WorldWideScience

Sample records for oil palm empty

  1. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Muhammad Asyraf Kasim; Nasrin Abu Bakar

    2010-01-01

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  2. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    Science.gov (United States)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  3. Bio-phenolic resin from oil palm empty fruit bunches

    Science.gov (United States)

    Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli

    2018-04-01

    Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.

  4. EFFECT OF PALM EMPTY BUNCH ASH ON TRANSESTERIFICATION OF PALM OIL INTO BIODIESEL

    Directory of Open Access Journals (Sweden)

    Johan Sibarani

    2010-06-01

    Full Text Available Biodiesel conversion from transesterification reaction palm oil with methanol was studied by using an ash of palm empty bunch as a base catalyst. Atomic absorption spectroscopy (AAS and indicator titration analysis were used as tools for characterization of ash sample. Chemical structure of biodiesel was analyzed by GC-MS. The effects of ash sample weight (5, 10, 15, 20 and 25 g immersed in 75 mL methanol and the methanol-palm oil mol ratio (3:1; 6:1; 9:1 and 12:1 toward the conversion of biodiesel were investigated. Biodiesel was prepared by refluxing palm oil and methanol containing ash sample. The reflux was done at room temperature for 2 h. Ester layer was distillated at 74 oC, extracted with aquadest and then dried using Na2SO4 anhydrous. The product was characterized by GC-MS, ASTM D 1298 (specific gravity 60/60 °F, ASTM D 97 (pour point, ASTM D 2500 (cloud point, ASTM D 93 (flash point, ASTM D 445 (kinematics viscosity 40 °C and ASTM D 482 (ash content. The result of GC-MS analysis showed that methyl palmitate is primary content of biodiesel product. A 15 g weight of ash sample gave the maximum biodiesel conversion. By increasing methanol mole quantity, biodiesel conversion increased progressively and maximum at 9:1 methanol-palm oil ratio (84.12 % and decreased on 12:1 ratio (75.58 %. Most of the biodiesel products were similar to those of the diesel physical characters.   Keywords: Biodiesel conversion, transesterification, palm oil, palm empty bunch

  5. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent ...

    African Journals Online (AJOL)

    This study shows the performance of Trichoderma virens as an activator for conversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost. EFB and POME are two abundant wastes produced by oil palm industries which keep accumulating. Since there is no proper way to dispose these wastes, ...

  6. Irradiation effect on chemical components of oil palm empty fruit bunch and palm press fibre

    International Nuclear Information System (INIS)

    Zainon Othman; Mat Rasol Awang; Hassan Hamdani Mutaat; Tamikazu Kume; Hitoshi Ito; Shinpei Matsuhashi; Ishigaki, I.

    1998-01-01

    Physico-chemical properties of empty fruit bunch (EFB) and palm press fibre (PPF), which are major by-products of the oil palm industries, were studied for upgrading their utilisation as animal feed by radiation-fermentation process. Comparative analyses of raw EFB and PPF from 3 different mills showed significant variations in some of their chemical components. Significant differences were also observed between the chemical components of EFB and PPF samples. The water holding capacities (WHC) of both EFB and PPF suggested their suitability for use as fermentation media. Gamma irradiation of up to 50 kGy have little effect on the components of both EFB and PPF. Irradiation dose of 25 kGy appeared to produce enhancement effect on cellulase hydrolysis of holocellulose and alpha-cellulose of EFB but a retarding effect on hydrolysis of PPF

  7. Potential of oil palm empty fruit bunch ash for remediation of crude ...

    African Journals Online (AJOL)

    The potential of oil palm empty fruit bunch ash for remediation of crude oil polluted soil was investigated. Three levels (100 g, 200 g and 300 g) of ash treatments in 2 kg of soil were set up alongside a control (nil ash) after pollution with100 ml of crude oil. Composite soil samples were collected and analyzed at intervals of ...

  8. Some chemical properties of irradiated empty fruit bunch and palm press fiber of oil palm byproducts

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei; Kume, Tamikazu; Othman, Z.BT.; Awang, M.R.

    1992-01-01

    Effect of irradiation and alkali treatment for digestibility of oil palm by-products by commercial enzymes was investigated to obtain the informations about formation of carbohydrate polymers or sugar components for producing animal feed from cellulosic by-products. According to the colorimetric analysis, produced reducing sugar from holocellulose of Empty Fruit Bunch (EFB) and Palm Press Fiber (PPF) by Cellulase ONOZUKA 3S were about ten times higher than those from raw samples. The results show that the digestibility of EFB and PPF increased significantly by delignification. The differences of digestibility between irradiated and unirradiated samples were shown clearly by the combination of enzymatic degradation and the HPLC analysis. By irradiation, digestibility of EFB was significantly increased. Higher dose is more effective for the digestion of EFB by enzyme. Alkali treatment is also quite effective to enzymatic degradation. The difference of neutral sugar component was observed between alkali treated and untreated samples. These results suggest that the combination of alkali treatment and irradiation is effective for digestion by enzyme. The analysis of products by HPLC after enzymatic degradation is useful method to examine the digestibility and the sugar composition of oil palm by-products. (author)

  9. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    International Nuclear Information System (INIS)

    Chang, Siu Hua

    2014-01-01

    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  10. Utilization of Liquid Smoke from Oil Palm Empty Fruit Bunches on Raw Rubber Processing

    Directory of Open Access Journals (Sweden)

    Hidayati Hidayati

    2011-06-01

    Full Text Available Research utilization of liquid smoke from oil palm empty fruit bunches of raw rubber has been made to utilize solid waste from industrial processing of oil palm empty fruit bunches of oil palm so that it becomes economically valuable products. This research has been done by pyrolysis of oil palm empty fruit bunches at a temperature of 400oC for 5, 6, 7 and 8 hours. The results show that the pyrolysis liquid smoke oil palm empty fruit bunches for 8 hours give a high concentration of phenol and acetic acid, respectively 5% and 0.454%. Liquid smoke that has been obtained is used as a coagulant in raw rubber plantation crops of the people residing in the village of Ambawang, Kubu Raya District, West Kalimantan. Results of treatment of liquid smoke on raw rubber  show that the rubber products that have been frozen and dried are superior in terms of color, smell and drying time compared with the treatment of formic acid and water battery which has been added so far on raw rubber by the local rubber farmers.

  11. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    Science.gov (United States)

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  12. The effect of torrefaction on oil palm empty fruit bunch properties ...

    African Journals Online (AJOL)

    The effect of torrefaction on oil palm empty fruit bunch properties using microwave irradiation. M.I. Ahmad, Z.I. Rizman, M.S.M. Rasat, Z.A.Z. Alauddin, S.N.M. Soid, M.S.A. Aziz, M. Mohamed, M.H.M. Amini, M.F.M. Amin ...

  13. Evaluation of pressed shredded empty fruit bunch (EFB)-palm oil ...

    African Journals Online (AJOL)

    Pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from a 500 m3 closed anaerobic digester system was utilized for the co-composting treatment. Scanning electron microscopy (SEM) analysis showed that the shredding-pressing treatment on EFB gave better results in ...

  14. Oil palm empty-fruit bunch application effects on the earthworm ...

    African Journals Online (AJOL)

    The amounts of polyphenols at several stages of oil palm empty-fruit bunch (EFB) composting, the types of phenol compounds in several types of EFB composting processes and the effects of phenol compounds on EFB composting in an earthworm population were evaluated under field conditions. The amount of ...

  15. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    Science.gov (United States)

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana

    2018-04-01

    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  16. Acetylation of oil palm empty fruit bunch fiber as an adsorbent for removal of crude oil.

    Science.gov (United States)

    Asadpour, Robabeh; Sapari, Nasiman B; Isa, Mohamed Hasnain; Kakooei, Saeid

    2016-06-01

    Removal of oil spillage from the environment is a global concern. Various methods, including the use of fibers as sorbents, have been developed for oil spill control. Oil palm empty fruit bunch (OPEFB) fiber is a plant biomass that may be acetylated by acetic anhydride using N-bromosuccinimide (NBS) as a catalyst; here, the extent of acetylation may be calculated in terms of weight percent gain (WPG). The modified fiber was used to remove Tapis and Arabian crude oils. The optimum time, temperature, and catalyst concentration were 4 h, 120 °C, and 3 %, respectively, and these parameters could achieve an 11.49 % increase in WPG. The optimized parameters improved the adsorption capacity of OPEFB fibers for crude oil removal. The acetylated OPEFB fibers were characterized by using Fourier transform infrared spectroscopy and field emission scanning electron microscopy to observe the functional groups available and morphology. Kinetic and isotherm studies were conducted using different contact times and oil/water ratios. The rate of oil sorption onto the OPEFB fibers can be adequately described by the pseudo-second-order equation. Adsorption studies revealed that adsorption of crude oil on treated OPEFB fiber could be best described by the Langmuir isotherm model.

  17. Characterization of Bio-Oil from Fast Pyrolysis of Palm Frond and Empty Fruit Bunch

    Science.gov (United States)

    Solikhah, M. D.; Pratiwi, F. T.; Heryana, Y.; Wimada, A. R.; Karuana, F.; Raksodewanto, AA; Kismanto, A.

    2018-04-01

    As the world’s biggest producer of palm oil, 109 million tons of palm frond and 46 million tons of empty fruit bunch (EFB) were produced annually in Indonesia. These two kinds of palm biomass were still in low-application and could be potentially used as future energy resources such as biofuel. One of the promising methods to convert palm frond and EFB into biofuel, as a dense and easy to transport material, is fast pyrolysis. Before pyrolysis, biomass feedstock was characterized their component and elemental compositions, moisture content and higher heating value (HHV). Fast pyrolysis processes were conducted at a temperature of 350˚C using thermal oil heater as a heat carrier. The gas phase from pyrolysis was condensed and produced a dark color and water soluble liquid called bio-oil. As GC-MS data shows, the bio-oil from both feed stocks was dominated by acetic acid, furans, phenols, aldehydes, and ketones. The HHV was reported 12.19 and 26.49 MJ/kg, while water content was 41.91 and 11.54 wt% for bio-oil from palm frond and EFB, respectively. The high content of lignin in EFB effects to the low content of water, high content of phenolic compound, and high calorific value in the bio-oil from EFB.

  18. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  19. A Review of Structural Performance of Oil Palm Empty Fruit Bunch Fiber in Polymer Composites

    OpenAIRE

    Mahjoub, Reza; Bin Mohamad Yatim, Jamaludin; Mohd Sam, Abdul Rahman

    2013-01-01

    According to environmental concerns and financial problems, natural fibers have become interesting and fascinating nowadays to be used as an industrial material and structural material for rehabilitating of structures. Oil palm empty fruit bunch fiber (OPF) is a natural fiber which is found a lot in tropical areas. Scientists have used OPF fiber with many types of resins such as epoxy, polypropylene, polyester, and phenol formaldehyde. Therefore, this paper focused on the properties of OPF fi...

  20. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME...... and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.......8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co...

  1. Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis

    Science.gov (United States)

    Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami

    2018-03-01

    The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.

  2. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  3. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    Science.gov (United States)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  4. Mechanical and molecular studies of biocomposites filled with oil palm empty fruit bunches microfibers

    Science.gov (United States)

    Nikmatin, S.; Saepulloh, D. R.; Irmansyah; Syafiuddin, A.

    2017-05-01

    The present work aims to investigate mechanical and molecular characteristics of acrylonitrile butadiene styrene (ABS) composites filled with oil palm empty fruit bunches (OPEFB) microfibers. OPEFB microfibers were produced using mechanical milling. Composite granules were fabricated using single screw extruder. These composites were then used for fabricating helmet according to the Indonesian National Standard (SNI). Mechanical testing confirms that the helmet produced using this biocomposites are suitable to the SNI. Molecular interaction between matrix with OPEFB can be described using orbital hybridization theory. In general, this study has successfully investigated mechanical and molecular properties of the biocomposites.

  5. Isolation of Nanocrystalline Cellulose from oil palm empty fruit bunch – A response surface methodology study

    Directory of Open Access Journals (Sweden)

    Song Yee Kai

    2016-01-01

    Full Text Available The research work studied the extraction of Nano Crystalline Cellulose (NCC from oil palm empty fruit bunch (EFB, with aid of Response Surface Methodology (RSM. Particle size analysis using Malvern Zetasizer had confirmed the extracted NCC fall within the desired nano scaled range. The impact of three input parameters, namely concentration of NaOH solution during alkaline treatment, concentration of H2SO4 solution during acid hydrolysis, and duration for acid hydrolysis on NCC particle were investigated. From ANOVA study, it had suggested that the current RSM model is significant to interpret the interaction among the all three input parameters.

  6. 4-Hydroxybenzoic acid from hydrothermal pretreatment of oil palm empty fruit bunches - Its origin and influence on biomass conversion

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Mogensen, Kit H.; Jeppesen, Martin D.

    2016-01-01

    An unknown major compound, characteristically occurring during processing of oil palm empty fruit bunches was identified with LC-DAD-ESI-MS/MS to be 4-hydroxybenzoic acid. Lignin from oil palm empty fruit bunches contains 4-hydroxybenzoic acid so a tempting conclusion was that the 4-hydroxybenzoic...... biomass hydrothermal pretreatment conditions. 5-methylfuran-2-carbaldehyde only differs from furfural by having an extra methyl group and the degradation route indicates that it may be a new important degradation compound to consider in other biomass feedstocks rich in deoxysugars such as rhamnose...... or fucose, e.g. pectin rich biomasses. Assessment of the influence of 4-hydroxybenzoic acid in the enzymatic hydrolysis of pretreated oil palm empty fruit bunches as well as its presence during fermentation showed that 4-hydroxybenzoic acid is not inhibiting or mediating neither on the enzymatic hydrolysis...

  7. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    Science.gov (United States)

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.

  8. Production of furfural from palm oil empty fruit bunches: kinetic model comparation

    Science.gov (United States)

    Panjaitan, J. R. H.; Monica, S.; Gozan, M.

    2017-05-01

    Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.

  9. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    Science.gov (United States)

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  10. Ear Mushroom (Auricularia sp.) Cultivation On Irradiated Palm Oil Empty Fruit Bunch And Saw Dust

    International Nuclear Information System (INIS)

    Endrawanto; Suwadji, E.

    2000-01-01

    The experiments were conducted under laboratory condition. Ear mushroom (Auricularia sp.) were grown on palm oil empty fruit bunch (EFB), sludge of oil residue, and saw dust as growth medium after (heating) autoclaved and irradiated by gamma rays at the dose of 30 kGy. EFB fiber as well as saw dust were mixed with sludge in composition of (1:0), (0;1), (1;1), (2;5), (1;5), (1;10) and (1;20). The mixture was then composted within 2 weeks by the addition of CaO 2%, CaSO 4 (gypsum) 2 %, rice bran 12%, P fertilizer 0,5% and urea 0,25%. A plastic bag volume 1000 ml was filled by 400 grams of composted material as mushrooms medium or bag log. Sterilized bag logs were then inoculated with mushroom spawns. After inoculation, bag logs were incubated during 1.5 months waiting for mycelium growing. Parameters of the experiments were following weight of mushrooms after harvesting, biological efficiency, rendement, and total fiber on bag log after mushrooms harvesting. Results of experiments showed that utilization of sludge as mixture with EFB produced weight mushrooms yield more than without sludge addition. Saw dust treatment produced more mushrooms weight compared to EFB treatments I.e. 90 g and 75 g. Weight of mushrooms produced and 76.6 g respectively. Rendement obtained between saw dust palm oil empty fruit bunch treatments were not significant at P<0.05 I.e. 91-92%

  11. Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars

    International Nuclear Information System (INIS)

    Shamsudin, Saleha; Md Shah, Umi Kalsom; Zainudin, Huzairi; Abd-Aziz, Suraini; Mustapa Kamal, Siti Mazlina; Shirai, Yoshihito; Hassan, Mohd Ali

    2012-01-01

    Lignocellulose into fuel ethanol is the most feasible conversion route strategy in terms of sustainability. Oil palm empty fruit bunch (EFB) generated from palm oil production is a huge source of cellulosic material and represents a cheap renewable feedstock which awaits further commercial exploitation. The purpose of this study was to investigate the feasibility of using steam at 0.28 MPa and 140 °C generated from the palm oil mill boiler as a pretreatment to enhance the digestibility of EFB for sugars production. The effects of steam pretreatment or autohydrolysis on chemical composition changes, polysaccharide conversion, sugar production and morphology alterations of four different types of EFB namely fresh EFB (EFB1), sterilized EFB (EFB2), shredded EFB (EFB3) and ground EFB (EFB4) were evaluated. In this study, the effects of steam pretreatment showed major alterations in the morphology of EFB as observed under the scanning electron microscope. Steam pretreated EFB2 was found to have the highest total conversion of 30% to sugars with 209 g kg −1 EFB. This production was 10.5 fold higher than for EFB1 and 1.6 fold and 1.7 fold higher than EFB3 and EFB4, respectively. The results suggested that pretreatment of EFB by autohydrolysis using steam from the mill boiler could be considered as being a suitable pretreatment process for the production of sugars. These sugars can be utilized as potential substrates for the production of various products such as fuel ethanol. -- Highlights: ► We investigate the feasibility of steam pretreatment to enhance digestibility of EFB. ► Steam pretreatment increased sugars to 3.4 fold and caused major alteration in EFB morphology under SEM. ► Autohydrolysis which does not require the addition of chemicals is an attractive pretreatment approach to EFB.

  12. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose.

    Science.gov (United States)

    Rahman, S H A; Choudhury, J P; Ahmad, A L; Kamaruddin, A H

    2007-02-01

    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively.

  13. A Review of Structural Performance of Oil Palm Empty Fruit Bunch Fiber in Polymer Composites

    Directory of Open Access Journals (Sweden)

    Reza Mahjoub

    2013-01-01

    Full Text Available According to environmental concerns and financial problems, natural fibers have become interesting and fascinating nowadays to be used as an industrial material and structural material for rehabilitating of structures. Oil palm empty fruit bunch fiber (OPF is a natural fiber which is found a lot in tropical areas. Scientists have used OPF fiber with many types of resins such as epoxy, polypropylene, polyester, and phenol formaldehyde. Therefore, this paper focused on the properties of OPF fiber and gathered mechanical properties of OPF composites (OPF as reinforcement of polymer reported by other researchers in terms of tensile and flexural properties. Furthermore, the chemical surface modification methods to solve the interfacial bonding of fiber and polymer were mentioned. In addition, the results of hybrid composites of OPF were also discussed in this paper. Meanwhile, the results of composites were compared to pure resin properties and also the stress-strain diagram and internal strain energy of composites were considered. Besides, the effects of adding OPF to other composites to make a new hybrid composite were indicated. Finally, it is clear that the use of oil palm fiber composites for structural elements for bearing loads is not recommended but the usage of OPF composites for secondary structural elements may be recommended due to future researches.

  14. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Mohd Huzairi Mohd Zainudin

    2013-11-01

    Full Text Available Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB and palm oil mill effluent (POME anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content from 44% to 27% towards the end of the 40-day composting period were observed. The C/N ratio also decreased. A drastic change in the bacterial community structure and diversity throughout the composting process was clearly observed using PCR-DGGE banding patterns. The bacterial community drastically shifted between the thermophilic and maturing stages. 16s rRNA clones belonging to the genera Bacillus, Exiguobacterium, Desemzia, and Planococcus were the dominant groups throughout composting. The species closely related to Solibacillus silvestris were found to be major contributors to changes in the lignocellulosic component. Clones identified as Thermobacillus xylanilyticus, Brachybacterium faecium, Cellulosimicrobium cellulans, Cellulomonas sp., and Thermobifida fusca, which are known to be lignocellulosic-degrading bacteria, were also detected and are believed to support the lignocellulose degradation.

  15. Oil Palm Empty Fruit Bunches (OPEFB: Existing Utilization and Current Trends Bio Refinery in Indonesia

    Directory of Open Access Journals (Sweden)

    Rame

    2018-01-01

    Full Text Available In a future carbon-constrained global economy, the use of fossil fuels will be restricted. Biomass resources will be increased demand for renewable products. Oil Palm Empty Fruit Bunches (OPEFB can be used as lignocellulose feedstock. The production of biofuels from lignocellulose feedstock can be achieved through biochemical or thermo-chemical routes. OPEFB contain chemical blocks of cellulose, hemicellulose and lignocellulose. Due to these substances, OPEFB can be converted into bio-products and chemical. Special attention to biorefinery approach that is present at relatively high potential in bio-products such as polymers, nutraceuticals, chemical building blocks, biofuels, and bioenergy. Different utilization types were considered and reviewed, and the most common and efficient process were discussed. In general, there is no single product which could be considered a solution to the utilization of managing OPEFB – in this review a number of product are more economic, effective and environmentally friendly.

  16. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    Energy Technology Data Exchange (ETDEWEB)

    Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Perak (Malaysia); Faiz, A., E-mail: faizahmad@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Perak (Malaysia)

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  17. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach.

    Science.gov (United States)

    Medina, Jesus David Coral; Woiciechowski, Adenise; Filho, Arion Zandona; Nigam, Poonam Singh; Ramos, Luiz Pereira; Soccol, Carlos Ricardo

    2016-01-01

    The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Oil Palm Empty Fruit Bunches (OPEFB): Existing Utilization and Current Trends Bio Refinery in Indonesia

    Science.gov (United States)

    Rame

    2018-02-01

    In a future carbon-constrained global economy, the use of fossil fuels will be restricted. Biomass resources will be increased demand for renewable products. Oil Palm Empty Fruit Bunches (OPEFB) can be used as lignocellulose feedstock. The production of biofuels from lignocellulose feedstock can be achieved through biochemical or thermo-chemical routes. OPEFB contain chemical blocks of cellulose, hemicellulose and lignocellulose. Due to these substances, OPEFB can be converted into bio-products and chemical. Special attention to biorefinery approach that is present at relatively high potential in bio-products such as polymers, nutraceuticals, chemical building blocks, biofuels, and bioenergy. Different utilization types were considered and reviewed, and the most common and efficient process were discussed. In general, there is no single product which could be considered a solution to the utilization of managing OPEFB - in this review a number of product are more economic, effective and environmentally friendly.

  19. Irradiation and processing of oil palm empty fruit bunch fibres - polypropylene composites

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan; Syarifah Hanisah Syed Abdul Aziz

    2000-01-01

    In this study, polypropylene was blended with oil palm empty fruit bunch fibres at a ratio of 60 to 40 by weight, respectively. Trimethylolpropane triacrylate (TMPTA) was used as the crosslinking agent. Homopolymer Polypropylene of MFI 14.0 and EFB fibres of 0.5 -1.0 mm sizes were used through out the experiment. Processing parameters such as temperature, rotor speed and processing time were optimized. Modes of irradiation were established to determine the optimum properties of the composites. The mechanical properties of the composite such as tensile strength, tensile modulus, flexural strength and flexural modulus were measured. The results indicate that temperature, 185 degree C, with a rotor speed of 40 rpm and 9 minutes processing time are sufficient to produce the optimum mechanical properties of PP/EFB composite. Modes of adding TMPTA into the blend and modes of irradiation also have influenced the properties of the composites

  20. Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling

    Directory of Open Access Journals (Sweden)

    Lifita N. Tande

    2016-01-01

    Full Text Available This work focuses on thermodynamic analysis of the autothermal reforming of palm empty fruit bunch (PEFB bio-oil for the production of hydrogen and syngas. PEFB bio-oil composition was simulated using bio-oil surrogates generated from a mixture of acetic acid, phenol, levoglucosan, palmitic acid and furfural. A sensitivity analysis revealed that the hydrogen and syngas yields were not sensitive to actual bio-oil composition, but were determined by a good match of molar elemental composition between real bio-oil and surrogate mixture. The maximum hydrogen yield obtained under constant reaction enthalpy and pressure was about 12 wt% at S/C = 1 and increased to about 18 wt% at S/C = 4; both yields occurring at equivalence ratio Φ of 0.31. The possibility of generating syngas with varying H2 and CO content using autothermal reforming was analysed and application of this process to fuel cells and Fischer-Tropsch synthesis is discussed. Using a novel simple modelling methodology, reaction mechanisms were proposed which were able to account for equilibrium product distribution. It was evident that different combinations of reactions could be used to obtain the same equilibrium product concentrations. One proposed reaction mechanism, referred to as the ‘partial oxidation based mechanism’ involved the partial oxidation reaction of the bio-oil to produce hydrogen, with the extent of steam reforming and water gas shift reactions varying depending on the amount of oxygen used. Another proposed mechanism, referred to as the ‘complete oxidation based mechanism’ was represented by thermal decomposition of about 30% of bio-oil and hydrogen production obtained by decomposition, steam reforming, water gas shift and carbon gasification reactions. The importance of these mechanisms in assisting in the eventual choice of catalyst to be used in a real ATR of PEFB bio-oil process was discussed.

  1. The Isolation of Nanofibre Cellulose from Oil Palm Empty Fruit Bunch Via Steam Explosion and Hydrolysis with HCl 10%

    Science.gov (United States)

    Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.

    2018-03-01

    Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.

  2. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  3. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    International Nuclear Information System (INIS)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Wan Md Zin Wan Yunus

    2007-01-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate

  4. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Nor, N. S. M.; Deraman, M.; Omar, R.; Basri, N. H.; Dolah, B. N. M.; Taer, E.; Awitdrus,; Farma, R.

    2014-01-01

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H 2 SO 4 electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g −1 , 177 W kg −1 , 3.42 Wh kg −1 , cell B; 125 F g −1 , 179 W kg −1 , and 3.64 Wh kg −1 , and cell C; 180 F g −1 , 178 W kg −1 , 4.27 Wh kg −1 . All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium

  5. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-11-15

    Research highlights: {yields} Hybrid composites constituents of natural fibres show good mechanical performances. {yields} Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. {yields} Outer or core material affect mechanical performance of hybrid composites. {yields} Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  6. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Abdul Khalil, H.P.S.; Abu Bakar, A.

    2010-01-01

    Research highlights: → Hybrid composites constituents of natural fibres show good mechanical performances. → Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. → Outer or core material affect mechanical performance of hybrid composites. → Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  7. Direct Bioconversion of Oil Palm Empty Fruit Bunches for Bioethanol Production By Solid State Bioconversion

    Directory of Open Access Journals (Sweden)

    Nassereldeen Ahmed Kabbashi

    2010-09-01

    Full Text Available The bioethanol production was conducted by utilizing agriculture waste, palm oil empty fruit bunches (EFB with the aid of T. harzianum and yeast, Saccharomyces cerevisiae using solid state bioconversion method. The compatibility of various fungal strains was done as to develop the direct bioconversion process of compatible mixed culture. Analyzes such ethanol estimation, reducing sugar and glucosamine as growth indicator were conducted in order to select the best experimented run for optimization. The optimization of process conditions, by using central composite design (CCD was carried out. Optimization of process condition was done with varied level of moisture content, pH, inoculum size, concentration of co-substrate (wheat flour and mineral solutions. Statistical analysis showed that the optimum process condition for moisture content was 50% (v/w, pH of 4, inoculum size of 10% (v/v, concentration of wheat flour of 1% (v/v and mineral solutions 1%(v/v. In this study, the application levels of the methods of environmental management in regards to the maximum production were determined. The final optimization with the developed process conditions indicated that the maximum production was increased from 14.315 (v/v to 34.785(v/v.

  8. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    Science.gov (United States)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  9. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Nor, N. S. M., E-mail: madra@ukm.my; Deraman, M., E-mail: madra@ukm.my; Omar, R., E-mail: madra@ukm.my; Basri, N. H.; Dolah, B. N. M. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Taer, E.; Awitdrus,; Farma, R. [Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia)

    2014-02-24

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cell B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.

  10. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    Science.gov (United States)

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  11. Production of oil palm empty fruit bunch compost for ornamental plant cultivation

    Science.gov (United States)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    The aim of this research was to produce the oil palm empty fruit bunch (EFB) compost for ornamental plant cultivation. EFB compost was produced by chopping fresh EFB into 1-3 cm pieces, inserting the pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding activated liquid organic fertilizer (ALOF) until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The compost processed was then mixed with sand and rice husk with a ratio of 1:1:1; 1:3:1; 1:0:1 and was used as a potting medium for planting some valuable ornamental plants i.e. cactus (cactaceae), sansevieria, and anthurium. Composting was carried out for 40 days and the compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0.95%. The compost-sand-husk rice mixture can be used as a growing medium where the best ratio for cactus, sansevieria, and anthurium was 1:3:1; 1:1:1; and 1:0:1, respectively.

  12. Properties of Lignin from Oil Palm Empty Fruit Bunch and Its Application for Plywood Adhesive

    Directory of Open Access Journals (Sweden)

    Lucky Risanto

    2014-10-01

    Full Text Available Lignin from lignocellulosic biomass is a potential biopolymer for wood adhesive. The aims of this study were to characterize lignin isolated from the black liquor of oil palm empty fruit bunch fiber pretreated with steam explosion in alkaline conditions and to examine the bond quality of aqueous polymer isocyanate (API adhesive prepared from lignin, natural rubber latex (NRL, and polyvinyl alcohol (PVA as base polymers with isocyanate crosslinkers. Lignin was precipitated from the black liquor by adding hydrochloric acid; then the precipitate was separated by filtration, thoroughly washed with water up to pH 2 and pH 5, and dried. The isolated lignin was characterized by ultimate analysis, UV spectroscopy, FT-IR spectroscopy, and thermal analysis. Three-layer plywood samples were prepared, and the bond strengths of the plywood samples were determined in dry conditions and after cyclic boiling. The lignin isolates with different pH values did not have significantly different chemical and thermal properties. Both lignin isolates had similar C, H, and O contents, identical functional groups in the FTIR spectra, similar absorption in the UV spectra, and high decomposition temperatures. The base polymers composition that could produce API adhesive for exterior applications was NRL/PVA/lignin (4/4/2. The use of more lignin in the adhesive formulation decreased the bond strength of the plywood.

  13. Biogas production from oil palm empty fruit bunches of post mushroom cultivation media

    Science.gov (United States)

    Purnomo, Agus; Suprihatin; Romli, M.; Hasanudin, Udin

    2018-03-01

    The Empty fruit bunches are one of the palm oil industry wastes, which can be used for mushroom cultivation. Post-cultivation of mushroom from former EFB-mushroom media (EFBMM) has the potential to be processed into biogas. The purpose of this research was to examine optimum co-digestion conditions for biogas production of EFBMM.The research was carried out in an anaerobic digester with three different conditions - dry fermentation (Water content (WC)/Total Solid (TS) ratio 1.5 - 3.5), semi-wet fermentation (WC/TS ratio = 4.0 - 5.7) and wet fermentation (WC/TS ratio> 9.0) conditions. Digester of capacity 50L was used. Fermentation was done using 20% cow feces as inoculum which then added with circulation system for 70 days. The results showed that optimum biogas production were produced in semi-wet fermentation conditions (WC/TS ratio = 4). It was produced 37.462 liters (2.420 liters CH4/Kg Volatile Solid (VS)) of biogas with methane contain about 26.231%. Total volume of inoculum during process was 19.6 liters (1: 4 w/v) with absorbed TS inoculum ratio, TS/I = 0.4 (1:2.5 w/v). The result of research also showed that biogas which was produced from control about 2.865 liters (0.041 liters CH4/KgVS), with TS absorbed inoculum ratio, TS/I = 0.5 (1: 5w/v).

  14. Fabrication and characterization of regenerated cellulose films obtained from oil palm empty fruit bunch

    Science.gov (United States)

    Nor Amalini, A.; Melina Cheah, M. Y.; Wan Rosli, W. D.; Hayati, S.; Mohamad Haafiz, M. K.

    2017-12-01

    Development of regenerated cellulose (RC) derived from underutilized cellulosic biomass has recently gained attention as potential petroleum-based polymer replacers. The objective of this current work is to evaluate the properties of RC films obtained from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) through environmental process. The RC films were fabricated by using different amounts of OPEFB-MCC (4, 6 and 8 %) and 1-butyl-3-methylimidazolium chloride (BMIMCl) was used as green OPEFB-MCC dissolving medium. The resultant RC films were then characterized by means of Fourier transform infrared (FTIR) spectroscopy, mechanical, thermal and morphological properties by using tensile test, differential scanning colorimetry (DSC), and scanning electron microscopy (SEM) respectively. Increase in OPEFB-MCC amounts from 4 to 8 % enhanced the tensile strength and elongation at break of RC by 101 and 78 %, respectively, indicating stronger and more flexible films were formed. It is interesting to note that the Tg (101-154 °C) and Tm(130-187 °C) were found shifted to higher temperature with higher proportions of OPEFB-MCC in RC films. Meanwhile, FTIR analysis showed no new peak presented in RC films, suggesting that BMIMCl is a non-derivatizing solvent to OPEFB-MCC. Conspicuous changes in the spectra of RC films compared to OPEFB-MCC at 3200-3600 cm-1, 1430 cm-1, 1162 cm-1, 1111 cm-1, 1020-1040 cm-1 and 896 cm-1 were associated with transformation of cellulose I to cellulose II structure or/and decrease in crystallinity occurred after regeneration process. SEM micrographs of the RC films revealed that higher OPEFB-MCC contents exhibited smoother and more homogeneous surfaces morphology. Overall, OPEFB-MCC exhibited good film forming ability for RC production and may offer potential application in various industries including food packaging, medical goods and electronic devices.

  15. Microbial Production of Xylitol from Oil Palm Empty Fruit Bunch Hydrolysate: Effects of Inoculum and pH

    Directory of Open Access Journals (Sweden)

    M.T.A.P. Kresnowati

    2016-11-01

    Full Text Available Considering its high content of hemicellulose, oil palm empty fruit bunch (EFB lignocellulosic biomass waste from palm oil processing has the potential to be utilized as the raw material for the production of xylitol, a low calorie, low GI, and anti cariogenic alternative sugar with similar sweetness to sucrose. This research explored the possibility of converting EFB to xylitol via green microbial fermentation, in particular the effects of inoculum and initial pH on the fermentation performance. It was observed that the cell concentration in the inoculum and the initial pH affect cell growth and xylitol production. pH 5 was observed to give the best fermentation performance. Further, the fermentation tended to yield more xylitol at higher initial cell concentration. It was also observed that no growth or fermentation inhibitory compounds were found in the EFB hydrolysate obtained from enzymatic hydrolysis of EFB. Thus it can be used directly as substrate for xylitol fermentation.

  16. Electricity generation from palm oil tree empty fruit bunch (EFB) using dual chamber microbial fuel cell (MFC)

    Science.gov (United States)

    Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.

    2017-06-01

    Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper

  17. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Sulaiman, F.; Abdullah, N.

    2011-01-01

    As production of palm oil is expanding, a more efficient use of oil palm biomass to obtain more energy from oil palm plantations is investigated. The work was carried out on a fluidised bed bench scale fast pyrolysis unit, with the objective of determining the important conditions and key variables which are required to maximise the liquid yield and its quality. The investigation on the impact of reactor temperature, varying residence time by changing the nitrogen flow rate and combined impact of ash content and particle size on the product yields is presented. The properties of the liquid product were analysed and compared with wood derived bio-oil and petroleum fuels. It was found that in all cases the liquid product separated into two phases presenting difficulties for fuel applications, which are critically discussed. Potential solutions are also proposed which include upgrading of the liquid for fuel applications and other useful applications. -- Highlights: → Fibre analysis, proximate analysis and elemental analysis were carried out in this work. → Thermal degradation behaviour of EFB using thermogravimetry and differential thermogravimetry curves is in good agreement with other studies. → Maximum yield for liquids was determined to be around 55% at reactor temperature, 450 o C utilising residence time of 1.03 s → The low organic yield obtained for highest ash content of size below 150 μm is not due to low closure. → The phase separated liquid produced would present a challenging fuel due to its high viscosity and high water content.

  18. An overview of the Oil Palm Empty Fruit Bunch (OPEFB potential as reinforcing fibre in polymer composite for energy absorption applications

    Directory of Open Access Journals (Sweden)

    Faizi M.K.

    2017-01-01

    Full Text Available The oil palm empty fruit bunch (OPEFB natural fibres were comprehensively reviewed to assess their potential as reinforcing materials in polymer composites for energy absorption during low-velocity impact. The typical oil palm wastes include trunks, fronds, kernel shells, and empty fruit bunches. This has a tendency to burden the industry players with disposal difficulties and escalates the operating cost. Thus, there are several initiatives have been employed to convert these wastes into value added products. The objective of this study is to review the potential of oil palm empty fruit bunch (OPEFB as natural fibre polymer composite reinforcement to absorb the energy during low-velocity impact as another option for value added products. Initially, this paper reviewed the local oil palm waste issues. Previous research works on OPEFB polymer composite, and their mechanical characterization is appraised. Their potential for energy absorption in low-velocity impact application was also elaborated. The review suggests high potential applications of OPEFB as reinforcing materials in composite structures. Furthermore, it is wisely to utilize the oil palm biomass waste into a beneficial composite, hence, promotes the green environment.

  19. Utilization of oil palm empty bunches waste as biochar-microbes for improving availibity of soil nutrients

    Directory of Open Access Journals (Sweden)

    G . I . Ichriani

    2016-01-01

    Full Text Available There are about 23% waste oil palm empty fruit bunches (OPEFB of total waste generated from the production of crude palm oil in oil palm plantations. Pyrolysis technology can be used to convert waste into biochar and further can be utilized for the improvement of soil. Biochar-microbes of OPEFB are biochar from OPEFB biomass that enriched with soil microbes. Biochar-microbes is expected to be used for the improvement of the soil and plants. Therefore the purpose of this research was to study the ability of biochar-microbes OPEFB to increase availability of the nutrients in sandy soils. The process of making biochar done by using slow pyrolysis technology by heating 300oC and 400oC for 2 and 3 hours, and with sizes 40 and 80 mesh, as well as indigenous microbial Bulkhorderia nodosa G.52.Rif1 and Trichoderma sp. added. The biochar production and research were conducted in the Department of Forestry Laboratory and in the Department of Agronomy Laboratory, Faculty of Agriculture, Palangka Raya University. In general, the study showed that biochar-microbes could maintain the soil pH value and tends to increase the soil pH, increasing the holding capacity of sandy soil to the elements of P and K as well as increasing the availability of nutrients N, P and K. Furthermore, this study showed that the biochar process by 400oC heating for 3 hours and 40 mesh with microbes or without microbes were the best effect on the improvement of the quality of holding capacity and the nutrients supply in sandy soils.

  20. Application of Box-Behnken Design in Optimization of Glucose Production from Oil Palm Empty Fruit Bunch Cellulose

    Directory of Open Access Journals (Sweden)

    Satriani Aga Pasma

    2013-01-01

    Full Text Available Oil palm empty fruit bunch fiber (OPEFB is a lignocellulosic waste from palm oil mills. It contains mainly cellulose from which glucose can be derived to serve as raw materials for valuable chemicals such as succinic acid. A three-level Box-Behnken design combined with the canonical and ridge analysis was employed to optimize the process parameters for glucose production from OPEFB cellulose using enzymatic hydrolysis. Organosolv pretreatment was used to extract cellulose from OPEFB using ethanol and water as the solvents. The extracted cellulose was characterized by thermogravimetric analysis, FTIR spectroscopy, and field emission scanning electron microscopy. Hydrolysis parameters including amount of enzyme, amount of cellulose, and reaction time were investigated. The experimental results were fitted with a second-order polynomial equation by a multiple regression analysis and found that more than 97% of the variations could be predicted by the models. Using the ridge analysis, the optimal conditions reaction time found for the production of glucose was 76 hours and 30 min, whereas the optimum amount of enzyme and cellulose was 0.5 mL and 0.9 g, respectively. Under these optimal conditions, the corresponding response value predicted for glucose concentration was 169.34 g/L, which was confirmed by validation experiments.

  1. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    Science.gov (United States)

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In vitro and in silico characterization of metagenomic soil-derived cellulases capable of hydrolyzing oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Laura Marcela Palma Medina

    2017-09-01

    Full Text Available Diversification of raw material for biofuel production is of interest to both academia and industry. One attractive substrate is a renewable lignocellulosic material such as oil palm (Elaeis guineensis Jacq. empty fruit bunch (OPEFB, which is a byproduct of the palm oil industry. This study aimed to characterize cellulases active against this substrate. Cellulases with activity against OPEFB were identified from a metagenomic library obtained from DNA extracted from a high-Andean forest ecosystem. Our findings show that the highest cellulolytic activities were obtained at pH and temperature ranges of 4–10 and 30 °C–60 °C, respectively. Due to the heterogeneous character of the system, degradation profiles were fitted to a fractal-like kinetic model, evidencing transport mass transfer limitations. The sequence analysis of the metagenomic library inserts revealed three glycosyl hydrolase families. Finally, molecular docking simulations of the cellulases were carried out corroborating possible exoglucanase and β-glucosidase activity.

  3. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    International Nuclear Information System (INIS)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-01-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  4. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    Science.gov (United States)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  5. Enzymatic saccharification of liquid hot water and dilute sulfuric acid pretreated oil palm empty fruit bunch and sugarcane bagasse

    Science.gov (United States)

    Risanto, L.; Fitria; Fajriutami, T.; Hermiati, E.

    2018-03-01

    Oil palm empty fruit bunch (OPEFB) and sugarcane bagasse (SB) are potential feedstocks for the production of bioethanol. In this study OPEFB and SB were pretreated by liquid hot water and dilute sulfuric acid (3% H2SO4), and continued with enzymatic saccharification. Heating treatment for both methods was conducted in an autoclave at 121 °C for 1 hr. The saccharification was performed up to 72 hours with cellulase enzyme loading of 10, 20, and 30 FPU per g biomass. Results showed that OPEFB and SB pretreated with H2SO4 produced higher reducing sugars than those pretreated by liquid hot water. Higher enzyme loading also resulted in higher reducing sugars. Reducing sugars obtained from enzymatic saccharification of OPEFB were higher than those obtained from SB. The highest total reducing sugars (50.48 g/100 g biomass) was obtained from OPEFB pretreated with 3% H2SO4 at enzyme loading of 30 FPU per g biomass.

  6. The influenced of reaction time on the degradation of palm oil empty fruit bunch (EFB) in hydrothermal carbonization

    Science.gov (United States)

    Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah

    2017-11-01

    Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.

  7. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Farma, R.; Awitdrus,; Taer, E.; Deraman, M.; Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M.

    2015-01-01

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N 2 environment at 800°C to produce carbon monoliths (CM) and the CM was CO 2 activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H 2 SO 4 electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes

  8. Combustion behavior of briquettes from oil palm's empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Pratoto, A. [Andalas Univ., Padang (Indonesia). Dept. of Mechanical Engineering

    2006-07-01

    Empty fruit bunch (EFB) briquettes from palm plantations are now being considered as a renewable energy source in Indonesia. This paper provided details of a study that investigated the combustion behaviour of an EFB briquette. Thermogravimetry was used to study the briquettes under dynamic conditions at 50 degrees C in a muffle furnace. Thermal decomposition rates and phases were identified, and the effect of the briquette's size on the decomposition rate was evaluated by comparing the combustion behaviour of the briquette to that of loose EFB materials. Rates of devolatilization and char oxidation were also examined. Results of the derivative thermogravimetry (DTG) analysis showed that larger briquettes did not exhibit a sharp peak on the DTG curve. Results suggested that heat transfer was predominant over the kinetic reaction during combustion. The ignition temperature of the briquettes was comparable to typical lignocellulose biomass. Peak combustion temperatures for loose EFB were only slightly lower than other types of biomass. Maximum combustion rates decreased with the size of the fuel. It was concluded that small briquettes are suitable for applications where high rates of heat are required. 16 refs., 1 tab., 6 figs.

  9. Preliminary study on isolation and quality analysis of enzymes from fermented oil palm empty fruit bunch

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Tamikazu Kume; Shinpei Matsuhashi

    1998-01-01

    Palm Empty Fruit Bunch (EFB) is a cellulosic waste, consisting of 40 - 60 % cellulose with the remaining components comprised of hemicellulose, lignin and other materials. Cellulase is a complex of enzymes containing chiefly endo and exo glucanase, as well as cellobiase plus others (Mandel et al, 1976). Studies on cellulase production from Trichodermaa viride have been reported. The enzyme system from this fungi is considered to be a complete composition of cellulase; and it was reported to be able to hydrolyse slowly a more resistant or crystalline portion of cellulose. Previous work showed Pleorotus sajor-caju and Coprinus cinereus can be easily grown on EFB. The quality of this enzyme system was characterized based on its degradation activity on filter paper, salicin and xylan into simple sugars. These activity tests would revealed the ability of cellulase enzyme system to break down insoluble cellulose, and hydrolysing salicin such as cellobiose and xylanase for breaking down hemicellulose. In this study, the enzyme system derived from liquid state fermentation by these fungi utilizing EFB as carbon source was investigated

  10. Agronomic effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes in oil palm main nursery used Ganoderma endemic soil

    Science.gov (United States)

    Hanum, H.; Lisnawita; Tantawi, A. R.

    2018-02-01

    Using of Ganoderma endemic soil in oil palm main nursery is not recomended because produce bad quality seedling. The application of organic and anorganic fertilizer and endophytic microbes are the alternative for solving the problem. The objective of this research is to evaluate the effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes on growth of oil palm seedling in main nursery. This research used factorial randomized block design. The first factor was combination of empty fruit bunches compost and anorganic fertilizer, The second factor was endophytic microbes consisting of Trichoderma and Aspergillus. The results showed that interaction effect of the both treatment factor used increased growth of seedling in third and fourth month after application. The best growth of seedling was on the treatment of empty fruit bunches compost combined with anorganic fertilizer 150% recommended dosage and Trichoderma viride.

  11. Biodegradation of oil palm empty fruit bunch by composite micro-organisms

    International Nuclear Information System (INIS)

    Yusri Atan; Mat Rasol Awang; Mohammed Omar; Azizah Hashim; Tamikazu Kume; Shoji Hashimoto

    1998-01-01

    A comparison study on the comparative biodegradation ability on EFB by five groups of composite micro-organisms [Organomine, Thomas, Ohres C, Ohres II and micro-organisms from POME (palm oil mill effluent)] has been performed with the aim of producing a compost at a faster rate than that by natural biodegradation. The experiment was carried out by mixing 50 gram EFB (dry weight basis) with 3% ammonium sulphate to which was added 1% composite micro-organisms and water to produce a composting media of moisture content about 60%. Respiration of composite micro-organisms as well as from decomposition of EFB releasing CO sub 2. The choice of useful micro-organisms was based on its ability to degrade EFB as reflected by higher evolution rate of CO sub 2 released and retaining higher percentage of nitrogen in the final product

  12. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  13. Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Mohd Nor, Najah Syahirah; Deraman, Mohamad; Omar, Ramli; Awitdrus,; Farma, Rakhmawati; Basri, Nur Hamizah; Mohd Dolah, Besek Nurdiana; Mamat, Nurul Fatin; Yatim, Baharudin; Md Daud, Mohd Norizam

    2015-01-01

    Carbon-monolith electrodes for supercapacitors were prepared from GMs (green monoliths) made from pre-carbonized fibers of oil palm EFB (empty fruit bunches) and GMs of pre-carbonized EFB fibers exposed to gamma radiation at 5 kGy, 15 kGy, and 20 kGy. GMs and irradiated GMs were carbonized and activated to prepare ACM (activated-carbon-monolith) electrodes. The gamma radiation affected the pore structure of the ACM electrodes and the electrochemical performance of the supercapacitors; irradiation doses of 0 kGy, 5 kGy, 15 kGy and 20 kGy produced specific capacitances of 121 F g −1 , 196 F g −1 , 11 F g −1 , and 12 F g −1 , respectively. The irradiation dose of 5 kGy appears to be optimum and produces a specific power and specific energy of 236 W kg −1 and 5.45 W h kg −1 , respectively, representing 34% and 60% increases over ACM electrodes prepared from non-irradiated GMs. - Highlights: • Green monoliths were prepared from pre-carbonized fibers of oil palm fruit bunches. • Green monoliths were irradiated with gamma rays at doses from 5 to 20 kGy. • Green monoliths were carbonized and activated to prepare activated carbon electrodes. • A 5 kGy dosage produce the best supercapacitor electrode. • Specific power and energy improved of 34% and 60%, respectively, were obtained after the 5 kGy dosage

  14. Oil Palm Empty Fruit Bunch (OPEFB) Fiber as Lost Circulation Material (LCM) in Water Based Mud (WBM)

    Science.gov (United States)

    Ghazali, N. A.; Sauki, A.; Abu Bakar, N. F.; Mohamed, S.

    2018-05-01

    Lost Circulation Material (LCM) is an additive used to prevent lost of mud to the formation as a results from natural or induced fractured during drilling operation. Losses of mud could give great impact to the oil industry as it increases mud cost and rig time. The objective of this research was to investigate the effect of size and concentration of Oil Palm Empty Fruit Bunch (OPEFB) as LCM in water based mud (WBM). Several important properties of WBM rheology after adding the OPEFB namely plastic viscosity, apparent viscosity, yield point and gel strength were characterized. The sizes of OPEFB added into the WBM were 150μm, 250μm, 500μm and 1000μm while the concentration of OPEFB used were 5g, 10g, 15g and 20g in 350 mL of WBM. Results indicated that the plastic viscosity and apparent viscosity increased with increasing of the OPEFB concentrations. On the other hand, the plastic viscosity and apparent viscosity decreased with increasing sizes of OPEFB. Yield point increased as the concentration and size of OPEFB increases. This study indicated that OPEFB was effective to be used as LCM for size of 150μm and concentration of 15g whereby it produced least amount of filtrate volume as well as good control in mud rheology.

  15. Manufacture and impact analysis of bmx helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber

    Science.gov (United States)

    Mahadi

    2018-02-01

    Helmets are protective head gears wear by bicycle riders for protection against injury in case of the accident. Helmet standards require helmets to be tested with a simple drop test onto an anvil. The purpose of research is to know toughness of bicycle helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber. This research contains report result manufacture and impacts analysis of bicycle helmet made from polymeric foam composite materials strengthened by oil palm empty fruit bunch fiber (EFB). The geometric helmet structure consists of shell and liner; both layers have sandwich structure. The shell uses matrix unsaturated Polyester BQTN-157EX material, chopped strand mat 300 glass fiber reinforce and methyl ethyl ketone peroxide (MEKPO) catalyst with the weight composition of 100 gr, 15 gr, and 5 gr. The liner uses matrix unsaturated Polyester BQTN-157 EX material, EFB fiber reinforces, Polyurethane blowing agent, and MEKPO catalyst with the composition of 275 gr (50%), 27.5 gr (5%), 247 gr (45%), and 27.5 gr (5%). Layers of the helmet made by using hand lay-up method and gravity casting method. Mechanical properties of polymeric foam were the tensile strength (ơt) 1.17 Mpa, compressive strength (ơc) 0.51 MPa, bending strength (ơb) 3.94 MPa, elasticity modulus (E) 37.97 Mpa, density (ρ) 193 (kg/m3). M4A model helmet is the most ergonomic with the thickness 10 mm and the amount of air channel 11. Free fall impact test was done in 9 samples with the thickness of 10 mm with the height of 1.5 m. The result of the impact test was impacted force (Fi) 241.55 N, Impulse (I) 6.28 Ns, impact Strength (ơi) 2.02 Mpa and impact Energy (Ei) 283.77 Joule. The properties of bicycle helmet model BMX-M4A type was 264 mm length, 184 mm width, 154 mm height, 10 mm thick, 580 mm head circle, 331 g mass and 11 wind channels.

  16. Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer – A case study of Malaysia

    International Nuclear Information System (INIS)

    Chiew, Yoon Lin; Shimada, Sohei

    2013-01-01

    This paper describes the trend of utilizing oil palm residue, i.e. the empty fruit bunches (EFB) left after extraction of the palm oil, using a case study of Malaysia, which is one of the world's major palm oil producers, and discusses the environmental performance of recycling technologies being developed in Malaysia for fuel, fiber, and fertilizer. Seven technologies are analyzed: ethanol production, methane recovery, briquette production, biofuel for combined heat and power (CHP) plants, composting, medium density fiberboard (MDF) production, and pulp and paper production. The life cycle assessment (LCA) method is used to discuss the environmental impacts of these technologies for adding value to this biomass. Sensitivity analyses are conducted to determine the land use effects for the various technologies utilizing EFB and to estimate the energy generation potential of raw EFB in CHP plants and methane production. Among the technologies for energy production, CHP plants have the best performance if the electricity generated is connected to the national grid, with superior benefits in the majority of impact categories compared to briquette, methane, and ethanol production. Overall, we find that methane recovery and composting are more environmentally friendly than other technologies, as measured by reduction of greenhouse gas emissions. Pulp and paper, and MDF production are favorable technologies for land use impacts; however, they have intense primary energy requirements, chemical use in the processes, and emissions from their waste treatment systems. Our results provide information for decision makers when planning for sustainable use of oil palm biomass. -- Highlights: ► The recent technologies that utilize oil palm empty fruit bunches in Malaysia are evaluated using LCA. ► EFB used as fuel has significant benefits to environment compared to use as fertilizer. ► EFB used for fiber production contribute benefits to land use. ► This study provides

  17. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    OpenAIRE

    Ireana Yusra A. Fatah; H. P. S. Abdul Khalil; Md. Sohrab Hossain; Astimar A. Aziz; Yalda Davoudpour; Rudi Dungani; Amir Bhat

    2014-01-01

    The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC). The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB) using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose ...

  18. Hydrolysis of cellulose and oil palm empty fruit bunches by using consortia of fungi isolated from the soil of Colombian high andean forest

    Directory of Open Access Journals (Sweden)

    Luz Aida Moya A

    2012-09-01

    Full Text Available Hydrolytic activity was evaluated in a mixture of supernatants produced by filamentous fungi grown individually on microcrystalline cellulose and empty fruit bunches. The strains that were used correspond to two types of isolates; the first was made from soil samples from a transect of a high andean forest of Colombia, in the Parque Natural Nacional de Los Nevados, where, based on previous studies, we selected the strains B7, B11, B11M and B19. The second isolate was obtained from a pool of oil palm empty fruit bunches (Eleaeis guinensis Jacq. in different states of decomposition on the Unipalma plantation located in the eastern plains; strains TA1 and TA2. To perform the hydrolysis of cellulose and empty fruit bunches, the previously obtained supernatants from each of the selected strains were cultivated for 300 hours in cellulose and characterized individually by endoglucanase, exoglucanase, and β-glucosidase activity. Individual supernatants were mixed at a 1:1 ratio to form consortia; and hydrolytic activity was evaluated in the substrates at two hours. The glucose concentration was determined by the 3,5-dinitrosalicylic acid (DNS method. The results show that hydrolysis of empty fruit bunch to glucose was favored by three pools of supernatants, with increases greater than 400% in comparison with the hydrolysis obtained by individual supernatants, demonstrating the potential to decompose palm empty fruit bunches; thereby contributing to the reduction of decay time of empty fruit bunches and the decrease of environmental and health problems

  19. Scale-up fermentation of oil palm empty fruit bunch to produce ruminant feed by radiation processing

    International Nuclear Information System (INIS)

    Awang, M.R.; Mutaat, H.H.; Deres, R.M.; Kume, Tamikazu.

    1992-01-01

    Scale-up fermentation and irradiation conditions of empty fruit bunch (EFB) of oil palm were examined to produce a large amount of fermented products for animal feeds. The EFB substrates pasteurized by irradiation were inoculated with Coprinus cinereus. After 1 month incubation, the crude fiber contents decreased to 20 - 38% and crude protein contents increased to 9 - 13% in small scale fermentation using conical flask (6 - 20 g EFB). In the case of fermentation using polypropylene bags with 400 g EFB, crude fiber and protein contents were 32 - 34% and 11 - 14%, respectively. A larger plastic container packed with 1.5 kg EFB fiber of 10cm thickness was used for mushroom cultivation. After harvest of mushroom (yields were about 250 g per container), the quality of residual substrates improved further as reflected by its crude fiber content of only 16 - 20%, crude protein content of 6 - 8%. These results show that a large volume of products are available under the good aeration by increasing the number of plastic bags or containers. For the irradiation of a lot of fermentation substrates, the advantage of 60 Co gamma-ray and electron beam irradiator was also discussed. (author)

  20. Radiation pasteurised oil palm empty fruit bunch fermented with Pleurotus sajor-caju as feed supplement to ruminants

    Energy Technology Data Exchange (ETDEWEB)

    Awang, M.R.; Mutaat, H.H.; Mahmud, M.S. (Ministry of Science, Technology and the Environment (Malaysia). Nuclear Energy Unit) (and others)

    In solid state fermentation, Pleurotus sajor-caju has been found to be able to degrade at least 30% oil palm Empty Fruit Bunch (EFB) fibre leaving 70% useful materials. Conditions under which fermentation occurred were investigated. It was found that, in the temperature range 25-28[sup o]C, relative pH 6-8, moisture 60-70% and medium composition of CaCO[sub 3]: were the optimum conditions. The results showed in fermented products that there were substantial reductions in cellulosic component such as crude fibre (CF, 18%); acid detergent fibre (ADF, 45%), neutral detergent fibre (NDF, 61%) and acd detergent lignin (ADL, 14%). However, crude protein (CP, 10%) increase resulted from single cell protein enrichment of mycelial microbial mass. The mass reductions of substrate in the fermentation process corresponds to CO[sub 2] released during fermentation. A digestibility study has been carried out to determine the usefulness of this product to ruminants. Aflatoxin content was low in both the initial substrates and products. Based on nutritional value and low content of aflatoxins, the product is useful as a source of roughage to ruminants. (author).

  1. Radiation pasteurised oil palm empty fruit bunch fermented with Pleurotus sajor-caju as feed supplement to ruminants

    International Nuclear Information System (INIS)

    Awang, M.R.; Mutaat, H.H.; Mahmud, M.S.

    1993-01-01

    In solid state fermentation, Pleurotus sajor-caju has been found to be able to degrade at least 30% oil palm Empty Fruit Bunch (EFB) fibre leaving 70% useful materials. Conditions under which fermentation occurred were investigated. It was found that, in the temperature range 25-28 o C, relative pH 6-8, moisture 60-70% and medium composition of CaCO 3 : were the optimum conditions. The results showed in fermented products that there were substantial reductions in cellulosic component such as crude fibre (CF, 18%); acid detergent fibre (ADF, 45%), neutral detergent fibre (NDF, 61%) and acd detergent lignin (ADL, 14%). However, crude protein (CP, 10%) increase resulted from single cell protein enrichment of mycelial microbial mass. The mass reductions of substrate in the fermentation process corresponds to CO 2 released during fermentation. A digestibility study has been carried out to determine the usefulness of this product to ruminants. Aflatoxin content was low in both the initial substrates and products. Based on nutritional value and low content of aflatoxins, the product is useful as a source of roughage to ruminants. (author)

  2. Radiation pasteurised oil palm empty fruit bunch fermented with Pleurotus sajor-caju as feed supplement to ruminants

    Science.gov (United States)

    Awang, Mat Rasol; Mutaat, Hassan Hamdani; Mahmud, Mohd. Shukri; Wan Husain, Wan Badrin; Osman, Tajuddin; Bakar, Khomsaton Abu; Kassim, Asmahwati; Wan Mahmud, Zal U'yun; Manaf, Ishak; Kume, Tamikazu; Hashimoto, Shoji

    1993-10-01

    In solid state fermentation, Pleurotus sajor-caju has been found to be able to degrade at least 30% oil palm empty Fruit Bunch (EFB) fibre leaving 70 % useful materials. Conditions under which fermentation carried out were investigated. It was found that, in the temperature range between 25- 28 °C, relative ph between 6-8, moisture between 60-70 % and medium composition of CaCO 3: rice bran 2 %: 5 % were the optimum conditions. The results showed in fermented products that, there were substantial reduction in cellulosic component such as Crude Fiber (CF, 18 %); Acid Detergent Fibre (ADF, 45 %), Neutral Detergent Fibre (NDF, 61 %) and Acid Detergent Lignin (ADL, 14 %). However, Crude Protein (CP, 10%) increased resulted from single cell protein enrichment of mycelial microbial mass. The mass reductions of substrate in fermentation process corresponds to the CO 2 released during fermentation. Hence, attributable to the decreased in content of CF, ADF, NDF, and ADL. The digestibility study has also been carried out to determine the useful level of this product to ruminant. Aflatoxin content was detected low in both the initial substrates and products. Based on nutritional value and low content of aflatoxin, the product is useful as a source of roughage to ruminant.

  3. Characterization of Lignin Precipitated From The Soda Black Liquor of Oil Palm Empty Fruit Bunch Fibers by Various Mineral Acids

    Directory of Open Access Journals (Sweden)

    M.N Mohamad Ibrahim

    2017-10-01

    Full Text Available Soda lignin from oil palm empty fruit bunch was directly isolated by various mineral acids i.e. sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid at three levels of concentration (20% v/v, 60%v/v and concentrated. A comparison study was performed through physicochemical properties and structural features using FT-IR, UV, 13C-NMR and nitrobenzene oxidation. The FT-IR results showed that there is no significant difference between the main structures of the lignin isolated by various acids. However, low concentration of phosphoric acid is preferable because of its highest yield. The S: V: H ratio of 7-15:6-11:1 as evaluated by the nitrobenzene oxidation procedure suggests that soda lignin can be classified as belonging to either the cereal straw on grass type. The UV results indicate that phosphoric acid consistently gave the highest absorbance value among the four acids tested in this study regardless of its concentration level. The C13-FTNMR spectra, suggest that the lignin structure is independent of the type of acid used for precipitation.

  4. Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique

    International Nuclear Information System (INIS)

    Mubarak, N.M.; Kundu, A.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.

    2014-01-01

    Empty fruit bunch (EFB) is one of the most abundant residues of the Palm oil mill industry in Malaysia. The novel magnetic bio-char was synthesized by single stage microwave heating technique, using EFB in the presence of ferric chloride hexahydrate. The effect of microwave powers, radiation time and impregnation ratio (IR) of ferric chloride hexahydrate to biomass were studied. Also the process parameters such as microwave powers, radiation times and IR were optimized using response surface method. The statistical analysis revealed that the optimum conditions for the high porosity magnetic bio-char production were at 900 W microwave power, 20 min radiation time and 0.5 (FeCl 3 : biomass) impregnation ratio. These newly produced magnetic bio-char have a high surface area of 890 m 2  g −1 and that leads to highly efficient in the removal of methylene blue (MB) with an efficiency of 99.9% from aqueous solution with a maximum adsorption capacity of 265 mg g −1 . - Highlights: • Magnetic bio-char production using discarded material EFB with chemical activation. • Single stage synthesis of magnetic bioc-har via microwave heating was narrated. • Effect of each process parameters on synthesis of magnetic bio-char was elaborated. • Magnetic bio-char has high surface area, high porosity and high adsorption capacity. • Novel magnetic bio-char adds new dimension to the materials as an adsorbent

  5. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment--A biorefinery approach.

    Science.gov (United States)

    Medina, Jesus David Coral; Woiciechowski, Adenise; Zandona Filho, Arion; Noseda, Miguel D; Kaur, Brar Satinder; Soccol, Carlos Ricardo

    2015-10-01

    Lignin is an important raw material for the sustainable biorefineries and also the forerunner of high-value added products, such as biocomposite for chemical, pharmaceutical and cement industries. Oil palm empty fruit bunches (OPEFB) were used for lignin preparation by successive treatment with 1% (w/w) H2SO4 at 121°C for 60 min and 2.5% NaOH at 121°C for 80 min resulting in the high lignin yield of 28.89%, corresponding to 68.82% of the original lignin. The lignin obtained was characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The results indicated a lignin with molecular masses ramping from 4500 kDa to 12,580 kDa. FTIR and NMR of these lignins showed more syringyl and p-hydroxyphenyl than guaiacyl units. Moderate acid/alkaline treatment provided lignin with high industrial potential and acid hydrolyzates rich in fermentable sugars and highly porous cellulosic fibers. Copyright © 2015. Published by Elsevier Ltd.

  6. Physical properties of activated carbon from fibers of oil palm empty fruit bunches by microwave assisted potassium hydroxide activation

    Science.gov (United States)

    Farma, Rakhmawati; Fatjrin, Delika; Awitdrus, Deraman, Mohamad

    2017-01-01

    The activated carbon adsorption was influenced by the quality of activated carbon. The activated carbon quality can be improved by chemical activation and microwave irradiation. In this study, activated carbon has been made using biomass from fibers of oil palm empty fruit bunches. The microwave irradiation was applied at various irradiation times of 5, 10, 15 and 20 minutes, and at output power of 630 Watt. The physical properties of activated carbon were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and methylene blue adsorption. Analysis of microstructure showed that the activated carbon was semicrystalline with two peaks of 002 and 100 at 2θ around of 22° and 44°, respectively. The values of stack height (Lc) before and after irradiation increased from 2,799 nm to 3,860 nm, which indicated increasing surface area. Characteristics of surface morphology of activated carbon showed the pores number increased after microwave irradiation. Microwave irradiation time of 15 minutes resulted the highest pores number justified in the activated carbon with their surface area of 319,60 m2/g and adsorption of methylene blue of 86,07 mg/g.

  7. Enzymatic production of cellulose nanofibers from oil palm empty fruit bunch (EFB) with crude cellulase of Trichoderma sp.

    Science.gov (United States)

    Aditiawati, Pingkan; Dungani, Rudi; Amelia, Cindy

    2018-03-01

    Oil palm empty fruit bunch (EFB) biomass was used as a source for isolation of cellulose nanofibers (CNF) using enzymatic method. Non-cellulosic component were removed from biomass by delignification process using inoculum of Marasmius sp. Nanocellulose production began with cryocrushing pre-treatment, enzyme addition, and post-treatment with sonication. In enzyme addition, crushed EFB suspended in sodium-citrate buffer and various percentage of crude cellulase enzyme from Trichoderma sp. which is 50%, 100%, and 200% (v/w), followed by incubation in various period which is 2, 3, and 4 days. Particle size analyzer, Scanning electron microscopy and Fourier-transmmission infrared spectroscopy were used to determine the properties of CNF. Maximum CNF size distribution of 2, 3, and 4 days incubation period was 30.717 and 70 nm, respectively (50% (v/w)); 94.75 and 635 nm, respectively (100% (v/w)); 837.51 and 433 nm, respectively (200% (v/w)). Almost 100% yield achieved from variation of 50% (v/w) enzyme and 2 days incubation period. FTIR spectroscopy analysis showed that some impurities in nanocellulose. SEM analysis showed that fibril nanocellulose, with larger size than PSA, mainly because aggregation of nanocellulose.

  8. Effect of Acid Hydrolysis and Thermal Hydrolysis on Solubility and Properties of Oil Palm Empty Fruit Bunch Fiber Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Sinyee Gan

    2015-11-01

    Full Text Available Cellulose hydrogel was produced from pretreated oil palm empty fruit bunch fiber (EFB that went through acid hydrolysis and thermal hydrolysis. The pretreated EFB was dissolved in LiOH/urea aqueous solution using the rapid dissolution method and was subjected to a crosslinking process with the aid of epichlorohydrin to form hydrogel. The effects of both hydrolyses’ time on average molecular weight (Mŋ, solubility, and properties of EFB hydrogels were evaluated. Both hydrolyses led to lower Mŋ, lower crystallinity index (CrI and hence, resulted in higher cellulose solubility. X-ray diffraction (XRD characterization revealed the CrI and transition of crystalline structure of EFB from cellulose I to II. The effects of hydrolysis time on the transparency, degree of swelling (DS, and morphology of the regenerated cellulose hydrogel were also investigated using an ultraviolet-visible (UV-Vis spectrophotometer and a Field emission scanning electron microscope (FESEM, respectively. These findings provide an efficient method to improve the solubility and properties of regenerated cellulose products.

  9. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Farma, R.; Awitdrus,; Taer, E. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-04-16

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  10. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    Science.gov (United States)

    Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi

    2018-03-01

    Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).

  11. Thermal degradation of Shredded Oil Palm Empty Fruit Bunches (SOPEFB) embedded with Cobalt catalyst by Thermogravimetric Analysis (TGA)

    Science.gov (United States)

    Alias, R.; Hamid, N. H.; Jaapar, J.; Musa, M.; Alwi, H.; Halim, K. H. Ku

    2018-03-01

    Thermal behavior and decomposition kinetics of shredded oil palm empty fruit bunches (SOPEFB) were investigated in this study by using thermogravimetric analysis (TGA). The SOPEFB were analyzed under conditions of temperature 30 °C to 900 °C with nitrogen gas flow at 50 ml/min. The SOPEFB were embedded with cobalt (II) nitrate solution with concentration 5%, 10%, 15% and 20%. The TG/DTG curves shows the degradation behavior of SOPEFB following with char production for each heating rate and each concentration of cobalt catalyst. Thermal degradation occurred in three phases, water drying phase, decomposition of hemicellulose and cellulose phase, and lignin decomposition phase. The kinetic equation with relevant parameters described the activation energy required for thermal degradation at the temperature regions of 200 °C to 350 °C. Activation energy (E) for different heating rate with SOPEFB embedded with different concentration of cobalt catalyst showing that the lowest E required was at SOPEFB with 20% concentration of cobalt catalyst..

  12. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ahmad Norhidayah

    2018-01-01

    Full Text Available Oil palm empty fruit bunch (EFB was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO to synthesize CuO modified catalytic carbon (CuO/EFBC for low-temperature removal of nitric oxide (NO from gas streams. CuO impregnation was optimised through response surface methodology (RSM using Box-Behnken Design (BBD in terms of metal loading (5-20%, sintering temperature (200-800˚C and sintering time (2-6 hours. The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625 was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature are significant (Prob.>F less than 0.05.

  13. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches.

    Science.gov (United States)

    Woon, James Sy-Keen; Mackeen, Mukram M; Illias, Rosli M; Mahadi, Nor M; Broughton, William J; Murad, Abdul Munir Abdul; Abu Bakar, Farah Diba

    2017-01-01

    Aspergillus niger , along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger . In this study, the gene encoding a cellobiohydrolase B ( cbh B) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic ® CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment. Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N -glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p -nitrophenyl-cellobioside ( p NPC) and p -nitrophenyl-cellobiotrioside ( p NPG3) but was not active towards crystalline substrates like Avicel ® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and

  14. Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites

    OpenAIRE

    N. S. Lani; N. Ngadi; A. Johari; M. Jusoh

    2014-01-01

    Nanocomposites, consisting of a polymeric matrix and nanosized elements as reinforcement, have attracted significant scientific attention because of their high mechanical performance. A large variety of nanocomposites have been prepared using bio-based materials as a matrix and nanoreinforcement, so that it can reduce the dependence on nondegradable products and move to a sustainable materials basis. The objective of this study was to isolate nanocellulose from empty fruit bunch (EFB) fiber a...

  15. Selective component degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam

    International Nuclear Information System (INIS)

    Baharuddin, Azhari Samsu; Sulaiman, Alawi; Kim, Dong Hee; Mokhtar, Mohd Noriznan; Hassan, Mohd Ali; Wakisaka, Minato; Shirai, Yoshihito; Nishida, Haruo

    2013-01-01

    In order to accelerate the bioconversion process of press-shredded empty fruit bunches (EFB), the effect of high-pressure steam pre-treatment (HPST) in degrading the lignocellulosic structure was investigated. HPST was carried out under various sets of temperature/pressure conditions such as 170/0.82, 190/1.32, 210/2.03, and 230 °C/3.00 MPa. It was noted that after HPST, the surface texture, color, and mechanical properties of the treated EFB had obviously altered. Scanning electron micrographs of the treated EFB exhibited effective surface erosion that had occurred along the structure. Moreover, the Fourier transform infrared and thermogravimetric analyses showed the removal of silica bodies and hemicellulose ingredients. X-ray diffraction profiles of the treated EFB indicated significant increases in crystallinity. These results reveal that HPST is an effective pre-treatment method for altering the physicochemical properties of the EFB and enhancing its biodegradability characteristics for the bioconversion process. -- Highlights: ► Bioconversion of empty fruit bunches (EFB) was accelerated by high-pressure steam pre-treatment. ► Scanning electron micrographs exhibited surface erosion as well as composting over 20 days. ► FT-IR and TG data showed the selective removal of silica bodies and hemicellulose ingredient. ► X-ray diffraction profiles of the treated EFB indicated significant increases in crystallinity

  16. Optimization of moistening solution concentration on xylanase activity in solid state fermentation from oil palm empty fruit bunches

    Science.gov (United States)

    Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang

    2018-03-01

    Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.

  17. Effect of irradiation ad incubation of palm oil empty fruit bunch medium on the Growth of rice mushroom (volvariella volvaceae)

    International Nuclear Information System (INIS)

    Darmawi; Suwadji, E.

    1998-01-01

    Study on the effect of irradiation and time incubation of composted palm oil empty fruit bunch (EFB) were conducted in growth chamber in the plastic bag as growth medium. Treatments were consisted of sterilization of composted EFB growth medium by autoclave heating were conducted at 2.0 kg/cm 2 for 40 minutes and gamma irradiation at the dose of 0, 15, 30, and 45kGy. After sterilization, EFB medium were inoculated using mushroom seed of V. volvaceae. The time of incubation of EFB medium after inoculation was 2 and 4 weeks before mushroom harvesting. Growth chamber was maintained at 28-35 0 C room temperature and humidity > 80%. Parameters of the experiment were determined on mushroom analysis i.e. fat, protein, and content and weight of mushroom. analysis od EFB medium after incubation were determined i.e. total fiber and percentage of rendement. Results of the experiment showed that dose of 45 kGy effected on mushroom fat content 0.52% which was decreasing regards to the delay of incubation period. Irradiation treatment did not effect EFB fat content compared to non irradiated EFB (0.82%). Irradiation treatment and one.variety produced number of plaincreasing on mushroom protein content. Mushroom starch content was obtained on the dose of 15 kGy and 4 weeks of incubation period 3.09 and 3.13% respectively. The dose of 45 kGy and autoclave heating were decreasing total fiber of EFB medium 29.29 and 28.02% respectively. The dose of 45 kGy on EFB medium with 2 weeks of incubation period produced weight of mushroom 30.92 and 27.73 g/bag respectively. (author)

  18. Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites

    Directory of Open Access Journals (Sweden)

    N. S. Lani

    2014-01-01

    Full Text Available Nanocomposites, consisting of a polymeric matrix and nanosized elements as reinforcement, have attracted significant scientific attention because of their high mechanical performance. A large variety of nanocomposites have been prepared using bio-based materials as a matrix and nanoreinforcement, so that it can reduce the dependence on nondegradable products and move to a sustainable materials basis. The objective of this study was to isolate nanocellulose from empty fruit bunch (EFB fiber and their reinforcing effect on polyvinyl alcohol (PVA/starch blend films. A series of PVA/starch films with different content of nanocellulose were prepared by solution casting method. Nanocellulose fiber with diameters ranging from 4 to 15 nm has been successfully prepared. On the other hand, PVA/starch films reinforced with nanocellulose fiber possess significantly improved properties compared to unreinforced film. From the results, PVA/starch films with the addition of 5% (v/v of nanocellulose exhibited best combination of properties. This nanocomposite was found to have tensile strength at about 5.694 MPa and elongation at break was 481.85%. In addition to good mechanical properties, this nanocomposite has good water resistance and biodegradability.

  19. Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost

    Science.gov (United States)

    Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.

    2017-06-01

    Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.

  20. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid/Oil Palm Empty Fruit Bunch Fiber Composites

    Directory of Open Access Journals (Sweden)

    Marwah Rayung

    2014-08-01

    Full Text Available In this work, biodegradable composites from poly(lactic acid (PLA and oil palm empty fruit bunch (OPEFB fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  1. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites.

    Science.gov (United States)

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-08-22

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  2. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches

    Directory of Open Access Journals (Sweden)

    James Sy-Keen Woon

    2017-10-01

    Full Text Available Background Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger. Methods In this study, the gene encoding a cellobiohydrolase B (cbhB from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic® CTec2 and was used to hydrolyse oil palm empty fruit bunch (OPEFB, one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR to screen for any compositional changes upon enzymatic treatment. Results Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC, p-nitrophenyl-cellobioside (pNPC and p-nitrophenyl-cellobiotrioside (pNPG3 but was not active towards crystalline substrates like Avicel® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum

  3. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods

    Directory of Open Access Journals (Sweden)

    Pei-Ling Tang

    2015-01-01

    Full Text Available In this study, oil palm empty fruit bunch (OPEFBF was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen and enzymatic [cutinase versus manganese peroxidase (MnP] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt. and reaction time (30, 90, and 180 minutes on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17±49.44 ppm hydroxybenzoic acid, 5.67±0.25 ppm p-hydroxybenzaldehyde, 25.57±1.64 ppm vanillic acid, 168.68±23.23 ppm vanillin, 75.44±6.71 ppm syringic acid, 815.26±41.77 ppm syringaldehyde, 15.21±2.19 ppm p-coumaric acid, and 44.75±3.40 ppm ferulic acid, among the tested methods. High sodium hydroxide concentration (10% wt. was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid. Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83±14.45 ppm hydroxybenzoic acid, 70.19±3.31 ppm syringaldehyde, 22.80±1.04 ppm vanillin, 27.06±1.20 ppm p-coumaric acid, and 50.19±2.23 ppm ferulic acid were produced.

  4. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in production of sugar

    Science.gov (United States)

    Nor, Nur Atikah Md; Mustapha, Wan Aida Wan; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) was pretreated using Deep Eutectic Solvent (DES) at different parameters to enable a highest yield of sugar. DES is a combination of two or more cheap and safe components to form a eutectic mixture through hydrogen bond interaction, which has a melting point lower than that of each component. DES can be used to replace ionic liquids (ILs), which are more expensive and toxic. In this study, OPEFB was pretreated with DES mixture of choline chloride: urea in 1:2 molar ratio. The pretreatment was performed at temperature 110°C and 80°C for 4 hours and 1 hour. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour). Enzymatic hydrolysis was done by using the combination of two enzymes, namely, Cellic Ctec2 and Cellic Htec2. The treated fiber is tested for crystallinity using XRD and functional group analysis using FTIR, to check the effect of the pretreatment on the fiber and compared it with the untreated fiber. From XRD analysis, DES successfully gave an effect towards degree of crystallinity of cellulose. Pretreatment A (110°C, 4 hours) and B (110°C, 1 hour) successfully reduce the percentage of crystallinity while pretreatment C (80°C, 4 hours) and D (80°C, 1 hour) increased the percentage of crystallinity. From FTIR analysis, DES cannot remove the functional group of lignin and hemicellulose but it is believed that DES can expose the structure of cellulose. Upon enzymatic hydrolysis, DES-treated fiber successfully produced sugar but not significantly when compared with raw. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour) produced glucose at the amount of 60.47 mg/ml, 66.33 mg/ml, 61.96 mg/ml and 59.12 mg/ml respectively. However, pretreatment C gave the highest xylose (70.01 mg/ml) production compared to other DES pretreatments.

  5. Enhancement of the Mechanical Properties and Dimensional Stability of Oil Palm Empty Fruit Bunch-Kenaf Core and Oil Palm Mesocarp-Kenaf Core Hybrid Fiber-Reinforced Poly(lactic acid Biocomposites by Borax Decahydrate Modification of Fibers

    Directory of Open Access Journals (Sweden)

    Abubakar Umar Birnin-Yauri

    2016-04-01

    Full Text Available The surfaces of kenaf core fiber (KCF, oil palm empty fruit bunch fiber (EFBF, and oil palm mesocarp fiber (OPMF, were chemically modified using 5 wt.% aqueous sodium tetraborate decahydrate (borax solution to enhance their hybrid fiber interface bonding with a polylactic acid (PLA matrix. The untreated fibers (KCF, EFBF, and OPMF and treated fibers (BXKCF, BXEFBF, and BXOPMF, were examined using chemical analysis, Fourier transform infrared (FTIR spectroscopy, and scanning electron microscopy (SEM. The treatment caused minimal removal of lignin and significant elimination of hemicellulose and waxy substances. The treated and untreated KCF (5%, as a secondary fiber, was randomly mixed, respectively, with treated and untreated EFBF and OPMF (55%, melt-blended with PLA (40%, and subsequently compression-molded to form hybrid fiber-PLA biocomposites. The resulting composite is aimed to exhibit improvements in its mechanical properties and dimensional stability. The optimum results for tensile and flexural properties, as well as water uptake and thickness swelling, were observed for the borax-treated fibers in comparison with the untreated fibers. The BXEFBF-BXKCF-PLA biocomposites exhibited the best results. This work demonstrated that aqueous borax modification of natural fibers could offer a possible option to the most common mercerization method.

  6. Enumeration, identification and decontamination of microorganisms on empty fruit bunches (EFB) and palm press fibre (PPF) from selected palm oil mills in the Peninsular Malaysia

    International Nuclear Information System (INIS)

    Foziah Ali; Muhammad Lebai Juri; Mat Rasol Awang

    1998-01-01

    The PPF and EFB temporarily disposed into the environment at the mill are heavily contaminated with micro-organisms, therefore require decontamination prior to utilisation. The current methods for decontaminating PPF and EFB has been briefly reviewed (Mat Rasol et. al.,1987). They suggested that these by-products can be effectively decontaminated by gamma-irradiation and the resulting sterilised by-products could subsequently be used for conversion into animals feeds by fermentation with fungi or chemical stock. The primary objectives of the investigation are: a) to enumerate contaminating microorganisms on PPF and EFB collected from various oil palm mills in the Peninsular Malaysia, and b) to establish the inactivation curves of the PPF and EFB from the selected palm oil mills

  7. Oil palm: domestication achieved?

    NARCIS (Netherlands)

    Gerritsma, W.; Wessel, M.

    1997-01-01

    The natural habitat of the oil palm comprises very wet and relatively dry niches in the lowland rain forest in West and Central Africa. The domestication of the oil palm started with the extraction of fruits from wild forest resources. When forests were cleared for shifting cultivation, oil palms

  8. Improvement of producer gas of Palm Oil Empty Fruit Bunch in a 50 kg/ hr prototype down draft gasifier by palletization

    International Nuclear Information System (INIS)

    Kerdsuwan, Somrat; Cherdphong, Somphot; Uthaikiattikul, Tada

    2010-01-01

    The main residue from palm oil industry is Palm Oil Empty Fruit Bunch (PEFB) which was considered as null-waste, can be rethinking and used as renewable or alternative fuel, since there is still hiding energy storage within. The proper technology for converting PEFB to renewable energy carrier is gasification technology. The gasification process of PEFB with and without feedstock preparation was investigated and compared in order to improve the efficiency of gasification process by pelletizing PEFB and to characterize the gasification reaction of pelletized PEFB. As received PEFB is solar dried and pelletized in a cylindrical form. The proximate and ultimate analysis of pelletized PEFB is investigated. Thereafter, the gasification process of as-received PEFB and pelletized PEFB was carried out in a 50 kg/ hr prototype down draft gasifier with varying the operating conditions, to characterize the gasification behavior of pelletized PEFB. From the experiments, the feedstock preparation, in this case pelletizing, can improve the performance of PEFB gasification. The results of experiment reveals that the heating value of producer gas and cold gas efficiency increases from 5.18 MJ/ Nm 3 for PEFB gasification without preparation to 6.5 MJ/ Nm 3 with feedstock preparation and from 61.72% to 79.73% respectively. (author)

  9. Carboxymethyl Cellulose (CMC) from Oil Palm Empty Fruit Bunch (OPEFB) in the new solvent Dimethyl Sulfoxide (DMSO)/Tetrabutylammonium Fluoride (TBAF)

    Science.gov (United States)

    Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan

    2015-06-01

    The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.

  10. UTILIZATION OF OIL PALM EMPTY FRUIT BUNCH (OPEFB FOR BIOETHANOL PRODUCTION THROUGH ALKALI AND DILUTE ACID PRETREATMENT AND SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2010-07-01

    Full Text Available Lignocellulosic biomass is a potential alternative source of bioethanol for energy. The lignocellulosics are abundantly available in Indonesia. Most of them are wastes of agriculture, plantation and forestry. Among those wastes, oil palm empty fruit bunch (OP EFB is one of a potential lignocellulosics to be converted to bioethanol. This EFB, which is wastes in oil palm factories, is quite abundant (around 25 million tons/year and also has high content of cellulose (41-47%. The conversion of OPEFB to ethanol basically consists of three steps which are pretreatment, hydrolysis of cellulose and hemicellulose to simple sugars (hexoses and pentoses, and fermentation of simple sugars to ethanol. Acid and alkali pretreatments are considered the simplest methods and are potentially could be applied in the next couple of years. However, there are still some problems that have to be overcome to make the methods economically feasible. The high price of cellulose enzyme that is needed in the hydrolysis step is one of factors that cause the cost of EFB conversion is still high. Thus, the search of potential local microbes that could produce cellulase is crucial. Besides that, it is also important to explore fermenting microbes that could ferment six carbon sugars from cellulose as well as five carbon sugars from hemicellulose, so that the conversion of lignocellulosics, particularly EFB, would be more efficient. Keywords: OPEFB, lignocellulosics, pretreatment, fermentation, ethanol

  11. The effect of temperature on the nutritional quality of feed from biological treated oil palm empty fruit bunch by Pleurotus sajor caju

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Hassan Hamdani Mutaat; Yusri Atan; Tamikazu Kume; Shoji Hashimoto; Shinpei Matsuhashi

    1998-01-01

    In solid state fermentation, Pleurotus sajor caju degrades oil palm Empty Fruit Bunch (EFB) fibre to give a useful feed material (1). Its chemical composition, dry matter digestibility both in vitro and in vivo have been characterised and described previously (2). However, the performance of this microorganism in degradation activity has not been described. Since CO sub 2 is the most important metabolic product of this fermentation, the microbial degradation activity is directly related to the rate and total CO sub 2 evolved in the fermentation. In this work a range of temperature were selected for fermentation, aiming to suit its practical application for countries of tropical climate in general, particularly Malaysia. The nutritional quality of fermented products obtained from the fermentation at different temperature were analysed and discussed

  12. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  13. Supply Chain Analysis, Delivered Cost, and Life Cycle Assessment of Oil Palm Empty Fruit Bunch Biomass for Green Chemical Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Carter Walker Reeb

    2014-07-01

    Full Text Available Financial, environmental, and supply chain analyses of empty fruit bunch (EFB biomass are needed for the development of a sustainable green chemicals industry in Malaysia. Herein, holistic analysis of the supply system and EFB life cycle cradle-to-gate are analyzed in an effort to make recommendations for the commercial-scale collection and delivery of EFB from crude palm oil (CPO extraction facilities to biorefineries in Malaysia. Supply chain modeling tracked inputs and outputs for financial analysis. The openLCA software was used for life cycle assessment (LCA. Allocation scenarios were used to explore the impact of accounting methodologies on the competitiveness of EFB compared to other feedstocks. Sensitivity analysis on the effect of transportation distance, emission flows, and allocation methods on resulting environmental impacts were conducted. The No Burden, Economic, and Mass allocation scenarios resulted in 17, -2.3, and -265 kg CO2-eq. BD tonne-1 EFB global warming impacts (GW, respectively. Delivered cost for EFB was calculated to be approximately 45 US$ BD tonne-1. Environmental burdens were sensitive to allocation scenario, covered area, and land use change. Delivered cost was sensitive to transport distance, covered area, and yield. It was shown that there is sufficient Malaysia EFB available for between 9 and 28 biorefineries, depending upon the scale of production.

  14. Thermal Stability of Oil Palm Empty Fruit Bunch (OPEFB) Nanocrystalline Cellulose: Effects of post-treatment of oven drying and solvent exchange techniques

    International Nuclear Information System (INIS)

    Indarti, E; Wanrosli, W D; Marwan

    2015-01-01

    Nanocrystallinecellulose (NCC) from biomass is a promising material with huge potentials in various applications. A big challenge in its utilization is the agglomeration of the NCC's during processing due to hydrogen bonding among the cellulose chains when in close proximity to each other. Obtaining NCC's in a non-agglomerated and non-aqueous condition is challenging. In the present work NCC's was isolated from oil palm empty fruit bunch (OPEFB) using TEMPO-oxidation reaction method. To obtain non-agglomerated and non-aqueous products, the NCC's underwent post-treatment using oven drying (OD) and solvent exchanged (SE) techniques. The thermal stability of all samples was determined from TGA and DTG profiles whilst FTIR was used to analyzethe chemical modifications that occurred under these conditions. NCC-SE has better thermal stability than the NCC-OD and its on-set degradation temperature and residue are also higher. FTIR analysis shows that NCC-SE has a slightly different chemical composition whereby the absorption band at 1300 cm -1 (due to C-O symmetric stretching) is absent as compared to NCC-OD indicating that in NCC-SE the carboxylate group is in acid form which contribute to its thermal stability (paper)

  15. Robust enzymatic hydrolysis of Formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol.

    Science.gov (United States)

    Cui, Xingkai; Zhao, Xuebing; Zeng, Jing; Loh, Soh Kheang; Choo, Yuen May; Liu, Dehua

    2014-08-01

    Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Preliminary plant design of Escherichia coli BPPTCC-EgRK2 cell culture for recombinant cellulase production using Oil Palm Empty Fruit Bunch (OPEFB) as substrate

    Science.gov (United States)

    Surya, E. A.; Rahman, S. F.; Zulamraini, S.; Gozan, M.

    2018-03-01

    An economic analysis of recombinant cellulase production from E. coli BPPTCC Eg-RK2 was conducted to support the fulfilling of Indonesia’s energy roadmap for ethanol production. The plant use oil palm empty fruit bunch (OPEFB) as primary substrate in cellulase production, with the expected lifetime of 12 years. The plant is assumed to be built in Indonesia and will fulfill 1% of total market demand. The effect of different pretreatment process (alkaline, steam explosion, and sequential acid-alkaline) on the economic value was also studied. A simulation using SuperPro Designer was used to calculate the mass and energy balance based on the kinetic parameter of E. coli BPPTCC-EgRK2. Technology evaluation show that alkaline pretreatment gave the highest yield with no known inhibitors formed. The steam explosion show the lowest lignin and hemicellulose removal and known to form known fermentation inhibitors. The net present value of alkaline, steam explosion, and sequential acid-alkaline pretreatment were USD 7,118,000; - USD 73,411,000 and USD -114,013,000 respectively, which mean alkaline pretreatment is the only economically feasible pretreatment method for recombinant cellulase production.

  17. Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production.

    Science.gov (United States)

    Duangwang, Sairudee; Ruengpeerakul, Taweesak; Cheirsilp, Benjamas; Yamsaengsung, Ram; Sangwichien, Chayanoot

    2016-03-01

    Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Optimization of Two-Step Acid-Catalyzed Hydrolysis of Oil Palm Empty Fruit Bunch for High Sugar Concentration in Hydrolysate

    Directory of Open Access Journals (Sweden)

    Dongxu Zhang

    2014-01-01

    Full Text Available Getting high sugar concentrations in lignocellulosic biomass hydrolysate with reasonable yields of sugars is commercially attractive but very challenging. Two-step acid-catalyzed hydrolysis of oil palm empty fruit bunch (EFB was conducted to get high sugar concentrations in the hydrolysate. The biphasic kinetic model was used to guide the optimization of the first step dilute acid-catalyzed hydrolysis of EFB. A total sugar concentration of 83.0 g/L with a xylose concentration of 69.5 g/L and a xylose yield of 84.0% was experimentally achieved, which is in well agreement with the model predictions under optimal conditions (3% H2SO4 and 1.2% H3PO4, w/v, liquid to solid ratio 3 mL/g, 130°C, and 36 min. To further increase total sugar and xylose concentrations in hydrolysate, a second step hydrolysis was performed by adding fresh EFB to the hydrolysate at 130°C for 30 min, giving a total sugar concentration of 114.4 g/L with a xylose concentration of 93.5 g/L and a xylose yield of 56.5%. To the best of our knowledge, the total sugar and xylose concentrations are the highest among those ever reported for acid-catalyzed hydrolysis of lignocellulose.

  19. Kinetic study of Escherichia coli BPPTCC-EgRK2 to produce recombinant cellulase for ethanol production from oil palm empty fruit bunch

    Science.gov (United States)

    Limoes, S.; Rahman, S. F.; Setyahadi, S.; Gozan, M.

    2018-03-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 46,77% (w/w) of cellulose. The high cellulose content of OPEFB can be used as a substrate for bacteria cultivation to produce cellulase. By using OPEFB as an alternative substrate, the production cost of cellulase in industrial scale can be suppressed. However, currently there are no available research that simulate a cellulase production plant design. Prior to simulating the cellulase plant design, kinetic studies of bacteria used in cultivation are needed to create an accurate simulation. In this research, kinetic studies of E. coli BPPTCC-EgRK2 growth were examined with the Monod approach to get the Monod constant (Ks) and maximum specific growth rate (μmax). This study found that E. coli BPPTCC-EgRK2 have μmax and Ks of 1.581 and 0.0709 respectively. BPPTCC-EgRK2 produced intracellular cellulase, thus gave linear correlation between cell concentration and cellulase production.

  20. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology

    International Nuclear Information System (INIS)

    Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L.

    2009-01-01

    The effects of three preparation variables: CO 2 activation temperature, CO 2 activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO 2 activation temperature of 814 deg. C, CO 2 activation time of 1.9 h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m 2 /g, total pore volume of 0.6 cm 3 /g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.

  1. Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Zullaikah Siti

    2018-01-01

    Full Text Available The utilization of Indonesia low rank coal should be maximized, since the source of Indonesia law rank coals were abundant. Pyrolysis of this coal can produce liquid product which can be utilized as fuel and chemical feedstocks. The yield of liquid product is still low due to lower of comparison H/C. Since coal is non-renewable source, an effort of coal saving and to mitigate the production of greenhouse gases, biomass such as oil palm empty fruit bunch (EFB would added as co-feeding. EFB could act as hydrogen donor in co-pyrolysis to increase liquid product. Co-pyrolysis of Indonesia low rank coal and EFB were studied in a drop tube reactor under the certain temperature (t= 500 °C and time (t= 1 h used N2 as purge gas. The effect of blending ratios of coal/EFB (100/0, 75/25, 50/50, 25/75 and 0/100%, w/w % on the yield and composition of liquid product were studied systematically. The results showed that the higher blending ratio, the yield of liquid product and gas obtained increased, while the char decreased. The highest yield of liquid product (28,62 % was obtained used blending ratio of coal/EFB = 25/75, w/w%. Tar composition obtained in this ratio is phenol, polycyclic aromatic hydrocarbons, alkanes, acids, esters.

  2. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12.

    Science.gov (United States)

    Ye, Lidan; Hudari, Mohammad Sufian Bin; Zhou, Xingding; Zhang, Dongxu; Li, Zhi; Wu, Jin Chuan

    2013-06-01

    Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity > 99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.

  3. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2018-03-01

    Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  4. Effect of carbonization temperature on the physical and electrochemical properties of supercapacitor electrode from fibers of oil palm empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, M. M.; Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Basri, N. H.; Omar, R.; Nor, N. S. M.; Dolah, B. N. M. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Awitdrus,; Farma, R.; Taer, E. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia)

    2015-04-16

    Self-adhesive carbon grains (SACG) was prepared from fibers of oil palm empty fruit bunches. The SACG green monoliths were carbonized in N{sub 2} environment at 400, 500, 600 and 700°C to produce carbon monoliths labeled as CM1, CM2, CM3 and CM4 respectively. The CMs were activated in CO{sub 2} surrounding at 800°C for 1 hour to produce activated carbon monolith electrodes (ACM1, ACM2, ACM3 and ACM4). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy (FESEM) and N{sub 2} adsorption-desorption isotherm techniques. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells’ performances were investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) standard techniques. In this paper we report the physical and electrochemical properties of the ACM electrodes by analyzing the influence of the carbonization temperature on these properties.

  5. Effect of carbonization temperature on the physical and electrochemical properties of supercapacitor electrode from fibers of oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Ishak, M. M.; Deraman, M.; Talib, I. A.; Basri, N. H.; Omar, R.; Nor, N. S. M.; Dolah, B. N. M.; Awitdrus,; Farma, R.; Taer, E.

    2015-01-01

    Self-adhesive carbon grains (SACG) was prepared from fibers of oil palm empty fruit bunches. The SACG green monoliths were carbonized in N 2 environment at 400, 500, 600 and 700°C to produce carbon monoliths labeled as CM1, CM2, CM3 and CM4 respectively. The CMs were activated in CO 2 surrounding at 800°C for 1 hour to produce activated carbon monolith electrodes (ACM1, ACM2, ACM3 and ACM4). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy (FESEM) and N 2 adsorption-desorption isotherm techniques. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells’ performances were investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) standard techniques. In this paper we report the physical and electrochemical properties of the ACM electrodes by analyzing the influence of the carbonization temperature on these properties

  6. Enzymatic hydrolysis of oil palm empty fruits bunch fiber using Celluclast® and Accellerase® BG for sugar production

    Science.gov (United States)

    Salleh, Noor Shafryna; Murad, Abdul Munir Abdul

    2016-11-01

    In this work, the ability of commercial Trichoderma reesei cellulases preparation, Celluclast® or in combination with Accellerase®BG β-glucosidase to hydrolyse pretreated oil palm empty fruit bunch (OPEFB) was evaluated. Celluclast® alone hydrolyzed OPEFB to produce 2.41±0.44 mg glucose per gram OPEFB. However, the production of glucose was significantly improved with supplementation of Accellerase®BG (8.12±0.93 mg/g). This result suggested that the endoglucanases and exoglucanases in Celluclast® and β-glucosidase in Accellerase®BG able to work synergistically to increase the production of glucose from OPEFB. In addition, the production of xylose was also improved by 30% when the enzyme mixture was used. The result suggested that the mixture of Celluclast® with Accellerase®BG work synergistically to improve the production of sugars by removing the inhibition by cellobiose for complete cellulose hydrolysis. The production of glucose and xylose from OPEFB wastes showed the potential of this biomass as the source of renewable energy and fine chemicals production in Malaysia.

  7. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon

    International Nuclear Information System (INIS)

    Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H.

    2009-01-01

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (ΔH o ), standard entropy (ΔS o ), standard free energy (ΔG o ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  8. Synthesis and characterization of oil palm empty fruit bunch-grafted-polyvinyl alcohol (OPEFB-g-PVA) hydrogel for removal of copper ions from aqueous solution

    Science.gov (United States)

    Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah

    2017-12-01

    Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.

  9. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    Directory of Open Access Journals (Sweden)

    Ireana Yusra A. Fatah

    2014-10-01

    Full Text Available The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC. The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose were carried out by Fourier transform infrared spectroscopy (FT-IR and X-ray diffraction (XRD. The morphology and thermal stability were investigated by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric (TGA analyses, respectively. The FTIR results showed that lignin and hemicellulose were removed effectively from the extracted cellulose nanofibrils. XRD analysis revealed that the percentage of crystallinity was increased from raw EFB to microfibrillated cellulose (MFC, but the decrease for NFC might due to a break down the hydrogen bond. The size of the NFC was determined within the 5 to 10 nm. The TGA analysis showed that the isolated NFC had high thermal stability. The finding of present study reveals that combination of sulphuric acid hydrolysis and high-pressure homogenization could be an effective chemo-mechanical process to isolate cellulose nanofibers from cellulosic plant fiber for reinforced composite materials.

  10. Waste to Wealth: Hidden Treasures in the Oil Palm Industry

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Astimar Abdul Aziz; Ravigadevi Sambathamurthi; Mohd Basri Wahid

    2010-01-01

    The palm oil industry plays an important role in the creation of waste to wealth using the abundant oil palm biomass resources generated from palm oil supply chain i.e. upstream to downstream activities. The oil palm biomass and other palm-derived waste streams available are oil palm trunks (felled), fronds (felled and pruned), shell, mesocarp fibers, empty fruit bunches (EFB), palm oil mill effluent (POME), palm kernel expelled (PKE), palm fatty acid distillates (PFAD), used frying oil (UFO), residual oil from spent bleaching earth (SBE) and glycerol. For 88.5 million tonnes of fresh fruit bunches (FFB) processed in 2008, the amount of oil palm biomass generated was more than 25 million tones (dry weight basis) with the generation of 59 million tonnes of POME from 410 palm oil mills. Oil palm biomass consists of mainly lignocellulose materials that can be potentially and fully utilized for renewable energy, wood-based products and high value-added products such as pytonutrients, phenolics, carotenes and vitamin E. Oil palm biomass can be converted to bio energy with high combustible characteristics such as briquettes, bio-oils, bio-producer gas, boiler fuel, biogas and bio ethanol. Oil palm biomass can also be made into wood-based products such as composite and furniture, pulp and paper and planting medium. The recovery of phenolics from POME as valuable antioxidants has potential drug application. Other possible applications for oil palm biomass include fine chemicals, dietary fibers, animal feed and polymers. There must be a strategic and sustainable resource management to distribute palm oil and palm biomass to maximize the use of the resources so that it can generate revenues, bring benefits to the palm oil industry and meet stringent sustainability requirements in the future. (author)

  11. Briquetting of empty fruit bunch fibre and palm shell using piston press technology

    International Nuclear Information System (INIS)

    Nasrin, A.B.; Choo, Y.M.; Lim, W.S.

    2010-01-01

    Malaysian palm oil industry produces vast amount of biomass, mainly from the palm oil milling sector. Converting oil palm biomass into a uniform solid fuel through briquetting process appears to be potentially attractive solution in upgrading its properties and to add value as renewable energy fuels. In this study, raw materials including empty fruit bunch (EFB), in fibrous form and palm shell were mixed in certain ratios and densified into briquettes at high pressure using piston press technology. The blending ratios of shell to EFB (w/ w%) for the production trials were fixed at 20%, 30%, 40% and 60%. The raw materials and briquettes produced were analysed to determine their physical and chemical properties. From the analysis, it was found that, the average calorific values for the blending ratios of 20% to 60% ranged from 17995 to 18322 kJ/ kg. The specific densities ranged from 1130 to 1250 kg/ m 3 . The properties of palm biomass briquettes obtained from the study were compared with those of the commercial sawdust briquettes according to DIN 51731. The details of the study were highlighted in this paper. Overall, the presence of high shell in palm briquette increased the calorific value, specific density and quality of the briquette as well. Palm biomass briquettes can become an important renewable energy fuel source in the future for the global market. (author)

  12. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  13. Electron beam pasteurised oil palm waste: a potential feed resource

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Hassan Hamdani Mutaat; Tamikazu Kume; Tachibana, H.

    2002-01-01

    Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

  14. Pediatric Age Palm Oil Consumption.

    Science.gov (United States)

    Di Genova, Lorenza; Cerquiglini, Laura; Penta, Laura; Biscarini, Anna; Esposito, Susanna

    2018-04-01

    Palm oil is widely used in the food industry for its chemical/physical properties, low cost and wide availability. Its widespread use has provoked an intense debate about whether it is a potential danger to human health. In a careful review of the scientific literature, we focused on nutritional characteristics and health effects of the use of palm oil with regards to children, seeking to determine whether there is evidence that justifies fears about the health effects of palm oil. Our review showed that palm oil represents a significant source of saturated fatty acids, to which scientific evidence attributes negative health effects when used in excess, especially with regards to cardiovascular diseases. However, to date, there is no evidence about the harmful effects of palm oil on the health of children. Nevertheless, palm oil has possible ill health effects linked to its composition of fatty acids: its consumption is not correlated to risk factors for cardiovascular diseases in young people with a normal weight and cholesterol level; the elderly and patients with dyslipidaemia or previous cardiovascular events or hypertension are at a greater risk. Therefore, the matter is not palm oil itself but the fatty-acid-rich food group to which it belongs. The most important thing is to consume no more than 10% of saturated fatty acids, regardless of their origin and regardless of one's age. Correct information based on a careful analysis of the scientific evidence, rather than a focus on a singular presumed culprit substance, should encourage better lifestyles.

  15. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil.

    Science.gov (United States)

    Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2018-05-01

    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. for palm kernel oil extraction

    African Journals Online (AJOL)

    user

    Palm nut shell is an aggregate replacement material in concrete production [1]. It is also an economically and ... requirements amongst the machine parameters of vegetable oil expellers. A manually-operated screw ... using such indices as feed rate, capacity, percentage oil recovery, machine efficiency, and oil yield.

  17. Coconut, date and oil palm genomics

    Science.gov (United States)

    A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...

  18. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  19. BIODIESEL FUELS FROM PALM OIL, PALM OIL METHYLESTER ...

    African Journals Online (AJOL)

    a

    determined by methods outlined by A.O.C.S. (American Oil Chemist Society) [12], Usoro et al. [15], Clark [2], and ... diesel have shown that novel vegetable diesels could be obtained from palm oil. .... C-H stretch for alkenes and aromatics.

  20. Gastric emptying of oils in the rat

    International Nuclear Information System (INIS)

    Palin, K.J.; Whalley, D.R.; Wilson, C.G.; Phillips, A.J.; Davis, S.S.

    1982-01-01

    Sulphur colloid, labelled with technetium 99 and emulsified with arachis oil, miglyol 812 or liquid paraffin, was administered orally to male rats. A gamma camera, linked to a computer was used for imaging for 108 mins. after administration. The efficiency of the oils to aid stomach emptying was compared and arachis oil found to be the most effective. (U.K.)

  1. Oil palm fruit fibre promotes the yield and quality of Lentinus ...

    African Journals Online (AJOL)

    Agricultural production and the agro-food industry furnish large volumes of solid wastes, which when unutilized could lead to environmental pollution. ... oil palm fruit fibre (OPFF) and oil palm empty fruit bunch (OPEFB) significantly influenced crop cycle time, yield, nutritional properties and market quality of the mushroom.

  2. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    Science.gov (United States)

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  3. Transgenic oil palm: production and projection.

    Science.gov (United States)

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  4. Declining Yield of Oil Palm: A case study of Four Oil Palm ...

    African Journals Online (AJOL)

    This paper investigates the achievable yield and extent of oil palm yield decline over time in four large oil palm plantations in Nigeria and Cameroon. In Nigeria the highest achieved palm oil yield was 2.64 tonnes per hectare for 9-year-old palms in one of the plantations studied. By the eighteenth year, the yield had ...

  5. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment

    International Nuclear Information System (INIS)

    Chan, Yi Herng; Yusup, Suzana; Quitain, Armando T.; Tan, Raymond R.; Sasaki, Mitsuru; Lam, Hon Loong; Uemura, Yoshimitsu

    2015-01-01

    Highlights: • Water is used as a clean solvent to liquefy palm biomass to bio-oil. • The optimum liquefaction condition of oil palm biomass is 390 °C and 25 MPa. • Optimum reaction time for liquefaction of empty fruit bunch and palm mesocarp fiber is 120 min. • Optimum reaction time for liquefaction of palm kernel shell is 240 min. • From the life cycle assessment, a net 2.29 kg CO 2 equivalent is generated per kg of bio-oil produced. - Abstract: This paper presents the studies on the effect of three process parameters; temperature, pressure and reaction time on the subcritical and supercritical hydrothermal liquefaction of oil palm empty fruit bunch, palm mesocarp fiber and palm kernel shell. The effect of temperature (330–390 °C), pressure (25–35 MPa) and reaction time (30–240 min) on bio-oil yields were investigated using a Inconel batch reactor. The optimum liquefaction condition for empty fruit bunch, palm mesocarp fiber and palm kernel shell was at supercritical condition of water; 390 °C and 25 MPa. For the effect of reaction time, bio-oil from empty fruit bunch and palm mesocarp fiber attained maximum yields at 120 min, whereas bio-oil yield from palm kernel shell continued to increase at reaction time of 240 min. Lastly, a life cycle assessment based on a conceptual biomass hydrothermal liquefaction process for bio-oil production was constructed and presented

  6. Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites

    Science.gov (United States)

    Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.

    2017-12-01

    Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.

  7. Research advancements in palm oil nutrition*

    Science.gov (United States)

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  8. Research advancements in palm oil nutrition.

    Science.gov (United States)

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-10-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers ( sn) -2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

  9. Material flow analysis for resource management towards resilient palm oil production

    Science.gov (United States)

    Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.

    2018-03-01

    Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.

  10. Life cycle assessment of two palm oil production systems

    International Nuclear Information System (INIS)

    Stichnothe, Heinz; Schuchardt, Frank

    2011-01-01

    In 2009 approx. 40 Mt of palm oil were produced globally. Growing demand for palm oil is driven by an increasing human population as well as subsidies for biodiesel and is likely to increase further in coming years. The production of 1 t crude palm oil requires 5 t of fresh fruit bunches (FFB). On average processing of 1 t FFB in palm oil mills generates 0.23 t empty fruit bunches (EFB) and 0.65 t palm oil mill effluents (POME) as residues. In this study it is assumed that land use change does not occur. In order to estimate the environmental impacts of palm oil production a worst and a best case scenario are assessed and compared in the present study using 1000 kg of FFB as functional unit. The production and treatment of one t FFB causes more than 460 kg CO 2eq in the worst case scenario and 110 kg CO 2eq in the best case scenario. The significant greenhouse gas (GHG) emission reduction is achieved by co-composting residues of the palm oil mill. Thus treating those residues appropriately is paramount for reducing environmental impacts particularly global warming potential (GWP) and eutrophication potential (EP). Another important contributor to the EP but also to the human toxicity potential (HTP) is the biomass powered combined heat and power (CHP) plant of palm oil mills. Frequently CHP plants of palm oil mills operate without flue gas cleaning. The CHP plant emits heavy metals and nitrogen oxides and these account for 93% of the HTP of the advanced palm oil production system, of which heavy metal emissions to air are responsible for 79%. The exact emission reduction potential from CHP plants could not be quantified due to existing data gaps, but it is apparent that cleaning the exhaust gas would reduce eutrophication, acidification and toxicity considerably. -- Highlights: → We have estimated the environmental impacts of two palm oil production systems. → Residues from palm oil mills are a wasted resource rather than waste. → Co-composting of EFB and

  11. Palm oil use in Mortadella

    Directory of Open Access Journals (Sweden)

    Dany Pérez Dubé

    2010-06-01

    Full Text Available Palm (Elaeis guineensis oil and its fractions can be combined to obtain designed fats with desired composition and physical properties. Incorporation of this type of ingredient in meat products can influence meat products process and sensory quality. In this study, a mixture of palm refined oil and stearin were employed to replace pork fat in a mortadella type product. A two-component mixture design was employed by the D-optimum design. Moisture, fat, protein, cocking losses and instrumental texture profiles were determined, besides a sensory evaluation. Results indicate that 8.8 % of pork fat can be replaced to obtain a good quality mortadella. Maximum palm fat in formulation was 44% of total fat content.

  12. Polymeric reaction between aldehyde group in furfural and phenolic derivatives from liquefaction of oil palm empty fruit bunch fiber as phenol-furfural resin

    Science.gov (United States)

    Masli, M. Z.; Zakaria, S.; Chia, C. H.; Roslan, R.

    2016-11-01

    Resinification of liquefied empty fruit bunch with furfural (LEFB-Fu) was performed. During the resinification process, the samples were taken every hour up to 4 hours. FTIR analysis of the samples was conducted to understand the progress of the reaction. It showed that the bands of 1512 cm-1 and 1692 cm-1 evolving and diminishing respectively, indicating the consumption of furfural. The postulation of polymerization was also proven as the increasing extent of substitution of aromatic ring observed.

  13. Palm oil and the heart: A review.

    Science.gov (United States)

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-03-26

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono

  14. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    OpenAIRE

    Lucy Arianie; Utin Dewi Pebriyana; Yudiansyah; Nora Idiawati; Deana Wahyuningrum

    2014-01-01

    Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB) was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux ...

  15. VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL

    Directory of Open Access Journals (Sweden)

    Z.S. Nazirah

    2013-12-01

    Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.

  16. Factors affecting oil palm production in Ondo state of Nigeria

    African Journals Online (AJOL)

    sola

    ... affecting oil palm production in predominantly oil palm producing areas of Ondo state of Nigeria. ... This was because the mangrove swamp zone does not .... Research stations e.g. NIFOR. Radio .... palm production management practices.

  17. Factors Affecting Oil Palm Production in Ondo State of Nigeria ...

    African Journals Online (AJOL)

    The discovery of crude oil and the civil war adversely affected oil palm production in Nigeria. This has resulted in scarcity and high cost of palm products and palm oil. The study therefore investigated the factors influencing oil palm production in Ondo State, Nigeria. One hundred and fifty respondents were selected from ...

  18. Blending of palm oil, palm stearin and palm kernel oil in the preparation of table and pastry margarine.

    Science.gov (United States)

    Norlida, H M; Md Ali, A R; Muhadhir, I

    1996-01-01

    Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of pastry margarine.

  19. Productivity improvement with green approach to palm oil factory productivity

    Science.gov (United States)

    Matondang, N.

    2018-02-01

    The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.

  20. A case study of pyrolysis of oil palm wastes in Malaysia

    Science.gov (United States)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  1. Palm oil based polyols for acrylated polyurethane production

    International Nuclear Information System (INIS)

    Rida Tajau; Mohd Hilmi Mahmood; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2006-01-01

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  2. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  3. Effect Of Weed On Oil Palm Inflorenscence Production: Implication ...

    African Journals Online (AJOL)

    Weed consistently depressed the performance of oil palm and this depressive effect was attributed to aggressive growth resources, smothering of the oil palm and preventing the palm from proper ventilation and solar radiation. Weed interference on inflorescence production of oil palm was assessed with the view of ...

  4. Penetuan Bilangan Iodin pada Hydrogenated Palm Kernel Oil (HPKO) dan Refined Bleached Deodorized Palm Kernel Oil (RBDPKO)

    OpenAIRE

    Sitompul, Monica Angelina

    2015-01-01

    Have been conducted Determination of Iodin Value by method titration to some Hydrogenated Palm Kernel Oil (HPKO) and Refined Bleached Deodorized Palm Kernel Oil (RBDPKO). The result of analysis obtained the Iodin Value in Hydrogenated Palm Kernel Oil (A) = 0,16 gr I2/100gr, Hydrogenated Palm Kernel Oil (B) = 0,20 gr I2/100gr, Hydrogenated Palm Kernel Oil (C) = 0,24 gr I2/100gr. And in Refined Bleached Deodorized Palm Kernel Oil (A) = 17,51 gr I2/100gr, Refined Bleached Deodorized Palm Kernel ...

  5. Impact of Nigerian Institute For Oil Palm Research (N.I.F.O.R.) on oil ...

    African Journals Online (AJOL)

    NIFOR) on oil palm industry in Nigeria. It interfaces of achievements and developmental strides of the Institute on oil palm industry in Nigeria from its was establishment during colonial period as Oil Palm Research Station (OPRS.) in 1939 ...

  6. Rainforests for palm oil?; Regenwaldopfer fuer Palmoel?

    Energy Technology Data Exchange (ETDEWEB)

    Dany, C.

    2007-07-02

    Environmentalists are all fired up as rainforests are cut down for palm oil production in south eastern Asia. An international certification system is to ensure sustainable production and save the rainforests. (orig.)

  7. Genetic determinism of oil acidity among some DELI oil palm ...

    African Journals Online (AJOL)

    Genetic determinism of oil acidity among some DELI oil palm (Elaeis guineensis Jacq.) progenies. Benoit Constant Likeng-Li-Ngue, Joseph Martin Bell, Georges Franck Ngando-Ebongue, Godswill Ntsefong Ntsomboh, Hermine Bille Ngalle ...

  8. A REVIEW OF OIL PALM BIOCOMPOSITES FOR FURNITURE DESIGN AND APPLICATIONS: POTENTIAL AND CHALLENGES

    OpenAIRE

    Siti Suhaily,; Mohammad Jawaid,; H. P. S. Abdul Khalil,; A. Rahman Mohamed; , F. Ibrahim

    2012-01-01

    This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agro-based biocomposites to meet the needs of future population growth and te...

  9. Palm Oil Milling Wastes and Sustainable Development

    OpenAIRE

    A. C. Er; Abd. R.M. Nor; Katiman Rostam

    2011-01-01

    Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of waste...

  10. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  11. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper.

    Science.gov (United States)

    Ferrer, Ana; Filpponen, Ilari; Rodríguez, Alejandro; Laine, Janne; Rojas, Orlando J

    2012-12-01

    Different cellulose pulps were produced from sulfur-free chemical treatments of Empty Palm Fruit Bunch Fibers (EPFBF), a by-product from palm oil processing. The pulps were microfluidized for deconstruction into nanofibrillated cellulose (NFC) and nanopaper was manufactured by using an overpressure device. The morphological and structural features of the obtained NFCs were characterized via atomic force and scanning electron microscopies. The physical properties as well as the interactions with water of sheets from three different pulps were compared with those of nanopaper obtained from the corresponding NFC. Distinctive chemical and morphological characteristics and ensuing nanopaper properties were generated by the EPFBF fibers. The NFC grades obtained compared favorably with associated materials typically produced from bleached wood fibers. Lower water absorption, higher tensile strengths (107-137 MPa) and elastic modulus (12-18 GPa) were measured, which opens the possibility for valorization of such widely available bioresource. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Pollutant in palm oil production process.

    Science.gov (United States)

    Hosseini, Seyed Ehsan; Abdul Wahid, Mazlan

    2015-07-01

    Palm oil mill effluent (POME) is a by-product of the palm industry and it releases large amounts of greenhouse gases (GHGs). Water systems are also contaminated by POME if it is released into nonstandard ponds or rivers where it endangers the lives of fish and water fowl. In this paper, the environmental bottlenecks faced by palm oil production were investigated by analyzing the data collected from wet extraction palm oil mills (POMs) located in Malaysia. Strategies for reducing pollution and technologies for GHG reduction from the wet extraction POMs were also proposed. Average GHG emissions produced from processing 1 ton of crude palm oil (CPO) was 1100 kg CO2eq. This amount can be reduced to 200 kg CO2eq by capturing biogases. The amount of GHG emissions from open ponds could be decreased from 225 to 25 kg CO2eq/MT CPO by covering the ponds. Installation of biogas capturing system can decrease the average of chemical oxygen demand (COD) to about 17,100 mg/L and stabilizing ponds in the final step could decrease COD to 5220 mg/L. Using a biogas capturing system allows for the reduction of COD by 80% and simultaneously using a biogas capturing system and by stabilizing ponds can mitigate COD by 96%. Other ways to reduce the pollution caused by POME, including the installation of wet scrubber vessels and increasing the performance of biogas recovery and biogas upgrading systems, are studied in this paper. Around 0.87 m3 POME is produced per 1 ton palm fruit milled. POME consists of around 2% oil, 2-4% suspended solid, 94-96% water. In palm oil mills, more than 90% of GHGs were emitted from POME. From 1 ton crude palm oil, 1100 kg CO2eq GHGs are generated, which can be reduced to 200 kg CO2eq by installation of biogas capturing equipment.

  13. Alkaline Treatment of Oil Palm Frond Fibers by Using Extract of Oil Palm EFB Ash for Better Adhesion toward Polymeric Matrix

    Directory of Open Access Journals (Sweden)

    Warman Fatra

    2015-10-01

    Full Text Available In Indonesia, 187 million tons of biomass were produced from 8.11 million ha of oil palm plantation in 2009. This massive amount of biomass mainly consists of oil palm fronds (OPF and oil palm empty fruit bunches (EFB, which are normally categorized as waste. The properties of OPF fibers compared to those of synthetic fibers, such as low density, low cost, less abrasion of equipment, and safer production, makes them an attractive reinforcement for composite materials. In this work, the utilization of oil palm empty fruit bunch ash for OPF fiber-polyester resin composite and the effect of process conditions were studied. Water absorption, tensile and flexural strength were used to characterize the effects of alkaline treatment on modified OPF fibers in polyester resin. The investigation focused on the effect of alkaline treatment time. Treatment temperature and liquid to solid ratio were analyzed using Response Surface Method-Central Composite Design (RSM-CCD. The highest tensile strength (44.87 MPa was achieved at 12 hours soaking time, at 40°C treatment temperature and 5:1 water to ash ratio. The highest flexural strength (120.50 MPa was obtained at 1.3 hours soaking time, 4 dissolving ratio and 35°C treatment temperature. The lowest water absorption of composite (3.00% was achieved at the longest soaking time (14.7 hours, 4 dissolving ratio and 35°C treatment temperature. Variance of soaking time, dissolving ratio and temperature in the alkaline treatment process using extract of oil palm empty fruit bunch ash significantly affected the mechanical and physical properties of the oil palm frond fibers reinforced composite.

  14. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2013-12-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae  for 5 days produce 0,69% of bioethanol.

  15. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2014-06-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl- 3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae for 5 days produce 0,69% of bioethanol.

  16. Analysis of total hydrogen content in palm oil and palm kernel oil ...

    African Journals Online (AJOL)

    A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditio-nal methods in Ghana. An equipment consisting of an 241Am-Be neutron source and 3He neutron ...

  17. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    African Journals Online (AJOL)

    In this study, co-composting of pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from 500 m3 closed anaerobic methane digested tank was carried out. High nitrogen and nutrients content were observed in the POME anaerobic sludge. The sludge was subjected to the ...

  18. Modification of Oil Palm Plantation Wastes as Oil Adsorbent for Palm Oil Mill Effluent (POME)

    International Nuclear Information System (INIS)

    Noraisah Jahi; Ling, E.S.; Rizafizah Othaman; Suria Ramli

    2015-01-01

    This research was conducted to modify oil palm solid wastes chemically to become oil adsorbent for palm oil mill effluent (POME). The purpose of modification on oil palm leaves (OPL) and oil palm frond (OPF) was to change the hydrophilic nature to a more hydrophobic character. This study also exploited the production of sorbent materials with high efficiency in the oil uptake for POME from OPL and OPF. Chemical modification was carried out using 200 mL of 1.0 M lauric acid solution for 6 hrs at room temperature. The modified OPL and OPF were preceded to adsorption test for POME and the capacity of oil adsorbed was compared between them. FTIR analysis supported the modification to occur with the increase in a peak of C-H group and the presence of C=O originated from lauric acid structure chain. The hydrophobicity of modified OPL and OPF samples was supported by XRD and contact angle analysis with modified OPL became more hydrophobic than the modified OPF, which had been 38.15 % and 24.67 % respectively. Both the analyses proved that the result from the oil adsorption test on POME showed the presence of a new peak attribute at C=C stretching of aromatics for the oil in POME proved that it was attached on the sorbent materials. Based on SEM analysis, the perforated and rough surface had been observed on modified OPL and OPF samples because oil layers on OPL and OPF surfaces were observed on the modified samples after the adsorption test. All the analyses in the study agreed that the results from oil adsorption test showed that the modified OPL had higher adsorption capacity than the modified OPF with the percentage of oil uptake at 83.74 % and 39.84 % respectively. The prepared adsorbent showed the potential to be used as a low-cost adsorbent in oil for POME. (author)

  19. Genetic determinism of oil acidity among some DELI oil palm (Elaeis ...

    African Journals Online (AJOL)

    USER

    2016-08-24

    Aug 24, 2016 ... Key words: Elaeis guineensis Jacq., free fatty acid content, crude palm oil, inheritance. INTRODUCTION. The oil palm (Elaeis ... of world's production of vegetable oils. The highest palm oil producing countries ... Without prior refining, acidic palm oil is improper for human consumption (Anonymous, 2005).

  20. AGRO-INDUSTRIAL WASTE SUSTAINABLE MANAGEMENT – A POTENTIAL SOURCE OF ECONOMIC BENEFITS TO PALM OIL MILLS IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    Wai Loan Liew

    2017-01-01

    Full Text Available Over the decades the palm oil industry has managed some challen ging environmental concerns regarding land transformation and degradation, increas e in eutrophication, changing habitats of wildlife, pesticides runoff into inland wa tercourses, and probable climate change. Countries producing palm oil desire to do so in a more sustainable way that will leave the environment evergreen. Therefore this paper aims to encourage sustainable management of agro-industrial waste and its potenti al in making financial returns from the same waste. Hence, the study was conducted with the participation of seven local palm oil mills having different capacities and oper ation age. Attention was given to milling waste as they could cause serious environmenta l menace if unattended to properly. Milling waste includ es lignocellulosic palm biomas s namely the empty fruit bunches (EFB, oil palm shell (OPS, mesocarp fibres, pal m oil mill effluent (POME, and palm oil mill sludge (POMS, as well as solid waste generated from the further processing of these biomass into the palm oil fuel ashe s (POFA and palm oil clinkers (POC. The opportunities available to the Malaysian pa lm oil industry and the financial benefits which may accr ue from waste generated during palm oil production process cannot be over emphasized.

  1. Health promoting effects of phytonutrients found in palm oil.

    Science.gov (United States)

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2010-08-01

    The oil palm tree, Elaeis guineesis, is the source of palm oil, otherwise known as the "tropical golden oil". To date, Malaysia and Indonesia are the leading producers of palm oil. Palm oil is widely used for domestic cooking in Malaysia. Palm oil is a rich source of phytonutrients such as tocotrienols, tocopherol, carotene, phytosterols, squalene, coenzyme Q10, polyphenols, and phospholipids. Although the phytonutrients constitute only about 1% of its weight in crude palm oil, these are the main constituents through which palm oil exhibits its nutritional properties. Among the major health promoting properties shown to be associated with the various types of phytonutrients present in palm oil are anti-cancer, cardio-protection and anti-angiogenesis, cholesterol inhibition, brain development and neuro protective properties, antioxidative defence mechanisms, provitamin A activity and anti-diabetes.

  2. EFFECT OF TRIMETHYLOLPROPANE TRIACRYLATE (TMPTA ON THE MECHANICAL PROPERTIES OF PALM FIBER EMPTY FRUIT BUNCH AND CELLULOSE FIBER BIOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    M. KHALID

    2008-08-01

    Full Text Available The effect of trimethylolpropane triacrylate (TMPTA as a coupling agent, on the mechanical and morphological properties of the PP-cellulose (derived from oil palm empty fruit bunch fiber and PP-oil palm empty fruit bunch fiber (EFBF biocomposites has been studied. The ratio of PP:cellulose and PP:EFBF is fixed to 70:30 (wt/wt% while the concentration of the coupling agent is varied from 2.0 to 7.0 wt%. Results reveal that at 2.0 wt% of TMPTA concentration, tensile strength, flexural modulus, impact strength and Rockwell hardness of PP-cellulose biocomposite are significantly improved. The enhancement of mechanical properties in the presence of TMPTA is believed to be attributed to crosslinking of multifunctional monomer with the hydroxyl groups of cellulose resulting in better adhesion and superior PP-cellulose biocomposite properties. However, there are no significant changes observed in the PP-EFBF biocomposite properties upon the addition of TMPTA.

  3. Evaluating oil palm fresh fruit bunch processing in Nigeria.

    Science.gov (United States)

    Anyaoha, Kelechi E; Sakrabani, Ruben; Patchigolla, Kumar; Mouazen, Abdul M

    2018-03-01

    Three routes of oil palm fresh fruit bunch (FFB) processing in Nigeria namely, industrial, small-scale and traditional were compared by means of determining fruit losses associated with each route. The fruits that are not recovered after each process were hand-picked and quantified in terms of crude palm oil (CPO), palm kernel (PK), mesocarp fibre (MF) and palm kernel shell (PKS). The energy value of empty fruit bunch (EFB), MF and PKS were used to determine the value of energy lost for each route. Additionally, the environmental implications of disposal of EFB were estimated, and socio-economics of the industrial and small-scale routes were related. The analysis showed that 29, 18, 75 and 27 kg of CPO, PK, MF and PKS were lost for every 1000 kg of FFB processed with the industrial route, whereas 5.6, 3.2, 1.4 and 5.1 g were lost with the small-scale route, respectively. Approximately 89 kWh and 31 kWh more energy were lost from MF and PKS with the industrial route than the other two routes, respectively. An equivalent of 6670 tonnes carbon dioxide equivalent of methane and nitrogen oxide was released due to the disposal of 29,000 tonnes of EFB from one palm oil mill. The monetary value of lost CPO per 1000 kg of FFB processed in the industrial route is more than the labour cost of processing 1000 kg of FFB in the small-scale route. The advantages of the industrial route are high throughput in terms of FFB processed per hour and high quality of CPO; however, high fruit loss is associated with it and therefore, the poorly threshed EFB is recommended to be fed into the small-scale route.

  4. Techno-economic analysis of biooil production process from palm empty fruit bunches

    International Nuclear Information System (INIS)

    Do, Truong Xuan; Lim, Young-il; Yeo, Heejung

    2014-01-01

    Highlights: • A comprehensive model of biooil production from empty fruit bunches was developed. • A minimum plant size having an economic benefit was 20 kton/yr of dry EFB. • Plant size and biooil yield had a major influence on reducing the product value. • Biooil from EFB can be produced at 0.27 $/kg in the most optimistic scenario examined. - Abstract: Empty fruit bunches (EFB), a main residue of the palm oil industry, are one of the most recent renewable energy resources and they promise a high yield of liquid with low gas and char. The objective of this study is to evaluate the economic feasibility of the biooil production process from EFB via fast pyrolysis using the fluidized-bed. A comprehensive model of a biooil production plant was developed utilizing a commercial process simulator. The total capital investment (TCI) was estimated for five different plant sizes. The EFB biooil plant was analyzed in terms of the specific capital cost (SCC), payback period (PBP), return on investment (ROI), and the product value (PV). The minimum profitable plant size was found to be 20 kton-dry EFB/yr at a PV of 0.47 $/kg of biooil including 39% of water. Sensitivity analysis was performed on the basis of the minimum plant size to identify key variables that have a strong impact on the PV. The plant size and the biooil yield showed a major influence on the PV. In the most optimistic scenario investigated in this study, biooil can be produced at a PV of 0.27 $/kg

  5. Climate Change Adaptation Needs of Male and Female Oil Palm ...

    African Journals Online (AJOL)

    User

    2008 and Ayodele, 2010) and also results in an increase in demand for palm oil. The demand .... climate change adaptation practice needs of oil palm entrepreneurs in Edo State, .... female respondents had one form of education or the other.

  6. A Survey on the Usage of Biomass Wastes from Palm Oil Mills on Sustainable Development of Oil Palm Plantations in Sarawak

    Science.gov (United States)

    Phang, K. Y.; Lau, S. W.

    2017-06-01

    As one of the world’s largest palm oil producers and exporters, Malaysia is committed to sustainable management of this industry to address the emerging environmental challenges. This descriptive study aims to evaluate the oil palm planters’ opinions regarding the usage of biomass wastes from palm oil mills and its impact on sustainable development of oil palm plantations in Sarawak. 253 planters across Sarawak were approached for their opinions about the usage of empty fruit bunch (EFB), palm oil mill effluent (POME), mesocarp fibre (MF), and palm kernel shell (PKS). This study revealed that the planters had generally higher agreement on the beneficial application of EFB and POME in oil palm plantations. This could be seen from the higher means of agreement rating of 3.64 - 4.22 for EFB and POME, compared with the rating of 3.19 - 3.41 for MF and PKS in the 5-point Likert scale (with 5 being the strongest agreement). Besides, 94.7 percent of the planters’ companies were found to comply with the Environmental Impact Assessment (EIA) requirements where nearly 38 percent carried out the EIA practice twice a year. Therefore high means of agreement were correlated to the compliance of environmental regulations, recording a Likert rating of 3.89 to 4.31. Lastly, the usage of EFB and POME also gained higher Likert scale point of 3.76 to 4.17 against MF and PKS of 3.34 to 3.49 in the evaluation of the impact of sustainability in oil palm plantations. The planters agreed that the usage of EFB and POME has reduced the environmental impact and improved the sustainable development, and its application has been improved and increased by research and development. However the planters were uncertain of the impact of usage of biomass wastes with respect to the contribution to social responsibility and company image in terms of transparency in waste management.

  7. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Khalil, H.P.S. Abdul; Bakar, A. Abu; Khanam, P. Noorunnisa

    2011-01-01

    Tri layer hybrid composites of oil palm empty fruit bunches (EFB) and jute fibres was prepared by keeping oil palm EFB as skin material and jute as the core material and vice versa. The chemical resistance, void content and tensile properties of oil palm EFB/Jute composites was investigated with reference to the relative weight of oil palm EFB/Jute, i.e. 4:1, the fibre loading was optimized and different layering pattern were investigated. It is found from the chemical resistance test that all the composites are resistant to various chemicals. It was observed that marked reduction in void content of hybrid composites in different layering pattern. From the different layering pattern, the tensile properties were slightly higher for the composite having jute as skin and oil palm EFB as core material. Scanning electron microscopy (SEM) was used to study tensile fracture surfaces of different composites.

  8. The Performance Of Oil Palm And Different Food Crop ...

    African Journals Online (AJOL)

    The experiment was carried out between 1996 and 2004 to determine the productivity and economic returns to the resource base of farmers practicing different oil palm/food crop intercropping in an intensive four-year sequential cropping using the standard oil palm density. Oil palm was intercropped for four years, ...

  9. Challenges and Prospects of Smallholder Oil Palm Production in ...

    African Journals Online (AJOL)

    The study examined the challenges and prospects of smallholder oil palm production in Awka Agricultural Zone of Anambra State. Seventy two smallholder oil palm farmers were interviewed for the purpose of eliciting information. Smallholder oil palm farmers in Awka Agricultural Zone were educated (79.2% - Senior ...

  10. Economic Assessment of Palm Oil Processing in Owerri Agricultural ...

    African Journals Online (AJOL)

    The study was on economic analysis of palm oil processing in Owerri Agricultural zone of Imo State, it was designed to determine the costs and returns of palm oil processing in the area of study. Seventy five (75) palm oil processors were randomly sampled from the study location and a structured interview schedule was ...

  11. Characterization of Diclofenac Liposomes Formulated with Palm Oil ...

    African Journals Online (AJOL)

    Purpose: To characterize diclofenac sodium (DS) liposomes prepared using palm oil fractions. Methods: Reverse-phase evaporation method was used to prepare liposomes containing 10, 20, 30 , 40 or 50% palm oil fractions. The effect of palm oil content on liposome formation, surface morphology, shape, size and zeta ...

  12. Contemporary land-use transitions: The global oil palm expansion

    DEFF Research Database (Denmark)

    Kongsager, Rico; Reenberg, Anette

    The present report aims at providing an overview of the magnitude and geographical distribution of oil palm cultivation. It also considers recent trends in the palm oil market and the future prospects for palm oil. By way of background, we briefly summarize the agroecological characteristics of o...

  13. Assessing the environmental impact of palm oil produced in Thailand

    NARCIS (Netherlands)

    Saswattecha, K.; Kroeze, C.; Jawjit, W.; Hein, L.G.

    2015-01-01

    There are several concerns related to the increasing production of palm oil in Southeast Asia, including pollution, greenhouse gas emissions and land conversion. The RSPO (Roundtable on Sustainable Palm Oil) certification standard provides an incentive for reducing environmental impacts of palm oil

  14. IMPACT OF PALM OIL MILL EFFLUENT ON THE ACTIVITIES OF ...

    African Journals Online (AJOL)

    PUBLICATIONS1

    This study was carried out to evaluate the effect of palm oil mill effluent (POME) on some anti ... In Nigeria, palm oil production ... crude palm oil produced, 5-7.5 tonnes of water ... inter group comparison using least significant .... York, U.S.A. pp.

  15. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  16. UV curable palm oil based ink

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2002-01-01

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil urethane acrylate (POBUA) as a prepolymer in the UV ink system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  17. UV curable palm oil based inks

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Hilmi Mahmood

    2002-01-01

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  18. Radiation curing applications of palm oil acrylates

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Khairul Zaman; Rida, Anak Tajau; Mek Zah Salleh; Rosley Che Ismail

    2007-01-01

    Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

  19. Oil Palm Expansion in the Brazilian Amazon (2006-2014): Effects of the 2010 Sustainable Oil Palm Production Program

    Science.gov (United States)

    Benami, E.; Curran, L. M.

    2017-12-01

    Brazil has the world's largest suitable land area for oil palm (Elaeis guineensis) establishment, with estimates as high as 238 million ha. To promote oil palm development, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) in 2010 and delineated 30 million ha for its growth that excluded forested areas and indigenous reserves. Here we examine oil palm expansion (2006-2014) as well as the SPOPP's effectiveness in Pará, the major oil palm producing state in Brazil. By combining analyses of satellite imagery, land registration data, and site based interviews, we found that oil palm area expanded 205%. Although >50% of oil palm parcels were located within 0.5 km of intact forests, lands. Direct intact forest conversion pre- and post-SPOPP declined from 4% to <1%; however, <1% of the 30 million ha promoted for oil palm was developed by 2014. To explore the major factors that may have constrained oil palm expansion under the SPOPP, we conducted microeconomic simulations of oil palm production, combined with interviews with actors/individuals from oil palm companies, civil society, researchers at universities and NGOs, and governmental agencies. Brazil's oil palm-deforestation dynamics, policies, and economic conditions will be discussed.

  20. The Factors Influencing on Consumption of Palm Cooking Oil in Indonesia

    Directory of Open Access Journals (Sweden)

    Ermy Teti

    2011-09-01

    Full Text Available Cooking oil is one of the most sensitive basic needs in Indonesia. The aims of the researchare to analyze factors influencing consumption of cooking oil, the cooking oil price, and theCrude Palm Oil price in Indonesia. Using simultaneous equation model, the study show thatpalm cooking oil consumption is significantly affected by domestic palm cooking oil priceand number of population. Whilst palm cooking oil price is significantly influenced by thecooking palm oil production and the domestic Crude Palm Oil price. Finally, the domesticCrude Palm Oil is significantly affected by international Crude Palm Oil price.Keywords: consumption, cooking oil price, crude palm oil price and cooking oil

  1. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    Science.gov (United States)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  2. Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand

    International Nuclear Information System (INIS)

    Papong, Seksan; Chom-In, Tassaneewan; Noksa-nga, Soottiwan

    2010-01-01

    Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transesterification into biodiesel. The results showed that the highest fossil-based energy consumption was in the transesterification process, followed by the plantation, transportation, and CPO production. A net energy value and net energy ratio (NER) of 24.0 MJ/FU and 2.5, respectively, revealed that the PME system was quite energy efficient. In addition, if all the by-products from the CPO production (such as empty fruit branches, palm kernel shells, and biogas) were considered in terms of energy sources, the NER would be more than 3.0. The PME can be a viable substitute for diesel and can decrease the need for oil imports. Based on B100 demand in 2008, PME can be substituted for 478 million liters of diesel. Moreover, with palm oil output potential and B5 implementation, it can be substituted for 1134 million liters of diesel. (author)

  3. SSR mining in oil palm EST database: application in oil palm ...

    Indian Academy of Sciences (India)

    1Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, P.O. Box 10620,. 50720 Kuala Lumpur .... Genomic DNA was extracted from young leaves. The DNA ..... tries are essential to avoid the risk of genetic erosion. The.

  4. The Sustainability Status of Partnership of Palm Oil Plantations

    Directory of Open Access Journals (Sweden)

    Wilson Daud

    2015-12-01

    Full Text Available One of existence determining factor of PBS palm oil is a harmonious relation with communities surroundings, thus the partnership between the palm oil plantation with the farmers surroundings is one of effort which has created the harmonization in palm oil plantation. The objective of the article is to express the sustainability of each pattern of palm oil PBS partnership, and this partnership form gives the sustainability advantages for the farmer and palm oil PBS in Central Kalimantan. The article used quantitative method through the survey approach, primary data and secondary data. The article result there are three main patterns of palm oil plantation partnership in Central Kalimantan, they are MSA, KKPA, and IGA. IGA has value as a form which has degree of continuing that higher than MSA and KKPA, thus make IGA can be the reference in frame of PBS palm oil partnership in Central Kalimantan with keeping the superiority and improving the weaknesses.

  5. Analyses of Hypomethylated Oil Palm Gene Space

    Science.gov (United States)

    Jayanthi, Nagappan; Mohd-Amin, Ab Halim; Azizi, Norazah; Chan, Kuang-Lim; Maqbool, Nauman J.; Maclean, Paul; Brauning, Rudi; McCulloch, Alan; Moraga, Roger; Ong-Abdullah, Meilina; Singh, Rajinder

    2014-01-01

    Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm. PMID:24497974

  6. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    Science.gov (United States)

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  7. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats.

    Science.gov (United States)

    Ajiboye, John A; Erukainure, Ochuko L; Lawal, Babatunde A; Nwachukwu, Viola A; Tugbobo-Amisu, Adesewa O; Okafor, Ebelechukwu N

    2015-09-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent.

  8. Future prospects for palm oil refining and modifications

    Directory of Open Access Journals (Sweden)

    Gibon Véronique

    2009-07-01

    Full Text Available Palm oil is rich in minor components that impart unique nutritional properties and need to be preserved. In this context, refining technologies have been improved, with the dual temperature deodorizer, the double condensing unit and the ice condensing system. The DOBI is a good tool to assess quality of the crude palm oil and its ability to be properly refined. Specially refined oils open a market for new high quality products (golden palm oil, red palm oil, white soaps, etc.. Palm oil is a good candidate for the multi-step dry fractionation process, aiming to the production of commodity oils and specialty fats (cocoa butter replacers. New technological developments allow quality and yield improvements. Palm oil and fractions are also valuable feedstock for enzymatic interesterification in which applications are for commodity oil (low-trans margarines and shortenings and for special products (cocoa butter equivalents, infant formulation, ….

  9. Evaluation of Palm Oil-Based Paracetamol Suppositories by ...

    African Journals Online (AJOL)

    Methods: The suppository base was prepared by mixing hydrogenated palm oil and palm kernel ... DSC can be used to predict drug release in paracetamol suppository formulations. Keywords: Palm oil, Liquefaction time, Paracetamol, Suppositories, Thermal analysis. ..... Drug Evaluation & Research (CDER), Food and.

  10. Devolatilization studies of oil palm biomass for torrefaction process optimization

    International Nuclear Information System (INIS)

    Daud, D; Rahman, A Abd; Shamsuddin, A H

    2013-01-01

    Torrefaction of palm biomass, namely Empty Fruit Bunch (EFB) and Palm Kernel Shell (PKS), was conducted using thermogravimetric analyser (TGA). The experiment was conducted in variation of temperatures of 200 °C, 260 °C and 300 °C at a constant residence time of 30 minutes. During the torrefaction process, the sample went through identifiable drying and devolatilization stages from the TGA mass loss. The percentage of volatile gases released was then derived for each condition referring to proximate analysis results for both biomass. It was observed an average of 96.64% and 87.53 % of the total moisture is released for EFB and PKS respectively. In all cases the volatiles released was observed to increase as the torrefaction temperature was increased with significant variation between EFB and PKS. At 300°C EFB lost almost half of its volatiles matter while PKS lost slightly over one third. Results obtained can be used to optimise condition of torrefaction according to different types of oil palm biomass.

  11. Degradation of Palm Oil Induced By Ionizing Radiation | Egbe | West ...

    African Journals Online (AJOL)

    X-irradiated Palm Oil of the Elaeis guineensis specie was studied by assessing the effect of the radiation on the Peroxide, Iodine and Fatty acid values of the oil. These were compared with values of fresh and thermoxidized palm oil. Results showed a rise in the peroxide value by as much as 52.5% for thermoxidized oil and ...

  12. Oil palm mapping for Malaysia using PALSAR-2 dataset

    Science.gov (United States)

    Gong, P.; Qi, C. Y.; Yu, L.; Cracknell, A.

    2016-12-01

    Oil palm is one of the most productive vegetable oil crops in the world. The main oil palm producing areas are distributed in humid tropical areas such as Malaysia, Indonesia, Thailand, western and central Africa, northern South America, and central America. Increasing market demands, high yields and low production costs of palm oil are the primary factors driving large-scale commercial cultivation of oil palm, especially in Malaysia and Indonesia. Global demand for palm oil has grown exponentially during the last 50 years, and the expansion of oil palm plantations is linked directly to the deforestation of natural forests. Satellite remote sensing plays an important role in monitoring expansion of oil palm. However, optical remote sensing images are difficult to acquire in the Tropics because of the frequent occurrence of thick cloud cover. This problem has led to the use of data obtained by synthetic aperture radar (SAR), which is a sensor capable of all-day/all-weather observation for studies in the Tropics. In this study, the ALOS-2 (Advanced Land Observing Satellite) PALSAR-2 (Phased Array type L-band SAR) datasets for year 2015 were used as an input to a support vector machine (SVM) based machine learning algorithm. Oil palm/non-oil palm samples were collected using a hexagonal equal-area sampling design. High-resolution images in Google Earth and PALSAR-2 imagery were used in human photo-interpretation to separate oil palm from others (i.e. cropland, forest, grassland, shrubland, water, hard surface and bareland). The characteristics of oil palms from various aspects, including PALSAR-2 backscattering coefficients (HH, HV), terrain and climate by using this sample set were further explored to post-process the SVM output. The average accuracy of oil palm type is better than 80% in the final oil palm map for Malaysia.

  13. Biomass analysis at palm oil factory as an electric power plant

    Science.gov (United States)

    Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris

    2018-04-01

    Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.

  14. Application of Neuro-Fuzzy to palm oil production process | Odior ...

    African Journals Online (AJOL)

    Palm oil is an important nutritional food requirement and in order to facilitate the production of palm oil for consumption, the production process of palm oil has been investigated. The basic operations involved in the production of edible palm oil include; purchase, transportation and reception of oil palm bunches; bunch ...

  15. Will oil palm's homecoming spell doom for Africa's great apes?

    Science.gov (United States)

    Wich, Serge A; Garcia-Ulloa, John; Kühl, Hjalmar S; Humle, Tatanya; Lee, Janice S H; Koh, Lian Pin

    2014-07-21

    Expansion of oil palm plantations has led to extensive wildlife habitat conversion in Southeast Asia [1]. This expansion is driven by a global demand for palm oil for products ranging from foods to detergents [2], and more recently for biofuels [3]. The negative impacts of oil palm development on biodiversity [1, 4, 5], and on orangutans (Pongo spp.) in particular, have been well documented [6, 7] and publicized [8, 9]. Although the oil palm is of African origin, Africa's production historically lags behind that of Southeast Asia. Recently, significant investments have been made that will likely drive the expansion of Africa's oil palm industry [10]. There is concern that this will lead to biodiversity losses similar to those in Southeast Asia. Here, we analyze the potential impact of oil palm development on Africa's great apes. Current great ape distribution in Africa substantially overlaps with current oil palm concessions (by 58.7%) and areas suitable for oil palm production (by 42.3%). More importantly, 39.9% of the distribution of great ape species on unprotected lands overlaps with suitable oil palm areas. There is an urgent need to develop guidelines for the expansion of oil palm in Africa to minimize the negative effects on apes and other wildlife. There is also a need for research to support land use decisions to reconcile economic development, great ape conservation, and avoiding carbon emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  17. Palm oil and the heart:A review

    Institute of Scientific and Technical Information of China (English)

    Osaretin; J; Odia; Sandra; Ofori; Omosivie; Maduka

    2015-01-01

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a Pub Med, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in

  18. Assessment of an oil palm population from Nigerian Institute for Oil ...

    African Journals Online (AJOL)

    Oil palm (Elaeis guineensis Jacq.), a monocotyledonous plant belonging to the Arecaceae family, is one of the most important oil crops in the world. In Nigeria, oil palm has benefited immensely from conventional breeding efforts resulting in high yields that have been achieved with this breeding material. However, oil palm ...

  19. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  20. Combustion of palm oil solid waste in fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdullah, I.; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    Results of experimental investigations of fluidized bed combustion of palm oil wastes consisting of shell, fibre and empty fruit bunches high heating value of 17450 kJ/kg and low heating value of 14500 kJ/kg. The fluidized bed combuster used has a vessel size of 486 x 10 6 mm 3 , surface area of evaporation tubes and distribution air pipes of 500 mm 2 and 320 mm 2 respectively. It was found that a fuel feeding rate 160 kg/h is required to achieve a steam flow rate of 600 kg/h, with the combustion efficiency 96% and boiler efficiency of 72%, emission level of flue gas NO x at less than 180 ppm, SO 2 at less than 20 ppm are measured in the flue gas. (Author)

  1. Development and material properties of new hybrid plywood from oil palm biomass

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Nurul Fazita, M.R.; Bhat, A.H.; Jawaid, M.; Nik Fuad, N.A.

    2010-01-01

    Shortage of wood as a raw material has forced wood-based industries to find alternative local raw materials. Currently, oil palm biomass is undergoing research and development (R and D) and appears to be the most viable alternative. This work examines the conversion of oil palm trunk (OPT) and oil palm empty fruit bunches (OPEFB) into new plywood and analyses its properties. We prepared five-ply veneer hybrid plywood (alternating layers of oil palm trunk veneer and empty fruit bunch mat) with different spread levels (300 g/m 2 and 500 g/m 2 ) of resins (phenol formaldehyde and urea formaldehyde). We then studied the mechanical and physical properties of the plywood. The results show that hybridisation of EFB with OPT improves some properties of plywood, such as bending strength, screw withdrawal and shear strength. The thermal properties of the plywood panels were studied by thermogravimetric analysis (TGA). The panels glued with phenol formaldehyde with a spread level of 500 g/m 2 showed better thermal stability than the other panels. Scanning electron microscope (SEM) was used to study the fibre matrix bonding and surface morphology of the plywood at different glue spread levels of the resins. The fibre-matrix bonding showed good improvement for the hybrid panel glued with 500 g/m 2 phenol formaldehyde.

  2. Oil palm deserves government attention in Brazil

    Science.gov (United States)

    Moreira, José R.; Goldemberg, José

    2015-07-01

    Englund et al (2015 Environ. Res. Lett. 10 044002) have recently analyzed biodiesel production from oil palm plantations as one possible way to mitigate climate change while providing cost effective results. They show that data for detailed quantification of biological carbon sequestration is available allowing a high confidence evaluation of positive impacts when oil palm plantation for food and biodiesel production is carried out in degraded, cultivated soil, and also with some varieties of natural vegetation in the Amazon. Nevertheless, economic risk associated with the future price of fossil fuels and uncertainties related with carbon subsidy are barriers. Here we discuss the assumptions under which such controversial proposal is based and suggest further analysis for Brazilian decision makers.

  3. Water footprints of products of oil palm plantations and palm oil mills in Thailand.

    Science.gov (United States)

    Suttayakul, Phetrada; H-Kittikun, Aran; Suksaroj, Chaisri; Mungkalasiri, Jitti; Wisansuwannakorn, Ruthairat; Musikavong, Charongpun

    2016-01-15

    The water footprint (WF) of fresh fruit bunches (FFBs) from oil palm plantations and crude palm oil (CPO) from palm oil mills in southern and eastern Thailand were determined over 25 years. Climatic conditions, soil characteristics, and the characteristics of oil palm growth were considered. The WF of FFBs was 1063 m(3)/ton (t) on average. Green, blue, and grey waters comprised of 68, 18, and 14% of total WF, respectively. The oil palm plantations in Thailand required smaller amounts of indirect blue water. The average WF for producing a ton of CPO of seven mills was 5083 m(3). Most of the waters used in the mills originated from indirect green, blue and grey waters from the plantations. The direct blue water used in the mills had less impact on the total WF, lower than 1% of the total WF. Average percentages of green, blue, and grey waters of 69, 16, and 15% of total WF were determined for the mills, respectively. The water deprivation of the FFBs and CPO ranged from 0.73-12.9 and 3.44-58.3 m(3)H2Oeq/t, respectively. In 2013, the CPO production in Thailand including green, blue, and grey waters from plantation and blue water from mills required 11,343 million m(3) water. If the oil palm variety Suratthani 7 is used in the plantation, it would increase the yield from 15.2 to 22.8 t FFBs/ha-year and decrease the WF to 888 m(3)/t FFBs. The average value of the oil extraction rate (OER) of mills was 18.1%. With an increase in the OER of 1%, a reduction of the WF of 250 m(3)/t CPO or 5.1% of total WF could be obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Palm oil fresh fruit bunch ripeness grading identification using color ...

    African Journals Online (AJOL)

    This research investigates the ripeness grading identification of the palm oil FFB using color features that are color histogram, color moment and color correlogram. Palm is harvested during the optimum stage of its ripeness since it improves the FFB oil quality and quantity. Harvesting wrong bunches decreases the oil ...

  5. Enzymatic biodiesel production from sludge palm oil (SPO) using ...

    African Journals Online (AJOL)

    Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study involved the production of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. The enzyme catalyst was a Candida cylindracea lipase, locally-produced using palm oil mill effluent as the low cost based medium.

  6. efficacy of olive oil, groundnut oil, soybean oil and palm kernel oil

    African Journals Online (AJOL)

    AGROSEARCH UIL

    and palm kernel oil exhibiting similar results in the control of the pest. ... the use of chemical pesticide in the protection of both field and stored crops is .... obtained by different methods and neem powder for the management of Callosobruchus.

  7. Oil palm natural diversity and the potential for yield improvement

    Science.gov (United States)

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  8. Oil palm natural diversity and the potential for yield improvement.

    Science.gov (United States)

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  9. Oil palm natural diversity and the potential for yield improvement

    Directory of Open Access Journals (Sweden)

    Edson eBarcelos

    2015-03-01

    Full Text Available African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfil the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step towards this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  10. Preliminary evaluation of physical and chemical characterization of waste palm oil shell as cool material replaced in asphaltic concrete as fine aggregate

    Science.gov (United States)

    Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.

    2017-11-01

    Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.

  11. IMPACT OF CPO EXPORT DUTIES ON MALAYSIAN PALM OIL INDUSTRY

    OpenAIRE

    Ibragimov Abdulla; Fatimah Mohamed Arshad; B. K. Bala; Kusairi Mohd Noh; Muhammad Tasrif

    2014-01-01

    In January 2013, Malaysia reduced the export duty structure to be in line with the Indonesia’s duty structure. Both countries export crude and processed palm oil. Since Malaysia and Indonesia are close competitors and they compete in the same market, a change in export duty rate in one country will affect the other. Indonesia, as the world’s biggest palm oil producer, has drastically widened the values between the crude palm oil and refined palm oil export taxes since October 2011...

  12. Time series ARIMA models for daily price of palm oil

    Science.gov (United States)

    Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu

    2015-02-01

    Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.

  13. Forecasting Palm Oil Price Movements In Malaysia: Empirical Evidence from the Malaysian Palm Oil Futures Market.

    OpenAIRE

    Amran, Zulfathi

    2010-01-01

    The palm oil industry is one of the main commodity industries in South East Asia. This is the case for the two main producers and exporters of crude palm oil in the world, Malaysia and Indonesia, and thus there is an importance placed on the trading of the commodity in Malaysia, especially for hedging purposes for the producers. This is because; the main use of the product is for exporting purposes rather than for consumption, and thus it is important if there is a tool that the producers or ...

  14. Energetic Efficiency of red palm oil

    Directory of Open Access Journals (Sweden)

    Byron Jiménez

    2013-11-01

    Full Text Available The main goal of this paper is to determine the energy efficiency in the production of red palm oil (Elaeis guineensis by using the biophysical indicator EROI, postulated by the Ecological Economics. This indicator is applied to compare the energy used in the preparation of synthetic fertilizers (to fill its nutritional demands versus the energy contained in the oil. In 2009, there were 195.550 hectares of land planted with African palm in Ecuador (INEC, 2011. In addition, between 2002 and 2009, there were 2,7 million tons of red oil (FEDEPAL, 2010. It is determined that for each unit of energy consumed, 4.82 units of energy are contained in the red oil. The energy used in making pesticides for cultivation, consumed in transportation, refining, and post harvest is excluded because this other energy would drastically reduce the absolute data of the indicator, which is already inefficient for the high energy consumption it requires to generate the energy contained in the oil. On the other hand, agroecology has proven to be more efficient in the generation of energy per unit of invested energy (Altieri et. al., 2010; Moore, 2004.

  15. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Science.gov (United States)

    2010-04-01

    ... kernel oil, or both oils. 172.861 Section 172.861 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...

  16. A review of remote sensing applications for oil palm studies

    Institute of Scientific and Technical Information of China (English)

    Khai Loong Chong; Kasturi Devi Kanniah; Christine Pohl; Kian Pang Tan

    2017-01-01

    Oil palm becomes an increasingly important source of vegetable oil for its production exceeds soybean,sunflower,and rapeseed.The growth of the oil palm industry causes degradation to the environment,especially when the expansion of plantations goes uncontrolled.Remote sensing is a useful tool to monitor the development of oil palm plantations.In order to promote the use of remote sensing in the oil palm industry to support their drive for sustainability,this paper provides an understanding toward the use of remote sensing and its applications to oil palm plantation monitoring.In addition,the existing knowledge gaps are identified and recommendations for further research are given.

  17. Evaluation palm empty fruit bunch and its fermented products as feed for ruminant animal by nutritional values characterisation and in-vitro dry matter digestibility

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Wan Badrin Wan Husain; Tajuddin Osman; Mohd Sukri Mahmood; Norihan Zainal; Zal U'yun Wan Mahmod; Hassan Hamdani Mutaat; Yusri Atan

    1995-01-01

    Empty fruit bunch (EFB) fermented by Pleurotus sajor caju as ruminant feed has been investigated extensively. This paper evaluates products obtained from several manipulation. The manipulation includes pretreatment (soaked and mixed) of EFB with lime, variation of fermentation conditions: prolonged incubation period, varied incubation temperature and addition Palm Oil Sludge (POS) as additive; and post-fermentation manipulation such as harvesting mushroom out of the substratum. The fermented products from each of those manipulation were evaluated based on nutritional values and the pertinent in-vitro dry matter digestibility, whenever appropriate. The evaluated products were compared and discussed. 8 tabs

  18. Mating Compatibility and Restriction Analysis of Ganoderma Isolates from Oil Palm and Other Palm Hosts.

    Science.gov (United States)

    Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah

    2015-12-01

    Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.

  19. Mating Compatibility and Restriction Analysis of Ganoderma Isolates from Oil Palm and Other Palm Hosts

    Science.gov (United States)

    Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah

    2015-01-01

    Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709

  20. Indonesia palm oil production without deforestation and peat conversion by 2050

    NARCIS (Netherlands)

    Afriyanti, Dian; Kroeze, Carolien; Saad, Asmadi

    2016-01-01

    Palm oil is a promising source of cooking oil and biodiesel. The demand for palm oil has been increasing worldwide. However, concerns exist surrounding the environmental and socio-economic sustainability of palm oil production. Indonesia is a major palm oil producing country. We explored

  1. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  2. Factors of enzymatic biodiesel production from sludge palm oil (SPO ...

    African Journals Online (AJOL)

    ika

    2013-07-31

    Jul 31, 2013 ... Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study ... of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. ... Increasing energy crisis and environmental concerns by.

  3. Oil palm growth, yield and financial returns from interplanted food ...

    African Journals Online (AJOL)

    Maize, soyabean and pigeon pea were inter-planted with a juvenile oil palm plantation in 1999-2002 at the Teaching and Research Farm of the University of Agriculture, Abeokuta (7°15'N, 3°25', altitude 144m above sea level) to evaluate the growth of the interplanted oil palm as well as yield and overall economic returns ...

  4. Adoption of improved oil palm processing technology in Umuahia ...

    African Journals Online (AJOL)

    It was found that a large percentage of the respondents were aware of the 5 improved oil palm processing technologies with friends and relatives as major source of information. Adoption was significant for 3 out of 5 technologies under study. The major constraints to improved oil palm processing technologies were high ...

  5. Characteristics of small-scale palm oil production enterprise in ...

    African Journals Online (AJOL)

    The study examined characteristics of small-scale palm oil production enterprise in Anambra State, Nigeria. All the palm oil producers in Anambra State formed the population of the study. Multi-stage sampling technique was used to select 120 respondents for the study. Data were collected from primary source through ...

  6. English-Igbo glossary creation of palm oil production and ...

    African Journals Online (AJOL)

    The Igbo speaking people are well known for palm oil production and processing in Nigeria. This occupation is one of the lucrative ventures among other trades or occupations for which the Igbo are known. With recent technological advancement in the method of production and processing palm oil, more English terms that ...

  7. Functional palm oil-based margarine by enzymatic interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme was a...

  8. Economic assessment of oil palm projects in Nigeria. | Nwawe ...

    African Journals Online (AJOL)

    However, this study was designed to economically assess oil palm projects in Nigeria. Secondary data used for this study were collected from Nigerian Institute for Oil Palm Research (NIFOR) and related journals. The data collected were analyzed using discounted cash flow techniques. The result shows that at 32% interest ...

  9. Systematic approach for synthesis of palm oil-based biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

    2012-11-01

    Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

  10. Analysis of profitability and cost determinants of smallholder oil palm ...

    African Journals Online (AJOL)

    Oil palm processing is a source of livelihood to many people. The study analyzed cost determinants and profitability of smallholders' oil palm processors using traditional and improved processing technologies. A multistage sampling technique was used to select respondents. Data were collected through questionnaire; ...

  11. Somaclonal variation associated with oil palm (Elaeis guineensis ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-02-26

    Feb 26, 2014 ... Malaysia and Indonesia together accounting for around. 83% of world palm oil production in 2001 (Wahid et al.,. 2004). The oil palm is an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and ... inherently very slow, and high heterogeneity is still observed ...

  12. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti Kartina

    2013-01-01

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  13. Recycled palm oil spoilage: Correlation between physicochemical properties and oleophilicity

    Science.gov (United States)

    Kadir, Ili Afiqa Ab; Zubairi, Saiful Irwan; Jurid, Lailatul Syema

    2016-11-01

    Palm oil is widely used for domestic and commercial frying due to its techno-economic advantages as compared to other vegetable oils. However, if the oil is used beyond its recommended usage cycle, it might lead to oil spoilage. Therefore this study focuses on the comprehensive analysis of chemical and physical properties of recycled palm oil. Recycled palm oil was prepared by frying potato strips up to 4 batches; 5 cycles for each batch) was carried out with potato (g)-to-oil (ml) ratio of 3/20 prior to physico-chemical analysis (moisture content, color measurement, viscosity, density and iodine value. From 5 tests used to indicate physico-chemical properties of recycled palm oil, only color measurement, viscosity and IV shows results accordingly to theories. Whereas moisture content and density were not comply to theories. With increasing frying times, recycled palm oil color has been darker due to chemical reaction that occurs during frying. The trend line illustrates that with increasing frying times, recycled palm oil lightness decreases. It also means that its color has been darker. Meanwhile, b* rate increase indicating that recycled palm oil show tendency towards green color. Whereas, a* rate decreased, showing low tendency towards red color. Viscosity and moisture content increase with frying cycle. This situation occurred might be due to formation of hydrolysis products which are volatile while frying process. But the remaining non-volatile compounds among the hydrolysis products might also accumulate in palm oil and thus affect the total oil/fat chemical changes. Meanwhile the density of palm oil was quite constant at 0.15 g/cm3 except for cycle 2 with 0.17 g/cm3. The result obtained from this experiment were comply with previous study that stated frying batch number is a significant variable (a = 0.05) affecting the density of oil only after 20 frying batch. The contact angle of recycled palm oil on PHBV thin film was more than 90 °. Hence it shows

  14. THE STUDY ON IN VITRO DIGESTIBILITY OF SOAKED PALM OIL FIBER BY FILTRATED PALM OIL FRUIT BUNCH ASH

    Directory of Open Access Journals (Sweden)

    Ari L. Darmawan

    2014-06-01

    Full Text Available Palm oil fiber has its potency as feed fiber source for ruminant, but contains high lignin and causes limited digestibility. This research was carried out to find the effect of soaking palm oil fiber in filtrated palm oil fruit bunch ash (FPOFBA on in vitro digestibility. This experiment used a completely randomized design that repeated for 4times. Palm oil fruit bunch ash was mixed in water and entered into container for 24 hours within concentrations, consists of: 50, 100, 150 and 200 g/L. Moreover, this filtrate used to soak palm oil fiber for 3 hours. The processed products were analyzed for their level of lignin and crude fiber. Meanwhile, in vitro test was used to measure digestibility. It showed that soaking in filtrated palm oil fruit bunch ash gave significant effect to decrease level of lignin and crude fiber (P0.05, such as 23.48 and 24.12% as well as 16.70 and 17.06 % in each. It can be concluded that soaked palm oil fiber with 150 g/L concentration of filtrated palm oil fruit bunch ash was more effective in improving digestibility.

  15. Study on effective utilization of palm oil (Part 2). Extraction of carotenes from palm oil

    Energy Technology Data Exchange (ETDEWEB)

    Mamuro, Hideo; Kubota, Yasuhiko; Shiina, Hisako; Nakasato, Satoshi

    1987-01-08

    This report is a part of the result of an international cooperation project with Malaysia Palm Oil Research Institute. Extraction of carotenes from palm oil was carried out by means of molecular distillation or adsorption method. High recovery and enrichment of carotene was obtained from the sample treated with phosphoric acid or polyphosphoric acid. However, even the maximum enrichment was only 3.8 times of carotene concentration of the sample, which was far remote from the target value of 10. The yield of recovery was also as low as 40%. Adsorption of carotenes was found to be chemisorptive in nature. The highest enrichment and recovery were obtained in the caseof oil pretreated with the phosphorous pentoxide, the recovery was 34.3% and enrichment was 11.3 which exceeded the target of 10. This adsorption process may be commercialized if the demand for carotene will grow to justify it. (2 figs, 7 tabs, 18 refs)

  16. Effects of Chemical Inter esterification on the Physicochemical Properties of Palm Stearin, Palm Kernel Oil and Soybean Oil Blends

    International Nuclear Information System (INIS)

    Siti, M. F.H.; Norizzah, A. R.; Zaliha, O.

    2012-01-01

    Palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) blends were formulated according to Design Expert 8.0.4 (2010). All the sixteen oil blends were subjected to chemical inter esterification (CIE) using sodium methoxide as the catalyst. The effects of chemical inter esterification on the slip melting point (SMP), solid fat content (SFC), triacylglycerol (TAG) composition and polymorphism were investigated. Palm based trans-free table margarine containing PS/PKO/SBO [49/20/31, (w/w)], was optimally formulated through analysis of multiple ternary phase diagrams and was found to have quite similar SMP and SFC profiles as compared with commercial table margarine. This study has shown that blending and chemical inter esterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their blends. (author)

  17. Determination of gastric-emptying profiles in the rat: influence of oil structure and volume

    International Nuclear Information System (INIS)

    Palin, K.J.; Whalley, D.R.; Wilson, C.G.; Davis, S.S.; Phillips, A.J.

    1982-01-01

    A simple non-invasive technique was developed for the determination of the gastric-emptying rate of oils in rats, employing a gamma camera and 99m-Tc-sulphur colloid as the oil phase marker. Using this method the gastric emptying of 3 oils, arachis oil, Miglyol 812 and liquid paraffin, was investigated. It was shown that both the oil volume and chemcial structure altered the rate of gastric emptying. (Auth.)

  18. Determination of gastric-emptying profiles in the rat: influence of oil structure and volume

    Energy Technology Data Exchange (ETDEWEB)

    Palin, K.J.; Whalley, D.R.; Wilson, C.G.; Davis, S.S.; Phillips, A.J. (Nottingham Univ. (UK). Medical School)

    1982-11-01

    A simple non-invasive technique was developed for the determination of the gastric-emptying rate of oils in rats, employing a gamma camera and 99m-Tc-sulphur colloid as the oil phase marker. Using this method the gastric emptying of 3 oils, arachis oil, Miglyol 812 and liquid paraffin, was investigated. It was shown that both the oil volume and chemical structure altered the rate of gastric emptying.

  19. KARAKTERISTIK MINYAK CAMPURAN RED PALM OIL DENGAN PALM KERNEL OLEIN (Characteristics of Oil Blends from Red Palm Oil and Palm Kernel Olein

    Directory of Open Access Journals (Sweden)

    Maria Ulfah

    2016-10-01

    Full Text Available Characteristics of oil blends has been produced from red palm oil (RPO and palm kernel olein (PKOo with seven ratios with a total of 100, namely A (0:100, B (25:75, C (40:60, D (50:50, E (60:40, F (75:25 and G (100:0 v/v investigated with randomized complete block design. The result showed that different of ratio levels RPO and PKOo have some effects on peroxide value, saponification value, melting point, cloud point and β-carotene content from RPO-PKOo oil blends, but has not effect on free fatty acid content. Higher level of PKOo content on formulas oil blends were decreased of saponification value and melting point, but was increased of cloud point. The best of RPOPKOo oil blends has been obtained at ratio 50:50 (v/v, with 459.52 ppm β-carotene, 1.35 meq/kg peroxide value, 0.09 % free fatty acid, 202.60 saponification value, 24.15 oC melting point and 7.15 oC cloud point. Fatty acids composition were 1.24 % capric acid, 29.00 % lauric acid, 10.09 % miristic acid, 23.10 % palmitic acid, 5.84 linoleic acid, 27.30 % oleic acid and 3.43 % stearic acid. Keywords: Red palm oil, palm kernel olein, oil blends, chemical and physical properties ABSTRAK Sifat-sifat minyak campuran yang dihasilkan dari red palm oil (RPO dan palm kernel olein (PKOo dengan tujuh tingkat rasio yang totalnya 100, yaitu A (0:100, B (25:75, C (40:60, D (50:50, E (60:40, F (75:25 dan G (100:0 (v/v dikaji menggunakan rancangan acak lengkap kelompok. Hasil penelitian menunjukkan bahwa rasio RPO:PKOo mempengaruhi angka peroksida, angka penyabunan, melting point, cloud point dan kadar β-karoten dari minyak campuran RPO-PKOo yang dihasilkan, namun tidak mempengaruhi kadar asam lemak bebas. Peningkatan jumlah PKOo yang ditambahkan dalam minyak campuran RPO-PKOo, akan menurunkan angka penyabunan dan melting point, namun akan menaikkan cloud point. Produk minyak campuran RPO-PKOo terbaik diperoleh pada rasio 50:50 (v/v, dengan kadar β-karoten 459,52 ppm, angka peroksida 1,35 meq

  20. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    Science.gov (United States)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  1. Population density of oil palm pollinator weevil Elaeidobius kamerunicus based on seasonal effect and age of oil palm

    Science.gov (United States)

    Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.

    2016-11-01

    The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, poil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.

  2. Molecular defense response of oil palm to Ganoderma infection.

    Science.gov (United States)

    Ho, C-L; Tan, Y-C

    2015-06-01

    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel

    DEFF Research Database (Denmark)

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments...... extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production...

  4. Exploring Opportunities for Sustainability in the Malaysian Palm Oil Industry

    DEFF Research Database (Denmark)

    Padfield, Rory; Hansen, Sune Balle; Preece, Christopher

    2011-01-01

    The global thirst for vegetable oil can be regarded as one of the greatest environmental challenges of the 21st Century and interest has intensified with the prospect of biofuels. Palm oil has risen to become the dominant player on the vegetable oil market – and the main recipient of environmental...... scrutiny. Focusing specifically on the Malaysian context, this paper analyses the major environmental, social and economic impacts associated with palm oil production. Drawing on recently published research, publicly available data and a comparison made with a recent sustainability initiative undertaken...... by the hydropower industry – an equally controversial and highly scrutinised sector – it is argued that the full extent of the impacts of palm oil should be acknowledged by those on both sides of the debate. Moreover, it is argued that by moving towards a less polarised version of the palm oil narrative and one...

  5. EBM Irradiation Modification of Palm Oil Biomass Filled Reclaimed Rubber-Mechanical Study

    International Nuclear Information System (INIS)

    Pairu Ibrahim; Ratnam, C.T.

    2016-01-01

    In this project, a study was done to evaluate the mechanical properties of reclaimed rubber filled with palm oil empty fruit bunch (EFB) as fillers. The purpose of filler is to help improve the properties of reclaim rubber and the addition of filler is fixed at 10 parts. Palm oil EFB was obtained from Malaysian Palm Oil Board (MPOB) and prepared at different size. Various samples were prepared with various sizes of filler blended with reclaim rubber using Haake Hot Mixer. The compounds were then compression-moulded at 120 degree Celsius using an electrically heated hydraulic press for their cure times. Dumbbell-shaped tensile and test specimens for hardness and impact test were punched out from the compression-moulded slabs along the mill grain direction. From the test result, it was found that the addition of fillers able to increase the mechanical properties of reclaim rubber and the smaller size of fillers added produced higher tensile properties. The study shows that the palm oil EFB suitable to be used as filler in reclaim rubber. (author)

  6. The Factors Influencing on Consumption of Palm Cooking Oil in Indonesia

    OpenAIRE

    Teti, Ermy; Hutabarat, Sakti; Nofionna, Asriati

    2011-01-01

    Cooking oil is one of the most sensitive basic needs in Indonesia. The aims of the researchare to analyze factors influencing consumption of cooking oil, the cooking oil price, and theCrude Palm Oil price in Indonesia. Using simultaneous equation model, the study show thatpalm cooking oil consumption is significantly affected by domestic palm cooking oil priceand number of population. Whilst palm cooking oil price is significantly influenced by thecooking palm oil production and the domestic ...

  7. The Factors Influencing on Consumption of Palm Cooking Oil in Indonesia

    OpenAIRE

    Teti, Ermy; Hutabarat, Sakti; Nofionna, Asriati

    2009-01-01

    Cooking oil is one of the most sensitive basic needs in Indonesia. The aims of the researchare to analyze factors influencing consumption of cooking oil, the cooking oil price, and theCrude Palm Oil price in Indonesia. Using simultaneous equation model, the study show thatpalm cooking oil consumption is significantly affected by domestic palm cooking oil priceand number of population. Whilst palm cooking oil price is significantly influenced by thecooking palm oil production and the domestic ...

  8. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The hidden carbon liability of Indonesian palm oil

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-05-15

    This report highlights the urgent need for global palm oil consumers and investors to support Unilever's call for an immediate moratorium on deforestation and peatland clearance in Indonesia. This report focuses on Unilever, which shares major institutional investors with other leading corporations including Nestle, Procter and Gamble and Kraft. Not only do these corporations share investors, they also share growing carbon liability within their raw material supply chains through the expansion in the palm oil sector in Indonesia. Unilever has recognised the global problems associated with palm oil expansion and the need for drastic reform to this sector. Unilever has taken a bold move in calling for an immediate moratorium on deforestation and peatland clearance. While Unilever's position is strengthened by its status as the largest palm oil consumer in the world, this report shows how, unless companies like Nestle, Procter and Gamble and Kraft support its call for a halt to deforestation, the palm oil industry will continue to present a massive carbon liability over the coming years. This report uses Unilever's palm oil supply chains as a case study to help quantify the carbon liability and collateral risks associated with the Indonesian palm oil sector. It shows how, by buying palm oil from suppliers who account for more than one-third of Indonesia's palm oil production, Unilever and its competitors are increasing their potential carbon liability and thus leaving investors exposed to potentially significant levels of hidden risk, compromising long-term financial and brand stability.

  10. Biotechnological applications for the utilisation of wastes from palm oil mills

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, S C; Ma, A N; Ooi, L C.L.; Ong, A S.H.

    1988-05-01

    The milling of oil palm fruits produces about two-and-a-half to three times as much effluent as oil does. It also generates a large amount of lignocellulosic wastes, mainly in the form of empty fruit bunches, press cake fibres and nut shell. Research efforts at PORIM have been directed towards the utilisation of these wastes as a means to solve the problem of environmental pollution as well as for the generation of economic returns for the mills. We have studied a thermophilic contact process for the anaerobic digestion of palm oil mill effluent and its potential for generating biogas for energy uses. Our work has also shown that the condensate derived from the fruit sterilisation process during milling is amenable to fermentation for the production of single cell protein (SCP) and exo-enzymes. The enzymes produced have been applied for oil clarification, oil recovery from press cake fibers and saccharification of the fibers for the production of sugar feedstocks. This paper will also introduce the concept of integrated waste management for the palm oil mill through the implementation of these technologies.

  11. Fast pyrolysis of oil palm shell (OPS)

    Science.gov (United States)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  12. Predicting Malaysian palm oil price using Extreme Value Theory

    OpenAIRE

    Chuangchid, K; Sriboonchitta, S; Rahman, S; Wiboonpongse, A

    2013-01-01

    This paper uses the extreme value theory (EVT) to predict extreme price events of Malaysian palm oil in the future, based on monthly futures price data for a 25 year period (mid-1986 to mid-2011). Model diagnostic has confirmed non-normal distribution of palm oil price data, thereby justifying the use of EVT. Two principal approaches to model extreme values – the Block Maxima (BM) and Peak-Over- Threshold (POT) models – were used. Both models revealed that the palm oil price will peak at ...

  13. Positive and Negative Impacts of Oil Palm Expansion in Indonesia and the Prospect to Achieve Sustainable Palm Oil

    Science.gov (United States)

    Shahputra, M. A.; Zen, Z.

    2018-02-01

    The aim of the study is to deepen understanding the role of palm oil on Indonesian economy, poverty elevation and to investigate the positive and negative impacts of oil palm expansion, due to the burden of GHG emissions; and prospect to be more sustainable palm oil industry. The statistics show that average rural poverty tends to be lower and Gross Regional Product tends to be higher in provinces which have greater levels of oil palm cultivation. Indonesian oil palm will grow from 10.6 in 2013 to 13.7 million ha by 2020. This will release 135.59 million tons of CO2 if nothing is done to mitigate BAU emissions. Unless there are sustained efforts to redirect development and expansion of oil palm, plantation growth will continue to encroach on intact forest and peat land.. In fact Indonesia has large areas of degraded land, an estimated total 19,144,000 ha is available for planting oil palm and other crops. A large-scale expansion program driven by estate companies needs to be accompanied by effective smallholder development program in order to achieve the best outcome for local farmers and avoid the conflicts.

  14. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    Science.gov (United States)

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    Science.gov (United States)

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.

  16. Mechanical properties of short random oil palm fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mohd Zuhri Mohamed Yusoff; Mohd Sapuan Salit; Napsiah Ismail; Riza Wirawan

    2010-01-01

    This paper presents the study of mechanical properties of short random oil palm fibre reinforced epoxy (OPF/epoxy) composites. Empty fruit bunch (EFB) was selected as the fibre and epoxy as the matrix. Composite plate with four different volume fractions of oil palm fibre was fabricated, (5 vol %, 10 vol %, 15 vol % and 20 vol %). The fabrication was made by hand-lay up techniques. The tensile and flexural properties showed a decreasing trend as the fibre loading was increased. The highest tensile properties was obtained for the composite with fibre loading of 5 vol % and there were no significant effect for addition of more than 5 vol % to the flexural properties. Interaction between fibre and matrix was observed from the scanning electron microscope (SEM) micrograph. (author)

  17. Effect Of Palm Oil Supplementation On The Performance Of Broiler ...

    African Journals Online (AJOL)

    A 21-day feeding trial was conducted to evaluate the effect of palm oil supplementation on the performance of broiler starter birds fed palm kernel meal based diets. One hundred and twenty (120) one-week-old Anak broilers were randomly assigned to five (5) treatment diets, each treatment diet was replicated four times at ...

  18. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Science.gov (United States)

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  19. Electrocoagulation of Palm Oil Mill Effluent

    Science.gov (United States)

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  20. ENGLISH-IGBO GLOSSARY CREATION OF PALM OIL ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    Abstract. The Igbo speaking people are well known for palm oil production ... ventures among other trades or occupations for which the Igbo are known. .... Q na-eme aka ntxtx vii. ..... Professionals – teachers, lawyers, writers, journalists and.

  1. Research Note: Comparative antibacterial activities of oil-palm ...

    African Journals Online (AJOL)

    Research Note: Comparative antibacterial activities of oil-palm Elaeis ... The antimicrobial activities liquid pyrolysates (obtained by destructive distillation), their ... respective chloroform fractions which showed higher activities than the crude ...

  2. Accelerated in vitro propagation of elite oil palm genotypes (Elaeis ...

    African Journals Online (AJOL)

    Usuario

    2016-12-14

    Dec 14, 2016 ... Thus, this study aimed to apply a cloning protocol, using somatic embryogenesis, .... A: Cutting of an adult plant oil palm to perform stem slitting and measurements, in ..... strand breaks induced by reactive oxygen species.

  3. Indigenous fungal entomopathogens associated with the oil palm ...

    African Journals Online (AJOL)

    SARAH

    2014-11-30

    Nov 30, 2014 ... is the most devastating insect pest of the African oil palm Elaeis guineensis Jacquin. Like most insect ... (Carrere, 2006). Malaysia and Indonesia, the world's ... environment, and residues in the fruits produced, it has become ...

  4. development of motorized development of motorized oil palm fruit

    African Journals Online (AJOL)

    eobe

    industrial activity in a number of developing West. African and ... pharmaceutical industries for the manufacture of drugs. ... production line of which oil palm fruit digestion is one. Thus, one ... For effective design of the machine, it was necessary.

  5. Economics of palm oil marketing in Owerri, Imo State, Nigeria ...

    African Journals Online (AJOL)

    Economics of palm oil marketing in Owerri, Imo State, Nigeria. ... Data on trades socio economic factors, marketing cost and marketing margin were collected from 80 traders randomly selected from the ... EMAIL FULL TEXT EMAIL FULL TEXT

  6. How Unilever palm oil suppliers are burning up Borneo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    New evidence shows expansion by Unilever palm oil suppliers is driving species extinction in Central Kalimantan, and fuelling climate change. In November 2007, Greenpeace released 'Cooking the Climate', an 82-page report summarizing the findings of a two-year investigation that revealed how the world's largest food, cosmetic and biofuel companies were driving the wholesale destruction of Indonesia's rainforests and peatlands through growing palm oil consumption. This follow-up report provides further evidence of the expansion of the palm oil sector in Indonesia into remaining rainforests, orang-utan habitat and peatlands in Kalimantan. It links the majority of the largest producers in Indonesia to Unilever, probably the largest palm oil corporate consumer in the world.

  7. The Kalimantan Border Oil Palm Mega-project

    Energy Technology Data Exchange (ETDEWEB)

    Wakker, E. [AIDEnvironment, Amsterdam (Netherlands)

    2006-04-15

    A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil

  8. The Kalimantan Border Oil Palm Mega-project

    International Nuclear Information System (INIS)

    Wakker, E.

    2006-04-01

    A few years ago, the Indonesian government and sections of the palm oil industry united in the Indonesian Palm Oil Commission (IPOC) to undertake efforts to restore the atrocious public image that the palm oil industry had earned abroad for its role in the demise of Indonesia's tropical rainforests, the massive forest fires and haze in 1997-1998, and for the widespread conflicts between plantation companies and local communities. If IPOC succeeded in restoring the palm oil industry's image abroad, it was shattered again after June 2005 when the Indonesian Minister of Agriculture revealed details of a government plan to develop the world's largest oil palm plantation in a 5-10 kilometer band along the border of Kalimantan and Malaysia. To finance the USD 567 million plantation project, the Indonesian President and Chamber of Commerce and Industry (KADIN) had already met up with the Chinese government and private sector several times, resulting in Memoranda of Understanding between (among other) the Artha Graha and Sinar Mas groups from Indonesia and the Chinese CITIC group and Chinese Development Bank (CDB). The oil palm mega-project, launched in Indonesia under the banner of 'bringing prosperity, security and environmental protection to the Kalimantan border area', turned sour when a business plan developed by the Indonesian State Plantation Corporation (PTPN) began to circulate. This document contained a map that showed beyond doubt how the 1.8 million hectare oil palm project would trash the primary forests of three National Parks, cut through rugged slopes and mountains utterly unsuitable for oil palm cultivation and annihilate the customary rights land of the indigenous Dayak communities in the border area. This report describes what has come of the Kalimantan border oil palm mega-plan since it was announced, who is involved and what research, lobby and campaigning has led to so far. In particular, this study aims to inform civil society organizations, palm oil

  9. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    Science.gov (United States)

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.

  10. Design And Development Of Chopper Machine For Palm Oil Midrib

    OpenAIRE

    Arif, Muhammad; Azmi, Azmi; Purba, Immanuel

    2016-01-01

    The midrib of palm oil has good potency to be processed become animal feed (silage) and compost where the midribs are chopped into small pieces. The opportunity of this development process that can more be benefit and valuable encourages researcher to design and create a machine that capable to chop the midribs of palm oil. In this research, researcher designs and creates a chopper machine which can be operated safely and more efficient based on ergonomics approach. Researcher also uses anthr...

  11. Feasibility study of gasification of oil palm fronds

    Directory of Open Access Journals (Sweden)

    S.A. Sulaiman

    2015-12-01

    Full Text Available Considering the large and consistent supply, oil palm fronds could be a promising source of biomass energy through gasification. There is very scarce information on the characteristics of oil palm fronds, which is vital in deciding if such biomass is technically suitable for gasification. In the present work, the feasibility of oil palm fronds for biomass gasification is studied. The study is conducted experimentally via standard tests to determine their thermochemical characteristics. Ultimate analysis is conducted to determine the contents of carbon, nitrogen, hydrogen and sulphide in oil palm fronds. Proximate analysis is performed to identify the burning characteristics of the biomass. The energy content in the fronds is determined by using a bomb calorie meter and is around 18 MJ/kg. The ignitability of the fronds is also studied experimentally to assess the ease to start-up combustion of the fronds. The characteristics of the flame of the resulting syngas from gasification of oil palm fronds are qualitatively studied. Simulated syngas composition study reveals potentials of 22% CO, 1.3% H2, 18.5% CO2 and traces of CH4. The study is extended to computer simulation to predict composition of the syngas. It is found from this work that oil palm fronds are feasible for gasification and has a good potential as a renewable energy source.

  12. Utilization of Palm Oil Clinker as Cement Replacement Material.

    Science.gov (United States)

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  13. Utilization of Palm Oil Clinker as Cement Replacement Material

    Directory of Open Access Journals (Sweden)

    Jegathish Kanadasan

    2015-12-01

    Full Text Available The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  14. Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm.

    Science.gov (United States)

    Jin, Jingjing; Lee, May; Bai, Bin; Sun, Yanwei; Qu, Jing; Rahmadsyah; Alfiko, Yuzer; Lim, Chin Huat; Suwanto, Antonius; Sugiharti, Maria; Wong, Limsoon; Ye, Jian; Chua, Nam-Hai; Yue, Gen Hua

    2016-12-01

    Oil palm is the world's leading source of vegetable oil and fat. Dura, Pisifera and Tenera are three forms of oil palm. The genome sequence of Pisifera is available whereas the Dura form has not been sequenced yet. We sequenced the genome of one elite Dura palm, and re-sequenced 17 palm genomes. The assemble genome sequence of the elite Dura tree contained 10,971 scaffolds and was 1.701 Gb in length, covering 94.49% of the oil palm genome. 36,105 genes were predicted. Re-sequencing of 17 additional palm trees identified 18.1 million SNPs. We found high genetic variation among palms from different geographical regions, but lower variation among Southeast Asian Dura and Pisifera palms. We mapped 10,000 SNPs on the linkage map of oil palm. In addition, high linkage disequilibrium (LD) was detected in the oil palms used in breeding populations of Southeast Asia, suggesting that LD mapping is likely to be practical in this important oil crop. Our data provide a valuable resource for accelerating genetic improvement and studying the mechanism underlying phenotypic variations of important oil palm traits. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  16. African fan palm (Borassus aethiopum) and oil palm (Elaeis ...

    African Journals Online (AJOL)

    Joao Bila

    In this study, potential alternate hosts of the phytoplasma causing coconut lethal yellowing disease. (CLYD) in Mozambique were investigated based on 16S rRNA and secA genes. The results reveal that the naturalized palm species, Elaeis guineensis and Borassus aethiopum are alternate hosts of CLYD phytoplasma in ...

  17. Indonesia`s Palm Oil Industrialization: the Resistance of Tanjung Pusaka Villagers, Central Kalimantan Against Palm Oil Industry

    OpenAIRE

    Wulansari, Ica

    2017-01-01

    Indonesia`s Palm oil industry is the greatest export commodity in the world. Palm oil industry has been developed since Soeharto`s administration with World Bank`s initiative. Indonesia`s development pattern is modernization which is fully supported by global capitalist agent. Furthermore, the government of Indonesia has issued policies to support this industry and the ease of accessibilty for investor to build in Indonesia. Most of the policies focus on economic interest with lack of attenti...

  18. Bioactive compounds from palm fatty acid distillate and crude palm oil

    Science.gov (United States)

    Estiasih, T.; Ahmadi, K.

    2018-03-01

    Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.

  19. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    Science.gov (United States)

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  20. Applications of Supercritical Fluid Extraction (SFE of Palm Oil and Oil from Natural Sources

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-02-01

    Full Text Available Supercritical fluid extraction (SFE, which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE that uses carbon dioxide (CO2 as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO2 extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  1. Infrared optical constants of liquid palm oil and palm oil biodiesel determined by the combined ellipsometry-transmission method.

    Science.gov (United States)

    Wang, C C; Tan, J Y; Ma, Y Q; Liu, L H

    2017-06-20

    The optical constants of vegetable oils and biodiesels are the basic input parameters in the study of the thermal radiation transfer and monitoring the productivity of vegetable oils converting to biodiesels. In this work, a combined ellipsometry-transmission method is presented to obtain the optical constants of palm oil and palm oil biodiesel between 20°C and 150°C in the spectral range 600-4100  cm -1 and to study the temperature effect on the optical constants. In the combined method, a modified ellipsometry method is used to measure the optical constants of palm oil and palm oil biodiesel for the whole researched wave bands. For the weak absorption regions in which the ellipsometry method cannot give precise absorption indices, the transmission method is conducted to get the absorption indices using the refractive indices obtained by the proposed ellipsometry method. Deionized water and methanol are taken as examples to verify the combined ellipsometry-transmission method. It is shown that the combined method can overcome the deficiencies of the traditional ellipsometry and transmission method, which can be used for the measurements of both strong and weak absorption wave bands. The experimental analyses indicate that temperature exerts a noticeable influence on the infrared optical constants of palm oil and palm oil biodiesel. With the increase of temperature, the refractive indices at certain wavenumbers decrease nearly linearly, and the amplitudes of dominant absorption peaks show a decreasing trend. The absorption peaks located around 3550  cm -1 show blueshift trends as temperature increases. Comparing these two kinds of oils, palm oil presents larger values in refractive indices and dominant absorption peaks.

  2. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    Science.gov (United States)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  3. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    Full Text Available Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significantly from sample to sample. A methodology set up at Cirad allowed to investigate separately natural triacylglycerols alone and the effect of minor components. In addition to these laboratory experiments, engine test at bench and field trials performed in palm oil producing countries, show that this oil is among the best oils as fuel; palm kernel oil whose chemical and physical properties are very close to those of the best of the series investigated, namely copra oil, should display also very interesting properties as Diesel biofuel. Both oils do require external adaptation of the engine when using an indirect injection type engine but even heavier adaptations for a direct injection model. Thus for use as Diesel fuel palm and palm kernel oils are suitable for captive fleets or for engine gensets, to balance the adaptation cost by a scale-up effect either on the number of identical engines or on the nominal vegetable oil consumption per set. Direct use of palm et palm kernel oils fits very well with technical and economical conditions encountered in remote areas. It is also possible to mix palm oil to Diesel fuel either as simple blend or as micro-emulsion. Out of the direct use, palm oil methyl or ethyl ester, often referred to as biodiesel, displays properties similar to those of petroleum Diesel fuel. This technical solution which is suitable to feed all kinds of standard compression ignited engines requires a chemical plant for carrying out the

  4. Preparation And Characterization Of Cr/Activated Carbon Catalyst From Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Zainal Fanani

    2016-02-01

    Full Text Available Preparation and characterization of Cr/activated carbon catalyst from palm empty fruit bunch had been done. The research were to determine the effect of carbonization temperature towards adsorption of ammonia, iodine number, metilen blue number, and porosity of activated carbon and Cr/activated carbon catalyst. The determination of porosity include surface area, micropore volume and total pore volume. The results showed the best carbonization temperature activated carbon and Cr/activated carbon catalyst at 700°C. The adsorption ammonia of activated carbon and Cr/activated carbon catalyst as 6.379 mmol/g and 8.1624 mmol/g. The iodine number of activated carbon and Cr/activated carbon catalyst as 1520.16 mg/g and 1535.67 mg/g. The metilen blue number of activated carbon and Cr/activated carbon catalyst as 281.71 mg/g and 319.18 mg/g. The surface area of activated carbon and Cr/activated carbon catalyst as 1527.80 m2/g and 1652.58 m2/g. The micropore volume of activated carbon and Cr/activated carbon catalyst as 0.7460 cm3/g and 0.8670 cm3/g. The total pore volume of activated carbon and Cr/activated carbon catalyst as 0.8243 cm3/g and 0.8970 cm3/g.

  5. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Thermal stability evaluation of palm oil as energy transport media

    International Nuclear Information System (INIS)

    Wan Nik, W.B.; Ani, F.N.; Masjuki, H.H.

    2005-01-01

    The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

  7. Analysis of total hydrogen content in palm oil and palm kernel oil using thermal neutron moderation method

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Dagadu, C.P.K.; Maaku, B.T.; Anim-Sampong, S.; Kyere, A.W.K.; Jonah, S.A.

    2001-01-01

    A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditional methods in Ghana. An equipment consisting of an 241 Am-Be neutron source and 3 He neutron detector was used in the investigation. The equipment was originally designed for detection of liquid levels in petrochemical and other process industries. Standards in the form of liquid hydrocarbons were used to obtain calibration lines for thermal neutron reflection parameter as a function of hydrogen content. Measured reflection parameters with respective hydrogen content with or without heat treatment of the three edible palm oils available on the market were compared with a brand cooking oil (frytol). The average total hydrogen content in the local oil samples prior to heating was measured to be 11.62 w% which compared well with acceptable value of 12 w% for palm oils in the sub-region. After heat treatment, the frytol oil (produced through bleaching process) had the least loss of hydrogen content of 0.26% in comparison with palm kernel oil of 0.44% followed by dzomi of 1.96% and by amidze of 3.22%. (author)

  8. Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra

    OpenAIRE

    Germer, Jörn Uwe

    2003-01-01

    The area planted to oil palm expanded during the last decades substantially, making it become the world's second most important oil crop. Despite its economic significance the oil palm remains remarkably unknown. Little attention is paid also to the oil palm undergrowth, though important in stabilizing the agro-ecosystem in plantations. Comprehensive knowledge of undergrowth species adapted to specific ecological niches in oil palm plantations is essential to investigate their function in ...

  9. Linking Agricultural Trade, Land Demand and Environmental Externalities: Case of Oil Palm in South East Asia

    OpenAIRE

    Othman, Jamal

    2003-01-01

    Reduction of support measures affecting soybean oil in the major soybean producing countries, as a consequence of WTO rules, coupled with rising demand for palm oil in non-traditional palm oil importing countries may lead to pronounced increases in agricultural land demand for oil palm expansion in Malaysia and Indonesia – two main palm oil producing and exporting countries. However, it is expected that the effects on agricultural land demand and consequently impact upon the environment will ...

  10. Oil palm land conversion in Pará, Brazil, from 2006-2014: evaluating the 2010 Brazilian Sustainable Palm Oil Production Program

    Science.gov (United States)

    Benami, E.; Curran, L. M.; Cochrane, M.; Venturieri, A.; Franco, R.; Kneipp, J.; Swartos, A.

    2018-03-01

    Global models of biophysical suitability for oil palm consistently rank Brazil as having the greatest potential for expansion, with estimates as high as 238 Mha of suitable lands. In 2010, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) to incentivize oil palm development without deforestation on as much as 30 Mha. Here we examine oil palm expansion before and after the SPOPP’s launch. In Pará, the major oil palm producing state in Brazil, we analyze the extent and change in oil palm cultivation from 2006-2014 using satellite imagery, ground-truthed verification, site-based interviews, and rural environmental (land) registration data. Between 2006-2014, oil palm area (≥9 ha) expanded >200% to ~219 000 ha. Of the ~148 000 ha of oil palm developed, ~91% converted pasturelands while ~8% replaced natural vegetation, including intact and secondary forests. Although >80% of all oil palm parcels rest role of agro-ecological suitability mapping among them. Interviews indicated that: (1) individual effects of suitability mapping efforts to encourage oil palm expansion on cleared areas, i.e. without deforestation, cannot be disentangled from pre-existing public and private deforestation reduction initiatives; and, (2) socio-economic constraints, e.g. high relative production costs and limited familiarity with this crop, appear to partially explain the major discrepancy between estimated potential suitable areas with realized oil palm development.

  11. Devolatilization Studies of Oil Palm Biomass for Torrefaction Process through Scanning Electron Microscopy

    Science.gov (United States)

    Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.

    2016-03-01

    In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.

  12. Upgrading of oil palm wastes by radiation processing - project review

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    1998-01-01

    Early works on oil palm waste treatment at MINT started in 1984 with the objective of degrading EFB (Empty Fruit Bunches) by radiation. This idea was shared by JAERI that adopted the research project with MINT in 1986 under the Japanese Science and Technology Agency (STA) programme. The results of these preliminary works show that EFB can be degraded using gamma radiation at a dose of ranging from 500 to 1000 kGy - 50 to 100 times higher than what is considered to be the economic dose. It is generally accepted that the economics of radiation treatment process could only be realised if the treatment dose can be kept below 10 kGy, which was incidentally, during the course of this early works, found to be the pasteurisation dose for oil palm by - products. With these information, MINT and JAERI agreed to pursue further research in this area and formulated a bilateral research co-operation in radiation pasteurisation of EFB and subsequent degradation by cellulolytic fungi or mushrooms. The research has the objective of upgrading EFB, which was not considered as suitable for feed due to its known physical properties as coarse and highly fibrous, to animal feed as well as substrate for mushroom cultivation and enzyme production. In addition to the desire to provide an environment friendly method for waste disposal to a growing industry, the possibility of catalysing the development of livestock industry by commercial farming in the process is another motivation for this project. Malaysia is estimated to be only about 40% self-sufficient in beef production. Thus there is great opportunity for the growth and expansion of this industry in Malaysia. However, growth in ruminant population should not result in the alienation of land for pastures. Among the reasons for the lack of interest in livestock production through commercial farming is the unavailability of local feed material which could be cheaper than imported feed grains, particularly maize. Feed is one the main cost

  13. Upgrading of oil palm wastes by radiation processing - project review

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    1998-07-01

    Early works on oil palm waste treatment at MINT started in 1984 with the objective of degrading EFB (Empty Fruit Bunches) by radiation. This idea was shared by JAERI that adopted the research project with MINT in 1986 under the Japanese Science and Technology Agency (STA) programme. The results of these preliminary works show that EFB can be degraded using gamma radiation at a dose of ranging from 500 to 1000 kGy - 50 to 100 times higher than what is considered to be the economic dose. It is generally accepted that the economics of radiation treatment process could only be realised if the treatment dose can be kept below 10 kGy, which was incidentally, during the course of this early works, found to be the pasteurisationdose for oil palm by - products. With these information, MINT and JAERI agreed to pursue further research in this area and formulated a bilateral research co-operation in radiation pasteurisation of EFB and subsequent degradation by cellulolytic fungi or mushrooms. The research has the objective of upgrading EFB, which was not considered as suitable for feed due to its known physical properties as coarse and highly fibrous, to animal feed as well as substrate for mushroom cultivation and enzyme production. In addition to the desire to provide an environment friendly method for waste disposal to a growing industry, the possibility of catalysing the development of livestock industry by commercial farming in the process is another motivation for this project. Malaysia is estimated to be only about 40% self-sufficient in beef production. Thus there is great opportunity for the growth and expansion of this industry in Malaysia. However, growth in ruminant population should not result in the alienation of land for pastures. Among the reasons for the lack of interest in livestock production through commercial farming is the unavailability of local feed material which could be cheaper than imported feed grains, particularly maize. Feed is one the main cost

  14. Improvement in Sensitivity of an Inductive Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Norhisam Misron

    2014-02-01

    Full Text Available Among palm oil millers, the ripeness of oil palm Fresh Fruit Bunch (FFB is determined through visual inspection. To increase the productivity of the millers, many researchers have proposed with a new detection method to replace the conventional one. The sensitivity of such a sensor plays a crucial role in determining the effectiveness of the method. In our preliminary study a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is proposed. The design of the proposed air coil sensor based on an inductive sensor is further investigated to improve its sensitivity. This paper investigates the results pertaining to the effects of the air coil structure of an oil palm fruit sensor, taking consideration of the used copper wire diameter ranging from 0.10 mm to 0.18 mm with 60 turns. The flat-type shape of air coil was used on twenty samples of fruitlets from two categories, namely ripe and unripe. Samples are tested with frequencies ranging from 20 Hz to 120 MHz. The sensitivity of the sensor between air to fruitlet samples increases as the coil diameter increases. As for the sensitivity differences between ripe and unripe samples, the 5 mm air coil length with the 0.12 mm coil diameter provides the highest percentage difference between samples and it is amongst the highest deviation value between samples. The result from this study is important to improve the sensitivity of the inductive oil palm fruit sensor mainly with regards to the design of the air coil structure. The efficiency of the sensor to determine the maturity of the oil palm FFB and the ripening process of the fruitlet could further be enhanced.

  15. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning

    Science.gov (United States)

    Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent

    2011-01-01

    Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information. PMID:21709233

  16. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.

    Science.gov (United States)

    Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen

    2011-03-01

    Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.

  17. Oil palm empty fruit bunch as media for mushroom cultivation

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Wan Badrin Wan Husin; Tajuddin Osman; Tamikazu Kume; Shinpei Matsuhashi

    1998-01-01

    The mushroom strains Pleurotus sajor caju(grey oyster mushroom), Pleurotus flavellatus((pink oyster mushroom), Pleurotus cystidiosus(abalone mushroom) and Auricularia polytricha (black jelly mushroom) grow satisfactorily on the EFB media treated with lime. Based on their Biological Efficiency (BE) or yield, the strain Pleurotus sajor caju was selected for further investigation. The BE of the Pleurotus sajor caju was 73.8 %. The lime treatment, aeration and four weeks incubation period was necessary for fruiting

  18. Kinetic of biogas production from oil palm empty fruit bunches

    Directory of Open Access Journals (Sweden)

    Danay Carillo-Nieves

    2014-01-01

    Full Text Available La producción de aceite de la palma Elaeis guineensis aporta residuales orgánicos como los racimos sin frutos (RSF que representan un 7%. Actualmente los RSF no se aprovechan en su totalidad consti tuyendo un problema medioambiental. Se estudia el empleo de RSF pretratados con NaOH para la producción de biogás. El tiempo de pretratamiento (TP de los RSF influye directamente sobre la c antidad de biogás producida logrando conversiones de sólidos volátiles a biogás de 96%, para TP = 60 min y 29 días de reacción. La pro ducción de biogás se ajusta a una ley cinética de orden 1 obteniéndose las constantes cinéticas de la generación de CH 4 (0,108 d -1 y CO 2 (0,107 d - 1 a la temperatura de operación del reactor (55°C. Se presenta un modelo generalizador que permite estimar la conversión de s ólidos volátiles a biogás en función del tiempo de pretratamiento y de l tiempo de permanencia en el reactor.

  19. Upgrading of oil palm wastes to animal feeds by radiation and fermentation treatment

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Ito, Hitoshi; Hashimoto, Shoji; Mutaat, H.H.; Awang, M.R.

    1992-01-01

    Upgrading of oil palm cellulosic wastes to animal feeds by radiation and fermentation treatment has been investigated in order to recycle the agro-resources and to reduce the smoke pollution. The process is as follows; decontamination of microorganisms in fermentation media using oil palm wastes by irradiation, inoculation of useful microorganisms, and subsequent microbial digestion of cellulosic materials as well as production of proteins. The dose of 25 kGy was required to sterilize the contaminated bacteria whereas the dose of 5 - 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus was selected as the most suitable seed microorganism for the fermentation of EFB (Empty Fruit Bunch of oil palm). The protein content increased to 13 % and the crude fiber content decreased to 20 % after 30 days incubation with C. cinereus at 30degC in solid state fermentation. It is considered that these fermented products can be used for the ruminant animal feeds. (author)

  20. Adsorption of mercury from aqueous solutions using palm oil fuel ash as an adsorbent - batch studies

    Science.gov (United States)

    Imla Syafiqah, M. S.; Yussof, H. W.

    2018-03-01

    Palm oil fuel ash (POFA) is one of the most abundantly produced waste materials. POFA is widely used by the oil palm industry which was collected as ash from the burning of empty fruit bunches fiber (EFB) and palm oil kernel shells (POKS) in the boiler as fuel to generate electricity. Mercury adsorption was conducted in a batch process to study the effects of contact time, initial Hg(II) ion concentration, and temperature. In this study, POFA was prepared and used for the removal of mercury(II) ion from the aqueous phase. The effects of various parameters such as contact time (0- 360 min), temperature (15 – 45 °C) and initial Hg(II) ion concentration (1 – 5 mg/L) for the removal of Hg(II) ion were studied in a batch process. The surface characterization was examined by scanning electron microscopy (SEM) and particle size distribution analysis. From this study, it was found that the highest Hg(II) ion removal was 99.60 % at pH 7, contact time of 4 h, initial Hg(II) ion concentration of 1 mg/L, adsorbent dosage 0.25 g and agitation speed of 100 rpm. The results implied that POFA has the potential as a low-cost and environmental friendly adsorbent for the removal of mercury from aqueous solution.

  1. Neutron Backscattered Technique for Quantification of Oil Palm Fruit Oil Content

    International Nuclear Information System (INIS)

    Ismail Mustapha; Samihah Mustaffha; Md Fakarudin Ab Rahman; Roslan Yahya; Lahasen Norman Shah Dahing; Nor Paiza Mohd Hasan; Jaafar Abdullah

    2013-01-01

    Non-destructive and real time method becomes a well-liked method to researchers in the oil palm industry since 2000. This method has the ability to detect oil content in order to increase the production of oil palm for better profit. Hence, this research investigates the potential of neutron source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical formula C 55 H 96 O 6 . For this paper, oil palm loose fruit was being used and divided into three groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each group were collected from a private plantation in Malaysia. Each sample was scanned using neutron backscattered technique. The higher neutron count, the more hydrogen content, and the more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r 2 =0.98. This research proves that neutron backscattered technique can be used as a non-destructive and real time grading system for palm oil. (author)

  2. Quality Attributes of Fresh Palm Oils Produced from Selected ...

    African Journals Online (AJOL)

    The oils were analyzed for their physical (refractive index, impurities, density, smoke point, flash point and fire point) and chemical (moisture, free fatty acids, peroxide value, saponification value iodine value and unsaponificable matter) qualities using standard methods. Palm oil processors in the selected communities were ...

  3. Comparative study of the chemical properties of palm oil extracted ...

    African Journals Online (AJOL)

    The chemical properties of oil samples determined were free fatty acid, acid value, saponification value, peroxide value, iodine value and moisture content. The experimental design adopted was 3 x 2 x 2 factorial randomized complete block design in three replicates. The data of chemical properties of extracted palm oil ...

  4. Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration.

    Science.gov (United States)

    Paterson, R Russell M; Lima, Nelson

    2018-01-01

    Palm oil is used in various valued commodities and is a large global industry worth over US$ 50 billion annually. Oil palms (OP) are grown commercially in Indonesia and Malaysia and other countries within Latin America and Africa. The large-scale land-use change has high ecological, economic, and social impacts. Tropical countries in particular are affected negatively by climate change (CC) which also has a detrimental impact on OP agronomy, whereas the cultivation of OP increases CC. Amelioration of both is required. The reduced ability to grow OP will reduce CC, which may allow more cultivation tending to increase CC, in a decreasing cycle. OP could be increasingly grown in more suitable regions occurring under CC. Enhancing the soil fauna may compensate for the effect of CC on OP agriculture to some extent. The effect of OP cultivation on CC may be reduced by employing reduced emissions from deforestation and forest degradation plans, for example, by avoiding illegal fire land clearing. Other ameliorating methods are reported herein. More research is required involving good management practices that can offset the increases in CC by OP plantations. Overall, OP-growing countries should support the Paris convention on reducing CC as the most feasible scheme for reducing CC.

  5. The economy of palm oil production and marketing in Igala land ...

    African Journals Online (AJOL)

    The economy of palm oil production and marketing in Igala land. ... Palm oil processing and marketing constituted one of the major occupations of the people as men, women and even the young ones ... EMAIL FULL TEXT EMAIL FULL TEXT

  6. Impact analysis of palm oil mill effluent on the aerobic bacterial ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... Key words: Palm oil mill effluent, total aerobic bacteria, ammonium oxidizers. INTRODUCTION ... bacteria help in the degradation of macromolecules from plant and animal .... Anaerobic digestion of palm oil mill effluent.

  7. Will Improved Palm Oil Yields suffice to the Development of Sustainable Biodiesel Feedstock in indonesia?

    OpenAIRE

    Palmén, Carl; Silveira, Semida; Khatiwada, Dilip

    2015-01-01

    By the expansion of oil palm plantations, Indonesia has become a world leading producer of crude palm oil. However, Indonesia has also been largely criticized due to issues of land use change and deforestation. The country now promotes the use of palm oil for biodiesel production as part of policies to achieve renewable energy targets. Currently yields on palm oil plantations are far from optimal. Do new policies promoting biodiesel production address the issue of yields properly? This study ...

  8. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    OpenAIRE

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.; Carrasco, L. R.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholder...

  9. Palm oil - towards a sustainable future? : Challanges and opportunites for the Swedish food industry

    OpenAIRE

    Nilsson, Sara

    2013-01-01

    The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and health issues. The food industry also competes with increasing palm oil demands from the energy sector. This case study identifies and analyzes different perspectives regarding sustainable palm oil as a food commodity in Sweden through interviews with palm oil experts in different businesses and organizations. This study focuses on ho...

  10. Indonesia palm oil production without deforestation and peat conversion by 2050.

    Science.gov (United States)

    Afriyanti, Dian; Kroeze, Carolien; Saad, Asmadi

    2016-07-01

    Palm oil is a promising source of cooking oil and biodiesel. The demand for palm oil has been increasing worldwide. However, concerns exist surrounding the environmental and socio-economic sustainability of palm oil production. Indonesia is a major palm oil producing country. We explored scenarios for palm oil production in Indonesia until 2050, focusing on Sumatra, Kalimantan and Papua. Our scenarios describe possible trends in crude palm oil production in Indonesia, while considering the demand for cooking oil and biodiesel, the available land for plantations, production capacity (for crude palm oil and fresh fruit bunches) and environmentally restricting conditions. We first assessed past developments in palm oil production. Next, we analysed scenarios for the future. In the past 20years, 95% of the Indonesian oil palm production area was in Sumatra and Kalimantan and was increasingly cultivated in peatlands. Our scenarios for the future indicate that Indonesia can meet a considerable part of the global and Asian demand for palm oil, while avoiding further cultivation of peatlands and forest. By 2050, 264-447Mt crude palm oil may be needed for cooking oil and biodiesel worldwide. In Indonesia, the area that is potentially suitable for oil palm is 17 to 26Mha with a potential production rate of 27-38t fresh fruit bunches/ha, yielding 130-176Mt crude palm oil. Thus Indonesia can meet 39-60% of the international demand. In our scenarios this would be produced in Sumatra (21-26%), Kalimantan (12-16%), and Papua (2%). The potential areas include the current oil palm plantation in mineral lands, but exclude the current oil palm plantations in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of de-oiled palm kernel cake based fertilizers on sole maize ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of de-oiled palm kernel cake based fertilizer formulations on the yield of sole maize and cassava crops. Two de-oiled palm kernel cake based fertilizer formulations A and B were compounded from different proportions of de-oiled palm kernel cake, urea, muriate of potash and ...

  12. The Effects Of Fresh And Thermoxidized Palm Oil Diets On Some ...

    African Journals Online (AJOL)

    The effects of fresh and thermoxidized palm oil diets on some haematalogical indices in the rat were investigated in albino rats (Wistar strain). The animals were divided into three groups namely, the first group fed on thermoxidized palm oil (TPO) diet, a second group fed on fresh palm oil (FPO) diet and a third fed on normal ...

  13. Removal of oil palm trunk lignin in ammonium hydroxide pretreatment

    Science.gov (United States)

    Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed

    2018-04-01

    Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.

  14. Integrated Bali Cattle Development Model Under Oil Palm Plantation

    Directory of Open Access Journals (Sweden)

    Rasali Hakim Matondang

    2015-09-01

    Full Text Available Bali cattle have several advantages such as high fertility and carcass percentage, easy adaptation to the new environment as well. Bali cattle productivity has not been optimal yet. This is due to one of the limitation of feed resources, decreasing of grazing and agricultural land. The aim of this paper is to describe Bali cattle development integrated with oil palm plantations, which is expected to improve productivity and increase Bali cattle population. This integration model is carried out by raising Bali cattle under oil palm plantation through nucleus estate scheme model or individual farmers estates business. Some of Bali cattle raising systems have been applied in the integration of palm plantation-Bali cattle. One of the intensive systems can increase daily weight gain of 0.8 kg/head, calfcrop of 35% per year and has the potency for industrial development of feed and organic fertilizer. In the semi-intensive system, it can improve the production of oil palm fruit bunches (PFB more than 10%, increase harvested-crop area to 15 ha/farmer and reduce the amount of inorganic fertilizer. The extensive system can produce calfcrop ³70%, improve ³30% of PFB, increase business scale ³13 cows/farmer and reduce weeding costs ³16%. Integrated Bali cattle development may provide positive added value for both, palm oil business and cattle business.

  15. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    RyoheiTanaka; LehCheuPeng; WanRosliWanDaud

    2004-01-01

    Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world's largest producer and exporter of the oil, so that the country's economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10-15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia. Here we would like to introduce recent situation of palm oil and oil palm lignocellulosic residues at the first part of this paper. In the second part, our recent studies on the preparation of pulps for different purposes will be summarized.

  16. Life Cycle Assessment of Sago Palm, Oil Palm, and Paddy Cultivated on Peat Land

    Directory of Open Access Journals (Sweden)

    Saptarining Wulan

    2015-07-01

    Full Text Available The continuously increasing population growth more than food agriculture growth on the existing land, has been encouraging to this research. The land use competition for agriculture and housing purposes have caused the land use change from forest to agriculture and housing. Within forested landscapes food production, commodity agriculture, biodiversity, resource extraction and other land uses are also competing for space. The forest land use change (deforestation is one of the climate change causes. The impact of climate change among others is the uncertain climate, such as the long drought period, flood, and the extreme temperature that cause decreasing in agriculture production. Therefore, at present, many people use the marginal land, such as peat land for agriculture cultivation to increase the food agriculture production and to achieve the domestic and export demand. Indonesia has a huge peat land and the fourth biggest in the world after Rusia, Canada, and America. The focus of this study is comparing the life cycle assessment of three agriculture commodities: sago palm, oil palm, and paddy cultivated on peat land. The purpose of this research is to contribute a recommendation of the most sustainable commodity from the aspect carbon dioxide (CO2 emission among three food agriculture commodities include oil palm and paddy that currently as excellent commodities, and sago palm, the neglected indigenous plant, which are cultivated on peat land. The method applied for this research to analyze the environmental aspect using life cycle assessment (LCA started from seedling, plantation, harvesting, transportation, and production process. The analysis result reveals that sago palm is the most environmental friendly. The lowest CO2 emission (ton/ha/year is sago palm (214.75 ± 23.49 kg CO2 eq, then paddy (322.03 ± 7.57 kg CO2 eq and the highest CO2 emission (ton/ha/year is oil palm (406.88 ± 97.09 kg CO2 eq.

  17. Life Cycle Assessment of Sago Palm, Oil Palm, and Paddy Cultivated on Peat Land

    Directory of Open Access Journals (Sweden)

    Saptarining Wulan

    2015-01-01

    Full Text Available The continuously increasing population growth more than food agriculture growth on the existing land, has been encouraging to this research. The land use competition for agriculture and housing purposes have caused the land use change from forest to agriculture and housing. Within forested landscapes food production, commodity agriculture, biodiversity, resource extraction and other land uses are also competing for space. The forest land use change (deforestation is one of the climate change causes. The impact of climate change among others is the uncertain climate, such as the long drought period, flood, and the extreme temperature that cause decreasing in agriculture production. Therefore, at present, many people use the marginal land, such as peat land for agriculture cultivation to increase the food agriculture production and to achieve the domestic and export demand. Indonesia has a huge peat land and the fourth biggest in the world after Rusia, Canada, and America. The focus of this study is comparing the life cycle assessment of three agriculture commodities: sago palm, oil palm, and paddy cultivated on peat land. The purpose of this research is to contribute a recommendation of the most sustainable commodity from the aspect carbon dioxide (CO2 emission among three food agriculture commodities include oil palm and paddy that currently as excellent commodities, and sago palm, the neglected indigenous plant, which are cultivated on peat land. The method applied for this research to analyze the environmental aspect using life cycle assessment (LCA started from seedling, plantation, harvesting, transportation, and production process. The analysis result reveals that sago palm is the most environmental friendly. The lowest CO2 emission (ton/ha/year is sago palm (214.75 ± 23.49 kg CO2 eq, then paddy (322.03 ± 7.57 kg CO2 eq and the highest CO2 emission (ton/ha/year is oil palm (406.88 ± 97.09 kg CO2 eq.

  18. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  19. Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility.

    Science.gov (United States)

    Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Hassan, Mohd Ali

    2015-10-01

    Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Shear strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.

    2013-01-01

    Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1

  1. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    Science.gov (United States)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  2. A REVIEW OF OIL PALM BIOCOMPOSITES FOR FURNITURE DESIGN AND APPLICATIONS: POTENTIAL AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Siti Suhaily,

    2012-07-01

    Full Text Available This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agro-based biocomposites to meet the needs of future population growth and technology. This research also discusses the need for biocomposite materials that do not depend on the growth of populations, but on the growth and development of the economy. This study focuses on globally available agro-based biocomposites, especially those from oil palm biomass: plywood, medium density fiberboard (MDF, wood plastic composite (WPC, laminated veneer lumber (LVL, oriented strand board (OSB, hardboards, and particleboard. Additional positive aspects of biocomposites are their environmentally friendly character, high quality, competitive design, and capacity to improve the value proposition of high-end products. These attributes increase the demand for agro-based biocomposite furniture on the international market.

  3. Palm oil transesterified by metanolysis as diesel engine biofuel

    International Nuclear Information System (INIS)

    Agudelo Santamaria, John R; Pena, Diego Leon; Mejia, Ricardo

    2001-01-01

    This paper reviews a general background of biodiesel and its potentialities and possibilities as automotive fuel. The paper also compares the colombian production capacity in the world context, and shows its advantages and disadvantages as diesel engine biofuel. The paper discusses some relevant processing techniques of crude palm oil, the methanol transesterification technique being found to be the most suitable one. Finally it shows the results of some important physicochemical characterization of a crude palm oil transesterificated with methanol at the Universidad de Antioquia

  4. Modelling microwave heating of discrete samples of oil palm kernels

    International Nuclear Information System (INIS)

    Law, M.C.; Liew, E.L.; Chang, S.L.; Chan, Y.S.; Leo, C.P.

    2016-01-01

    Highlights: • Microwave (MW) drying of oil palm kernels is experimentally determined and modelled. • MW heating of discrete samples of oil palm kernels (OPKs) is simulated. • OPK heating is due to contact effect, MW interference and heat transfer mechanisms. • Electric field vectors circulate within OPKs sample. • Loosely-packed arrangement improves temperature uniformity of OPKs. - Abstract: Recently, microwave (MW) pre-treatment of fresh palm fruits has showed to be environmentally friendly compared to the existing oil palm milling process as it eliminates the condensate production of palm oil mill effluent (POME) in the sterilization process. Moreover, MW-treated oil palm fruits (OPF) also possess better oil quality. In this work, the MW drying kinetic of the oil palm kernels (OPK) was determined experimentally. Microwave heating/drying of oil palm kernels was modelled and validated. The simulation results show that temperature of an OPK is not the same over the entire surface due to constructive and destructive interferences of MW irradiance. The volume-averaged temperature of an OPK is higher than its surface temperature by 3–7 °C, depending on the MW input power. This implies that point measurement of temperature reading is inadequate to determine the temperature history of the OPK during the microwave heating process. The simulation results also show that arrangement of OPKs in a MW cavity affects the kernel temperature profile. The heating of OPKs were identified to be affected by factors such as local electric field intensity due to MW absorption, refraction, interference, the contact effect between kernels and also heat transfer mechanisms. The thermal gradient patterns of OPKs change as the heating continues. The cracking of OPKs is expected to occur first in the core of the kernel and then it propagates to the kernel surface. The model indicates that drying of OPKs is a much slower process compared to its MW heating. The model is useful

  5. Exports of Palm Oil from Ghana: A Demand Analysis

    OpenAIRE

    Kuwornu, John K.M.; Darko, Francis A.; Osei-Asare, Yaw B.; Egyir, Irene S.

    2009-01-01

    Studies have shown that the economy of Ghana cannot afford to rely solely on cocoa exports. It is imperative to diversify the export base of the Ghanaian economy. In this respect, the palm oil sub-sector of the agricultural sector, which until the early part of the 20th century was the major agricultural export commodity of Ghana, needs to be considered for promotion. Currently the palm oil industry faces the challenge of bleak export potential. This study examines trends in the quantity expo...

  6. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    Science.gov (United States)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  7. Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid

    Directory of Open Access Journals (Sweden)

    Abdul Rajab

    2011-04-01

    Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

  8. Dynamics of Polymorphic Transformations in Palm Oil, Palm Stearin and Palm Kernel Oil Characterized by Coupled Powder XRD-DSC.

    Science.gov (United States)

    Zaliha, Omar; Elina, Hishamuddin; Sivaruby, Kanagaratnam; Norizzah, Abd Rashid; Marangoni, Alejandro G

    2018-06-01

    The in situ polymorphic forms and thermal transitions of refined, bleached and deodorized palm oil (RBDPO), palm stearin (RBDPS) and palm kernel oil (RBDPKO) were investigated using coupled X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results indicated that the DSC onset crystallisation temperature of RBDPO was at 22.6°C, with a single reflection at 4.2Å started to appear from 23.4 to 17.1°C, and were followed by two prominent exothermic peaks at 20.1°C and 8.5°C respectively. Further cooling to -40°C leads to the further formation of a β'polymorph. Upon heating, a of β'→βtransformation was observed between 32.1 to 40.8°C, before the sample was completely melted at 43.0°C. The crystallization onset temperature of RBDPS was 44.1°C, with the appearance of the α polymorph at the same temperature as the appearance of the first sharp DSC exothermic peak. This quickly changed from α→β´ in the range 25 to 21.7°C, along with the formation of a small β peak at -40°C. Upon heating, a small XRD peak for the β polymorph was observed between 32.2 to 36.0°C, becoming a mixture of (β´+ β) between 44.0 to 52.5°C. Only the β polymorph survived further heating to 59.8°C. For RBDPKO, the crystallization onset temperature was 11.6°C, with the formation of a single sharp exothermic peak at 6.5°C corresponding to the β' polymorphic form until the temperature reached -40°C. No transformation of the polymorphic form was observed during the melting process of RBDPKO, before being completely melted at 33.2°C. This work has demonstrated the detailed dynamics of polymorphic transformations of PKO and PS, two commercially important hardstocks used widely by industry and will contribute to a greater understanding of their crystallization and melting dynamics.

  9. The Nutrient Digestibility of Locally Sheep Fed with Amofer Palm Oil Byproduct-Based Complete Feed

    Directory of Open Access Journals (Sweden)

    Hamdi Mayulu

    2014-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE Utilization of palm oil by-product such as palm fronds, leaves, empty fruit bunches (EFB, fiber fruit juice (FFJ, palm kernel cake (PKC, and palm oil sludge (POS as the source of energy and protein for ruminants, especially sheep is an efficient effort to make a new opportunities in term of economical and beneficial product that will reduce environmental pollution. The objectives of this research were to analyze the effect of palm oil’s byproduct-based complete feed on sheep’s nutrient digestibility. Sixteen male sheeps of nine month old with average body weight 14.69+0.82 kg were used. The complete feed was formulated by ammoniated-fermented technology from palm fronds and leaves, EFB and FFJ, also Centrosema sp., PKC, POS, ground corn, rice bran, cassava, molasses, urea, mineral mix and salt. The complete feed with different levels of crude protein (CP and TDN were used in this research which consisted of T1=10,63% CP; 63.46% TDN; T2=12.27% CP; 62.38% TDN; T3=13.70% CP; 64.11% TDN; and T4=15.90% CP; 61.28% TDN. The study used a completely randomized design (CRD which consisted of four treatments and four replications. Data was analyzed using ANOVA with significance level at 95% and followed by Duncan Multiple Range Test. The experimental results showed that the protein level affected the feed digestibility. The highest digestibility of dry matter, organic matter and crude protein were 65.79%, 70.30%, and 84.34% respectively, resulting in 14% protein level (T3 were significantly different with treatment at protein level 10% (T1, 12% (T2 and 16% (T4 at p <0.05. It can be concluded that by-product of palm oil plantation and mill had good nutritional value. Therefore, this feedstuff can be used to formulate complete feed for sheep and it successfully increased the nutrient digestibility /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso

  10. Palm oil industry in Ecuador. Good business for small farmers?

    Directory of Open Access Journals (Sweden)

    Lesley P. Potter

    2013-10-01

    Full Text Available Ecuador is the second largest producer in Latin America of crude palm oil and is the seventh largest producer worldwide, but with yields per hectare still lower than Colombia and Costa Rica. Although producers with over 1 000 hectares have the leadership in the palm oil industry, 87% of producers produce with less than 50 hectares. Moreover, the deforestation rate in Ecuador is ranked by FAO as the ninth highest in the world and the highest in South America. The African palm plantations have been criticized for causing deforestation and worsening work conditions. However, government sectors see the oil palm companies as a source of employment and development for poor regions. This fieldwork shows that there is a difference in perception among small farmers. Farmers from Quinindé-La Concordia were satisfied with the income they earn and the rising prices of land planted with palm. Farmers in San Lorenzo, in contrast, are not happy since the survey shows that a disease devastated trees and as a result, land prices have fallen in San Lorenzo.

  11. Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers

    International Nuclear Information System (INIS)

    Salleh, S.N.M.; Ubaidillah, E.A.E.; Abidin, M.F.Z.

    2010-01-01

    Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

  12. An experiment of used palm oil refinery using the value engineering method

    Science.gov (United States)

    Sumiati; Waluyo, M.

    2018-01-01

    Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.

  13. Understanding the oil palm change in Nong Khai Province: the farmers perspectives and the policy processes of the oil palm plantations

    OpenAIRE

    Sethaputra, Kampree

    2014-01-01

    Since 2005, the Thai government has, as a matter of policy, been seeking to increase production of biodiesel from oil palms. As a result, the number of oil palm plantations in the Northeast region has been growing, particularly in Nong Khai province. Nong Khai is a relatively remote, predominantly agricultural area and is the field site for this research. However, oil palm production is a complex and hotly contested issue both globally and in Thailand and it has ardent critics and supporters....

  14. Properties of fresh and hardened sustainable concrete due to the use of palm oil fuel ash as cement replacement

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.

  15. Suitability of online 3D visualization technique in oil palm plantation management

    Science.gov (United States)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  16. Use of calcium oxide in palm oil methyl ester production

    Directory of Open Access Journals (Sweden)

    Kulchanat Prasertsit

    2014-04-01

    Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

  17. Recloning of regenerated plantlets from elite oil palm ( Elaeis ...

    African Journals Online (AJOL)

    Plant regeneration in oil palm cv. Tenera via somatic embryogenesis was conducted using regenerated plantlets as an explant source. Explants from different positions – apex, middle and basal segments of regenerated plantlets – were cultured in N6 medium supplemented with 100, 120 and 140 mg/L 2 ...

  18. Development of Motorized Oil Palm Fruit Rotary Digester | Asoiro ...

    African Journals Online (AJOL)

    A motorized oil palm fruit rotary digester comprising of a feed hopper, hammers, axle, screening plate, v-belt, 2hp electric motor, digesting chamber and frame was designed and developed using standard and locally sourced materials. The performance test analysis showed that its throughput capacity is 117.93kg/hr with a ...

  19. Mycological deterioration of stored palm kernels recovered from oil ...

    African Journals Online (AJOL)

    Palm kernels obtained from Pioneer Oil Mill Ltd. were stored for eight (8) weeks and examined for their microbiological quality and proximate composition. Seven (7) different fungal species were isolated by serial dilution plate technique. The fungal species included Aspergillus flavus Link; A nidulans Eidem; A niger ...

  20. The disciplining of illegal palm oil plantations in Sumatra

    NARCIS (Netherlands)

    Pramudya, Eusebius Pantja; Hospes, Otto; Termeer, C.J.A.M.

    2018-01-01

    The Indonesian state has issued many regulations to control palm oil expansion, but they have been weakly enforced, resulting in widespread illegal plantations. During the last decade, Indonesian authorities have used force to reduce illegal plantations. This article analyses the drivers behind

  1. Economic potential of the oil palm (Elaeis guineensis Jacq

    Directory of Open Access Journals (Sweden)

    Juan Sierra Márquez

    2017-04-01

    Full Text Available The objective of this research was to highlight the economic importance of the optimal use of products and byproducts of oil palm. In Colombia, productive crops per hectare can generate, over one year, an average of 3.14 tons of oil, and up to 21.68 t of solid and liquid waste when the plant is on a productive stage. These data allowed the researcher to estimate that more than nine million of t of solid and liquid waste was produced from the 450 131 ha present in 2014, in Colombia; the produced biomass was used to generate energy and steam, releasing carbon dioxide back again into the environment. These residues have great potential in many industries, some to be developed, therefore, it is of special importance to try to maximize the use of waste produced by oil palm production, to generate economic and environmental benefits. An example of this is the palm kernel cake, with a nutritional potential in animal feed, fiber in the biocompound industry, biomass and stipe in the timber industry, glycerol, biodiesel, and liquid effluents in the chemical and biotechnological industry. The use of these raw materials may help to establish a positive balance in the cultivation of this species of oil palm in the country.

  2. Biodiversity of Soil Arthropods in Nigerian Institute for oil Palm ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... A survey of soil arthropod fauna inhabiting Nigeria Institute for Oil Palm Research ... These individuals were represented in 4 classes, 11 orders and 21 families which were collected and extracted using the pitfall trap method and the ... OTHER RESOURCES.

  3. Economic potentials of oil palm products and weed control on ...

    African Journals Online (AJOL)

    A study was carried out at the Research Farm of National Root Crops Research Institute Umudike, southeastern Nigeria (05o, 29'N, 07o 33'E and 122 m above sea level), in 2015 and 2016 cropping seasons to study the economic potentials of oil palm products and weed control on sustainable turmeric production and some ...

  4. Determinants of profitability of smallholder palm oil processing units ...

    African Journals Online (AJOL)

    A total of 70 questionnaires were administered to the palm oil farmers randomly selected from five purposively sampled towns in Ogun state. Selection was based on the predominance of producers in the towns as well as their geographical spread covering the entire land space of the state. The response rate was 95.71 ...

  5. Large estragole fluxes from oil palms in Borneo

    Science.gov (United States)

    During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole in ambient air above oil palm canopies flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the Afric...

  6. Oil palm expansion in Indonesia : serving people, planet and profit?

    NARCIS (Netherlands)

    Susanti, A.

    2016-01-01

    This study aimed to provide a more holistic understanding of how drivers at various levels interplay and continue to feed the expansion of oil palm plantations with its associated land use/cover change (LUCC) particularly deforestation, local economic development and people’s livelihoods. Recent

  7. Predicting the nutritional health status of locally produced palm oil ...

    African Journals Online (AJOL)

    Three physical properties of locally produced palm oil – viscosity, thermal conductivity and density for varying temperatures were determined. The values obtained were compared with corresponding internationally stipulated standard values using statistics of mean and graphs. The purpose of the comparison was to predict ...

  8. Cultivation of oyster mushroom ( Pleurotus spp.) on palm oil ...

    African Journals Online (AJOL)

    Oyster mushroom is a popular mushroom due to its nutritional, medicinal and potential commercial value. In Malaysia, the fungus is currently cultivated on sawdust and rice husk. In this study, the efficiency of cultivating oyster mushroom was assessed using palm oil mesocarp fibre as a substrate. The experiment consisted ...

  9. The application of foliar analysis in oil palm cultivation

    NARCIS (Netherlands)

    Broeshart, H.

    1955-01-01

    The chemical analysis of leaves was studied as an indication of fertilizer requirements of the oil-palm in the former Belgian Congo. Position and age of the leaf both markedly influenced chemical composition. Leaflets from the same position in leaf and plant must be compared. The age of the whole

  10. Characterization of a Treated Palm Oil Fuel Ash | Hassan | Science ...

    African Journals Online (AJOL)

    Palm oil fuel ash (POFA) has been known to possess a pozzolanic property. ... for 1.5 hours in a ball mill to reduce the particle size and to improve reactivity. ... that POFA is a good candidate for various applications by ceramic industries.

  11. Simulating potential growth and yield of oil palm with PALMSIM

    NARCIS (Netherlands)

    Hoffmann, M.P.; Vera, A.C.; Wijk, van M.T.; Giller, K.E.; Oberthur, R.; Donough, C.; Whitbread, A.M.; Fisher, M.J.

    2014-01-01

    The growing demand for palm oil can be met by reducing the gap between potential yield and actual yield. Simulation models can quantify potential yield, and therefore indicate the scope for intensification. A relatively simple physiological approach was used to develop PALMSIM, which is a model that

  12. Clean technology for the crude palm oil industry in Thailand

    NARCIS (Netherlands)

    Chavalparit, O.

    2006-01-01

    The aims of this study were to assess the potential contribution of clean(er) technology to improve the environmental performance of the crude palm oil industry inThailand, to analyse implementation barriers for

  13. Identification of a partial oil palm polygalacturonase-inhibiting ...

    African Journals Online (AJOL)

    Basal stem rot disease (BSR) is a common and serious fungal disease of the oil palm caused by Ganoderma boninense. This fungal disease infects thousands of hectares of plantings in Southeast Asia every year causing not only yield but also tree losses. A natural plant self defence mechanism against fungal infection is ...

  14. Ergonomics observation: Harvesting tasks at oil palm plantation.

    Science.gov (United States)

    Ng, Yee Guan; Shamsul Bahri, Mohd Tamrin; Irwan Syah, Md Yusoff; Mori, Ippei; Hashim, Zailina

    2014-01-01

    Production agriculture is commonly associated with high prevalence of ergonomic injuries, particularly during intensive manual labor and during harvesting. This paper intends to briefly describe an overview of oil palm plantation management highlighting the ergonomics problem each of the breakdown task analysis. Although cross-sectional field visits were conducted in the current study, insight into past and present occupational safety and health concerns particularly regarding the ergonomics of oil palm plantations was further exploited. Besides discussion, video recordings were extensively used for ergonomics analysis. The unique commodity of oil palm plantations presents significantly different ergonomics risk factors for fresh fruit bunch (FFB) cutters during different stages of harvesting. Although the ergonomics risk factors remain the same for FFB collectors, the intensity of manual lifting increases significantly with the age of the oil palm trees-weight of FFB. There is urgent need to establish surveillance in order to determine the current prevalence of ergonomic injuries. Thereafter, ergonomics interventions that are holistic and comprehensive should be conducted and evaluated for their efficacy using approaches that are integrated, participatory and cost-effective.

  15. Antifungal evaluation of shell pyrolysates of oil palm ( Elaeis ...

    African Journals Online (AJOL)

    The medicinal values of oil palm and coconut shells are not much known in herbal medicine and the two mostly constitute waste products. The antifungal effects of steam-distilled pyrolysates obtained from the two shells and the respective organic solvent fractions were evaluated against human pathogenic fungi ...

  16. Economic sustainability of palm oil plantations among smallholders ...

    African Journals Online (AJOL)

    This study examines the economic sustainability indicators of oil palm smallholders in Lahad Datu, Sabah. A survey based on a set of questionnaires with 58 smallholder respondents were carried out. The findings indicated that majority smallholders have income above the poverty income level,, The income earned by the ...

  17. Response of Palm Oil Sludge on Sexual Reproductive Biology and ...

    African Journals Online (AJOL)

    doris

    They also reported that in Malaysia, Palm Oil and Rubber industries are sources of ... discharged to arable land. Most of the food items being produced in Nigeria today are by ... The choice of these crops was attributed to their wide utilization ...

  18. Adoption of improved oil palm production and processing ...

    African Journals Online (AJOL)

    This suggests the need for the provision of subsidies and financial support to farmers to enable them pay for the necessary farm inputs. Keywords: Oil palm, Improved technologies, Information sources, Nigeria Agro-Science Vol. 5 (1) 2006: pp. 26-35. http://dx.doi.org/10.4314/as.v5i1.1541 · AJOL African Journals Online.

  19. Large estragole fluxes from oil palms in Borneo

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2010-05-01

    Full Text Available During two field campaigns (OP3 and ACES, which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0 in ambient air above oil palm canopies (0.81 mg m−2 h−1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus, which pollinates oil palms (Elaeis guineensis. There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y−1. The observed ecosystem mean fluxes (0.44 mg m−2 h−1 and mean ambient volume mixing ratios (3.0 ppbv of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene, the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic

  20. An Investigation of Presumptive Synergism of Oil Palm Bunch Ash ...

    African Journals Online (AJOL)

    Two kilogram (2 kg) of sandy soil was placed in each of five plastic vessels labeled TA, TB, TC, TD and TE. TA was left in its natural state while the others were each polluted with 6.7% v/w of crude oil. TB was not given any remediation amendment. TC and TD were each amended with 13.3% of oil palm bunch ash and ...

  1. Mutation induction in oil palm cultures using gamma irradiation

    International Nuclear Information System (INIS)

    Rohani Othman; Rajinder Singh; Mohd Nazir Basiran

    2002-01-01

    Induced mutations have played an important role in the improvement of wide range of food crops, ornamental plants and oil crops such as sesame and sunflower. Based on these successes an attempt was made to employ the mutagenesis techniques to broaden the genetic variation in breeding materials of oil palm. Traits of interest are high yield, dwarfness and disease resistance. Embryogenic callus initiated from several high yielding clones were exposed to gamma irradiation for optimum dose determination. (Author)

  2. Production of haploids and doubled haploids in oil palm

    Directory of Open Access Journals (Sweden)

    Croxford Adam E

    2010-10-01

    Full Text Available Abstract Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H and doubled haploid (DH palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest.

  3. Thermal characterization of oil palm fiber and eucalyptus in torrefaction

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Kuo, Po-Chih; Liu, Shih-Hsien; Wu, Wei

    2014-01-01

    Thermal behavior of biomass in torrefaction plays an important role in the operation of pretreatment. To understand the endothermic and/or exothermic characteristics of biomass in the course of torrefaction, an experimental system is conducted and two kinds of biomass (oil palm fiber and eucalyptus) are investigated. The results indicate that the thermal behavior is significantly influenced by the lignocellulosic composition in biomass and the torrefaction temperature. The thermal decomposition of hemicellulose is the dominant mechanism for oil palm fiber torrefied at 200 and 250 °C, whereas the thermal degradation of cellulose is crucial when the biomass is torrefied at 300 °C. Therefore, the heat of reaction of oil palm fiber increases with increasing torrefaction temperature. The torrefaction of eucalyptus is always endothermic, as a consequence of high cellulose contained in the biomass. It is less endothermic when the torrefaction temperature increases, presumably due to the char formation from cellulose thermal degradation and the exothermic lignin decomposition. As a whole, the values of the heat of reaction of the two samples are between −3.50 and 2.23 MJ/kg. The obtained results have provided a useful insight into the control of torrefaction operation and the design of torrefaction reactor. - Highlights: • Thermal behavior of oil palm fiber and eucalyptus in torrefaction is studied. • Thermal characteristic of biomass in torrefaction depends on lignocellulosic composition. • Heat of reaction of oil palm fiber increases with increasing torrefaction temperature. • Eucalyptus torrefaction is always endothermic because of high cellulose contained. • Torrefaction of eucalyptus is less endothermic when the torrefaction temperature increases

  4. Relationships among rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation.

    Science.gov (United States)

    Puan, Chong Leong; Goldizen, Anne W; Zakaria, Mohamed; Hafidzi, Mohd N; Baxter, Greg S

    2011-06-01

    The relationships between vertebrate pests and crop damage are often complex and difficult to study. In palm oil plantations rodents remain the major pests, causing substantial monetary losses. The present study examined the numerical and functional responses of rodents to changes in the availability of oil palm fruit and the damage associated with that response. For the study, 200 traps were set in pairs on a 10 × 10 trapping grid for 3 consecutive nights in each of 6 study plots at 8-week intervals in a 2569 ha oil palm plantation at Labu, Negeri Sembilan state in Peninsular Malaysia over 14 months. A total of 1292 individual rats were captured over 25 200 trap-nights. Animals were identified, aged, sexed, weighed and measured. An index of the relative abundance of rats was calculated based on trapping success. Damage to infructescences was assessed at each trap point. Regardless of the age of palms, there were positive and significant relationships between the relative abundance of rats and numbers of infructescences. The levels of damage to infructescences were significantly correlated with the relative abundance of rats. A steep increase in damage was observed with an increase in mature infructescences, indicating a feeding preference of rats for mature infructescences. For both males and females of all rat species, there were weak and non-significant correlations between body condition and infructescence numbers. These results indicated that there was a numerical and a functional response by rats to the availability of palm fruit and a resulting increase in depredation of oil palm fruits. The ways in which this information might aid in future pest control are discussed. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  5. Dietary supplementation with hybrid palm oil alters liver function in the common Marmoset.

    Science.gov (United States)

    Spreafico, Flavia; Sales, Rafael Carvalho; Gil-Zamorano, Judit; Medeiros, Priscylla da Costa; Latasa, Maria-Jesús; Lima, Monique Ribeiro; de Souza, Sergio Augusto Lopes; Martin-Hernández, Roberto; Gómez-Coronado, Diego; Iglesias-Gutierrez, Eduardo; Mantilla-Escalante, Diana C; das Graças Tavares do Carmo, Maria; Dávalos, Alberto

    2018-02-09

    Hybrid palm oil, which contains higher levels of oleic acid and lower saturated fatty acids in comparison with African palm oil, has been proposed to be somehow equivalent to extra virgin olive oil. However, the biological effects of its consumption are poorly described. Here we have explored the effects of its overconsumption on lipid metabolism in a non-human primate model, the common marmoset. Dietary supplementation of marmoset with hyperlipidic diet containing hybrid palm oil for 3 months did not modify plasma lipids levels, but increased glucose levels as compared to the supplementation with African palm oil. Liver volume was unexpectedly found to be more increased in marmosets consuming hybrid palm oil than in those consuming African palm oil. Hepatic total lipid content and circulating transaminases were dramatically increased in animals consuming hybrid palm oil, as well as an increased degree of fibrosis. Analysis of liver miRNAs showed a selective modulation of certain miRNAs by hybrid palm oil, some of which were predicted to target genes involved in cell adhesion molecules and peroxisomal pathways. Our data suggest that consumption of hybrid palm oil should be monitored carefully, as its overconsumption compared to that of African palm oil could involve important alterations to hepatic metabolism.

  6. Simulation of thin-film deodorizers in palm oil refining

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Meirelles, Antonio J.A.; Gani, Rafiqul

    2010-01-01

    As the need for healthier fats and oils (natural vitamin and trans fat contents) and interest in biofuels are growing, many changes in the world's vegetable oil market are driving the oil industry to developing new technologies and recycling traditional ones. Computational simulation is widely used...... in the chemical and petrochemical industries as a tool for optimization and design of (new) processes, but that is not the case for the edible oil industry. Thin-film deodorizers are novel equipment developed for steam deacidification of vegetable oils, and no work on the simulation of this type of equipment...... could be found in the open literature. This paper tries to fill this gap by presenting results from the study of the effect of processing variables, such as temperature, pressure and percentage of stripping steam, in the final quality of product (deacidified palm oil) in terms of final oil acidity...

  7. Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch

    OpenAIRE

    Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed

    2012-01-01

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Ne...

  8. An analysis of price and volatility transmission in butter, palm oil and crude oil markets

    Directory of Open Access Journals (Sweden)

    Dennis Bergmann

    2016-11-01

    Full Text Available Abstract Recent changes to the common agricultural policy (CAP saw a shift to greater market orientation for the EU dairy industry. Given this reorientation, the volatility of EU dairy commodity prices has sharply increased, creating the need to develop proper risk management tools to protect farmers’ income and to ensure stable prices for processors and consumers. In addition, there is a perceived threat that these commodities may be replaced by cheaper substitutes, such as palm oil, as dairy commodity prices become more volatile. Global production of palm oil almost doubled over the last decade while butter production remained relatively flat. Palm oil also serves as a feedstock for biodiesel production, thus establishing a new link between agricultural commodities and crude oil. Price and volatility transmission effects between EU and World butter prices, as well as between butter, palm oil and crude oil prices, before and after the Luxembourg agreement, are analysed. Vector autoregression (VAR models are applied to capture price transmission effects between these markets. These are combined with a multivariate GARCH model to account for potential volatility transmission. Results indicate strong price and volatility transmission effects between EU and World butter prices. EU butter shocks further spillover to palm oil volatility. In addition, there is evidence that oil prices spillover to World butter prices and World butter volatility.

  9. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.

    Science.gov (United States)

    Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A

    2012-10-04

    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.

  10. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis

  11. Following basal stem rot in young oil palm plantings.

    Science.gov (United States)

    Panchal, G; Bridge, P D

    2005-01-01

    The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base material at a greater frequency than would be expected by comparison with current infection levels. Comparisons are made between the height of the frond base infected, the number of frond bases infected, and subsequent development of basal stem rot. The preliminary results suggest that the development of basal stem rot may be more likely to occur when young lower frond bases are infected.

  12. Stability evaluation of quality parameters for palm oil products at low temperature storage.

    Science.gov (United States)

    Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah

    2018-07-01

    Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Comparative microstructure study of oil palm fruit bunch fibre, mesocarp and kernels after microwave pre-treatment

    Science.gov (United States)

    Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.

    2017-07-01

    The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.

  14. Simple Arm Muscle Model for Oil Palm Harvesting Process

    Directory of Open Access Journals (Sweden)

    Rahman Aliff

    2017-01-01

    Full Text Available Arm are essential in order to perform manual material handling work that normally involves lifting, handling, placing, push and pull, carrying and moving heavy loads. When these work elements are performed over prolonged periods repeatedly, it will expose workers arm to awkward posture and possible ergonomic risk factor. For example, work element that requires repetitions frequently may lead the arm to face physical stress and mental fatigue. The situation can be extremely risky if the worker task requires higher focus or time consumable. These issues are unavoidable in palm oil harvesting process since the workers are still using manual handling when harvesting the fresh fruit bunch (FFB. The worker using a chisel to harvest the young palms and a sickle mounted on a bamboo or aluminum pole to harvest taller palms. When perform this work element combining with heavy physical workload, it may lead to work-related muscle disorders (WSMDs. This study was conducted to identify the force reaction and inverse dynamic analysis during oil palm harvesting process using ergonomics software called Anybody Technology. Inverse dynamic analysis is a technique for figuring strengths and/or moments of power (torques taking into account the kinematics (movement of a body and the body’s inertial properties.

  15. Dissipation of the fungicide hexaconazole in oil palm plantation.

    Science.gov (United States)

    Maznah, Zainol; Halimah, Muhamad; Ismail, Sahid; Idris, Abu Seman

    2015-12-01

    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.

  16. Study on upgrading of oil palm wastes to animal feeds by radiation and fermentation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Ito, Hitoshi

    1998-03-01

    Upgrading of oil palm empty fruit bunch (EFB), which is a main by-product of palm oil industry, to animal feeds by radiation pasteurization and fermentation was investigated for recycling the agro-resources and reducing the environmental pollution. The following results were obtained: 1) The necessary dose for pasteurization of EFB contaminated by various microorganisms including aflatoxin producing fungi was determined as 10 kGy. The chemical and biological properties of EFB were changed little by irradiation up to 50 kGy. 2) In the fermentation process, Pleurotus sajor-caju was selected as the most effective fungi and the optimum condition for fermentation was clarified. The process of fermentation in suspension was also established for the liquid seed preparation. 3) The digestibility and nutritional value of fermented products were evaluated as ruminant animal feeds and the mushroom can be produced as by-product. 4) The pilot plant named Sterifeed was built at MINT and a large volume production has been trying for animal feeding test and economical evaluation. It is expected to develop the process for the commercial use in Malaysia and to expand the technique to Asian region through UNDP/RCA/IAEA project. (author)

  17. Thermal, crystallinity and morphological studies of the filled RBD palm kernel oil polyurethane foam

    International Nuclear Information System (INIS)

    Khairiah Badri; Sahrim Ahmad; Sarani Zakaria

    2000-01-01

    The synthesis of RBD palm kernel oil (PKO) polyurethane polyol and the polyurethane foam has well been documented. However, less study has been put in discovering the thermal properties and crystallinity of the foam. It is also an initiative to investigate the effect of oil palm empty fruit bunch (EFB) and sorbitol as fillers in the polyurethane (PU) foam to these properties. Thermogravimetric (TGA) investigation of the PKO PU foam was performed to study their decompositions. The semi-crystalline nature of EFB-filled PU was confirmed by x-ray diffratogram and DSC thermogram of glass transition temperature, T g . The x-ray diffraction (XRD) study of the unfilled PU showed a broad amorphous halo, indicative of absence of crystallinity in the polymer, which has been explained as due to strong hydrogen bonding in the hard phase. Overall crystallinity decreases with an increase in the polyester content in agreement with the XRD results. The crystallinity however, increases with the inclusion of EFB in the polyurethane system. This study was followed by the observation of the surface morphologies of the PKO PU foam with and without fillers. The scanning electron micrographs verified the finding on the improved k-factor values. (Author)

  18. Study on upgrading of oil palm wastes to animal feeds by radiation and fermentation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; and others

    1998-03-01

    Upgrading of oil palm empty fruit bunch (EFB), which is a main by-product of palm oil industry, to animal feeds by radiation pasteurization and fermentation was investigated for recycling the agro-resources and reducing the environmental pollution. The following results were obtained: (1) The necessary dose for pasteurization of EFB contaminated by various microorganisms including aflatoxin producing fungi was determined as 10 kGy. The chemical and biological properties of EFB were changed little by irradiation up to 50 kGy. (2) In the fermentation process, Pleurotus sajor-caju was selected as the most effective fungi and the optimum condition for fermentation was clarified. The process of fermentation in suspension was also established for the liquid seed preparation. (3) The digestibility and nutritional value of fermented products were evaluated as ruminant animal feeds and the mushroom can be produced as by-product. (4) The pilot plant named Sterifeed was built at MINT and a large volume production has been trying for animal feeding test and economical evaluation. It is expected to develop the process for the commercial use in Malaysia and to expand the technique to Asian region through UNDP/RCA/IAEA project. (author)

  19. Pre-irradiation technique for processing of oil palm fruit bunch fibers - polypropylene composites

    International Nuclear Information System (INIS)

    Khairul Zaman Dahlan; Manarpaac, G.A.; Harun Jalaluddin

    2002-01-01

    Researches on oil palm empty fruit bunch (EFB) fibers and thermoplastic composites have been carried out by many workers in the last decade. The main focus was to enhance the properties of the resultant composites in view of the incompatibility of the two components. Thus, efforts have been made to enhance their properties by using coupling agents, treating the fibers and modifying the matrices. In this study, the effects of electron beam (EB) irradiation and some reactive additives (RAs) on the mechanical properties of EFB-PP (polypropylene) composites were evaluated. Different modes of irradiation were investigated. Mono, di and tri functional of monomers of RAs were used. irradiating PP alone, compared to irradiating the EFB fibers or irradiating both components, gave optimum properties for EFB-PP composites. Further, improvements of the properties of the composites were achieved with the addition of RAs with TMPTA (trymethylol propane triacrylate) giving the optimum results. (Author)

  20. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.

    Directory of Open Access Journals (Sweden)

    Varsha Vijay

    Full Text Available Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.

  1. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss

    Science.gov (United States)

    Pimm, Stuart L.; Jenkins, Clinton N.; Smith, Sharon J.

    2016-01-01

    Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems. PMID:27462984

  2. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss.

    Science.gov (United States)

    Vijay, Varsha; Pimm, Stuart L; Jenkins, Clinton N; Smith, Sharon J

    2016-01-01

    Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.

  3. In vitro digestibility of oil palm frond treated by local microorganism (MOL)

    Science.gov (United States)

    Tafsin, M.; Khairani, Y.; Hanafi, N. D.; Yunilas

    2018-02-01

    Oil palm frond is by product from oil palm plantation and were found in large quantity in Indonesia. This research aims to examine the ability of local microorganisms and buffalo rumen isolates in improving the digestibility of dry matter and organic matter in vitro of oil palm frond. The research used experimental method with four treatments and three replications. The treatments were given: Oil palms without treatment (P0); Starbio (P2); Aspergillus niger + Saccharomyces cerevisiae (P3); Aspergillus niger + Saccharomyces cerevisiae + Isolate of buffalo rumen bacteria (P4). The results showed that the fermented Oil Palm Frond had higher (PAspergillus niger and Saccharomyces cerevisiae plus buffalo rumen bacterial isolates had higher (P<0.05) DMD and OMD than other treatments. It can be concluded that the utilisation of MOL can improve the digestibility of oil palm frond in vitro.

  4. Kinetic Study on Pyrolysis of Oil Palm Frond

    International Nuclear Information System (INIS)

    Soon, V S Y; Chin, B L F; Lim, A C R

    2016-01-01

    The pyrolysis of oil palm frond is studied using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation behaviour and determination of the kinetic parameters such as the activation energy (E A ) and pre-exponential factor (A) values of oil palm frond under pyrolysis condition. The kinetic data is produced based on first order rate of reaction. In this study, the experiments are conducted at different heating rates of 10, 20, 30, 40 and 50 K/min in the temperature range of 323-1173 K under non-isothermal condition. Argon gas is used as an inert gas to remove any entrapment of gases in the TGA equipment. (paper)

  5. Transcriptome datasets of oil palm pathogen Ganoderma boninense

    Directory of Open Access Journals (Sweden)

    Irene Liza Isaac

    2018-04-01

    Full Text Available Ganoderma boninense is known to be the causal agent for basal stem rot (BSR affecting the oil palm industry worldwide thus cumulating to high economic losses every year. Several reports have shown that a compatible monokaryon pair needs to mate; producing dikaryotic mycelia to initiate the infection towards the oil palm. However, the molecular events occurs during mating process are not well understood. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from monokaryon, mating junction and dikaryon mycelia of G. boninense. Raw reads from these three libraries were deposited in the NCBI database with accession number SRR1745787, SRR1745773 and SRR1745777, respectively.

  6. Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model

    Science.gov (United States)

    Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha

    2018-04-01

    The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.

  7. Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste

    Science.gov (United States)

    Ishak, Aulia; Ali, Amir Yazid bin

    2017-12-01

    The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.

  8. The Effect of the Operating Conditions on the Apparent Viscosity of Crude Palm Oil During Oil Clarification

    OpenAIRE

    Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr

    2012-01-01

    This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used...

  9. Syngas production from downdraft gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2013-01-01

    Study on gasification of OPF (oil palm fronds) is scarce although the biomass constitutes more than 24% of the total oil palm waste. The lack of research related to gasification of oil palm fronds calls for a study on gasification behaviour of the fuel. In this paper the effects of reactor temperature and ER (equivalence ratio) on gas composition, calorific value and gasification efficiency of downdraft gasification of OPF were investigated. The heating value of syngas and the values of cold gas and carbon conversion efficiencies of gasification obtained were found to be comparable with woody biomass. The study showed that oxidation zone temperature above 850 °C is favourable for high concentration of the fuel components of syngas CO, H 2 and CH 4 . Average syngas lower heating value of 5.2 MJ/Nm 3 was obtained for operation with oxidation zone temperatures above 1000 °C, while no significant change in heating value was observed for temperature higher than 1100 °C. The average and peak heating values of 4.8 MJ/Nm 3 and 5.5 MJ/Nm 3 , and cold gas efficiency of 70.2% at optimum equivalence ratio of 0.37 showed that OPF have a high potential as a fuel for gasification. - Highlights: • Kinetic study of pyrolysis and combustion of OPF (oil palm fronds) was done. • Experimental study on syngas production utilizing OPF and parametric study was done. • OPF was found to have a comparable performance with wood in downdraft gasification

  10. Sustainable Palm Oil Production For Bioenergy Supply Chain

    OpenAIRE

    Ng, Wai Kiat

    2009-01-01

    A bioenergy supply chain is formed by many parts which from the raw material, biomass feedstock until the distribution and utilisation. The upstream activity is always managed in a sustainable way in order to be capable enough to support the downstream activity. In this dissertation, the sustainable production of palm oil is focused and researched through problem identification and solving by using the operation management perspective and practices. At first, the global biomass industry is st...

  11. Auto Guided Oil Palm Planter by using multi-GNSS

    International Nuclear Information System (INIS)

    Aini, I Nur; Aimrun W; Amin, M S M; Ezrin, M H; Shafri, H Z

    2014-01-01

    Planting is one of the most important operations in plantation because it could affect the total area of productivity since it is the starting point in cultivation. In oil palm plantation, lining and spacing of oil palm shall be laid out and coincided with the topographic area and a system of drains. Conventionally, planting of oil palm will require the polarization process in order to prevent and overcome the lack of influence of the sun rise and get a regular crop row. Polarization is done after the completion of the opening area by using the spike wood with 1 m length painted at the top and 100 m length of wire. This process will generally require at least five persons at a time to pull the wire and carry the spikes while the other two persons will act as observer and spikes craftsmen respectively with the ability of the team is 3ha/day. Therefore, the aim of this project is to develop the oil palm planting technique by using multi- GNSS (Global Navigation Satellite System). Generally, this project will involve five main steps mainly; design of planting pattern by using SOLIDWORKS software, determine the boundary coordinate of planting area, georeference process with ArcGIS, stakeout process with Tracy software and finally marking up the location with the wooden spikes. The results proved that the multi- GNSS is capable to provide the high accuracy with less than 1 m in precise positioning system without augmentation data. With the ability of one person, time taken to complete 70 m × 50 m planting area is 290 min, which is 25 min faster than using GPS (Global Positioning System) only

  12. Recycled palm oil is better than soy oil in maintaining bone properties in a menopausal syndrome model of ovariectomized rat.

    Science.gov (United States)

    Shuid, Ahmad Nazrun; Chuan, Loh Hong; Mohamed, Norazlina; Jaarin, Kamsiah; Fong, Yew Su; Soelaiman, Ima Nirwana

    2007-01-01

    Palm oil is shown to have antioxidant, anticancer and cholesterol lowering effects. It is resistant to oxidation when heated compared to other frying oils such as soy oil. When a frying oil is heated repeatedly, it forms toxic degradation products, such as aldehydes which when consumed, may be absorbed into the systemic circulation. We have studied the effects of taking soy or palm oil that were mixed with rat chow on the bone histomorphometric parameters of ovariectomised rats. Female Sprague-Dawley rats were divided into eight groups: (1) normal control group; (2) ovariectomised-control group; (3) ovariectomised and fresh soy oil; (4) ovariectomised and soy oil heated once; (5) ovariectomised and soy oil heated five times; (6) ovariectomised and fresh palm oil; (7) ovariectomised and palm oil heated once; (8) ovariectomised and palm oil heated five times. These oils were mixed with rat chow at weight ratio of 15:100 and were given to the rats daily for six months. Ovariectomy had caused negative effects on the bone histomorphometric parameters. Ingestion of both fresh and once-heated oils, were able to offer protections against the negative effects of ovariectomy, but these protections were lost when the oils were heated five times. Soy oil that was heated five times actually worsens the histomorphometric parameters of ovariectomised rats. Therefore, it may be better for postmenopausal who are at risk of osteoporosis to use palm oil as frying oil especially if they practice recycling of frying oils.

  13. Quality assessment of palm oil sold in major markets in Abia State ...

    African Journals Online (AJOL)

    This paper examines the quality of palm oil samples obtained from different locations in Abia State, Nigeria in terms of their physicochemical properties. The results obtained showed that the saponification value (SV) ranged from 129.04 – 198.03KOH/g of oil. The free fatty acid (FFA) of the palm oil samples ranged from 2.73 ...

  14. Promoting sustainable palm oil: viewed from a global networks and flows perspective

    NARCIS (Netherlands)

    Oosterveer, P.J.M.

    2015-01-01

    Global demand for palm oil is increasing to fulfil worldwide needs for cooking oil, food ingredients, biofuels, soap and other chemicals. In response, palm oil production is rapidly expanding which promotes economic growth in producing countries but also leads to serious environmental and social

  15. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Noor Hasmiza Harun

    2014-11-01

    Full Text Available As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB. Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB. A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA. To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  16. Effects of dietary intake of red palm oil on fatty acid composition and ...

    African Journals Online (AJOL)

    Little is known about the effects of the dietary intake of red palm oil (RPO) on fatty acid composition in the liver of rats. Male Wistar rats randomly divided into four groups were fed with different doses of red palm oil. The control group received no red palm oil; while the experimental groups were fed with 1 ml, 2 ml and 4 ml of ...

  17. The development of epoxidised palm oil acrylate (EPOLA) and its applications

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood

    1993-01-01

    The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets)

  18. The development of epoxidised palm oil acrylate (EPOLA) and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Mohd Hilmi [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets).

  19. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    Science.gov (United States)

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  20. An Evaluation of Holistic Sustainability Assessment Framework for Palm Oil Production in Malaysia

    OpenAIRE

    Lim, Chye; Biswas, Wahidul

    2015-01-01

    Palm oil based biodiesel offers an alternative energy source that can reduce current dependence on conventional fossil fuels and may reduce greenhouse gas (GHG) emissions depending on the type of feedstock and processes used. In the Malaysian context, the palm oil industry not only provides high-yield, renewable feedstock to the world, it brings socio-economic development to the Malaysian rural community and contributes to the national income. However, the sustainability of palm oil remains c...

  1. Conservation value and permeability of neotropical oil palm landscapes for orchid bees.

    Directory of Open Access Journals (Sweden)

    George Livingston

    Full Text Available The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2 km from forest, and oil palm sites greater than 5 km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1 oil palm is selectively permeable to orchid bees and 2 orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features.

  2. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  3. Circadian control of isoprene emissions from oil palm (Elaeis guineensis).

    Science.gov (United States)

    Wilkinson, Michael J; Owen, Susan M; Possell, Malcolm; Hartwell, James; Gould, Peter; Hall, Anthony; Vickers, Claudia; Nicholas Hewitt, C

    2006-09-01

    The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.

  4. Bacterial diversity of oil palm Elaeis guineensis basal stems

    Science.gov (United States)

    Amran, Afzufira; Jangi, Mohd Sanusi; Aqma, Wan Syaidatul; Yusof, Nurul Yuziana Mohd; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    Oil palm, Elaeis guineensis is one of the major industrial production crops in Malaysia. Basal stem rot, caused by the white fungus, Ganoderma boninense, is a disease that reduces oil palm yields in most production areas of the world. Understanding of bacterial community that is associated with Ganoderma infection will shed light on how this bacterial community contributes toward the severity of the infection. In this preliminary study, we assessed the bacterial community that inhabit the basal stems of E. guineensis based on 16S rRNA gene as a marker using next generation sequencing platform. This result showed that a total of 84,372 operational taxonomic-units (OTUs) were identified within six samples analyzed. A total 55,049 OTUs were assigned to known taxonomy whereas 29,323 were unassigned. Cyanobacteria, Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla found in all six samples and the unique taxonomy assigned for each infected and healthy samples were also identified. The findings from this study will further enhance our knowledge in the interaction of bacterial communities against Ganoderma infection within the oil palm host plant and for a better management of the basal stems rot disease.

  5. Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil

    Directory of Open Access Journals (Sweden)

    Bahareh Sabeti

    2014-01-01

    Full Text Available The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox. The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4 at 37°C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

  6. Dioxin/ Furan Level in the Malaysian Oil Palm Environment

    International Nuclear Information System (INIS)

    Tuan Fauzan Tuan Omar; Ainie Kuntom; Aishah Abdul Latiff

    2013-01-01

    Environmental samples collected from oil palm premises were evaluated for dioxins/ furans contamination. The samplings were carried out at oil palm premises located in Banting (Premise A) and in Teluk Intan (Premise B), involving two environmental matrices namely ambient air and soil. The soil samples were collected in the plantations while ambient air samples were collected in the vicinity of the mills and refineries. The results of the analyses showed that the level of dioxins/ furans in ambient air were generally higher in oil palm premise located adjacent to industrial establishments. The concentration levels at premise A mill and refinery located adjacent to industrial establishments, ranged from 64.14 WHO-TEQ fg m -3 to 131.87 WHO-TEQ fg m -3 , while for premise B mill and refinery located in the rural area, ranged from 9.93 WHO-TEQ fg m -3 to 16.66 WHO-TEQ fg m -3 . Meanwhile for soil samples, the highest concentrations were recorded in soil collected near roads used heavily by vehicles. The concentration levels of soil samples collected at premise A and premise B plantations ranged from 1.910 WHO-TEQ pg g -1 dry weight to 3.305 WHO-TEQ pg g -1 dry weight. (author)

  7. How the palm oil industry is cooking the climate

    International Nuclear Information System (INIS)

    2007-11-01

    Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands may trigger a 'climate bomb'

  8. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.

    Science.gov (United States)

    Lau, Ming J; Lau, Ming W; Gunawan, Christa; Dale, Bruce E

    2010-11-01

    Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials.

  9. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    OpenAIRE

    Lina María Romero Millán; María Alejandra Cruz Domínguez; Fabio Emiro Sierra Vargas

    2016-01-01

    Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield an...

  10. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon.

    Science.gov (United States)

    de Paiva, Carina Kaory Sasahara; de Faria, Ana Paula Justino; Calvão, Lenize Batista; Juen, Leandro

    2017-08-01

    The production of oil palm is expected to increase in the Amazon region. However, expansion of oil palm plantation leads to significant changes in the physical structure of aquatic ecosystems, mainly through the reduction of riparian vegetation that is essential for aquatic biodiversity. Here, we evaluated the effects of oil palm on the physical habitat structure of Amazonian stream environments and assemblages of Plecoptera and Trichoptera (PT), ​both found in these streams. We compared streams sampled in oil palm plantations (n = 13) with natural forest areas ("reference" streams, n = 8), located in the eastern Amazon, Brazil. Our results showed that oil palm streams were more likely to be in close proximity to roads, had higher pH values, and higher amounts of fine substrate deposited in the channel than reference streams. Further, these environmental changes had important effects on the aquatic invertebrate assemblages, reducing the abundance and richness of PT. Nevertheless, the genera composition of the assemblages did not differ between reference and oil palm (PERMANOVA, pseudo-F (1,19)  = 1.891; p = 0.111). We conclude that oil palm production has clear negative impacts on aquatic environments and PT assemblages in Amazonian streams. We recommend that oil palm producers invest more in planning of road networks to avoid the construction of roads near to the riparian vegetation. This planning can minimize impacts of oil palm production on aquatic systems in the Amazon.

  11. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    Science.gov (United States)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  12. Palm oil – strategic source of renewable energy in Indonesia and Malaysia

    OpenAIRE

    Prokurat, Sergiusz

    2013-01-01

    This paper seeks to answer the question of how the global industry of palm oil is affecting the economies and natural environments of its two main producers – Indonesia and Malaysia. The first section examines the contemporary uses of palm oil in a variety of products and industries. It also sets out to describe the global palm oil market. The second section takes a historical perspective, analysing the origins of palm oil cultivation and trade and its rapid rise to global prominence. The thi...

  13. THE DIVERSITY OF EPIPHYTIC FERN ON THE OIL PALM TREE (Elaeis guineensis Jacq. IN PEKANBARU, RIAU

    Directory of Open Access Journals (Sweden)

    Nery Sofiyanti

    2015-02-01

    Full Text Available Oil palm (Elaeis guineensis is one  main commodity in Riau Province. Morphologically, the trunk of oil palm  has suitable environment for the growth of epiphytic fern, due to its broaden base of petiole that may accumulate organic and anorganic debrish. The objective of this study was to investigate the diversity of epiphytic fern on the oil palm tree. A total of 125 oil palm trees from seven  study sites in Pekanbaru, Riau were observed. The number of epiphytic ferns identified in this study was 16 species belongs to six families.

  14. Microbial Succession in Co-Composting of Chipped-Ground Oil Palm Frond and Palm Oil Mill Effluent

    International Nuclear Information System (INIS)

    Mohd Najib Ahmad; Siti Ramlah Ahmad Ali; Mohd Ali Hassan

    2016-01-01

    Succession and phylogenetic profile of microbial communities during co-composting of chipped-ground oil palm frond (CG-OPF) and palm oil mill effluent (POME) were studied by apply-ing polymerase chain reaction-denaturant gel gradient electrophoresis (PCR-DGGE) analysis. The results indicated that the dominant microbial community detected was γ-Pro bacteria such as Pseudomonas sp. at almost throughout the composting process. Whilst Bacillales such as Bacillus psychrodurans were found toward the end of the composting process. Bacteroidetes such as Pedobacter solani were detected at the final stage of composting. This study contributed to a better understanding of microbial shifting and functioning throughout CG-OPF composting. Therefore, PCR-DGGE is recommended to be used as a tool to identify potential microbes that can contribute to a better performance of composting process. (author)

  15. The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK

    Science.gov (United States)

    Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2014-01-01

    A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930

  16. The Susceptibility of Some Oil Palm Elaeis guineensis Jacq Progenies to Coelaenomenodera lameensis Berti and Mariau, (Coleoptera: Chrysomelidae)

    OpenAIRE

    S.O.N. Dimkpa

    2010-01-01

    Damage by the oil palm leaf miner C. lam eensis has been observed in all oil palm growing countriesin Africa causing wide spread defoliation and result to considerable reduction in the yield of fresh fruit bunches(ffb). The understanding of the susceptibility levels of different oil palm progenies to the oil palm leaf minerC. lameensis become highly imperative in the development and incorporation of host plant resistance in theintegrated pest management strategy for the management of the oil ...

  17. Kinetics of palm kernel oil and ethanol transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Ahiekpor, Julius C. [Centre for Energy, Environment and Sustainable Development (CEESD), P.O. Box FN 793, Kumasi (Ghana); Kuwornoo, David K. [Faculty of Chemical and Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana)

    2010-07-01

    Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, there are no available data on the kinetics and mechanisms of transesterification of local vegetable oils. The need for local production of biodiesel necessitates that the mechanism and kinetics of the process is well understood, since the properties of the biodiesel depends on the type of oil use for the transesterification process. The objective of this work is to evaluate the appropriate kinetics mechanism and to find out the reaction rate constants for palm kernel oil transesterification with ethanol when KOH was used as a catalyst. In this present work, 16 biodiesel samples were prepared at specified times based on reported optimal conditions and the samples analysed by gas chromatography. The experimental mass fractions were calibrated and fitted to mathematical models of different proposed mechanisms in previous works.The rate data fitted well to second-order kinetics without shunt mechanism. It was also observed that, although transesterification reaction of crude palm kernel oil is a reversible reaction, the reaction rate constants indicated that the forward reactions were the most prominent.

  18. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Ryohei Tanaka; Leh Cheu Peng; Wan Rosli Wan Daud

    2004-01-01

    @@ INTRODUCTION Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world′s largest producer and exporter of the oil, so that the country′s economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10~15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia.

  19. Molecular performance of commercial MTG variety oil palm based on RAPD markers

    Science.gov (United States)

    Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.

    2018-02-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.

  20. Application of lidar and optical data for oil palm plantation management in Malaysia

    Science.gov (United States)

    Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman

    2012-11-01

    Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.

  1. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Nur Fatin Athirah Ahmad Rizal

    2018-04-01

    Full Text Available The combination of superheated steam (SHS with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB and oil palm mesocarp fiber (OPMF were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.

  2. Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility

    Science.gov (United States)

    Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna

    2017-04-01

    Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks

  3. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    Science.gov (United States)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  4. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs.

    Science.gov (United States)

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-06-21

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O₂/kg) and highly (peroxide value: 7.5 meq O₂/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O₂/kg, which was also reflected by a decrease of α-tocopherol congener by 15%-18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available.

  5. Combustion performance evaluation of air staging of palm oil blends.

    Science.gov (United States)

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.

  6. Identification of molecular performance from oil palm clones based on SSR markers

    Science.gov (United States)

    Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.

    2018-03-01

    In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.

  7. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  8. Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach

    Science.gov (United States)

    Hamid, Mohd Fahmi Abdul; Shabri, Ani

    2017-05-01

    Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.

  9. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    OpenAIRE

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura p...

  10. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    OpenAIRE

    Joy O. Iwuagwu; J. Obeta Ugwuanyi

    2014-01-01

    Palm oil mill effluent (POME) is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the ...

  11. Analysis of quality of the biogasoils of palm oil and castor oil

    International Nuclear Information System (INIS)

    Benjumea, Pedro Nel; Agudelo, Jhon Ramiro; Benavides, Alirio Yovany

    2004-01-01

    Biodiesel is a fuel made from raw materials of renewable origin such as vegetable oils. The objective of this work is to make a quality analysis of two types of biodiesel made from raw materials available in Colombia such as palm oil and castor oil. Biodiesel from palm oil complies with the majority of technical requirements specified by ASTM standards D-975 y D-6751. A high cloud point is the main drawback of this kind of biodiesel. This is a consequence of its highly saturated chemical nature. On the other hand, biodiesel from castor oil presents more difficulties in order to be used in diesel engines because of having a low cetane index and a high viscosity

  12. Testing market efficiency of crude palm oil futures to European participants

    OpenAIRE

    Liu, Xing

    2009-01-01

    Palm oil is the most consumed and traded vegetable oils in the EU and the world. Increasing non-food uses for vegetable oils in especially feedstock of biofuels in recent years have caused the price volatility to rise in both EU and global market. The most efficient pricing of crude palm oil (CPO) is to found on Bursa Malaysia (BMD), and it provides by far the world’s most liquid palm oil contract. The goal of this study is to investigate CPO futures market efficiency of BMD for the European ...

  13. Fermentation assisted byproduct recovery in the palm oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, W.R.

    1983-05-01

    The production of palm oil from Elaeis guineensis is a leading natural product industry in Malaysia, giving rise to a number of residues, including a rich, fruity liquor from the pulp. The liquor, of which 7-10 million tonnes a year are currently produced, has some 6% organic solids, including 0.7-1.0% or more of oil which physical processing has failed to extract. Present anaerobic digestion processes exploit only the energy and fertiliser value. Methods are described in this paper for thermophilic, microbially assisted digestion for component separation and recovery, exploiting the widely used techniques for fruit juice extraction involving enzymic breakdown of starch, pectin and other cell components. Anaerobiosis and acidogenesis help protect and release residual oil, concomitantly preserving the solids against rancidity and spoilage by ensilage. The separated wet solids are nutritive (17% protein on dry matter), biologically safe and attractive to livestock. Downstream use of the liquor is aided by the thermophilic digestion. (Refs. 33).

  14. A high performance liquid chromatography method for determination of furfural in crude palm oil.

    Science.gov (United States)

    Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis

    2011-09-01

    A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Benefits and costs of oil palm expansion in Central Kalimantan, Indonesia, under different policy scenarios

    NARCIS (Netherlands)

    Sumarga, Elham; Hein, Lars

    2016-01-01

    Deforestation and oil palm expansion in Central Kalimantan province are among the highest in Indonesia. This study examines the physical and monetary impacts of oil palm expansion in Central Kalimantan up to 2025 under three policy scenarios. Our modelling approach combines a spatial logistic

  16. Effect of oil palm sludge on cowpea nodulation and weed control in ...

    African Journals Online (AJOL)

    A field trial was conducted at the Rivers State University of Science and Technology Research and Training farm Port Harcourt to test the effect of oil palm sludge on cowpea nodulation and weed control. The cultivars of cowpea used were Dan Kano, Bornu local and Sokoto local while the oil palm sludge levels applied ...

  17. Effect of composting of palm oil mill wastes and cow dung or poultry ...

    African Journals Online (AJOL)

    Objective: To evaluate the effect of shelter and different type of manure on degradation of palm oil mills wastes during composting and on growth and yield of African spinach (Amaranthus hybridus) grown on acrisol . Methodology and results: Palm oil mills wastes were composted, with poultry manure or cow dung with and ...

  18. Development narratives, notions of forest crisis, and boom of oil palm plantations in Indonesia

    NARCIS (Netherlands)

    Susanti, Ari; Maryudi, Ahmad

    2016-01-01

    Indonesia experienced massive deforestation in the last decades where rapid oil palm expansion has been considered as one of the main drivers. This article shows that the process of deforestation and the rapid oil palm expansion cannot be viewed in isolation from broader development contexts.

  19. Economics Of Small-Scale Palm Oil Processing In Ikwerre And ...

    African Journals Online (AJOL)

    Palm oil is one of the most common products used by almost everybody in Nigeria. Small holders constitute the major producers of palm oil in Ikwerre and Etche Local Government Areas. This study was conducted in Ikwerre and Etche Local Government Areas of Rivers State to determine the economic analysis of ...

  20. Telecoupled governance of land use change: Sustainable palm oil conservation benefits limited by preferential certification

    Science.gov (United States)

    Heilmayr, R.; Carlson, K. M.; Gibbs, H.; Noojipady, P.; Burns, D.; Morton, D. C.; Walker, N.; Paoli, G.; Kremen, C.

    2016-12-01

    Dozens of trans-national corporations have made public commitments to purchase only zero-deforestation palm oil, a commodity responsible for substantial tropical forest loss. Eco-certification is a basic requirement of most such forest-related procurement policies, and >20% of palm oil was certified in 2015.While the impact of certification on deforestation in oil palm plantations has never been tested, such evaluation is critical to inform improvements of voluntary sustainability initiatives. Here, we use a new, comprehensive data set of Roundtable on Sustainable Palm Oil (RSPO) certified and non-certified oil palm plantation boundaries (191,561 km2) in Indonesia, the leading global producer of palm oil to generate robust spatio-temporal estimates of certification's impact on deforestation and fires from 2000-2014. We find that certification reduced forest cover loss embodied in RSPO certified palm oil through two mechanisms. Certification had a significant protective effect, which lowered plantation deforestation rates by 29%.However, due to preferential certification of plantations developed before 2000, little forest was available for protection; forest area conserved totaled 56±4.9 km2. Our models suggest that increased adoption of RSPO certification may reduce the ability of palm oil companies to selectively certify previously cleared regions, and consequently strengthen the role of certification in protecting the tropical forests at greatest risk from agricultural encroachment. We reflect upon the complex interactions between traditional government policies, and emerging market-based governance structures in this telecoupled system.

  1. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  2. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia

    NARCIS (Netherlands)

    Wicke, B.; Sikkema, R.; Dornburg, V.; Faaij, A.P.C.

    2011-01-01

    This study compiles and analyses national-level data on land use change (LUC) and its causes in Indonesia and Malaysia over the past 30 years. The study also explores the role that palm oil has played in past LUC and that projected growth in palm oil production may play in LUC until 2020 and

  3. The drive for accumulation: environmental contestation and agrarian support to Mexico's oil palm expansion

    NARCIS (Netherlands)

    Castellanos Navarrete, A.; Jansen, K.

    2013-01-01

    Oil palm expansion has been related to rural dispossession, environmental degradation and rural resistance. This paper explores the politics and impact of farmer-based oil palm expansion in Chiapas, Mexico. In relation to the debate on the greening of the agrarian question, this paper engages with

  4. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    Science.gov (United States)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  5. Questioning the sustainable palm oil demand: case study from French-Indonesia supply chain

    Science.gov (United States)

    Chalil, D.; Barus, R.

    2018-02-01

    Sustainable palm oil has been widely debated. Consuming countries insist certified sustainable produces palm oil, but in fact the absorption of the certified palm oil is still less than 60%. This raise questions about the sustainable palm oil demand. In this study, such a condition will be analysed in French-Indonesia supply chain case. Using monthly and quarterly data from 2010 to 2016 with Autoregressive Distributed Lag (ARDL) approach and Error Correction Model, demand influencing factors and price integration in each market of the supply chain is estimated. Two scenarios namely re-export and direct export models are considered in the Error Correction Model. The results show that France Gross Domestic Product, prices of France palm oil import from Indonesia, Malaysia, and Germany, and price of France groundnut import significantly influence the France palm oil import volume from Indonesia. Prices in each market along palm oil re-export France-Indonesia supply chain are co-integrated and converge towards long-run equilibrium, but not in the direct export supply chain. This leads to a conclusion that France market preferences in specific and EU market preferences in general need to be considered by Indonesian palm oil decision makers.

  6. Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Sakyi-Dawson, O.; Kuyper, T.W.

    2012-01-01

    We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to

  7. Palm oil and the emission of carbon-based greenhouse gases

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2008-01-01

    The current use of South Asian palm oil as biofuel is far from climate neutral. Dependent on assumptions, losses of biogenic carbon associated with ecosystems, emission of CO2 due to the use of fossil fuels and the anaerobic conversion of palm oil mill effluent currently correspond in South Asia

  8. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Directory of Open Access Journals (Sweden)

    Yick Ching Wong

    2014-11-01

    Full Text Available Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA and triacylglycerol (TAG assembly, along with the tricarboxylic acid cycle (TCA and glycolysis pathway at 16 Weeks After Anthesis (WAA exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01, and rice (p-value < 0.01 arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01 throughout mesocarp development to transcriptome (RNA sequencing data, and improved correlation over quantitative real-time PCR (qPCR (r2 = 0.721, p < 0.01 of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  9. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Science.gov (United States)

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348

  10. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  11. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  12. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    Directory of Open Access Journals (Sweden)

    R. Ahmad

    2014-12-01

    Full Text Available Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min-1 and a nitrogen sweep gas flow rate of 50 ml min-1. The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR and gas chromatography–mass spectroscopy (GCMS. The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy- and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.

  13. In-situ data collection for oil palm tree height determination using synthetic aperture radar

    Science.gov (United States)

    Pohl, C.; Loong, C. K.

    2016-04-01

    The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.

  14. Estimation the Amount of Oil Palm Trees Production Using Remote Sensing Technique

    Science.gov (United States)

    Fitrianto, A. C.; Tokimatsu, K.; Sufwandika, M.

    2017-12-01

    Currently, fossil fuels were used as the main source of power supply to generate energy including electricity. Depletion in the amount of fossil fuels has been causing the increasing price of crude petroleum and the demand for alternative energy which is renewable and environment-friendly and it is defined from vegetable oils such palm oil, rapeseed and soybean. Indonesia known as the big palm oil producer which is the largest agricultural industry with total harvested oil palm area which is estimated grew until 8.9 million ha in 2015. On the other hand, lack of information about the age of oil palm trees and changes also their spatial distribution is mainly problem for energy planning. This research conducted to estimate fresh fruit bunch (FFB) of oil palm and their distribution using remote sensing technique. Cimulang oil palm plantation was choose as study area. First step, estimated the age of oil palm trees based on their canopy density as the result from Landsat 8 OLI analysis and classified into five class. From this result, we correlated oil palm age with their average FFB production per six months and classified into seed (0-3 years, 0kg), young (4-8 years, 68.77kg), teen (9-14 years, 109.08kg), and mature (14-25 years, 73.91kg). The result from satellite image analysis shows if Cimulang plantation area consist of teen old oil palm trees that it is covers around 81.5% of that area, followed by mature oil palm trees with 18.5% or corresponding to 100 hectares and have total production of FFB every six months around 7,974,787.24 kg.

  15. The Effect of the Operating Conditions on the Apparent Viscosity of Crude Palm Oil During Oil Clarification

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr

    2012-10-01

    Full Text Available This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used in design of crude palm oil settlers and in determining the optimum operating conditions.Key Words:  Crude palm oil, apparent viscosity, shear rate, modelling, separation 

  16. The possibility of palm oil mill effluent for biogas production

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ≥40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  17. SUSTAINABILITY OF SUSTAINABLE PALM OIL: A MARKET INTEGRATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Diana Chalil

    2016-07-01

    Full Text Available Crude Palm Oil (CPO is the biggest consumed vegetable oil in the world. The increase in CPO production raises concern on the environmental impact even outside the producing countries. As a response to this matter, the EU has made a requirement to only import certified CPO (CSPO. India and China, the two biggest importers in the world, are less restrictive to the environmental issues, and their demands are more influenced by CPO price levels. These countries are the main export markets for Indonesia and Malaysia, the two biggest CPO exporters in the world. This research using monthly price data from the Netherlands, Germany, Italy, EU28, India, China, Indonesia and Malaysia. Market integrations are tested with Cointegration Test, Vector Error Correction Model and Seemingly Unrelated Regression. The results show that these markets are integrated, but European countries are unlikely to lead the price movement. Therefore, the concern on sustainable certification from the European countries still slowly spreads to other main importers, resulting in low absorption of CSPO. Keywords: market integration; sustainable palm oil; seemingly unrelated regression; vector Error correction model

  18. SOIL CONSERVATION TECHNIQUES IN OIL PALM CULTIVATION FOR SUSTAINABLE AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Halus Satriawan

    2017-08-01

    Full Text Available Currently, many have been concerned with the oil palm cultivation since it may also put land resources in danger and bring about environmental damage. Poor practices in managing agricultural land very often occur due to the inadequate knowledge of soil conservation. Application of soil and water conservation is to maintain the productivity of the land and to prevent further damage by considering land capability classes. This research was aimed at obtaining soil and water conservation techniques which are the most appropriate and optimal for oil palm cultivation areas based on land capability classes which can support sustainable oil palm cultivation. Several soil conservation techniques had been treated to each different class III, IV, and VI of the studied area. These treatment had been performed by a standard plot erosion. The results showed for the land capability class III, Cover plants + Manure was able to control runoff, erosion and reduce leaching of N (LSD P≤0,05, in which soil conservation produced the lowest erosion (3,73t/ha, and N leaching (0,25%. On land capability class IV, Sediment Trap + cover plants+ manure was able to control runoff, erosion and reduce organic C and P leaching (LSD P≤0,05, in which soil conservation produced the lowest runoff (127,77 m3/ha, erosion (12,38t/ha, organic C leaching (1,14 %, and P leaching (1,28 ppm. On land capability class VI, there isn’t significant effect of soil conservation, but Bench Terrace + cover plants +manure has the lowest runoff, erosion and soil nutrient leaching.

  19. How the palm oil industry is cooking the climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    Every year, 1.8 billion tonnes (Gt) of climate changing greenhouse gas (GHG) emissions are released by the degradation and burning of Indonesia's peatlands, which is 4% of global GHG emissions from less than 0.1% of the land on earth. This report shows how, through growing demand for palm oil, the world's largest food, cosmetic and biofuel industries are driving the wholesale destruction of peatlands and rainforests. These companies include Unilever, Nestle and Procter and Gamble, who between them account for a significant volume of global palm oil use, mainly from Indonesia and Malaysia. Overlaying satellite imagery of forest fires with maps indicating the locations of the densest carbon stores in Indonesia, Greenpeace researchers have been able to pinpoint carbon 'hotspots'. Our research has taken us to the Indonesian province of Riau on the island of Sumatra, to document the current activities of those involved in the expansion of palm oil. These are the producers who trade with Unilever, Nestle and Procter and Gamble, as well as many of the other top names in the food, cosmetic and biofuel industries. The area of peatland in Riau is tiny: just 4 million hectares, about the size of Taiwan or Switzerland. Yet Riau's peatlands store 14.6Gt of carbon. If these peatlands were destroyed, the resulting GHG emissions would be equivalent to one year's total global emissions. Unless efforts are made to halt forest and peatland destruction, emissions from these peatlands may trigger a 'climate bomb'.

  20. Viscozyme L pretreatment on palm kernels improved the aroma of palm kernel oil after kernel roasting.

    Science.gov (United States)

    Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan

    2018-05-01

    With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The evolution of palm oil acrylates within 20 years in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Rida Tajau; Nurul Huda Mudri

    2016-01-01

    Acrylated palm oil was synthesized from epoxidized palm oil (EPOP), in early 1989, through acrylation/methacrylation process at Radiation Technology Division laboratory. The acrylated products namely Epoxidized Palm Oil Acrylate/Methacrylate (EPOLA/ EPOMA), with the molecular weight around 2000-3000 g/mol, was found curable when subjected to UV or EB irradiations. Isocyanation of EPOLAs resulted in a resin called Palm Oil Based Urethane Acrylate (POBUA). POBUA possess certain advantages over EPOLA such as much higher molecular weight between 5000 to 20000 g/ mol, better curing speed, crosslinking density, higher abrasion resistance and also higher pendulum hardness. Hyper branched polyurethane acrylate (HBPUA) from palm oil oleic was synthesized by a three-step reaction in 2012. The reaction was confirmed by several analytical data; hydroxyl value (OHV), FTIR, GPC and NMR spectroscopy analyses. The thermal decomposition of HBPUA formulations shows good thermal stability up to 450 degree Celsius. (author)

  2. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    Science.gov (United States)

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  3. Study on Handing Process and Quality Degradation of Oil Palm Fresh Fruit Bunches (FFB)

    Science.gov (United States)

    Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin

    2017-05-01

    The main objective of this study is to determine the relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The study employs exploratory and descriptive design, with quantitative approach and purposive sampling using self-administrated questionnaires, were obtained from 30 smallholder respondents from the Southern Region, Peninsular Malaysia. The study reveals that there was a convincing relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The main handling process factors influencing quality of oil palm fresh fruit bunches (FFB) were harvesting activity and handling at the plantation area. As a result, it can be deduced that the handling process factors variable explains 82.80% of the variance that reflects the quality of oil palm fresh fruit bunches (FFB). The overall findings reveal that the handling process factors do play a significant role in the quality of oil palm fresh fruit bunches (FFB).

  4. A MODEL FOR THE PALM OIL MARKET IN NIGERIA: AN ECONOMETRICS APPROACH

    Directory of Open Access Journals (Sweden)

    Henry Egwuma

    2016-04-01

    Full Text Available The aim of this study is to formulate and estimate a model for the palm oil market in Nigeria with a view to identifying principal factors that shape the Nigerian palm oil industry. Four structural equation models comprising palm oil production, import demand, domestic demand and producer price have been estimated using the autoregressive distributed lag (ARDL cointegration approach over the 1970 to 2011 period. The results reveal that significant factors that influence the Nigerian palm oil industry include the own price, technological improvements, and income level. Government expenditure on agricultural development is also an important determinant, which underscores the need for government support in agriculture. Our model provides a useful framework for analyzing the effects of changes in major exogenous variables such as income or import tariff on the production, demand, and price of palm oil.

  5. Synthesis of hyper branched polyol from palm oil oleic acid

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood

    2010-01-01

    Hyper branched polyol from oleic acid of palm oil has been synthesized by a two-step reaction. Dipentaerythritol was initially reacted with 2, 2-bis (hydroxymethyl) propionic acid in a solution medium aided by p-toluene sulfonic acid as a catalyst. This mixture was then used as core and reacted with the oleic acid. Optimization parameters such as processing temperature and reaction time, and chemical analysis (for example OHV, AV, FTIR, NMR and GPC) of the macromolecule synthesized is presented in this paper. (author)

  6. Climate Based Predictability of Oil Palm Tree Yield in Malaysia.

    Science.gov (United States)

    Oettli, Pascal; Behera, Swadhin K; Yamagata, Toshio

    2018-02-02

    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.

  7. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds

    Science.gov (United States)

    Singh, Rajinder; Ong-Abdullah, Meilina; Low, Eng-Ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-Li; Ooi, Siew–Eng; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W; He, Dong; Hogan, Michael; Budiman, Muhammad A; Lee, Ernest K; DeSalle, Rob; Kudrna, David; Goicoechea, Jose Louis; Wing, Rod; Wilson, Richard K; Fulton, Robert S; Ordway, Jared M; Martienssen, Robert A; Sambanthamurthi, Ravigadevi

    2013-01-01

    Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators1, which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis2, but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings3, and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop. PMID:23883927

  8. Different palm oil production systems for energy purposes and their greenhouse gas implications

    International Nuclear Information System (INIS)

    Wicke, Birka; Dornburg, Veronika; Junginger, Martin; Faaij, Andre

    2008-01-01

    This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to biodiesel and the associated GHG emissions are also studied. This study follows the methodology suggested by the Dutch Commission on Sustainable Biomass (Cramer Commission). The results demonstrate that land use change is the most decisive factor in overall GHG emissions and that palm oil energy chains based on land that was previously natural rainforest or peatland have such large emissions that they cannot meet the 50-70% GHG emission reduction target set by the Cramer Commission. However, if CPO production takes place on degraded land, management of CPO production is improved, or if the by-product PFAD is used for electricity production, the emission reduction criteria can be met, and palm-oil-based electricity can be considered sustainable from a GHG emission point of view. Even though the biodiesel base case on logged-over forest meets the Cramer Commission's emission reduction target for biofuels of 30%, other cases, such as oil palm plantations on degraded land and improved management, can achieve emissions reductions of more than 150%, turning oil palm plantations into carbon sinks. In order for bioenergy to be sustainably produced from palm oil and its derivatives, degraded land should be used for palm oil production and management should be improved

  9. Characterizing commercial oil palm expansion in Latin America: land use change and trade

    Science.gov (United States)

    Furumo, Paul Richard; Aide, T. Mitchell

    2017-02-01

    Commodity crop expansion has increased with the globalization of production systems and consumer demand, linking distant socio-ecological systems. Oil palm plantations are expanding in the tropics to satisfy growing oilseed and biofuel markets, and much of this expansion has caused extensive deforestation, especially in Asia. In Latin America, palm oil output has doubled since 2001, and the majority of expansion seems to be occurring on non-forested lands. We used MODIS satellite imagery (250 m resolution) to map current oil palm plantations in Latin America and determined prior land use and land cover (LULC) using high-resolution images in Google Earth. In addition, we compiled trade data to determine where Latin American palm oil flows, in order to better understand the underlying drivers of expansion in the region. Based on a sample of 342 032 ha of oil palm plantations across Latin America, we found that 79% replaced previously intervened lands (e.g. pastures, croplands, bananas), primarily cattle pastures (56%). The remaining 21% came from areas that were classified as woody vegetation (e.g. forests), most notably in the Amazon and the Petén region in northern Guatemala. Latin America is a net exporter of palm oil but the majority of palm oil exports (70%) stayed within the region, with Mexico importing about half. Growth of the oil palm sector may be driven by global factors, but environmental and economic outcomes vary between regions (i.e. Asia and Latin America), within regions (i.e. Colombia and Peru), and within single countries (i.e. Guatemala), suggesting that local conditions are influential. The present trend of oil palm expanding onto previously cleared lands, guided by roundtable certifications programs, provides an opportunity for more sustainable development of the oil palm sector in Latin America.

  10. Soil C dynamics under intensive oil palm plantations in poor tropical soils

    Science.gov (United States)

    Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre

    2017-04-01

    Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.

  11. Thermoliquefaction of palm oil fiber (Elaeis sp.) using supercritical ethanol.

    Science.gov (United States)

    Oliveira, Aline L P C; Almeida, Priscila S; Campos, Maria C V; Franceschi, Elton; Dariva, Cláudio; Borges, Gustavo R

    2017-04-01

    Thermoliquefaction of palm oil fiber was investigated using supercritical ethanol as solvent. A semi-continuous laboratory scale unit was developed to investigate the effects of temperature (300-500°C), heating rate (10-30°C.min -1 ) and cracking time (10-30min) on the conversion of biomass in bio-oil. The main advantage of the proposed process is that a pure solvent is pumping through the reactor that contains the biomass, dispensing the use of biomass slurries. The yield of bio-oil ranged from 56% to 84%, depending on the experimental conditions. It was observed that an increase in working temperature led to an increase in the bio-oil production. Cracking time and heating rate variation had not shown a considerable effect on the conversion of biomass. The chemical profiles of bio-oil determined by GC/MS, indicate that at low temperature mainly sugar derivatives are produced, while at higher temperatures alcohols and phenolic are the majority compounds of the bio-oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Coconut oil and palm oil's role in nutrition, health and national development: A review.

    Science.gov (United States)

    Boateng, Laurene; Ansong, Richard; Owusu, William B; Steiner-Asiedu, Matilda

    2016-09-01

    Coconut and palm oils which were the major sources of dietary fats for centuries in most of West Africa have been branded as unhealthy highly saturated fats. Their consumption has been peddled to supposedly raise the level of blood cholesterol, thereby increasing the risk of coronary heart disease. This adverse view has led to a reduction in their consumption in West Africa and they have been substituted for imported vegetable oils. Recent information however, indicates some beneficial effects of these oils particularly their roles in nutrition, health and national development. There is the need for a better understanding of their effects on health, nutritional status and national development. This paper therefore attempts to review the roles which coconut and palm oils play in these respects in developing countries, as a means of advocating for a return to their use in local diets. None declared.

  13. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    International Nuclear Information System (INIS)

    Arianie, Lucy; Wahyuningrum, Deana; Nurrachman, Zeily; Natalia, Dessy

    2014-01-01

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, 1 H-NMR, 13 C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope

  14. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Arianie, Lucy, E-mail: lucy205@yahoo.com [Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Tanjungpura, Jl. A.Yani, 73 Pontianak 78124 (Indonesia); Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id; Nurrachman, Zeily, E-mail: deana@chem.itb.ac.id; Natalia, Dessy, E-mail: deana@chem.itb.ac.id [Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2014-03-24

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, {sup 1}H-NMR, {sup 13}C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.

  15. Coconut oil and palm oil's role in nutrition, health and national ...

    African Journals Online (AJOL)

    Coconut and palm oils which were the major sources of dietary fats for centuries in most of West Africa have been branded as unhealthy highly saturated fats. Their consumption has been peddled to supposedly raise the level of blood cholesterol, thereby increasing the risk of coronary heart disease. This adverse view has ...

  16. Macauba: a promising tropical palm for the production of vegetable oil

    Directory of Open Access Journals (Sweden)

    Colombo Carlos Augusto

    2018-01-01

    Full Text Available The growing global demand for vegetable oils for food and for replacing fossil fuels leads to increased oilseeds production. Almost 122 of the current 187 million tons of vegetable oils produced in the world correspond to palm and soybean oils. The oil palm is cultivated in the tropical zone, in areas formerly occupied by forests, and soybean oil is a by-product of protein meal production. The diversification of raw materials for the vegetable oil market is thus strategic for both food and non-food sectors. Sources for vegetable oil should be economically competitive and provide sustainability indexes higher than that provided by oil palm and soybean. In this context, we describe the potential of Acrocomia aculeata, popularly known as macauba. Macauba is an American palm from the tropical zones which presents oil productivity and quality similar to that of the oil palm. It grows spontaneously in a wide range of environments and it is not very water demanding. Macauba palm has a high potential for oil production and for diversification of co-products with some potential of value aggregation. Such a perennial and sustainable species will probably fulfill the requirements to become an important new commercial oilseed crop.

  17. Production of methyl ester from oil in the wastewater pond of a palm oil factory

    Directory of Open Access Journals (Sweden)

    Tongurai, C.

    2007-11-01

    Full Text Available This research studied the suitable technique for the production of methyl ester from waste palm oil in the water pond of a palm oil mill. The composition of the waste palm oil was 73.82% fatty acid, 5.07% triglyceride, 3.39% diglyceride and 17.76% unknown compounds. The unknown compounds were separated via simple distillation carried out at a temperature range of 300-350oC.First, the experiments were carried out in screw capped bottles using filtrated as-received waste oil as the reactant. The esterification and transesterification process were conducted using sulfuric acid catalyst in a methanol solution. The key parameters studied were mole ratio of waste oil to methanol (1:1 to 1:72, amount of catalyst from 0.1-20 v/w% of the reactant, temperature range of 60-98oC and reaction time range of 15-180 minutes. Thin Layer Chromatography (TLC analysis showed 85-90% purity of methyl ester with 4-5% of mono-, di-, and triglycerides and fatty acids and about 5-10% of the unknown compounds for the best condition. The resulting yield of biodiesel was 84-88%. Eradication of contaminants by distillation gave about a 75% distillate yield. Distilled waste palm oil was esterified and transesterified using the previous optimum condition of as-received waste oil, but the reaction time and temperature were varied. The optimal result was obtained by using distilled waste palm oil to methanol molar ratio of 1:8, sulfuric acid of 1 v/w% of reactant, reaction temperature of 70oC and reaction time of 1 hour. TLC analysis indicated a biodiesel composition of methyl ester, free fatty acid, diglyceride and monoglyceride of 96.39%, 3.20%, 0.24% and 0.17%, respectively. The yield of biodiesel was 96-98% having physical fuel properties according to Thailand standard for methyl esterFinally, the distilled waste palm oil was esterified using a 3 liters continuous stirred-tank reactor (CSTR. Using the suitable condition for the batch process and an hour retention time, the

  18. Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. J. Silva

    2016-08-01

    Full Text Available Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA. According to the United Nations, oil palm production in SEA increased by a factor of 3 from 1995 to 2010. We investigate the impacts of current (2010 and near-term future (2020 projected oil palm expansion in SEA on surface–atmosphere exchange and the resulting air quality in the region. For this purpose, we use satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. Relative to a no oil palm plantation scenario (∼ 1990, overall simulated isoprene emissions in the region increased by 13 % due to oil palm plantations in 2010 and a further 11 % in the near-term future. In addition, the expansion of palm plantations leads to local increases in ozone deposition velocities of up to 20 %. The net result of these changes is that oil palm expansion in SEA increases surface O3 by up to 3.5 ppbv over dense urban regions, and in the near-term future could rise more than 4.5 ppbv above baseline levels. Biogenic secondary organic aerosol loadings also increase by up to 1 µg m−3 due to oil palm expansion, and could increase by a further 2.5 µg m−3 in the near-term future. Our analysis indicates that while the impact of recent oil palm expansion on air quality in the region has been significant, the retrieval error and sensitivity of the current constellation of satellite measurements limit our ability to observe these impacts from space. Oil palm expansion is likely to continue to degrade air quality in the region in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.

  19. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    Science.gov (United States)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  20. Catalytic Cracking of Used Palm Oil using Composite Zeolite

    International Nuclear Information System (INIS)

    Chang, W.H.; Tye, C.T.

    2013-01-01

    The rapid expansion of human society implies greater energy demand and environmental issues. In face of depletion energy resources, research is being carried out widely in order to convert the plant oil into biofuel. In this research, the production of liquid biofuels via catalytic cracking of used palm oil in the presence of composite zeolite was studied. The performance of composite zeolite of different properties in the reaction has been evaluated. The catalytic cracking reactions were carried out in a batch reactor at reaction temperature of 350 degree Celsius for an hour. In the present study, adjusting the ratio of meso porous coating to microporous zeolite and magnesium loading on composite zeolite catalyst were found to be able to increase the gasoline fraction and overall conversion of the reaction. (author)