism controlling the smaller oil slick movements. The recovery operation involved up to 180 fishing boats, 9-30 m in length. Such labour-intensive recovery of the oil (21,000 tonnes, representing an unprecedented ratio of 6.6 tonnes at sea, per tonne recovered on land) continued over a 10 month period. The overall recovery at sea, by the fishing vessels, represented 63% of the total oil recovered at sea; this compares to only 37% recovered by specialised 'counter- pollution' vessels.

  18. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment.

  19. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Reid B. Grigg

    2003-10-31

    The second annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies have been undertaken with the intention to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Many items presented in this report are applicable to other interest areas: e.g. gas injection and production, greenhouse gas sequestration, chemical flooding, reservoir damage, etc. Major areas of studies include reduction of CO{sub 2} mobility to improve conformance, determining and understanding injectivity changes in particular injectivity loses, and modeling process mechanisms determined in the first two areas. Interfacial tension (IFT) between a high-pressure, high-temperature CO{sub 2} and brine/surfactant and foam stability are used to assess and screen surfactant systems. In this work the effects of salinity, pressure, temperature, surfactant concentration, and the presence of oil on IFT and CO{sub 2} foam stability were determined on the surfactant (CD1045{trademark}). Temperature, pressure, and surfactant concentration effected both IFT and foam stability while oil destabilized the foam, but did not destroy it. Calcium lignosulfonate (CLS) can be used as a sacrificial and an enhancing agent. This work indicates that on Berea sandstone CLS concentration, brine salinity, and temperature are dominant affects on both adsorption and desorption and that adsorption is not totally reversible. Additionally, CLS adsorption was tested on five minerals common to oil reservoirs; it was found that CLS concentration, salinity, temperature, and mineral type had significant effects on adsorption. The adsorption density from most to least was: bentonite > kaolinite > dolomite > calcite > silica. This work demonstrates the extent of dissolution and precipitation from co-injection of CO{sub 2} and

  20. Review of technology for Arctic offshore oil and gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  1. Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; Schenk, Peer M

    2016-10-01

    Solvent-free microalgal lipid recovery is highly desirable for safer, more sustainable and more economical microalgal oil production. Dispersed air flotation and centrifugation were evaluated for the ability to separate oil and debris from a slurry mixture of osmotically fractured Chaetoceros muelleri cells with and without utilizing collectors. Microalgal oil partially phase-separated as a top layer and partially formed an oil-in-water emulsion. Although collectors, such as sodium dodecyl sulphate enhanced selective flotation, by just adjusting the pH and cell concentration of the mixture, up to 78% of the lipids were recovered in the froth. Using centrifugation of fractured microalgal slurry resulted in removal of 60% cell debris and up to 68.5% of microalgal oil was present in the supernatant. Both methods, centrifugation and flotation provided options for separation of microalgal oil from C. muelleri slurry with similar fatty acid recoveries of 57% and 60%, respectively. Copyright © 2016. Published by Elsevier Ltd.

  2. Physicochemical technologies for enhanced oil recovery in deposits with difficult-to-recover reserves

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2016-11-01

    The results of laboratory and field tests as well as the commercial use of new physicochemical technologies intended to enhance oil recovery in deposits with difficult-to-recover reserves are presented. They are based on the concept of reservoir energy used to generate gels, sols, and surfactant compositions preserving a complex of properties in the reservoir which are optimal for oil displacement.

  3. Modeling of in-situ combustion as thermal recovery method for heavy (medium) oil (poster)

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.; Achterbergh, N.; Rudolph, E.S.J.; Bruining, J.

    2010-01-01

    In-situ combustion (ISC), as a well known process for secondary and tertiary oil recovery, is an important alternative approach to achieve higher production efficiency for light and heavy oil reservoirs. The in-situ combustion process is a complex combination of a number of processes which occur in

  4. Investigating the Potential of Nanomaterials for Enhanced Oil Recovery: State of Art

    OpenAIRE

    Adel Moh. Salem Ragab

    2014-01-01

    Petroleum industry has been changed by the introduction of the nanotechnology. Nanotechnology has been tried in exploration. Drilling, production, and finally in enhanced oil recovery. For EOR, nanomaterials are considered an additive to the fluid used to displace the residual oil from the reservoir, which changes the characteristics of these solutions. These nano solutions have unique properties for a wide range of applications in oil field industry.   There are several approaches fo...

  5. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  6. Chemical enhanced oil recovery (EOR) activities in Indonesia: How it's future

    Science.gov (United States)

    Abdurrahman, Muslim

    2017-05-01

    Enhanced oil recovery (EOR) is a proven method for increasing oil production in many oil fields in the world. Huge oil remaining in the reservoir after primary and secondary recovery stage are the main reason for developing EOR methods. Approximately of 49.50 billion barrels oil as a candidate for EOR activities in Indonesia. This present study focuses on the chemical EOR activities involved surfactant and polymer. This research based on pertinent information from various resources such as journal papers, conference papers, and report from the government. Based on this information, this paper explain in detail the progress of each project and it shows the potential oil field employ chemical EOR in the near future. Generally, the EOR activities can be categorized into two phases such as preliminary study phase and field implementation phase. In the preliminary study, the activities simply involve experimental and/or simulation works. Following the preliminary is the field implementation phase which can be categorized into three phases such as field trial, pilot project, and full-scale. In fact, several activities have been conducted by Lemigas (government oil and gas research center), Institut Teknologi Bandung, Institut Pertanian Bogor. These activities focused on laboratory and simulation work. Those institutions have been developing the chemical formula collaborating with oil companies for applying the EOR method in their oil fields. Currently, status of chemical EOR activities include 5 oil fields under pilot project and 12 oil fields under field trial. There are 7 oil fields applying surfactant, 4 oil fields by alkaline-surfactant-polymer (ASP), 2 oil fields by polymer, 1 oil field by surfactant polymer (SP), and 1 oil field by caustic. According to this information, we will have insight knowledge about the EOR current activities, the main issues, future activities on chemical EOR in Indonesia. Moreover, this study can became the preliminary information for

  7. Oil palm genetic improvement and sustainable development

    Directory of Open Access Journals (Sweden)

    Cochard Benoît

    2005-03-01

    Full Text Available Genetic improvement of the oil palm may have a role to play in the sustainability of this crop. Given the criticism aimed at this commodity chain, notably due to the extension of oil palm plantations to the detriment of forests, providing very high-yielding planting material might be a solution, particularly as world demand is continually increasing. This crop is mostly managed by agroindustrialists, but the smallholder sector is developing. It happens that this sector is classed as a sustainable type of agriculture by numerous NGOs, which are also asking plant breeders to take the specificities of smallholdings into consideration. Oil palm genetic improvement takes numerous criteria into account, many of which fit in with sustainable agriculture. For example, this crop is subject to pressure from different pests and diseases. In each case, a genetic hence eco-friendly approach has been taken and, in particular, vascular wilttolerant planting material has been a successfully produced. Moreover, for the future of this crop, planting material needs to be developed that requires fewer inputs, and consideration has to be given to extending this crop in less favourable zones, by developing planting material that consumes less water. Lastly, it is important to disseminate genetically diversified planting material.

  8. Effects of a dual-pump crude-oil recovery system, Bemidji, Minnesota, USA

    Science.gov (United States)

    Delin, Geoffrey N.; Herkelrath, William N.

    2014-01-01

    A crude-oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual-pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved-oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil-phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.

  9. Thai - new air injection technology for heavy oil recovery and in situ upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; El-Sakr, A.; Xia, T.X. [Bath Univ. (United Kingdom); Ayasse, C.; Turta, A. [Petroleum Recovery Inst., Calgary, AB (Canada)

    1999-11-01

    A new enhanced oil recovery process called THAI (Toe-to-Heel Air Injection) was presented. THAI is a gravity assisted process that is controlled by the pressure gradient established between a draining reservoir section and inflow to a horizontal producer well. The process, which integrates advanced technology and horizontal well concepts, achieves excellent recovery rates for heavy oil. THAI can also realize substantial in situ upgrading by thermal cracking, producing upgraded oil to the surface. In the THAI process, a horizontal producer well is positioned in a line drive in the reservoir and air is injected via a horizontal injection well. The process restricts drainage to a narrow mobile zone which makes it possible for mobilized fluids to enter directly into the exposed section of a horizontal production well. THAI can be used in primarily production, as a new technology, as a follow-up to existing technologies, or as a co-process where thermal efficiency is needed. The process was tested on `Forties Mix` oil, Clair, West of Shetlands medium heavy oil and heavy Wolf Lake oil. It was demonstrated that the most important part of the process is the creation of the narrow mobile oil zone ahead of the combustion front. The width of the zone depends on reservoir conditions and the degree to which the cold oil seals the horizontal producer well. Oil recovery rates in the tests were found to be as high as 85 per cent OOIP. 12 refs., 6 tabs.

  10. Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-Situ Recovery

    OpenAIRE

    M?jean, A.; Hope, Chris

    2010-01-01

    High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil (SCO) produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs...

  11. ANALYTICAL STUDY ON FLOW PROCESS OF FLOATING-OIL RECOVERY DEVICE FROM OIL-CONTAMINATED SEAWATER BY MHD METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-yan; PENG Yan; ZHAO Ling-zhi; LI Ran; SHA Ci-wen

    2007-01-01

    A new method of recovering maritime oil-spill based on electromagnetic force, the so-called MHD oil-spill recovery method was proposed in the IEECAS. The operating process of MHD channel was described in this article. Numerical study was carried out using a two-dimensional water-air two-phase model and the VOF method. The agreement between the numerical and the experimental results was reached.

  12. Alkyl bicarbamates supramolecular organogelators with effective selective gelation and high oil recovery from oil/water mixtures.

    Science.gov (United States)

    Wang, Yongzhen; Wu, Songquan; Yan, Xingru; Ma, Tao; Shao, Lu; Liu, Yuyan; Guo, Zhanhu

    2017-01-01

    A series of alkyl bicarbamates supramolecular organogelators were synthesized with different structures and lengths of alkyl chains. The driving forces for the self-assembly of small molecules, including the intermolecular H bonding, π-π stacking and van der Waals interactions, played an important role in the formation of different 3D network structures, i.e., fibers, ribbons, sheets, and prisms. And a probable formation process of the gel networks was proposed. Furthermore, the phase-selective gelling performances were investigated for oil removal from aqueous solution. Interestingly, the gelling properties were found to be affected by the length and structure of alkyl chains, while some gelators with intermediate alkyl chain lengths could effectively gel all the tested oils from water surface within 15 min, such as Russian crude oil, diesel, gasoline, soybean oil, peanut oil, olive oil, cyclohexane, hexane and ethyl acetate. Advantageously, fast gelation, high rate of oil removal (>95%) and excellent oil retention rate (close to 100%) were realized in the recovery of oil spills from water surface. This kind of supramolecular gelators demonstrates good potential applications in the delivery or removal of organic pollution from oil/water mixtures.

  13. In situ upgrading : coupled enhanced oil recovery with in situ upgrading : ultra dispersed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Almao, P.P. [Calgary Univ., AB (Canada). Schulich School of Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2007-07-01

    This paper presented a research program that demonstrates the use of ultra dispersed (UD) catalysts as a means of improving the economics of oil sands processing. An outline of current processing techniques was provided. In situ upgrading options included the use of solvents, thermal methods, radiation methods, bio-upgrading, and thermo-catalytic methods. Enhanced oil recovery (EOR) is often combined with in situ upgrading to increase the efficiency of energy use in reservoirs where thermal methods are used. The use of diluents often reduces water usage as well as problems related to contamination and emissions. Recent studies have suggested that vis-breaking (VB) is the lowest investment residual conversion process currently available for in situ processing. UD catalyst formulations can be commercially prepared using nano-particle techniques, and can be used in portable configurations. UD catalysts are known to outperform conventional fixed bed types for both hydrogenation, hydrotreating, and hydrocracking. Research is currently being conducted at the Alberta Ingenuity Centre for In Situ Energy to examine issues related to particles recycling, deactivation and losses. Permeability studies are also being conducted to examine permeability rates of emulsions and nanoparticles through oil sands porous media. The short term financial rewards of various in situ upgrading technologies were also considered. refs., tabs, figs.

  14. Shoreline oil cleanup, recovery and treatment evaluation system (SOCRATES)

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.; Lunel, T.; Sommerville, M. [National Environmental Technology Centre, Culham (United Kingdom); Tyler, A.; Marshall, I. [BMT Marine Information Systems Ltd., Hampshire (United Kingdom)

    1996-09-01

    A beach cleanup computer system was developed to mitigate the impact of shoreline oiling. The program, entitled SOCRATES, was meant to determine the most suitable cleanup methodologies for a range of different spill scenarios. The development, operation and capabilities of SOCRATES was described, with recent examples of successful use during the Sea Empress spill. The factors which influenced decision making and which were central to the numerical solution were: (1) the volumetric removal rate of oil, (2) area removal rate of oil, (3) length of oil slick removed per hour, (4) volumetric removal rate of oily waste, (5) area of the oil slick, (6) length of the oil slick, (7) volume of liquid emulsion, and (8) length of beach. 14 figs.

  15. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    Science.gov (United States)

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  16. Evaluation of bioemulsifier mediated Microbial Enhanced Oil Recovery using sand pack column.

    Science.gov (United States)

    Suthar, Harish; Hingurao, Krushi; Desai, Anjana; Nerurkar, Anuradha

    2008-10-01

    Bacillus licheniformis K125, isolated from an oil reservoir, produces an effective bioemulsifier. The crude bioemulsifier showed 66% emulsification activity (E(24)) and reduced the surface tension of water from 72 to 34 mN/m. It contains substantial amount of polysaccharide, protein and lipid. This bioemulsifier is pseudoplastic non-Newtonian in nature. It forms oil in water emulsion which remains stable at wide range of pH, temperature and salinity. It gave 43+/-3.3% additional oil recovery upon application to a sand pack column designed to simulate an oil reservoir. This is 13.7% higher than that obtained from crude lipopeptide biosurfactants produced by the standard strain, Bacillus mojavensis JF2 and 8.5% higher than hot water spring isolate, Bacillus licheniformis TT42. The increased oil recovery obtained by using the crude bioemulsifier can be attributed to its combined surface and emulsification activity. Its mechanism of oil recovery must be similar to the mechanism exhibited by surfactant-polymer flooding process of chemical enhanced oil recovery.

  17. Local and Global Impacts of Carbon Capture and Storage Combined with Enhanced Oil Recovery in Four Depleted Oil Fields, Kern County, California

    Science.gov (United States)

    Gillespie, J.; Jordan, P. D.; Goodell, J. A.; Harrington, K.; Jameson, S.

    2015-12-01

    Depleted oil reservoirs are attractive targets for geologic carbon storage (GCS) because they possess proven trapping mechanisms and large amounts of data pertaining to production and reservoir geometry. In addition, CO2 enhanced oil recovery (EOR) can improve recovery of the remaining oil at recovery factors of 6 to 20% of original oil in place in appropriate reservoirs. CO2 EOR increases the attractiveness of depleted oil and gas reservoirs as a starting point for CCS because the CO2 becomes a commodity that can be purchased by field operators for EOR purposes thereby offsetting the costs of CO2 capture at the power plant. In California, Kern County contains the largest oil reservoirs and produces 76% of California's oil. Most of the production at depths suitable for CCS combined with CO2 EOR comes from three reservoirs: the Vedder and Temblor formations and the Stevens Sandstone of the Monterey Formation. These formations were evaluated for GCS and CO2 EOR potential at the North and South Coles Levee (Stevens Sandstone), Greeley (Vedder) and McKittrick (Temblor) fields. CO2 EOR could be expected to produce an additional 150 million bbls of oil. The total storage space created by pre- and post-EOR fluid production for all three reservoirs is approximately 104 million metric tons (MMT). Large fixed sources in California produce 156 MMT/yr of CO2, and sources in Kern County produce 26 MMT/yr (WESTCARB, 2012). Therefore, the fields could store about four years of local large fixed source emissions and about two thirds of statewide emissions. However, from a global perspective, burning the additional oil produced by CO2 EOR would generate an additional 65 MMT of CO2 if not captured. This would result in a net reduction of greenhouse gas of only 39 MMT rather than the full 104 MMT. If the water produced along with the oil recovered during CO2 EOR operations is not reinjected into the reservoir, the storage space could be much higher.

  18. Sol-forming oil-displacing system intended to enhance oil recovery from deposits with difficult-to-recover reserves

    Science.gov (United States)

    Kozlov, V. V.; Altunina, L. K.; Stasyeva, L. A.; Kuvshinov, V. A.

    2016-11-01

    The paper presents the results of laboratory tests of the sol-forming NINKA®-Z system intended to enhance oil recovery from deposits with difficult-to-recover reserves. The kinetic and rheological features of solation in the oil-displacing system have been investigated. A physical modeling of the oil displacement process was carried out under the conditions of a heterogeneous reservoir at a low temperature using the sol-forming NINKA®-Z system. The investigations have proved its high efficiency, and the system was recommended for pilot tests.

  19. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  20. HOW PROPERTIES OF EDIBLE OILS ARE IMPROVED BY ESSENTIAL OILS

    Directory of Open Access Journals (Sweden)

    SONIA AMARIEI

    2016-10-01

    Full Text Available The main aim of the present paper is to find out whether the addition of essential oils determines better oxidation stability and positive change of sensory and hedonic perception of edible oils. The oxidation stability of sunflower, corn and grape seed oils was analyzed in the presence of antioxidants in essential oils of rosemary (Rosmarinus officinalis, thyme (Thymus vulgaris and basil (Ocimum basilicum during storage, under conditions of accelerated oxidative processes (4 days, at 60 °C. The total phenolic compounds of these essential oils were determined by the Folin-Ciocalteu method. The DPPH method was used to evaluate the antioxidant capacity of basil, rosemary and thyme essential oils in comparison with known synthetic antioxidant L(+-ascorbic acid. The addition of essential oils to edible oils, the amounts proposed in analyses, determines a favorable influence on their oxidation stability as well as their taste. The influence of addition of essential oils on the taste of edible oils was studied in two products consumed mainly at breakfast, bread and spinach leaves. The results recommend the use of these plant extracts as additives in edible oils rather than synthetic antioxidants.

  1. An effective method to predict oil recovery in high water cut stage

    Institute of Scientific and Technical Information of China (English)

    刘志斌; 刘浩翰

    2015-01-01

    The water flooding characteristic curve method based on the traditional regression equation between the oil and water phase permeability ratio and the water saturation is inappropriate to predict the oil recovery in the high water cut stage. Hence, a new water flooding characteristic curve equation adapted to the high water cut stage is proposed to predict the oil recovery. The water drive phase permeability experiments show that the curve of the oil and water phase permeability ratio vs. the water saturation, in the semi-logarithmic coordinates, has a significantly lower bend after entering the high water cut stage, so the water flooding characteristic curve method based on the traditional regression equation between the oil and water phase permeability ratio and the water saturation is inappropriate to predict the oil recovery in the high water cut stage; therefore, a new water flooding characteristic curve equation based on a better relationship betweenln(kro/krw)andwS is urgently desirable to be established to effectively and reliably predict the oil recovery of a water drive reservoir adapted to a high water cut stage. In this paper, by carrying out the water drive phase permeability experiments, a new mathematical model between the oil and water phase permeability ratio and the water saturation is established,with the regression analysis method and an integration of the established model, the water flooding characteristic curve equation adapted to a high water cut stage is obtained. Using the new water flooding characteristic curve to predict the oil recovery of the GD3-block of the SL oilfield and the J09-block of the DG oilfield in China, results with high predicted accuracy are obtained.

  2. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow

    2003-05-01

    This report summarizes the experimental results of some baseline imbibition tests on recovery of mineral oil at very strongly water wet conditions (VSWW) from sandstones with air permeability ranging from 80 to 360 md. Mixed wettability cores were prepared by adsorption from either Minnelusa or Gullfaks crude oil using either synthetic Minnelusa reservoir brine or sea water. Recovery of two synthetic-based mud (SBM) base oils, Petrofree(reg sign)SF and LVT 200 from mixed wettability cores gave results that correlated closely with results for refined oils with viscosities ranging from 3.8 to 84 cp. Two synthetic-based mud emulsifiers (LE SUPERMUL and EZ MUL(reg sign)NT) were added to mineral oil and tested for their effect on the wettability of MXW-F core samples as indicated by spontaneous imbibition. In both cases a significant decrease in water wetness was obtained.

  3. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  4. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    Science.gov (United States)

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  5. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  6. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    J. Ford Brett; Robert V. Westermark

    2001-09-30

    )/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

  7. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  8. Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1992-04-01

    This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

  9. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...

  10. Analysis of methane production by microorganisms indigenous to a depleted oil reservoir for application in Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Kobayashi, Hajime; Kawaguchi, Hideo; Endo, Keita; Mayumi, Daisuke; Sakata, Susumu; Ikarashi, Masayuki; Miyagawa, Yoshihiro; Maeda, Haruo; Sato, Kozo

    2012-01-01

    We examined methane production by microorganisms collected from a depleted oilfield. Our results indicated that microorganisms indigenous to the petroleum reservoir could effectively utilize yeast extract, suggesting that the indigenous microorganisms and proteinaceous nutrients could be recruitable for Microbially Enhanced Oil Recovery. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  12. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    Science.gov (United States)

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  13. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    show a significant influence of nutrient regime on alternate production of surfactants or polymers for a Bacillus licheniformis strain, NIPER 1A. The main conclusion of this work is that NIPER 1A can produce both surfactant and polymer by nutrient regime manipulation. Our experiments proved that this property leads to improved oil recovery by increasing alternatively, oil mobility and conformance control.

  14. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  15. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    Science.gov (United States)

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS.

  16. Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Abdulkadir E. Elshafie

    2015-11-01

    Full Text Available Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery was studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v and, corn oil (10%v/v added separately or concurrently. The samples were collected at 24h interval up to 120h and checked for growth (OD660, and biosurfactant production (Surface tension and Interfacial tension. The medium with both glucose and corn oil gave better biosurfactant production and reduced both surface tension and interfacial tension to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24 with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil. The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids. The potential of sophorolipids in enhancing oil recovery was tested using core-flooding experiments, under reservoir conditions, where additional 27.27% of residual oil (Sor was recovered. This confirmed the potential of sophorolipids for applications in microbial enhanced oil recovery.

  17. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  18. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2016-07-10

    Recovery of oil from oil-in-water emulsion has been investigated by many scientists and it continues to be a challenging task for environmental scientists so far. Among all the techniques, adsorption is found to be an appropriate process for the removal of oil from oil-in-water emulsion owing to its high efficiency and easy operation. A hybrid material, zirconium-chitosan composite (Zr-CS-HC) was prepared to remove the oil from oil-in-water emulsion and oil was measured by extractive gravimetric method. Various parameters viz., agitation time, pH, sorbent dosage and initial oil concentration for maximum sorption were optimized. In this study, the maximum oil removal percentage was found to be at pH 3.0 and a minimum contact time of 50min using prepared sorbent. The pH of the sorption studies revealed that oil sorption was favored in acidic condition. The sorbent was characterized using FTIR, SEM with EDAX, XRD, TGA and DSC; contact angle and heat of combustion. The experimental data were explained using Freundlich, Langmuir, D-R and Tempkin isotherms to find the best fit for the sorption process. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to understand the nature of sorption process. This work provides a potential platform for the expansion of oil removal technology.

  19. Discussion on the Tertiary Oil Recovery Technology and Its Development Trend%浅议三次采油技术及其发展方向

    Institute of Scientific and Technical Information of China (English)

    赵延新

    2011-01-01

    Oil is a kind of non-renewable resources, and it plays an important role in national economic development and improvement of people's living standards. The application of tertiary oil recovery technology is favorable to improve the recovery ratio of crude oil and the stability of crude oil production.%石油资源是一种非再生性资源,它对国家经济发展和人民生活水平的提高起着重要的作用,三次采油技术的推广应用有利原油采收率的提高以及老油田原油产量的稳定.

  20. 1D Simulations for Microbial Enhanced Oil Recovery with Metabolite Partitioning

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Shapiro, Alexander; Michelsen, Michael Locht

    2010-01-01

    We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil bywater containing bacteria and substrate for their feeding. The bacterial products are both bacteria andmetabolites....... In the context of MEOR modeling, a novel approach is partitioning of metabolites between the oil and the water phases. The partitioning is determined by a distribution coefficient. The transfer part of the metabolite to oil phase is equivalent to its "disappearance", so that the total effect from of metabolite...... in the water phase is reduced. The metabolite produced is surfactant reducing oil–water interfacial tension, which results in oil mobilization. The reduction of interfacial tension is implemented through relative permeability curve modifications primarily by lowering residual oil saturation...

  1. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  2. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    Science.gov (United States)

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  3. New heavy crude oil flow improver increases delivery : application scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J.; Johnston, R.; Lauzon, P. [ConocoPhillips Specialty Products Inc., Houston, TX (United States)

    2009-07-01

    Flow improvers or drag reducing agents have been used for over 25 years as a method to increase fluid flow in hydrocarbon pipelines. The technology is effective in refined projects, light and medium crude oils. This paper presented a new development in flow improver technology that allows treatment of heavy crude oil slates. It discussed case studies of flow improver treatment of heavy oils in various pipeline system as well as factors that affect commercial success. tabs., figs.

  4. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  5. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  6. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  7. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33.

    Science.gov (United States)

    Suthar, Harish; Hingurao, Krushi; Desai, Anjana; Nerurkar, Anuradha

    2009-10-01

    The selective plugging strategy of microbial enhanced oil recovery involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is 120 mPas at 28 degrees C. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave 27.7+/-3.5% oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and amplified ribosomal DNA restriction analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33.

  9. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  10. Investigating the Feasibility of Traveltime Tomography for Monitoring CO2 Enhanced Oil Recovery

    Science.gov (United States)

    Barghouty, L. K.; Quan, Y.; Harris, J. M.

    2012-12-01

    CO2 Enhanced Oil Recovery (EOR) is a process for improving the recovery of oil from a reservoir through injection of carbon dioxide. The monitoring CO2 EOR requires an effective method that detects the location of injected CO2 in the reservoir. This project investigates the feasibility of using crosswell seismic tomography to monitor the distribution of injected CO2. Tomography converts seismic traveltime data into seismic velocity models. The effectiveness of seismic tomography as a monitoring method depends on the level of its repeatability, e.g., how accurate the results will be under possible survey challenges such as incomplete datasets and errors in survey geometry. These challenges are found in the seismic data in a field test from west Texas. Using synthetic data comprising pre-injection and post-injection datasets similar to the recorded field datasets, several data processing techniques have been tested to assess the difference between the pre-injection and post-injection velocity models, to determine how data processing affects the time-lapse results. Such tests include limiting the aperture of one or both surveys, eliminating near offset data where traveltime picks are difficult to make, shifting receivers/sources depth coordinates to simulate the survey acquisition errors, and patching (data extrapolation) to correct for missing data. Synthetic results show that near-offset elimination does not notably affect the quality of the time-lapse results while matching pre- and post-injection survey geometries gives better results even for incomplete survey geometries. Patching of incomplete datasets gives reasonable results within certain limits, and having a depth error more than twice the inversion grid size significantly affects the results. Based on synthetic results, repeatability of seismic tomography depends highly on the accuracy of source and receiver coordinates, while repeatability tolerates mismatching pre-injection and post-injection survey

  11. Process for increasing oil recovery by miscible displacement

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O.M.; Malinowsky, C.F.

    1966-08-02

    This is a miscible displacement method which involves a linear, gas-driven gravity-controlled flow mechanism. The formation is fractured and a condensible gas is injected into the fracture which has a substantial degree of miscibility with the reservoir oil. Thereafter a relatively non-condensible gas is injected through the fracture and into the reservoir. The volume of the non-condensible gas is sufficient to raise the reservoir pressure at least 50 psi above the vapor pressure of the condensible gas. Injection of the non-condensible gas is then stopped and oil is produced through the fracture with a controlled back pressure to offset the tendency of the miscible liquid to finger through the reservoir oil. (7 claims)

  12. Cryptanalysis and Improvement of Piveteau Signature Scheme with Message Recovery

    Institute of Scientific and Technical Information of China (English)

    李子臣; 成军祥; 戴一奇

    2003-01-01

    Piveteau signature scheme allows message recovery but the methodology differs from that of the Nyberg-Rueppel schemes. This paper analyzes the security of the Piveteau scheme by designing some attacks. Two improved methods to Piveteau signature scheme and Nyberg-Rueppel schemes were developed to avoid these weaknesses. Analyses of the security of the improved schemes prove that the improved methods can effectively handle the attacks proposed in this paper.

  13. An extended model for ultrasonic-based enhanced oil recovery with experimental validation.

    Science.gov (United States)

    Mohsin, Mohammed; Meribout, Mahmoud

    2015-03-01

    This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields.

  14. PCM Vulcain : a pumping revolution in the thermal recovery of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    Nearly half of the world's oil reserves are made up of unconventional heavy oil that requires thermal recovery methods. Since the oil pumped to the surface is extremely hot (350 degrees C), traditional pumps such as standard progressing cavity pumps, sucker rod pumps and electrical submersible pumps are limited in terms of maximum operating temperature. For that reason, PCM developed the PCM Vulcain, a revolutionary all-metal pump that is capable of extracting heavy oil and aggressive fluids during thermal recovery. The applications include artificial lifting in SAGD processes and artificial lifting in cyclic steam stimulation processes. The pump withstands the extreme downhole temperatures of thermal oil recovery and can pump extremely hot and extremely viscous fluids. PCM Vulcain provides all the advantages and flexibility of progressing cavity pump technology at extreme temperatures. The rotary action of PCM Vulcain outperforms beam pumps in overall system efficiency and it is less fragile than electric submersible pumps. PCM Vulcain provides extremely low submergence production capability and can operate at low downhole pressures and higher viscosities. PCM Vulcain also has lower capital expenditure than comparable submersible and rod pumps. In addition, it offers lower workover costs and reduced installation and operational complexity. The pump's seals reduce the risk of on-site leakage, thereby reducing environmental impact. PCM Vulcain has field-proven performance in some of the world's major unconventional oilfields, including the Athabasca oil sands in northern Alberta. 1 fig.

  15. Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Del. kernels.

    Science.gov (United States)

    Mohamed, A M; Wolf, W; Spiess, W E L

    2002-01-01

    Balanites aegyptiaca Del. kernels were chemically, physically and morphologically characterized. Crude oil (49.0%) and crude protein (32.4%) were the two major constituents of the kernels. Phytic acid content was relatively high compared to other legumes. In contrast, antitryptic activities of the kernel flours were very low. Sapogenin contents of the full fat, defatted and testa flours were 1.5, 2.7 and 3.0%, respectively. The hardness of the kernel was found to be about 10.4 x 10(5) N/m2, which was somewhat high. The morphological structure of the kernel using a scanning electron microscope revealed that the protein matrix was embedded in a lake of oil droplets. Oil recovery, as a function of pressing time, pressure, temperature and particle size was investigated. With increasing temperature up to 70 degrees C at 400 bar, for 120 min, an oil recovery of 79.4% was obtained. Using an expeller at 115 degrees C, about 85% of the kernel oil was recovered. The reduction of particle size had a negative effect on oil recovery under the same conditions. The fatty acid composition was not affected by the pressing temperature up to 115 degrees C. The total amount of the unsaturated fatty acids was found to be up to 74.8% (50 degrees C) and 75.1% (115 degrees C) of the total fatty acids content.

  16. Pore-Scale Investigation of Crude Oil/CO2 Compositional Effects on Oil Recovery by Carbonated Water Injection

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran

    2017-01-01

    where the oil has significant dissolved gases. In such studies, oil swelling and oil viscosity reduction had been introduced as the main mechanisms of additional oil recovery by CWI. However, in our direct flow visualization (micro model) studies reported here, we have used live crude oil, and we have......, for a fixed period of CWI, was higher than its final saturation in tertiary CWI. We also show that the nucleation and growth of the new gaseous phase is directly proportional to the amount of hydrocarbon gas dissolved in the oil which is a function of oil properties and saturation pressure and temperature....

  17. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  18. Response to heavy, non-floating oil spilled in a Great Lakes river environment: a multiple-lines-of-evidence approach for submerged oil assessment and recovery

    Science.gov (United States)

    Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex

    2014-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can

  19. Model-based Optimization of Oil Recovery: Robust Operational Strategies

    NARCIS (Netherlands)

    Van Essen, G.M.

    2015-01-01

    The process of depleting an oil reservoir can be poured into an optimal control problem with the objective to maximize economic performance over the life of the field. Despite its large potential, life-cycle optimization has not yet found its way into operational environments. The objective of this t

  20. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  1. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  2. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2016-01-01

    Full Text Available Application of Enhanced Oil Recovery (EOR in oil and gas industry is very important to increase oil recovery and prolong the lifetime of a reservoir but it has been very costly and losing properties of EOR agent due to harsh condition. Nanoparticles have been used in EOR application since they are not degradable in reservoir condition and used in smaller amount compared to polymer usage. Commonly, EOR techniques are focusing on increasing the sweep efficiency by controlling the mobility ratio between reservoir fluid and injected fluid. Thus, this research aimed to analyze the nanofluid viscosity at different particle size and shape, volumetric concentration and types of dispersing fluid, as well as to determine the oil recovery performance at different nanofluid concentration. The nanofluid viscosity was investigated at nanoparticle sizes of 15nm and 60nm and shapes of 15nm spherical-solid and porous. Five nanofluid samples with concentration ranging from 0.1wt.% to 7wt.% were used to investigate the effect of volumetric concentration. Distilled water, ethanol, ethylene glycol (EG and brine were used for the effect of dispersing fluids. Oil recovery was investigated at five different concentrations of nanofluid samples through flooding test. It was found that viscosity of nanofluid increased with decreasing particle size and increasing volumetric concentration. Solid shape particle and increasing dispersing fluid viscosity resulted in higher nanofluid viscosity. The higher the nanofluid concentration, the higher the oil recovery obtained. It can be concluded that nanofluid properties have been significantly affected by the environment and the particle used for potential EOR application.

  3. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  4. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  5. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  6. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  7. Pembina Cardium Field. Enhanced oil recovery economics. Proposed revisions to existing EOR incentives for low productivity reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, J.J.; Howes, B.J.

    1985-07-01

    Technical analysis of miscibly flooding selected parts of the Pembina Cardium reservoir in Alberta indicates that substantial amounts of additional oil can be recovered, using a hydrocarbon solvent, from areas where little or no conglomerate zone is present. This represents approximately one-half of the total pool. Previous evaluations of the proposed miscible flood projects in the Pembina Cardium Field showed that a substantial enhanced oil recovery potential exists but that such projects were only marinally economic under the conditions that existed at the time. Subsequent to these evaluations, a number of significant changes have occurred. The Western Accord phased-out the Petroleum and Gas Revenue Tax and decontrolled the price of oil, world market forces have reduced oil prices, costs have declined, and a new royalty schedule has been introduced. This report analyzes the Pembina miscible flood economics in light of these changes. The combined effect of the changes is a slight improvement in project economics, which, however, remain marginal. Modifications to the existing Section 4.2 Royalty Deduction and to the earned depletion deduction are proposed with the goal of creating an economic environment that will allow the development of the Pembina Cardium enhanced oil recovery potential. The two projects evaluated in this report represent only a very small portion of the field, 8.3 km/sup 2/ out of field total of 1900 km/sup 2/. If economic considerations permitted the expansion of miscible flooding into the 50% of the Pembina Cardium reservoir considered to be amenable to the current miscible flood design, a very important contribution to oil supplies and economic activity in Canada would result. 6 figs., 26 tabs.

  8. Improving oxidative stability of liquid fish oil supplements for pets

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Griinari, Mikko; Jacobsen, Charlotte

    2017-01-01

    Omega-3 polyunsaturated fatty acids have produced beneficial health effects in animals and are recommended by veterinaries to pet patients suffering from osteoarthritis. However, these oils are highly susceptible to lipid oxidation. The objectives of this study were to improve oxidative stability...... on the results of this study performed better than other commercial marine oils tested. Practical applications: In some commercial oil blends for pets, a high level of vegetable oils is included in order to increase oxidative stability. In this study, vegetable oils are included at 30% level. At this level...... demonstrates how the oxidative stability of omega-3 PUFA formulations for pets can be improved by combining fish oil with vegetable oils and by adding an antioxidant blend consisting of high concentrations of rosemary extract and tocopherol. The results are also of relevance to the manufacturers of dietary...

  9. Environmental Impacts and Recovery After the Hebei Spirit Oil Spill in Korea.

    Science.gov (United States)

    Yim, U H; Khim, J S; Kim, M; Jung, J-H; Shim, W J

    2017-07-01

    The Hebei Spirit oil spill (HSOS) on December 7, 2007 was the worst oil spill recorded in Korea, with the release of approximately 10,900 tons of crude oil and 375 km of coastline polluted along the west coast of Korea. Cleanup operation was conducted by official and contract responders as well as volunteers for massive oil containment and removal of heavy accumulations of stranded oil. Together with the oil cleanup, a long-term environmental impact assessment (EIA) of the HSOS was initiated based on the Marine Environmental Management Act, which covers oil contamination in a multimedia environment, toxic effects on organisms, and ecosystem injury. This review summarizes the long-term monitoring results of HSOS EIA focused on (1) pollution status of seawater, sediment, and bivalves, (2) ecotoxicological effects, and (3) ecosystem recovery. Overall, concentrations of petroleum hydrocarbons in the environment indicated that their concentrations were well down to at or near background or pre-spill contamination levels at most sites after 1 year. The potential toxic effects of residual oils in sediments have decreased to background levels in most coastal areas of Taean. The entire ecosystem in the most affected area of the Taean coasts appear to be considerably, but not fully, recovered at present, namely after 8 years of the HSOS. The presence of lingering oil and elevated contamination levels at several sites still require continuous long-term monitoring.

  10. Application of polymer flooding technology for enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Sarkyt Kudaivergenov

    2015-12-01

    Full Text Available Application of brine-initiated gelation of gellan for conformance control and water shutoff operations in field conditions was demonstrated. The developed technology was tested in Kumkol oilfield (Kyzylorda region, Kazakhstan on five injection wells. According to the results of the first oilfield test, the amount of additionally recovered oil during 11 months (from October 1, 2013 till September 1, 2014 was equal to 5890 tons. In 2014, the JSC “NIPIneftegas” (Aktau city, Kazakhstan carried out the second pilot test of polymer flooding technology on the same oilfield. The amount of additionally recovered oil during eight months (from October 2014 till May 2015 was equal to 8695 tons. The technology was tested for water shut-off purposes in producing well of Karabulak oilfield. After one-month treatment of production well the amount of water decreased 16 times in comparison with previous results.

  11. Increase of heavy oil reservoir recovery using chemical injection

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Alishvandi

    2016-12-01

    Full Text Available Due to thermal properties, Nano fluids may be new generation of thermal transfer fluids that would be used invarious industries. Energy carrier Nano fluids as waters, lubricants and ethylene glycol include of particles with dimensions of 100 nm as metal, metal oxid or carbon Nano tubes. Based on evaluation, with increase of viscosity of Nano fluid surfactant, absorbed dispersion materials would be increased and Nano particles dispersion and stability and thermal transfer would be developed. Using chemical injection to reservoirs, surfactant is cause of oil entrapment based on decrease of surface tension force, self generate- emulation and change of wetting. According to reservoir temperature,by Nano fluid and surfactant, thermal properties would be achieved to heat oil and decrease viscosity without any change of reservoir stone wetting.

  12. Modeling Reservoir Formation Damage due to Water Injection for Oil Recovery

    DEFF Research Database (Denmark)

    Yuan, Hao

    2010-01-01

    The elliptic equation for non-Fickian transport of suspension in porous media is applied to simulate the reservoir formation damage due to water injection for oil recovery. The deposition release (erosion of reservoir formation) and the suspension deposition (pore plugging) are both taken...

  13. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2011-01-01

    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on th

  14. Thermal Hydraulic Analysis Using GIS on Application of HTR to Thermal Recovery of Heavy Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yangping Zhou

    2012-01-01

    Full Text Available At present, large water demand and carbon dioxide (CO2 emissions have emerged as challenges of steam injection for oil thermal recovery. This paper proposed a strategy of superheated steam injection by the high-temperature gas-cooled reactor (HTR for thermal recovery of heavy oil, which has less demand of water and emission of CO2. The paper outlines the problems of conventional steam injection and addresses the advantages of superheated steam injection by HTR from the aspects of technology, economy, and environment. A Geographic Information System (GIS embedded with a thermal hydraulic analysis function is designed and developed to analyze the strategy, which can make the analysis work more practical and credible. Thermal hydraulic analysis using this GIS is carried out by applying this strategy to a reference heavy oil field. Two kinds of injection are considered and compared: wet steam injection by conventional boilers and superheated steam injection by HTR. The heat loss, pressure drop, and possible phase transformation are calculated and analyzed when the steam flows through the pipeline and well tube and is finally injected into the oil reservoir. The result shows that the superheated steam injection from HTR is applicable and promising for thermal recovery of heavy oil reservoirs.

  15. The mechanisms of electrical heating for the recovery of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W. [McMillan-McGee Corp., Edmonton, AB (Canada); Vermeulen, F.E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    This paper described the Electro-Thermal Dynamic Stripping Process (ET-DSP), a thermal recovery process in which oil sands are electrically heated. This technology has evolved since the 1970s as an alternative to steam assisted gravity drainage (SAGD) and surface mining of Alberta's oil sands. The heat and mass transfer mechanisms associated with electrical heating were examined along with the gravity forces to better understand how the heated bitumen is recovered from the oil sand. Initially, all fluids are immobile. Heat is created in the oil sand as a current flows through the connate water. This results in a pressure and temperature distribution that is characteristic to an electrical heating process. The electrical heating process changes as the temperature of the oil sand increases and as the bitumen is produced. The heat, mass and electromagnetic fields are strongly coupled and are in a transient state throughout the recovery process. This paper presented the main mechanism for electrical heating in terms of equations. A 3-dimensional quasi-harmonic finite element electromagnetic model was coupled to a mass and energy equation and solved in time. A thermal recovery strategy was then presented in terms of electrode spacing, duration of heating, energy supply and ideal operating conditions.

  16. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress

    Directory of Open Access Journals (Sweden)

    Xiaofei Sun

    2017-03-01

    Full Text Available The injected fluids in secondary processes supplement the natural energy present in the reservoir to displace oil. The recovery efficiency mainly depends on the mechanism of pressure maintenance. However, the injected fluids in tertiary or enhanced oil recovery (EOR processes interact with the reservoir rock/oil system. Thus, EOR techniques are receiving substantial attention worldwide as the available oil resources are declining. However, some challenges, such as low sweep efficiency, high costs and potential formation damage, still hinder the further application of these EOR technologies. Current studies on nanoparticles are seen as potential solutions to most of the challenges associated with these traditional EOR techniques. This paper provides an overview of the latest studies about the use of nanoparticles to enhance oil recovery and paves the way for researchers who are interested in the integration of these progresses. The first part of this paper addresses studies about the major EOR mechanisms of nanoparticles used in the forms of nanofluids, nanoemulsions and nanocatalysts, including disjoining pressure, viscosity increase of injection fluids, preventing asphaltene precipitation, wettability alteration and interfacial tension reduction. This part is followed by a review of the most important research regarding various novel nano-assisted EOR methods where nanoparticles are used to target various existing thermal, chemical and gas methods. Finally, this review identifies the challenges and opportunities for future study regarding application of nanoparticles in EOR processes.

  17. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    Directory of Open Access Journals (Sweden)

    K. Babu

    2015-09-01

    Full Text Available AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited good surface activity, reducing the surface tension of surfactant solution up to 38.4 mN/m and 27.6 mN/m without and with NaCl, respectively. During the thermal analysis of SMES, a 31.2% mass loss was observed from 70 ˚C to 500 ˚C. The phase behavior of the cosurfactant/SMES-oil-water system plays a key role in interpreting the performance of enhanced oil recovery by microemulsion techniques. Flooding experiments were performed using a 0.5 pore volume of synthesized SMES solutions at three different concentrations. In each case chase water was used to maintain the pressure gradient. The additional recoveries in surfactant flooding were found to be 24.53%, 26.04% and 27.31% for 0.5, 0.6 and 0.7 mass% of surfactant solutions, respectively.

  18. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    OpenAIRE

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly us...

  19. Commercial scale demonstration enhanced oil recovery by miceller-polymer flooding. M-1 project: facilities report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, B.L. (ed.)

    1977-04-01

    ERDA and Marathon Oil Company contracted together for a commercial scale demonstration of enhanced oil recovery by the Maraflood (TM) oil recovery process. This M-1 Project is located within Sections 15, 16, 21 and 22, T6N, R13W, Crawford County, Illinois, encompassing approximately 407 acres of Robinson Sand reservoir developed in the first decade of the century. The area covers portions of several waterfloods developed on 10-acre spacing in the 1950's that were approaching their economic limit. This report describes all M-1 Project facilities, how they were prepared or constructed, their purpose and how they operate: (1) wells (drilling and completion); (2) production facility; (3) injection facility; and (4) various service systems required during project development and/or operation. (48 fig, 7 tables) (DLC).

  20. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  1. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  2. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery.

    Science.gov (United States)

    Periasamy, Arun Prakash; Wu, Wen-Ping; Ravindranath, Rini; Roy, Prathik; Lin, Guan-Lin; Chang, Huan-Tsung

    2017-01-30

    Polyurethane dish-washing (PU-DW) sponges are functionalized sequentially with polyethylenimine (PEI) and graphene oxide (GO) to form PEI/reduced graphene oxide (RGO) PU-DW sponges. The PEI/RGO PU-DW sponge consists of PEI/RGO sheets having numerous pores, with diameters ranging from 236 to 254nm. To further enhance hydrophobicity and absorption capacity of oil, PEI/RGO PU-DW sponge is further coated with 20% phenyltrimethoxysilane (PTMOS). The PTMOS/PEI/RGO PU-DW sponge absorbs various oils within 20s, with maximum absorption capacity values of 880% and 840% for bicycle chain oil and motorcycle engine oil, respectively. The absorbed oils were released completely by squeezing or immersed in hexane. The PTMOS/PEI/RGO PU-DW sponge efficiently separates oil/water mixtures through a flowing system. Having the advantages of faster absorption rate, reusability, and low cost, the PTMOS/PEI/RGO PU-DW sponge holds great potential as a superabsorbent for efficient removal and recovery of oil spills as well as for the separation of oil/water mixtures.

  3. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  4. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  5. Technical review of enhanced oil recovery literature. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    This report represents the work done under DOE grant No. DE-FG05-79ER10086. It reviews the chemical, miscible and thermal areas of enhanced and recovery (EOR) and has produced a comprehensive bibliography and glossary of terms. The analysis looks into several areas of interest, including: screening criteria, process design, variable interaction and reservoir applicability. In this summary section, the following are shown: (1) screening criteria for process selection; (2) screening guide summary for EOR process; and (3) representative schematics of three major process operations.

  6. 稠油开采工艺进展%Progress on Recovery Methods of Heavy Oil

    Institute of Scientific and Technical Information of China (English)

    张珈铭; 吴晓东; 彭洋平; 安永生; 张壮; 曹光朋; 任宗孝

    2012-01-01

    Over the past 60 years, recovery methods for heavy oil reservoirs have evolved and the patent literature is rich with different well designs, operating conditions, and recovery mechanisms. Cyclic steam stimulation and steam-assisted gravity drainage are now three decades old since invention and at this point there are a few new technologies on the table which are being researched or evaluated. Here, the passage illustrate various agents used to mobilize heavy oil and bitumen and recovery processes associated with the agents. An analysis has been done to understand the evolution of in-situ oil sands recovery technology and what features have enabled economic recovery oil sands resources. The results reveal that a small number of features arising from the oil sands recovery process ideas dreamed, proposed, and developed over the past 60 years, which provide the guidance for domestic heavy oil recovery.%在过去60多年里,稠油开采工艺逐步完善,国内外关于不同的井网设计、操作条件和采油工艺的专利文献十分丰富.其中蒸汽吞吐和蒸汽辅助重力泄油自提出已有30多年的历史,目前尚有一些新的技术正在研究和评价当中.文章系统的介绍了采用不同驱动剂使稠油流动及其相关的开采工艺.通过分析,得到了稠油开采技术的演变,以及获得经济采收率的技术特点.结果揭示了稠油开采工艺从酝酿到提出,再到实现的一些特点,为国内稠油开采提供了依据.

  7. Supply of carbon dioxide for enhanced oil recovery. Final report, October 15, 1976--September 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rump, W.M.; Hare, M.; Porter, R.E.

    1977-09-01

    Results are presented from a study of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. Candidate oil reservoirs were identified, and the carbon dioxide requirements and the potential recoverable oil for some of these were estimated. A survey of carbon dioxide sources has been conducted within the geographic areas where candidate oil reservoirs exist. Sources considered were both high and low quality gases from combustion vents, chemical process stacks, and naturally occurring gas deposits. The survey shows more than enough carbon dioxide is available from above-ground sources alone to meet expected demands. Systems to purify and deliver the carbon dioxide were designed and the costs of the delivered carbon dioxide estimated. Lowest cost is carbon dioxide from natural source with credit for by-product methane. A more comprehensive survey of above-ground and natural sources is recommended.

  8. Improving peppermint essential oil yield and composition by metabolic engineering

    OpenAIRE

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R.; Turner, Glenn W.; Davis, Edward M.; Lange, Iris; Baker, Raymond C.; Boydston, Rick A.; Croteau, Rodney B.

    2011-01-01

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by tr...

  9. Comparison between micro-emulsion and surfactant solution flooding efficiency for enhanced oil recovery in TinFouye Oil Field

    Energy Technology Data Exchange (ETDEWEB)

    Bouabboune, M.; Benhadid, S. [Applied and Theoretical Fluid Mechanical Laboratory, Algiers (Algeria). Faculty of Physics; Hammouch, N. [Sonatrach, Hydra, Algiers (Algeria). Forage Division

    2006-07-01

    The TinFouye (TFY) reservoir is among the largest oil reservoirs discovered in Algeria. The reservoir has been extensively gas lifted for many years, but gas lift is now reaching its economic limits. Therefore, a tertiary enhancement method is needed. This report investigated the technical feasibility of applying a microemulsion flood to TFY reservoir. The purpose of the study was to optimize the concentration of surfactant, in order to obtain a lower interfacial tension between oil and microemulsion phases, and a high viscosity of the microemulsion compared to that of the oil phase. Another objective was to test the effectiveness of the obtained optimum chemical system for the displacement of residual oil saturation after waterflooding (secondary recovery). TinFouye reservoir conditions and samples were used in this study. Geomechanical equipment was used for the displacement experiments in porous media. Two optimum microemulsion compositions were determined through phase behavior studies: 4 wt per cent anionic surfactant, 2.5 wt per cent pentanol, total salinity of 0.5 g/l. Two surfactant solutions were prepared with the same anionic and alcohol concentration as those of the optimized microemulsions. This made it possible to compare the efficiency of displacing residual oil saturation. 12 refs., 5 tabs., 4 figs.

  10. ENHANCED O