WorldWideScience

Sample records for oil fields producing

  1. Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M

    1968-08-01

    Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.

  2. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  3. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  4. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  5. Intrastate conflict in oil producing states: A threat to global oil supply?

    International Nuclear Information System (INIS)

    Toft, Peter

    2011-01-01

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: → Oil shortfall during intrastate conflict is not a given. → Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. → Examination of four characteristics of intrastate conflict in oil producing countries. → Marginal significance related to large producers and production shortfall.

  6. Intrastate conflict in oil producing states: A threat to global oil supply?

    Energy Technology Data Exchange (ETDEWEB)

    Toft, Peter, E-mail: peter.toft@ec.europa.eu [Institute for Energy, Joint Research Centre of the European Commission, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-11-15

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: > Oil shortfall during intrastate conflict is not a given. > Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. > Examination of four characteristics of intrastate conflict in oil producing countries. > Marginal significance related to large producers and production shortfall.

  7. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  8. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  9. Dalhart's only Permian field gets best oil well

    International Nuclear Information System (INIS)

    Land, R.

    1992-01-01

    This paper reports that activity is picking up in Proctor Ranch oil field in the northwestern Texas panhandle, the only Permian producing field in the lightly drilled Dalhart basin. During the last 2 1/2 months, the field has a new operator and a new producing well, the best of five drilled since discovery in 1990. Corlena Oil Co., Amarillo, acquired the field from McKinney Oil Co. in May and tested its first well in early July. The 1-64 Proctor, 18 miles west of Channing, pumped at rates as high as 178 bd of oil and 6 b/d of water from Permian Wolfcamp dolomite perforations at 4,016-29 ft. Corlena plans to drill another well south of the field soon. The lease requires that the next well be spudded by early November. The field appears to be combination structural-stratigraphic trap in which the dolomite pinches out against the Bravo Domes-Oldham nose to the west

  10. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  11. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  12. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  13. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  14. Yemen - the next big player? [as an oil producer

    International Nuclear Information System (INIS)

    Roberts, J.

    1993-01-01

    1993 should be the year in which United Yemen finally starts to fulfil its potential as a significant oil producer. In recession for three years, the country desperately needs the revenues and has spared no effort in its attempt to provide the right financial climate within which international oil companies can operate. But the last three years, in terms of revenues from actual oil production, have been disastrous, with production from the much-touted Shabwa fields persistently deferred and with the overall climate for the oil industry clouded by a border dispute with Saudi Arabia that prompted at least one western major, BP, to suspend operations for a while. (author)

  15. Purification of produced waters in oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Niyazov, R S; Baikov, U M

    1970-01-01

    Experience has shown that a single step water-conditioning process cannot be used to prepare Bashkirian produced waters for underground injection. In the single-step process, the water is passed through horizontal or vertical settling basins to remove solids. This system does not work when suspended solids increase above 200 to 500 mg/liter. The required quality of injection water can be obtained by filtering the water through sand at flow velocities of 5 to 10 m/hr. The filter has a sand layer 0.6 to 1 m thick, composed of 0.35 to 1.0 mm sand. Water entering the filters should not contain more than 100 to 150 mg/liter of oil products. The filters are backwashed at velocity of 10 to 15 m/hr and rates of 12 to 16 liters/sec sq m for 10 to 15 min. Clean water is used in backwashing. When surfactant is added to the backwash water, the filter cycle lasts longer.

  16. Producing Biosurfactants from Purified Microorganisms Obtained from Oil-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarian

    2010-09-01

    Full Text Available Contamination of soil by crude oil can pose serious problems to ecosystems. Soil washing by solutions containing biosurfactants is one of the most efficient methods for the remediation of contaminated soil by crude oil because it removes not only the crude oil but also heavy metals. In this study, five soil samples were taken from fields exposed to oil compounds over the years in order to produce biosurfactants from microorganisms that were capable of degrading oil compounds. Sixteen such microorganisms were isolated. After cultivation, their emulsification strength was examined using E24 test. From among the experimental microorganisms, a gram-negative and rod-shape microorganism called A-12 showed the greatest value of the E24 test index (36%. For each liter of the culture medium containing 365 mg of microorganisms, 3 gr of the biosurfactant compound was produced and separated as dried powder. The purified biosurfactant was used in the soil washing process. Also, the insulated microorganisms were capable of degrading crude oil floating on wastewaters.

  17. Plans to revive oil fields in Venezuela on track

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports on the three operating units of Venezuela's state owned oil company Petroleos de Venezuela SA which will begin receiving bids Feb. 28 from companies interested in operating 55 inactive oil fields in nine producing areas of Venezuela. Francisco Pradas, Pdvsa executive in charge of the program, the the company expects 88 companies or combines of foreign and domestic private companies to participate in the bidding. The program, announced last year, aims to reactivate production in marginal oil fields. It will involve the first direct participation by private companies in Venezuela's oil production since nationalization in 1976

  18. Venezuela slates second oil field revival round

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Venezuela will accept bids under a second round next year from private foreign and domestic companies for production contracts to operate marginal active as well as inactive oil fields. The first such round came earlier this year, involving about 55 other marginal, inactive fields. It resulted in two contractors signed with domestic and foreign companies. It represented the first time since nationalization of the petroleum industry in Venezuela in 1976 that private companies were allowed to produce oil in the country. A public bid tender was expected at presstime last week

  19. Innovative technologies for managing oil field waste

    International Nuclear Information System (INIS)

    Veil, J.A.

    2003-01-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  20. Oil and Gas field code master list 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  1. Oil and gas field code master list 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  2. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  3. Effect of paraffin saturation in a crude oil on operation of a field

    Energy Technology Data Exchange (ETDEWEB)

    Trebin, G F; Kapyrin, Yu V

    1968-11-01

    Both theoretical and practical studies in recent years have shown that in planning operational procedures for an oil field, the paraffin saturation of the crude oil must be considered. If the crude oil is essentially saturated with paraffin at reservoir condition, then paraffin deposition can occur around the well and in the well. Temperature in the reservoir can be lowered by 2 mechanisms: (1) by injection of water below reservoir temperature, and (2) by expansion of produced gas and consequent cooling of the produced oil. Possible application of these principles to several Soviet oil fields is discussed. In the Uzen field, a preliminary investigation is under way to test the feasibility of heating the injection water to prevent paraffin deposition in the reservoir.

  4. Flood offers new hope for marginal oil fields

    Energy Technology Data Exchange (ETDEWEB)

    1966-03-14

    The economics of producing a marginal Cardium sand oil field in west-central Alberta have been greatly improved by introduction of an inexpensive waterflood pressure maintenance and secondary recovery project. Canadian Gridoil Ltd. is now in full operation at its Willesden Green Cardium Unit No. 5. Of the 8.1 million bbl estimated original oil in place, only 9% would have been recoverable by primary depletion. The waterflood is calculated to add 13%, for ultimate recovery of 22% or 1.8 million bbl. This waterflood installation is considered a prototype of economical and profitable pressure maintenance systems which can be built to advantage in marginal oil fields in Alberta. Ultimate returns in the form of increased oil production and more than doubled oil recovery will be immensely greater than the capital investment of $195,000 in the facilities. Assuming GOR control and full well allowables, the entire capital cost should be paid out within 3 years. Life of the field is estimated at not less than 25 years.

  5. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  6. Producers and oil markets

    International Nuclear Information System (INIS)

    Greaves, W.

    1993-01-01

    This article attempts an assessment of the potential use of futures by the Middle East oil producers. It focuses on Saudi Arabia since the sheer size of Saudi Arabian sales poses problems, but the basic issues discussed are similar for the other Middle East producers. (Author)

  7. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  8. Microbiological techniques for paraffin reduction in producing oil wells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheimer, C. H.; Hiebert, F. K.

    1989-04-01

    Alpha Environmental has completed an eighteen month field oriented, cooperative research program with the US Department of Energy to demonstrate a new economically viable process using petroleum degrading microorganisms, a biocatalyst, formation water and inorganic nutrients to recover residual oil from reservoirs. Alpha's mixed community of microorganisms decomposes crude oil to produce detergents, CO/sub 2/, and new cells, thus mechanically and chemically releasing oil from reservoir pores. The naturally-occurring bacteria utilized in this project were previously selected by screening and isolating microorganisms from soils contaminated with crude oil and petroleum products. The activity and level of salt tolerance (to 20% salinity) of the bacteria is enhanced by a biocatalyst, previously developed by Alpha Environmental. Field evidence suggests that the biocatalyst provides catalytic oxygen to the microorganisms in the reservoir, which augments low levels of in-situ molecular oxygen. 25 refs., 10 figs., 6 tabs.

  9. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    Science.gov (United States)

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other

  10. Dynamic characterization of oil fields, complex stratigraphically using genetic algorithms

    International Nuclear Information System (INIS)

    Gonzalez, Santiago; Hidrobo, Eduardo A

    2004-01-01

    A novel methodology is presented in this paper for the characterization of highly heterogeneous oil fields by integration of the oil fields dynamic information to the static updated model. The objective of the oil field's characterization process is to build an oil field model, as realistic as possible, through the incorporation of all the available information. The classical approach consists in producing a model based in the oil field's static information, having as the process final stage the validation model with the dynamic information available. It is important to clarify that the term validation implies a punctual process by nature, generally intended to secure the required coherence between productive zones and petrophysical properties. The objective of the proposed methodology is to enhance the prediction capacity of the oil field's model by previously integrating, parameters inherent to the oil field's fluid dynamics by a process of dynamic data inversion through an optimization procedure based on evolutionary computation. The proposed methodology relies on the construction of the oil field's high-resolution static model, escalated by means of hybrid techniques while aiming to preserve the oil field's heterogeneity. Afterwards, using an analytic simulator as reference, the scaled model is methodically modified by means of an optimization process that uses genetic algorithms and production data as conditional information. The process's final product is a model that observes the static and dynamic conditions of the oil field with the capacity to minimize the economic impact that generates production historical adjustments to the simulation tasks. This final model features some petrophysical properties (porosity, permeability and water saturation), as modified to achieve a better adjustment of the simulated production's history versus the real one history matching. Additionally, the process involves a slight modification of relative permeability, which has

  11. Modelling the oil producers: Capturing oil industry knowledge in a behavioural simulation model

    International Nuclear Information System (INIS)

    Morecroft, J.D.W.; Van der Heijden, K.A.J.M.

    1992-01-01

    A group of senior managers and planners from a major oil company met to discuss the changing structure of the oil industry with the purpose of improving group understanding of oil market behaviour for use in global scenarios. This broad ranging discussion led to a system dynamics simulation model of the oil producers. The model produced new insights into the power and stability of OPEC (the major oil producers' organization), the dynamic of oil prices, and the investment opportunities of non-OPEC producers. The paper traces the model development process, starting from group discussions and leading to working simulation models. Particular attention is paid to the methods used to capture team knowledge and to ensure that the computer models reflected opinions and ideas from the meetings. The paper describes how flip-chart diagrams were used to collect ideas about the logic of the principal producers' production decisions. A sub-group of the project team developed and tested an algebraic model. The paper shows partial model simulations used to build confidence and a sense of ownership in the algebraic formulations. Further simulations show how the full model can stimulate thinking about producers' behaviour and oil prices. The paper concludes with comments on the model building process. 11 figs., 37 refs

  12. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  13. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  14. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water.

    Science.gov (United States)

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O

    2004-07-01

    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system.

  15. Use of remote sensing and ground control in monitoring oil fields in Alabama

    Energy Technology Data Exchange (ETDEWEB)

    La Moreaux, P E; Muzikar, R [ed.

    1978-01-01

    Present and future water pollution problems resulting from oil field operations in Alabama are analyzed. An outline of a program of data collection and interpretation necessary to determine and evaluate solutions to these problems is presented. A method of adequate monitoring of the oil and gas fields in Alabama to protect against pollution of its valuable surface and groundwater supplies is described. Samples of brine are continuously collected and analyzed from sources representing all water producing horizons in the oil fields. A network of observation wells has been established in oil fields to periodically determine changes in the chemical quality of groundwaters. Water samples from wells adjacent to all major saltwater evaporation pits have been collected and analyzed for possible changes in chemical quality. Discharge measurements are made on streams adjacent to all oil fields. Periodic aerial photographs are being made of each field. Preliminary administrative reports are regularly prepared on each problem in the oil fields and remedial or disciplinary actions are taken by the Oil and Gas Board.

  16. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  17. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  18. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  19. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mirnezami

    2015-07-01

    Full Text Available The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhouse gas emissions—for example, the Kyoto 1998 agreement—seems to have had no effect on oil consumption in oil-producing countries.

  20. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  1. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  2. Ready or Not: Namibia As a Potentially Successful Oil Producer

    Directory of Open Access Journals (Sweden)

    Andrzej Polus

    2015-01-01

    Full Text Available The primary objective of this paper is to assess whether Namibia is ready to become an oil producer. The geological estimates suggest that the country may possess the equivalent of as many as 11 billion barrels of crude oil. If the numbers are correct, Namibia would be sitting on the second-largest oil reserves in sub-Saharan Africa, and exploitation could start as soon as 2017. This clearly raises the question of whether Namibia is next in line to become a victim of the notorious “resource curse.” On the basis of critical discourse analysis and findings from field research, the authors have selected six dimensions of the resource curse and contextualised them within the spheres of Namibian politics and economy. While Namibia still faces a number of important challenges, our findings offer little evidence that the oil will have particularly disruptive effects.

  3. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    Science.gov (United States)

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  4. Reserve growth of the world's giant oil fields

    Science.gov (United States)

    Klett, T.R.; Schmoker, J.W.

    2005-01-01

    Analysis of estimated total recoverable oil volume (field size) of 186 well-known giant oil fields of the world (>0.5 billion bbl of oil, discovered prior to 1981), exclusive of the United States and Canada, demonstrates general increases in field sizes through time. Field sizes were analyzed as a group and within subgroups of the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC countries. From 1981 through 1996, the estimated volume of oil in the 186 fields for which adequate data were available increased from 617 billion to 777 billion bbl of oil (26%). Processes other than new field discoveries added an estimated 160 billion bbl of oil to known reserves in this subset of the world's oil fields. Although methods for estimating field sizes vary among countries, estimated sizes of the giant oil fields of the world increased, probably for many of the same reasons that estimated sizes of oil fields in the United States increased over the same time period. Estimated volumes in OPEC fields increased from a total of 550 billion to 668 billion bbl of oil and volumes in non-OPEC fields increased from 67 billion to 109 billion bbl of oil. In terms of percent change, non-OPEC field sizes increased more than OPEC field sizes (63% versus 22%). The changes in estimated total recoverable oil volumes that occurred within three 5-year increments between 1981 and 1996 were all positive. Between 1981 and 1986, the increase in estimated total recoverable oil volume within the 186 giant oil fields was 11 billion bbl of oil; between 1986 and 1991, the increase was 120 billion bbl of oil; and between 1991 and 1996, the increase was 29 billion bbl of oil. Fields in both OPEC and non-OPEC countries followed trends of substantial reserve growth.

  5. Oil and Gas Field Locations, Geographic NAD83, LDNR (2007) [oil_gas_fields_LDNR_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS layer consists of oil and gas field approximate center point locations (approximately 1,800). Oil and gas fields not assigned a center point by the DNR...

  6. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    OpenAIRE

    Seyed Reza Mirnezami

    2015-01-01

    The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhou...

  7. Investigating oiled birds from oil field waste pits

    International Nuclear Information System (INIS)

    Gregory, D.G.; Edwards, W.C.

    1991-01-01

    Procedures and results of investigations concerning the oiling of inland raptors, migratory water-fowl and other birds are presented. Freon washings from the oiled birds and oil from the pits were analyzed by gas chromatography. In most instances the source of the oil could be established by chromatographic procedures. The numbers of birds involved (including many on the endangered species list) suggested the need for netting or closing oil field waste pits and mud disposal pits. Maintaining a proper chain of custody was important

  8. Reserve Growth in Oil Fields of West Siberian Basin, Russia

    Science.gov (United States)

    Verma, Mahendra K.; Ulmishek, Gregory F.

    2006-01-01

    Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which

  9. Canadian Occidental joins Hunt as Yemen oil producer

    International Nuclear Information System (INIS)

    Gurney, J.

    1994-01-01

    On 23 September 1993, the Canadian Occidental Petroleum Company initiated the export of 120,000 b/d (barrels a day) of low sulphur, medium gravity crude oil from its Masila Block concession in Yemen. The oil is transported from Masila via a pipeline built by CanOxy and its partners to a new terminal at Ash Shihr, near Mukalla, in the Gulf of Aden. CanOxy is the third operator oil company to produce oil commercially in Yemen. The first, the Hunt Oil Company, began production in December 1987 and its output now totals about 187,000 b/d. The second, Nimir Petroleum, a Saudi venture which took over the facilities developed in the 1980s by two Soviet companies, is currently producing about 10,000 b/d and expects to increase its output to 25,000 b/d during this year. (Author)

  10. Research needs to maximize economic producibility of the domestic oil resource

    International Nuclear Information System (INIS)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L.; Dauben, D.L.

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K ampersand A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs

  11. Research needs to maximize economic producibility of the domestic oil resource

    Energy Technology Data Exchange (ETDEWEB)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Dauben, D.L. (K and A Energy Consultants, Inc., Tulsa, OK (United States))

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  12. Change in the flow curves of non-Newtonian oils due to a magnetic field

    International Nuclear Information System (INIS)

    Veliev, F.G.

    1979-01-01

    The effect of a variable magnetic field on the rheological properties of non-Newtonian fluids is evaluated. Bituminous pitch oils were analyzed by recording the flow curves Q.Q(Δp) - the dependence of the volumetric flow rate on the pressure gradient - with and without a field. The results obtained indicate that variable magnetic fields can produce obvious changes in the rheological properties of bituminous pitch oils, although they are nonmagnetoactive and practically electrically nonconducting

  13. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    OpenAIRE

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil) were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis ...

  14. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    Science.gov (United States)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  15. Effective use of complex secondary recovery methods in operation of small oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, M R; Akulov, V P; Khutorov, A M

    1966-11-01

    The North Sokhs Field, located in the southern part of the Fergen depression, is composed of many horizons and has an anticlinal structure. The eighth horizon has highest oil saturation, with an average porosity of 17% and permeability of 80 md. Poor oil recovery was initially obtained from this horizon because the basic producing mechanism was solution gas drive. In 1961, when reservoir pressure was 94 kg/cmU2D and gas factor was 700-800mU3D/ton, pressure maintenance was initiated by injection of gas to the structure. Gas injection improved oil recovery considerably; however, high gas-oil ratios appeared in several wells. Next, peripheral water injection was started, and continued simultaneously with gas injection. The simultaneous injection of gas and water almost doubled oil production. Because of continued, high produced gas/oil ratios, gas injection was eventually discontinued, while water injection was continued. Water injection is building up reservoir pressure and improving oil recovery.

  16. Mixed Field Modification of Thermally Cured Castor Oil Based Polyurethanes

    International Nuclear Information System (INIS)

    Mortley, A.

    2006-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanatee (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of accumulated doses (0.0-3.0 MGy) produced by the mixed ionizing field of the SLOWPOKE-2 research reactor. The physico-mechanical properties of COPU, unirradiated and irradiated, were characterized by mechanical tests. Increased bond formation resulting from radiation-induced crosslinking was confirmed by favorable increases in mechanical properties and by solid-state 13 C -NMR and FTIR spectra

  17. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  18. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields

    International Nuclear Information System (INIS)

    Lazar, I.; Dobrota, S.; Voicu, A.; Stefanescu, M.; Sandulescu, L.; Petrisor, I.G.

    1999-01-01

    During oil production and processing activities, significant quantities of oily sludge are produced. The sludge represents not only an environmental pollution source but also occupies big spaces in storage tanks. Romania, an experienced European oil-producing and processing country, is faced with environmental problems generated by oily sludge accumulations. Many such accumulations are to be submitted to bioremediation processes based on the hydrocarbon degradation activity of naturally occurring, selectively isolated bacteria. In this paper the results concerning a laboratory screening of several natural bacterial consortia and laboratory tests to establish the performance in degradation of hydrocarbons contained in oily sludges from Otesti oil field area, are presented. As a result of the laboratory screening, we selected six natural bacterial consortia (BCSl-I 1 to BCSl-I 6 ) with high ability in degradation of hydrocarbons from paraffinic and non-paraffinic asphaltic oils (between 25.53%-64.30% for non-paraffinic asphaltic oil and between 50.25%-72.97% for paraffinic oil). The laboratory tests proved that microbial degradation of hydrocarbons contained in oily sludge from Otesti oil field area varied from 16.75% to 95.85% in moving conditions (Erlenmeyers of 750 ml on rotary shaker at 200 rpm) and from 16.85% to 51.85% in static conditions (Petri dishes Oe 10 cm or vessels of 500 ml)

  19. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  20. Problems in operation of gas-oil condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Martos, V N

    1966-12-01

    This is a review of various methods used to deplete gas-oil condensate reservoirs. Four depletion techniques are discussed: (1) natural depletion without injection of fluids into the reservoir; (2) depletion accompanied by gas cycling; (3) depletion in which the gas cap is separated from the oil by water injected into the reservoir, a method in which each part of the reservoir is produced essentially independently of the other; and (4) depletion in which reservoir temperature is raised above the cricondentherm point by in-situ combustion, so that gas and oil form a single phase. This method is prospective, and has not been tried in the field. Advantages and disadvantages of each method are discussed. It is concluded that a gas condensate reservoir can be depleted most economically only if some secondary energy is added. (13 refs.)

  1. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  2. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  3. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  4. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    Science.gov (United States)

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  5. Exploring oil market dynamics: a system dynamics model and microworld of the oil producers

    Energy Technology Data Exchange (ETDEWEB)

    Morecroft, J.D.W. [London Business School (United Kingdom); Marsh, B. [St Andrews Management Institute, Fife (United Kingdom)

    1997-11-01

    This chapter focuses on the development of a simulation model of global oil markets by Royal Dutch/Shell Planners in order to explore the implications of different scenarios. The model development process, mapping the decision making logic of the oil producers, the swing producer making enough to defend the intended price, the independents, quota setting, the opportunists, and market oil price and demand are examined. Use of the model to generate scenarios development of the model as a gaming simulator for training, design of the user interface, and the value of the model are considered in detail. (UK)

  6. Maximizing probable oil field profit: uncertainties on well spacing

    International Nuclear Information System (INIS)

    MacKay, J.A.; Lerche, I.

    1997-01-01

    The influence of uncertainties in field development costs, well costs, lifting costs, selling price, discount factor, and oil field reserves are evaluated for their impact on assessing probable ranges of uncertainty on present day worth (PDW), oil field lifetime τ 2/3 , optimum number of wells (OWI), and the minimum (n-) and maximum (n+) number of wells to produce a PDW ≥ O. The relative importance of different factors in contributing to the uncertainties in PDW, τ 2/3 , OWI, nsub(-) and nsub(+) is also analyzed. Numerical illustrations indicate how the maximum PDW depends on the ranges of parameter values, drawn from probability distributions using Monte Carlo simulations. In addition, the procedure illustrates the relative importance of contributions of individual factors to the total uncertainty, so that one can assess where to place effort to improve ranges of uncertainty; while the volatility of each estimate allows one to determine when such effort is needful. (author)

  7. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  8. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  9. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  10. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  11. Technical and economic feasibility study of flue gas injection in an Iranian oil field

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2015-09-01

    The main aim of this research is to investigate various gas injection methods (N2, CO2, produced reservoir gas, and flue gas in one of the northern Persian gulf oil fields by a numerical simulation method. Moreover, for each scenario of gas injection technical and economical considerations are took into account. Finally, an economic analysis is implemented to compare the net present value (NPV of the different gas injection scenarios in the aforementioned oil field.

  12. English-Chinese oil field dictionary. [English-Chinese

    Energy Technology Data Exchange (ETDEWEB)

    Gow, S [comp.

    1979-01-01

    In this edition the original English-Chinese Oil Field Dictionary was modified line by line and major additions and deletions were made. A total of 37,000 terms and phrases were collected. The following disciplines were included: petroleum geology, earth physics and detection, well prospecting and measuring, development of oil fields, oil recovery, oil storage and transport, etc. In addition, a limited number of common scientific terms, phrases and terminologies were also included.

  13. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  14. Emerald oil field on production in North Sea

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Midland and Scottish Energy Ltd. (MSE) has placed Emerald oil field on stream in the U.K. North Sea with a floating production unit. Initial production, from two satellite wells, will be used to commission facilities. Three water injection wells have been unplugged and are ready for start-up. MSE will place a central cluster of wells-five producers and one water injector-on stream during the next few weeks. Production will build to an expected 25,000 b/d from 35 million bbl of reserves. Field development has undergone an unusually large number of setbacks and changes

  15. Oil and gas field development: an NOC perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kronman, George [Halliburton Energy Services (United States). Landmark Division

    2004-07-01

    Every day, oil companies around the world face real-life field development and management problems like the ones described above. Making timely and well-informed field development decisions are among the most important decisions the management of any oil company can make. The field development phase of the oil and gas life cycle extends from the discovery of a hydrocarbon deposit through initial production. It also includes revitalization of mature and marginal fields. Field development projects require the greatest level of cross-disciplinary integration and the largest investment decisions in the entire oil field life cycle. The ultimate economic success or failure of most fields is set by the quality of decisions made during field development. Oil companies take many different approaches to field development based on unique business drivers, their asset portfolio mix and risk tolerance, access to data and experienced manpower, adoption of technology, availability of capital, ownership, management style and so on. This paper focuses on understanding and addressing the particular field development challenges facing NOCs today. (author)

  16. Potential use of produced oil sample analysis to monitor SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Petroleum International, Calgary, AB (Canada); Wollen, C. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[OPTI-Nexen Inc., Calgary, AB (Canada); Yang, P.; Fustic, M. [Nexen Petroleum International, Calgary, AB (Canada)

    2008-10-15

    Oil viscosity and compositional gradients can affect the performance of steam injection recovery processes. In this study, reservoir simulations were conducted to investigate the effects of viscosity variation with depth on steam assisted gravity drainage (SAGD) processes and produced oil characteristics. The 2-D reservoir model consisted of a reservoir with a 40 m clean sand matrix, overtopped with interbedded shales and sand. The oil phase was comprised of 2 pseudo-components representing top and bottom bitumens. Viscosities and concentrations of the pseudo-components were calculated using linear mixing rules. Four different viscosity distribution scenarios were examined. Conceptual 3-D models were then constructed to examine the characteristics of produced oil samples in scenarios with shale barriers extending down the well directions and blocking parts of the reservoir. Results from the simulations showed that produced oil characteristics are related to the in situ profiles of reservoir flow barriers. Produced oil characteristics can be used in conjunction with oil rates, surface heave and other data to predict steam chamber development and detect the presence of baffles and barriers. The relationship between the SAGD steam chamber and variations in produced fluid characteristics were accurately characterized by the simulations. It was concluded that the approach can be used to monitor SAGD steam chamber growth. 10 refs., 1 tab., 19 figs.

  17. Oil and gas field code master list, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  18. Kashagan oil field development. Kazakhstan

    International Nuclear Information System (INIS)

    Urbaniak, D.; Gerebizza, E.; Wasse, G.; Kochladze, M.

    2007-12-01

    Based on our research and field investigations of the Kashagan oil field development and relevant infrastructure in the Atyrau and Mangistau regions of Kazakhstan (cities and vicinities of Aktau, Atash, Atyrau, Bautino, Bolashak, Karabatan and Koshanai) evidence has been collected that raises serious concerns about environmental, social and health effects of this oil field development - such as sulphur emissions and storage which may pose serious threats for the communities close to the Kashagan oil facilities and for the Caspian Sea environment. Furthermore, since becoming the single Operator of the North Caspian Sea Production Sharing Agreement (PSA), the Agip Kazakhstan North Caspian Operating Company N.V. (Agip KCO) has failed to release all information available on the environmental, health and social impacts of its operations in the Kashagan oil field. As requested by the local communities and required by Constitution of Kazakhstan Republic and Aarhus Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters ratified by Kazakhstan in 2001, such information must be made available. There is also a growing concern among the civil society that the European Commission through its officials is publicly expressing support to European oil companies' members of the Agip KCO despite their failure to fulfil basic environmental regulations. This continued support contradicts the European Union's fundamental values and frequent statements related to Human Rights and Sustainable Development. Thousands of people have already been relocated in the region because of sulphur emissions and other highly poisonous chemicals such as mercaptans, which are present at very high levels in Northern Caspian oil. Unprotected storage of large quantities of sulphur is also recognised as a major cause of acid rain on a global level. This Report implores Agip KCO to release all available and required information on the

  19. Application of bio-huff-`n`-puff technology at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  20. Model improves oil field operating cost estimates

    International Nuclear Information System (INIS)

    Glaeser, J.L.

    1996-01-01

    A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis

  1. Oil producers facing a common challenge

    International Nuclear Information System (INIS)

    Galal, E.E.

    1992-01-01

    Among the numerous challenges facing our modern world, perhaps the most urgent and dominant are energy related. From the perspective of developing countries they are, in order of priorities, development, energy security and environment. Oil covers above 38% of the global commercial energy needs and gas about 20%. In some commanding sectors of the economy, like transport, oil is for now virtually the irreplaceable source of energy. In addition, oil and gas are two valuable primary materials of the chemical industry. It also happens that oil consumption is one of the sources of environmental pollution through the emission of CO 2 . Utilisation of the world's finite fossil energy resources (88% of total commercial energy) in the service of development reflects all the negative attributes of the mismanagement of the global economy, exemplified by waste, inefficiency, unfair terms of trade, market instability and short-sighted policies. These serious inequities have been further compounded by the growing menace of environmental and climatic degradation. In dealing with the interactions between these three complex systems, i.e., energy, environment and development, it is important for oil producers to delineate their priorities clearly, if they are to disentangle credible common goals for an international convention. (author)

  2. Technology transfer to US oil producers: A policy tool to sustain or increase oil production

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, W. T.

    1990-03-01

    The Department of Energy provided the Interstate Oil Compact Commission with a grant to identify and evaluate existing technology transfer channels to operators, to devise and test improvements or new technology transfer channels and to make recommendations as to how the Department of Energy's oil and gas technology transfer methods could be improved. The IOCC conducted this effort in a series of four tasks: a structural analysis to characterize the oil producing industry according to operator production size class, geographic location, awareness and use of reservoir management technologies, and strategies for adding reserves and replacing produced reserves; targeted interviews conducted with some 300 oil and gas industry participants to identify current technology transfer channels and their relative usefulness for various classes of industry participants; a design and testing phase, in which the IOCC critiqued the current technology transfer structure, based on results of the structural analysis and targeted interviews, and identified several strategies for improvement; and an evaluation of existing state outreach programs to determine whether they might provide a model for development of additional outreach programs in other producing states.

  3. Palm oil based polymer materials obtained by ROMP: study by low field NMR

    International Nuclear Information System (INIS)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S.

    2015-01-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  4. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  5. Exploratory assessment of the economic gains of a pre-salt oil field in Brazil

    International Nuclear Information System (INIS)

    Araujo Rodrigues, Larissa; Luís Sauer, Ildo

    2015-01-01

    In recent years, Brazil has made public several oil discoveries located in deep waters, below the salt layer. Discoveries are steadily enhancing national reserves and have brought the country into a new role in the global oil industry. This paper aims at investigating the economic gains that could be expected from a Brazilian oil field in the pre-salt region. Analyses were conducted based on the Libra field, the largest oil discovery in Brazil until now, with approximately 10 billion barrels. The results were calculated for different scenarios of oil prices, companies' arrangements and regulatory regimes. The findings suggest that economic gains could be higher for the Brazilian Government if the oil production were conducted under a service contract scheme. However, considering the current production-sharing regime in force for pre-salt areas, economic gains could be higher if a bidding process was conducted, ensuring for the Brazilian Government a higher participation in the oil to be produced. Additionally, the results demonstrate that under the current rules applied for the production-sharing regime, the government quota of oil has decreased over time, putting at risk economic results. - Highlights: • The paper investigates the economic gains of a pre-salt oil field in Brazil. • Government earnings could be higher under a service contract scheme. • The first production-sharing regime bid did not encourage competition. • Under the production-sharing rules government quota of oil decreases over time.

  6. Description and discussion of governmental participations for companies producing oil and gas in marginal fields; Descricao e discussao do regime tributario e participacoes governamentais para empresas produtoras de petroleo e gas em campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo, Antonio Sergio [Universidade Salvador (UNIFACS), BA (Brazil); Rodrigues, Jose Allankardec Fernandes [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Rodrigues, Livia da Silva Modesto [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Universidade Salvador (UNIFACS), BA (Brazil); Fundacao Visconde de Cairu, Salvador, BA (Brazil); Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    This article reports taxing and government participation in oil and gas extraction in peripheral fields as defined by the Agencia Nacional de Petroleo, Gas Natural e Combustivel (ANP) and the need to discuss the essence of the contributing capacity as a means to take into account the characteristics of this specific niche in gas and oil production. Their own particular policies distinguish them from other segments. The analysis is founded on the Aristotelian view which treats equals equally and unequals unequally. The analysis shows these companies' present situation and makes it clear that taxing in Brazil acts as an obstacle to the development of several sectors, including the small oil and gas production sector. Also worth mentioning is, besides taxes in the oil business, there is also the incidence of financial indemnity established by the Petroleum Law, illustrating an analysis of this legislation. Initially, when peripheral fields are still seen as great opportunities (according to the regulatory definition adopted by the ANP), mainly because of the high price of the barrel of oil (over US$ 100 ) the weight of taxes may not be a critical factor. However, when marginal oil wells do not attract interest in the average independent producer, the only mechanisms capable of extending the activity, and as a consequence, the positive impacts generated in producing communities, may well be tax relief and government involvement. The method used was a reference research and technical visits to leasers of concessions at peripheral fields. The present study will continue with the object of showing econometric models by simulating the impact taxing has on marginal production projects at different stages of maturity. (author)

  7. Sub-Sahara's second largest oil producer

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, C

    1991-05-01

    With the prospects for peace in Angola following the settlement of the civil war, the oil producing potential for the country is briefly reviewed. Topics covered include the problems of economic growth and development because of the civil war and communist ideology, US foreign policy, production sharing, military expenditure and economic planning. (UK).

  8. Oil and Gas Field Code Master List 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  9. Plans for first oil production revived in two Sudanese fields

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A Vancouver, British Columbia, independent and its Sudanese partner have filed a development plan with the government of Sudan to produce an initial 40,000 b/d from Heglig and Unity oil fields in Sudan. Arakis Energy Corp., and the private Sudanese company State Petroleum Corp. (SPC) want to begin the first commercial hydrocarbon production in the destitute, war torn country. They are picking up where Chevron Corp. left off after years of grappling with an ambitious, costly - and ultimately futile - effort to export crude-oil from Sudan. After finding almost 300 million bbl of oil in Sudan during the early 1980s, Chevron scuttled a $2 billion project to export 50,000 b/d of Sudanese crude in 1986. It drilled 90 wells and sank more than $1 billion into the project. But it dropped the plan, citing the 1986 collapse of oil prices and concerns over security after repeated guerrilla attacks delayed work. The paper details the project

  10. Operational Aspects of Fiscal Policy in Oil-Producing Countries

    OpenAIRE

    Steven A Barnett; Rolando Ossowski

    2002-01-01

    Oil-producing countries face challenges arising from the fact that oil revenue is exhaustible, volatile, and uncertain, and largely originates from abroad. Reflecting these challenges, the paper proposes some important general principles for the formulation and assessment of fiscal policy in these countries. The main findings can be summarized in some key guidelines: the non-oil balance should feature prominently in the formulation of fiscal policy; it should generally be adjusted gradually; ...

  11. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  12. Corrosion behavior of Cu Al Ni shape memory alloy in an oil land field produced fluid; Corrosao da liga com memoria de forma CuAlNi em fluido produzido de campo terrestre de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ricardo Estefany Aquino [PETROBRAS S.A., Aracaju/Maceio, SE/AL (Brazil). Unidade de Negocios SE-AL; Cruz, Maria Clara Pinto; Figueiredo, Renan T.; Souza, Luciete da Paixao; Araujo, Paulo M.M. [Universidade Tiradentes (UNIT), Aracaju, SE (Brazil)

    2008-07-01

    The corrosion behavior of the CuAlNi shape memory alloy in oil landfield produced groundwater was investigated with polarization curve and mass loss measurements, the latter carried out by immersion in laboratory and field tests. The physico-chemical analysis of five types of oil landfield produced groundwater showed the presence of H{sub 2}S and CO{sub 2}, high salinity, chloride, sulfide and iron ions and relatively neutral pH. The results from electrochemical tests in aerated produced groundwater, in the range of salinity encountered, suggested that the corrosion rate increases at higher saline concentrations. The results from field tests with corrosion test specimens showed a moderate to severe corrosion rate and suggested, in the other hand, that corrosion rates were influenced not only by salinity and oxidizing ions present in the flowing fluid, but also by solid materials in suspension, the fluid's temperature, and the flow velocity. This research is part of a major project which aims to develop couplings for landfield produced fluid transportation pipe connections without welded nor threaded joints. (author)

  13. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  14. ECOLOGICAL REGIONALIZATION METHODS OF OIL PRODUCING AREAS

    Directory of Open Access Journals (Sweden)

    Inna Ivanovna Pivovarova

    2017-01-01

    Full Text Available The paper analyses territory zoning methods with varying degrees of anthropogenic pollution risk. The summarized results of spatial analysis of oil pollution of surface water in the most developed oil-producing region of Russia. An example of GIS-zoning according to the degree of environmental hazard is presented. All possible algorithms of cluster analysis are considered for isolation of homogeneous data structures. The conclusion is made on the benefits of using combined methods of analysis for assessing the homogeneity of specific environmental characteristics in selected territories.

  15. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  16. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  17. Mixed field radiation modification of polyurethanes based on castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, A.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: aba.mortley@rmc.ca

    2006-07-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing {sup 13}C-NMR and FTIR spectra. (author)

  18. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Mortley, A.; Bonin, H.W.; Bui, V.T.

    2006-01-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13 C-NMR and FTIR spectra. (author)

  19. Crude oil He and Ar isotopic characteristics and their geochemical significance: an example from the Gangxi oil field in the Huanghua depression

    Directory of Open Access Journals (Sweden)

    S. Chenpeng

    2005-06-01

    Full Text Available Sampled from the Gangxi oil field in the Huanghua depression, Bohaiwan Basin, the crude oil He and Ar isotopic compositions and their geochemical significance were investigated. The result shows that i the 3He/4He values of the six oil samples free from air contamination indicate a mantle helium contribution ranging between 13.9% and 32.8% and averaging 24.1%, which means that the Gangxi oil field once had a tectonic background of the mantle-derived helium input and higher geothermal flow with an average of 75.0 mWm-2; ii deduced from the 40Ar/36Ar aging effect the Gangxi oil should be derived from the Tertiary; iii water injection is the main reason for the air contamination for the Gangxi oil noble gases and the relations between 3He/4He and 4He/20Ne as well as 40Ar/36Ar and 4He/20Ne are of an applicative potential in estimating the water injection effect and the connectivity of producing formations. The search for the crude oil He and Ar isotopes provides a new approach to inferring natural gas and oil sources, tectonic backgrounds, geothermal flow and water injection effect.

  20. Problems in waterflooding fields containing paraffinic crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, A G; Lyutin, L V; Perevalov, V G

    1968-11-01

    When Caspian seawater is injected into the Uzen field reservoir, the temperature of the reservoir oil can be lowered 10/sup 0/ to 20/sup 0/C below initial reservoir temperature. Because Uzen crude oil is saturated with paraffin, the cold injection water can deposit paraffin in the formation and reduce oil recovery. In a related study, it was shown that the lower temperature should not adversely affect capillary and wettability behavior of the crude oil in the reservoir. Oil recovery was found to be essentially independent of water composition. However, fresh water is easier to handle in injection systems than brines. Several studies have shown that oil recovery from Uzen field should be increased by use of hot injection water. Various methods of heating the water are discussed. To reduce corrosivity and scaling of hot brine, sodium hexametaphosphate is added in concentrations of 2 to 15 mg/liter. It is concluded that it would be practical to use hot injection water in this field.

  1. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  2. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  3. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  4. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  5. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  6. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  7. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A., E-mail: mmhushari@moe.gov.qa [Radiation and Chemical Protection Department, Ministry of Environment, Doha (Qatar)

    2015-07-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  8. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    International Nuclear Information System (INIS)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A.

    2015-01-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H ex , D , and Ra eq ), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H ex , D , and Ra eq ), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  9. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  10. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  11. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  12. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  13. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  14. The oil field chemists role during field abandonment

    Energy Technology Data Exchange (ETDEWEB)

    Read, P.A.; Alfsnes, K.

    1996-12-31

    During the next ten years an increasing number of redundant oil and gas production facilities are scheduled for decommissioning on the Norwegian continental shelf. The oil field chemists role in this connection is discussed. Many of the facilities are large combined drilling and production platforms, others no more than field control centres. Their construction materials and methods are very varied, ranging from steel jackets to concrete gravity structures. Many sub sea templates and flow lines will be targeted for removal. An initial review of a simple production platform has revealed the presence of almost 800 chemical substances. The environmental fate of the materials is needed for estimating the best possible environmental option for the disposal of installations and their contents

  15. Thermal stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk

    Directory of Open Access Journals (Sweden)

    FLAVIA POP

    Full Text Available The physical and chemical characteristics and thermal stability of butter oil produced from non-pasteurized and pasteurized sheep’s milk were studied. Thermal stability of samples was estimated by using the accelerated shelf-life testing method. Samples were stored at 50, 60 and 70oC in the dark and the reaction was monitored by measuring peroxide, thiobarbituric acid and free fatty acid values. The peroxide and thiobarbituric acid values increased as the temperature increased. The increase of acid values of the two samples was not significant. A slight increase in free fatty acid value showed that hydrolytic reactions were not responsible for the deterioration of butter oil samples in thermal stability studies. When compared, butter oil produced from pasteurized sheep’s milk has higher thermal stability than butter oil produced from non-pasteurized sheep’s milk. Although butter oil produced from non-pasteurized milk was not exposed to any heat treatment, the shelf-life of this product was lower than the shelf-life of butter oil produced from pasteurized sheep’s milk. Therefore, heat treatment for pasteurization did not affect the thermal stability of butter oil.

  16. RADARSAT SAR data assessment of oil lakes in the Greater Burgan Oil Field, Kuwait

    International Nuclear Information System (INIS)

    Kwarteng, A. Y.; Al-Ajmi, D.; Singhroy, V.; Saint-Jean, R.

    1997-01-01

    RADARSAT images recorded in different beam modes were processed and used to assess the oil lakes in the Burgan oil field in Kuwait created by the fire setting of oil wells by the retreating Iraqi forces in the 1990-1991 Gulf War. The images were geometrically registered to each other and used as input to a change detection program. The main interest was to map and differentiate between the oil lakes, tarmats, vegetation, buried oil lakes, and also to evaluate the usefulness of RADARSAT's beam modes in characterizing such features. Results of the RADARSAT imagery analysis were compared to similar studies using optical and SIR-C/X-SAR data. Initially, there have approximately 300 oil lakes covering an area of about 49 sq km. Twenty-one million barrels of oil were recovered and exported; about one million barrels of unrecoverable oil was left in the oil fields. Since then most of the oil has evaporated, dried up to form tarmats, or has been covered by a veneer of sand and is no longer visible on the surface

  17. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  18. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Science.gov (United States)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  19. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  20. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    Science.gov (United States)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  2. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  3. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios

    International Nuclear Information System (INIS)

    Castanheira, Érica Geraldes; Acevedo, Helmer; Freire, Fausto

    2014-01-01

    Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N 2 O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (−3.0 to 5.3 kg CO 2 eq kg −1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

  4. The influence of magnetic fields on crude oils viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia

    2009-07-01

    The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the

  5. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  6. A review of the evaluation of TENORM levels at the produced water lagoon of the Minagish oil field using high-resolution gamma-ray spectrometry

    Science.gov (United States)

    Shams, H. M.; Bradley, D. A.; Alshammari, H.; Regan, P. H.

    2017-11-01

    An evaluation of the specific activity concentrations associated with technologically enhanced naturally occurring radioactive materials (TENORM) and anthropogenic radionuclides has been undertaken as part of a systematic study to provide a radiological map of the outer boundary of the produced water lagoon located in the Minagish oil field in the south west of the State of Kuwait. The lagoon contains material from the discharge of produced water which is a by-product of oil production in the region. The lagoon samples were prepared and placed into sealed, marinelli beakers for a full gamma-ray spectrometric analysis using a high-resolution, low-background, high-purity germanium detection systems at the University of Surrey Environmental Radioactivity Laboratory. Of particular interest are the calculation of the activity concentrations associated with members of the decay chains following decays of the primordial radionuclides of the 238U chain (226Ra, 214Pb, 214Bi) and the 232Th chain (228Ra, 228Ac, 212Pb, 212Bi, 208Tl), and the enhanced concentrations of radium isotopes. This conference paper presents an overview summary of the experimental samples which have been measured and the analysis techniques applied, including isotopic correlation plots across the sample region. The result shows the expected significant increase in 226Ra (and progeny) concentrations compared to the NORM values previously reported by our group for the overall terrain in Kuwait.

  7. Oil price risk management in the 1990s - issues for producers and lenders

    International Nuclear Information System (INIS)

    Lambert, S.

    1994-01-01

    Oil prices have exhibited considerable volatility over the past five or ten years and the management of oil price risk has become an important factor in underpinning the viability of many oil producing operations from both a lender's and investor's perspective. Various oil based hedging products are now available to protect against such volatility, ranging from products which fix forward prices to option based arrangements which set a floor price but retain some (or all) of the potential upside. These products have particular relevance for petroleum companies with limited financial resources or who are looking to limit recourse to particular assets/cash flows. There are a number of techniques which can be successfully combined to mitigate oil price volatility and the most relevant of these to a producer are discussed. The recent development of the Tapis swap and option markets, which have provided flexibility to Australasian producers, is also discussed. Oil based financial products can also be used as a method of funding (e.g. for a development or acquisition) as an alternative to traditional cash based borrowing structures, thus creating a natural hedge against oil price movements. It is estimated that the use of such structures, coupled with a well structured revenue hedging program, can enhance a project's attractiveness from a lender's perspective (particularly with respect to protection against down side movements in oil price) and/or provide greater certainty of returns to producers. A case study of a recent commodity risk management based financing is presented. 1 fig., 6 tabs

  8. Hydraulic Fracturing of 403 Shallow Diatomite Wells in South Belridge Oil Field, Kern County, California, in 2014

    Science.gov (United States)

    Wynne, D. B.; Agusiegbe, V.

    2015-12-01

    We examine all 403 Hydraulic Fracture (HF) jobs performed by Aera Energy, LLC, in the South Belridge oil field, Kern County, CA in 2014. HFs in the South Belridge oil field are atypical amongst North American plays because the reservoir is shallow and produced via vertical wells. Our data set constitutes 88% of all HF jobs performed in CA oil fields in calendar-2014. The South Belridge field produces 11% of California's oil and the shallow HFs performed here differ from most HFs performed elsewhere. We discuss fracture modeling and methods and summary statistics, and modelled dimensions of fractures and their relationships to depth and reservoir properties. The 403 HFs were made in the diatomite-dominated Reef Ridge member of the Monterey Formation. The HFs began at an average depth of 1047 feet below ground (ft TVD) and extended an average of 626 ft vertically downward. The deepest initiation of HF was at 2380 ft and the shallowest cessation was at 639 ft TVD. The average HF was performed using 1488 BBL (62,496 gallons) of water. The HFs were performed in no more than 6 stages and nearly all were completed within one day. We (1) compare metrics of the South Belridge sample group with recent, larger "all-CA" and nationwide samples; and (2) conclude that if relationships of reservoir properties, well completion and HF are well understood, shallow diatomite HF may be optimized to enhance production while minimizing environmental impact.

  9. Computational Flow Dynamic Simulation of Micro Flow Field Characteristics Drainage Device Used in the Process of Oil-Water Separation

    Directory of Open Access Journals (Sweden)

    Guangya Jin

    2017-01-01

    Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.

  10. Weathering of oils at sea: model/field data comparisons

    International Nuclear Information System (INIS)

    Daling, Per S.; Stroem, Tove

    1999-01-01

    The SINTEF Oil Weathering Model (OWM) has been extensively tested with results from full-scale field trials with experimental oil slicks in the Norwegian NOFO Sea trials in 1994 and 1995 and the AEA 1997 trials in UK. The comparisons between oil weathering values predicted by the model and ground-truth obtained from the field trials are presented and discussed. Good laboratory weathering data of the specific oil as input to the model is essential for obtaining reliable weathering predictions. Predications provided by the SINTEF-OWM enable oil spill personnel to estimate the most appropriate 'window of opportunity' for use of chemical dispersants under various spill situations. Pre-spill scenario analysis with the SINTEF Oil Spill Contingency and Response (OSCAR) model system, in which the SINTEF-OWM is one of several components, has become an important part of contingency plans as well as contingency training of oil spill personnel at refineries, oil terminals and offshore installations in Norway. (Author)

  11. Formation of the oil composition of the Yu0 Bazhenov formation, Salym oil field

    Directory of Open Access Journals (Sweden)

    E.V. Soboleva

    2017-05-01

    Full Text Available The Bazhenov horizon of Western Siberia has been studied in considerable detail from different perspectives and different methods, a large number of studies have been devoted to a wide range of issues related to the lithological composition of rocks, their reservoir properties, the study of organic matter, properties and composition of oil at various analytical levels, and many others. This work is devoted to restoring conditions for the formation of oil properties and composition of the Yu0 Salym oil field, based mainly on the geochemical aspects of the study of oil changes both in area and in the section within the productive layer of Salym structure, using some geological data, such as structural plan for the reflecting horizon B (the roof of the Bazhenov formation, having a complex configuration, reservoir temperatures and pressure, well flow rates, and others. There is no single reservoir at the Salym field in the Yu0 formation. For the conclusions of the geological-geochemical interpretation, a sampling of 61 samples of oil from exploration, appraisal and production wells of the initial stages of production was used, since in the future when oil is extracted, the ecology in the deposits changes, and 21 samples of oil from other fields in the West Siberian oil and gas basin. Conventionally, three types of oils are distinguished, differing in their physicochemical parameters, group hydrocarbon and molecular composition. It was suggested that in addition to the own organic matter of the Bazhenov formation, hydrocarbon fluids of the Vasyugan, Tyumen formations and possibly Paleozoic rocks were involved in the formation of the oil composition. The flow of light liquid hydrocarbons and gases occurred along the zones of faults of different genesis and duration of existence.

  12. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  13. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  14. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  15. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    Science.gov (United States)

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers.

  16. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  17. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of safflower and effective use. The ways of processing safflower seed to obtain oil. It is the most productive and promising method for processing seeds of safflower scheme press extruder. Described compression step in the processing of safflower seeds scheme press extruder. Crucial processing technology safflower seeds have two fundamental rheological characteristics of viscosity and elasticity, which depend on the structure of the raw material, the molecular weight distribution, and processing conditions such as temperature, pressure and flow rate. The dependence of the density of its safflower cake moisture concluded that with humidity increase the particle density increases, due to the swelling of colloids grain. Furthermore, the dependence of shear stress and the effective viscosity versus shear rate, it is concluded that with increasing shear rate influence of temperature on the viscosity gradient weakens. The article shows the study of the prospects of the extrusion process in the presence of the ultrasound field and the creation of equipment that takes into account these properties. The use of ultrasound significantly reduces energy consumption and necessary to prevent the molding ion safflower seeds, improves product quality.

  19. The feasibility of the gas micro-turbines application in the heavy oil produced from onshore mature fields; A viabilidade do uso de micro-turbinas a gas em campos maduros onshore de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    This article presents a synthesis of the fast advances in micro co-generation technology and their possible applications in fields of petroleum. The subject is focus of a research of the authors and the preliminary results indicate a potential of contributing for the optimization of mature fields of heavy oil. In general, this technology involves smaller environmental impact and produces better efficiency in those uses that require heat and electricity. An application interesting it is the use of gas micro-turbines, operating in co-generation in a (heavy) oil fields onshore, where it is possible increment of the production to the if it uses the steam injection as method of secondary recovery. The idea of using the heat to improve the productivity of the wells and to increase the recovery factor is almost as old as the industry of the petroleum. The technique consists of heating up the oil to reduce his/her viscosity and to facilitate the drainage. Nowadays, the use of the steam injection is usual in fields of heavy oils (degree API <20), high viscosity (> 500 cp), reservoirs no deep (<1300 m) and net pay in the interval from 5 to 50 m. The innovation, here, is the use of a group of micro-turbines moved to gas (no rare, burned in the flare) to generate the steam 'in loco' (near to the well) and electricity for own consumption or even commercialization. This article presents a case study of the economical potential the use of four gas micro-turbines, operating in micro cogeneration, in a field of 6,6 km{sup 2} in the Brazilian Northeast. (author)

  20. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    data that contains information on the properties of a sample. We can analyze the data acquisition from the detectors and get the information on size, shape, etc. This is why we choose SANS as our research tool. The world's top energy problems are security concerns, climate concerns and environmental concerns. So far, oil (37%) is still the No.1 fuel in world energy consumption (Oil 37%, Coal 25%, Bio-fuels 0.2%, Gas 23%, Nuclear 6%, Biomass 4%, Hydro 3%, Solar heat 0.5%, Wind 0.3%, Geothermal 0.2% and Solar photovoltaic 0.04%). Even more and more alternative energy: bio-fuels, nuclear and solar energy will be used in the future, but nuclear energy has a major safety issue after the Japanese Fukushima I nuclear accidents, and other energies contribute only a small percent. Thus, it is very important to improve the efficiency and reduce the population of petroleum products. There is probably one thing that we can all agree on: the world's energy reserves are not unlimited. Even though it is limited, only 30% of the oil reserves is conventional oil, so in order to produce, transport, and refine of heavy crude oil without wasting huge amounts of energy, we need to reduce the viscosity without using high temperature stream heating or diluent; As more and more off-shore oil is exploited at that we need reduce the viscosity without increasing temperature. The whole petroleum consumed in U.S. in 2009 was 18.7 million barrels per day and 35% of all the energy we consumed. Diesel is one of the very important fossil fuel which is about 20% of petroleum consumed. Most of the world's oils are non-conventional, 15 % of heavy oil, 25 % of extra heavy oil, 30 % of the oil sands and bitumen, and the conventional oil reserves is only 30%. The oil sand is closely related to the heavy crude oil, the main difference being that oil sands generally do not flow at all. For efficient energy production and conservation, how to lower the liquated fuel and crude oil viscosity is a very important

  1. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  2. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  3. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  4. Pigments in Extra-Virgin Olive Oils Produced in Tuscany (Italy) in Different Years

    Science.gov (United States)

    Lazzerini, Cristina; Domenici, Valentina

    2017-01-01

    Pigments are responsible for the color of olive oils, and are an important ingredient that is directly related to the quality of this food. However, the concentration of pigments can vary significantly depending on the climate conditions, harvesting time, and olive cultivars. In this work, we quantified the main pigments in several extra-virgin olive oils produced from a blend of three cultivars (Moraiolo, Frantoio, and Leccino) typical of Tuscany (Italy) harvested in three different years: 2012, 2013, and 2014. Pigments—namely, β-carotene, lutein, pheophytin A, and pheophytin B—were quantified by a method based on the mathematical analysis of the near ultraviolet-visible absorption spectra of the oils. Data were analyzed by a multivariate statistical approach. The results show that the pigments’ content of extra-virgin olive oils produced in 2014 can be well distinguished with respect to previous years. This can be explained by the anomalous climate conditions, which strongly affected Italy and, in particular, Tuscany, where the olives were harvested. This study represents an interesting example of how pigment content can be significant in characterizing olive oils. Moreover, this is the first report of pigment quantification in extra-virgin olive oils produced in Tuscany. PMID:28353651

  5. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    International Nuclear Information System (INIS)

    Campaner, N.; Yenikeyeff, S.

    2008-01-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the relative strength of the investment

  6. Naturally occurring radioactive materials (NORM) wastes in oil fields are a radiological problem, but they are useful tools

    International Nuclear Information System (INIS)

    Othman, Ibrahim; Al-Masri, Mohammad Said

    2008-01-01

    Produced water, scales and sludges associated with the production of oil and gas contains enhanced concentrations of radium isotopes. Uncontrolled disposal of these wastes could lead to environmental pollution and thus to radiation exposure of members of the public. In the present work, radium isotopes in scales accumulated in oil field equipment, and produced water have been used for dating the deposited scales, studying between wells interactions and water flooding processes in addition to dating contaminated soils in the Syrian oil fields. The 228 Ra/ 226 Ra activity ratio in scales can be considered a fingerprint of the Th/U mass ratio in the geological formation of the reservoir. The 228 Ra/ 226 Ra activity ratio variations were found to reflect the variability of the Th/U mass ratio of the geological formation, suggesting two different source rock types found in the Syrian oil fields. The calculated mean Th/U mass ratio for these two possible types of source rock were 2.4 and 5.78. In addition, the 228 Ra/ 226 Ra mean activity ratio was also used to estimate the age of some deposited scales in tubulars; the results were compared with the 224 Ra/ 228 Ra activity ratio dating method. Moreover, 228 Ra/ 226 Ra, 224 Ra/ 228 Ra and 210 Pb/ 226 Ra activities ratios in contaminated soils due to disposal of production water were used to date contaminated sites at the oil fields; the results have been found to be in agreement with the actual disposal date. The methods can be used by the regulatory body to assess any uncontrolled disposal of such waste. (author)

  7. Corruption and reduced oil production: An additional resource curse factor?

    International Nuclear Information System (INIS)

    Al-Kasim, Farouk; Søreide, Tina; Williams, Aled

    2013-01-01

    Prominent contributions to the resource curse literature suggest weak governance and corruption are important factors behind the wide welfare variations observed among oil producing countries. How weak governance and corruption influence revenue management and expenditure decisions, as well as the possible welfare benefits derived from oil, are broadly discussed. How they impact upon volumes of oil produced has, however, attracted little attention. This paper combines a review of the resource curse and oil production literatures with findings from qualitative interviews with oil sector experts to appreciate the feasibility of connections between corruption and oil production below its potential. We make particular reference to environments where regulatory institutions or political accountability are weak and focus primarily on producer government and oil firm relations. Drawing on insights from geology, political science and economics, we suggest suboptimal production solutions can impact volumes of oil actually produced and create constraints on long term revenues for oil producing countries. We argue greater disclosure of information on oil production efficiency on a field-by-field and country-by-country basis will assist further investigation of the relationships between corruption and volumes of oil produced. - Highlights: ► We combine a literature review with qualitative interviews with oil experts. ► We focus on feasible connections between corruption and oil production levels. ► We suggest suboptimal production solutions can impact volumes of oil produced. ► Corruption may reinforce suboptimal oil production. ► More data on oil production efficiency by field and country will assist research

  8. Study Of The Physicochemical Analysis Of Biodiesel Produced From Waste Vegetable Oil.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-07-01

    Full Text Available The study of the physicochemical analysis of biodiesel produced from waste vegetable oil in Sedi Minna Nigeria was carried out in order to ascertain the quality of the biodiesel produced as regards physical and chemical parameters which include visual appearance colour cloud point flash point and cetane index diesel index kinematic velocity calorific value. Biodiesel is a renewable resource that can replace petroleum diesel which comes from fossil fuels that are limited and will be exhausted in the near future. Biodiesel can be made from the transesterification of vegetable oils animal fat greases and oil crops such as soybean and it is biodegradable. The biodiesel produced was subjected to physicochemical analysis and results of cetane index was established to be 52 the flash point using pensky martens close cup was determine to be 1600C diesel index using IP21 0.3411 kinematic viscosity at 400C to be 4.12 and calorific value of 10867calg. The investigated physicochemical parameters show that the biodiesel produced is suitable for use in diesel engines without modifications and is cheaper to produce compared to petroleum diesel.

  9. The Study of the Desulfurization Process of Oil and Oil Products of "Zhanazhol" Oil Field Using the Approaches of Green Chemistry

    OpenAIRE

    Zhaksyntay K. Kairbekov; Zhannur K. Myltykbaeva; Nazym T. Smagulova; Dariya K. Kanseitova

    2015-01-01

    In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.

  10. Selection of High Oil Yielding Trees of Millettia pinnata (L.) Panigrahi, Vegetative Propagation and Growth in the Field

    OpenAIRE

    Ni Luh Arpiwi; I Made Sutha Negara; I Nengah Simpen

    2017-01-01

    Millettia pinnata (L.) Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field. The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to e...

  11. Geology and development of oil fields in Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The anthology is dedicated to the geology, geophysics, hydrodynamics, and development of oil fields in Western Siberia. The articles on geological, industrial-geophysical and theoretical mathematical studies make recommendations and suggest measures to improve procedures for calculating oil reserves, to increase development efficiency and raise oil output.

  12. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  13. History and performance of the Steelman Oil Field, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaychuk, J; Francis, R E

    1965-01-01

    This paper summarizes the development and performance of the Steelman oil field in southeastern Saskatchewan. Steelman was the first field in southeastern Saskatchewan in which pressure maintenance by waterflooding was attempted. Production is obtained, at a depth of 4,700 ft, mainly from the dolomitized limestone Midale beds reservoir. Some production is also obtained from the underlying Frobisher beds, but the productive development of this zone is quite sporadic. The discovery of the field in 1954 was followed by the drilling of approximately 800 wells on 80-acre spacing. An early decline in reservoir pressure and increasing gas-oil ratios in this solution gas drive reservoir caused the working-interest owners to unitize most of the field and institute a program of pressure maintenance by waterflooding. The bulk of the field is unitized as 6 separate units, with pressure maintenance being conducted by three operators. To the end of 1964, the cumulative oil production from the six-unit area was approximately 77,000,000 bpd.

  14. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  15. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  16. Oil-field equipment in Romania. Export trade information

    International Nuclear Information System (INIS)

    Tinis, R.

    1991-09-01

    The Industry Sector Analyses (I.S.A.) for oil field equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Romanian consumers to U.S. products, the competitive situation - Romanian production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Romanian tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Romanian market for oil field equipment

  17. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    Science.gov (United States)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  18. Contaminación del agua en fuentes cercanas a campos petrolíferos de Bolivia Water pollution in sources close to oil-producing fields of Bolivia

    Directory of Open Access Journals (Sweden)

    Silvia González Alonso

    2010-10-01

    Full Text Available OBJETIVO: Determinar las concentraciones de compuestos petroquímicos en las fuentes de agua de consumo para comunidades cercanas a campos petrolíferos del Chaco Boliviano. MÉTODOS: Se recogieron datos sobre concentraciones de hidrocarburos totales de petróleo (HTP, 16 hidrocarburos aromáticos policíclicos (HAP, incluidos el benceno, tolueno, etilbenceno y xilenos (BTEX, y 22 metales en muestras de 42 fuentes de agua de consumo humano situadas a menos de 30 km de un campo de extracción de petróleo. Se analizó la distribución de la concentración y el cumplimiento de los estándares definidos en las normativas boliviana, europea y estadounidense, así como en las recomendaciones de la Organización Mundial de la Salud. RESULTADOS: En 76,19% de las muestras se halló algún contaminante petroquímico en concentraciones superiores a alguna de las cuatro normativas de referencia. Las muestras de agua que presentaron mayor contaminación fueron las provenientes de grifos y ríos. Los contaminantes más frecuentes fueron HTP, HAP, aluminio, arsénico, manganeso y hierro. CONCLUSIONES: Las comunidades del Chaco Boliviano ubicadas en un radio de 30 km alrededor de los campos de extracción de petróleo consumen agua con concentraciones de HTP, HAP y metales muy por encima de los niveles permitidos por la normativa boliviana y los estándares internacionales, poniendo en grave riesgo la salud pública de sus habitantes.OBJECTIVE: To determine the concentrations of petrochemical compounds in the drinking water sources of communities located near oil-producing fields in the Bolivian Chaco region. METHODS: Data were collected on total petroleum hydrocarbons (TPH, 16 polycyclic aromatic hydrocarbons (PAH, including benzene, toluene, ethylbenzene, and xylenes (BTEX, and 22 metals in samples from 42 sources of water for human consumption located less than 30 km from an oil-producing field. Distribution of the concentration and adherence to the

  19. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  20. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  1. Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.

    Science.gov (United States)

    Shaw, D; Annett, J M; Doherty, B; Leslie, J C

    2007-09-01

    To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.

  2. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  3. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  4. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  5. Optimization of Offshore De-oiling Hydrocyclone Performance

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Løhndorf, Petar Durdevic; Pedersen, Simon

    , along with the facts that the global oil demand will continuously grow by 7 mb/d to 2020 and exceed 99 mb/d in 2035, meanwhile, many production fields turn to be matured and thereby the water flooding technology is more and more employed as a key enhanced oil recovery solution for these fields [9]. Fig......One of the biggest environmental concerns in offshore oil & gas production is the quality of tremendous amounts of produced water discharged into the oceans. Today, in average three barrels of water are produced along with each barrel of oil [9]. This concern will become more severe in the future...... companies, Maersk Oil and Ramboll Oil & Gas A/S, launched a research project HTF-PDPWAC with total budget of 10 million dkk. One of the focuses of this project is to optimization of the de-oiling hydrocyclone performance in order to improve the produced water treatment quality without sacrificing...

  6. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  7. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  8. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  9. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  10. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  11. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigation of produced waters radioactivity of oil and gas deposits in the Dnieper-Donets province

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2017-12-01

    Full Text Available The process of radioactive pollution of produced waters, oilfield equipment, oil-contaminated soils and sludge is widely spread and differs within the various oil and gas regions. Formation waters contained radioactive element isotopes become the significant source and cause of elevated level of equivalent dose power and as a consequence, an increase in the incidence among the population. The author's idea is formulation of specific recommendations on the decontamination of the investigated objects by conducting the necessary appropriate experimental studies. The purpose of the article is to determine the content of radionuclides, γ- and α-emitters in technogenic objects of Bugruvate oil and gas fields, and to reveal the relationship with the features of mineralogical composition, geological structure and technological process. The γ-spectrometric analysis was used to determine the radionuclide composition of the natural radiators of the 238U (226Ra, 214Pо, 214Bi and 232Th (228Ac, 212Pb, 212Вi series in samples of technological sludge, oil, individual soil samples and water. The content of radionuclides of α-emitters was determined using separate radiochemical techniques. It was investigated that the radioactivity of the formation water is mainly determined by 226Ra and 228Ra and the products of their decay.

  13. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  14. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  15. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  16. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.

    Science.gov (United States)

    Asshifa Md Noh, Nur; Al-Ashraf Abdullah, Amirul; Nasir Mohamad Ibrahim, Mohamad; Ramli Mohd Yahya, Ahmad

    2012-01-01

    A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.

  17. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  18. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  19. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  20. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    Science.gov (United States)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  2. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  3. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  4. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  5. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  6. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  7. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    Energy Technology Data Exchange (ETDEWEB)

    Campaner, N.; Yenikeyeff, S.

    2008-07-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the

  8. Field experiments with subsurface releases of oil and and dyed water

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Strom, T.

    1998-01-01

    A field experiment with a subsurface release of oil and air was carried out in June 1996 close to the Frigg Field in the North Sea area. One of the purposes of this sea trial was to increase the knowledge concerning the behaviour of the oil and gas during a subsurface blowout. This was done by releasing oil and air at 106 meters depth with a realistic gas oil ratio (GOR=67) and release velocity of the oil. In addition to the oil release, several releases with dyed water and gas (GOR=7 - 65) were performed. Important and unique data were collected during these subsurface releases. In particular, the experiments with the dyed water releases combined with air turned out to be an efficient way of obtaining field data for the behaviour of subsurface plumes. The main conclusions from analysis for the data collected are: the field methodology used to study blowout releases in the field appears to be appropriate. The use of dyed water to determine the performance of the subsurface plume proved out to be an efficient way to obtain reliable and useful data. The behaviour of the subsurface plume is very sensitive to gas flow rates. For low gas flow rates, the plume did not reach the sea surface at all due to the presence of stratification in the ambient water. Some discrepancies were found between a numerical model for subsurface releases and field results. These discrepancies are pointed out, and recommendations for possible model improvements are given. (author)

  9. Tenth oil recovery conference

    International Nuclear Information System (INIS)

    Sleeper, R.

    1993-01-01

    The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base

  10. Oil and gas field code master list 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  11. Succession in the petroleum reservoir microbiome through an oil field production lifecycle.

    Science.gov (United States)

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-09-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H 2 S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new

  12. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China.

    Science.gov (United States)

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-03-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.

  13. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  14. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  15. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  16. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  17. Oil spill contingency planning for offshore oil fields - a new concept established for the Norwegian continental shelf

    International Nuclear Information System (INIS)

    Singsaas, I.; Reed, M.; Nygaard, T.; Sundnes, G.Jr.

    1998-01-01

    The development of a new concept for oil spill contingency planning to be used for offshore oil fields on the Norwegian continental shelf was discussed. The factors which are important in developing a good oil spill contingency plan include a good understanding of: (1) the fate, behaviour and weathering of the specific oil, (2) relevant oil spill scenarios, (3) drift and spreading of the oil, and (4) specific requirements for the effectiveness of the chosen response options. The oil spill contingency and response (OSCAR) model was used for quantitative comparison of alternative response options. 21 refs., 2 tabs., 7 figs

  18. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  20. Predicting the nutritional health status of locally produced palm oil ...

    African Journals Online (AJOL)

    Three physical properties of locally produced palm oil – viscosity, thermal conductivity and density for varying temperatures were determined. The values obtained were compared with corresponding internationally stipulated standard values using statistics of mean and graphs. The purpose of the comparison was to predict ...

  1. Maximizing heavy oil value while minimizing environmental impact with HTL upgrading of heavy to light oil

    Energy Technology Data Exchange (ETDEWEB)

    Koshka, E. [Ivanhoe Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described Ivanhoe Energy Inc.'s proprietary HTL upgrading technology which was designed to process heavy oil in the field to cost effectively produce an upgraded synthetic oil that meets pipeline requirements. Steam and electricity are generated from the energy produced during the process. HTL improves the economics of heavy oil production by reducing the need for natural gas and diluent, and by capturing most of the heavy to light oil price differential. Integrated HTL heavy oil production also provides many environmental benefits regarding greenhouse gas (GHG) emissions. The HTL upgrading process is ready for full scale application. tabs., figs.

  2. The Application of Biogeophysical Studies in the Search for Oil Fields

    Directory of Open Access Journals (Sweden)

    M.Sh. Mardanov

    2017-08-01

    Full Text Available The article gives an analysis of qualitative and quantitative indices of biogeophysical anomalies (BGPh-anomalies recorded over oil deposits, obtained as a result of experimental and methodological work on the oil fields studied in detail. By the degree of intensity and complexity of the BGPh-anomalies registered in digital form with special equipment developed by the authors, a set of qualitative and quantitative features has been developed that make it possible to determine the genetic type of the structural trap of the identified oil deposit, and, under favorable conditions, the depth of its occurrence. BGPh-anomalies of the “tectonic fault” type, their influence on the “oil deposit” type of BGPh-anomalies have been studied. The limiting values ​​of the watercut in the exploited oil reservoir are determined, when exceeding, the oil reservoir ceases to create a BGPh-anomaly such as “oil deposit”, which can be used for the areal monitoring of oil fields. The minimum thickness of the oil-saturated reservoir is determined, which creates an anomaly of the “oil deposit” type. Based on this analysis, it is assumed that the BGPh-anomalies arise only over oil deposits, potential for industrial development.

  3. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  4. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    Science.gov (United States)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  5. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  6. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  7. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  8. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  9. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    Science.gov (United States)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  10. Current status and future of developing Upper Cretaceous oil deposits in the Oktyabrskoye field

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshnikova, A.I.; Lapshin, M.Ye.

    1979-01-01

    The Upper Cretaceous deposit at the Oktyabrskoye field was discovered in 1966. Fractured, cavernous limestone, similar to the producing rock of many Upper Cretaceous deposits of the Chechen Ingush ASSR, form the reservoir. The deposit is situated toward a narrow anticlinal fold with angles of rock drop 40-45/sup 0/. Its heighth is 950m; the average capacity of the producing part is 400m; the deposit depth is 4200-5150m; the layer temperature is 150-160/sup 0/C. Exploratory work on the deposit is incomplete. The deposit was brought under industrial development in 1974. The development is conducted based on a refined, technological system, that includes contour flooding to maintain layer pressure in the center to edge part of the deposit at 36.0 MPa. This somewhat increases the pressure of the gas saturated oil, as well as the subsequent increase in layer pressure to 45.9 MPa for assuring wide open well flow during the late stages of development. Currently, the amount of oil obtained somewhat exceeds the planned level but the pumping volume is less than that planned. The deposit has not yet been studied sufficiently. Its boundaries have not been established; the locations of the initial and working water/oil edges are conditional; the structural plan is approximate. Data on the degree of waterflooding in the deposit and the magnitude of the actual oil yield coefficient are lacking inasmuch as the amount of oil already extracted at this time exceeds the calculated reserves. To increase the effectiveness of further development of the deposit and acquisition of the necessary data for calculating oil reserves, the deposit will be studied according to a special plan over a number of new drilling wells.

  11. Efficiency of preliminary discharge of stratum water in Tuymazinskoe oil field

    Science.gov (United States)

    Almukhametova, E. M.; Akimov, A. V.; Kalinina, S. V.; Fatkullin, I. F.; Gizetdinov, I. A.

    2017-10-01

    The high water content of oil is a common occurrence for many Russian fields at the late stage of development. Due to the elimination of associated water in oil, the overload of field pipelines often takes place. Products are often collected by a one-pipe system, which means that the formation water is discharged using special plants PWDS. Research workers have made it clear that the complexity of production “BashNIPIneft” and OGPD “Tuymazaneft” on Tuimazy field was due to the fact that the collection of production, in most cases, uses a centralized system, which loses its advantages when there is a large content of water in the emulsions. Research has indicated that the reagents, used in the field, proved to be ineffective, as the oil of Devonian formations is heavily saturated with paraffins. But, ultimately, the most effective agents for the destruction of emulsions have been nonetheless identified. This paper describes the implementation of the system of track discharge of formation water, which is currently in use for many oil companies not only in Russia but also worldwide.

  12. Determination of naturally occurring radionuclides in scales produced in oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M S; Ali, A F; Kitue, M; Kawash, A [Atomic Energy Commission, Dept. of Radiation Protection and Nuclear Safety, Damascus (Syrian Arab Republic)

    1997-04-01

    Scales produced by Oil production operations contain relatively high concentrations of natural radionuclides especially radium isotopes (Ra-226, Ra-228, Ra-224) and their daughters. These scales deposit in oil surface equipment such as separator tanks, tubular, and storage tanks. In this work, naturally occurring radionuclides and radiation exposure levels in some Syrian oil lines have been determined. Radiation measurements have shown high radiation exposure in some production sites and reached about 23 {mu}Sv/hr (production wellhead) which is higher than the normal background (0.09 - 012 {mu}Sv/hr). The highest value of the exposure around storage tanks was about o.5 {mu}Sv/hr. Moreover, the highest concentration of radionuclides in scales were found to be 47000 Bq/Kg and 55000 Bq/Kg for Ra-226 and Ra-228 respectively while in sludge samples, the Ra-226 concentration was about 24.2 Bq/Kg, a relatively very low activity. In addition, results have shown that soil contamination can occur by disposal of produced water to the surrounding environment. Furthermore, the present paper shows some of protection procedures, which should be followed by workers for radiation protection. (author). 10 refs., 4 tabs.

  13. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  16. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  17. Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce.

    Science.gov (United States)

    Özcan, Gülçin; Demirel Zorba, Nükhet Nilüfer

    2016-06-01

    Salads prepared from contaminated fresh produce have a high risk of causing food-borne illnesses. Essential oils obtained from plants have antimicrobial activity and may provide a natural approach to reduce the pathogens on fresh produce. Additionally, ultrasound treatments have been shown to reduce the microbial counts on different foods. The objective of this study was to investigate the antimicrobial activities of cinnamon and lemon essential oils in vitro and in food applications. Mixtures of lettuce, parsley and dill were inoculated with Listeria monocytogenes and then dip-treated for 5 min in one of the following treatments: sterile tap water, chlorinated water, 1% lemon essential oil, 2% cinnamon essential oil or 2% cinnamon essential oil + ultrasound. The samples were stored at 4 ℃ and collected at d 0, 1, 3, 5, 7 and 9 post inoculation. The 1% lemon (4 log) and 2% cinnamon (2 log) essential oil washes provided partial inhibition against L. monocytogenes by d 1. The combined application of 2% cinnamon oil and ultrasound resulted in only 0.85 log inhibition by d 1; however, the number of L. monocytogenes increased during storage and became nearly equal to the control at d 9. Therefore, different combinations of essential oils with other antimicrobials or novel technologies are required. © The Author(s) 2015.

  18. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  19. Index to names of oil and gas fields in Oklahoma, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Lacina, J.L.

    1979-05-01

    This index contains the current and discontinued names of the oil and gas fields in Oklahoma. They are listed according to assignments made by the Oklahoma Nomenclature Committee of the Kansas-Oklahoma Division, Mid-Continent Oil and Gas Association. Also listed are some names which have been used locally or unofficially for certain areas. Included also are: (1) the date when the field was named; (2) the description of location by county, township, and section; and (3) a statement as to the disposition of a field when it was combined with other fields.

  20. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  1. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  2. Flavor profiles of monovarietal virgin olive oils produced in the Oriental region of Morocco

    Directory of Open Access Journals (Sweden)

    Mansouri Farid

    2017-09-01

    Full Text Available The purpose of this study is the evaluation of flavor profiles of monovarietal virgin olive oils (VOO produced in the Oriental region of Morocco via the characterization of volatile compounds, using SPME-GC/MS technique, and the determination of total phenolic content (colorimetric method. The study concerns oils of three European olive cultivars (Arbosana, Arbequina and Koroneiki which were recently introduced in Morocco under irrigated high-density plantation system. GC/MS aroma profiles of analyzed VOOs showed the presence of 35 volatile compounds. The major compounds in such oils are C6 compounds produced from linoleic and linolenic acids via lipoxygenase pathway such as trans-2-hexenal, cis-2-hexenal, cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-3-hexen-1-ol acetate, hexanal and 1-hexanol in different proportions depending on the cultivar (p < 0.05. In addition, statistical analyses indicate that the analyzed VOOs have different aroma profiles. Arbequina oil has a high proportion of compounds with sensory notes “green” and “sweet” giving it a fruity sensation compared to Arbosana and Koroneiki. In parallel, Arbosana and Koroneiki oils are rich in phenolic compounds and provide relatively bitter and pungent tastes to these oils.

  3. Isotopic characterization and genetic origin of crude oils from Gulf of Suez and western desert fields in Egypt

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.

    2006-01-01

    Stable carbon isotopes were used to asses the general characteristics of the western desert and Gulf of Suez crude oils in accordance with hydrocarbon generation, source rocks, thermal gradient and maturation level. The carbon isotopic results of all the analyzed oil samples in both areas lie in the range from -29.62 to -24.11 %. The av. σ 13 C values in the Gulf of Suez reaches about -28.6% and -26.4% in western desert. It was accounted a marginal difference between the two areas by about 2.5 : 3% in carbon-13 isotope of the whole oil indicated two distinct oil types of different organic input and varies in the depositional environment. It was found that Gulf of Suez oils are dominated by marine organic matter (plankton algae) deposited in saline environment. The derived oils from the northern and central provinces of the Gulf are isotopically light, higher in sulfur content, lower in API gravity degree and have Pristane/Phytane (Pr/Ph) ratio less than or equal one (Pr/Ph = 1). In the southern province, about 0.5% isotopic enrichment was recorded in the produced oils from shallower depths, associated with gradual increment in API and maturity level as thermal gradient increase. However, low API gravity degree and less maturity of the Gulf of Suez oils could be related to the rifting temperature that forced and accelerated the expulsion rate and hydrocarbon generation prior reaching higher maturation levels. On the other hand, the produced oils from the western desert fields belong mostly to terrestrial organic debris (with minor marine fragment in some basins) deposited at deeper geological formations. It is characterized by isotopic enrichment, paraffinic waxy oils, low in sulphur content, have Pr/Ph = 1, high in API gravity and maturity level. Hydrocarbon generated from the western desert fields has been controlled by time-temperature effect in the source rocks and reservoirs where the humic organic matter are affected by high temperature over longer period of

  4. Water control for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.C.; Mody, B.; Pace, J.

    1981-11-01

    Gains in recovery efficiency in W. Texas oil and gas fields have been realized as a result of applying 4 different chemical processes, either singly or in combination. Each of the 4 chemical processes has been tailored to meet specific reservoir requirements. Complete plugging of high flow capacity channels can be accomplished, and the high water production portion of a producing zone can be sealed by injection of gel-forming chemicals into the matrix. Both floodwater diversion and water-oil mobility ratio improvement can be attained by in situ polymerization of a one-stage polymer bank in the reservoir. In producing wells, the water-oil production ratio can be favorably changed by treating certain formulations with a nonplugging polymer which tends to restrict water flow but not oil. One feature which each of the 4 processes has in common is the ability to invade deeply into matrix which may produce long lasting results. A description of each process is presented with various placement techniques used to obtain optimum results. Data from fields which have benefited from these treatments are presented. The work describes what may be expected with each of these proven processes based on field results.

  5. Getting Over the Barrel- Achieving Independence from Foreign Oil in 2018

    National Research Council Canada - National Science Library

    Haigh, Christopher S

    2009-01-01

    The United States can achieve independence from foreign oil in 2018. Increasing production from current oil fields, developing untapped oil resources, converting coal to oil and oil shale extraction can produce an additional...

  6. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    Oballa, M.; Simanzhenkov, V.; Clark, P.; Laureshen, C.; Plessis du, D.

    2006-01-01

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  7. The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves

    International Nuclear Information System (INIS)

    Jakobsson, Kristofer; Bentley, Roger; Söderbergh, Bengt; Aleklett, Kjell

    2012-01-01

    There is a lively debate between ‘concerned’ and ‘unconcerned’ analysts regarding the future availability and affordability of oil. We critically examine two interrelated and seemingly plausible arguments for an unconcerned view: (1) there is a growing amount of remaining reserves; (2) there is a large amount of oil with a relatively low average production cost. These statements are unconvincing on both theoretical and empirical grounds. Oil availability is about flows rather than stocks, and average cost is not relevant in the determination of price and output. We subsequently implement a bottom-up model of regional oil production with micro-foundations in both natural science and economics. An oil producer optimizes net present value under the constraints of reservoir dynamics, technological capacity and economic circumstances. Optimal production profiles for different reservoir drives and economic scenarios are derived. The field model is then combined with a discovery model of random sampling from a lognormal field size-frequency distribution. Regional discovery and production scenarios are generated. Our approach does not rely on the simple assumptions of top-down models such as the Hubbert curve – however it leads to the same qualitative result that production peaks when a substantial fraction of the recoverable resource remains in-ground. - Highlights: ► Remaining oil reserves and average costs are of limited use in forecasting. ► We present a bottom-up approach to the modeling of regional oil production. ► Producers maximize net present value under technological and physical constraints. ► Exploration is modeled as random sampling from a lognormal field size distribution. ► Regional production starts declining before half of the recoverable oil is produced.

  8. Re-injection of produced water: ''Environmental friendliness pays off''

    International Nuclear Information System (INIS)

    Bjerke, E.

    1995-01-01

    The article deals with the re-injection of produced water for minimizing the emission of polluting components and for enhancing the oil recovery on the Norwegian oil field Ula. A closed cycle system is installed increasing the oil production by 4-5.000 bbl per day

  9. Organic geochemistry of heavy/extra heavy oils from sidewall cores, Lower Lagunillas Member, Tia Juana Field, Maracaibo Basin, Venenzuela

    Energy Technology Data Exchange (ETDEWEB)

    Tocco, R.; Alberdi, M. [PDVSA-Inteveo S.A., Caracas (Venezuela)

    2002-10-01

    The study of 22 oils from sidewall cores taken at different depths in the Lower Lagunillas Member, well LSJ-AB, Tia Juana Field, Maracaibo Lake is presented, with the purpose of predicting the intervals that present the best crude oil quality. Differences were detected in the biodegradation levels of the studied samples, which are correlated with the depth at which the sidewall core was taken. The API gravity was considered for the oils from each sidewall core and it was found that toward the top of the sequence, the oils have an API gravity of 10.6-11.2{sup o}C, while toward the base part of the sequence, the well produces extra heavy oils with an API gravity that varies between 8.2 and 8.7{sup o}. 12 refs., 5 figs., 1 tab.

  10. 16. International oil field chemistry symposium

    International Nuclear Information System (INIS)

    2006-03-01

    The symposium deals with topics on well chemicals, petrochemicals, well injection fluids, reservoir describing methods, reservoir exploitation enhancing chemicals, corrosion inhibitors, production methods and chemical aspects of maintenance, multiphase flow and reservoir geochemistry. The environmental effects of the chemicals and preservation of the environment is also focussed on. Some aspects of decommissioning of oil fields are dealt with

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  12. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  13. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  14. Selection and application of microorganisms to improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.F.; Moreira, R.S.; Almeida, R.C.C.; Guimaraes, A.K.; Carvalho, A.S. [Laboratorio de Biotecnologia e Ecologia de Microrganismos da Universidade Federal da Bahia, Avenida Reitor Miguel Calmon, s/n, Vale do Canela, CEP 41.160-100 Salvador BA (Brazil); Quintella, C.; Esperidia, M.C.A. [Instituto de Quimica da Universidade Federal da Bahia, Rua Barao de Geremoabo, s/n, Campus Universitario de Ondina, CEP 40.170-290, Salvador BA (Brazil); Taft, C.A. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, Urca, 22290-180, Rio de Janeiro (Brazil)

    2004-08-01

    Microbial enhanced oil recovery (Meor) is an incontestably efficient alternative to improve oil recovery, especially in mature fields and in oil reservoirs with high paraffinic content. This is the case for most oil fields in the Reconcavo basin of Bahia, Brazil. Given the diverse conditions of most oil fields, an approach to apply Meor technology should consider primarily: (i) microbiological studies to select the appropriate microorganisms and (ii) mobilization of oil in laboratory experiments before oil field application. A total of 163 bacterial strains, selectively isolated from various sources, were studied to determine their potential to be used in Meor. A laboratory microbial screening based on physiological and metabolic profiles and growth rates under conditions representative for oil fields and reservoirs revealed that 10 bacterial strains identified as Pseudomonas aeruginosa (2), Bacillus licheniformis (2), Bacillus brevis (1), Bacillus polymyxa (1), Micrococcus varians (1), Micrococcus sp. (1), and two Vibrio species demonstrated potential to be used in oil recovery. Strains of B. licheniformis and B. polymyxa produced the most active surfactants and proved to be the most anaerobic and thermotolerant among the selected bacteria. Micrococcus and B. brevis were the most salt-tolerant and polymer producing bacteria, respectively, whereas Vibrio sp. and B. polymyxa strains were the most gas-producing bacteria. Three bacterial consortia were prepared with a mixture of bacteria that showed metabolic and technological complementarity and the ability to grow at a wide range of temperatures and salinity characteristics for the oil fields in Bahia, Brazil. Oil mobilization rates in laboratory column experiments using the three consortia of bacteria varied from 11.2 to 18.3 % [v/v] of the total oil under static conditions. Consortia of B. brevis, B. icheniformis and B. polymyxa exhibited the best oil mobilization rates. Using these consortia under anaerobic

  15. Competitive, microbially-mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir.

    Science.gov (United States)

    Lambo, Adewale J; Noke, Kim; Larter, Steve R; Voordouw, Gerrit

    2008-12-01

    Fields from which oil is produced by injection of sulfate-bearing water often exhibit an increase in sulfide concentration with time (souring). Nitrate added to the injection water lowers the sulfide concentration by the action of sulfide-oxidizing, nitrate-reducing bacteria (SO-NRB). However, the injected nitrate can also be reduced with oil organics by heterotrophic NRB (hNRB). Aqueous volatile fatty acids (VFAs; a mixture of acetate, propionate, and butyrate) are considered important electron donors in this regard. Injection and produced waters from a western Canadian oil field with a low in situ reservoir temperature (30 degrees C) had only 0.1-0.2 mM VFAs. Amendment of these waters with nitrate gave therefore only partial reduction. More nitrate was reduced when 2% (v/v) oil was added, with light oil giving more reduction than heavy oil. GC-MS analysis of in vitro degraded oils and electron balance considerations indicated that toluene served as the primary electron donor for nitrate reduction. The differences in the extent of nitrate reduction were thus related to the toluene content of the light and heavy oil (30 and 5 mM, respectively). Reduction of nitrate with sulfide by SO-NRB always preceded that with oil organics by hNRB, even though microbially catalyzed kinetics with either electron donor were similar. Inhibition of hNRB by sulfide is responsible for this phenomenon. Injected nitrate will thus initially be reduced with sulfide through the action of SO-NRB. However, once sulfide has been eliminated from the near-injection wellbore region, oil organics will be targeted by the action of hNRB. Hence, despite the kinetic advantage of SO-NRB, the nitrate dose required to eliminate sulfide from a reservoir depends on the concentration of hNRB-degradable oil organics, with toluene being the most important in the field under study. Because the toluene concentration is lower in heavy oilthan in light oil, nitrate injection into a heavy-oil-producing field of

  16. Modeling OPEC behavior: theories of risk aversion for oil producer decisions

    International Nuclear Information System (INIS)

    Reynolds, D.B.

    1999-01-01

    Theories of OPEC such as price leadership, cartel, or game theoretic models suggest an incentive for OPEC members to expand their production capacity well above current levels in order to maximize revenues. Yet individual OPEC members consistently explore for and develop oil fields at a level well below their potential. The cause of low oil exploration and development efforts among OPEC members, and even some non-OPEC members, may have to do with risk aversion. This paper describes an alternative theory for OPEC behavior based on risk aversion using a two piece non-Neumann-Morgenstern utility function similar to Fishburn and Koehenberger (1979, Decision Science 10, 503-518), and Friedman and Savage (1948, Journal of political Economy 56). The model shows possible low oil production behavior. (author)

  17. Radionuclides in produced water from Norwegian oil and gas installations - concentrations and bioavailability

    International Nuclear Information System (INIS)

    Eriksen, D.Oe.; Sidhu, R.; Stralberg, E.; Iden, K.I.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M.H.G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226 Ra and 228 Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals. (author)

  18. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  19. Uncertainties in ecological epidemiology: A cautionary tale featuring kit foxes and oil fields

    International Nuclear Information System (INIS)

    Suter, G.W. II

    1993-01-01

    Ecological epidemiology, like human epidemiology, often must employ encountered rather than statistically designed data set and must make comparisons among populations that differ in terms of various poorly defined confounding variables. These properties can result in false positive or false negative results if statistics are naively applied. The case in point is a study of a population of an endangered subspecies, the San Joaquin Kit Fox (Vulpes macrotis mutica), inhabiting an oil field. The fox population abundance declined sharply following an increase in oil development until it was virtually absent from the developed portion of the field. It was decided that the possibility of toxicological effects would be investigated by analyzing historic and current hair samples. Metal concentrations were found to be statistically significantly higher for foxes from the developed area compared with those from undeveloped areas of the field. However, analysis of fur from two areas remote from oil fields and from another oil field indicated that the foxes from the developed portions of the subject oil field were not unusually metalliferous but that the foxes from the undeveloped portions were unusually low in metals. The conclusions of this study will be used to draw lessons for the design of studies in ecological epidemiology

  20. Alcorn wells bolster Philippines oil production

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Alcorn International Inc., Houston, is producing about 16,500 b/d of oil from West Linapacan A field in the South China Sea off the Philippines. The field's current production alone is more than fivefold the Philippines' total average oil flow of 3,000 b/d in 1991. It's part of a string of oil and gas strikes off Palawan Island that has made the region one of the hottest exploration/development plays in the Asia-Pacific theater

  1. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Development of the new field of usage of Orinoco oil for fuel of gas turbine combined power generation; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Gasu tabin fukugo hatsuden nenryo muke Orinoko oil no shin yoto kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of spreading the usage of Orinoco crude oil which is suffering from sluggishness in the export and heightening the economical efficiency in Venezuela, research cooperation was made for a project for reduction of the power cost and environmental loads in Japan by producing the advanced gas turbine use fuel oil from Orinoco oil and exporting it to Japan. In this project, conducted were the technical verification that the gas turbine use fuel oil (GTF) can be produced from Orinoco oil and the economical verification based on the result thereof. As a result of the technical verification, it was confirmed that from the Orinoco crude oil which is heavy, high in sulfur and high in heavy metal concentration, a refined oil satisfying the following properties of the advanced gas turbine fuel oil could be trial-produced using the distilling unit, SDA unit, desulfurizer and de-metaling unit: vanadium concentration: 0.5 wtppm or below; sodium + potassium concentration: 1.0 wtppm or below; viscosity: 20 cSt or below at 135 degrees C. Further, from the economical verification, the good result was obtained that the price was lower than the LNG price and the domestic price of A heavy oil/C heavy oil. (NEDO)

  2. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  3. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  4. Tekna's produced water conference 2005

    International Nuclear Information System (INIS)

    2005-01-01

    The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)

  5. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan; Li, Rong-Ji [Department of Marine Engineering, National Taiwan Ocean, University, Keelung 20224 (China)

    2009-01-15

    The soapstock of a mixture of marine fish was used as the raw material to produce the biodiesel in this study. The soapstock was collected from discarded fish products. Crude fish oil was squeezed from the soapstock of the fish and refined by a series of processes. The refined fish oil was transesterified to produce biodiesel. The fuel properties of the biodiesel were analyzed. The experimental results showed that oleic acid (C18:1) and palmitic acid (C16:0) were the two major components of the marine fish-oil biodiesel. The biodiesel from the mixed marine fish oil contained a significantly greater amount of polyunsaturated fatty acids than did the biodiesel from waste cooking oil. In addition, the marine fish-oil biodiesel contained as high as 37.07 wt.% saturated fatty acids and 37.3 wt.% long chain fatty acids in the range between C20 and C22. Moreover, the marine fish-oil biodiesel appeared to have a larger acid number, a greater increase in the rate of peroxidization with the increase in the time that it was stored, greater kinematic viscosity, higher heating value, higher cetane index, more carbon residue, and a lower peroxide value, flash point, and distillation temperature than those of waste cooking-oil biodiesel. (author)

  6. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  7. Cleaning the Produced Water in Offshore Oil Production by Using Plant-wide Optimal Control Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2014-01-01

    To clean the produced water is always a challenging critical issue in the offshore oil & gas industry. By employing the plant-wide control technology, this paper discussed the opportunity to optimize the most popular hydrocyclone-based Produced Water Treatment (PWT) system. The optimizations of t...... of this research is to promote a technical breakthrough in the PWT control design, which can lead to the best environmental protection in the oil & gas production, without sacrificing the production capability and production costs....

  8. Response strategies for oil producers in the face of environmental taxation

    International Nuclear Information System (INIS)

    Walker, I.O.; Brennand, G.J.

    1993-01-01

    The impact of environmental taxes on the oil export revenues of developing countries, particularly OPEC, is considered; the possibility of amelioration through production management is investigated. A model of oil market dynamics is considered and applied to for different tax secenarios. These are a base case scenario where no environmental tax is imposed; an unmanaged market where a $100/t of carbon tax is imposed in all OECD regions and the resulting fall in oil demand is absorbed by OPEC, thereby keeping oil prices at base case levels; a partially managed market where the same tax is imposed, but only OPEC responds by reducing oil production even further to maintain base case revenue; a totally managed market where the same tax is imposed but both OPEC and non-OPEC agree to manage and control the market. The conclusions reached is that as long as OPEC is not able to target a revenue-maximizing path, a totally managed market is likely to prove beneficial to all developing country producers with a much more manageable, higher than base case price in a partially managed market. If, however, OPEC were able to implement a revenue-maximizing course, there would be no need for total management, since non-OPEC revenue would be concomitantly maximized. (2 tables, 4 figures). (UK)

  9. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  10. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Directory of Open Access Journals (Sweden)

    I. Leifer

    2018-03-01

    Full Text Available Methane (CH4 inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne–surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL and combines downwind trace gas concentration anomaly (plume above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX – the Alpha Jet Atmospheric eXperiment and mobile surface (collected by AMOG – the AutoMObile trace Gas – Surveyor data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV floor into the Sierra Nevada (0.1–2.2 km altitude, validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10–20 km downwind, highlighting the importance of the experimental design.

  11. A comparison of cold flow properties of biodiesel produced from virgin and used frying oil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shanableh, Filiz [Food Engineering Department, Near East University (Cyprus); Evcil, Ali; Govsa, Cemal [Mechanical Engineering Department, Near East University (Cyprus); Savasdylmac, Mahmut A. [Mechanical Engineering Department, Booazici University (Turkey)

    2011-07-01

    Bio-diesel can be produced from different kinds of feedstock. The purpose of this paper is to research and make the comparison of the cold flow properties of bio-diesel produced from refined-virgin frying vegetable oil (RVFVO) and waste frying vegetable oil (WFVO). As is known, bio-diesel fuel will have higher cloud points (CP), cold filter plugging points (CFPP) and pour points (PP) if it is derived from fat or oil which consists of significant amounts of saturated fatty compounds. Both RVFVO and WFVO were derived from the same cafeteria on a Near East University campus and converted to biodiesel fuel through base catalyzed transesterification reaction. As the current results show, there is no considerable difference in cold flow properties of the bio-diesel produced from RVFVO and WFVO. So WFVO seems be better positioned to serve as raw material in biodiesel production because of its lower cost and its environmental benefits.

  12. Development of heavy oil fields onshore and offshore: resemblances and challenges; Desenvolvimento de campos de oleos pesados em terra e em mar: semelhancas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Celso Cesar Moreira; Moczydlower, Priscila [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The so called offshore heavy oils (API gravity lower than 19) and extra heavy oils (API lower than 10) are receiving increasing importance due to the light oil production decline and also to exploration difficulties. In countries like Canada, Venezuela, China and the US (California) there are immense onshore heavy oil resources sometimes classified as non conventional. Differently in Brazil, onshore heavy oil volumes are modest being important those located in offshore fields (although non comparable to the Canadian and Venezuelan ones). The issue raised in this paper is: the field location, whether onshore or offshore, is always the main constraint in the development process? Well, the question has both a 'yes' and 'no' as an answer. There are important differences but some similarities in the technologies that can be applied. In this text the authors intend to explore this point while at the same time depicting some of the main related aspects under research for proper exploitation of heavy and extra heavy oil assets. The most relevant difference between onshore and offshore heavy oil fields is the application of thermal methods for improved recovery: while worldwide spread and commercially applied to onshore fields, steam injection is not yet viable for offshore operations. The only option for improving recovery in offshore fields is water injection, which has the drawback of producing large volumes of water during the field life. Another aspect is the cost of the production wells: much cheaper onshore they allow well spacing in the order of 100 m or even 50 m whereas in offshore well spacing are in the 1000 m range. From the flow assurance point of view, inland installations can take use of solvents for heavy oil dilution, such as diesel or naphtha. Offshore this option is complicated by the long distances from the wellheads to the producing facilities in the platform, in the case of wet completions. There are also differences regarding the

  13. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  14. Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2014-01-01

    Full Text Available The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils.

  15. Petrophysical studies in heavy oil sands with early water production - Hamaca area, Orinoco Oil Belt

    Energy Technology Data Exchange (ETDEWEB)

    Salisch, H.A.

    1982-07-01

    This study describes the main lines of petrophysical research in the Hamaca-Pao region of the Orinoco Oil Belt. The techniques and parameters most appropriate for petrophysical studies in the area of interest are discussed. Field tests have confirmed the conclusions of this study on early water production and low oil recovery. Steam injection was shown to be a means for increasing oil mobility to such a degree that significant amounts of additional oil can be produced.

  16. More oil sand cooperation between Canada and Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    Venezuela has pioneered the production of heavy oil, according to Dr. A. Guzman-Reyes, director general of hydrocarbons for the Venezuelan government. The first heavy oil production began in Venezuela 60 yr ago and the oil industry has steadily improved methods of producing and handling heavy oil. The country's producing fields are capable of yielding almost one million barrels of heavy oil daily, although actual production, largely because of market limitations, is about 650,000 bpd. Canada's daily heavy oil production, including the 60,000 bbl of synthetic crude produced daily by the Great Canadian Oil Sands plant, is about 200,000 bbl. Dr. Guzman-Reyes stated that Venezuela intends to rapidly develop heavy oil production and upgrade facilities to maintain its export markets. The national oil company, Petroleos de Venezuela, plans to invest 4 times the amount spent on oil development over the last 60 yr during the next 10 yr, a total of $3 billion by 1980.

  17. Field Engineers' Scheduling at Oil Rigs: a Case Study

    Directory of Open Access Journals (Sweden)

    Y. S. Usmani

    2012-02-01

    Full Text Available Oil exploration and production operations face a number of challenges. Professional planners have to design solutions for various practical problems or issues. However, the time consumed is often very extensive because of the large number of possible solutions. Further, the matter of choosing the best solution remains. The present paper investigates a problem related to leading companies in the energy and chemical manufacturing sector of the oil and gas industry. Each company’s field engineers are expensive and valuable assets. Therefore, an optimized roster is rather important. In the present paper, the objective is to design a field engineers’ schedule which would be both feasible and satisfying towards the various demands of rigs, with minimum operational cost to the company. An efficient and quick optimization technique is presented to schedule the shifts of field engineers.

  18. A novel method of producing a microcrystalline beta-sitosterol suspension in oil

    DEFF Research Database (Denmark)

    Christiansen, Leena I; Rantanen, Jukka T; von Bonsdorff, Anna K

    2002-01-01

    This paper describes a novel method of producing a microcrystalline oral suspension containing beta-sitosterol in oil for the treatment of hypercholesterolaemia. beta-Sitosterol pseudopolymorphs with different water contents were crystallized from acetone and acetone-water solutions. Structural...

  19. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  20. Remaining recoverable petroleum in giant oil fields of the Los Angeles Basin, southern California

    Science.gov (United States)

    Gautier, Donald L.; Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Klett, Timothy R.

    2012-01-01

    Using a probabilistic geology-based methodology, a team of U.S. Geological Survey (USGS) scientists recently assessed the remaining recoverable oil in 10 oil fields of the Los Angeles Basin in southern California. The results of the assessment suggest that between 1.4 and 5.6 billion barrels of additional oil could be recovered from those fields with existing technology.

  1. Procedures in field systems for collecting and demulsifying crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Vakhitov, G G; Graifer, V I; Tronov, V P; Zakirov, I G

    1969-01-01

    This microscopic study of crude oil emulsification and demulsification showed that the sooner an emulsion is chemically treated, the less its stability. This finding led to the practice of adding demulsifiers to the crude oil in pipelines. This method of demulsification is now used in Romashkino, Bablinsk, and Elkhovs fields. By this early addition of a chemical, the tendency of the pipeline to form stable, highly viscous emulsions is reduced. This treatment also facilitates separation of water from oil in storage tanks. Repeated tests have shown that pipeline demulsification is a highly effective and economic process. This method reduces crude oil dewatering costs by several hundred percent.

  2. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  3. Dispersant effectiveness in the field on fresh oils and emulsions

    International Nuclear Information System (INIS)

    Lunel, T.; Davies, L.

    1996-01-01

    A detailed data set on the effectiveness of dispersants on fresh oils and emulsions, was presented. The data set could be used to calibrate laboratory dispersant tests and dispersion models so that oil spill response teams would have accurate information to make decisions regarding remediation processes. AEA Technology developed steady state continuous release experiments to provide a data set with quantitative measures of dispersant effectiveness in the field. The Sea Empress incident was closely monitored in order to compare the quantification obtained through field trials. It was noted that the prediction of the percentage of oil dispersed chemically is not the only indication of whether or not to use a dispersant. The important determinant to consider should be the extent to which the natural dispersion process would be enhanced by dispersant application. 17 refs., 5 tabs., 18 figs

  4. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    OpenAIRE

    S. T. Antipov; S. V. Shakhov; A. N. Martekha; A. A. Berestovoy

    2015-01-01

    The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of saf...

  5. Field test and mathematical modeling of bioremediation of an oil-contaminated soil. Part 1: Field test

    International Nuclear Information System (INIS)

    Li, K.Y.; Xu, T.; Colapret, J.A.; Cawley, W.A.; Bonner, J.S.; Ernest, A.; Verramachaneni, P.B.

    1994-01-01

    A fire-wall area (about 270 ft x 310 ft) with the Bunker C oil contaminated soil was selected for the bioremediation field test. This fire-wall area was separated into 18 plots by dirt dikes to test 6 bioremediation methods with three tests of each method. The six treatment methods were: (a) aeration with basic nutrients and indigenous organisms (BNIO); (b) aeration with basic nutrients and inoculation from a refinery wastewater treatment facility (BNSIWT); (c) aeration with an oleophilic fertilizer and indigenous organisms (INIPOL); (d) aeration with basic nutrients and biosurfactant organisms (EPA Seal Beach consortia) (EPA); (e) aeration with proprietary nutrients and organisms (PRO); and (f) aeration only for active control (CONTROL). This field test was conducted for 91 days. In general the oil contents in 18 plots were reduced, but the results showed significant fluctuations. A statistical method was used to examine if the oil reductions of six methods were the results from the random error of sampling and sample analysis or biodegradation. The results of the statistical analysis showed that oil reduction was concluded from all but the plots of PRO. From the data analysis, it may be concluded that the oil reduction rate in these studies is controlled by oil transfer from soil into the aqueous solution. An example of calculation was used to illustrate this conclusion

  6. 76 FR 61933 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2011-10-06

    ..., 733,877 pounds of Scotch spearmint oil have already been sold or committed, which leaves just 186,505... of essential oils and the products of essential oils. In addition, the Committee estimates that 8 of...-1A IR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

  7. Laboratory studies of oil spill bioremediation; toward understanding field behavior

    International Nuclear Information System (INIS)

    Prince, R.C.; Hinton, S.M.; Elmendorf, D.L.; Lute, J.R.; Grossman, M.J.; Robbins, W.K.; Hsu, Chang S.; Richard, B.E.; Haith, C.E.; Senius, J.D.; Minak-Bernero, V.; Chianelli, R.R.; Bragg, J.R.; Douglas, G.S.

    1993-01-01

    Oil spill remediation aims to enhance the natural process of microbial hydrocarbon biodegradation. The microbial foundations have been studied throughout this century, but the focus of most of this work has been on the degradation of well defined compounds by well defined microbial species. This paper addresses laboratory studies on crude oil biodegradation by microbial consortia obtained from oiled beaches in Prince William Sound, Alaska following the spill from the Exxon Valdez. It demonstrates that oil degradation is indeed likely to be nitrogen-limited in Prince William Sound, the different molecular classes in crude oil that are subjected to biodegradation, the identification of conserved species in the oil that can be used for assessing biodegradation and bioremediation in the field, the effectiveness of fertilizers in stimulating sub-surface biodegradation, the role of the olephilic fertilizer Inipol EAP22, and the identification of the oil-degrading microorganisms in Prince William Sound. Together, these laboratory studies provided guidance and important insights into the microbial phenomena underlying the successful bioremediation of the oiled shorelines

  8. Radiological impact of oil and Gas Activities in selected oil fields in ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... A study of the radiological impact of oil and gas exploration activities in the production land area of Delta ... the public and non-nuclear industrial environment, while the levels for the fields at Otorogu, Ughelli West, ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  9. MAJOR OIL PLAYS IN UTAH AND VICINITY

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Morgan, Craig D.; Bon, Roger L.

    2003-01-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m 3 ). However, the 13.7 million barrels (2.2 million m 3 ) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of

  10. Integrated field modelling[Oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Bamshad

    2002-07-01

    This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant

  11. Manitoba oil activity review, 1991

    International Nuclear Information System (INIS)

    1992-04-01

    In an annual survey of Manitoba's petroleum industry, data are presented on oil and natural gas leases and sales, geophysical activity, exploration and drilling activity, production, exports to other provinces and the USA, oil prices and sales value, royalties and taxes, direct revenues from oil exploration and development, reserves, industry expenditures, and oil fields. Throughout the report, explainations are given of the items covered. Descriptions are made of new developments, the oil market, oil policies, incentive programs, and industrial activities. During 1991, 54 wells were drilled, compared to 79 in 1990. Oil production was down ca 3% from 1990 levels, to 712,792 m 3 , the value of the oil produced decreased 21% to ca $90.3 million, and provincial revenues from the oil industry declined by 15%. Oil industry expenditures in the province were estimated at $69 million, down 9% from 1990. As of the end of 1991, there were 11 oil fields and 118 non-confidential oil pools designated in Manitoba. The forecast for 1992 indicates that exploration activity will increase in response to new incentive programs. Crude oil production is expected to decline slightly to about 667,000 m 3 . 9 figs., 17 tabs

  12. The influence of external field on the lubricity of mineral oil for railway transport

    Directory of Open Access Journals (Sweden)

    Voronin Serhii

    2017-01-01

    Full Text Available The use of mineral oil is associated with its gradual operational degradation caused by its natural aging and contamination with various impurities. As the concentration of impurities increases, the number of active surface molecules which determine the operational properties of mineral oils decreases. A promising method of recovery of the operational properties of oils is the treatment with an electric field, which makes it possible to enhance the activity of surfactants in the tribo-contact area. This statement is proved through the improvement of the wettability of the bronze surface with mineral oils after their treatment with an electrostatic field. However, the method of electrical treatment is associated with the need to increase the requirements for the purity of liquids, especially to the presence of water, which requires creating an oil pre-treatment system. As an alternative, a method of electrical treatment with special field parameters is proposed enabling to accelerate the coalescence process. The major parameter that accelerates the coalescence process is the electric field oscillation frequency. The results of the study give grounds for choosing the optimal field parameters.

  13. Oil markets to 2010: the impact of non-Opec oil

    International Nuclear Information System (INIS)

    Enav, Peter

    1998-09-01

    This report provides an in-depth assessment of oil development scenarios in every non-Opec oil producing country from 1998 to 2010, in addition to evaluating the extent and direction of future oil trade for Opec and non-Opec countries alike. It re-assesses world oil consumption patterns in light of the Asian financial crisis, providing a concise yet comprehensive coverage of an often-neglected oil production group. The oil market development scenario is analysed in each country, with detailed consideration of the major players providing historical production, consumption, import and export data; current oil balance - production, imports and exports; an assessment of oil development policy; analysis of potential development obstacles considering regulatory, financial, political and environmental issues; oil production and consumption projections to 2010, by type; and import and export projections to 2010, by destination and source. More than 80 tables supplying essential statistics on the world's non-Opec markets accompany the report, with maps and schematic diagrams showing existing and potential infrastructure and fields. (Author)

  14. Radionuclides in produced water from Norwegian oil and gas installations — Concentrations and bioavailability

    Science.gov (United States)

    Eriksen, D. Ø.; Sidhu, R.; Strålberg, E.; Iden, K. I.; Hylland, K.; Ruus, A.; Røyset, O.; Berntssen, M. H. G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals.

  15. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    Science.gov (United States)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  16. Major Oil Plays In Utah And Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in

  17. Oil field rejuvenation work starts at 14 project sites

    International Nuclear Information System (INIS)

    Petzet, G.A.

    1992-01-01

    This paper reports that the U.S. Department of Energy and oil and gas companies have released more information about a joint effort to rejuvenate aging U.S. oil fields in danger of abandonment. Work is starting on 14 demonstration projects that could recover 21 million bbl of oil from the fluvial dominated deltaic (FDD) reservoirs in which they are conducted. Wider application of the same techniques, if they are successful, could results in addition of 6.3 billion bbl of reserves, nearly 25% of U.S. crude oil reserves. A multidisciplinary team approach is to be used, with as many as 11 operators, service companies, universities, or state agencies participating in each project. All of the projects will culminate in extensive technology transfer activities. Here are descriptions of the projects gleaned from public abstracts provided by the DOE contractors

  18. Earth's field NMR detection of oil under arctic ice-water suppression

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

  19. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  20. Geochemical and petrographic investigation of Himmetoglu oil shale field, Goynuk, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M.; Gundogdu, M.N. [General Directorate of Mineral Research and Exploration, Ankara (Turkey)

    1996-09-01

    The Himmetoglu field is a good example of oil shale fields in Turkey. Mineral and maceral types show that the huminite and liptinite groups tend to be associated with smectite, clinoptilolite and calcite in Himmetoglu oil shale, while the liptinite group is accompanied by analcime and dolomite in bituminous laminated marl. The pH value increases from bottom (pH {lt} 9) to top (pH {gt} 9) in the Himmetoglu formation and volcanogenic materials have played a very important role in deposition of organic matter. The negative correlation between trace elements and organic carbon suggests absence of enrichment of trace elements in oil shales. The results of g.c.-m.s. and carbon isotope analysis show that there is a decrease in the amount of terrestrial organic matter and a relative decrease in maturity of the organic matter in the vertical succession from Himmetoglu oil shape up to the bituminous laminated marl. 8 refs., 6 figs., 5 tabs.

  1. Oil Fields, Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil spills., Published in 1998, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Oil Fields dataset current as of 1998. Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil...

  2. The oil price and non-OPEC supplies

    International Nuclear Information System (INIS)

    Seymour, A.

    1991-01-01

    The design of any effective oil pricing policy by producers depends on a knowledge of the nature and complexity of supply responses. This book examines the development of non-OPEX oil reserves on a field-by-filed basis to determine how much of the increase in non-OPEC production could be attributable to the price shocks and how much was unambiguously due to decisions and developments that preceded the price shocks. Results are presented in eighteen case-studies of non-OPEC producers. This study will be of interest to economists and planners specializing in the upstream and to policy makers both in oil producing and consuming countries

  3. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  4. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    International Nuclear Information System (INIS)

    Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  5. Increasing Heavy Oil in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    International Nuclear Information System (INIS)

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs

  6. Characterization of water-in-oil emulsions produced with microporous hollow polypropylene fibers

    Directory of Open Access Journals (Sweden)

    HELMAR SCHUBERT

    2000-11-01

    Full Text Available The preparation of fine and monodispersed water-in-oil (W/O emulsions by utilizing hydrophobic hollow polypropylene fibers with 0.4 mm pores was investigated in this work. The experiments were carried out using demineralized water as the disperse phase, mineral oil Velocite No. 3 as the continuous phase, and polyglycerol polyricinoleate (PGPR 90 in the concentration range of 2.5 – 10 wt % as the oil-soluble emulsifier. The size of the water droplets in the prepared emulsions and the droplet size distribution strongly depend on the content of the disperse phase, the transmembrane pressure difference, and the emulsifier concentration. Stable emulsions with a very narrow droplet size distribution and a mean droplet diameter lower than 0.27 µm were produced using 10 wt % PGPR 90 at a pressure difference below 30 kPa.

  7. Modeling of the Temperature Field Recovery in the Oil Pool

    Science.gov (United States)

    Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.

    2018-05-01

    This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

  8. Separation kinetics of an oil-in-water emulsion under enhanced gravity

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The breakup of crude oil emulsions to produce clean oil and water phases is an important task in crude oil processing. We have investigated the demulsification kinetics of a model oil-in-water emulsion in a centrifugal field to mimic the forces acting on emulsion droplets in oil/water separators

  9. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H{sub 2}S production

    Energy Technology Data Exchange (ETDEWEB)

    Kumaraswamy, Raji; Ebert, Sara; Fedorak, Phillip M.; Foght, Julia M. [Alberta Univ., Edmonton, AB (Canada). Biological Sciences; Gray, Murray R. [Alberta Univ., Edmonton, AB (Canada). Chemical and Materials Engineering

    2011-03-15

    Nitrate injection into oil fields is an alternative to biocide addition for controlling sulfide production ('souring') caused by sulfate-reducing bacteria (SRB). This study examined the suitability of several cultivation-dependent and cultivation-independent methods to assess potential microbial activities (sulfidogenesis and nitrate reduction) and the impact of nitrate amendment on oil field microbiota. Microcosms containing produced waters from two Western Canadian oil fields exhibited sulfidogenesis that was inhibited by nitrate amendment. Most probable number (MPN) and fluorescent in situ hybridization (FISH) analyses of uncultivated produced waters showed low cell numbers ({<=}10{sup 3} MPN/ml) dominated by SRB (>95% relative abundance). MPN analysis also detected nitrate-reducing sulfide-oxidizing bacteria (NRSOB) and heterotrophic nitrate-reducing bacteria (HNRB) at numbers too low to be detected by FISH or denaturing gradient gel electrophoresis (DGGE). In microcosms containing produced water fortified with sulfate, near-stoichiometric concentrations of sulfide were produced. FISH analyses of the microcosms after 55 days of incubation revealed that Gammaproteobacteria increased from undetectable levels to 5-20% abundance, resulting in a decreased proportion of Deltaproteobacteria (50-60% abundance). DGGE analysis confirmed the presence of Delta- and Gammaproteobacteria and also detected Bacteroidetes. When sulfate-fortified produced waters were amended with nitrate, sulfidogenesis was inhibited and Deltaproteobacteria decreased to levels undetectable by FISH, with a concomitant increase in Gammaproteobacteria from below detection to 50-60% abundance. DGGE analysis of these microcosms yielded sequences of Gamma- and Epsilonproteobacteria related to presumptive HNRB and NRSOB (Halomonas, Marinobacterium, Marinobacter, Pseudomonas and Arcobacter), thus supporting chemical data indicating that nitrate-reducing bacteria out-compete SRB when nitrate is

  10. Toxicology of oil field pollutants in cattle: a review.

    Science.gov (United States)

    Coppock, R W; Mostrom, M S; Khan, A A; Semalulu, S S

    1995-12-01

    Cattle are poisoned by petroleum and substances used in drilling and operating oil and gas wells. The most common reported route of exposure for non-gaseous material is oral. Exposures occur when the petroleum or chemicals used in oil and gas field activities are available to cattle and when water and feed-stuffs are contaminated. Cattle, as a leisure activity, explore and ingest crude oil. Based on morbidity patterns in cattle herds, the amount of toxic substance ingested is variable. When water and feedstuffs are contaminated, a larger number in a herd generally are affected. Cattle have been poisoned by a wide variety of chemical mixtures. For substances high in volatile hydrocarbons, the lung is a target organ. Hydrocarbons also target the kidney, liver and brain. Exposure-linked abortions have been reported in cattle. Diethylene glycol targets the brain, liver and kidney. The reported threshold dose of unweathered oil for cattle ranges from 2.5 to 5.0 ml/kg bw, and the reported threshold dose for weathered oil is 8.0 ml/kg.

  11. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil.

    Science.gov (United States)

    Krause, Andre; Wu, Yu; Tian, Runtao; van Beek, Teris A

    2018-04-24

    High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential oils, taking patchouli essential oil as a test case. Patchouli essential oil is frequently adulterated, even today. In total, 75 genuine patchouli essential oils, 10 commercial patchouli essential oils, 10 other essential oils, 17 adulterants, and 1 patchouli essential oil, spiked at 20% with those adulterants, were measured. Visual inspection of the NMR spectra allowed for easy detection of 14 adulterants, while gurjun and copaiba balsams proved difficult and one adulterant could not be detected. NMR spectra of 10 random essential oils differed not only strongly from patchouli essential oil but also from one another, suggesting that fingerprinting by low-field NMR is not limited to patchouli essential oil. Automated chemometric evaluation of NMR spectra was possible by similarity analysis (Mahalanobis distance) based on the integration from 0.1 - 8.1 ppm in 0.01 ppm increments. Good quality patchouli essential oils were recognised as well as 15 of 17 deliberate adulterations. Visual qualitative inspection by GC-MS allowed for the detection of all volatile adulterants. Nonvolatile adulterants, and all but one volatile adulterant, could be detected by semiquantitation. Different chemometric approaches showed satisfactory results. Similarity analyses were difficult with nonvolatile adulterants. Refractive index measurements could detect only 8 of 17 adulterants. Due to advantages such as simplicity, rapidity, reproducibility, and ability to detect nonvolatile adulterants, 60 MHz 1 H-NMR is complimentary to GC-MS for quality control of essential oils. Georg Thieme Verlag KG Stuttgart · New York.

  12. Manitoba oil activity review, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    In an annual survey of Manitoba's petroleum industry, data are presented on oil and natural gas leases and sales, geophysical activity, exploration and drilling activity, production, oil prices and sales value, royalties and taxes, direct revenues from oil exploration and development, reserves, industry expenditures, and oil fields. Throughout the report, explanations are given of the items covered. Descriptions are made of new developments, the oil market, oil policies, incentive programs, and industrial activities. During 1992, 28 wells were drilled, compared to 54 in 1991. Oil production was down ca 8% from 1991 levels, to 656,415 m 3 ; the value of the oil produced decreased 4% to ca $86.3 million; and provincial revenues from the oil industry decreased by 24%. Oil industry expenditures in the province were estimated at $58 million, down 16% from 1991. As of 4 January 1993, there were 11 oil fields and 120 non-confidential oil pools designated in Manitoba. Crude oil prices fluctuated throughout the year. In 1992, Manitoba's average crude oil price was $20.89/bbl, compared with 1991's average of $20.14/bbl. Manitoba Energy and Mines amended the Drilling Incentive Program to provide a 10,000 m 3 holiday volume for horizontal wells. 12 figs., 17 tabs

  13. Manitoba oil activity review, 1993

    International Nuclear Information System (INIS)

    1994-07-01

    In an annual survey of Manitoba's petroleum industry, data are presented on oil and natural gas leases and sales, geophysical activity, exploration and drilling activity, production, oil prices and sales value, royalties and taxes, direct revenues from oil exploration and development, reserves, industry expenditures, and oil fields. Throughout the report, explanations are given of the items covered. Descriptions are made of new developments, the oil market, oil policies, incentive programs, and industrial activities. During 1993, 87 wells were drilled, compared to 28 in 1992. Oil production was down ca 3% from 1992 levels, to 634,561 m 3 ; the value of the oil produced decreased 10% to ca $77.5 million; and provincial revenues from the oil industry decreased by 4%. Oil industry expenditures in the province were estimated at $73 million, up 26% from 1992. As of 4 January 1994, there were 11 oil fields and 120 non-confidential oil pools designated in Manitoba. Crude oil prices fluctuated throughout the year, between $15.12 and $21.50/bbl. In 1993, Manitoba's average crude oil price was $19.40/bbl, compared with 1992's average of $20.89/bbl. Manitoba Energy and Mines amended the Drilling Incentive Program to provide a 10,000 m 3 holiday volume for horizontal wells. 12 figs., 17 tabs

  14. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  15. 78 FR 9575 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to...

    Science.gov (United States)

    2013-02-11

    ... reserve oil in such manner as to accurately account for its receipt, storage, and disposition. In a rule... FR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to Administrative Rules Regarding the Transfer and Storage of Excess Spearmint Oil AGENCY: Agricultural Marketing...

  16. COMPETITIVE POSITION OF THE MAIN PRODUCERS AND EXPORTERS OF OILSEEDS AND VEGETABLE OILS IN THE INTRA-EU TRADE

    Directory of Open Access Journals (Sweden)

    Karolina Pawlak

    2014-09-01

    Full Text Available The aim of the paper was to assess the competitive position of the main producers and exporters of oilseeds and vegetable oils in the intra-EU trade in 2004 and 2012. The competitiveness was assessed with the use of a selected set of quantitative measures of international competitive position. Moreover, some shares of the analysed countries in the intra-EU trade, as well as relative export intensity of oilseeds and vegetable oils in these countries were estimated. On the basis of the conducted analyses it is possible to conclude that apart from Germany in trade in rapeseed and soya beans, as well as the Netherlands in trade in rapeseed and sunflower-seed, the main producers and exporters of oilseeds were competitive on the Single European Market. Excluding soya-bean oil produced in the EU mainly from imported raw material, competitive advantage of most of the countries decreased together with the level of processing and was lower in trade in vegetable oils.

  17. Produced water reuse aiming reinjection; Reuso de agua produzida visando reinjecao

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Hora, Jairo Maynard da Fonseca; Guilherme, Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    As an oil reservoir goes aging, the BSW (water and solid content associated to the crude oil ) from the produced oil increase acutely. As this associated water is isolated from the crude oil, it presents several contaminants with concentrations above to that specified in the environmental norms for its discharge. Attending the environmental legislation, some times, is very difficult and can even enable the entire project. As the reservoir becomes old, enhance techniques are necessary to maintain the oil producing. A common recovery mechanism, called secondary recovery, is the water injection. Commonly the water for secondary recovery is not easily available. The main objective of this work is present a treatment system for produced water used in a specific field in the Northwest region. This treatment involves reinjection of this water after filtration. We will have a high environmental benefited, avoiding the discharge of produced water, highly toxic, and at the same time enhanced the oil production. In this work, we develop a method to modify the physical chemistry characteristics of the produced water and increase the treatment process efficiency. (author)

  18. Effects of two diamine biocides on the microbial community from an oil field

    International Nuclear Information System (INIS)

    Telang, A.; Voordouw, G.; Ebert, S.; Foght, J. M.; Westlake, D. W. S.

    1998-01-01

    Oil production facilities are routinely treated with biocides to control or eliminate microbes responsible for souring odor, or microbially influenced corrosion. In this study the effects of diamine biocides A and B on the microbial population from an oil field were investigated using reverse sample genome probing (RSGP), a technique designed to track multiple oil field bacteria in a single assay. RSGP studies of sessile microbial populations scraped from corrosion coupons obtained from biocide-treated oil field installations indicate dominance of Desulfovibrio species Lac6 and Eth3. Laboratory studies suggest that batchwise application of high doses (400 ppm) of biocide A is capable of killing planktonic populations of Desulfovibrio spp. Lac6 and Eth3. Batchwise application of similar doses of biocide B did not have this effect. Overall results indicate that the application of 400 ppm biocide B and 40 ppm biocide A may actually promote survival of selected Desulfovibrio spp., which may then effectively colonize available metal surfaces. 15 refs., 3 figs

  19. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    Science.gov (United States)

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases

  20. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  1. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  2. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?

    International Nuclear Information System (INIS)

    Thamsiriroj, T.; Murphy, J.D.

    2009-01-01

    The proposed EU Directive on the promotion of Renewable Energy stipulates that only biofuels that achieve greenhouse emissions savings of 35% will be eligible for inclusion with respect to meeting the 2020 target of 10% for the share of biofuels. This paper examines biodiesel for use in Ireland, produced from two different sources: indigenous rape seed and palm oil imported from Thailand. The palm oil system generates more biodiesel per hectare than the rape seed system, and has less parasitic demand. Greenhouse-gas reductions of 29% and 55%, respectively were calculated for the rape seed and palm oil systems. (author)

  3. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  4. Placing Brazil's heavy acid oils on international markets

    International Nuclear Information System (INIS)

    Szklo, Alexandre Salem; Machado, Giovani; Schaeffer, Roberto; Felipe Simoes, Andre; Barboza Mariano, Jacqueline

    2006-01-01

    This paper identifies the international market niches of Brazil's heavy acid oils. It analyzes the perspectives for making wider use of heavy acid oils, assessing their importance for certain oil-producing regions such as Brazil, Venezuela, West Africa, the North Sea and China. Within this context, the oil produced in the Marlim Field offshore Brazil is of specific interest, spurred by the development of its commercial brand name for placement on international markets and backed by ample production volumes. This analysis indicates keener international competition among acid oils produced in Brazil, the North Sea and the West Coast of Africa, through to 2010. However, over the long term, refinery conversion capacity is the key factor for channeling larger volumes of heavy acid oils to the international market. In this case, the future of acid oil producers will depend on investments in refineries close to oil product consumption centers. For Brazil, this means investments in modifying its refineries and setting up partnerships in the downstream segment for consumer centers absorbing all products of high added value, such as the USA and even Southeast Asia and Western Europe

  5. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  7. Effect of oil-pipelines existed in HVTL corridor on the electric field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, H.M. [College of Technological Studies, Kuwait (Kuwait). Dept. of Electrical Engineering

    2007-07-01

    The overhead transmission of large amounts of electricity over long distances requires high transmission voltages which can generate high electric fields that may have harmful effects on both human and animals. Therefore, corridors or right-of-way are left on both sides along the route of transmission lines. Overhead power transmission lines need strips of land to be designated as rights-of-way. These strips of land can also support other uses such as pipelines, railroads and highways. The primary purpose for minimizing the field effects of high voltage AC lines is to reduce the electric field at ground level. This study investigated the effects of oil-pipelines running parallel to the lines in the rights-of-way corridors on the electric fields generated from high voltage electrical networks in Kuwait. In order to examine the impact of certain design parameters on the electric field distribution near the ground surface, this study varied the oil pipelines diameter, the proximity of the pipeline from the transmission line center and the number of pipelines. The objective was to determine if the amount of land which is required as right-of-way can be reduced. This study also examined the effect of two parallel oil pipelines on the field distribution. Both pipelines were separated by a given distance and ran parallel to the transmission line conductors. The charge simulation method (CSM) was used to simulate and model both the conductors of the transmission lines and the oil-pipelines. Graphs for the electric field distribution profiles at the ground surface, at transmission line conductors' surfaces and at the surfaces of the oil pipelines were presented and evaluated for each scenario. 10 refs., 12 figs.

  8. Non-Invasive Rapid Harvest Time Determination of Oil-Producing Microalgae Cultivations for Biodiesel Production by Using Chlorophyll Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yaqin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2015-10-05

    For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, and C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  9. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  10. Experimental use of produced waters for waterflooding fields of Kuibyshev region

    Energy Technology Data Exchange (ETDEWEB)

    Palii, P A; Gavura, V E; Redkin, I I; Sokolov, A G

    1970-01-01

    Large volumes of produced waters have been used for waterflooding in the Kuibyshev region. Before underground injection, the water is conditioned by short-term storage. The treated water contains emulsified oil, suspended solids, hydrogen sulfide, and ferrous iron. This water is readily injected into fractured porous formations, even if suspended solids reach 42 mg/liter and emulsifed oil 67 mg/liter. However, better quality water has to be injected into nonfractured formations. In this case, the concentration of emulsified oil and suspended solids needs to be kept below 5 mg/liter. If concentration of suspended material exceeds this limit, water injectivity decreases rapidly. The partially plugged wells can be restored by acid treatment. Water injection has shown large economic gains in this region.

  11. Development of a centrifugal in-line separator for oil-water flows

    NARCIS (Netherlands)

    Slot, J.J.

    2013-01-01

    The world energy consumption will increase in the next decades. However, many aging oil fields are showing a steady decline in oil production. And they are producing increasing amounts of water, making the separation of the oil from the oil-water mixture an important processing step. In-line

  12. Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability.

    Science.gov (United States)

    Wood, Craig C; Okada, Shoko; Taylor, Matthew C; Menon, Amratha; Mathew, Anu; Cullerne, Darren; Stephen, Stuart J; Allen, Robert S; Zhou, Xue-Rong; Liu, Qing; Oakeshott, John G; Singh, Surinder P; Green, Allan G

    2018-03-06

    Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  14. Upstream oil and gas. Subsector no. 7: Oil and gas exploration and development 1995 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    Prepared by the Alberta Human Resources and Employment, this report provides a summary of the lost-time injuries and disease descriptions of workers injured while employed in the upstream oil and gas industries in Alberta during the period 1995 to 1999. The report includes the characteristics of the injured worker and the risk of injury to workers in the industries in Alberta, as well as the cost of injuries and revenue by means of total premiums paid by the employers. The occupational fatalities that were accepted by the Workers Compensation Board and investigated by the Occupational Health and Safety were summarized in the report along with a brief description of the injuries. The aim was to provide information concerning health and safety issues to government, employers, workers, and health and safety officers in the industries in Alberta about health and safety issues. The focus was placed on the oil and gas exploration and development sub-sector. Defined as all upstream oil field activities of employers which generate revenue from the production and sale of crude oil and/or natural gas, the sub-sector comprises major integrated oil and gas companies and small independent producers. In those cases where the owner/producer operates its own upstream production/processing facilities, they form an integral part of this sub-section. In addition, oil and gas marketing firms are included. Oil/gas well, well head equipment; flow lines/gathering systems tied into field processing facilities; battery sites/compressors stations; crude oil separators and natural gas dehydrators/treaters; natural gas/sulfur processing plants; heavy oil projects including steam generation; and other enhanced recovery methods are all included in the sub-sector. The other sub-sectors in the upstream oil and gas industries are: exploration, oilfield maintenance and construction, well servicing with service rigs and power swivels, drilling of oil and gas wells, oilfield downhole and other

  15. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  16. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes

  17. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.

    Science.gov (United States)

    Wagner, Jonathan; Bransgrove, Rachel; Beacham, Tracey A; Allen, Michael J; Meixner, Katharina; Drosg, Bernhard; Ting, Valeska P; Chuck, Christopher J

    2016-05-01

    A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biomarker chemistry and flux quantification methods for natural petroleum seeps and produced oils, offshore southern California

    Science.gov (United States)

    Lorenson, T.D.; Leifer, Ira; Wong, Florence L.; Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Hostettler, Frances D.; Greinert, Jens; Finlayson, David P.; Bradley, Eliza S.; Luyendyk, Bruce P.

    2011-01-01

    Sustained, natural oil seepage from the seafloor is common off southern California, and is of great interest to resource managers, who are tasked with distinguishing natural from anthropogenic oil sources. The major purpose of this study was to build upon the work previously funded by the Bureau of Ocean Energy Management (BOEM) and the U.S. Geological Survey (USGS) that has refined the oil-fingerprinting process to enable differentiation of the highly similar Monterey Formation oils from Outer Continental Shelf (OCS) production and adjacent natural seeps. In these initial studies, biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic-matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs mainly from coastal California. The analysis resulted in a predictive model of oil source families that could be applied to samples of unknown origin.

  19. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  20. Tekna's produced water conference 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)

  1. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  2. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  3. Selection of High Oil Yielding Trees of Millettia pinnata (L. Panigrahi, Vegetative Propagation and Growth in the Field

    Directory of Open Access Journals (Sweden)

    Ni Luh Arpiwi

    2017-09-01

    Full Text Available Millettia pinnata (L. Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field.  The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to evaluate the survival and growth of budded plants in the field. Pods were collected from 30 trees in Lovina Beach, Buleleng Regency, Bali. Oil was extracted from seeds using soxhlet with hexane as a solvent.  The high oil yielding trees were propagated by budding using root stocks grown from M. pinnata seeds.  Scions were taken from young branches of selected trees. Incision was made on rootstock and the same size of cut was made on a scion containing a single bud.  The scion was inserted to the incision of rootstock then closed tightly using plastic strips.   The plastic was removed when the scion grew into a little green shoot. One month after plastic removal, the scion union grew into a single shoot and then the budded plants were removed to polybags. Budded plants were planted in the field of Bukit Jimbaran, Badung Regency, Bali with 4 × 4 spacing. Results showed all budded plants successfully grow new shoots. Two months after planting the survival of budded plants was 100%. Plant height increased by 22.13 cm, stem diameter increased by 2.43 mm and the number of compound leaf increased by 2.08.  It can be concluded that four high oil yielding trees were selected from Lovina Beach and successfully propagated by budding. Survival of budded plants was 100% with vigorous growth.

  4. OIL AS POLITICAL WEAPON

    Directory of Open Access Journals (Sweden)

    Mariana, BUICAN

    2013-12-01

    Full Text Available Oil (called by some black gold has not always been as coveted and used, but only in the last hundred years has established itself as a highly sought after as an indispensable proper functioning of modern economic activity that an important factor in international politics. International oil regime has changed in the last decades. In 1960, oil regime was a private oligopol which had links with governments main consuming countries. By then the price of a barrel of oil was two U.S. dollars and seven major transnational oil companies decided the amount of oil that will be produced. Meanwhile the world region with the largest oil exports were more strongly expressed nationalism and decolonization. Result, it was so in the late 60s in the region occur independent states. They have created an organization aim of this resource to their advantage - OPEC (Organization of Petroleum Exporting Countries. Thus since 1973 there have been changes in the international regime governing oil field, namely producing countries were fixed production rate and price. After this time the oil weapon has become increasingly important in the management of international relations. Oil influenced the great powers to Middle East conflicts that occurred in the last century, but their attitude about the emergence of new sources of oil outside OPEC. In the late 90's, Russia has become a major supplier of oil to the West.

  5. Economic study of NHR application on high pour point oil field

    International Nuclear Information System (INIS)

    Zhao Gang; Zhang Zuoyi; Ma Yuanle

    1997-01-01

    In order to extent the application of NHR (nuclear heating reactor) and cut down the oil production costs, the authors designed different heating disposition by NHR and boiler heating stations in high pour point oil reservoir, total 16.9 km 2 , in Daqing oil field. This work was based on the study of history matching, water flood planning and hot water circulation for the reservoir. The analyzing results show that, the convert heating cost of NHR is a third of boiler's and the net oil production of NHR is 4 times more than the latter. Considering economization and reliability, authors suggest to adopt the scheme of two NHR with one boiler heating station

  6. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs.

    Science.gov (United States)

    Fu, Xiao-Wen; Li, Tian-Yuan; Ji, Lei; Wang, Lei-Lei; Zheng, Li-Wen; Wang, Jia-Ning; Zhang, Qiang

    2018-08-15

    The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells. Copyright © 2018 Elsevier Inc. All

  7. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction

    DEFF Research Database (Denmark)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gomez Muñoz, Beatriz

    2016-01-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Rece...

  8. Peculiarity of radioactivity pollution of manufacturing environment gas and oil producing firms of the apsheron region

    International Nuclear Information System (INIS)

    Mamedov, A.M.; Alekperova, J.A.

    2002-01-01

    Full text: Present time protection of the biosphere from technogene pollution is the important problem, having common to all mankind value. In circuits of the technogene pollution of the environment the soil is a carrying on link for through soil the contaminants freely go to air environment, in underground waters in plants and in foodstuff of a vegetative and animal genesis. In subsequent these contaminants on the indicated chains by penetrating in an organism of the people render an ill effect on their health. In this plane the radiological contamination of soil introduces still large dangerous. As the radionuclides of soil can render as external radiation, and by getting in an organism with air, water and foodstuff can cause internal radiation. In this plane, for detection of a role of gas and oil producing firms in radiological contamination soil as object of an environment, we conduct researches by a hygienic estimation of radiological contamination of soil of territory of oil-fields OOGE 'Gum adasi' of the Apsheron region. By spectrometric method were studied a natural background radiation and radioactivity of soil of different territories of shop of complex opening-up of oil. Established, that for the raw tank the specific activity reaches 4438-9967 Bk/kg, close of the product repair shop the radioactivity reached 650- 700 micro R/hour. In territory of the region 'Gum adasi', where the waste from cleaning chisel tubes were accumulated, the radioactivity made 600 micro R/hour. These indexes the superior background level is significant. The analysis of power spectrums a gamma of radiations is model from the indicated sites has shown, that the radioactivity is conditioned by isotopes of a radium. The researches have allowed to demonstrate a radioactivity technogene of impurity of rocks to recommend urgent dumping of above-stated waste in bunkers on sites, retracted by it. Thus, was established, that gas and oil producing firms contributing to radiological

  9. Anti-listerial effects of essential oils and herbs in fresh-cut produce: opportunities and limitations

    OpenAIRE

    Scollard, Johann

    2011-01-01

    peer-reviewed The potential anti-listerial benefits of essential oils and herbs in fresh-cut produce systems were investigated. Interactions with modified atmospheres and product types were examined in detail, including effects on quality. A strong anti-listerial response from rosemary herb was discovered during maceration and the chemical basis of this determined for future exploitation. The anti-listerial properties of essential oils (thyme, oregano and rosemary), under a ...

  10. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  11. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  12. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

  13. Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for bio-diesel production by using Chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Yaqin eQiao

    2015-10-01

    Full Text Available For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II (PSII, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  14. PlumpyField – Network of local producers of RUF (contributed paper)

    International Nuclear Information System (INIS)

    Belete, Hilina

    2014-01-01

    Full text: Expanding coverage for the 35 million children in the world suffering from Moderate Acute Malnutrition (MAM) will require sustainably scaling up regional procurement of lipid-based RUSF products. Momentum is now building to achieve this aim through ten local ready-to-use food (RUF) producers in the PlumpyField Network, which was established by the French company Nutriset in 2005. These independently-owned factories, located in Sub-Saharan Africa, Asia, and the Caribbean, currently produce one-third of the world’s RUF supply. Overcoming substantial obstacles, they have achieved the same high quality standards of producers in Europe and the U.S., with increasingly competitive pricing. Being part of a mutually supportive and interactive network of RUF producers from around the world provides unique learning and partnership opportunities, from sharing insights on peanut supply chain development, increasingly complex quality challenges, to pooled procurement. This network system has been instrumental to the success of local production for the members of the PlumpyField Network. Historically, local producers achieving economies of scale and reliable local and international supply chains (i.e. for peanuts, oil, sugar, milk etc.) takes several years, making the cost of locally-procured products more expensive in the short term. However, there are numerous positive outcomes and externalities that cannot be ignored, such as decreased lead times (especially crucial to reach children with acute malnutrition), lower shipping costs, economic development, and maturation of the food processing and microbiological laboratory sectors. UNICEF and WFP have become leaders in local and regional procurement as they continually optimize their strategies to best meet global needs. Local production is often an important stimulant of public-private partnerships, including procurement of RUF by local governments for government-run acute malnutrition programs, furthering

  15. Bioremediation of hydrocarbon contaminated-oil field drill-cuttings ...

    African Journals Online (AJOL)

    The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, ...

  16. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in frio fluvial-deltaic sandstone reservoirs at South Texas. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, M.; Knox, P.; McRae, L. [and others

    1996-02-01

    The Frio Fluvial-Deltaic Sandstone oil play of South Texas has produced nearly 1 billion barrels of oil, yet it still contains about 1.6 billion barrels of unrecovered mobile oil and nearly the same amount of residual oil resources. Interwell-scale geologic facise models of Frio Fluvial-deltaic reservoirs are being combined with engineering assessments and geophysical evaluations in order to determine the controls that these characteristics exert on the location and volume or unrecovered mobile and residual oil. Progress in the third year centered on technology transfer. An overview of project tasks is presented.

  17. Renovate produced-water-treating facilities to handle increased water cuts

    International Nuclear Information System (INIS)

    Murti, D.G.K.; Al-Nuaimi, H.R.

    1991-01-01

    This paper reports on the modified skimmer tanks that have consistently demonstrated superior oil recovery characteristics compared to conventional design in an oil field tank battery system. The modified tanks have been in continuous service for more than 3 years in one of the oldest oil fields in the Arabian Gulf. The new design has helped recover skimmed oil from a mere 6 bpd (1.0 m 3 ) to more than 55 bpd (8.75 m 3 ) from produced water in a tank battery system alone. The recovery is expected to improve by up to 200 bpd (31.8 m 3 ) once skimmer tanks in all the tank batteries are upgraded to the new design

  18. Investigation of an innovative technology for oil-field brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, D; Dalmacija, B; Hain, Z; Karlovic, E; Maric, S; Uzelac, N [Inst. of Chemistry, Faculty of Sciences, V. Vlahovica 2 (YU)

    1989-01-01

    Various aspects of an innovative technology for oil field brine treatment were investigated on a laboratory scale. The both free and dispersed oily matter were separated by gravitation and sedimentation. Apart from the physico-chemical oil removal process, special attention was paid to different variants of improved microbiological treatment: dilution with fresh water and application of powdered activated carbon (PAC). Advanced treatment was carried out on granular biological activated carbon (GBAC). A technological scheme for complete treatment was proposed. (author).

  19. Impact on world oil prices when larger and fewer producers emerge from a political restructuring of the Middle East

    International Nuclear Information System (INIS)

    Wirl, F.

    1992-01-01

    We investigate how a redistribution of oil reserves among a (probably reduced) set of producers affects OPEC's oil extraction policies and thus international crude oil-prices. The empirical investigation shows that this impact is fairly small, as long as OPEC members do not cooperate. Only cooperation will have a substantial impact. (author)

  20. Perestroika, Soviet oil, and joint ventures

    International Nuclear Information System (INIS)

    Churkin, M. Jr.

    1991-01-01

    Glaznost, the freedom of expression in both the public and private sectors of the Soviet Union, has rapidly transformed the country form a largely isolated and closed society to one that is rapidly becoming more cosmopolitan and open to the West. Now that the Soviet Union is moving toward a free-market economy, a number of new laws are being generated to create a favorable environment for Western investment, especially joint ventures. First, crude oil sales have provided over 75% of much-needed hard currency, and oil has been the principal barter for manufactured goods produced in eastern Europe. Second, joint oil ventures with Western companies can reverse declining production levels and provide sufficient stimulus to turn around the economic recession. The Soviet Union has a very large inventory of discovered but undeveloped oil and gas fields. Most of these fields are difficult for the Soviets to produce technically, financially, and environmentally safely, and they are actively seeking appropriate Western partners. From an exploration point of view, the Soviet Union has probably the largest number of undrilled and highly prospective oil basins, which may replenish declining reserves in the West. Finally, the Soviet Union represents in the long term a large unsaturated market eager to absorb the surplus of goods and services in the Western world. Again, joint oil ventures could provide the convertible currency to increase East-West trade

  1. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    Science.gov (United States)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  2. Barents Sea field test of herder to thicken oil for in-situ burning in drift ice

    International Nuclear Information System (INIS)

    Buist, I.; Potter, S.; Sorstrom, S.E.

    2009-01-01

    Thick oil slicks are the key to effective in situ burning. Pack ice can enable in situ burning by keeping slicks thick. Oil spills in drift ice conditions can rapidly spread and become too thin to ignite. The application of chemical surface-active agents known as oil herders are commonly used in open waters to clean and contain oil slicks. Herders result in the formation of a monolayer of surfactants on the water surface and reduce the surface tension on the surrounding water considerably. When the surfactant monolayer reaches the edge of a thin oil slick, it changes the balance of interfacial forces acting on the slick edge and allows the interfacial tensions to contract the oil into thicker layers. This study examined the use of chemical herding agents to thicken oil spills in broken ice to allow them to be ignited and burned in situ. Two meso-scale field burn tests were conducted in May 2008 with crude oil slicks of about 0.1 and 0.7 m 3 in open drift ice off Svalbard in the Barents Sea. Prior to the field experiments, 2 series of small laboratory tests were conducted using Heidrun and Statfjord crudes to determine the ability of the U.S. Navy herding agent to contract slicks of the oil. In the first field experiment involving 102 litres of fresh Heidrun, the slick was unexpectedly carried by currents to a nearby ice edge where the oil was ignited and burned. Approximately 80 per cent of the oil was consumed in the burn. In the second field experiment involving 630 litres of fresh Heidrun, the free-drifting oil was allowed to spread for 15 minutes until it was much too thin to ignite. When the herding agent was applied, the slick contracted and thickened for about 10 minutes and was then ignited using a gelled gas igniter. A 9-minute long burn consumed about 90 per cent of the oil. 9 refs., 5 tabs., 34 figs.

  3. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  4. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  5. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  8. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  9. Oil and influence: the oil weapon examined

    Energy Technology Data Exchange (ETDEWEB)

    Maull, H

    1975-01-01

    The term ''oil weapon'' as used here signifies any manipulation of the price and/or supply of oil by exporting nations with the intention of changing the political behavior of the consumer nations. The political potential of the oil price is fairly restricted so, in effect, the supply interruptions are of prime concern. Manipulating price does, in principle, offer the possibilities of both conferring rewards and inflicting sanctions. Oil could be sold on preferential prices and terms. A precondition for using the oil weapon successfully would be the ability to cause real and serious damage to the consumer countries. Four damaging potentials for using the oil weapon could include its application by: (1) one producer against one consumer; (2) one producer against all consumers; (3) a group of producers against one consumer; and (4) by a group of producers against all consumers. It is concluded that the oil weapon will continue to be a force in the international system. (MCW)

  10. Assessment of the quality of bran and bran oil produced from some Egyptian rice varieties.

    Science.gov (United States)

    Salem, Eglal G; El Hissewy, Ahmed; Agamy, Neveen F; Abd El Barry, Doaa

    2014-04-01

    Rice (Oryza sativa L.) is one of the leading food crops of the world, the staple food of over half the world's population. The bran, which is an important byproduct obtained during rice milling, constitutes about 1/10 of the weight of the rice grain. Rice bran is the outer brown layer including the rice germ that is removed during the milling process of brown grain. This milling byproduct is reported to be high in natural vitamins and minerals, particularly vitamin E. The present study was conducted to determine the chemical composition of bran and bran oil of 13 different rice varieties commonly produced in Egypt, to study the utilization of rice bran in bread production, and to assess the quality and acceptance of the rice bran edible oil produced. Rice bran was produced from 13 Egyptian varieties of recently harvested rice as well as from paddy rice stored for 1 year. The extracted bran was immediately stabilized then subjected to chemical analysis (such as moisture content, protein, fat, carbohydrates, fiber, and ash) as well as trace and heavy metals determination (P, K, Na, Ca, Fe, Zn, Cu, and Mg). Bread was produced by adding Giza172 rice bran at three different concentrations to wheat flour then subjected to chemical analysis, caloric content, and organoleptic examination. Bran oil was extracted from the different varieties of rice bran (recently harvested and stored) then subjected to chemical and organoleptic examinations as well as vitamin E and oryzanol determination. The percentage of rice bran of newly harvested Egyptian rice was 11.68% and was 10.97% in stored rice. The analysis showed mean values of 5.91 and 5.53% for moisture, 14.60 and 14.40% for crude protein, 14.83 and 15.20% for fat, 44.77 and 45.40% for carbohydrates, 6.55 and 7.06% for crude fiber, and 8.87 and 8.50% for ash for newly harvested and stored rice bran, respectively. Bread containing 15% rice bran showed the highest score percentages for organoleptic quality compared with the

  11. Microbial diversity of a high salinity oil field

    International Nuclear Information System (INIS)

    Neria, I.; Gales, G.; Alazard, D.; Ollivier, B.; Borgomano, J.; Joulian, C.

    2009-01-01

    This work is a preliminary study to investigate the microbial diversity of an onshore oil field. It aim to compare results obtained from molecular methods, physicochemical analyses and cultivation. A core of 1150 m depth sediments ( in situ T=45 degree centigrade) was collected and immediately frozen with liquid nitrogen prior to further investigation. Macroscopic and Scanning Electron Microscopy analyses were performed. (Author)

  12. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  13. Decontamination of contaminated oils with radio nuclides using magnetic fields

    International Nuclear Information System (INIS)

    Gutierrez R, C. E.

    2011-01-01

    The present work is focused in to find a solution to the wastes treatment that are generated during the maintenance to the nuclear power industry, the specify case of the contaminated oils with radio nuclides, for this purpose was necessary to make a meticulous characterization of the oils before the treatment proposal using advanced techniques, being determined the activity of them, as well as their physical-chemical characteristics. By means of the developed procedure that combines the use of magnetic fields and filtration to remove the contaminated material with radioactive particles, is possible to diminish the activity of the oils from values that oscillate between 6,00 and 10,00 up to 0,00 to 0,0003 Bq/ml. The decontamination factor of the process is of 99.00%. The proposal of the necessary technology for to decontaminate the oils is also made and is carried out the economic analysis based on the reuse of these, as well as the calculation of the avoided damages. (Author)

  14. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  15. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  16. Experimental and numerical modeling of heavy-oil recovery by electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Hascakir, B.; Akin, S. [Middle East Technical Univ., Ankara (Turkey); Babadagli, T. [Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    This study examined the applicability of electrical heating as a heavy oil recovery system in 2 heavy oil fields in Turkey. The physical and chemical properties of samples from the 2 fields were compiled and measured. The samples were then subjected to electrical heating. A retort technique was used to determine oil recovery performance under various conditions. Different types of iron powders were also applied in order to reduce oil viscosity. In situ viscosity reduction levels during the heating process were measured using a history matching procedure that considered data obtained during the laboratory experiments. The study demonstrated that the addition of iron power to the oil samples caused the polar components of the oil to decrease. Oil viscosity was strongly influenced by the magnetic fields created by the iron powders. An analysis of the experimental data showed that significant viscosity reductions of 88 per cent were obtained for the samples when iron additions of 0.5 per cent were used. Data from the experiments were used to develop mathematical models in order to consider thermal diffusion coefficients, oil viscosity, and relative permeability parameters. It was concluded that the cost of producing 1 barrel of oil using the method cost approximately US $5. After a period of 70 days, 320 barrels of petroleum were produced using the method. Oil production rates increased to 440 barrels over the same time period when iron additions were used. 30 refs., 6 tabs., 12 figs.

  17. Investigations of Flare Gas Emissions in Taq Taq Oil Field on the Surrounding Land

    Directory of Open Access Journals (Sweden)

    Jafar A. Ali

    2014-11-01

    Full Text Available Environmental pollution caused by oil takes many different forms; one of the most damaging sources is simply the combustion of oil products, such as a well flare burn-off. This paper presents the results of a survey of the agriculture lands around the Taq Taq Oil Production Company. The aim of the survey was to determine the potential contamination caused by the gas emissions from the well flares. Taq Taq field is located in the Kurdistan Region of Iraq, 60 km north of the giant Kirkuk oil field, 85 km south-east of Erbil and 120 km north-west of Suleimani. Samples of soil were collected from several locations around the site and analyzed to determine the content of Polycyclic Aromatic Hydrocarbons PAH present. A gas chromatography linked to a mass spectrometry (GCMS machine was used for these measurements. The PAH contamination at each location of soil was determined and the 16-PAHs, as listed in the US Environmental Protection Agency (EPA documentation were investigated. The average content of total PAH in all samples of the agricultural soil was 0.654 mg·kg-1 with the concentrations ranging from 0.310 to 0.869 mg·kg-1. It was found that the PAH concentrations decreased with increasing distance from the TTOPCO oil field, indicating that pollution was evident, the area close to the field being more affected by the gas pollution.

  18. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    Science.gov (United States)

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  19. The experimental research of a field-enhanced multichannel oil switch

    International Nuclear Information System (INIS)

    Zhao, R.; Zeng, N.; Yang, D.; Jiang, X.; Wang, X.

    1993-01-01

    This paper describes the performance of a field enhanced multichannel oil switch which is used as the main switch of HEAVEN-LIGHT II intense pulsed electron beam accelerator at CIAE. The switch experiments have been carried out with different inductance of the solenoid inductor in series with a self-closing axial gap and position and diameter of the trigger disc. The experiments using water as a breakdown medium of the switch have been done to compare with oil switch. These experimental results and conclusions are presented in the paper

  20. Study of condensate composition during field processing of gas of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Kuldzhayev, B.A.; Annamukhamedov, M.B.; Makarov, V.V.; Serbnenko, S.R.; Talalayev, Ye.I.

    1983-01-01

    Studies were made of the composition and properties of condensates from field separators of the East Shatlyk field. The expediency is shown of separate collection of the condensates into a separate container and used for local needs as the diesel fuel. The condensates from the UNTS separators are used as chemical raw material to produce the lowest olephins by pyrolysis of gas-oil fraction and normal paraffins from kerosene-gas-oil part to obtain the protein-vitamin concentrates.

  1. World resources of oil products

    International Nuclear Information System (INIS)

    Bonnaterre, Raymond

    2014-01-01

    In a first part, the author outlines that the issue of density of an oil product raises the question of the validity of a counting approach based on volumes. As oil industries produce always less heavy products and always more light products, this means that always less oil is needed to produce a gallon or a litre of fuel out of a refinery. The author comments the evolution of crude oil extraction. In a second part, he outlines that hydrocarbon productions become always more complex with respect to their origin. Thus, during gas extraction, humid gases are recovered which contain an important part of hydrocarbons similar to light oil. These aspects and the development of shale gas exploitation will make the USA the first oil producer in the world whereas they still have to import heavy oil to feed their refineries. He discusses the level of reserves and production costs with respect to the product type or its extraction location. He discusses the evolution of the estimates of world ultimately recoverable resources (synthesis processes excluded). He comments the level of condensate extraction ratio of the main shale gas fields in the USA and outlines the cost of natural gas imports for France. He outlines the importance of GTL (gas to liquid) processes, the increasing importance of bio-fuels (notably isobutanol biosynthesis and terpene biosynthesis). In the third part, the author states that the barrel price should keep on increasing and, in the fourth part, proposes a list of issues which will impact the future of the oil market

  2. Oil field management, evolution and perspective

    International Nuclear Information System (INIS)

    Castro, Guilherme T.; Palagi, Cesar L.; Morooka, Celso K.

    2000-01-01

    After a commercial discovery of a petroleum field, the exploitation activities should be conducted in an way that maximize the objectives expected to this new field. This exploitation process have been experiencing a great evolution in almost all of the petroleum companies, where the organizational structure changed from a pure functional model with emphasis just in reservoir engineering, to a model based in assets and multidisciplinary teams.Many authors in the literature had already defined Reservoir Management, but this paper is giving an additional contribution defining as Asset Management this new model, that have been consolidated and implemented in the majority of the oil companies since late 80s. Based in a large bibliography study, this paper analyzes the technical evolution, the experience obtained through the best cases and mistakes, and concludes suggesting a new model based on the best success examples listed in the literature. (author)

  3. Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis

    International Nuclear Information System (INIS)

    Kim, Tae-Seung; Oh, Shinyoung; Kim, Jae-Young; Choi, In-Gyu; Choi, Joon Weon

    2014-01-01

    Crude bio-oil produced from fast pyrolysis of yellow poplar wood was subjected to HDO (hydrodeoxygenation) for the purpose of reducing water content as well as increasing heating value. HDO was performed in an autoclave reactor at three different reaction factors: temperature (250–370 °C), reaction time (40–120 min), and Pd/C catalyst loading (0–6 wt%) under hydrogen atmosphere. After completion of HDO, gas, char, and two immiscible liquid products (light oil and heavy oil) were obtained. Liquid products were less acidic and contained less water than crude bio-oil. Water content of heavy oil was ranged between 0.4 wt% and 1.9 wt%. Heating values of heavy oil were estimated between 28.7 and 37.4 MJ/kg, which was about twice higher than that of crude bio-oil. Elemental analysis revealed that heavy oil had a lower O/C ratio (0.17–0.36) than crude bio-oil (0.71). H/C ratio of heavy oil decreased from 1.50 to 1.32 with an increase of temperature from 250 °C to 350 °C, respectively. - Highlights: • Bio-oil was subjected to hydrodeoxygenation with Pd/C catalyst in supercritical ethanol. • Gas, char and two immiscible liquids (light/heavy oil) were obtained as final products. • Ethanol addition reduced the char formation during hydrodeoxygenation. • The heavy oil was characteristic to less acidic and less water content than bio-oil. • Higher heating value of the heavy oil was measured to 28.7–37.4 MJ/kg

  4. Hand Injuries in the Oil Fields of Brunei Darussalam

    Directory of Open Access Journals (Sweden)

    Pramod Devkota

    2013-03-01

    Full Text Available Hands are essential organs and their agility and dexterity are vital to our daily lives. In the present study, we analysed 107 patients who presented at the local hospital with hand injuries sustained in the oil fields, oil industries and related employment sectors from the surrounding regions. All the patients were male and the mean age was 37.89 years (range,21-61y. Forty-seven (43.93% patients had simple cut injuries, 14 patients (13.08% had tendon injuries, 13 patients (12.14% had amputation of the digit (30.84% had bone fractures (including 20 (66.66% open fractures. Only 19 (17.75% patients were admitted in hospital for further treatment. Ninety-one (85.04% patients injured within one year of employment and 57(53.27% patients were not satisfied with instructions and orientation before starting their job. Hand injury is one of the most common injuries in the oil industry and overtime work further increases incidence of this injury.

  5. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  6. Environmentalism in the Periphery: Institutional Embeddedness and Deforestation among Fifteen Palm Oil Producers, 1990 – 2012

    Directory of Open Access Journals (Sweden)

    Kent Henderson

    2017-08-01

    Full Text Available Environmental sociologists highlight the exploitative nature of the global capitalist economy where resource extraction from nations in the periphery tends to disproportionately benefit those of the core. From the Brazilian Amazon to mineral-rich Sub-Saharan Africa, the practice of “unequal ecological exchange” persists. Simultaneously, a “global environmental regime” has coalesced as a prominent feature of the contemporary world system. In the post-World War II era, legitimate nation-states must take steps to protect the natural environment and prevent its degradation even at their own economic expense. Stronger national ties to global institutions, particularly international nongovernmental organizations (INGOs consistently yield more positive environmental outcomes. However, previous work suggests that normative expectations for improved environmental practice will be weak or nonexistent in the periphery. We use the case of palm oil production and its relationship to deforestation to provide a more nuanced analysis of the relationship between material and institutional forces in the periphery. Using unbalanced panels of fifteen palm oil producing countries from 1990 to 2012, we find that stronger national ties to world society via citizen memberships in INGOs result in greater primary forest area among palm oil producers. However, this effect is strongest where production is lowest and weakens as production increases. Even in the cases of Indonesia and Malaysia, where palm oil production is substantially higher than any other producer, ties to global institutions are significantly related to reduced forest loss. These results indicate the variable importance of national embeddedness into global institutions within the periphery of the world system.

  7. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources

    Directory of Open Access Journals (Sweden)

    Vance-Harrop Mabel H.

    2003-01-01

    Full Text Available Candida lipolytica IA 1055 produced extracellular biosurfactants with emulsification activity by fermentation using babassu oil and D-glucose as carbon sources. Natural seawater diluted at 50% supplemented with urea, ammonium sulfate, and phosphate was used as economic basal medium. The best results were achieved with the YSW-B2 medium, which contained urea, ammonium sulfate, and babassu oil and with YSW-B3 medium, which contained urea, ammonium sulfate, phosphate, and babassu oil, kept under fed batch fermentation for 60 hours with 5% of babassu oil. For the two media, the maximum specific growth rates were 0.02 h-1 and 0.04 h-1; the generation times were 34.6 h-1 and 17.3 h-1, and the emulsification activities were 0.666 and 0.158 units, respectively. The molecules of these new bioemulsifiers were contituted of carbohydrates, proteins and lipids.

  8. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  9. Field development planning for an offshore extra heavy oil in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Garcia, G.; Anguiano-Rojas, J. [PEMEX Exploration and Production, Mexico City (Mexico)

    2009-07-01

    This paper presented a phased development strategy for an offshore extra-heavy oil development located in the Gulf of Mexico. The Ayatsil-1 oil field is located in an upper Cretaceous brecciated formation. One of the primary concerns of the project is the infrastructure that is needed to handle low reservoir temperatures and high viscosity, low gravity API oil. A delineation well was drilled in order to confirm the areal extension of the reservoir. The field contains an estimated 3.1 billion barrels of oil-in-place. The project will involve the installation of fixed platforms and production platforms. Electric submersible pumps (ESPs) and multiphase pumps will be used to transport the oil from between 17 to 25 wells. Analyses were conducted to determine transport mechanisms as well as gathering networks in both stationary and transitory regimes. The viscosity of live and dead oil in the reservoirs must be accurately measured in relation to temperature in order to define the artificial systems that will be used to reduce viscosity. Results from several studies will be used to determine the feasibility of various chemical, thermal, and diluent applications. 6 refs., 3 figs.

  10. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production

    Science.gov (United States)

    Brandt, Adam R.; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  11. Energy Return on Investment (EROI for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    Directory of Open Access Journals (Sweden)

    Adam R Brandt

    Full Text Available Studies of the energy return on investment (EROI for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs, nor does it include other indirect energy uses such as labor or services.

  12. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  13. 76 FR 33969 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2011-06-10

    ... the allotment percentage from 43 percent to 50 percent. This change is expected to balance the supply... cultural practice in the production of spearmint oil for weed, insect, and disease control. To remain... farms fall into the SBA category of large businesses. Small spearmint oil producers generally are not as...

  14. Overview of DOE Oil and Gas Field Laboratory Projects

    Science.gov (United States)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  15. Produced water reinjection in Campos Basin; Reinjecao de agua produzida na Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Roberta A.; Furtado, Claudio J.A.; Luz Junior, Euripedes B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    To manage the increasing volume of produced water became one of the main challenges in the petroleum industry. PWRI (produced water re-injection) leads to a decrease operational cost in platforms, an increase in liquid flow rates on the topside facilities and a decrease in surface disposal of water. Nowadays in Brazilian fields for every barrel of produced oil three barrels of water need to be handled. PWRI is a process that has been widely diffused in many fields in the world. The main advantages of the PWRI are to reduce collected water, to decrease or eliminate surface disposal of produced water, and to help oil recovery. On the other hand, PWRI tends to increase corrosion when inappropriate materials in tubing and pipelines are used; increase souring potential due to the amount of nutrients for bacteria in the produced water; increase scale formation when sea-water and produced water are mixed and increase formation damage. Even in reservoirs with good qualities in terms of permeability and porosity, the poor quality of the reinjection water decreases injectivity. To minimize injectivity loss some requirements are important: to avoid solids in the produced water system, to inject above fracture propagation pressure to maintain injectivity whenever possible, to use compatible the chemical products for oil-water separation to avoid the formation solids-oil agglomerates. (author)

  16. Abu Dhabi presses oil development program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Abu Dhabi Co. for Onshore Operations (ADCO), the biggest oil producer in the United Arab Emirates, reports 1991 was a successful year despite the Persian Gulf war. Meantime, Abu Dhabi's Zakum, the second largest oil field in the Persian Gulf, boosted production to more than 300,000 b/d, and officials said production will rise further when a platform complex is recommissioned in 1993

  17. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  18. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  19. Application of oil-field well log interpretation techniques to the Cerro Prieto Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Phillips, L.B.; Dougherty, E.L.; Handy, L.L.

    1979-10-01

    An example is presented of the application of oil-field techniques to the Cerro Prieto Field, Mexico. The lithology in this field (sand-shale lithology) is relatively similar to oil-field systems. The study was undertaken as a part of the first series of case studies supported by the Geothermal Log Interpretation Program (GLIP) of the US Department of Energy. The suites of logs for individual wells were far from complete. This was partly because of adverse borehole conditions but mostly because of unavailability of high-temperature tools. The most complete set of logs was a combination of Dual Induction Laterolog, Compensated Formation Density Gamma Ray, Compensated Neutron Log, and Saraband. Temperature data about the wells were sketchy, and the logs had been run under pre-cooled mud condition. A system of interpretation consisting of a combination of graphic and numerical studies was used to study the logs. From graphical studies, evidence of hydrothermal alteration may be established from the trend analysis of SP (self potential) and ILD (deep induction log). Furthermore, the cross plot techniques using data from density and neutron logs may help in establishing compaction as well as rock density profile with depth. In the numerical method, R/sub wa/ values from three different resistivity logs were computed and brought into agreement. From this approach, values of formation temperature and mud filtrate resistivity effective at the time of logging were established.

  20. Assessment of potential increased oil production by polymer-waterflood in northern and southern mid-continent oil fields. Progress report for the quarter ending December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Six tasks are reported on: geological and engineering study of the DOE-Kewanee polymer-augmented waterflood, review of polymer injection program in this field, evaluation of results of polymer-augmented waterflood in this field, review of geological and engineering characteristics of oil fields now in waterflood as candidates for polymer augmentation, review of fields currently under primary production, and determination of ranges of future increased oil production from the polymer-water process in the project area.

  1. Increased oil recovery: secondary and tertiary. Application and future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, R L

    1978-01-01

    Oil is initially produced using the nature reservoir pressure present, in a process called primary oil recovery. Secondary recovery uses artificial means to increase the natural reservoir pressure; tertiary, or enhanced oil recovery, uses a number of methods to enhance the flow characteristics of the oil. The scope for such techniques to increase the yield from oil fields in the US is estimated; the practicality of their application is shown to be particularly dependent upon pricing, taxation, and other existing policies. 16 references.

  2. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    Science.gov (United States)

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  3. The Gothic shale of the Pennsylvanian Paradox Formation Greater Aneth Field (Aneth Unit) Southeastern Utah U.S.A.: Seal for Hydrocarbons and Carbon Dioxide Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chidsey, Thomas C. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Carney, Stephanie M. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Bereskin, S. R. [Bereskin and Associates, Salt Lake City (United States)

    2017-05-01

    Greater Aneth oil field, Utah’s largest oil producer, was discovered in 1956 and has produced over 483 million barrels of oil. Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian (Desmoinesian) Paradox Formation. Because Greater Aneth is a mature, major oil field in the western U.S., and has a large carbonate reservoir, it was selected to demonstrate combined enhanced oil recovery and carbon dioxide storage. The Aneth Unit in the northwestern part of the field has produced over 160 million barrels of the estimated 386 million barrels of original oil in place—a 42% recovery rate. The large amount of remaining oil made the Aneth Unit ideal to enhance oil recovery by carbon dioxide flooding and demonstrate carbon dioxide storage capacity.

  4. Biogeographic patterns of microbial communities from different oil-contaminated fields in China

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yuting; Li, Guanghe [School of Environment, Tsinghua University (China); Zhou, Ji zhong [Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma (United States)], email: jzhou@ou.edu

    2011-07-01

    Some striking biological challenges of the 21st century include linking biodiversity to ecosystem functions, information scaling, and linking genomics to ecology. This paper discusses the biogeographic patterns of microbial communities from various oil-contaminated fields in China. Two kinds of high throughput approaches are used, open format and closed format. Key differences between them are outlined. The GeoChip, or functional gene array (FGA) approach is presented. This is a high throughput tool for linking community structure to functions. Its main advantages are its high resolution and detecting functions. This approach was applied to soils, bioreactors and ground waters, among others. Issues related to specificity, sensitivity and quantification are listed. An overview of the microarray analysis is given. This is applied to the BP oil spill. 100 samples were chosen from representative oil fields to study the biogeographic patterns of microbial communities in China. The complete study is presented with the results.

  5. Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus

    Science.gov (United States)

    Chauveau, Olivier; Eggers, Lilian; Raquin, Christian; Silvério, Adriano; Brown, Spencer; Couloux, Arnaud; Cruaud, Corine; Kaltchuk-Santos, Eliane; Yockteng, Roxana; Souza-Chies, Tatiana T.; Nadot, Sophie

    2011-01-01

    Background and Aims Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. Methods Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. Key Results and Conclusions Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing. PMID:21527419

  6. Saudi Aramco: Oil to a Thirsty Market - International Cooperation Brings New Oil Field on Quickly

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajmi, Ali

    2007-07-01

    In response to high oil demand in 2004, Saudi Aramco committed to build facilities for the 500,000 BOPD Khursaniyah Oil Field in only 34 months from the start of preliminary engineering to startup. The project schedule was six months faster than any previous project, in the most resource competitive market the oil business has ever seen. The execution of this project required a new contract strategy, novel engineering and construction methods, and international cooperation from EPC firms and manufacturers. The project is also building a new one billion SCF per day gas plant receiving gas from five different sources with varying pressure and H2S content, along with huge water supply and injection facilities, oil gathering lines, and product distribution lines. To execute the project in this short time frame, a temporary construction city for 30,000 men has been constructed in the desert. This city has workers from all over 30 countries, speaking more than 15 languages, all focused on achieving one goal - on time completion of the most complex project ever done in Saudi Arabia. The paper will focus on the unique challenges of managing a city of this size that lasts for only 24 months. (auth)

  7. ISOLATION AND IDENTIFICATION OF LIPASE-PRODUCING FUNGI FROM LOCAL OLIVE OIL MANUFACTURE IN EAST OF ALGERIA

    Directory of Open Access Journals (Sweden)

    ALIMA RIHANI

    2018-03-01

    Full Text Available The main objective of this work was primary screening and isolation of lipase-producing microorganisms from oil-mill waste. For the screening of fungal strains with lipolytic activity, we employed a sensitive agar plate method, using a medium supplemented with CaCl2 and Tween 80. Another Tributyrin lipase activity was detected from clearing zones due to the hydrolysis of the triacylglycerols. The evolution of biomass and enzyme production has been assayed. A quantitative analysis of lipase activity was performed by the titration method using olive oil as a substrate supplemented with glucose or Tween 80. We have isolated some lipolytic strains from oil-mill effluent. Three of them were found to be excellent lipase producers that were identified as Penicillium sp, Aspergillus fumigatus and Aspergillus terreus. Lipolytic activity and biomass were enhanced in the medium supplemented by glucose. Tween 80 is also considered as a best inducer at the concentration of 1 %. In this condition, these isolates showed maximum lipase production within 24 h; achieved (3.91 IU‧mL-1 ± 0.12 for Penicillium sp.

  8. Delineation of brine contamination in and near the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana, 2004-09

    Science.gov (United States)

    Thamke, Joanna N.; Smith, Bruce D.

    2014-01-01

    The extent of brine contamination in the shallow aquifers in and near the East Poplar oil field is as much as 17.9 square miles and appears to be present throughout the entire saturated zone in contaminated areas. The brine contamination affects 15–37 billion gallons of groundwater. Brine contamination in the shallow aquifers east of the Poplar River generally moves to the southwest toward the river and then southward in the Poplar River valley. The likely source of brine contamination in the shallow aquifers is brine that is produced with crude oil in the East Poplar oil field study area. Brine contamination has not only affected the water quality from privately owned wells in and near the East Poplar oil field, but also the city of Poplar’s public water-supply wells. Three water-quality types characterize water in the shallow aquifers; a fourth water-quality type in the study area characterizes the brine. Type 1 is uncontaminated water that is suitable for most domestic purposes and typically contains sodium bicarbonate and sodium/magnesium sulfate as the dominant ions. Type 2 is moderately contaminated water that is suitable for some domestic purposes, but not used for drinking water, and typically contains sodium and chloride as the dominant ions. Type 3 is considerably contaminated water that is unsuitable for any domestic purpose and always contains sodium and chloride as the dominant ions. Type 3 quality of water in the shallow aquifers is similar to Type 4, which is the brine that is produced with crude oil. Electromagnetic apparent conductivity data were collected in the 106 square-mile area and used to determine extent of brine contamination. These data were collected and interpreted in conjunction with water-quality data collected through 2009 to delineate brine plumes in the shallow aquifers. Monitoring wells subsequently were drilled in some areas without existing water wells to confirm most of the delineated brine plumes; however, several possible

  9. Effect of cold water injection on operation of and oil production from formations of Romashkino field

    Energy Technology Data Exchange (ETDEWEB)

    Mingareev, R Sh; Vakhitov, G G; Sultanov, S A

    1968-11-01

    Each year about 130 million cu m of cold water are injected into this field. Since cold water can lower reservoir temperature, increase oil viscosity, deposit paraffin in the formation, and reduce oil recovery, a thermal survey of this field was conducted. The survey showed that the average reservoir temperature was not reduced by cold-water injection for 15 yr. However, local cooling was observed at distances less than 400 m from the water injection well. Through these wells more than 4 PV of water have passed. The thermal front lags 1,500 m behind the advancing water front. For this reason, cold-water injection does not reduce oil recovery where there is uniform advance of the floodwater. When the formation is heterogeneous so that water advances more rapidly in high-permeability sand than in adjoining low-permeability sand, then the cooling effect can reduce oil recovery. For this reason, it is advisable to force water into the entire interval of the oil formation. An isotherm map of the Romashkino field is shown.

  10. Radioactivity in produced water from Norwegian oil and gas installations - concentrations, bioavailability and doses to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, R.; Eriksen, D. Oe.; Straalberg, E.; Iden, K. I.; Rye, H.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M. H. G.

    2006-03-15

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. Preliminary results indicate that presence of added chemicals such as scale inhibitors in the produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bio-availability of radium (and barium) may be larger than anticipated. Also, the bio-availability of radium may be increased due to presence of such chemicals, and this is presently being studied. (author) (tk)

  11. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  12. Efficient way of importing crude oil from oil producing countries - A review on diversification policy of crude oil import

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dal Sok [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    Since the second oil crisis, the government has operated the import diversification support program to reduce the risk of crude oil import from Middle-East region and to raise the ability of dealing with the risk. This study tried to seek policy trends in future through reviewing the market environment related to the crude oil import diversification policy and the goal, instrument and effect of the policy. The supply and demand of crude oil and the price are influenced by market system in the world oil market and there are various types of crude oil trading available to both sellers and buyers. There is a probability that the suspension of supply in a certain area could be led to the price issue rather than the physical use of crude oil. In addition, the advantage of price with long-term contract of crude oil was abolished since the price of crude oil imported by term contract has been linked to spot prices. As a result, it is shown that the potential benefit from crude oil import diversification policy is reduced although political and social insecurity still exists in Middle-East region. Therefore, it is desirable to maintain the existing support program until the amount of stored oil reaches the optimum level and to help private enterprises determine the import considering economical efficiency and risk. (author). 36 refs., 5 figs., 23 tabs.

  13. Optimal gasoline tax in developing, oil-producing countries: The case of Mexico

    International Nuclear Information System (INIS)

    Antón-Sarabia, Arturo; Hernández-Trillo, Fausto

    2014-01-01

    This paper uses the methodology of Parry and Small (2005) to estimate the optimal gasoline tax for a less-developed oil-producing country. The relevance of the estimation relies on the differences between less-developed countries (LDCs) and industrial countries. We argue that lawless roads, general subsidies on gasoline, poor mass transportation systems, older vehicle fleets and unregulated city growth make the tax rates in LDCs differ substantially from the rates in the developed world. We find that the optimal gasoline tax is $1.90 per gallon at 2011 prices and show that the estimate differences are in line with the factors hypothesized. In contrast to the existing literature on industrial countries, we show that the relative gasoline tax incidence may be progressive in Mexico and, more generally, in LDCs. - Highlights: • We estimate the optimal gasoline tax for a typical less-developed, oil-producing country like Mexico. • The relevance of the estimation relies on the differences between less-developed and industrial countries. • The optimal gasoline tax is $1.90 per gallon at 2011 prices. • Distance-related pollution damages, accident costs and gas subsidies account for the major differences. • Gasoline tax incidence may be progressive in less developed countries

  14. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott M. [Illinois State Geological Survey, Champaign, IL (United States); Krapac, Ivan G. [Illinois State Geological Survey, Champaign, IL (United States); Damico, James R. [Illinois State Geological Survey, Champaign, IL (United States); Okwen, Roland T. [Illinois State Geological Survey, Champaign, IL (United States); McKaskle, Ray W. [Illinois State Geological Survey, Champaign, IL (United States)

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  15. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Langhus, B. G.; Belieu, S.

    1999-01-31

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely

  16. Feasibility to apply the steam assisted gravity drainage (SAGD) technique in the country's heavy crude-oil fields

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Orjuela, Jaime

    2004-01-01

    The steam assisted gravity drainage (SAGD) processes are one of the most efficient and profitable technologies for the production of heavy crude oils and oil sands. These processes involve the drilling of a couple of parallel horizontal wells, separated by a vertical distance and located near the oil field base. The upper well is used to continuously inject steam into the zone of interest, while the lower well collects all resulting fluids (oil, condensate and formation water) and takes them to the surface (Butler, 1994). This technology has been successfully implemented in countries such as Canada, Venezuela and United States, reaching recovery factors in excess of 50%. This article provides an overview of the technique's operation mechanism and the process most relevant characteristics, as well as the various categories this technology is divided into, including all its advantages and limitations. Furthermore, the article sets the oil field's minimal conditions under which the SAGD process is efficient, which conditions, as integrated to a series of mathematical models, allow to make forecasts on production, thermal efficiency (ODR) and oil to be recovered, as long as it is feasible (from a technical point of view) to apply this technique to a defined oil field. The information and concepts compiled during this research prompted the development of software, which may be used as an information, analysis and interpretation tool to predict and quantify this technology's performance. Based on the article, preliminary studies were started for the country's heavy crude-oil fields, identifying which provide the minimum conditions for the successful development of a pilot project

  17. Microbiological method for exploitation of oil deposits with a high mineralization of interstitial waters

    Energy Technology Data Exchange (ETDEWEB)

    Senyukov, V M; Yulbarisov, E M; Taldykina, N N; Shishenina, E P

    1970-07-01

    A literature review is made of microbiological processes suitable for secondary oil recovery. On the basis of literature data, basic experiments were conducted in the Arlansk field. This field has viscous oil, highly mineralized connate water (rho = 1.18) and permeability above 1,000 md. A mixture of aerobic and anaerobic bacteria with nutrient was injected through one well, then 650 cu m of fresh water was injected. Mineralogical and bacteriological analyses were made of produced fluids in nearby wells. Both aerobic and anaerobic bacteria were found in produced fluids, 600 m from the injection wells. On the basis of this result, it was concluded that microbiological processes can be used to increase secondary recovery of oil. However, no oil recovery data are presented. (10 refs.)

  18. The future of oil and bioethanol in Brazil

    International Nuclear Information System (INIS)

    Moreira, Jose R.; Pacca, Sergio A.; Parente, Virginia

    2014-01-01

    This work compares the return on investments (ROI) of oil versus biofuels in Brazil. Although several renewable energy sources might displace oil, the country's forte is sugarcane biofuels. In our analysis we carry out simplified benefit–cost analyses of producing oil fields, pre-salt oil fields (without and with enhanced oil recovery), a business as the usual ethanol scenario, and a high ethanol scenario. Excluding the ROI from existing oil fields, which is the highest, when the discount rate is 4% or more, the ROI of the high ethanol scenario is greater than that of the ROI of pre-salt oil. Considering a US$40/t CO 2 tax, the high ethanol scenario's ROI is greater than the pre-salt oil's ROI if a discount rate of 2% or more is adopted. Moreover, the high ethanol scenario throughput up to 2070 compares to 97% of the pre-salt oil reserve without EOR, and demands 78% of its investment. Pre-salt oil production declines beyond 2042 when the country might become a net oil importer. In contrast, ethanol production reaches 2.1 million boe per day, and another 0.9 million boe of fossil demand is displaced through bioelectricity, yielding a total of 3 million boe (62% of the country's oil demand). - Highlights: • Cost-benefit analyses of pre-salt and biofuels in Brazil. • Hubbert model applied to pre-salt oil reserves. • Sustainable energy scenarios. • Carbon mitigation accounting based on biofuel scenarios. • Enhanced oil recovery effect on pre-salt oil reserves

  19. Some characteristics in operation of long exploited oil fields in Fergana depression. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Gordinskii, E V; Ovanesov, M G; Irmatov, E K

    1969-01-01

    A review of geological and oil production data from 3 Fergana fields is presented. The reservoirs are small, tectonically bounded, and are anticlines of Paleogenic carbonates. Reservoirs are heterogeneous with porosity ranging from 3 to 25% and permeability ranging from a few to 500 md. Some of the reservoirs have expanding gas caps, some are solution drive, and others have been waterflooded. All are now in the final stage of depletion. Production history and characteristics of each group are given. One way of increasing present production rate appears to be injection of gas or air into the reservoirs. This can be done inexpensively, since additional injection wells would not have to be drilled and some produced gas is available. Increased fluid withdrawal from present wells should also be beneficial.

  20. A cost-benefit analysis of produced water management opportunities in selected unconventional oil and gas plays

    Science.gov (United States)

    Marsters, P.; Macknick, J.; Bazilian, M.; Newmark, R. L.

    2013-12-01

    Unconventional oil and gas production in North America has grown enormously over the past decade. The combination of horizontal drilling and hydraulic fracturing has made production from shale and other unconventional resources economically attractive for oil and gas operators, but has also resulted in concerns over potential water use and pollution issues. Hydraulic fracturing operations must manage large volumes of water on both the front end as well as the back end of operations, as significant amounts of water are coproduced with hydrocarbons. This water--often called flowback or produced water--can contain chemicals from the hydraulic fracturing fluid, salts dissolved from the source rock, various minerals, volatile organic chemicals, and radioactive constituents, all of which pose potential management, safety, and public health issues. While the long-term effects of hydraulic fracturing on aquifers, drinking water supplies, and surface water resources are still being assessed, the immediate impacts of produced water on local infrastructure and water supplies are readily evident. Produced water management options are often limited to underground injection, disposal at centralized treatment facilities, or recycling for future hydraulic fracturing operations. The costs of treatment, transport, and recycling are heavily dependent on local regulations, existing infrastructure, and technologies utilized. Produced water treatment costs also change over time during energy production as the quality of the produced water often changes. To date there is no publicly available model that evaluates the cost tradeoffs associated with different produced water management techniques in different regions. This study addresses that gap by characterizing the volume, qualities, and temporal dynamics of produced water in several unconventional oil and gas plays; evaluating potential produced water management options, including reuse and recycling; and assessing how hydraulic

  1. Have we run out of oil yet? Oil peaking analysis from an optimist's perspective

    International Nuclear Information System (INIS)

    Greene, David L.; Hopson, Janet L.; Li Jia

    2006-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of 'running out' of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources

  2. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  3. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  4. Methodology for oil field development; Metodologia para o desenvolvimento de campos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Galeano, Yadira Diaz

    1998-07-01

    The main scope of this work is to study and develop a methodology which allows the elaboration of project for oil field development. There fore it is necessary to consider to consider the integration of the human, technological and economical issues that are important parameters in the engineering project. The spiral concept was applied for the project in order to coordinate, in a reasonable and logical way, the activities involved in the field development, as well as the hierarchical analysis method for the decision making process. The development of an oil field is divided in viability study, preliminary project, final project, project implementation, production and field abandonment cycles. The main components for each cycle are external aspects, environmental criteria, reservoir management, and drilling, completion and well workover, production systems, exportation systems, and risk and economical analysis. The proposed methodology establishes a general scheme for planning and it presents applicable procedures for any field. (author)

  5. Palm oil based polymer materials obtained by ROMP: study by low field NMR; Materiais polimericos obtidos via ROMP a partir de oleo de palma: estudo por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S., E-mail: benedito@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil)

    2015-07-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  6. Palm oil based polymer materials obtained by romp: study by low field NMR; Materiais polimericos obtidos via ROMP a partir de oleo de palma: estudo por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Henrique; Lima-Neto, Benedito S., E-mail: benedito@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica de; Azevedo, Eduardo R. de [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica

    2013-07-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  7. Fluid diversion in oil recovery

    International Nuclear Information System (INIS)

    Nimir, Hassan B.

    1999-01-01

    In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)

  8. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  9. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  10. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  11. Biosurfactant production by Mucor circinelloides on waste frying oil and possible uses in crude oil remediation.

    Science.gov (United States)

    Hasanizadeh, Parvin; Moghimi, Hamid; Hamedi, Javad

    2017-10-01

    Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO 4 . M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.

  12. The value of flexibility in offshore oil field development projects

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Morten Wattengaard

    1997-12-31

    Offshore oil field development projects often face substantial uncertainties and the operator`s ability to take corrective actions is very important. The main objective of this thesis was to identify the value of flexibility in such projects. Estimates obtained from exploratory wells can be dependent through common information. The effect of stochastic dependence was illustrated by an analytical model, where the dependence was expressed in terms of correlation between estimate errors. It was found that a high degree of correlation might distort the benefit of additional exploration. A prototype that covered the major phases of the project was developed to study the value of flexibility. The prototype was a Markov decision process, solved by stochastic dynamic programming. Based on discussions with Norwegian oil companies, three uncertain variables were addressed: the reservoir volume, the well rate, and the oil price. Simple descriptions were used to mimic the uncertainty. The reservoir was thus depicted as a tank model, and the well rate and oil prices were assumed to follow Markov processes. Flexibility was restricted to managerial as opposed to financial flexibility. Application of the prototype to a case study, based on an ongoing field development, showed that flexibility might be of considerable value to the project. In particular, capacity flexibility and initiation flexibility were identified as important aspects of the development. The results also emphasized the importance of a joint assessment, as the values of different flexibility types are not additive. In conclusion, the proposed model motivates further development of the decision support system presently available. Future decision making should therefore be made within a framework that gives consideration to flexibility. 129 refs., 46 figs., 23 tabs.

  13. Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process

    Directory of Open Access Journals (Sweden)

    Sri Kadarwati

    2015-02-01

    Full Text Available Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni at various reaction temperatures (400-500oC in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO32.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion

  14. The tax aspects of mature fields of oil and the reduction of regional inequalities in Brazil; Aspectos fiscais dos campos maduros de petroleo e reducao das desigualdades regionais no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Passeggi, Alicia Violeta B.S. [Instituto Brasileiro de Petroleo, Gas e Biocombustiveis (IBP), Rio de Janeiro, RJ (Brazil); Bichara, Jahyr-Philippe [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Considering the important role played in internalizing national development by the small and medium size oil producers, the work approaches the tax aspects in the activity of mature fields' exploitation, relating it to the constitutional principle of reduction of regional inequalities, which is deeply developed in the Brazilian Federal Constitution of 1988. The birth of a new class of independent producers, in a scene before dominated by one single actor, is a phenomena that demands special attention from the State as 'regulator', because it includes several relevant aspects to the achievement of national objectives, legally imposed, such as: free enterprise, the pursuit of plain employment, the reduction of regional inequalities, a favored treatment to enterprises of small size, the conservation of energy, the rational use of oil, among others. Despite its relevance, the exploitation of mature fields suffers an absence of specific regulation, e.g., in what concern the imprecise terminology of mature fields. It was verified through the research, that the tax regime does not take into consideration neither the reduced contributive capacity of the small and medium size producers, nor its important function in the regional and energy subjects. (author)

  15. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  16. Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field

    Science.gov (United States)

    Islam, Nayyer

    One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990's. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three post-stack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when

  17. Application of large computers for predicting the oil field production

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, W; Gunkel, W; Marsal, D

    1971-10-01

    The flank injection drive plays a dominant role in the exploitation of the BEB-oil fields. Therefore, 2-phase flow computer models were built up, adapted to a predominance of a single flow direction and combining a high accuracy of prediction with a low job time. Any case study starts with the partitioning of the reservoir into blocks. Then the statistics of the time-independent reservoir properties are analyzed by means of an IBM 360/25 unit. Using these results and the past production of oil, water and gas, a Fortran-program running on a CDC-3300 computer yields oil recoveries and the ratios of the relative permeabilities as a function of the local oil saturation for all blocks penetrated by mobile water. In order to assign kDwU/KDoU-functions to blocks not yet reached by the advancing water-front, correlation analysis is used to relate reservoir properties to kDwU/KDoU-functions. All these results are used as input into a CDC-660 Fortran program, allowing short-, medium-, and long-term forecasts as well as the handling of special problems.

  18. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  19. Gela offshore field

    Energy Technology Data Exchange (ETDEWEB)

    Pagliughi, G

    1965-06-01

    The field of Gela, off the southern shore of Sicily, is the only producing offshore field in the Mediterranean. It produces from Triassic dolimite limestones of 434-m thickness, water level at -3517 m. It is a water-drive reservoir producing 10/sup 0/F API oil and has 79 wells, some of them on shore. Most offshore wells are directional wells from shore; there are also 2 fixed platforms and a special mobile platform. The wells are on pump (stroke, 72 in.; capacity 200 tons per day). The crude goes directly to a combination refinery-petrochemical complex at Gela.

  20. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-02-01

    Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

  1. A new experimental method to prevent paraffin - wax formation on the crude oil wells: A field case study in Libya

    Directory of Open Access Journals (Sweden)

    Elhaddad Elnori E.

    2015-01-01

    Full Text Available Wax formation and deposition is one of the most common problems in oil producing wells. This problem occurs as a result of the reduction of the produced fluid temperature below the wax appearance temperature (range between 46°C and 50°C and the pour point temperature (range between 42°C and 44°C. In this study, two new methods for preventing wax formation were implemented on three oil wells in Libya, where the surface temperature is, normally, 29°C. In the first method, the gas was injected at a pressure of 83.3 bar and a temperature of 65°C (greater than the pour point temperature during the gas-lift operation. In the second method, wax inhibitors (Trichloroethylene-xylene (TEX, Ethylene copolymers, and Comb polymers were injected down the casings together with the gas. Field observations confirmed that by applying these techniques, the production string was kept clean and no wax was formed. The obtained results show that the wax formation could be prevented by both methods.

  2. Linear least-squares method for global luminescent oil film skin friction field analysis

    Science.gov (United States)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  3. Industry sector analysis, Mexico: Oil and gas field machinery and equipment. Export Trade Information

    International Nuclear Information System (INIS)

    1990-04-01

    The Industry Sector Analyses (I.S.A.) for oil and gas field machinery and equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Mexican consumers to U.S. products, the competitive situation - Mexican production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Mexican tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Mexican market for oil and gas field machinery and equipment

  4. Case study in Venezuela : performance of multiphase meter in extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-10-15

    The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.

  5. Reserve growth in oil pools of Alberta : model and forecast

    Energy Technology Data Exchange (ETDEWEB)

    Verma, M.; Cook, T. [United States Geological Survey, Denver, CO (United States). Central Region

    2010-09-15

    This paper presented a reserve growth study that was conducted on oil pools in Alberta, Canada. Historical oil reserve data were evaluated to assess the potential for future reserve growth in both pools and fields, and reserve growth models and functions were developed to better forecast hydrocarbon volumes. The study also considered the sensitivity of reserve growth to such factors as pool size, porosity, and oil gravity. From 1960 to 2005, the reported known recoverable oil in Alberta, excluding the Athabasca oil sands and including only pools with adequate data, increased from 4.2 to 13.9 billion barrels of oil (BBO). New discoveries contributed 3.7 BBO and reserve growth added 6 BBO. Most reserve growth occurred in pools with more than 125,000 barrels of oil. Light-oil pools account for most of the total known oil volume and consequently showed the lowest growth. Pools with greater than 30 percent porosity grew more than pools with lower porosity reservoirs. Oil field growth was found to be almost twice that of pool growth, possibly because the analysis evaluated fields with two or more pools discovered in different years. The growth in oil volumes in Alberta pools is projected to be about 454 million barrels of oil in the period from 2006 to 2010. Over a 25-year period, the cumulative reserve growth in Alberta oil pools was substantially lower than other major petroleum-producing regions, but the growth at the field level compares well. 8 refs., 2 tabs., 9 figs.

  6. Research on the spatial structure of crude oil flow and the characteristics of its flow field in China

    International Nuclear Information System (INIS)

    Zhao, Yuan; Hao, Li-Sha; Wan, Lu

    2007-01-01

    Crude oil flow is a sort of oil spatial movement, and in China, it is large scale and covers wide area with extensive social-economic effects. This paper analyses the spatial structure of crude oil flow in China, the characters of its flow field and the layout of its flow track. The results show that oil flow in China has a spatial characteristic of centralized output and decentralized input; its spatial structure is composed of Source System in the shape of right-angled triangle, Confluence System in the shape of right-angled trapezium and Multiplex System in the shape of obtuse-angled triangle, which are mutually nested, and on a whole, the presence of Multiplex System balances and optimizes the flow layout; oil flow field in China can be divided into four parts, i.e. the North, North-west, East and South Field, two or three of which overlap with each other, extending the oil flow and making the flow more flexible and maneuverable; oil flow track is a multi-objective decision-making route and in the decision-making process oil transportation cost is one of the essential factors, in China, oil flow track falls into the Northeast, North, East, Northwest and South five cluster regions, which connect with each other, and series-parallel connection between various kinds of transportation channels is widely seen in them, reinforcing the supply security of crude oil

  7. Simulation studies of steam-propane injection for the Hamaca heavy oil field

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, G.J.; Mamora, D.D. [Texas A and M Univ., Austin, TX (United States)

    2003-07-01

    Laboratory experiments have been conducted at Texas A and M University to examine the use of steam additives such as propane, methane and nitrogen to improve the production of heavy oils and increase steam recovery efficiency. In particular, the use of steam-propane injection for heavy Hamaca crude oil with API gravity of 9.3 and viscosity of 25,000 cp at 50 degrees C was examined. Experimental runs involved the injection of steam or propane into injection cells at a constant rate, temperature and cell outlet pressure. The experimental results suggest that the use of steam-propane injection may translate to reduction of fuel costs for field injections. Initially, propane-steam injection resulted in a two-month oil production acceleration compared to pure steam injection. A significant gain in discounted revenue and savings in steam injection costs could be realized. The study also showed the oil product rate peak with steam-propane injection was much higher than that with pure steam injection. The oil production acceleration increases with increasing propane content. Oil recovery at the end of a five-year forecast period increases by 6.7 per cent of original oil in place (OOIP) compared to 2.3 per cent OOIP with pure steam injection. 12 refs., 6 tabs., 28 figs.

  8. Gas migration from oil and gas fields and associated hazards

    International Nuclear Information System (INIS)

    Gurevich, A.E.; Endres, B.L.; Robertson Jr, J.O.; Chilingar, G.V.

    1993-01-01

    The migration of gas from oil and gas formations to the surface is a problem that greatly affects those surface areas where human activity exists. Underground gas storage facilities and oil fields have demonstrated a long history of gas migration problems. Experience has shown that the migration of gas to the surface creates a serious potential risk of explosion, fires, noxious odors and potential emissions of carcinogenic chemicals. These risks must be seriously examined for all oil and gas operations located in urban areas. This paper presents the mechanics of gas migration, paths of migration and a review of a few of the risks that should be considered when operating a gas facility in an urban area. The gas can migrate in a continuous or discontinuous stream through porous, water-filled media to the surface. The primary force in this migration of gas is the difference between specific weights of gas and water

  9. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  10. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  11. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    Science.gov (United States)

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  12. Oil Producers vulnerability: restrictions for oil supply strategy - OPEC, Mexico and Norway; Indicadores de vulnerabilidade do produtor de petroleo: restricoes a estrategia de oferta - OPEP, Mexico and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Fernanda; Schaeffer, Roberto; Szklo, Alexandre [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Few analysts address the socio-economic vulnerability faced by large oil producers countries that restricts their oil supply strategies. However, such as net import countries may be vulnerable to oil supply, large oil exporters countries may also become vulnerable due to their socio-economic dependence on oil, as export revenues are so important to their wealth generation and their populations' well-fare status. The objective of this paper is to evaluate the vulnerabilities of some oil exporters as the OPEC's member-countries, Mexico and Norway face, or may face, and that may restrict their degree of freedom for productive decision making (including investments) and for elaborating oil supply strategies (aiming at taking a larger share of the oil revenue). In order to do that this paper is divided in 3 sections. Initially, socio-economic vulnerability indicators for the oil exporting countries are presented, built and analyzed. Socio-economic vulnerability indicators comprehend, for instance, the following dimensions: physical, productive, fiscal, commercial, macroeconomic and social. The next section regards the application of a multi criteria method, the AHP - Analytic Hierarchy Process in order to summarize and organize the indicators. Finally, implications of the socio-economic vulnerabilities of these oil export countries for the world oil supply and price are derived. (author)

  13. Hyperspectral imaging of oil producing microalgae under thermal and nutritional stress.

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, Mark Hilary; Davis, Ryan W.; Ricken, James Bryce; Powell, Amy Jo; Keenan, Michael Robert

    2008-09-01

    This short-term, late-start LDRD examined the effects of nutritional deprivation on the energy harvesting complex in microalgae. While the original experimental plan involved a much more detailed study of temperature and nutrition on the antenna system of a variety of TAG producing algae and their concomitant effects on oil production, time and fiscal constraints limited the scope of the study. This work was a joint effort between research teams at Sandia National Laboratories, New Mexico and California. Preliminary results indicate there is a photosystem response to silica starvation in diatoms that could impact the mechanisms for lipid accumulation.

  14. Oil field and freshwater isolates of Shewanella putrefaciens have lipopolysaccharide polyacrylamide gel profiles characteristic of marine bacteria

    International Nuclear Information System (INIS)

    Pickard, C.; Foght, J.M.; Pickard, M.A.; Westlake, D.W.S.

    1993-01-01

    The lipopolysaccharide structure of oil field and freshwater isolates of bacteria that reduce ferric iron, recently classified as strains of Shewanella putrefaciens, was analyzed using polyacrylamide gel electrophoresis and a lipopolysaccharide-specific silver-staining procedure. The results demonstrate that all the oil field and freshwater isolates examined exhibited the more hydrophobic R-type lipopolysaccharide, which has been found to be characteristic of Gram-negative marine bacteria. This hydrophobic lipopolysaccharide would confer an advantage on bacteria involved in hydrocarbon degradation by assisting their association with the surface of oil droplets. 15 refs., 1 fig

  15. Manitoba 2004 oil activity review

    International Nuclear Information System (INIS)

    Fox, J.N.

    2005-01-01

    This paper presented data on oil and gas activities in Manitoba during 2004, the busiest year in Manitoba's oil patch since the mid 1980s. Increases in the leasing of Crown and freehold acreage were also noted, with accompanying increases in drilling activity for the latter part of 2004. Details of Crown land sales were presented, with a total of 43,725 hectares of crown oil and gas rights under lease. During 2004, over 15,000 hectares of Crown oil and gas leases were sold, the highest figures since 1997. More wells were licensed and drilled in 2004 than in any year since 1986. Overall drilling success rate was 96.7 per cent. Details of top drillers in Manitoba were presented, with drilling activity focused in Waskada and Daly fields and the Sinclair area. Oil production increased by 0.7 per cent, with 1474 wells in production. Daily oil production statistics were presented, with the total value of Manitoba's oil production being $196 million. Details of the top 5 producers were provided, in addition to details of horizontal well production. Recent developments in Sinclair Field, Pierson L. Amaranth MC 3b A Pool, Waskada L. Amaranth I Pool and Virden Lodgepole D Pool were reviewed. The Manitoba Drilling Incentive Program was discussed with reference to the following enhancements: new well incentives, horizontal well incentives; holiday oil volume accounts; and marginal well major workover programs. Various Oil and Gas Act amendments were reviewed. In addition, the Williston Basin Architecture and Hydrocarbon Potential Project was discussed. 3 figs

  16. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  17. Exploration and development of offshore oil and gas fields. [North Sea

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    In the last 9 years, the British companies, based on their rich engineering and commercial experience, have directed a considerable part of their material and manpower resources at developing oil and gas fields in the North Sea. The technological innovations used by British industry are: aero- and marine surveys to prospect for oil, underwater laying of pipelines, arrangement of platforms, etc.; exploratory drilling in the open sea and on dry land; design of platforms with regard for the depth of the water and unique weather conditions of the North Sea, their assembly and development; use of auxiliary ships and helicopters, and diving equipment.

  18. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? (a...

  19. Multivariate statisticalmethods applied to interpretation of saturated biomarkers (Velebit oil field, SE Pannonian Basin, Serbia

    Directory of Open Access Journals (Sweden)

    TATJANA SOLEVIC

    2006-07-01

    Full Text Available Twenty-five crude oils originating from the Velebit oil field (SE Pannonian Basin, the most important oil field in Serbia, were investigated. Saturated biomarkers (n-alkanes, isoprenoids, steranes and triterpanes were analyzed by gas chromatography-mass spectrometry (GC-MS. Based on the distribution and abundance of these compounds, a large number of source and maturation parameters were calculated, particularly those most often used in correlation studies of oils. The examined samples were classified according to their origin and level of thermal maturity using factor, cluster and discriminant analyses. According to the source and maturation parameters, combined factor and cluster analyses using the Ward method enabled the categorization of the investigated oils into three groups. The cluster Ward analysis was shown to be of greater susceptibility and reliability. However, in addition to the two aforementioned methods, K-Means cluster analysis and discriminant analysis were shown to be necessary for a more precise and detailed categorization in the case of a large number of samples in one group. Consequently, it was concluded that factor and cluster K-Means andWard analyses can generally be used for the interpretation of saturated biomarkers in correlation studies of oils, but the observed results have to be checked, i.e., confirmed by discriminant analysis.

  20. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-12-31

    , multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to

  1. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-05-31

    , multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to

  2. MAJOR OIL PLAYS IN UTAH AND VICINITY

    International Nuclear Information System (INIS)

    Chidsey, Thomas C.; Morgan, Craig D.; McClure, Kevin; Willis, Grant C.

    2003-01-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m 3 ). However, the 13.7 million barrels (2.2 million m 3 ) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are

  3. Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding

    Science.gov (United States)

    Ramlee, Azierah; Chiam, Chel-Ken; Sarbatly, Rosalam

    2018-05-01

    This work presents a study of destabilization of oil droplets in the produced water from alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory-fabricated polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were fabricated via immersion precipitation method with ethanol (0 - 30 %, v/v) as the coagulant. The membranes with the effective area of 17.35 cm2 were tested with synthesized ASP solution as the feed in cross-flow microfiltration process. The ASP feed solution initially contained the oil droplets with radius ranged from 40 to 100 nm and the mean radius was 61 nm. Results have shown that the concentration of the ethanol in the coagulation bath affects the formation of the membrane structure and the corresponding porosity, while no significance influence on the membrane thickness. Coalescence of the oil droplets was occurred when the ASP solution permeated through the asymmetric PVDF membranes. Through the coalescence process, the oil droplets were destabilized where the radius of the oil droplets in the permeates increased to 1.5-4 µm with the corresponding mean radius ranged from 2.4 to 2.7 µm.

  4. An overview of field specific designs of microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E.P.; Bala, G.A.; Fox, S.L.; Jackson, J.D.; Thomas, C.P.

    1995-12-01

    The selection and design of a microbial enhanced oil recovery (MEOR) process for application in a specific field involves geological, reservoir, and biological characterization. Microbially mediated oil recovery mechanisms (biogenic gas, biopolymers, and biosurfactants) are defined by the types of microorganisms used. The engineering and biological character of a given reservoir must be understood to correctly select a microbial system to enhance oil recovery. The objective of this paper is to discuss the methods used to evaluate three fields with distinct characteristics and production problems for the applicability of MEOR technology. Reservoir characteristics and laboratory results indicated that MEOR would not be applicable in two of the three fields considered. The development of a microbial oil recovery process for the third field appeared promising. Development of a bacterial consortium capable of producing the desired metabolites was initiated and field isolates were characterized.

  5. Steam heating of local well bore area in light crude oil horizons

    Energy Technology Data Exchange (ETDEWEB)

    Mikerin, B P

    1968-02-01

    Beneficial results were obtained from a series of small steam injection treatments of oil producing wells in Asfaltov field. In this field, spacing between producing wells is 200 m, well depth is about 450 m, formation temperature is 27$C, oil gravity is 0,845 g/cu cm, and oil viscosity is 6-10 Hz. In every treatment, 200 g of ''disolvan'' was added per ton of steam, to minimize clay swelling in the formation. Form treatment results it is concluded that: (1) steam stimulation gives positive results 65% of the time; (2) best results were obtained in compact sand formations, 5-6 m thick; (3) positive results last up to one yr after steam soak; (4) with repeated treatments oil production increases 1.5-2 times; (5) temperature of steam during flow from wellhead to well bottom at 350 m, is decreased by 25%; and (6) about 1.3 million kcal were used per 1 m of net sand thickness.

  6. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Discussion of oil pollution in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    Oil pollution in Argentina, at the port of Comodora Rivadavia showed signs of long-term oil pollution of a nature which would not be tolerated in relation to the exploitation of North Sea oil. The field is operated by Yacimientos Petroliferos Fiscales (Argentine), produces 70,000 bbl/day of oil from onshore and offshore wells, and has been in operation since 1907. A very marked ''tideline'' of bituminous oil residues contaminates the harbor installations and completely covers the pebbles, boulders, and rocks in the intertidal region. This material is of a considerable thickness and has completely obliterated any form of littoral marine life in these habitats. The sandy beach does not show signs of accumulative oil, and it is used as an important recreational area. Since seriously oiled seabirds can be seen, it is surprising that Patagonian crested ducks, king cormorants, and kelp gulls occur in large numbers but show little sign of oil contamination. The Magellan penguin, which is much less abundant locally, may have been much more vulnerable to the oil.

  8. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  9. Innovating a system for producing and distributing hybrid oil palm seedlings to smallholder farmers in Benin

    NARCIS (Netherlands)

    Vissoh, Pierre V.; Tossou, Rigobert C.; Akpo, Essegbemon; Kossou, Dansou; Jiggins, Janice

    2017-01-01

    This article analyses the development of a system for producing and distributing hybrid oil palm seedlings to small-scale famers. The existing seed system had become so corrupted that the seedlings actually planted were largely of unimproved kinds. The article describes institutional experiments

  10. Oil in Syria between Terrorism and Dictatorship

    Directory of Open Access Journals (Sweden)

    Hussein Almohamad

    2016-05-01

    Full Text Available The sale of oil and gas is one of the most important components of the Syrian economy. Unfortunately, since the discovery of these resources, the Syrian people have not benefited from the revenues earned. This study deals with the development of oil and gas production and the geographical distribution of fields, as well as production control, deterioration of production, refining and selling mechanisms, and the resulting health and environmental impacts following Islamic State’s (IS control of the majority of oilfields in Syria. Since summer 2015, IS controls 80% of the fields with a production of 65,000 barrels per day (b/d; the Assad regime controls 8% of fields with 10,000 b/d; and Kurdish forces dominate the remaining 12% with 25,000 b/d. IS depends on oil as a major source of financing for its military and civilian activities, and has also managed to set up an extensive network of middlemen in neighbouring territories and countries, with the aim of trading crude oil for cash and other resources. IS produces and exports within its areas of control and sells part of the oil to the Assad regime, and another portion to the liberated areas, as well as to Iraq and Turkey.

  11. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.

    Science.gov (United States)

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2016-01-01

    The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Alternatives for optimization of the heavy oil production in onshore marginal fields in Brazil; Alternativas para otimizacao de producao de oleos pesados em campos marginais terrestres no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    The intention of this article is to present possible alternatives for optimization of the production of heavy oils in marginal onshore fields in Brazil. The use of gas micro-turbines, the application of SAGD (Steam Assisted Gravity Drainage), the use of the drilling technique for river crossing and to a proposal for a new system of the rig less workovers are approached. The focus is the search of the increment of the production, the increase of the factor of final recovery, the global reduction of the costs and the minimization of the environmental impacts. The volumes of heavy oils in Campos Basin and in national onshore areas they are significant and, therefore, techniques and procedures that optimize its production are strategic. In the Brazilian Northeast there are a series of small fields of low productivity, in general of heavy oils, some in production there are more than twenty years that need of a reduction of the cost for barrel to continue producing. A realistic and responsible posture with the use of probabilistics concepts, techniques of engineering of the reliability, adoption of 'tolerable' levels of risk (associate to the return), attendance on line of the sceneries, premises and criteria, (proposal of the methodology GERISK), are relevant factors that can propitiate not only the reduction of the cost for produced barrel as well as to take the an increase of the factor of final recovery of the field. (author)

  13. Alternatives for optimization of the heavy oil production in onshore marginal fields in Brazil; Alternativas para otimizacao de producao de oleos pesados em campos marginais terrestres no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    The intention of this article is to present possible alternatives for optimization of the production of heavy oils in marginal onshore fields in Brazil. The use of gas micro-turbines, the application of SAGD (Steam Assisted Gravity Drainage), the use of the drilling technique for river crossing and to a proposal for a new system of the rig less workovers are approached. The focus is the search of the increment of the production, the increase of the factor of final recovery, the global reduction of the costs and the minimization of the environmental impacts. The volumes of heavy oils in Campos Basin and in national onshore areas they are significant and, therefore, techniques and procedures that optimize its production are strategic. In the Brazilian Northeast there are a series of small fields of low productivity, in general of heavy oils, some in production there are more than twenty years that need of a reduction of the cost for barrel to continue producing. A realistic and responsible posture with the use of probabilistics concepts, techniques of engineering of the reliability, adoption of 'tolerable' levels of risk (associate to the return), attendance on line of the sceneries, premises and criteria, (proposal of the methodology GERISK), are relevant factors that can propitiate not only the reduction of the cost for produced barrel as well as to take the an increase of the factor of final recovery of the field. (author)

  14. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  15. Ubit Field-A Comparison of Disturbed Biafra versus Competent Biafra Production after Thirty Years

    International Nuclear Information System (INIS)

    Webb, S. R.; Adagbasa, G. E.; Adereti, O. S.; And others

    2002-01-01

    Ubit field is Mobil Producing Nigeria's largest oil field with an estimated ultimate recovery of 1.1 billion barrels of oil. The field's large oil column (160 feet gross) and sizable areal extent (15.000 acres) are unusual in that they span two reservoir systems: the Competent (stratigraphically normal) and Disturbed (collapsed shelf) Biafra in a single pressure-communicating reservoir. After producing for 30 years, and still going strong, the field provides a natural laboratory for comparing production characteristics between the two reservoir systems. Specifically contrasted and compared are pronounced differences in overall well performance, compartmentalization, areal drainage, and tendencies to cusp water/gas.Production performance between vertical, deviated, and horizontal wells is compared and analyzed for the two reservoir systems. A summary of lessons learned provides insight into the field depletion strategy

  16. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    Science.gov (United States)

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  17. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  18. Ecological aspects in construction of West Siberian oil field surface facilities

    International Nuclear Information System (INIS)

    Scvortzov, I.D.; Crushin, P.N.

    1991-01-01

    The exploitation of arctic regions, where permanently frozen grounds are widespread, leads to problems concerning the climate and the geo-cryological environment. One of the most urgent tasks is to minimize effects on the environment, otherwise irreversible, catastrophic processes, the deterioration of permafrost into swamps, fouling subsoil waters and rivers, ground surface pollution with petroleum products, and destruction of fish and birds, may occur. The measures aimed at providing the environmental ecological equilibrium during the exploitation of the northern oil deposits of West Siberia are described in this paper. These measures are worked out during the design stage. Then appropriate engineering decisions and product procedures are chosen, where much prominence is given to reliability of the oil and gas field facilities. The paper includes information about developing measures for the preventive systematic maintenance of the oil pipelines, maintenance schedule, prediction of accidents and certain procedures for their rectification

  19. Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in riparian areas of the kerian river basin, perak, malaysia.

    Science.gov (United States)

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-12-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.

  20. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid...

  1. Mobil positioning itself to become Canada's premier oil and gas company

    International Nuclear Information System (INIS)

    Thomas, A.

    1994-01-01

    To achieve its goal of becoming Canada's premier oil and gas company by the year 2000, Mobil Oil Canada is empowering its employees and applying appropriate technology to unlock resources and create value. Mobil produces 4.1 million m 3 of oil and natural gas liquids, 5.6 million m 3 /y of natural gas and 438,000 tonnes/y of sulfur. It also operates over 3,000 wells in western Canada and eleven gas processing plants, manages 1,700 km of pipeline, and has 33% interest in the Hibernia project on the Grand Banks. Oil lifting costs have decreased over the past three years from $3.40/bbl to $2.80/bbl and development costs are under $2/bbl. Innovative technology used to achieve high production and low costs include the use of three dimensional seismic surveys and horizontal drilling. Other techniques used at particular sites include installation of downhole injection regulators to control problems of segregation and metering between different water injection zones at the Carson Creek field, use of artificial lifts in gas wells, and a dual gas lift at the Rainbow Lake oil field. At the Lone Pine gas plant, the first Superclaus-99 sulfur recovery process was installed, reducing sulfur emissions by 60% and increasing recovery efficiency from 95% to 98%. Mobil has operated in Canada since 1940 and has made significant discoveries, including Canada's largest producing oil field, the Pembina. In 1971, Mobil discovered gas of commercial significance off the east coast and helped discover the Hibernia and Venture fields. The Hibernia project is scheduled to come on stream in 1997 and Mobil expects the economics of the project to be favorable, with a $12-13/bbl oil price needed to break even. 7 figs

  2. Geospatial Analysis of