WorldWideScience

Sample records for oil combustion disminucion

  1. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  2. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  3. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  4. Combustion of Coal/Oil/Water Slurries

    Science.gov (United States)

    Kushida, R. O.

    1982-01-01

    Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.

  5. Combustive management of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  6. Combustion: an oil spill mitigation tool

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The technical feasibility of using combustion as an oil spill mitigation tool was studied. Part I of the two-part report is a practical guide oriented toward the needs of potential users, while Part II is the research or resource document from which the practical guidance was drawn. The study included theoretical evaluations of combustion of petroleum pool fires under the effects of weathering and an oil classification system related to combustion potential. The theoretical analysis of combustion is balanced by practical experience of oil burning and case history information. Decision elements are provided which can be used as a guide for technical evaluations of a particular oil spill situation. The rationale for assessing technical feasibility is given in the context of other alternatives available for response to an oil spill. A series of research and technology development concepts are included for future research. The ethics of using oil burning are discussed as issues, concerns, and tradeoffs. A detailed annotated bibliography is appended along with a capsule review of a decade of oil burning studies and other support information.

  7. Study on combustion characteristics of petroleum coke residual oil slurry

    Energy Technology Data Exchange (ETDEWEB)

    Shou Weiyi; Xu Xiaoming; Cao Xinyu [and others

    1997-07-01

    Petroleum coke residual oil slurry (POS) is one of prospect substitute of oil burned in many industrial boilers and utilities in China. It is a mixture of pulverized petroleum coke, residual oil and slurry oil. We carried out a series of experiments to study its ignition and combustion mechanism. Experimental results show that the ignition temperature of petroleum coke is higher than normal anthracite and meager coal, and it is difficult to be burned in oil-fired furnace directly. The petroleum coke`s combustion property is improved greatly after mixing with residual oil and slurry oil. The combustion process of POS can be divided into three phases: preheating, kindling and homogenous combustion, burning of the petroleum coke residue. The combustion condition of POS is close to bituminous and coal-oil-mixture (COM).

  8. Combustion characteristics and kinetics of bio-oil

    Institute of Scientific and Technical Information of China (English)

    Ruixia ZHANG; Zhaoping ZHONG; Yaji HUANG

    2009-01-01

    The combustion characteristics of bio-oils derived from rice husk and corn were studied by thermogravimetry analysis. According to the thermo-gravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA) curves of bio-oils in air and nitrogen atmosphere, we analyzed the combustion characteristics of different kinds of bio-oils in different atmospheres and worked out the combustion kinetics parameters of the bio-oil, providing reliable base data for the burning of bio-oil. The thermogravimetry indicated that the combustion process of bio-oil was divided into three stages. At the same time, the combustion process can be described by different order reaction models, and with the method of Coats-Redfern, the activation energy and frequency factor of different kinds of bio-oils were obtained.

  9. Combustive management of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  10. Experimental investigation of flash pyrolysis oil droplet combustion

    DEFF Research Database (Denmark)

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim;

    2013-01-01

    The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...... at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy oil in terms...... both of ignition, devolatilisation and char oxidation. The pyrolysis oil is more difficult to ignite and has a shorter devolatilisation time and a longer char oxidation time. Copyright © 2013, AIDIC Servizi S.r.l....

  11. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    OpenAIRE

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical methods, (partially) miscible methods and thermal methods. Air injection is categorized as a thermal recovery method as it leads to combustion and therefore high temperature in the reservoir. However...

  12. Combustion of soybean oil and diesel mixtures for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  13. Combustion of oil on water: an experimental program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    This study determined how well crude and fuel oils burn on water. Objectives were: (1) to measure the burning rates for several oils; (2) to determine whether adding heat improves the oils' combustibility; (3) to identify the conditions necessary to ignite fuels known to be difficult to ignite on ocean waters (e.g., diesel and Bunker C fuel oils); and (4) to evaluate the accuracy of an oil-burning model proposed by Thompson, Dawson, and Goodier (1979). Observations were made about how weathering and the thickness of the oil layer affect the combustion of crude and fuel oils. Nine oils commonly transported on the world's major waterways were tested. Burns were first conducted in Oklahoma under warm-weather conditions (approx. 30/sup 0/C) and later in Ohio under cold-weather conditions (approx. 0/sup 0/C to 10/sup 0/C).

  14. Thermal analysis and combustion kinetic of heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G. [Centre for Petroleum Studies, State University of Campinas(Brazil); Vargas, J.A.V.; Trevisan, O.V. [Department of Petroleum Engineering, Faculty of Mechanical Engineering, State University of Campinas (Brazil)

    2011-07-01

    In the oilfield sector, a thermal method named in-situ combustion (ISC) is used as an enhanced recovery method. ISC consists of the injection of gas into the reservoir, a combustion front is created producing heat which reduces the oil viscosity. For this method to be successful, understanding of the thermal and kinetic parameters involved is required; the aim of this paper is to evaluate those parameters for different crude oils. Experiments were conducted using accelerating rate calorimetry on Brazilian heavy oil samples under a heat-wait-seek-mode. Results showed that accelerating rate calorimetry is efficient in resolving the three main regions of reaction of the oil and that between 200 degree C and 300 degree C oxygen addition reactions are dominant while bond scission reactions dominate from 350 degree C. This study demonstrated that accelerating rate calorimetry is an efficient method to determine thermal and kinetic parameters of oxidation reaction of heavy oil.

  15. Stability of emulsion from bio-oil and diesel oil and combustion experimental study of emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yaji, Huang; Zhaoping, Zhong; Baosheng, Jin; Bin, Li; Yu, Sun [Thermal Engineering Research Institute, Southeast University (China)

    2010-07-01

    This paper presents a study of the stability of an emulsion from bio-oil and diesel oil through an experimental combustion study. The emulsion was prepared using emulsifiers Span-80 and Tween-80 and bio-oil and diesel oil. This paper studies and analyses combustion, gaseous pollutants characteristics, and the effect of the HLB value and volume fraction of bio-oil on the stability of the emulsion. One of the major study conclusions was that the combustion temperature and the concentration of SO2, NOX and CO of emulsion are lower than those of diesel oil if equal flue gas oxygen is presumed. To conclude, emulsion could be used as an alternative oil fuel, however some questions such as: higher viscosity, higher exhaust heat loss, and very low acidity need more attention and more study in future research.

  16. Combustion performance evaluation of air staging of palm oil blends.

    Science.gov (United States)

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.

  17. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    Science.gov (United States)

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers.

  18. Combustion Characterization of Individual Bio-oil Droplets

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Jensen, Peter Arendt

    2015-01-01

    was tested in a single particle reactor at conditions relevant for suspension firing (A: 1200 °C, 5.5 % O2; B: 1200 °C, 2.9 % O2 and C: 990 °C, 5.5 % O2). The slurries were tested to optimize the bio-oil composition for use as an alternative power plant start-up fuel. Pyrolysis times for 5 mg bio-oil samples...... and thereby decreased flame stability. Most promising were oil or diesel (not palm oil) containing slurries (1 and 5) with heating values in the range of 15 MJ/kg.......Single droplet combustion characteristics has been investigated for bio-oil slurries, containing biomass residue, and compared to conventional fuels for pulverized burners, such as fuel oil (start up) and wood chips (solid biomass fuel). The investigated fuels ignition delays and pyrolysis behavior...

  19. Combustion characteristics of Daqing oil shale and oil shale semi-cokes

    Institute of Scientific and Technical Information of China (English)

    MIAO Zhen-yong; WU Guo-guang; LI Ping; ZHAO Na; WANG Pan-cheng; MENG Xian-liang

    2009-01-01

    Thermo-gravimetric-analysis (TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it. The effect of prior pyrolysis and TGA heating rate on the combustion process was studied. Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature. The ignition temperature increases as the volatile content of the sample decreases. TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature. But the peak of combustion shifts to higher temperatures as the heating rate is increased. The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.

  20. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  1. Canadian R&D on oil-fired combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A.C.S.; Entchev, E. [CCRL/ERL/CANMET, Ottawa (Canada)

    1996-07-01

    This paper describes research and development presently being conducted on oil-fired space and tap water heating systems by the Advanced Combustion Technology Group, CCRL/ERL/CANMET, in Ottawa, Canada. The presentation will focus on R&D activities at CCRL in support of the Canadian Oil Heat Association (COHA) and of the energy policy initiatives of Natural Resources Canada. Progress will be reported on activities to develop suitable oil-fired integrated systems to satisfy the low energy demands of new homes. The utilization of fuzzy logic-based control heating systems including fan coils for a complete range of old and new North American housing will be discussed. Additional activities to be discussed in the presentation will relate to the development of appropriate seasonal efficiency standards for complex integrated space/water heating systems, as well as an evaluation of alternative sidewall venting technologies and their implications for seasonal energy efficiency.

  2. Environmental hazard of oil shale combustion fly ash.

    Science.gov (United States)

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    Science.gov (United States)

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  4. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2016-02-01

    Full Text Available This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME, also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx and carbon monoxide (CO. The combustion experiments were conducted using three different oil burner nozzles (1.25, 1.50 and 1.75 USgal/h under lean (equivalence ratio (Φ = 0.8, stoichiometric (Φ = 1 and rich fuel (Φ = 1.2 ratio conditions. The results show that the rate of emission formation decreases as the volume percent of palm biodiesel in a blend increases. PME combustion tests present a lower temperature inside the chamber compared to CDF combustion. High rates of NOx formation occur under lean mixture conditions with the presence of high nitrogen and sufficient temperature, whereas high CO occurs for rich mixtures with low oxygen presence.

  5. Premixed Combustion of Coconut Oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2013-01-01

    Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ ...

  6. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  7. Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle

    Science.gov (United States)

    Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...

  8. Modeling of in-situ combustion as thermal recovery method for heavy (medium) oil (poster)

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.; Achterbergh, N.; Rudolph, E.S.J.; Bruining, J.

    2010-01-01

    In-situ combustion (ISC), as a well known process for secondary and tertiary oil recovery, is an important alternative approach to achieve higher production efficiency for light and heavy oil reservoirs. The in-situ combustion process is a complex combination of a number of processes which occur in

  9. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  10. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  11. Co-combustion of waste from olive oil production with coal in a fluidised bed.

    Science.gov (United States)

    Cliffe, K R; Patumsawad, S

    2001-01-01

    Waste from olive oil production was co-fired with coal in a fluidised bed combustor to study the feasibility of using this waste as an energy source. The combustion efficiency and CO emission were investigated and compared to those of burning 100% of coal. Olive oil waste with up to 20% mass concentration can be co-fired with coal in a fluidised bed combustor designed for coal combustion with a maximum drop of efficiency of 5%. A 10% olive oil waste concentration gave a lower CO emission than 100% coal firing due to improved combustion in the freeboard region. A 20% olive oil waste mixture gave a higher CO emission than both 100% coal firing and 10% olive oil waste mixture, but the combustion efficiency was higher than the 10% olive oil waste mixture due to lower elutriation from the bed.

  12. Premixed combustion of coconut oil in a hele-shaw cell

    OpenAIRE

    Hadi Saroso; I. N. G. Wardana; Rudy Soenoko; Nurkholis Hamidi

    2014-01-01

    Coconut oil combustion characteristic is observed experimentally by evaporating oil in the boiler then mix it with air before being burned at various equivalence ratios in the Hele-shaw cell. The result shows that, coconut oil tends to break into glycerol and fatty acid due to hydrolysis reaction producing the flame propagation, where the fatty acid flame propagates first then glycerol flame. Micro-explosion occurs when moisture from fatty acid combustion is absorbed by glycerol and higher he...

  13. Air injection into light and medium heavy oil reservoirs: combustion tube studies on West of Shetlands Clair oil and light Australian oil

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Young, T.J.; El-Usta, S.; Rathbone, R.R.; Xia, T.X.

    2000-07-01

    Four combustion tube tests were performed at a high initial water saturation using Bath University's High Pressure Combustion Tube Facility. Two tests were conducted on Clair medium heavy oil (19.8 {sup o} API) at 75 and 100 bar pressure, with initial oil saturations of 48% and 60%, at 80{sup o} C initial bed temperature. Maximum combustion temperatures exceeded 600{sup o}C during the early period, settling down to around 400{sup o}C. The combusted zone extended over about 30% of the sandpack length. Oil recovery was mainly affected by the large steam flood generated ahead of the combustion front, due to in situ vapourization of the original water in place, reducing the oil residual down to 21%. The thermal cracking reactions taking place ahead of combustion front converted part of the residual oil to lighter components, which were displaced with the gas flow, at the same time producing about 10% coke (fuel) for the combustion process. Two tests were carried out on a light Australian oil (38.8 {sup o}API), starting at low initial oil residuals of S{sub o} 41 and 45%, at an operating pressure of 70 bar and initial bed temperature of 63{sup o}C. The combustion temperature was about 250{sup o}C in both tests. The axial temperature profile in the sandpack was similar to that normally associated with a moving combustion front, but at a relatively low temperature. Also, there was no steam plateau condition, which was very observable in the Clair oil tests. High combustion front velocities were achieved in all four tests, varying from 0.15 to 0.31 m h{sup -1}. Fuel consumption, air requirement and oxygen utilization were generally favourable as regards improved oil recovery. (author)

  14. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  15. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    Science.gov (United States)

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW fire-tube boiler yielded a weakly bi-modal particulate size distribution (PSD) with...

  16. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  17. Combustion and economics of coal slurry fuels: a look at coal-fuel oil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T.; Matsuoka, H.

    1984-01-01

    With the aim of reducing dependence on petroleum, research has been going ahead into the development of various alternative fuels. Of these, coal slurry fuels are regarded as being first in line for commercialization. The authors discuss the combustion of coal-oil fuels. The combustion of fuel oil, pulverized coal and coal-water slurry is also examined. In each case, combustion properties and associated problems are discussed. Finally, the economics of these fuels are examined and trends in research and development surveyed. 23 references.

  18. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  19. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical

  20. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical me

  1. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical me

  2. Premixed combustion of coconut oil in a hele-shaw cell

    Directory of Open Access Journals (Sweden)

    Hadi Saroso

    2014-12-01

    Full Text Available Coconut oil combustion characteristic is observed experimentally by evaporating oil in the boiler then mix it with air before being burned at various equivalence ratios in the Hele-shaw cell. The result shows that, coconut oil tends to break into glycerol and fatty acid due to hydrolysis reaction producing the flame propagation, where the fatty acid flame propagates first then glycerol flame. Micro-explosion occurs when moisture from fatty acid combustion is absorbed by glycerol and higher heating due to higher flame speed produces more micro-explosion.

  3. Feasibility study of the in-situ combustion in shallow, thin, and multi-layered heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, L. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Daqing Petroleum Inst., Beijing (China); Yu, D. [Daqing Petroleum Inst., Beijing (China); Gong, Y. [China National Petroleum Corp., Beijing (China). Liaohe Oilfield; Wang, P.; Zhang, L. [China National Petroleum Corp., Beijing (China). Huabei Oilfield; Liu, C. [China National Petroleum Corp., Beijing (China). JiLin Oilfield

    2008-10-15

    In situ combustion is a process where oxygen is injected into oil reservoirs in order to oxidize the heavier components of crude oil. The oil is driven towards the production wells by the combustion gases and steam generated by the combustion processes. This paper investigated dry and wet forward in situ combustion processes designed for an oil reservoir with thin sand layers. Laboratory and numerical simulations were conducted to demonstrate the feasibility of the processes in a shallow, thin, heterogenous heavy oil reservoir in China. Combustion tube experiments were conducted in order to determine fuel consumption rates. A numerical geological model was constructed to represent the reservoir conditions. Gas, water, oil and solid phases were modelled. Four processes were considered: cracking; pyrolysis of heavy fractions; the combustion of light and heavy fractions; and the combustion of coke. Oil recovery rates were calculated for a period of 10 years. Reactor experiments were conducted to investigate igniting temperatures and air injection rates using an apparatus comprised of an electric heater, oil sand pack tube and a computerized control system. Experiments were performed at different temperature and injection rates. The experiments demonstrated that ignition times and air volumes decreased when air temperature was increased. Results of the study showed that a 20 per cent increase in oil recovery using the in situ combustion processes. It was concluded that adequate air injection rates are needed to ensure effective combustion front movement. 4 refs., 6 tabs., 4 figs.

  4. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, P. [Viessmann Manufacturing Co., Inc., Ontario (Canada)

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  5. Research on combustion characteristics of bio-oil from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    Rui LI; Baosheng JIN; Xiangru JIA; Zhaoping ZHONG; Gang XIAO; Xufeng FU

    2009-01-01

    Combustion characteristics of bio-oil from sewage sludge were investigated using thermograviMetry (TG) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. The combustion process could be divided into two weight loss stages. Light compounds volatilized and were oxidized in the first stage and the heterogeneous combustion between oxygen and heavy compounds happened in the second stage, which were confirmed by FT-IR technique. Most weight loss occurred in the first stage. The effect of heating rate was also studied and higher heating rates were found to facilitate the combustion process. The kinetic parameters of the two stages were calculated and the change of activation energy indicated higher heating rates benefited combustion.

  6. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    Science.gov (United States)

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  8. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  9. Premixed Combustion of Kapok (ceiba pentandra) seed oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2014-01-01

    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ) varie...

  10. In-situ combustion test on outcrops in Kramai oil field

    Energy Technology Data Exchange (ETDEWEB)

    Lang, S.

    1982-01-01

    An in-situ combustion test was performed in Kramai oil field, located in the northwestern border of the Zhungerer Basin, China. The main objectives of the test were to investigate directly the reservoir geology, the petrophysical properties of the reservoir rock, and the flow properties of oil, gas and water within the reservoir. The paper describes the test procedure, including the well pattern, the test pit, operation and inspection techniques, etc., and presents a general discussion of the results obtained.

  11. Study for improving the in-situ combustion of Venezuela extra-heavy crude oil using unconventional additive

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Rodriguez, A.J.; Perozo Hernandez, H. A.; Oliveros, D. A. [PDVSA Intevep (Venezuela); Reyes, N. [Universidad Central de Venezuela (Venezuela); Reinoza, J. [Universidad de los Andes (Colombia)

    2011-07-01

    With the depletion of conventional oil resources, heavy oil now accounts for an important part of both world and Venezuelan resources. Its recovery presents many challenges and a new in situ combustion process using additives was developed to address them. The aim of this study is to evaluate the benefits of the use of an additive to enhance the combustion process. Tests were performed with an inexpensive waste steam as additive and crude oil from the Orinoco oil belt. Six runs were performed, 2 were references and 4 used the additive placed in 2/3 of the total length of the cell. The use of additive led to more efficient combustion, greater stability of the combustion front, better oil recovery and the production of lighter compounds than without additive. This study demonstrated that the use of additive could be a promising opportunity for Venezuelan heavy oil operators.

  12. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    Science.gov (United States)

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  13. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  14. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  15. Fuel oil combustion with low production of nitrogen oxides; Combustion de combustoleo con baja produccion de oxidos de nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Escalera Campoverde, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    This work presents the results of the theoretical-experimental study of the effects of the secondary air jet directed perpendicularly to the flame axis in the fuel oil combustion in a 500 Kw furnace. The main purpose of this study was to obtain low nitrogen oxides (NO{sub x}) emissions without increasing the CO, which is observed in low NO{sub x} conventional burners. The experimental results showed a significative reduction of the NO{sub x} and of the CO, from 320 to 90 ppm and from 50 ppm to negligible values, respectively. A commercial computational code of fluid dynamics was employed for modeling the combustion in base line conditions, without secondary air and with the injection of secondary air. The experimental results were compared with calculated ones. [Espanol] En este trabajo se presentan los resultados del estudio teorico experimental de los efectos de los chorro de aire secundario dirigidos en forma perpendicular al eje de la flama en la combustion del combustoleo en un horno de 500 kW. El proposito principal del estudio fue obtener bajas emisiones de oxidos de nitrogeno (NO{sub x}) sin incrementar el CO, lo cual se observa en quemadores convencionales de bajo NO{sub x}. Los resultados experimentales demostraron una reduccion significativa del NO{sub x} y del CO: de 320 a 90 ppm y de 50 ppm a valores despreciables, respectivamente. Se empleo un codigo computacional comercial de dinamica de fluidos para modelar la combustion en condiciones de linea base, sin aire secundario, y con la inyeccion del aire secundario. Se comparan resultados experimentales con los calculados.

  16. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  17. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2017-08-24

    Heavy fuel oil (HFO) obtained from crude oil distillation is a widely used fuel in marine engines and power generation technologies. In the present study, the pyrolysis and combustion of a Saudi Arabian HFO in nitrogen and in air, respectively, were investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due to the thermal degradation of HFO at temperatures up to 1000°C and at various heating rates of 5, 10 and 20°C/min, in air and N2 atmospheres. FTIR analysis was then performed to study the composition of the evolved gases. The TG/DTG curves during HFO combustion show the presence of three distinct stages: the low temperature oxidation (LTO); fuel decomposition (FD); and high temperature oxidation (HTO) stages. The TG/DTG curves obtained during HFO pyrolysis show the presence of two devolatilization stages similar to that seen in the LTO stage of HFO combustion. Apart from this, the TG/DTG curves obtained during HFO combustion and pyrolysis differ significantly. Kinetic analysis was also performed using the distributed activation energy model, and the kinetic parameter (E) was determined for the different stages of HFO combustion and pyrolysis processes, yielding a good agreement with the measured TG profiles. FTIR analysis showed the signal of CO2 as approximately 50 times more compared to the other pollutant gases under combustion conditions. Under pyrolytic conditions, the signal intensity of alkane functional groups was the highest followed by alkenes. The TGA-FTIR results provide new insights into the overall HFO combustion processes, which can be used to improve combustor designs and control emissions.

  18. A kinetic study on pyrolysis and combustion characteristics of oil cakes:Effect of cellulose and lignin content

    Institute of Scientific and Technical Information of China (English)

    Ramakrishna Gottipati; Susmita Mishra

    2011-01-01

    Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia ( Pongamia Pinnata), Madhuca (Madhuca Indica), and Jatropha (Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210 ℃ and 500 ℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemicals in different ratios and compared with the oil cakes.The biomass with higher cellulose content showed faster rate of pyrolysis than the biomass with higher lignin content.However at higher temperatures ( >600 ℃ ) all the oil cakes exhibited similar conversion at low heating rate in N2 atmosphere.Apparent activation energies increased for Madhuca and Pongamia oil cakes indicating the presence of more cellulose whereas, low activation energy of Jatropha confirms more lignin content.

  19. Emission estimation of neat paradise tree oil combustion assisted with superheated hydrogen in a 4-stroke natural aspirated DICI engine

    Directory of Open Access Journals (Sweden)

    Sundararajan Karthikayan

    2016-01-01

    Full Text Available This research work investigates the use of neat paradise tree oil in a 4-stroke natural aspirated direct injection compression ignition engine assisted with the help of super-heated hydrogen (hydrogen in gaseous state or above its saturation temperature as a combustion improver. The high calorific gaseous fuel hydrogen gas was used as a combustion improver and admitted into the engine during the suction stroke. A 4-stroke single cylinder Diesel engine was chosen and its operating parameters were suitably modified. Neat paradise tree oil was admitted through standard injector of the engine and hydrogen was admitted through induction manifold. Inducted super-heated hydrogen was initiated the intermediate compounds combustion of neat paradise tree oil. This process offers higher temperature combustion and results in complete combustion of heavier molecules of neat paradise tree oil within shorter duration. The results of the experiment reveal that 40% higher NOx, 20% lower smoke, 5% lower CO, and 45% lower HC than that of neat paradise tree oil fuel operation and the admission of superheated hydrogen has improved the combustion characteristics of neat paradise tree oil. The investigation successfully proved that the application of neat paradise tree oil with 15% of hydrogen improver is possible under a regular Diesel engine with minimal engine modification.

  20. Efficient Atomization and Combustion of Emulsified Crude Oil

    Science.gov (United States)

    2014-09-18

    175 Characterization Factor, K 11.77 MCR, wt% 9.86 TBP YIELDS, VOL % Butanes and Lighter 0.918 Light Gasoline (55-175 °F) 2.832 Light Naphtha ...175-300 °F) 8.297 Heavy Naphtha (300-400 °F) 7.267 Kerosene (400-500 °F) 8.244 Atm. Gas Oil (500-650 °F) 14.304 Lt Vacuum Gas Oil (650-800...Specific Gravity 0.6643 Mercaptan Sulfur, ppm 0.289 Octane Number, Research, Clear 74.4 LIGHT NAPHTHA (175-300 °F) Gravity, °API 56.4 Specific

  1. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    Science.gov (United States)

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.

  2. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  3. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  4. Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Laser-induced fluorescence measurement of the oil film thickness in an internal combustion engine

    Science.gov (United States)

    Ostroski, Greg M.; Ghandhi, Jaal B.

    1997-11-01

    The use of a fluorescent dopant molecule to enhance the natural fluorescence of motor oils, and allow quantitative determination of temperature and film thickens in internal combustion engines has been investigated. Measurement of the fluorescence as a function of temperature were made with neat Mobil 1, and solutions of the dopant BTBP in mineral oil and Mobil 1. The fluorescence yield of neat Mobil 1 was found to vary by 30 percent over the temperature range explored, but the spectral characteristics, as measured with bandpass filters, were unaffected by temperature. The BTBP fluorescence was found to increase significantly with temperature, and it was found the narrower regions in the spectrum increased proportionally more than the fluorescence collected over the entire spectrum, allowing a determination of temperature to be made which can then be used to correct for the change in fluorescence yield. Solutions in Mobil 1 showed a smaller increase than that observed in mineral oil.

  6. Emissions and properties of Bio-oil and Natural Gas Co-combustion in a Pilot Stabilised Swirl Burner

    Science.gov (United States)

    Kowalewski, Dylan

    Fast pyrolysis oil, or bio-oil, has been investigated to replace traditional fossil fuels in industrial burners. However, flame stability is a challenge due to its high water content. In order to address its instability, bio-oil was co-fired with natural gas in a lab scale 10kW swirl burner at energy ratios from 0% bio-oil to 80% bio-oil. To evaluate the combustion, flame shape, exhaust and particulate emissions, temperatures, as well as infrared emission were monitored. As the bio-oil energy fraction increased, NO emissions increased due to the nitrogen content of bio-oil. CO and particulate emissions increased likely due to carbonaceous residue exiting the combustion zone. Unburnt Hydrocarbon (UHC) emissions increased rapidly as combustion became poor at 60-80% bio-oil energy. The temperature and infrared output decreased with more bio-oil energy. The natural gas proved to be effective at anchoring the bio-oil flame to the nozzle, decreasing instances of extinction or blowout.

  7. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  8. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.

  9. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  10. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  11. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  12. Preliminary Study on PAHs Distribution in High-grade Oil Shale and Its Spontaneous Combustion Product in Fushun, Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liping; ZENG Rongshu; XU Wendong

    2007-01-01

    Spontaneous combustion of oil shale is very common as a result of long-time exposure to the air in the Fushun West Open-Pit Mine and West Dump. The PAHs in the high-grade oil shale and its spontaneous combustion product were analyzed semiquantitatively by GC-MS in order to investigate their distribution in different states and their potential negative effects on the environment. Totally 57and 60 PAHs and their alkyl homologues were identified in the two analyzed samples, among which the alkyl derivatives were predominant, taking up to about 65 % in the total PAHs. Those low-molecular mass PAHs (3- or 4-ring) were the main compounds in the two samples. Ten of sixteen USEPA priority pollutant PAHs were detected in two samples, of which phenanthrene was the richest whose contents were 6.93% and 15.03%. Based on comparison of analysis results, the amount and contents of PAHs,except for triaromatic steroid group, were higher in the burning oil shale. So it can be determined that the effects caused by spontaneous combustion of oil shale would be more serious and that the effects of the Fushun oil shale and its spontaneous combustion on the environment should not be ignored in the future work.

  13. Combustion performance of biocrude oil from solvolysis liquefaction of Chlorella pyrenoidosa by thermogravimetry-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Lin, Yousheng; Wang, Jingjing; Wei, Xiaoyu; Chen, Xinfei

    2017-08-01

    The kinetic behavior and evolution characteristics of gaseous products during the combustion of biocrude oil from solvolysis liquefaction of Chlorella pyrenoidosa were investigated by thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The results indicated the biocrude oil obtained from different ethanol/water mixed ratio had obvious difference with each other. The ignition temperature of biocrude oil from ethanol-water co-solvent was lower than that from pure water solvent, which promoted the comprehensive combustion index. Especially, BO40 (biocrude oil obtained from 40% ethanol content) achieved the lowest ignition temperature (163.4°C) and high comprehensive combustion index (1.24×10(-06)min(-2)°C(-3)). CH, CO, CC, CO2, CO and HCN were the main gaseous products. Compared to other biocrude oil samples, BO40 had high first peak intensity of CH, CO and CC, and low peak intensity of CO, which performed better combustion characteristic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Genotoxicity of diesel engine emissions during combustion of vegetable oils, mineral oil, and their blends; Gentoxizitaet von Dieselmotoremissionen bei Verbrennung von Pflanzenoelen, Mineraloeldiesel und deren Mischkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Joern

    2013-07-09

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils and that blends of diesel fuel and vegetable oil are mutagenic. Three different vegetable oils (linseed oil, LO; palm tree oil, PO; rapeseed oil, RO), blends of 20% vegetable oil and 80% diesel fuel (B20) and 50% vegetable oil and 50% diesel fuel (B50) as well as common diesel fuel (DF) were combusted in a heavy duty diesel engine. The exhaust was investigated for particle emissions and its mutagenic effect in comparison to emissions of DF. The engine was operated using European Stationary Cycle. Particle mass was determined gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison to DF it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by PO which was scarcely above DF. B50 revealed the lowest amount of TPM while B20 reached as high as DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. B50 showed higher mutagenic potential than B20. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. Vegetable oil blends seem to be less mutagenic than the pure oils with a shifted maximum compared to blends with biodiesel and DF. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. And

  15. Developments in the technology for the combustion of water emulsions in Mexican fuel oil; Desarrollos en la tecnologia para la combustion de emulsiones agua en combustoleo mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Diego, Antonio Marin; Martinez Flores, Marco A.; Tamayo Flores, Gustavo; Alarcon Quiroz, Ernesto; Melendez Cervantes, Carlos [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    The residual petroleum oil (fuel oil) is the most used fuel in boilers of electrical and industrial power stations. Nevertheless, the use of this fuel can generate diverse problems such as the elevated particle emissions, that affect the boiler efficiency, darken the visibility by the smoke that leaves the chimneys and is emitted to the Environment. In addition, sulfur trioxide is produced, which reacts with the water present in the combustion gases, forming sulfuric acid that, when emitted, also affects the visibility of the plume and can be condensed, originating corrosion and increased accumulation of deposits in the boilers. The experimental research was made in a comparative base, between combustion tests of fuel oil, with emulsions where the water concentration and the size of the drops of this one was varied. A diagram of the supply of fuel and preparation of emulsions in a pilot furnace is shown. The article contains graphs of the effect of the water concentration of the emulsions in the particulate emission. The article contains figures of the cenospheres produced by the fuel oil combustion (500 x) and the ones produced by the combustion with 5% of water (500 x). Also shows graphs of the effect of the water drop size of emulsions in the particulate emission, of the reduction of the sulfur trioxide with soluble magnesium products in the water of emulsions, and of the free particle acidity with neutralizers of water emulsions of soluble magnesium. [Spanish] El aceite residual de petroleo (combustoleo) es el combustible mas utilizado en calderas de centrales electricas e industriales. Sin embargo, el uso de este combustible puede generar diverso problemas como las emisiones elevadas de particulas, que afectan la eficiencia de una caldera, obscurecen la visibilidad pero el humo que sale de las chimeneas y se emiten al medio ambiente. Ademas se produce trioxido de azufre, el cual reacciona con el vapor de agua presente en los gases de combustion, formado acido

  16. Atmospheric behaviour of oil-shale combustion fly ash in a chamber study

    Science.gov (United States)

    Teinemaa, Erik; Kirso, Uuve; Strommen, Michael R.; Kamens, Richard M.

    There are huge world deposits of oil shale, however, little is known about the fate of atmospheric oil-shale combustion fly ash. In the present work, oil-shale combustion fly-ash aerosol was investigated under simulated daytime and nighttime conditions. Fly-ash particles collected from the Baltic Power Plant (Estonia) were injected directly to a 190 m 3 outdoor Teflon film chamber. The initial concentration of particles was in the range from 15 to 20 mg/m 3. Particle size distributions were monitored continuously by various optical and electrical devices. During the course of an experiment the particle phase was collected on filters, and the gas phase was collected using denuders. The initial aerosol mass concentration decreased quickly due to the deposition of larger particles. Since fine particles dominated the count distribution, the change in aerosol number concentration was less significiant than the mass concentration over time. Experimental data showed a bimodal particle size distribution with maximums at about 0.07 and 4 μm. SEM images of aerosol particles also provided particle shape and size distribution information. The respirable fraction of particles, which contributes most to the health effects of the aerosol, significantly increased during the experiment, being 25% by mass immediately after the injection of fly ash and achieving 65% at the end of the experiment. Results of CG/MS analysis confirm the presence of different polycyclic aromatic hydrocarbons (PAHs) in the particle phase of the aerosol. Some of the individual compounds included phenanthrene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. Several PAHs were found in the gas phase of the chamber after fly ash had aged for 2 h, indicating that PAHs desorbed from the particles over time.

  17. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  18. Baseline NO{sub x} emissions during combustion of wood-derived pyrolysis oils

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.; Jenkins, B.; Winter, F.

    1995-01-01

    NO{sub x} emissions from two pyrolysis oils of similar origin and overall composition but differing nitrogen contents (0.12 and 0.32% of dry fuel) are determined in a pilot-scale combustor. No NO{sub x} reduction technology is employed in these tests, establishing the baseline or uncontrolled levels of NO{sub x}. Measured effluent oxygen concentrations range from near 0% to near 21%, with stoichiometric ratios ranging from 0 to 1. NO and NO{sub x} are measured separately and found to differ by insignificant ({approx}10--25 ppmv) amounts. Other relevant gas species (CO{sub 2}, CO, total hydrocarbons, and O{sub 2}) are also reported. Peak NO{sub x} emissions from these fuels vary from about 300 to around 650 ppmv, with lower levels associated with low nitrogen content fuels. Trends with stoichiometric ratio and fuel nitrogen content agree qualitatively with behavior from other nitrogen containing fuels, including biomass, coal, and petroleum oils. Nitrogen conversion efficiencies as a function of stoichiometric and fuel nitrogen content are observed to decrease with increasing fuel nitrogen content and increase with increasing oxygen content. Measurements of thermal, prompt, and fuel NO{sub x} contributes indicate that fuel NO{sub x} is the dominant formation mechanism for these fuels. These data suggest that NO{sub x} formed during combustion of pyrolysis oil lends itself to many of the same control technologies as are used in other nitrogen-containing fuel.

  19. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    Science.gov (United States)

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  20. Reburning and burnout simulations of natural gas for heavy oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Celso A. Bertran; Carla S.T. Marques; Renato V. Filho [Universidade Estadual de Campinas, Campinas (Brazil). Instituto de Quimica

    2004-01-01

    Reburning and burnout simulations were carried out through PLUG code of CHEMKIN-III using a reduced mechanism, in order to determine preliminary experimental parameters for achieving maximum NOx reduction to implement the reburning technology for heavy oil combustion in pilot scale equipments in Brazil. Gas compositions at the entrance of the reburning zone were estimated by the AComb program. Simulations were performed for eight conditions in the usual range of operational parameters for natural gas reburning. The maximum NO reduction (ca. 50%) was reached with 10 and 17.5% of power via natural gas and 1.5 and 3.0% O{sub 2} excess, respectively, at 1273 K. The model predicts 250 ppm of NO, 50 ppm of CO and air mass flows in the range of about 50 130 kg/h for burnout. 18 refs., 1 fig., 2 tabs.

  1. Numerical investigation of the flow inside the combustion chamber of a plant oil stove

    Science.gov (United States)

    Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.

    2013-10-01

    Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.

  2. Physical and chemical characteristics of cenospheres from the combustion of heavy fuel oil

    Science.gov (United States)

    Clayton, R. M.; Back, L. H.

    1989-01-01

    Photomicrography of particle cross sections, measurements of density, porosity, and surface area, and determinations of chemical compositions, have been used in conjunction with SEM of surface structure to characterize cenospheres generated by combustion of residual oil in a steam power plant. Large and small cenospheres, which respectively fall into the 100-200 and small 20-40 micron range, are spheroidal and hollow, with at least one blowhole; outer/inner diameter ratios for the shells are of the order of 1.3-1.4. Typically, a cenosphere contains only about 18 vol pct solid material. The presence of S, Fe, Na, and V in substantial concentrations presage high temperature heat exchanger surface corrosion problems due to cenosphere deposition.

  3. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  4. Fuel spray combustion of waste cooking oil and palm oil biodiesel: Direct photography and detailed chemical kinetics

    KAUST Repository

    Kuti, Olawole

    2013-10-14

    This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels. Equivalence ratios obtained from the experimental ignition delay were used for the detailed chemical kinetics analyses. The Politecnico di Milano\\'s thermochemical and reaction kinetic data were adopted to simulate the ignition processes of the biodiesels using the five fatty acid methyl esters (FAME) major components in the biodiesel fuels. From the high-speed video observations, it was observed that at increasing injection pressure, experimental ignition delay increased as a result of improvement in fuel and air mixing effects. Also the palm oil biodiesel has a shorter ignition delay compared to waste cooked oil biodiesel. This phenomenon could be attributed to the higher cetane number of palm biodiesel. The fuel spray ignition properties depend on both the physical ignition delay and chemical ignition delay. From the detailed chemical kinetic results it was observed that at the low temperature, high ambient pressure conditions reactivity increased as equivalent ratio

  5. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  6. The combustion of fuel oil and the factors influencing pollutant formation

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Kurosh.

    1990-03-01

    This study presents in-flame and flue gas emission data with particular emphasis on the emission of NO{sub x} compounds arising from oil spray combustion. Experimental studies were carried out in a cylindrical ceramic-lined tunnel furnace using a pressure jet swirl oil burner. This burner was characterized in terms of the droplet size and spray pattern it produced in order to investigate the effect of these parameters on system performance with regard to NO formation. Six operating conditions were used and the NO and NO{sub x} emissions in the flame and post flame regions were reported. The majority of NO in the system was formed via the oxidation of nitrogenous species produced close to the burner. The effect of mean droplet size on the NO formation was investigated and the results showed that any factor which tended to produce smaller fuel droplets promoted an increase in the NO emission. In-flame radial and axial profiles were used to elucidate the mechanism of NO formation with regard to burner operation conditions. The burning rate of the fuel droplets was also modelled theoretically for the experimental conditions investigated. Predictions of NO formation chemistry were undertaken using a kinetic package. A post-processing NO model using the FLUENT computer code was also used. (Author).

  7. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  8. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    Science.gov (United States)

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  9. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    OpenAIRE

    Norwazan Abdul Rahim; Mohammad Nazri Mohd Jaafar; Syazwan Sapee; Hazir Farouk Elraheem

    2016-01-01

    This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25) and coconut oil methyl ester blend 25 (COME B25) blended at 25% by volume in diesel fuel produced lower c...

  10. A note on the combustion of blends of diesel and soya, sunflower and rapeseed vegetable oils in a light boiler

    Energy Technology Data Exchange (ETDEWEB)

    San Jose Alonso, J.; Lopez, E. [Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain); Lopez Sastre, J.A.; Romero-Avila, C. [Dpto. Quimica Organica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2008-09-15

    This paper deals with the study of the vegetable oils (VO) used as fuel for heating. The properties of sunflower, rape and soya oils are studied and these are compared with the properties of C-diesel fuel (used for heating domestic purposes in Spain). The mixtures of VO and diesel are studied and characterized and, finally, the results of a series of combustion trials of the mixtures in a conventional heating installation with a mechanical pulverization burner are presented. The results show that viscosity of VO limits the use of blends up to 40% of them, and the oxygen present in their structures contributes to an efficiency gain. (author)

  11. Análisis de contenido del dominio tecnológico vegetable oil combustion

    Directory of Open Access Journals (Sweden)

    Noé PÉREZ-Arreortúa

    Full Text Available La patente es una medida de productividad científico-tecnológica muy utilizada como indicador tecnológico. Sus análisis está enfocado principalmente a recuentos por año, países, titulares e inventores, pero escasean los estudios de patentes considerando la clasificación técnica utilizada y la información contenida en el documento de invención. La presente investigación tiene como objetivo proponer el uso de la clasificación internacional de patentes y el análisis de contenido de determinados campos del documento de patente como unidad de análisis y medida para realizar un estudio patentométrico en el dominio tecnológico vegetable oil combustion. Se utiliza un conjunto de indicadores simples y relacionales, y el software proINTEC para el análisis y representación de los datos. La interpretación de los resultados confirma que la información contenida en las patentes de este dominio es pertinente a los intereses del proyecto que ejecuta el caso de estudio.

  12. Design and Operation of Laboratory Combustion Cell for Air Injection into Light Oil Reservoirs: Potential Application in Sindh Field

    Directory of Open Access Journals (Sweden)

    Abdul Haque Tunio

    2011-01-01

    Full Text Available Historical experimental work on the combustion oil recovery processes consists of both laboratory and field studies. Although field experiments are the ultimate test of any oil recovery process, they are costly, time consuming and difficult to analyze quantitatively. Laboratory CC (Combustion Cell experiments are cost effective and less time consuming, but are subject to scaling and interpretation challenges. Experimental set up has been developed to understand air injection process for improving oil recovery from light oil reservoirs taking into account the sand pack petro physical and fluid properties. Some important design problems; operational criteria and considerations important to interpretation of results are pointed out. To replicate subsurface reservoir conditions or pressure and temperature, experiments up to 6895 KPa, at non-isothermal conditions with 5oC/min ramp-up are performed on unconsolidated cores with reservoir oil samples. Correlations were obtained for low temperature oxidation rate of oil, the fuel deposition rate and the rate of burning fuel as a fuel concentration. Various parameters such as (sand pack, pressure, oil saturation and flow rate/air flux were changed to investigate their impact on reaction and chemical nature of the fuel burned. To determine the importance of distribution and pyrolysis on these reactions, the hydrogen-carbon ratio and m-ratio was calculated. For further confirmation Arrhenius graphs were drawn by assuming 1.0 order of reaction with carbon concentration which is also confirmed.This research will contribute to the overall understanding of air injection process;help to determine the most appropriate

  13. Critical Processes Involved in Formulation of Water-in-Oil Fuel Emulsions, Combustion Efficiency of the Emulsified Fuels and Their Possible Environmental Impacts

    Directory of Open Access Journals (Sweden)

    A.N. Dibofori-Orji

    2011-08-01

    Full Text Available The aim of this study is to highlight some problems encountered during the formulation of water-inoil (w/o emulsions of diesel fuel. The combustion efficiency of the resultant emulsions and some pollutant gas emissions were determined. The paper also discussed possible environmental impacts of these emissions. Internal Combustion Engines (ICE find application in many modes of transportation including marine, land and air transportation. Economic and environmental considerations have led to the quest for improved combustion efficiency of the various fossil fuels used for these modes of transportation. The possibility of combustion of emulsified fuels has been the centre of some research efforts in the search for improved combustion efficiency. Diesel is mixed with water to form fuel-oil emulsions for combustion in some internal combustion engines. Depending on certain factors, two possible types of fuel-oil emulsions can be obtained: Oil in water and water in oil emulsions. Combustibility of the resulting emulsions was investigated. In this study, neat diesel was emulsified using polyethylene glycol as the emulsifying agent to produce water in oil emulsions. The water in oil emulsion was found to be combustible within certain limits of percentage content of water and air/fuel ratios. Problems encountered in the attempts to burn the emulsions include the nature and type of emulsifying agent, the method and means of mixing, as well as stability of the emulsions. This study shows that the emulsion containing 5% water had the highest combustion efficiency. Combustion of fuels, whether neat or emulsified, has some environmental impacts. Different noxious substances as exhaust products of combustion when emitted into the atmosphere could be injurious to human health, plants and animals within or close to the operating environments. In this study, the exhaust gases were analysed and their possible environmental impacts were discussed. The emulsion

  14. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    Science.gov (United States)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  15. Question of development of industrial chemistry of combustible minerals (from a conference on problems in development of oil chemistry and chemical engineering)

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, L.V.

    1986-04-01

    In conjunction with other scientific associations, the Department of General and Industrial Chemistry in the Soviet Academy of Sciences organized a conference in Zvenigorod in October 1985 which was devoted to the chemistry of coal, shale and oil. A series of papers were presented on the future of hydrogenation catalysis as an cost-effective method of processing coking products, coals, shaley resin, fuel oil and bituminous oil to produce synthetic liquids. Subjects included: the prospects of non-traditional methods of processing solid combustible minerals; heavy catalysis of oil residue and bituminous oils; the current state of coal chemistry in Kuzbass, new methods of coal classification and the production of liquid and chemical products from combustible shale.

  16. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    Science.gov (United States)

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  17. An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass wastein a boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chun Yang; Kadir, Sharifah Aishah Syed Abdul; Lim, Ying Pei; Syed-Ariffin, Sharifah Nawirah; Zamzuri, Zurinawati [Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2008-07-15

    Ash derived from combustion of Malaysian oil palm biomass (empty fruit bunches consisting of fibers) was physically and chemically characterized in order to provide a comprehensive understanding of its specific properties in terms of toxicity, compositions and reusability. Principal analyses conducted include particle size distribution, scanning electron microscopy, elemental dispersive X-ray, elemental analysis, toxicity characteristic leaching procedure (TCLP) as well as thermogravimetric, X-ray diffractometry and Fourier-transform infrared analyses. TCLP result indicated that the oil palm ash (OPA) should not be classified as toxic wastes in terms of heavy metal leachability since leachable copper, cadmium, lead and nickel concentrations were detected below the stipulated leachability limits. It was determined that the OPA contained high amount of potassium as well as presence of silica which implied its suitability to be reused as crude fertilizer or cement replacement material. (author)

  18. Experimental and analytical investigation on the emission and combustion characteristics of CI engine fueled with tamanu oil methyl esters

    Directory of Open Access Journals (Sweden)

    Perumal Navaneetha Krishnan

    2016-01-01

    Full Text Available The emission and combustion characteristics of a four stroke multi fuel single cylinder variable compression ratio engine fueled with tamanu oil methyl ester and its blends 10%, 20%, 40%, and 60% with diesel (on volume basis are examined and compared with standard diesel. Biodiesel produced from tamanu oil by trans-esterification process has been used in this study. The experiment has been conducted at a constant engine speed of 1500 rpm with 50% load and at compression ratios of 16:1, 17:1, 18:1, 19:1, and 20:1. With different blend and for selected compression ratio the exhaust gas emissions such as CO, HC, NOx, CO2, and the combustion characteristics are measured. The variation of the emission parameters for different compression ratios and for different blends is given, and optimum compression ratio which gives best performance has been identified. The results indicate higher rate of pressure rise and minimum heat release rate at higher compression ratio for tamanu oil methyl ester when compared with standard diesel. The blend B40 for tamanu oil methyl ester is found to give minimum emission at 50% load. The blend when used as fuel results in reduction of polluting gases like HC, CO, and increase in NOx emissions. The previously mentioned emission parameters have been validated with the aid of artificial neural network. A separate model is developed for emission characteristics in which compression ratio, blend percentage and load percentage were used as the input parameter whereas CO, CO2, HC, and NOx were used as the output parameter. This study shows that there is a good correlation between the artificial neural network predicted values and the experimental data for different emission parameters.

  19. Abnormal combustion caused by lubricating oil in high BMEP gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Yasueda, Shinji [Kyushu Univ. (Japan). GDEC Gas and Diesel Engine; Takasaki, Koji; Tajima, Hiroshi [Kyushu Univ. (Japan). Lab. of Engine and Combustion (ECO)

    2013-05-15

    In recent years, abnormal combustion with high peak firing pressure has been experienced on gas engines with high brake mean effective pressures. The abnormality is detected not as pre-ignition but as knocking. Research, including visualisation tests on a single-cylinder engine, has confirmed the phenomenon to be pre-ignition caused by the auto-ignition of in-cylinder lubricant, causing cyclical variations of peak firing pressure on premix combustion gas engines. (orig.)

  20. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  1. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  2. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey); Canakci, Mustafa, E-mail: canakci@kocaeli.edu.t [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2011-01-15

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO{sub 2}) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO{sub x}) emissions by 11-22% compared with those of the PBDF over the speed range.

  3. Combustion behavior of briquettes from oil palm's empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Pratoto, A. [Andalas Univ., Padang (Indonesia). Dept. of Mechanical Engineering

    2006-07-01

    Empty fruit bunch (EFB) briquettes from palm plantations are now being considered as a renewable energy source in Indonesia. This paper provided details of a study that investigated the combustion behaviour of an EFB briquette. Thermogravimetry was used to study the briquettes under dynamic conditions at 50 degrees C in a muffle furnace. Thermal decomposition rates and phases were identified, and the effect of the briquette's size on the decomposition rate was evaluated by comparing the combustion behaviour of the briquette to that of loose EFB materials. Rates of devolatilization and char oxidation were also examined. Results of the derivative thermogravimetry (DTG) analysis showed that larger briquettes did not exhibit a sharp peak on the DTG curve. Results suggested that heat transfer was predominant over the kinetic reaction during combustion. The ignition temperature of the briquettes was comparable to typical lignocellulose biomass. Peak combustion temperatures for loose EFB were only slightly lower than other types of biomass. Maximum combustion rates decreased with the size of the fuel. It was concluded that small briquettes are suitable for applications where high rates of heat are required. 16 refs., 1 tab., 6 figs.

  4. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  5. Effects of alternate fuels. Report No. 6. Analysis of low-alumina castable refractory degraded by residual oil combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G. C.; Tennery, V. J.

    1978-07-01

    This is the sixth of a series of reports on analyses of several types of refractories used in industrial furnaces with fuels considered alternate to natural gas. Analyses were performed on a low-alumina castable used for only two months in the roof of a residual-oil-fired boiler. The maximum hot-face temperature during operation was about 1530/sup 0/K. The original microstructure of the castable, which consisted of mullite aggregate bonded with iron-containing gehlenite (2 CaO . Al/sub 2/O/sub 3/ . SiO/sub 2/), quartz and cristobalite, was totally altered during service in regions close to the hot face. At room temperature the altered microstructure consisted of corundum and gehlenite in a new oxide glass phase containing the elements Na, K, Ca, Fe, Ti, Al, Ni, and Si. The reactions of the fuel oil impurities Na, Fe, and Ni with mullite, quartz, and cristobalite in the original castable refractory caused the rapid degradation at the hot face during service in the boiler. Increasing the Al/sub 2/O/sub 3/ content of the castable by replacing mullite aggregate with alumina aggregate and using gehlenite with less iron impurity as the bonding material should improve the performance of this castable refractory or retard reactions of the castable with fuel oil combustion products including Na, Fe, and Ni.

  6. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  7. Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine

    Directory of Open Access Journals (Sweden)

    Sunbong Lee

    2014-06-01

    Full Text Available Bio-oil (bio-oil was produced from chicken manure in a pilot-scale pyrolysis facility. The raw bio-oil had a very high viscosity and sediments which made direct application to diesel engines difficult. The bio-oil was blended with diesel fuel with 25% and 75% volumetric ratio at the normal temperature, named as blend 25. A rapid compression and expansion machine was used for a combustion test under the experimental condition corresponding to the medium operation point of a light duty diesel engine using diesel fuel, and blend 25 for comparison. The injection related pressure signal and cylinder pressure signal were instantaneously picked up to analyze the combustion characteristics in addition to the measurement of NOx and smoke emissions. Blend 25 resulted in reduction of the smoke emission by 80% and improvements of the apparent combustion efficiency while the NOx emission increased by 40%. A discussion was done based on the analysis results of combustion.

  8. Experimental and simulation studies of combustion of blended fuel oil for use in industrial gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Ani, F.N. [Teknologi Malaysia Univ., Johor (Malaysia). Faculty of Mechanical Engineering; Mamat, Z.A.; Zardi, Z. [TNB Research, Selangor (Malaysia); Aziz, A. [Prai Power Station, Penang (Malaysia)

    2006-07-01

    This paper described a preliminary investigation of the combustion properties of palm olein distillate blended with diesel in a combustion chamber. The aim of the study was to examine the efficacy of the fuel for use in industrial gas turbines with an unmodified gas system. Experiments were conducted for 100 per cent diesel and blends of diesel with 20, 40, and 50 per cent palm olein distillate. Combustion firing experiments were also conducted for 100 per cent palm olein distillates. Results of the study demonstrated that nitroge oxide (NO{sub x}) emissions ranged from between 30 and 55 ppm. Computational fluid dynamics (CFD) modelling was conducted in order to compare the performance of the various blends. Results showed that flow and temperature contours for fuels with lower palm olein percentages had a more uniform combustion process due to a higher rate of fuel vaporization. It was concluded that palm olein distillate blends of more than 40 per cent are not recommended, as the soot particles of higher blends cause damage to turbine casings. 6 refs., 2 tabs., 10 figs.

  9. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  10. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    Directory of Open Access Journals (Sweden)

    Norwazan Abdul Rahim

    2016-08-01

    Full Text Available This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25 and coconut oil methyl ester blend 25 (COME B25 blended at 25% by volume in diesel fuel produced lower carbon monoxide (CO and unburned hydrocarbon (UHC emissions due to more complete combustion. Overall, JOME B25 had the highest CO emission reduction, at about 42.25%, followed by COME B25 at 26.44% emission reduction relative to pure diesel fuel. By contrast, the palm oil methyl ester blend 25 (POME B25 showed a 48.44% increase in these emissions. The results showed that the nitrogen oxides (NOx emissions were slightly higher for all biodiesel blend fuels compared with pure diesel fuel combustion. In case of sulphur dioxide (SO2 and UHC emissions, all biodiesel blends fuels have significantly reduced emissions. In the case of SO2 emission, the POME B25, JOME B25 and COME B25 emissions were reduced 14.62%, 14.45% and 21.39%, respectively, relative to SO2 emission from combusting pure diesel fuel. UHC emissions of POME B25, JOME B25 and COME B25 showed 51%, 71% and 70% reductions, respectively, compared to diesel fuel. The conclusion from the results is that all the biodiesel blend fuels are suitable and can be recommended for use in liquid fuel burners in order to get better and ‘greener’ environmental outcomes.

  11. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    Science.gov (United States)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  12. Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2017-08-01

    Full Text Available On account of their high power, thermal efficiency, good reliability, safety, and durability, low-speed two-stroke marine diesel engines are used as the main drive devices for large fuel and cargo ships. Most marine engines use heavy fuel oil (HFO as the primary fuel, however, the physical and chemical characteristics of HFO are not clear because of its complex thermophysical properties. The present study was conducted to investigate the effects of fuel properties on the spray and combustion characteristics under two-stroke marine engine-like conditions via a sensitivity analysis. The sensitivity analysis of fuel properties for non-reacting and reacting simulations are conducted by comparing two fuels having different physical properties, such as fuel density, dynamic viscosity, critical temperature, and surface tension. The performances of the fuels are comprehensively studied under different ambient pressures, ambient temperatures, fuel temperatures, and swirl flow conditions. From the results of non-reacting simulations of HFO and diesel fuel properties in a constant volume combustion chamber, it can be found that the increase of the ambient pressure promotes fuel evaporation, resulting in a reduction in the steady liquid penetration of both diesel and HFO; however, the difference in the vapor penetrations of HFO and diesel reduces. Increasing the swirl flow significantly influences the atomization of both HFO and diesel, especially the liquid distribution of diesel. It is also found that the ambient temperature and fuel temperature have the negative effects on Sauter mean diameter (SMD distribution. For low-speed marine engines, the combustion performance of HFO is not sensitive to activation energy in a certain range of activation energy. At higher engine speed, the difference in the effects of different activation energies on the in-cylinder pressure increases. The swirl flow in the cylinder can significantly promote fuel evaporation and

  13. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  14. Calculation of Oil Film Thickness from Damping Coefficients for a Piston Ring in an Internal Combustion Engine

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders

    2007-01-01

    engine. The basic idea is to use the fluid film damping coefficients to estimate the film thickness variation for a piston ring under cyclic varying load. Reynolds Equation is solved for a piston ring and the oil film thickness is determined. In this analysis hydrodynamic lubrication is assumed......In 1966 Jorgen W. Lund published an approach to find the dynamic coefficients of a journal bearing by a first order perturbation of the Reynold's equation. These coefficients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid seventies Jorgen...... W. Lund pointed out in lecture notes that the dynamic damping coefficients of the bearing could be used to find the shaft orbit for dynamically loaded bearings. In the present paper this method is further developed and utilized to determine the dynamic behavior of a piston ring in a combustion...

  15. Application of non-equal interval GM(1,1) model in oil monitoring of internal combustion engine

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-wei; LI Zhu-guo; ZHOU Shou-xi

    2005-01-01

    The basic difference non-equal interval model GM(1,1) in grey theory was used to fit and forecast data series with non-equal lengths and different inertias, acquired from oil monitoring of internal combustion engines. The fitted and forecasted results show that the length or inertia of a sequence affects its precision very much, i.e. the bigger the inertia of a sequence is, or the shorter the length of a series is, the less the errors of fitted and forecasted results are. Based on the research results, it is suggested that short series should be applied to be fitted and forecasted; for longer series, the newer datum should be applied instead of the older datum to be analyzed by non-equal interval GM(1,1) to improve the forecasted and fitted precision, and that data sequence should be verified to satisfy the conditions of grey forecasting.

  16. Performance, emission and combustion characteristics of a semi-adiabatic diesel engine using cotton seed and neem kernel oil methyl esters

    Directory of Open Access Journals (Sweden)

    Basavaraj M. Shrigiri

    2016-03-01

    Full Text Available The performance, emission and combustion characteristics of a diesel engine are investigated using two methyl esters: One obtained from cotton seed oil and other from neem kernel oil. These two oils are transesterified using methanol and alkaline catalyst to produce the cotton seed oil methyl ester (CSOME and neem kernel oil methyl ester (NKOME respectively. These biodiesels are used as alternative fuels in low heat rejection engine (LHR, in which the combustion chamber temperature is increased by thermal barrier coating on piston face. Experimental investigations are conducted with CSOME and NKOME in a single cylinder, four stroke, direct injection LHR engine. It is found that, at peak load the brake thermal efficiency is lower by 5.91% and 7.07% and BSFC is higher by 28.57% and 10.71% for CSOME and NKOME in LHR engine, respectively when compared with conventional diesel fuel used in normal engine. It is also seen that there is an increase in NOx emission in LHR engine along with slight increase in CO, smoke and HC emissions. From the combustion characteristics, it is found that the values of cylinder pressure for CSOME and NKOME in LHR engine are near to the diesel fuel in normal engine.

  17. Comparative Study on Particles Formation in a Diesel Engine When Lubricating Oil Involved in Fuel Combustion

    Directory of Open Access Journals (Sweden)

    Lihui Dong

    2015-01-01

    Full Text Available The effect of lubricating oil on the morphology of particulate matter (PM was studied in a diesel engine fueled with pure diesel fuel and blended fuel containing 0.5% by weight of lubricating oil. Particulate matter emitted by diesel engines is formed primarily by soot agglomerates which are composed of primary particles. In this paper, particulate matter was collected with a thermophoretic sampling system, and a high-resolution transmission electron microscope (TEM was used to investigate the primary particles. A Fast Particulate Spectrometer, DMS 500, was used to determine the particle size distributions. The TEM results indicated that the mean diameters of the primary particles increased after the oil was added into the fuel. Particle size distributions results showed that lubricating oil in the fuel gave rise to a higher concentration in nucleation mode.

  18. Coal-oil mixture combustion program: injection into a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

    1982-04-30

    A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

  19. Fuel economy opportunities for internal combustion engines by means of oil-cooling

    Science.gov (United States)

    Ma, C. F.; Li, J. C.; Qin, W. X.; Wei, Z. Y.; Chen, J.

    1997-06-01

    Comparative experiments of oil and water-cooling were performed on a 4-cylinder automotive gasoline engine and a single-cylinder direct injection Diesel engine. Measurements were made to investigate the variation of fuel consumption, combustor wall temperature and engine emissions (HC, CO, NOx and smoke) with two cooling media at steady-state conditions. Significant improvement of fuel economy was found mainly at partial load conditions with oil-cooling in comparison with the baseline water-cooling both for the two engines. The experimental results also showed general trend of reduction in engine emissions using oil as the coolant. Measurements of wall temperature demonstrated that oil-cooling resulted in considerable increase of the combustor wall temperature and reduce of warm-up period in starting process. For automotive gasoline engine, road tests indicated the same trend of fuel economy improvement with oil-cooling. The performance of the automotive oil-cooled engine was further improved by internal cooling with water or methanol injection.

  20. Combustion and emission characteristics of a dual fuel engine operated with mahua oil and liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available For the present work, a single cylinder diesel engine was modified to work in dual fuel mode. To study the feasibility of using methyl ester of mahua oil as pilot fuel, it was used as pilot fuel and liquefied petroleum gas was used as primary fuel. In dual fuel mode, pilot fuel quantity and injector opening pressure are the few variables, which affect the performance and emission of dual fuel engine. Hence, in the present work, pilot fuel quantity and injector opening pressure were varied. From the test results, it was observed that the pilot fuel quantity of 5 mg per cycle and injector opening pressure of 200 bar results in higher brake thermal efficiency. Also the exhaust emissions such as smoke, unburnt hydrocarbon and carbon monoxide are lower than other pressures and pilot fuel quantities. The higher injection pressure and proper pilot fuel quantity might have resulted in better atomization, penetration of methyl ester of mahua oil and better combustion of fuel.

  1. Numerical studies of the combustion of fuel oil in the boiler furnace at reduced load

    Directory of Open Access Journals (Sweden)

    Ivantsov Aleksandr A.

    2014-01-01

    Full Text Available Relevance of the work due to the need to assess the effectiveness and reliability of the boiler units on reserve fuel after reconstruction associated with a change in the base fuel and approaches of numerical analysis. Analysis of physical and chemical processes in the furnace volume of boiler BKZ–210–140 operating on reserve fuel and rated load when using the Euler and Euler combined and Lagrangian modeling approaches. Results of the numerical modeling of the processes of aerodynamics, heat exchange, and combustion in the furnace volume.

  2. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  3. Enhancing instruction in Fuels and Combustion Laboratory via a developed computer-assisted program for establishing efficient coal-diesel oil mixture (CDOM) fuel proportions

    Energy Technology Data Exchange (ETDEWEB)

    Maglaya, A.B. [La Salle University, Manila (Philippines). Dept. of Mechanical Engineering

    2004-07-01

    This paper discusses the relevance of digital computation in Fuels and Combustion Laboratory experiments used by the senior students of the Department of Mechanical Engineering, De La Salle University-Manila, Philippines. One of the students' experiments involved the determination of the most efficient CDOM fuel proportion as alternative fuel to diesel oil for steam generators and other industrial applications. Theoretical calculations show that it requires tedious and repetitive computations. A computer-assisted program was developed to lessen the time-consuming activities. The formulation of algorithms were based on the system of equations of the heat interaction between the CDOM fuel, combustion air and products of combustion and by applying the principles of mass and energy equations (or the First Law of Thermodynamics) for reacting systems were utilized. The developed computer-assisted program output verified alternative fuel selected through actual experimentation.

  4. Fuel oil-water emulsions combustion and application perspectives in Mexico; Combustion de emulsiones de agua en combustoleo y perspectivas de aplicacion en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo Barrera, Rene [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    Fuel drops with a content of 16% by weight were burned in three emulsions prepared with 5%, 15% and 25% water. The combustion of the drops was carried out in an spherical furnace utilizing the technique of a drop suspended in a filament. The combustion process was registered by a high velocity video system. It was found that the surface of the particles produced by the combustion of the emulsions, had larger holes than the ones of the fuel, therefore it is expected that emulsifying the fuel can help in reducing the unburned particles emission. [Espanol] Se quemaron gotas de un combustoleo, con un contenido de asfaltenos del 16% en peso, y de tres emulsiones preparadas con 5%, 15% y 25% de agua. La combustion de las gotas se llevo a cabo en un horno esferico empleando la tecnica de gota suspendida en un filamento. El proceso de combustion se registro mediante un sistema de video de alta velocidad. Se encontro que la superficie de las particulas de coque, producidas por la combustion de emulsiones, tuvo hoyos mas grandes que la del combustoleo, por lo que es de esperarse que emulsionar el combustoleo puede ayudar a reducir las emisiones de particulas inquemadas.

  5. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  6. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing

    2016-09-20

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing different reaction stages, which are determined by a systematic optimization process to ensure that the separation of different reaction stages with highest accuracy. The procedure is implemented and the model prediction was compared against that from a conventional method, yielding a significantly improved agreement with the experimental data. © 2016 American Chemical Society.

  7. Investigation of emissions and combustion characteristics of a CI engine fueled with waste cooking oil methyl ester and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Nantha Gopal

    2014-06-01

    Full Text Available Biodiesel has been identified as a potential alternative fuel for CI engines because use of biodiesel can reduce petroleum diesel consumption as well as engine out emissions. Out of many biodiesel derived from various resources, biodiesel from Waste Cooking Oil (WCO can be prepared economically using usual transesterification process. In the present study, in-depth research and comparative study of blends of biodiesel made from WCO and diesel is carried out to bring out the benefits of its extensive usage in CI engines. The experimental results of the study reveal that the WCO biodiesel has similar characteristics to that of diesel. The brake thermal efficiency, carbon monoxide, unburned hydrocarbon and smoke opacity are observed to be lower in the case of WCO biodiesel blends than diesel. On the other hand specific energy consumption and oxides of nitrogen of WCO biodiesel blends are found to be higher than diesel. In addition combustion characteristics of all biodiesel blends showed similar trends when compared to that of conventional diesel.

  8. Marine sponges as bioindicators of oil and combustion derived PAH in coastal waters.

    Science.gov (United States)

    Batista, Daniela; Tellini, Karla; Nudi, Adriana H; Massone, Thaís P; Scofield, Arthur de L; Wagener, Angela de L R

    2013-12-01

    The present study evaluates the potential of Hymeniacidon heliophila as bioindicator of PAH contamination. For this, concentration of 33 PAH was determined in organisms from sites with different contamination level including the heavily polluted Guanabara Bay, Rio de Janeiro, and less impacted coastal areas. PAH concentration and typology were determined in sponges collected from different depths and in two different seasons. The brown mussel broadly studied as bioindicator was also sampled from the same sites for comparison. Both species provided similar information on total PAH concentration which is related to site contamination level. Sponges, however, revealed slight tendency to accumulation of combustion-derived PAH in relation to petrogenic compounds. Differences in PAH typology between species may derive from the interspecific variation in particle size ingestion. Different hydrocarbon typologies were observed in sponges from dry and wet season and PAH concentration varied with depth. H. heliophila may be used as an alternative approach to investigate the presence and sources of PAH in estuarine areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fuel oil-water emulsions to reduce unburned particle emissions from boilers; Emulsiones agua en combustoleo para reducir las emisiones de particulas inquemadas en calderas

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio; Ocampo Barrera, Rene; Martinez Flores, Marco Antonio; Tamayo Flores, Gustavo Adolfo; Alarcon Quiroz, Ernesto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    To diminish the problems caused by fuels in boilers such as abnormal soiling of heat interchange surfaces, decrease of thermal and combustion efficiencies and increment of pollutants it is proposed the utilization of fuel oil water emulsions. This technology process is described, its development and application in other countries is shown and mention is made of the experiences in this regard at the Instituto de Investigaciones Electricas (IIE), as well as the perspectives this technology has in Mexico. In conclusion, the fuel oil water emulsion is an alternative that can help burning efficiently the fuel oil and so to contribute to fulfill with the limits established by the environmental regulations on pollutant emissions. The development of this technology is economical and of simple application, compared with others, such as the installation of new burners, the utilization of a commercial technology for flue gas conditioning, etcetera [Espanol] Para disminuir los problemas ocacionados por el combustoleo en las calderas como: ensuciamientos anormales de las superficies de intercambio de calor, disminucion de eficiencias termicas y de combustion e incremento de las emisiones, se propone la utilizacion de la emulsion de agua en combustoleo. Se describe el proceso de esta tecnologia, se muestra su desarrollo y aplicacion en otros paises y se mencionan las experiencias a este respecto en el Instituto de Investigaciones Electricas (IIE), asi como las perspectivas que tiene esta tecnologia en Mexico. En conclusion, la emulsion de agua en combustoleo es una alternativa que puede ayudar a quemar eficientemente al combustoleo y asi contribuir a cumplir con los limites de emisiones que establecen normas ambientales. El desarrollo de esta tecnologia es economica y de aplicacion sencilla, comparada con otras como: la instalacion de nuevos quemadores, la utilizacion de una tecnologia comercial para acondicionar los gases de combustion, etcetera

  10. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    Science.gov (United States)

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  11. Modélisation de la combustion de fuels lourds prenant en compte la dispersion des asphaltènes Modeling Heavy Fuel-Oil Combustion (While Considering Or Including Asphaltene Dispersion

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    Full Text Available Divers modèles, ayant pour but de prédire le taux d'imbrûlés solides lors de la combustion du fuel lourd, ont été mis au point dans le passé. Les paramètres entrant en ligne de compte sont le plus souvent les teneurs en résidus lourds hydrocarbonés (asphaltènes précipités au pentane ou à l'heptane et carbone Conradson et en métaux : c'est le cas des modèles Exxon et Shell développés respectivement en 1979 et 1981. D'autres modèles tiennent compte, en plus de la composition du fuel, de son mode d'atomisation, de son mode de diffusion dans le foyer et de la cinétique de combustion : on peut citer les travaux du Laboratoire Energie du MIT publiés en 1986. Néanmoins, ces facteurs ne sont pas les seuls à intervenir : l'expérience a montré que l'état de dispersion des asphaltènes peut jouer également un grand rôle, notamment dans le cas d'installations de combustion à injection mécanique, pour lesquelles la dispersion des gouttelettes n'est pas aussi fine que pour des installations munies d'une injection assistée par la vapeur. Cette influence de la dispersion des asphaltènes sur la combustion a été mise en évidence dans le passé par l'utilisation d'additifs dispersants et également par la combustion de fuels lourds constitués par dilution d'asphaltes précipités au pentane avec un gas-oil de cracking catalytique de raffinerie (LCO. Ce sont ces fuels que l'on a considérés dans la présente étude. L'effet de ce facteur dispersion n'a pas été quantifié jusqu'alors, la difficulté étant de définir une grandeur mesurable représentant la répartition des agglomérats d'asphaltènes. Dans cette étude, on a essayé en un premier temps de faire une approche fractale de la répartition des asphaltènes à partir de clichés (préparés par la société Total, cette méthode ayant déjà été utilisée avec succès pour décrire des structures d'aspects comparables. Malheureusement, on s'est heurté à des

  12. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  13. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-01-01

    Full Text Available Biogas released from palm oil mill effluent (POME could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4 has been utilized as a fuel in a lab-scale furnace. A computational approach by standard k-ε combustion and turbulence model is applied. Hydrogen is added to the biogas components and the impacts of hydrogen enrichment on the temperature distribution, flame stability, and pollutant formation are studied. The results confirm that adding hydrogen to the POME biogas content could improve low calorific value (LCV of biogas and increases the stability of the POME biogas flame. Indeed, the biogas flame length rises and distribution of the temperature within the chamber is uniform when hydrogen is added to the POME biogas composition. Compared to the pure biogas combustion, thermal NOx formation increases in hydrogen-enriched POME biogas combustion due to the enhancement of the furnace temperature.

  14. Effect of mixture of alcohols on biodiesel properties which produced from waste cooking oils and compare combustion performance and emissions of biodiesels with petrodiesel

    Directory of Open Access Journals (Sweden)

    Mansourpoor Mojtaba

    2012-12-01

    Full Text Available Increasing the petroleum price and environmental problems have been driving forces to findalternative and renewable energy resources. Biodiesel has attracted the attention of many researchersdue to various advantages associated with its usages. Several aspects including the type of catalyst,molar ratio of alcohol to oil, temperature, purity of reactants and free fatty acid content have mainlyinfluence on transesterification. In this work, waste cooking oils and two types of alcohols with differentmolar ratio of methanol to ethanol and potassium hydroxide as catalyst were used as materials. Effect ofalcohol on the physical properties, combustion efficiency and emitted gases of biodiesels were studiedand compared with petrodiesel. Mixture of methanol and ethanol were used for transesterification inorder to optimize solvent property of methanol and rapid equilibrium using methanol. Waste cooking oilis considered as the most suitable material due to its availability and cost-effectiveness. To examine theperformance and emissions of biodiesels, a wet base semi-industrial boiler was used for combustion anda flue-gas analyzer has measured the emitted gases. Finally, physical properties of biodiesels weremeasured in Abadan’s Oil Refinery Laboratory.

  15. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    OpenAIRE

    Seyed Ehsan Hosseini; Ghobad Bagheri; Mostafa Khaleghi; Mazlan Abdul Wahid

    2015-01-01

    Biogas released from palm oil mill effluent (POME) could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4) has...

  16. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    OpenAIRE

    Seyed Ehsan Hosseini; Ghobad Bagheri; Mostafa Khaleghi; Mazlan Abdul Wahid

    2015-01-01

    Biogas released from palm oil mill effluent (POME) could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4) has...

  17. 超稠油燃烧基础参数特征研究%Physical simulation research on basic parameters of in—situ combustion for super heavy oil reservoirs

    Institute of Scientific and Technical Information of China (English)

    程海清; 赵庆辉; 刘宝良; 吴拓; 彭旭

    2012-01-01

    针对超稠油油藏开展火烧油层技术可行性研究的需要,利用自行设计研制的火烧油层物理模拟实验装置,分别采用超稠油、特稠油、普通稠油开展了火烧油层燃烧基础参数物理模拟实验.对比了不同类型稠油门槛温度、燃料消耗量等燃烧基础参数,结合产出油组分及温度场发育特征,分析了超稠油燃烧基础参数特征.研究认为,超稠油油藏开展火烧油层试验是可行的,超稠油门槛温度、燃料消耗量等燃烧基础参数值均高于其他类型稠油;稠油火烧油层的驱油效率与黏度相关,黏度越大其燃料消耗量越大,其最终的驱油效率相对较低;火烧后原油性质发生了明显改善.%A physical simulation system has been designed and developed to study the feasibility of in - situ combustion for super heavy oil reservoirs. Physical simulation experiments have been carried out for the basic parameters of in - situ combustion by respectively using super heavy oil, extra heavy oil and conventional heavy oil. Basic combustion parameters such as threshold temperature and fuel consumption have been compared for different types of heavy oil. The parameter characteristics of super heavy oil combustion have been analyzed combining with produced oil composition and temperature field characteristics. It has been concluded that in - situ combustion is feasible for super heavy oil reservoirs, whose threshold temperature and fuel consumption are higher than other types of heavy oil. The displacement efficiency of in - situ combustion is related to oil viscosity. The higher the viscosity is, the bigger the fuel consumption is, and the lower the ultimate displacement efficiency will be. Crude oil properties have been substantially improved after in - situ combustion.

  18. PERFORMANCE, EMISSION AND COMBUSTION CHARACTERISTICS OF A METHYL ESTER SUNFLOWER OILEUCALYPTUS OIL IN A SINGLE CYLINDER AIR COOLED AND DIRECT INJECTION DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    TAMILVENDHAN.D,

    2011-03-01

    Full Text Available Biomass derived fuels are preferred as alternative fuels for IC engine due to its abundant availability and renewable nature. In the present work the performance, emission and combustion characteristics of a single cylinder constant speed , direct injection diesel engine using methyl ester of sun flower oil – eucalyptus oil blend as an alternative fuel were studied and the results are compared with thestandard diesel fuel operation. Result indicated that 50% reduction in smoke, 34% reduction in HC emission and a 37.5% reduction in CO emission for the MeS50Eu50 blend with 2.8 % increase in NOx emission at full load. Brake thermal efficiency was increased 2.7 % for eS50Eu50 blend.

  19. Effects of fractal grid on emissions in burner combustion by using fuel-water-air premix injector derived from biodiesel crude palm oil (CPO base

    Directory of Open Access Journals (Sweden)

    Suardi Mirnah

    2017-01-01

    Full Text Available The alternative fuel is attracted good attention from worldwide especially for renewable and prevention energy such as biodiesel. Biodiesel is one of the hydrocarbon fuels and it has potential for external combustion. As one of the different solutions to these problems, rapid mixing of biodiesel-water-air technique is one of the most significant approaches to improve the combustion and reduce the emissions. The gas emission can be reduced by two methods. First is by improving an injector with fractal and the other is by using a biodiesel-water mixture as an alternative fuel. Mixing of water with fuel in the combustion process is a low cost and effective way. This research used biodiesel Crude Palm Oil (CPO as fuels in which blended with diesel. This study investigated the effects of water content and equivalence ratio on emissions with the rapid mixing injector. Fuels used are diesel, CPO5, CPO10 and CPO15 and the exhausts gaseous tested are CO, CO2, HC and NOX. The gas emissions processes are tested by using the gas analyzer. In this research, water premix of percentage up to 15vol% and blending biodiesel ratio was varied from 5vom% - 15vol%. The result shows that increasing of water content will effected decrement of CO, CO2 and HC emissions but increasing the NOX emissions.

  20. Operation related on-line measurements of low temperature fire side corrosion during co-combustion of biomass and oil; Driftrelaterad direktmaetning av laagtemperaturkorrosion i en braensleeldad kraftvaermeanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Thomas [Studsvik Nuclear AB, Nykoeping (Sweden)

    2000-05-01

    A number of combustion plants have experienced corrosion attack on air preheaters and economisers when fired with biomass fuels. In certain plants the problems are great and reconstruction has been performed so that exposed components can be exchanged during operation. The electrochemical techniques offer on-line measurements of the changes in corrosion rate in the low temperature region in a waste incinerator. The purpose with this study was to evaluate the technique in a biomass fired boiler where the corrosion rate is considerable lower compared to a waste incinerator. Experiments were performed at the Haesselby plant, boiler 3, which was fired with pure biomass as well as a mixture of biomass and oil during the test period. It was found that the electrochemical technique is a useful tool for on-line measurements of the changes in corrosion rate in biomass fired utilities. Since the corrosion rate in the low temperature region is dependent on the boiler construction, electrochemical measurements give valuable information on the corrosion rate during optimisation of the fuel mixture, SNCR and temperature or the low temperature components. This is of special importance when introducing new fuels or fuel mixtures. Soot blowing is of prime importance for the total corrosion. During a few minutes an individual soot blower can initiate such a high corrosion rate that it represents the total corrosion. The material temperature is another important parameter. Above a certain temperature the corrosion rate is negligible. During co-combustion this temperature was found to be in the region 65-85 deg C. The influence of the SNCR with ammonia, with respect to corrosion, is dependent on the fuel mixture used. In utilities where acidic combustion products are formed, ammonia has a neutralising effect e.g. in Hoegdalen. At the Haesselby plant this neutralising effect was not found. During cocombustion with oil the ammonia forms ammoniahydrosulphate which increases the corrosion

  1. Performance evaluation of small scale internal combustion engine with mixtures for diesel oil-palm oil; Avaliacao do desempenho do motor de combustao interna de pequeno porte com misturas oleo diesel - oleo de dende

    Energy Technology Data Exchange (ETDEWEB)

    Seye, Omar; Souza, Rubem Cesar Rodrigues [Universidade Federal do Amazonas (CDEAM/UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico], Emails: Seye62omar@yahoo.com, rcsouza@internext.com.br

    2006-07-01

    This work aims at the performance evaluation of the Cummins 4B -3.9, an internal combustion engine of maximum power 75 hp (56.6 kW) for small scale power generation, burning different mixtures of diesel fuel and palm oil. The palm oil in nature is mixed manually, what unfortunately will influence the engine performance as it hinders the combustion. The test protocol will include the biodiesel, later on. The emissions were assessed for several proportions of mixture diesel/palm oil covering the strip from 0 to 20% and the results were compared to the engine performance when it operates with diesel only. The motor is coupled to a dynamometer, whose operation consists of the acceleration and deceleration of water in order to simulate the effect of a load being applied to the motor. The system is controlled by the software LT commander that allows the start up and the shutdown of the engine from the screen of the computer that also monitors the following parameters as speed of rotation of the motor (RPM), applied torque (N-m), potency (hp), temperature of the lubricating oil, temperature of the water in the entrance and exit of the motor, and temperature of the environment (deg C), pressures of the lubricating oil and of opening of the injector (mBar). While a flow meter coupled to the piping measures the consumption of fuel, the gas analyzer ECHO Line 6000 it monitors the concentration and temperature of carbon monoxide (CO) (ppm), nitric oxide (NO) (ppm), nitrogen dioxide (NO{sub 2}), (ppm), sulfur dioxide (SO{sub 2}) (ppm) and Oxygen (O{sub 2}) (%) in the exhaust gases. This equipment also determines the combustion parameters as excess of air and the efficiency. The technical results present the efficiency variation, the pressure of the fuel, monoxide carbon, NOx emissions, Oxygen content in the exhaust gases, for the different mixture proportions. Furthermore, the results of economic viability show generation cost values of US$ 135,66/MWh for the motor operating

  2. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  3. Microstructure of water emulsions in heavy fuel oil and its effect in the combustion; Microestructura de emulsiones agua en combustoleo pesado y su efecto en la combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Aranda, Angel Alberto

    2000-11-01

    In this work, it was investigated the effect of water drop size distribution (Wad's) of emulsions on the reduction of both the emission and size distribution of total suspended particles (TSP). Four emulsions were prepared in line with different static mixers (smx-1, 2, 3 and 4) and 6.8{+-}0.5% of water. They were burned in an experimental furnace with a HFO mass flow rate of 32 kg h{sup -1} and an excess of oxygen in the flue gases of 0.37%. The TSP emission was measured according to the United States Environmental Protection Agency Method 5 and particle size distribution (PSD) was determined using a cascade impactor by adjusting the procedure dictated by the Method 17 of the same agency. The emulsions were examined with an optical transmitted light microscope and an image analysis system to determinate the WDSD according to the Britannic Standard BS-3604. The unburned carbon of the particles was determined with a CHN-600 LECO elemental analyser using the ASTM-D5373 method. The size and morphology of the cenospheres were analyzed with a scanning electronic microscope and the total incident heat flux on the wall of combustion chamber was measured by a flux probe. The emulsion of the smx-1 mixer had a proportion in volume of 64% in water drops of 2 to 5 {mu}m and reduced the TSP emission in 43% with respect to that of the HFO without water (baseline test). In the emulsions from the mixers 2 and 3 this proportion was 52% respectively, and in both the TSP emission decreased 34%. In the smx-4 emulsion the proportion was of 28% and de TSP emission was reduced 25%. The PSD showed that the emulsions produced smaller cenospheres; the amount of emitted particles with equivalent aerodynamic diameter less than 1 {mu}m was 26.7% in the base line test, 43.0% with the smx-1 emulsion, 40% with the emulsions from mixers 2 and 3 and 34.8% with the smx-4 emulsion. The PSD was agree with the images obtained with the electronic microscope, where the base line particles were the

  4. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventiona

  5. Influence de la nature des fuels lourds sur la qualité de leur combustion Influence of Heavy Fuel Oil Composition on Particulate Emissions

    Directory of Open Access Journals (Sweden)

    Feugier A.

    2006-11-01

    heavy fuel oils in a 1 MW boiler and an 0. 1 MW furnace, the conclusion was reached that Conradson carbon residue (CCR of fuel oils is a good indicator of their combustibility, but that it is not sufficient in all cases, i. e. for the same CCR, different values of particulate emissions can be measured. Several possible interpretations were proposed and checked:(a Conradson carbon residue is the result of slow pyrolysis, but it is a procedure that is not sufficiently representative of actual conditions. Yet, by subjecting various fuel oils to flash pyrolysis (heated-grid technique, a good correlation is found between the amount of residue resulting and the CCR. Therefore the CCR remains a good combustibility indicator. (b For fuel oils ex atmospheric residue, ex vacuum residue and ex deasphalting, satisfactory correlations have been observed between CCR and various physicochemical properties of the heavy fractions of fuel oils (cut point of 450°C chosen, i. e. polyaromaticity (measured by carbon 13 NMR, C/H and molecular weight. However, visbreaking fuel oils meet other correlations, as do steam-cracking residues. Hence for these classes of fuel oils, anomalies can be predicted between the particulate emissions and CCR, which is effectively observed with some equipments. (c For the same CCR value, the relative proportion between light and heavy fractions of fuels can sometimes be seen to vary quite appreciably, thus causing changes in the richness and temperature maps of the resulting flames, and hence variations in particulate emissions. The extent of such variations will depend on the types of burners and combustion chambers in which the flame develops.

  6. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland)

    1995-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  7. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  8. Demonstration program for coal-oil mixture combustion in an electric utility boiler - Category III A. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    The 1978 annual report covers New England Power Service Company's participation in the Department of Energy coal-oil mixture (COM) program. Continued world-wide unrest resulting in an unstable fuel oil supply coupled with rapidly inflating costs have caused continued interest in a demonstrable viable solution. NEPSCO's program, while not attaining all the milestones forecast, has made considerable progress. As of January 31, 1979, ninety-five (95% percent of engineering and design has been completed. Construction of facilities and installation of required equipment was approximately 75% complete and the six-week Feasibility Testing program was expected to commence during April 1979.

  9. Desulfurization of fuel oils using an advanced oxidation method; Desulfuracion de combustibles usando un metodo de oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    In the present work, the oxidative desulfurization of fuel oils assisted by ultrasound was analyzed. It was studied the effect of hydrogen peroxide concentration, the fuel oil to aqueous solution volumetric ratio, and type of catalyst. The Fenton-like catalysts studied were ferric chloride and copper sulfate. [Spanish] En esta investigacion se analiza la desulfuracion oxidativa de combustoleo asistida con ultrasonido. Tambien se estudia el efecto de la concentracion de peroxido de hidrogeno (H{sub 2}O{sub 2}), la relacion volumetrica combustoleo/solucion acuosa y el tipo de catalizador. Los catalizadores tipo Fenton que se estudiaron fueron el cloruro ferrico (FeCl{sub 3}) y el sulfato de cobre (CuSO{sub 4}).

  10. Characterization of diesel oil mixtures with soy oil used for activation of engines of internal combustion; Caracterizacao de misturas de oleo diesel com oleo de soja reutilizado para acionamento de motores de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Wagner da Cunha; Fernandes, Haroldo Carlos; Teixiera, Mauri Martins; Abrahao, Selma Alves; Leite, Daniel Mariano [Universidade de Vicosa, (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: wagner.siqueira@ufv.br, haroldo@ufv.br, mauri@ufv.br, selma.abrahao@ufv.br, daniel.mariano@ufv.br

    2011-07-01

    Alternative energy sources have been studied in several countries, with emphasis on ways of obtaining and using more efficient. The objective of this work to evaluate and characterize mixtures of diesel oil (DO) with soybean oil reused (OSR), the ratios of 0, 25, 50, 75, and 100% of OSR in relation to specific gravity index viscosity and calorific value. To determine the specific gravity was used beaker, thermometer and a balance for each mixture was adjusted a regression model to estimate the bulk density as a function of temperature (25 to 90 deg C). We analyzed the viscosity of the mixtures using an orifice-type viscometer Saybolt, through regression analysis models were fit to estimate the viscosity as a function of temperature, heating the OSR 100% from 40 to 90 deg C decreased by up 90.4% to its viscosity. The tests were performed calorimetric using a bomb calorimeter determines the calorific value , the variation in calorific value followed a descending order with respect to OD with the increasing content of OSR. The OSR is efficient for use in internal combustion engines in small proportions. (author)

  11. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  12. Control of NO sub x emissions by combustion-air staging: the measurement of NH sub 3 , HCN, NO and N sub 2 O concentrations in fuel-oil flames

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, W.; Hampartsoumian, E.; Sedighi, K.; Williams, A. (Leeds Univ. (GB). Dept. of Fuel and Energy)

    1991-09-01

    The control of NO{sub x} formation from fuel-bound nitrogen in the combustion of coal and oil can give significant reductions in the final emission. One of the simplest and most cost-effective combustion modifications is that of staging the combustion air, whereby up to 50% is separated from the primary air and introduced into the flame further downstream. Thus the early part of the flame has a fuel-rich centre which provides a chemical environment that encourages the reaction of NO to form harmless products N{sub 2} and H{sub 2}O. The work presented here has investigated the in-flame development of NH{sub 3}, HCN, NO and N{sub 2}O for an unstaged and a staged (35%) oil flame, since they are the principal intermediates in the formation of NO. The oil spray was characterised by means of a laser particle-sizing technique over a range of oil pressures and combustion-air flows and two nozzle spray angles. The results were correlated with NO{sub x} emission measurements. The air-staging results showed that the virtually oxygen-free condition at the centre of the staged flame altered the ratio of HCN:NH{sub 3} significantly, and that in-flame development of NO was limited. Measurements of N{sub 2}O emissions from the unstaged and staged flames showed levels of typically less than 2 vpm in the exit flue, but the in-flame measurements showed that the unstaged flame exhibited a peak of circa 6 vpm at an axial position coincident with maximum NO concentrations. The staged flame did not display this feature. (author).

  13. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology for ...

  14. Oil use of the effluent plant ETEO (Effluent Station of Oil Treatment) as combustible for generation of energy in the power plant UG-50Hz; Utulizacao de oleo da ETEO (Estacao de Tratamento de Efluentes Oleosos) para geracao de energia na UG-50Hz

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Francisco de; Nascimento, Jose Maria do; Silva, Luiz Antonio da; Salazar, Marcos Vinicios; Baptista, Reinaldo Lopes; Barros, Sueli Aguiar [Companhia Siderurgica Nacional (CSN), Volta Redonda, RJ (Brazil)

    2009-11-01

    The areas of finishing products of CSN Steel Plant generate contaminated effluents with oil and grease , that are treated in ETEO (Effluent Station of Oil Treatment). In this plant, the oil is processed to be sold for the consuming market. However, some seasons of the year, the market does not absorb the oil, and CSN is obliged to defray the burning of this oil, to not interrupt the productive process and cause an environmental impact. Because of this situation, we search alternatives for the viable use of this oil inside CSN steel plant, taking care for the security of the processes and the impact to the environment. This paper describes the details of the work and the implantation of the burning of this oil of the ETEO with BPF oil (type of petrochemical oil) as combustible in the boiler 7 of the power plant UG 50 Hz. For the implantation of this project, operational contingencies of security for equipment was prepared . Moreover, the work included chemical analyses of the oil and the conditions of the boiler using this mixing of oils. The reached results demonstrate the total viability of this project and it was proved another alternative of the use of this residue, with reduction of the fuel costs , steam costs and the electric energy generated in the power plant of CSN. (author)

  15. A Contribution to the Problem of Initiation of a Combustion Source in an Oil-Saturated Bed

    Science.gov (United States)

    Koznacheev, I. A.; Dobrego, K. V.

    2013-11-01

    The problem on in-situ self-ignition of an oil-saturated bed under the conditions of forced filtration of an oxygen-containing gas has been solved with analytical and numerical methods with account of the burnout of a deficient gas component. The influence of the burnout of this component and of convective removal of heat from the bed on the time of its self-ignition has been determined. Recommendations for the optimum regime of initiation of the self-ignition of the bed with account of variation of the blast flow rate and the oxygen content have been given.

  16. Investigating SO3 Formation from the Combustion of Heavy Fuel Oil in a Four-Stroke Medium Speed Test Engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Schramm, Jesper; Rabe, Rom

    2013-01-01

    The validation of detailed models, in terms of SO3 formation in large marine engines operating on sulfur-containing heavy fuel oils (HFOs), relies on experimental work. The requisite is addressed in the present work, where SO3 is measured in the exhaust gas of an 80 kW medium-speed single......-cylinder HFO-fuelled test engine. SO3 formation is triggered by running the engine at altered operational conditions and speeds within 1050−1500 rpm. The test engine does not represent a large low-speed marine engine; however, the nature of high-temperature SO3 formation may well be explored with the current...... conversion and indirect detection via light absorption in a photometer. Present results show that SO3 formation is favored by elevated pressure histories, premixed combustion, and reduced speeds. The fraction of fuel sulfur converted to SO3 is measured to be on the order of 0.5%−2.4%, corresponding to 4...

  17. La pulvérisation du fuel oïl lourd par des combustibles gazeux Using Gaseous Fuels to Spray Heavy Fuel Oil

    Directory of Open Access Journals (Sweden)

    Ladurelli A.

    2006-11-01

    Full Text Available Pour faciliter l'inflammation du fuel lourd on procède à sa pulvérisation au droit du brûleur. Deux méthodes sont généralement employées à cet effet : - La pulvérisation mécanique qui consiste à faire passer le liquide sous forte pression au travers d'orifices calibrés de petit diamètre. - La pulvérisation pneumatique qui consiste à utiliser la détente d'un fluide auxiliaire préalablement comprimé. Les fluides couramment utilisés pour cela sont l'air comprimé et la vapeur d'eau ; toutefois tous les combustibles gazeux, notamment le gaz naturel et les gaz de raffinerie, peuvent également servir de fluide de pulvérisation quand ils sont disponibles sous pression. The igniting of heavy fuel oil is facilitated by spraying it at the burner. Two methods are used as a rule: - Pressure atomization, consisting in causing the liquid to pass at high pressure through calibrated small-diameter orifices. - Twin-fluid atomization, which consists in using the expansion of a previously compressed auxiliary fluid. The fluids commonly used for the purpose are compressed air and steam. However, any gaseous fuel, particularly natural gas and the refinery gases, can be used as the spraying fluid provided it is available under pressure.

  18. The flexfuel tractor. Invesigations on the combustion behaviour of vegetable oil fuels and on the discernability of fossil and biogenic fuels; Der Flexfuel Traktor. Untersuchungen zum Verbrennungsverhalten von Pflanzenoelkraftstoffen und zur Unterscheidbarkeit fossiler und biogener Kraftstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Dieringer, Stefanie

    2012-07-01

    Increasing energy prices, especially for fossil fuels, as well as the necessity to reduce CO{sub 2} emissions are emphasizing the advantages of self-produced vegetable oil fuels in agriculture. Monetary advantages are depending on basic conditions like farm size or tax legislation, which can be changing locally as well as temporarily. Due to the differing properties of diesel and vegetable oil fuel, engines have to be adapted to each fuel to fulfil performance requirements as well as emission limits and reliability. Knowing that there are advantages of vegetable oil compared to diesel fuel, though not always and everywhere present, it becomes obvious that the well known flexible fuel concept of passenger cars should be adapted for diesel engines of agricultural machines. So called flexfuel engines imply the detection of the fuel type and an automated adjustment of the engine control parameters without any manual action of an operator. Therefore, the first step consists of the evaluation of the combustion properties of rapeseed, sunflower, jatropha and false flax oil compared to diesel fuel. The tested vegetable oils showed very similar behaviour in the tested common rail diesel engine. Especially the limited emissions were met with the same engine control software with all vegetable oils. In consequence it is possible to realize a flexfuel engine using the two engine control maps available at the moment, one for diesel and the other one for vegetable oil fuels. For further investigations one oil type, namely rapeseed oil was selected to test the combustion behaviour of fuel blends made of diesel and vegetable oil. The goal was to determine the blend ratio of vegetable oil and diesel fuel at which the engine control software has to be changed from the diesel to the vegetable oil map automatically. If the fuel consists of 40% or more vegetable oil, the vegetable oil engine control map has to be selected in order to fulfil legal emission limits. Finally the

  19. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    Science.gov (United States)

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  20. SOLUTION OF THE PROBLEM OF OIL-POOL IN-SITU COMBUSTION FRONT PROPAGATION ON THE BASIS OF HEURISTIC HYPOTHESIS REGARDING TEMPERATURE AND CONCENTRATION PROFILES

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2016-01-01

    Full Text Available At present the number of oil deposits with viscous and stranded oil is steadily growing. Due to the mentioned circumstance there is growing interest in methods of thermochemical treatment of an oil and coal-beds. This interest is reflected, e.g., in the “Visha-Thermogaz” BelarusianRussian joint project. In order to provide control over the in-situ thermochemical processes it is necessary to use models of different levels, i.e. qualitative analysis, simplified numerical simulation with “averaged” parameters, as well as detailed 2D and 3D modeling. Due to variety of specific parameters and conditions of in-situ processes, design of new simplified methods of analysis is a topical objective both for research and practical activity. Therefore, a new method of solution of the problem of in-situ combustion front propagation based on heuristic hypothesis is discussed in the present article. The designed method is based on heuristic assumption of functional relationship between the profiles of temperature T and deficit component concentration y: exp(-E / T  = exp(-E / Tmax (1- y. Another hypothesis is the assumption that the maximum gradient of the concentration profile of the missing component is implemented with a fixed value of concentration that is expressed as y’’ ( y = y* = 0. Simple algebraic and differential equations fordetermination of the temperature and concentration profiles as well as for the front propagation velocity are derived for two cases i.e. the lack of oxidizer and the fuel component fault. Principal functional dependencies of the front velocity are revealed. Comparison of the profiles obtained with the use of the described method with the one obtained numerically proves the adequacy of the method itself and the hypotheses adopted. The method can be used for rapid assessment and parametric studies of the profiles and the speed of the front. It can also be used for analysis of similar problems

  1. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    Science.gov (United States)

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydro Carbon (HC) and Nitrogen Oxide (NOx) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels.

  2. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  3. Analysis of fire-catching accident based on aircraft combustible oil system%基于飞机可燃油液系统的失火事故分析

    Institute of Scientific and Technical Information of China (English)

    赵道文; 李传良

    2011-01-01

    从失火的基本条件出发分析飞机失火条件.从失火时机、起火原因两个角度介绍飞机失火的种类划分.重点分析飞机可燃油液引起飞机失火的原因,包括可燃油液泄漏到高温表面引起失火,高速碎片击穿油箱或打断油管引起失火,电气装置烧穿油箱及导管引起失火,遭遇雷击或静电起火等.提出预防飞机失火的措施.%The conditions of aircraft fire-catching accident were analyzed considering the basic conditions of fire accident. The compartmentalization of aircraft fire-catching accidents was introduced in points of fire-catching opportunity and fire cause. The fire accidents caused by combustible oil were focused on. And the reasons include the leakage of combustible oil to the high temperature surface causing the fire, the high speed fragment breaking the oil tank or the pipe causing the fire, the electric facilities burning through the tank or pipe causing the fire, and the lightning or static electricity causing the fire. Precautionary measures are brought forward.

  4. Multidimensional enantio gas chromtography/mass spectrometry and gas chromatography-combustion-isotopic ratio mass spectrometry for the authenticity assessment of lime essential oils (C. aurantifolia Swingle and C. latifolia Tanaka).

    Science.gov (United States)

    Bonaccorsi, Ivana; Sciarrone, Danilo; Schipilliti, Luisa; Dugo, Paola; Mondello, Luigi; Dugo, Giovanni

    2012-02-24

    This article focuses on the genuineness assessment of Lime oils (Citrus aurantifolia Swingle and C. latifolia Tanaka), by Multi Dimensional Gas Chromatography (MDGC) to determine the enantiomeric distribution of α-thujene, camphene, β-pinene, sabinene, α-phellandrene, β-phellandrene, limonene, linalool, terpinen-4-ol, α-terpineol and by gas chromatography-combustion isotope ratio mass spectrometry (GC-C-IRMS) to determine the isotopic ratios of α-pinene, β-pinene, limonene, α-terpineol, neral, geranial, β-caryophyllene, trans-α-bergamotene, germacrene B. To the author's knowledge this is the first attempt to assess the authenticity and differentiate Persian Lime from Key lime oils by GC-C-IRMS. The results of the two analytical approaches were compared. The simultaneous use of the two techniques provides more reliable capability to detect adulteration in Citrus essential oils. In fact, in some circumstance only one of the two techniques allows to discriminate adulterated or contaminated oils. In cases where only small anomalies are detected by the two techniques due to subtle adulterations, their synergic use allows to express judgments. The advantage of both techniques is the low number of components the analyst must evaluate, reducing the complexity of the data necessary to deal with. Moreover, the conventional analytical approach based on the evaluation of the whole volatile fraction can fail to reveal the quality of the oils, if the adulteration is extremely subtle. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Application of Macro-oil Ignition Technology in the Combustion Operation of 320 MW Unit Boiler%微油点火技术在320MW机组锅炉燃烧运行中的应用

    Institute of Scientific and Technical Information of China (English)

    薛小超; 王华

    2013-01-01

    This paper introduces the working principle of the micro oil ignition technology , and describes the process of ignition in detail according to application of the technology in the combustion operation of 2 ×320MW unit boiler in Anqing Wanjiang Power Generation Company .The analysis of economic benefits shows that micro oil ignition technology , as a new fuel saving technology of the thermal power plant boiler start-up and low load stable combustion , has good energy saving effect which can greatly reduce the cost of power generation and bring considerable economic benefits .%本文介绍了微油点火技术的工作原理,并针对该技术在安庆皖江发电公司2×320 MW机组锅炉燃烧运行的应用情况,详细介绍了点火启动的运行过程。通过经济效益分析表明,作为火电厂锅炉启动及低负荷稳燃的新型节油技术,微油点火技术良好的节能效果,能大大降低发电成本,带来可观的经济收益。

  6. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  7. Applied combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  8. 玉米秸秆生物油-柴油乳化油的燃烧特性%Combustion Characteristics of a Direct Injection Diesel Engine Operating on Emulsions from Corn Stalk Bio-Oil and Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    黄勇成; 韩旭东; 尚上; 王丽

    2011-01-01

    The experimental bio-oil produced from corn stalk through fast pyrolysis process is mainly composed of oxygenated organic and water, thereby restricting its direct use as fuel. However, the use of bio-oil in diesel engines can be realized by developing emulsions from bio-oil and diesel fuel. In this paper, two emulsions with 10% and 20% by mass fraction of bio-oil in diesel fuel, represented by B10 and B20 respectively, were prepared by using ultrasonic emulsification method. Then, the combustion characteristics of an unmodified direct injection diesel engine operating on the two emulsions were studied. The results show that the engine operating on the two emulsions displays a longer ignition delay, exhibits a higher peak value of premixed burning rate and pressure rise rate and a slightly lower peak value of diffusion burning rate, displays a lower peak combustion pressure and average combustion temperature, and has a shorter combustion duration when compared with No.0 diesel. In comparison with B10, B20 has a longer ignition delay, while exhibits a lower peak value of premixed burning rate, pressure rise rate, in-cylinder pressure and combustion temperature. In addition, the fuel economy for B10 operation is comparable to that for No.0 diesel operation, while the fuel economy of B20 is poorer than that of No.0 diesel.%试验用生物油是玉米秸秆快速热解液化的产物,主要成分为含氧有机混合物和水,不宜直接作为燃料使用,但与柴油乳化后可实现其在发动机中应用.在一台未作改动的直喷式柴油机上研究了玉米秸秆生物油质量分数分别为10%(B10)和20%(B20)的生物油-柴油乳化油的燃烧特性.结果表明:与0号柴油相比,乳化油的滞燃期延长,预混燃烧放热峰值和最大压力升高率升高,扩散燃烧放热峰值略低,最高燃烧压力和缸内气体平均温度降低,燃烧持续期缩短.与B10相比,B20的滞燃期延长,而预混燃烧放热峰值、最大压力升

  9. Optimization of the Dumas combustion method for the determination of crude protein content in oil crops and comparison study of Dumas combustion method and Kjeldahl determination%杜马斯燃烧法测定油料作物中粗蛋白质含量的方法优化及其与凯氏定氮法的比较研究

    Institute of Scientific and Technical Information of China (English)

    汪红; 魏亮亮; 郭洁; 许超; 司敬沛; 王铁良

    2016-01-01

    目的:建立杜马斯燃烧法测定油料作物中粗蛋白质含量的方法,并与凯氏定氮法进行比较。方法以芝麻、大豆、油菜和花生为研究对象,对杜马斯燃烧法的称样量和氧气系数进行优化。分别用杜马斯燃烧法和凯氏定氮法测定4种样品的粗蛋白含量,并对2种测试方法的结果进行比较分析。结果杜马斯燃烧法的测定值略高于凯氏定氮法,但2种方法的测定值间没有显著性差异(P>0.05),杜马斯燃烧法比凯氏定氮法的测定精密度和准确度更高。测定结果的相关性分析表明两种方法的测定值呈显著相关(r2=0.9988)。结论杜马斯燃烧法的精密度和准确度更好,可以替代凯氏定氮法测定油料作物的粗蛋白质含量。%Objective To establish the Dumas combustion method for the determination of crude protein content in oil crops, and compare the results by Dumas combustion method with Kjeldahl determination.Methods With sesame, soybean, rapeseed and peanut as samples, the sample mass and oxygen coefficient were optimized in Dumas combustion method. The crude protein content in 4 kinds of samples were determined by Dumas combustion method and Kjeldahl determination respectively, and the experimental results of the 2 methods were analyzed and compared. ResultsThe measured values of Dumas combustion method were slightly higher than those of Kjeldahl determination. However, there was no significant difference for the results (P>0.05) between the above 2 methods. The Dumas combustion method had higher precision and accuracy than those of Kjeldahl determination. Correlation analysis of results from 2 methods showed the results of them were correlated significantly (r2=0.9988).Conclusion The Dumas combustion method had higher precision and accuracy, so it can replace the Kjeldahl determination for the determination of crude protein content in oil crops.

  10. 柴油发动机地沟油燃烧与排放特性仿真试验%Simulation of Combustion and Emission of Diesel Engine with Waste Oil

    Institute of Scientific and Technical Information of China (English)

    李军; 刘彪; 郭超; 汪洪雷

    2012-01-01

    为解决石油资源短缺和环境污染的问题,将地沟油作为新能源应用于柴油发动机中,运用GT—Power发动机仿真软件分析地沟油的燃烧特性与排放特性。仿真结果表明:发动机燃用地沟油时较燃用纯柴油时功率有所下降,燃油消耗率升高,有害排放物中CO明显降低而NOx并无明显变化。燃用地沟油和甲醇的混合燃料时其动力性、经济性和排放特性要比单独燃用地沟油或甲醇时均有所改善。%To solve the problem of shortage of petroleum resources and environmental poIlution, waste oil as a new energy was used in diesel engines. The GT -Power engine simulation software is used to analyze the combustion characteristics and emission characteristics of the waste oil. Simulation results show that diesel engine fueled with waste oil power have shown that power drops, fuel consumption increases, harmful emissions of CO, NOx have no significant changes ; However, fueled with methanol and waste oil mixture, engine power, economy and emission characteristics were apparently improved than separate burning waste oil or methanol.

  11. Characteristics of a tractor engine using mineral and biodiesel fuels blended with rapeseed oil Características de um motor de trator alimentado com combustíveis mineral e biodisel misturados com óleo de colza

    Directory of Open Access Journals (Sweden)

    Tone Godeša

    2010-10-01

    Full Text Available One of the most unfavourable characteristics of crude vegetable oil when used as the fuel is the high viscosity. To improve this weakness, oil can be blended with mineral diesel or biodiesel fuels. This study was designed to evaluate how the use of mineral diesel or biodiesel blend with cold pressed rapeseed (Brassica napus oil affects the engine power, torque and fuel consumption. A tractor equipped with direct injection, water cooling system and three-cylinder diesel engine was used for the experiment. Fuels used were standard diesel fuel (diesel, rapeseed oil methyl ester - biodiesel (B100 and their mixtures with 10, 30 and 50 vol. % of cold pressed rapeseed oil (RO. Increased portion of RO in diesel fuel blends had almost no effect on the torque measured on the tractor PTO shaft; it however decreased the maximal power. Fuel blends with B100 and rising RO content (up to 50% gave a positive correlation with maximal torque and power. By increasing the portion of RO from 0 to 50%, the minimal specific fuel consumption increased by 6.65% with diesel and decreased by 2.98% with B100 based fuel.Uma das características mais desfavoráveis dos óleos vegetais crus usados como combustível é a alta viscosidade. Para melhorar este ponto fraco, o óleo pode ser misturado com diesel mineral ou biodiesel. Este estudo foi desenvolvido para avaliar como o uso de diesel mineral ou biodiesel misturado a oleo de colza (Brassica napus extraído por pressão a frio afeta a potência do motor, o torque e o consumo de combustível, empregando um trator equipado com injeção direta, sistema de refrigeração de água e um motor de três cilindros. Os combustíveis utilizados foram o diesel padrão (diesel, éster metílico de óleo de sementes de colza - biodiesel (B100 e suas misturas com 10, 30 e 50 % vol. de óleo de semente de colza pressionado a frio (RO. Maiores proporções de RO nas misturas de diesel praticamente não tiveram efeito sobre o torque

  12. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  13. CYLINDER AND SYSTEM LUBRICATING OILS

    OpenAIRE

    ION ADRIAN GIRBA

    2016-01-01

    Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical area...

  14. Internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-07-01

    Current worldwide production of internal combustion piston engines includes many diversified types of designs and a very broad range of sizes. Engine sizes range from a few horsepower in small mobile units to over 40,000 brake horsepower in large stationary and marine units. The key characteristics of internal combustion piston engines considered appropriate for use as prime movers in Integrated Community Energy Systems (ICES) are evaluated. The categories of engines considered include spark-ignition gas engines, compression-ignition oil (diesel) engines, and dual-fuel engines. The engines are evaluated with respect to full-load and part-load performance characteristics, reliability, environmental concerns, estimated 1976 cost data, and current and future status of development. The largest internal combustion piston engines manufactured in the United States range up to 13,540 rated brake horsepower. Future development efforts are anticipated to result in a 20 to 25% increase in brake horsepower without increase in or loss of weight, economy, reliability, or life expectancy, predicated on a simple extension of current development trends.

  15. Analysis of {sup 14}CO{sub 2} trapped {sup 14}C Sorbent, and {sup 14}C and {sup 3}H Radioactivity Determination in Resins and Oils from Nuclear Power Plants Using a Combustion Method

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun; Kim, Chang Jong; Choi, Geun Sik; Chung, Kun Ho; Kang, Mun Ja [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Tritium ({sup 3}H, T) generated in the heavy water and C fourteen ({sup 14}C) originated from the graphite moderator or structural materials of the nuclear power plant can cause acute and/or chronic harmful effects by inhalation and ingestion of these radionuclides owing to their binding affinity toward biomolecules and gas phase. {sup 3}H and {sup 14}C radioactivity in ion exchange resins and oils from nuclear power plants were determined by an oxidation (combustion) method. The 0.1 M HNO{sub 3} solution and the {sup 14}C sorbent trapped the {sub 3}H and {sup 14}C respectively in the gas from the combustion of samples. All samples were burned without ash in the combustion system. The reaction of CO{sub 2} and {sup 14}C sorbent was investigated by FT-IR analysis. The study demonstrated the different reaction mechanism according to the CO{sub 2} concentration. In the FT-IR study, it is clearly confirmed that CO{sub 2} from the burned 1 g of sample can be trapped in the {sup 14}C sorbent completely. During the reaction of CO{sub 2} and {sup 14}C sorbent, the temperature and the viscosity of {sup 14}C sorbent increased due to the decrease of enthalpy change and the bonding between each molecules of the sorbent. We expect that our FT-IR study could motivate the development of {sup 14}C sorbent and confirm the {sup 14}C trapping performance of the {sup 14}C sorbent.

  16. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  17. Conversion of by-products from the vegetable oil industry into biodiesel and its use in internal combustion engines: a review

    Directory of Open Access Journals (Sweden)

    R. Piloto-Rodríguez

    2014-06-01

    Full Text Available Biodiesel produced from by-products and waste materials can be an economical way of reducing traditional oil consumption and environmental problems. The by-products from the vegetable oil refining industry such as soapstock, acid oil and fatty acid distillates are suitable for producing biodiesel. The present work is a survey related to the use of these by-products to obtain biodiesel, covering not only the traditional and most widely used acid/base catalysis, but also solid and enzymatic catalysis. Details of the techniques are presented and compared. The advantages and drawbacks of the different approaches are mentioned and analyzed. The synthesis and use of by-products from the vegetable oil refining industry are covered in this work. The use of the obtained biodiesel in diesel engines is also included, demonstrating the disparity between the number of papers related to biodiesel production and engine performance assessment.

  18. The relationships of water and air when pumping a mixture into a stratum and in a productive level with intrastratum oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Papp, I.; Racz, D.; Voll, L.

    1985-01-01

    The results are cited of theoretical studies of optimization of the water and air relationship with pumping of a mixture into a stratum, as well as the disposition of perforations with moist, intrastratum combustion. The studies were conducted in a single slanted, uniform model and in a nonuniform model which corresponds to the stratification of the Demyenvostok field. An analysis of the distribution of the water and air relationships in the collector, identified by modeling a three phase section, is conducted.

  19. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-06-13

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of a chromatographic method for the study of the stability and compatibility of Mexican fuel oils; Desarrollo de un metodo cromatografico para el estudio de estabilidad y compatibilidad de combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Blass Amador, Georgina; Panama Tirado, Luz Angelica [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-11-01

    compatibility of fuel oil mixes. [Espanol] En Mexico, la mayoria de la energia electrica producida proviene del uso de combustibles residuales pesados conocidos como combustoleos los cuales han sufrido disminuciones en la calidad debido a una combinacion de factores, entre los que destaca el de los cambios en el proceso de refinacion. Es necesario desarrollar metodos que sean capaces de indicar la inestabilidad (formacion de sedimento o incremento en viscosidad durante el almacenamiento o calentamiento) o incompatibilidad (formacion de sedimento al mezclar dos o mas) de los combustoleos utilizados en las centrales termoelectricas. El objetivo de este trabajo fue el desarrollar una prueba alternativa para el estudio de la compatibilidad y/o estabilidad de combustoleos mexicanos empleando cromatografia de liquidos de alta resolucion (CLAR) y asi poder determinar aspectos estructurales del combustoleo que determinan su estabilidad. Dado que la formacion de sedimentos ocurre cuando el poder disolvente del combustible es inadecuado para mantener los asfaltenos en solucion, es importante conocer la medida del poder disolvente o aromaticidad del diluyente; asi pues, la primera parte de este trabajo se centro en la determinacion del perfil de compuestos aromaticos de los diluyentes de los combustoleos, la otra parte se dedico a la determinacion del perfil de distribucion de los pesos moleculares de los asfaltenos presentes en los combustoleos. Los perfiles de la fraccion aromatica, asi como los de distribucion de pesos moleculares se determinaron empleando cromatografia de liquidos, en la que se empleo una variedad de columnas y de disolventes. Se efectuo una combinacion de pruebas de rutina tales como contenido de asfaltenos, equivalencia de tolueno, viscosidad, etcetera con el fin de obtener correlaciones con el metodo cromatografico desarrollado. En este articulo se discute solo la seccion correspondiente a la obtencion del perfil de contenidos de aromaticos de los combustoleos. Se

  2. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  3. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  4. Performance of classic oils and lubricating oils in froth flotation of Ukraine coal

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim Sonmez; Yakup Cebeci [Cumhuriyet University, Sivas (Turkey). Metallurgical and Materials Engineering Department, Engineering Faculty

    2006-09-15

    In this study, the appropriate collector and collector amount for Ukraine coal in froth flotation was determined. For this purpose, the performance of classic oils (kerosene, diesel-oil and fuel-oil) and lubricating oils (spindle oil, bright stock and heavy neutral) was evaluated by combustible recovery, ash rejection and efficiency index. It was found that the combustible recovery and ash rejection changed, depending on the type and concentration of oil. The maximum combustible recovery was obtained by using bright stock. It was determined that bright stock, fuel-oil and kerosene were suitable for the flotation of Ukraine coal. On considering the flotation efficiency index values, the best results were obtained with bright stock and diesel-oil. Consequently, it was shown that bright stock and spindle oil could be used as alternative oils instead of classic oils for cleaning of Ukraine coal by the froth flotation. 28 refs., 4 figs., 1 tab.

  5. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  6. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  7. 46 CFR 108.127 - Storage lockers for combustibles.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage lockers for combustibles. 108.127 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Fire Protection: General § 108.127 Storage lockers for combustibles. Each oil and paint locker must be made of steel or an equivalent material or be completely...

  8. Oil Shale and Its Relation to Petroleum and Other Fuels (Summary Les schistes à l'huile et leurs relation avec le pétrole et les autres combustibles (résumé

    Directory of Open Access Journals (Sweden)

    Billo S. M.

    2006-10-01

    Full Text Available World oil reserves in oil shales (1. 2 to 2 trillion barrels are at least 4 times as large as proven crude oil petroleum reserves (310 billion barrels. Petroleum is produced from oil shale by pyrolysis (destructive distillation by hecit. Coal can also be converted ta synthetic petroleum products by direct hydrogenation and by the modified Fischer-Tropsch process. Rising cost of oil exploration and production and increasing efficiency of synthetizing processes indicate that synthetic fuels may increase the supply of natural liquid fuels in the foreseeable future. The term kerogen is often used to comprise all the organic matter contained in sediments and may be of two kinds: 1 coalylike kerogen, and 2 sapropellic kerogen - oil shale type. It is believed that both kerogen and petroleum were formed from hypothetical ancestor - protopetroleum. They are found together in sedimenfs and their C13C12 ratios are similar. The largest producer of oil shale ore China, the USSR and Sweden. The USA is technologically prepared to begin production of synthetized fuels through varying economic condition. Richness and size of deposits, cost of mining, cost of retorting, character of products, and location of deposit in relation to plant and market, determine the economic value of a given deposit. Les réserves mondiales de schistes à huile (1,2 à 2 x 10. 12 barils sont au moins quatre fois supérieures aux réserves prouvées de pétrole brut (310 x 10. 9 barils. On extrait le pétrole des schistes par pyrolyse (distillation destructive thermique. Le charbon peut aussi être transformé en hydrocarbures par hydrogénation et par le procédé Fischer-Tropsch modifié. L'augmentation des coûts de l'exploration et de la production du pétrole et amélioration de l'efficacité des procédés synthétiques montrent que les produits synthétiques vont jouer un rôle croissant dans l'approvisionnement en combustibles liquides au cours des années à venir. Le terme k

  9. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  10. Effect of Corn Stalk Bio-Oil on Combustion and Emission Characteristics of Direct Injection Diesel Engine%玉米秸秆生物油对直喷式柴油机燃烧与排放的影响

    Institute of Scientific and Technical Information of China (English)

    韩旭东; 黄勇成; 易延洪; 黄松; 闻振江

    2012-01-01

    The experimental bio-oil was produced from corn stalk through fast pyrolysis process. In this paper, four emulsions with 5%, 10%, 15% and 20% by mass fraction of corn stalk bio-oil (CSB) in diesel fuel, represented by CSB5, CSB10, CSB15 and CSB20, respectively, were prepared by the ultrasonic emulsification method. Then, the combustion and emission characteristics of an unmodified direct injection diesel engine operating on the four emulsions were studied and compared with those of No. 0 diesel operation in order to provide the basis and theoretical guidance for the application of bio-oil in diesel engines. The results showed that, with the increase of CSB mass fraction in the emulsions, the ignition delay lengthens, both the heat released during the premixed combustion phase and the premixed combustion duration increase, while the total combustion duration shortens. With the increase of CSB mass fraction in the emulsions, the peak values of both premixed burning rate and pressure rise rate increase first and then decrease, while those of in-cylinder pressure and combustion temperature decrease. In addition, the fuel economy of CSB5 and CSB 10 is comparable to that of No. 0 diesel, while the fuel economy of CSB 15 and CSB20 is slightly poorer than that of No. 0 diesel. In comparison with No. 0 diesel, NOx emissions of all the emulsions are lower, while HC and CO emissions are higher. Furthermore, these trends are more remarkable with the increase of CSB fraction in the emulsions. Smoke emissions of the emulsions decrease first and then increase with the increase of CSB fraction in the emulsions. Meanwhile, smoke emissions of CSB5 and CSB 10 are lower while those of CSB 15 and CSB20 are slightly higher than those of No. 0 diesel.%采用超声波乳化法制备了玉米秸秆热解生物油质量分数分别为5%、10%、15%和20%的生物油/柴油乳化油,分别记为CSB5、CSB10、CSB15和CSB20,然后在一台未作改动的直喷式

  11. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  12. Fundamental research in the chemistry of industrial oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N.M.

    1984-01-01

    The causes of low oil recovery from formations and physiochemical methods for increasing oil recovery are analyzed. A survey of results from research in this field at the chemical institutes of the Academy of Sciences of the USSR is given. The primary concepts of interformation combustion are examined together with the possibilities for using this method to control the combustion processes and enhance oil recovery as well as to optimize combustion processes.

  13. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  14. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  15. Visual combustion research using the rapid compression expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Dino; Takasaki, Koji [Kyushu Univ. (Japan). Lab. of Engine and Combustion (ECO)

    2012-08-15

    A large Rapid Compression Expansion Machine (RCEM) has been built at Kyushu University, Japan, for research on large marine engines. Three focal points of research are testing light cycle oil using a multiple injection to establish its potential as a low sulphur fuel; abnormal combustion caused by lubricating oil in lean burn gas engines; visualising high pressure natural gas injection (GI). (orig.)

  16. Estudio de modificaciones geométricas en boquillas de calderas piro y acuotubulares para la combustión eficiente de crudos pesados // Study of geometric modifications in pyro and aquatubular mouthpieces of boilers for the efficient combustion of heavy oil

    Directory of Open Access Journals (Sweden)

    E. Lincheta Mesa

    2000-07-01

    Full Text Available Se presenta un estudio de boquillas de quemadores de calderas piro y acuotubulares. Se analizan diferentes variantes en lasdimensiones, forma y posición de los conductos de atomizador que dan paso al combustible y al fluido auxiliar en el casode quemadores con atomización por vapor.En todos los casos se evalúa el cono de pulverización y la calidad del spray, analizando la influencia de la presión deatomización y de la configuración geométrica en la eficiencia de atomización.Se determina la eficiencia de la combustión con varios tipos de boquillas, demostrándose la efectividad de lasmodificaciones introducidas cuando se queman combustibles de menor calidad.Se concluye que es posible sustituir algunas boquillas de importación y elevar la eficiencia en la combustión de crudospesados y sus mezclas, con un significativo efecto económico y como un paso más en el perfeccionamiento de las CentralesEléctricas del país para el aprovechamiento del crudo nacional.Palabras claves: quemador, atomizador, fuel oil, caldera, generación de vapor, combustibles, combustión._____________________________________________________________________Abstract :It is presented a study of mouthpieces of pyro and aquatubular burners of boilers. Different variants are analyzed indimensions, forms and position of the atomizer conduits that open the way to the fuel and auxiliary fluid in case of burnerswith steam atomization.In all cases, it is evaluated the pulverization cone and the quality of spray, analyzing the influence of atomization pressureand geometric configuration in the atomization efficiency.Estudio de modificaciones geométricas en boquillas de calderas piro y acuotubulares para la combustión eficiente decrudos pesadosThe efficiency of combustion is determined with several types of mouthpieces. The effectiveness of the introducedmodifications in connection with the import mouthpieces is demonstrated when fuels of smaller quality burns.It is

  17. CYLINDER AND SYSTEM LUBRICATING OILS

    Directory of Open Access Journals (Sweden)

    ION ADRIAN GIRBA

    2016-06-01

    Full Text Available Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical areas and the longer strokes of the piston leads to issues of spreading the oil. Adding here the new type of engines using gas or biofuel which requires different types of lubricating oils. Therefore, the success of new generation of engines will depend on lubricating oils quality. :

  18. 氢氧化铁引发含硫油品储罐自燃的动力学机制%Kinetics mechanism of spontaneous combustion of oil tank containing sulfur caused by Fe(OH)3

    Institute of Scientific and Technical Information of China (English)

    赵声萍; 蒋军成; 王卫宁

    2011-01-01

    The main cause of the spontaneous combustion of oil storage tank containing sulfur is that the corrupt products of tank has some oxidation tendency, and they can induce the oil spontaneous combustion when they are self-igniting. The one of corrupt products of tank, the sulfurized product of Fe( OH)3, was simulated by the sulfuration equipment. Then the thermal analysis experiment was done. And the kinetic mechanisms of the corrupt products of Fe( OH) 3 were studied by using the model-free method and master plots. The results show that the thermalgravimetric (TG) plot of the sulfurized product of Fe (OH)3 includes two stages of mass loss. The first oxidative reaction is up to the nucleation and nucleus growth mechanism and the kinetic model function is g(a)= [-ln( 1-a) ]0.6731 the activated energy is 124.25 kj/mol and the pre-exponential factor is equal to 4.45×l013 s-1. The second oxidative reaction accords with the phase boundary reaction mechanism and the kinetic model function is g(a)= l-( l-o)0.45, the activated energy is 218.42 kj/mol and the pre-exponential factor is equal to 1.07×108s-1.%含硫油品储罐自燃火灾事故的根本原因是罐壁铁锈被含硫油品腐蚀生成具有自燃倾向性的腐蚀产物,这些腐蚀产物自燃而引起油罐火灾.通过硫化试验模拟储罐内壁氢氧化铁硫化产物,对其进行热分析试验,应用非模型法和“主曲线法”确定氢氧化铁硫化产物的动力学机制.结果表明,氢氧化铁硫化产物在氧化反应阶段的热重曲线可分为两个主要的失重阶段:第一失重阶段符合随机成核和随后生长反应动力学反应机制,其模型函数为g(a)=[ -In(1-a)]0.6731,平均活化能E=124.25 kJ/mol,指前因子A=4.45×1013 s-1;第二失重阶段符合相边界动力学反应机制,模型函数g(a)=1-(1-a)0.45,平均活化能E=218.42 kJ/mol,指前因子A=1.07×l0s s-1.

  19. 高海拔环境下燃料不完全燃烧对柴油机油清净性的影响%Impact of Fuel Incomplete Combustion on Detergency of Diesel Engine Oil at High Altitude

    Institute of Scientific and Technical Information of China (English)

    刘坪; 江泽琦; 吴江; 方建华

    2015-01-01

    With caproic acid, ditertiary butyl peroxide and caproic aldehyde as model compounds for incomplete combustion products of diesel fuel under high altitude environment, based on determination and comprehensive rating of deposit contents, distri⁃butions and colors, effects of the three oxygenous compounds on detergency of CF⁃4 diesel engine oil were evaluated in a crankcase simulation tester. The results indicated that the three oxygenous compounds to great extent degraded the detergency of the CF⁃4 die⁃sel engine oil, of which caproic acid was the most powerful degrader, followed by ditertiary butyl peroxide and then caproic alde⁃hyde. Effects of caproic acid on detergency of the CF⁃4 diesel engine oil were manifested by markedly increasing contents and ever⁃deepening color of varnish deposits and thus ascending degree with increasing concentrations of caproic acid in the CF⁃4 diesel en⁃gine oil, and effects of ditertiary butyl peroxide and caproic aldehyde were characterized by decreasing contents and ever⁃fading col⁃or of varnish deposits and thus descending ratings with increasing concentrations.%采用曲轴箱模拟试验方法,以正己酸、二叔丁基过氧化物和己醛作为高海拔环境下柴油机燃料不完全燃烧的模型产物,通过对高温沉积物生成量的测定以及分布和颜色的综合评级,研究了3种含氧化合物对CF-4柴油机油高温清净性的影响。结果表明:3种含氧化合物对CF-4柴油机油的高温清净性均有较大程度的不良影响,其中正己酸的影响最大,二叔丁基过氧化物次之,己醛最小。正己酸对清净性的影响呈现出随其质量分数增加,沉积物生成量增加、颜色变深、等级提高的变化趋势;二叔丁基过氧化物和己醛对清净性的影响均呈现出随二者质量分数增加,沉积物生成量减少、颜色变浅、等级降低的变化趋势。

  20. Analysis and Combustion of Biodiesel Prepared by Transesterification of Palm Oil Without By-Product Glycerol%无甘油副产生物柴油的组分分析及其燃烧性能

    Institute of Scientific and Technical Information of China (English)

    孙树桢; 张丽平; 孟鑫; 辛忠

    2012-01-01

    以氢氧化钾为催化剂催化棕榈油和新型甲酯化试剂MC进行酯交换反应制备生物柴油,采用气相色谱和气质联用的方法对反应产物进行了定性、定量分析.分析结果表明,由该工艺制得的生物柴油由主产物脂肪酸甲酯和副产物甘油碳酸酯组成.测定了生物柴油的主要物理性能指标,同时在柴油机未作任何调整的情况下进行了台架试验,考察了生物柴油与0 #柴油混合燃料对柴油机燃烧过程、经济性和排放性的影响.实验结果表明,制得的生物柴油的密度、酸值和运动黏度均符合国家标准,将其与0#柴油混合(生物柴油体积分数20%)后可直接应用于柴油机,MC和甘油碳酸酯对缸内燃烧过程和经济性影响很小;燃用添加MC和甘油碳酸酯的混合燃料能有效降低柴油机碳烟、碳氢化合物和CO的排放量,NOx排放量稍有增加.%Transesterification of palm oil with MC(a methyl esterification reagent) on a solid base (KOH) catalyst for biodiesel production was investigated. The products were analyzed by means of GC and GC-MS. The results showed that fatty acid methyl esters were the main components with glycerol carbonate as the by-product. The main physicochemical properties of the biodiesel were measured. The effects of the blended oil of the biodiesel and 0# diesel oil on the combustion process, economics and emissions of the diesel engine were studied through bench experiments without any engine adjustment. It was showed that the density, acid value and kinematic viscosity of the blended oil(the biodiesel content 20%(φ)) conformed to the Chinese standard and the blended fuel could be applied to diesel engine. The effect of the blended fuel with MC and glycerol carbonate on economics of the engine was a little. Smoke, hydrocarbon and CO emissions of the engine with the blended fuel could be reduced effectively, but the NO., emission increased slightly.

  1. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  2. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  3. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  4. Combustion Analysis of Different Olive Residues

    Directory of Open Access Journals (Sweden)

    Antonio Ruiz

    2008-04-01

    Full Text Available The Thermogravimetric Analysis (TGA techniques and concretely the study of the burning profile provide information that can be used to estimate the behaviour of the combustion of carbonous materials. Commonly, these techniques have been used for the study of carbons, but are also interesting for the analysis of biomass wastes, due to the different species present on the wastes affect directly to its thermal properties. In this work, techniques of thermal analysis have been applied to compare the behaviour of different wastes coming from olive oil mills. From these results, it is remarkable that the Concentrated Olive Mill Waste Water (COMWW presents more unfavourable conditions for its combustion.

  5. Desempenho de misturas pré-aquecidas de óleo de soja cru e diesel como combustível para motores agrícolas Performance of preheated crude soybean oil-diesel blends as fuel in agricultural engines

    Directory of Open Access Journals (Sweden)

    José Fernando Schlosser

    2007-10-01

    Full Text Available O óleo de soja é um dos óleos vegetais que têm potencial de uso como combustível para motores diesel, pois é renovável, seguro e de fácil utilização. Em temperatura ambiente, o óleo cru apresenta uma viscosidade cerca de dez vezes maior que a do óleo diesel. Para reduzir a viscosidade do óleo de soja a níveis aceitáveis, é necessária uma temperatura de aquecimento em torno de aproximadamente 60°C ou misturá-lo com óleo diesel. O objetivo deste estudo foi avaliar o desempenho do óleo de soja cru e suas misturas com óleo diesel, pré-aquecidas antes da bomba injetora entre 57°C e 68°C, como combustível para motores diesel. O desempenho das misturas combustíveis foi avaliado num motor monocilíndrico de injeção indireta e comparado com o obtido pelo óleo diesel. Os ensaios de curta duração foram conduzidos entre 1.800 e 2.800rpm, sob condição de plena carga em dinamômetro hidráulico. Ensaios realizados a 68°C apresentaram sempre os melhores valores para torque, potência e consumo específico de combustível do que a 57°C. Uma mistura composta por 70% de óleo de soja e 30% de óleo diesel, aquecida a 68°C, apresentou os melhores resultados.Crude soybean oil is one of the vegetable oils that have potential for use as fuel for diesel engines. Soybean oil is renewable, and is safe and easy to handle. At room temperature crude oil has a viscosity about ten times higher than that of diesel oil. To lower soybean oil's viscosity to the acceptable levels a heating temperature at least 60°C is needed or blending with diesel fuel. The objective of this study was evaluating the soybean oil and blends performance as a fuel for diesel engines. On both crude soybean oil and soybean oil blends were used pre-heating temperature levels on the range between 57°C and 68°C, before fuel pump. The performance of the fuel blends were evaluated in a single cylinder indirect injection diesel engine and compared with the performance

  6. 40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?

    Science.gov (United States)

    2010-07-01

    ... qualifies for the exemption. (d) Municipal waste combustion units that combust only tires. Units are exempt... single-item waste stream of tires and no other municipal waste (the unit can co-fire coal, fuel oil... pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined...

  7. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  8. Synthesis by combustion reaction of ZnAl{sub 2}O{sub 4} and application in methyl alcoholysis of soybean oil; Sintese por reacao por combustao do ZnAl{sub 2}O{sub 4} e sua aplicacao na alcoolise metilica do oleo de soja

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.B.; Silva, A.S. [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia Quimica; Cunha, R.B.L.; Leal, E.; Costa, A.C.F.M., E-mail: anacristina@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais

    2011-07-01

    Biodiesel currently presents itself as a viable alternative to diesel oil front. However, implementation of actions most economic use as heterogeneous catalysts, allows further reduction of this biofuel by procedural steps. This work was supported application of catalytic ZnAl{sub 2}O{sub 4} obtained by combustion reaction in methyl alcoholysis of soybean oil. Samples of the supports were characterized by XRD, textural analysis by nitrogen adsorption and FTIR. The reaction tests were performed at 200°C, molar ratio 1:25, 2 and 4 wt% of catalyst and reaction time of 3 hours. XRD results indicate that the phase was obtained ZnAl{sub 2}O{sub 4} effectively, with surface areas of 14.9 and 8.6 m{sup 2} g{sup -1}. The tests demonstrated that reactional higher content of ester was 56.1 and 63.1% for the percentage of catalyst 2 and 4% respectively. (author)

  9. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  10. FY 1994 annual report. Advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Researches on combustion in microgravity were conducted to develop combustion devices for advanced combustion techniques, and thereby to cope with the requirements for diversification of energy sources and abatement of environmental pollution by exhaust gases. This project was implemented under the research cooperation agreement with US's NASA, and the Japanese experts visited NASA's test facilities. NASA's Lewis Research Center has drop test facilities, of which the 2.2-sec drop test facilities are useful for researches by Japan. The cooperative research themes for combustion in microgravity selected include interactions between fuel droplets, high-pressure combustion of binary fuel sprays, and ignition and subsequent flame propagation in microgravity. An ignition test equipment, density field measurement equipment and flame propagation test equipment were constructed in Japan to conduct the combustion tests in microgravity for, e.g., combustion and evaporation of fuel droplets, combustion characteristics of liquid fuels mixed with solid particles, combustion of coal/oil mixture droplets, and estimating flammability limits. (NEDO)

  11. In-situ combustion with solvent injection

    Energy Technology Data Exchange (ETDEWEB)

    D' Silva, J.; Kakade, G. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Maharashtra Inst. of Technology, Pune (India)

    2008-10-15

    The effects of combining in situ combustion and heavy hydrocarbon naphtha vapor injection techniques in a heavy oil reservoir were investigated. Oil production rates and steam injection efficiencies were considered. The technique was also combined with toe-to-heel air injection (THAI) processes. The study showed that the modified THAI process achieved high rates of recovery for both primary production and as a follow-up technique in partially depleted reservoirs after cyclic steam and cold production. Oil produced using the modified THAI technique was also partially upgraded by the process. Results of the vapour chamber pressure calculations showed that the volume of oil produced by naphtha assisted gravity drainage was between 1 to 3 times higher than amounts of oil produced by SAGD processes during the same amount of time. The naphtha injection process produced more oil than the steam only process. However, high amounts of naphtha were needed to produce oil. Injection and production rates during the naphtha injection process were higher. Naphtha vapor was injected near the heel of a horizontal producer well. The vapor acted as a thermal and diluent mechanism in order to reduce the viscosity of the heavy oil . 9 refs., 4 tabs., 6 figs.

  12. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station Estudo laboratorial da biorremediação de solo de posto de combustíveis contaminado com óleo diesel

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2007-06-01

    Full Text Available The purpose of the present study was to investigate possible methods to enhance the rate of aerobic biodegradation of hydrocarbons (ex-situ treatments. In this work, the bioremediation processes were applied to a sandy soil with a high level of contamination originated from the leakage of a diesel oil underground storage tank at a petrol station. Laboratory scale experiments (Bartha biometer flasks were used to evaluate the biodegradation of the diesel oil. Enhancement of biodegradation was carried out through biostimulation (addition of nitrogen and phosphorus solutions or Tween 80 surfactant and bioaugmentation (bacterial consortium isolated from a landfarming system. To investigate interactions between optimizing factors, and to find the right combination of these agents, the study was based on full factorial experimental design. Efficiency of biodegradation was simultaneously measured by two methods: respirometric (microbial CO2 production and gas chromatography. Acute toxicity tests with Daphnia similis were applied for examination of the efficiency of the processes in terms of the generation of less toxic products. Results showed that all bioremediation strategies enhanced the natural bioremediation of the contaminated soil and the best results were obtained when treatments had nutritional amendment. Respirometric data indicated a maximum hydrocarbon mineralization of 19.8%, obtained through the combination of the three agents, with a total petroleum hydrocarbons (TPH removal of 45.5% in 55 days of treatment. At the end of the experiments, two predominant bacteria species were isolated and identified (Staphylococcus hominis and Kocuria palustris.O objetivo do presente estudo foi investigar possíveis métodos para aumentar a taxa de biodegradação aeróbia de hidrocarbonetos (tratamentos ex-situ. Neste trabalho, processos de biorremediação foram aplicados a um solo arenoso com alto nível de contaminação ocasionada por um vazamento de

  13. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    for stationary combustion plants and the corresponding improved emission inventories for the following HMs: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn). The report presents data for the year 2009 and time series for 1990......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...... combustion, waste incineration, residual oil combustion and in 2009 also combustion of biomass. The emission from waste incineration plants has decreased profoundly also in recent years due to installation and improved performance of flue gas cleaning devices. The emission from power plants have also...

  14. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    for stationary combustion plants and the corresponding improved emission inventories for the following HMs: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn). The report presents data for the year 2009 and time series for 1990......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...... combustion, waste incineration, residual oil combustion and in 2009 also combustion of biomass. The emission from waste incineration plants has decreased profoundly also in recent years due to installation and improved performance of flue gas cleaning devices. The emission from power plants have also...

  15. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  16. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    Due to a high concentration of Cd, biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. In this work the potential of using the method Electrodialytic Remediation to reduce the concentration of Cd in different biomass combustion...... fly ashes was studied. Four fly ashes were investigated, originating from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. One of the straw ashes had been pre-washed and was obtained suspended in water, the other ashes were obtained naturally dry...

  17. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  18. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  19. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  20. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  1. Agricultural waste derived fuel from oil meal and waste cooking oil.

    Science.gov (United States)

    Chang, Fang-Chih; Tsai, Ming-Jer; Ko, Chun-Han

    2017-05-27

    Oil meal is a by-product of the oil industry (peanut meal, sesame meal, and camellia meal). Oil is extracted from seeds, and the leftover meal is then pelletized, and this process generates a large amount of waste oil meal in Taiwan. In this study, peanut meal, sesame meal, and camellia meal derived fuels were prepared from the waste oil meal with waste cooking oil. The combustion behaviors of the oil meal derived fuels were also investigated. The characteristics of the derived fuel made from oil meal with waste cooking oil showed that the ash content is less than 10% and its calorific value reached 5000 kcal/kg. Additionally, the activation energy of the oil meal and waste cooking oil was analyzed by the Kissinger method. The results show that the fuel prepared in this work from the oil meal mixed with waste cooking oil is suitable for use as an alternative fuel and also avoids food safety issues.

  2. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginni

  3. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginni

  4. Lectures on combustion theory

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A. (eds.)

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  5. Fifteenth combustion research conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  6. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  7. Combustion of coffee husks

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Hartge, E.-U.; Werther, J. [Technical Univ. Hamburg-Harburg, Chemical Engineering 1, Hamburg (Germany); Ogada, T.; Siagi, Z. [Moi Univ., Dept. of Production Engineering, Eldoret (Kenya)

    2001-05-01

    Combustion mechanisms of two types of coffee husks have been studied using single particle combustion techniques as well as combustion in a pilot-scale fluidized bed facility (FBC), 150 mm in diameter and 9 m high. Through measurements of weight-loss and particle temperatures, the processes of drying, devolatilization and combustion of coffee husks were studied. Axial temperature profiles in the FBC were also measured during stationary combustion conditions to analyse the location of volatile release and combustion as a function of fuel feeding mode. Finally the problems of ash sintering were analysed. The results showed that devolatilization of coffee husks (65-72% volatile matter, raw mass) starts at a low temperature range of 170-200degC and takes place rapidly. During fuel feeding using a non water-cooled system, pyrolysis of the husks took place in the feeder tube leading to blockage and non-uniform fuel flow. Measurements of axial temperature profiles showed that during under-bed feeding, the bed and freeboard temperatures were more or less the same, whereas for over-bed feeding, freeboard temperatures were much higher, indicating significant combustion of the volatiles in the freeboard. A major problem observed during the combustion of coffee husks was ash sintering and bed agglomeration. This is due to the low melting temperature of the ash, which is attributed to the high contents of K{sub 2}O (36-38%) of the coffee husks. (Author)

  8. Determination of the exposition rapidity in the level 49.90 of the reactor building for the decrease in the water level of the spent fuel pool; Determinacion de la rapidez de exposion en el nivel 49.90 del edificio del reactor por la disminucion en el nivel de agua de la alberca de combustible gastado

    Energy Technology Data Exchange (ETDEWEB)

    Mijangos D, Z. E.; Herrera H, S. F.; Cruz G, M. A.; Amador C, C., E-mail: zoedelfin@gmail.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Km 44.5 Carretera Cardel-Nautla, 91476 Laguna Verde, Alto Lucero, Veracruz (Mexico)

    2014-10-15

    The fuel assemblies storage in the nuclear power plant of Laguna Verde (NPP-L V) represents a crucial aspect, due to the generated dose by the decay heat of the present radio-nuclides in the assemblies retired of the reactor core, after their useful life. These spent assemblies are located inside the spent fuel pool (SFP), in the level 49.90 m in the Reload Floor of the Reactor building of NPP-L V. This leads to the protection at personnel applying the ALARA (As Low As Reasonably Achievable) criteria, fulfilling the established dose criteria by the Regulator Body the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). Considering the loss scenario of the cooling system of the SFP, in which the SFP water vaporizes, is important to know the water level in which the limit of effective dose equivalent is fulfilled for the personnel. Also, is important for the instrumentation of the SFP, for the useful life of the same instruments. In this work is obtained the exposition rapidity corresponding to different water levels of SFP in the Reload Floor of NPP-L V, to identify the minimum level of water where the limit of effective dose equivalent is fulfilled of 25 rem s to the personnel, established in the Article 48 of the General Regulation of Radiological Safety of CNSNS and the Chapter 50 Section 67 of the 10-Cfr of Nuclear Regulatory Commission in USA. The water level is also identified where the exposition rapidity is of 15 m R/hr, being the value of the set point of the area radiation monitor D21-Re-N003-1, located to 125 cm over the level 49.90 meters of the Reload Floor of NPP-L V. (Author)

  9. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Hoagland, M.C.; Hubbard, R.L.; Schaub, F.S.

    1981-12-22

    A method of combusting natural gas fuel in a two cycle, turbocharged internal combustion engine substantially reduces the production of nitrogen-oxygen emissions. An improved turbocharger design provides increased air charging pressure, produces a controlled lean air/fuel mixture and lowers peak combustion temperatures. A jet cell ignition device ensures uniform, reliable ignition of the lean air/fuel mixture under all operating conditions and the lean air/fuel mixture in turn encourages complete fuel combustion and provides excellent combustion characteristics with methane, ethane and heavier paraffinic hydrocarbon fuels. These structural modifications and adjustment of other operating parameters combine to reduce nitric oxide (NO) and nitrogen dioxide (NO/sub 2/) emissions by as much as 75% while effecting only a negligible increase in fuel consumption.

  10. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  11. Thermal method of oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, A.I.; Sheinman, A.B.; Malofeev, G.E.

    1963-08-02

    In a thermal method of oil recovery, an oxidizer is fed through one hole so that the air expels the water from the formation and starts to circulate between this and a second hole. The combustion heat is formed so that as air is added and the combustion products are drawn off through the other, the heat of combustion will in fact move along the oil formation toward the flow of oxidizing agent. The highly heated zone of rock which forms lies perpendicular to the water flow. When air is stopped, pressure is reduced and the water is re-admitted to this zone. It evaporates and fills the cavity in the rock, cools the area behind, while the heated zone moves on and heats the area in front. The water vapor and hot water expel the oil.

  12. Asymptotic approximation of long-time solution for low-temperature filtration combustion

    NARCIS (Netherlands)

    Chapiro, G.; Mallybaev, A.A.; De Souza, A.J.; Marchesin, D.; Bruining, J.

    2012-01-01

    There is a renewed interest in using combustion for the recovery of medium viscosity oil. We consider the combustion process when air is injected into the porous medium containing some fuel and inert gas. Commonly the reaction rate is negligible at low temperatures, hence the possibility of oxygen b

  13. Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry: A Multidisciplinary Undergraduate Chemistry Experiment

    Science.gov (United States)

    Akers, Stephen M.; Conkle, Jeremy L.; Thomas, Stephanie N.; Rider, Keith B.

    2006-01-01

    Biodiesel was synthesized by transesterification of waste vegetable oil using common glassware and reagents, and characterized by measuring heat of combustion, cloud point, density and measuring the heat of combustion and density together allows the student the energy density of the fuel. Analyzing the biodiesel can serve as a challenging and…

  14. Chemical Kinetic Modeling of Biofuel Combustion

    Science.gov (United States)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  15. Practical approaches to field problems of stationary combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.W. [Natural Resources Canada, Ottawa (Canada)

    1997-09-01

    The CANMET Energy Technology Centre (CETC) business plan dictates collaboration with industrial clients and other government agencies to promote energy efficiency, health and safety, pollution reduction and productivity enhancement. The Advanced Combustion Technologies group of CETC provides consultation to numerous organizations in combustion related areas by conducting laboratory and field investigations of fossil fuel-fired combustion equipment. CETC, with its modern research facilities and technical expertise, has taken this practical approach since the seventies and has assisted many organizations in overcoming field problems and in providing cost saving measures and improved profit margins. This paper presents a few selected research projects conducted for industrial clients in north and central America. The combustion systems investigated are mostly liquid fuel fired, with the exception of the utility boiler which was coal-fired. The key areas involved include fuel quality, fuel storage/delivery system contamination, waste derived oils, crude oil combustion, unacceptable pollutant emissions, ambient soot deposition, slagging, fouling, boiler component degradation, and particulate characterization. Some of the practical approaches taken to remedy these field problems on several combustion systems including residential, commercial and industrial scale units are discussed.

  16. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  17. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  18. Structure and Combustion of Magnegases

    CERN Document Server

    Santilli, R M

    2001-01-01

    In this paper, we study the structure and combustion of magnegases$^{TM}$ (Patented and International Patents Pending), new clean fuels developed by one of us (R.M.S.) [1], which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called PlasmaArcFlow\\tm, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000$^o$ F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. The new fuels possess a ew chemical structure first identified by one of us (R.M.S.), which is characterized by clusters of ordinary molecules and atoms under a new bond of electromagnetic nature. These clusters constitut...

  19. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2007-01-01

    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  20. Co-combustion - a summary of technology

    Energy Technology Data Exchange (ETDEWEB)

    Bo Leckner [Chalmers University of Technology, Goeteborg (Sweden). Dept. of Energy and Environment

    2007-07-01

    Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilise waste. Co-combustion in a high-efficiency power station means utilisation of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW{sub fuel}) of the energy in a plant. There are several options: co-combustion with coal in pulverised or fluidised bed boilers, combustion on added grates inserted in pulverised coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverised fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N{sub 2}O emissions in fluidised bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilised and the negative ones can be avoided. 71 refs., 19 figs., 5 tabs.

  1. Improving combustion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bulsari, A.; Wemberg, A.; Multas, A. [Nonlinear Solutions Oy (Finland)

    2009-06-15

    The paper describes how nonlinear models are used to improve the efficiency of coal combustion while keeping NOx and other emissions under desired limits in the Naantali 2 boiler of Fortum Power and Heat Oy. 16 refs., 6 figs.

  2. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  3. Modelling diesel combustion

    CERN Document Server

    Lakshminarayanan, P A; Shi, Yu; Reitz, Rolf D

    2010-01-01

    The underlying principles of combustion phenomena are presented here, providing the basis for quantitative evaluation. These phenomena - ignition delay, fuel air mixing, rate of release, etc. - are then modelled for greater understanding and applicability.

  4. TENORM: Coal Combustion Residuals

    Science.gov (United States)

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  5. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  6. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  7. Scramjet Combustion Processes

    Science.gov (United States)

    2010-09-01

    plan for these flights is as follows: Scramjet Combustion Processes RTO-EN-AVT-185 11 - 21 HyShot 5 – A Free-Flying Hypersonic Glider HyShot...5 will be a hypersonic glider designed to fly at Mach 8. It will separate from its rocket booster in space and perform controlled manoeuvres as it...RTO-EN-AVT-185 11 - 1 Scramjet Combustion Processes Michael Smart and Ray Stalker Centre for Hypersonics The University of Queensland

  8. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  9. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  10. Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion

    Institute of Scientific and Technical Information of China (English)

    王锐; 罗雄麟; 许锋

    2014-01-01

    With CO combustion promoters, the role of combustion air flow rate for concerns of economics and control is important. The combustion air is conceptually divided to three parts:the air consumed by coke burning, the air consumed by CO combustion and the air unreacted. A mathematical model of a fluid catalytic cracking (FCC) unit, which includes a quantitative correlation of CO heterogeneous combustion and the amount of CO combustion promoters, is introduced to investigate the effects of promoters on the three parts of combustion air. The results show that the air consumed by coke burning is almost linear to combustion air flow rate, while the air consumed by CO combustion promoters tends to saturate as combustion air flow rate increases, indicating that higher air flow rate can only be used as a manipulated variable to control the oxygen content for an economic concern.

  11. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.

    1986-06-03

    A variable power internal combustion engine is described which consists of: a separate air compressor for receiving and compressing a flow of air to a given pressure, the compressor having an inlet valve introducing a flow of air into the compressor and an outlet valve for exhausting compressed air out of the compressor into a compressed air storage means, at least one expander having a cylinder, a cylinder head closing an end of the cylinder, a piston reciprocally mounted in the cylinder for movement away from the cylinder head in a power stroke from an initial position defining a combustion chamber within the cylinder between the cylinder head and the piston, the compressed air storage means receiving the pressurized flow of air from the compressor and being of a volume adequate to provide compressed air in the combustion chamber essentially at the given pressure essentially over the power output of the engine, means for introducing an amount of combustible fuel in the compressed charge to be present with compressed air in the combustion chamber and providing combustion of the amount of fuel in the cylinder with the inlet and exhaust valves closed, cam shaft means in contact with the piston for absorbing and storing the energy of the power stroke of the piston and controlling movement of the piston within the cylinder during the exhaust stroke; the means for varying the volume of the combustion chamber being controlled in accordance with power requirements to provide variable power output and improved efficiency of the engine at power outputs reduced relative to a given design power output of the engine by providing a variable expansion ratio of a minimum of at least about 30 to 1 at the given design power output and higher with reduced power output.

  12. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  13. THE POTENTIAL USE OF WASTE OIL

    Directory of Open Access Journals (Sweden)

    Piotr Kardasz

    2013-07-01

    Full Text Available The purpose of this article is to present an effective use of the mixture consisting of waste oil and rapeseed oil. The results of laboratory tests for fuel consumption and exhaust emission prove significant similarity of the mixture to diesel oil. This paper describes the use of the mixture as: alternative fuel to an internal combustion engine, the source of electricity and heat; as well as its other positive aspects.

  14. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  15. Research on oil recovery mechanisms in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  16. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    Science.gov (United States)

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of circulating fluidized bed technology with fractional combustion.

  17. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  18. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  19. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  20. Radiative Augmented Combustion.

    Science.gov (United States)

    1985-08-12

    86-0085 In 00I to RADIATIVE AUGMENTED COMBUSTION MOSHE LAVID M.L. ENERGIA , INC. P.O. BOX 1468 1 PRINCETON, NEW JERSEY 08542 AUGUST 1985 *.. plo...Combustion conducted at M.L. ENERGIA . It is funded by the Air Force Office of Scientific Research under Contract No. F49620-83-C-0133, with Dr. J.M...reported. It covers the second year of the contract, from July 15, 1984 through July 14, 1985. The work was performed at ENERGIA , Princeton, New Jersey

  1. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  2. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  3. Comparative study on direct burning of oil shale and coal

    Science.gov (United States)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  4. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  5. Trace elements in the Prestige fuel-oil spill: Levels and influence on Laxe Ria sediments (NW Iberian Peninsula); Elementos traza en el combustible vertido por el Prestige: Niveles e impacto sobre el sedimento de la Ria de Laxe (noroeste de Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Prego, R; Cobelo-Garcia, A; Santos-Echeandia, J [Instituto de Investigaciones Marinas CSIC, Vigo, (Spain); Marmolejo-Rodriguez, J [Centro Interdisciplinario de Ciencias Marinas-Instituto Politecnico Nacional, La Paz, (Mexico)

    2006-03-15

    Trace elements have been determined in sediments from the Laxe Ria (NW Iberian Peninsula) one year before and one year after the Prestige fuel-oil spill (November 2002; 42 degrees 11 minutes North, 12 degrees 02 minutes West). The elements analyzed (Cd, Cu, Mo, Ni, Se and V) were chosen because they appeared to represent a potential contaminant from the deposited oil in the sediments. Enrichment factors, based on Al-normalized background concentrations, did not indicate metal contamination in the sediments from most of the ria; however, a severe contamination by Cu, Mo, Ni and V was found in the area of Corme Inlet, where the fuel oil could have accumulated as a result of the ria's hydrodynamic pattern. [Spanish] Se cuantifico la concentracion de 19 elementos quimicos en el combustible pesado derramado al mar desde los tanques del petrolero Prestige (noviembre de 2002; 42 grados 11 minutos Norte, 12 grados 02 minutos Este). Entre ellos, se investigo la presencia de Cd, Cu, Mo, Ni, Se y V en el sedimento superficial de la Ria de Laxe (NO de Espana) en los anos anterior y posterior al vertido debido a que sus niveles son similares tanto en el fuel como en el sedimento. Los factores de enriquecimiento, obtenidos tras normalizacion de las concentraciones con el aluminio, no indican contaminacion del sedimento en la ria. No obstante, se detecto una severa contaminacion por Cu, Mo, Ni y V en la ensenada de Corme donde el vertido podria haberse acumulado como resultado de la hidrodinamica de la propia ria.

  6. Clean coal combustion: development of clean combustion technologies for residual fuels

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, M.F. [Electric Research Institute, Cuernavaca (Mexico)

    2003-07-01

    Most of the large quantities of heavy fuel oil (about 4% sulphur-content) produced in Mexican refineries are burned in power plants. More natural gas is being used, and it is estimated that by 2010, about one-third of Mexico's electricity will be produced from natural gas. As petroleum and gas reserves are depleted, power plants will consume more imported coal. To continue combustion of dirty fuels, advanced clean combustion technologies must be developed. Two feasibility projects were conducted over the period 1989-1995 on combustion of Mexican fuels in a bubbling fluidized combustor and in IGCC power plants. More recent feasibility studies for cogeneration plants in refineries are outlined. Solid fuels for IGCC and CFB are among the most important developments. Over the period 2004-2008, projects to study clean combustion of Mexican fuels will be conducted in the following areas: operational problems in IGCC plants, construction of an entrained flow gasifier for synthesis gas production and for feeding of heavy fuels and coal emulsions, and development of CFD (computational fluid dynamics) models.

  7. Method for operating an automobile with a combustion engine with applied ignition

    Energy Technology Data Exchange (ETDEWEB)

    Anderton, R.A.; Smith, R.R.; Tippler, R.

    1982-01-28

    A method is proposed to operate automobiles with combustion engines with applied ignition directly after the assembly on a petrol-mineral oil mixture; this prevents a spark plug fouling when the cars which hare just been completed are operated on short distances only. This petrol-mineral oil mixture should consist preferably of 95-98 ROZ petrol and mineral oil share of less than 5 vol.% preferably 0,5 vol.%.

  8. In situ combustion field experiences in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, M.; Estrada, M.; Bolivar, J. [INTEVEP, Caracas (Venezuela)

    1995-02-01

    A literature review of four in situ combustion projects: in Miga, Tia Juana, Melones and Morichal fields in Venezuela was made, and a summary of these projects is presented. Reservoir description and project performance data were analyzed. The behavior of the four in situ combustion field tests can be summarized as follows: The problems most often encountered were corrosion and high temperature producing wells. The direction in which the burning front moved was guided essentially by reservoir characteristics. The produced oil was upgraded by about 4{degrees} API, and viscosity was substantially reduced. For Mirochal and Miga fields, the analyses of available information from the combustion projects indicated that the process has been successful in the affected region. Conclusions from this review indicate that the two most frequent problems encountered were operational problems in producing wells and the direction of the burning front. The heterogeneous nature of the sands probably resulted in the burning front moving in a preferential direction, hence reducing areal sweep efficiency.

  9. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  10. Experimental combustion an introduction

    CERN Document Server

    Mishra, D P

    2014-01-01

    ""… other books available in this area do not cover the detailed topics covered here. Energy and combustion is a hot issue. It is expected to be even hotter with more demand in this area as we search for cleaner methods of energy conversion from chemical to thermal energy.""-Ashwani K. Gupta, Department of Mechanical Engineering, University of Maryland, College Park, USA

  11. Coal combustion research

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  12. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  13. Combustion Models in Finance

    CERN Document Server

    Tannous, C

    2001-01-01

    Combustion reaction kinetics models are used for the description of a special class of bursty Financial Time Series. The small number of parameters they depend upon enable financial analysts to predict the time as well as the magnitude of the jump of the value of the portfolio. Several Financial Time Series are analysed within this framework and applications are given.

  14. Flameless Combustion Workshop

    Science.gov (United States)

    2005-09-20

    operating hours, to produce low emission levels of NOx, CO and UHC . Gas turbine combustion stability has increasingly become a crucial design issue as...achieved proved: "* Safe and reliable operation ofgas turbine combustors "* Low emissions of NO., CO and UHC These results have clear economically

  15. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  16. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  17. Amenability of Muzret bituminous coal to oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Sahinoglu, E.; Uslu, T. [Karadeniz Technical University, Department of Mining Engineering, 61080 Trabzon (Turkey)

    2008-12-15

    Laboratory scale agglomeration tests were undertaken to investigate the amenability of Muzret (Yusufeli-Artvin) bituminous coal to oil agglomeration. Kerosene was extensively used as oil in the tests. In addition, fuel oil, diesel oil, and hazelnut oil were also used in order to determine the effect of oil type. The effects of the parameters including coal content, kerosene content, agglomeration time, coal particle size, pH, oil type, and agitation rate, on the combustible matter recovery, ash reduction and pyritic sulphur reduction, were investigated. It was found that Muzret bituminous coal could be readily cleaned by oil agglomeration with substantial reductions in ash and pyritic sulphur content. Maximum combustible matter recovery, ash reduction and pyritic sulphur reduction were achieved to be 85.54%, 59.98%, and 85.17%, respectively. (author)

  18. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  19. Power from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Wohlfarth, A.; Schwartz, M.; Luria, S.

    1988-02-01

    The possibilities for burning oil shale directly to generate a substantial fraction of Israel's electric power are to be investigated by means of a demonstration plant. The plant incorporates a fluidized bed reactor in which combustion tests have shown Israeli oil-shale will burn with high carbon utilization and without the need for supplementary fuel. Sulphur dioxide emissions are nearly all absorbed by the limestone that makes up about 50% of the shale. The design is for co-generation, supplying low pressure process steam for a chemical plant and electricity to the grid. Economic evaluation suggests that oil shale power generation in Israel could in the future be at least competitive with coal and under some circumstances have a cost advantage.

  20. Combustion calorimetry experimental chemical thermodynamics

    CERN Document Server

    Sunner, Stig

    1979-01-01

    Combustion Calorimetry deals with expertise knowledge concerning the calorimetry of combustion reactions of an element or compound. After defining the use of units and physical constants, the book discusses the basic principles of combustion calorimetry and the various instruments and calorimeters used in the experiments to measure operations concerning temperatures and its time variations. One paper discusses the theory and design criteria of combustion calorimeter calibration. Another paper discusses the results obtained from a combustion calorimeter after it has measured the energy or entha

  1. Modelling of CWS combustion process

    Science.gov (United States)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  2. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  3. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  4. Oil heat technology research and development

    Energy Technology Data Exchange (ETDEWEB)

    Kweller, E.R. [Department of Energy, Washington, DC (United States); McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    The purpose of this United States Department of Energy (DOE)/Brookhaven National Laboratory (BNL) program is to develop a technology base for advancing the state-of-the-art related to oilfired combustion equipment. The major thrust is through technology based research that will seek new knowledge leading to improved designs and equipment optimization. The Combustion Equipment space Conditioning Technology program currently deals exclusively with residential and small commercial building oil heat technology.

  5. Time Resolved FTIR Analysis of Combustion of Ethanol and Gasoline Combustion in AN Internal Combustion Engine

    Science.gov (United States)

    White, Allen R.; Sakai, Stephen; Devasher, Rebecca B.

    2011-06-01

    In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent spark ignition engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Step-scan equipped Fourier transform spectrometer, temporally resolved infrared spectral data were acquired and compared for combustion in the modified Mark III engine. Measurements performed with the FTIR system provide insight into the energy transfer vectors that precede combustion and also provides an in situ measurement of the progress of combustion. Measurements were performed using ethanol and gasoline.

  6. Experimental chemical thermodynamics. Volume I. Combustion calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sunner, S.; Mansson, M. (eds.)

    1979-01-01

    This book contains 18 chapters. The information included is: units and physical constants; basic principles of combustion calorimetry; calibration of combustion calorimeters; test and auxiliary substances in combustion calorimetry; strategies in the calculation of standard-state energies of combustion from the experimentally determined quantities; assignments of uncertainties; presentation of combustion calorimetric data in the primary literature; general techniques for combustion of liquid/solid organic compounds by oxygen bomb calorimetry; combustion of liquid/solid organic compounds with non-metallic hetero-atoms; combustion calorimetry of metals and simple metallic compounds; combustion calorimetry of organometallic compounds; combustion in fluorine and other halogens; bomb combustion of gaseous compounds in oxygen; oxygen flame calorimetry; fluorine flame calorimetry; combustion calorimetry as a technological service; trends in combustion calorimetry; and from the history of combustion calorimetry. (DP)

  7. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  8. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  9. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  10. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  11. Combustion Characteristics of Sprays

    Science.gov (United States)

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  12. Combustible Cartridge Case Characterization

    Science.gov (United States)

    1984-02-01

    University (NYU) has resulted in the selection of two cross-linked melamine / formaldehyde acrylic styrene resin systems that can be used in the beater additive... melamine resin Akaradit II stabilizer 20. ABSTRACT (con) Test coupons of combustible cartridge case material were fabricated using these recommended...and agitated for 30 min before the pH was slowly lowered to 3 with p-toluene sulfonic acid. In order to maintain this pH in the felting tank, it was

  13. High Gravity (g) Combustion

    Science.gov (United States)

    2006-02-01

    required thrust-to-weight ratio goals. Shorter residence times in the combustion chamber may reduce the NOx emissions, but the CO and UHC emissions then...Emissions analyzing equipment is available to detect CO, CO2, NOx, O2, and total unburned hydrocarbons ( UHC ) at the combustor exit plane. Emissions... UHC ) emissions along with the CO data, as seen in Fig. 24, shows that Configuration 1 had much higher UHC levels. The reactions from hydrocarbons to

  14. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  15. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  16. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  17. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  18. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  19. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  20. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  1. Accelerated cross-linking of silicones for liquid-applied sealing of plastic oil pans in the serial production of combustion engines; Beschleunigtes Vernetzen von Silikonen zur Fluessigabdichtung von Oelwannen aus Kunststoff in der Serienproduktion von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, Michael

    2012-07-01

    The author of the contribution under consideration reports on the development of different processes of an accelerated cross-linking of silicones and investigates different sealing concepts for plastic components using a plastic oil pan as an example. Thus, 2K silicones cross-linking at ambient temperature as well as 1K silicones with an accelerated curing due to an additional heat load are developed. The target is an accelerated crosslink of silicones without minimization of the processing period and weakening of the adhesive strength.

  2. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    and multidisciplinary process data. This paper extends the understanding of previous research done in this domain by performing the process simulations to study further the impact of oxidation reactions and combustion reactions of crude oils along with their saturate, aromatic, resin, and asphaltene (SARA) fractions......In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale...... combustion simulation is used. Preceding research work primarily focused on a kinetic model that was based on six components and incorporated four chemical reactions. However, modeling of a thermal process as complex as In-situ combustion requires in-depth understanding of detailed reaction kinetics...

  3. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  4. Post combustion in converter steelmaking

    Energy Technology Data Exchange (ETDEWEB)

    Oghbasilasie, H.; Holappa, L.

    1997-12-31

    The purpose of this work is to study the fundamentals of post combustion and the effect of different process parameters on the post combustion ratio (PCR) and heat transfer efficiency (HTE) in converter steelmaking process. The PCR and HTE have been determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE. Based on enthalpy considerations, post combustion of CO gas is regarded as one of the most effective means of increasing the heat supply to the BOP. The thermodynamic study of gas-metal-slag reactions gives the limiting conditions for post combustion inside the converter reactor. Different process parameters influencing both thermodynamic equilibria and kinetic conditions can greatly affect the post combustion ratio. Different features of converter processes as well smelting reduction processes utilizing post combustion have been reviewed. (orig.) SULA 2 Research Programme; 26 refs.

  5. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering

    1996-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  6. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  7. [Ecological/hygienic and toxicological evaluation of combustion products of aviation kerosene and liquefied natural gas].

    Science.gov (United States)

    Afanas'ev, R V; Berezin, G I; Raznoschikov, V V

    2006-01-01

    Products of kerosene combustion in the present-day aeroengines contain more than 200 compounds of incomplete combustion, partial oxidation, and thermal decomposition of fuel and oil. Most of these are strong toxicants for humans. Increase of temperature in the turbine engine combustion chamber led to production of very toxic nitrogen oxides. In search for the ecologically safe and less toxic alternative attention of fuel engineers was drawn to liquefied natural gas which compares well and even excels kerosene in ecological, economic and many other respects.

  8. Combustion characteristics of Methanol-base fuel(MBF)made by coal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan; ZHAO Cong-cong; LIU Yang

    2011-01-01

    Profound experimental research was made on Methanol-base fuel(MBF)mainly consisting of methanol,and the results were compared with that of diesel oil.Their respective combustion characteristics of caloric value,combustion efficiency and components of smoke were synthetically analyzed by employing the electronic weighing devices,the rotor flow-meter,intelligent flue gas analyzer,advanced bomb calorimeter,etc.,referring to the feasibility of taking it as a fuel for general use.Experiment results show that Methanol-base fuel not only has superiorities on combustion characteristics but also bears energy saving and environmental protection advantages.

  9. Fluidized bed combustion of pesticide-manufacture liquid wastes

    Directory of Open Access Journals (Sweden)

    SAŠA MILETIĆ

    2010-04-01

    Full Text Available Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63–1.25 mm in diameter and 2610 kg/m3 in density at 800–950 °C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900 °C.

  10. Environmental impact of used motor oil

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Duhalt, R.

    1989-02-01

    The information concerning the effects of used motor oil on the environment is reviewed. The production and fate of used motor oil are analyzed and the effects on soil and aquatic organisms are described. The combustion of waste crankcase oil, with particular reference to environmental impact, is discussed. The mutagenic and carcinogenic effects of used motor oil are described. Information on the biodegradation of lubricating motor oil is also reviewed. The available information shows that used motor oil is a very dangerous polluting product. As a consequence of its chemical composition, world-wide dispersion and effects on the environment, used motor oil must be considered a serious environmental problem. 3 tabs., 114 refs.

  11. Application of Heavy Oil Combustion Technology in Incineration Facility of Hazardous Waste%重油燃烧技术在危废焚烧装置中的应用

    Institute of Scientific and Technical Information of China (English)

    韩晓强

    2012-01-01

    Combined with a biological chemical Co., Ltd, supporting the environmental protection project, the detailed introduction use heavy oil as the main points of the auxiliary fuel. Practice has proved, heavy oil can be in danger in processing waste incineration as auxiliary fuel of the application, not only can reduce the enterprise directly operation cost, also can ensure the safety in production, and realize the hazardous waste reduction and harmless handling.%结合某生物化学有限公司配套的环保项目,详细介绍使用重油作为辅助燃料的要点.实践证明,重油是能够在危险废物焚烧处理中作为辅助燃料应用的,不仅能降低企业的直接运行成本,也能保证生产安全,实现危险废物的减量化和无害化处理.

  12. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  13. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M

    2016-01-01

    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  14. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  15. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  16. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  17. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  18. Basic Aerodynamics of Combustion Chambers,

    Science.gov (United States)

    1981-05-20

    8217, tie imnrulse foree eyuilibr-um c’ the bomd’~ leye - is 173 pv-:irJ p~76vJbK 2sO) IL !-. = Zn pT -- a , bV T. z -,,r y.re C era 3oia * ~~I" onc art-=e...heat by combustion all have very large influences on the capabilities of a combustion chamber. A yellow- colored flame represents diffusion combustion in...the wakes of fuel droplets. Blue- colored flames represent gaseous combustion of evaporated vapors which have already left the fuel droplets. The

  19. Combustion Branch Website Development

    Science.gov (United States)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  20. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  1. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  2. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    OpenAIRE

    Gharehghani, A.; S. M. Mirsalim; S. A. Jazayeri

    2012-01-01

    Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as p...

  3. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  4. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  5. In-situ combustion simulation with dynamic grid; Simulacao de combustao in-situ com grades dinamicas

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, C.H.A.; Almeida, M.P.; Vasconcelos, H.H.M.; Oliveira, C.L.N. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2008-07-01

    In this work, we study the effects of the introduction of 3D dynamics grids on in-situ combustion simulation results as means of describing the most realistically possible the dynamics of these processes, in particular of the combustion front. The dynamic refinement of grid blocks is important because in thesis it enhances the precision in the calculations once that more grid blocks are considered in the grid, especially within the narrow region of high temperature of the combustion front. We have performed dry combustion simulation (only water injection) and wet combustion simulation (air + water injection) for forward combustion in a variety of well configurations. Our initial results have shown changes in oil, water and gas productions when we use dynamics grids in the simulations, making clear the relevance of its usage in the understanding of the dynamics of these processes. (author)

  6. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  7. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  8. Peanut Oil

    Science.gov (United States)

    ... and baby care products. Sometimes the less expensive soya oil is added to peanut oil. ... are pregnant or breast-feeding. Allergy to peanuts, soybeans, and related plants: Peanut oil can cause serious ...

  9. Oil Spills

    Science.gov (United States)

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil ...

  10. Combustion of char from plastic wastes pyrolysis

    Science.gov (United States)

    Saptoadi, Harwin; Rohmat, Tri Agung; Sutoyo

    2016-06-01

    A popular method to recycle plastic wastes is pyrolysis, where oil, gas and char can be produced. These products can be utilized as fuels because they are basically hydrocarbons. The research investigates char properties, including their performance as fuel briquettes. There are 13 char samples from PE (Polyethylene) pyrolyzed at temperatures of around 450 °C, with and without a catalyst. Some of the samples were obtained from PE mixed with other types, such as Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Others. Char properties, such as moisture, ash, volatile matter, and fixed carbon contents, are revealed from the proximate analysis, whereas calorific values were measured with a bomb calorimeter. Briquettes are made by mixing 4 g of char with 0.5 - 1 g binder. Briquettes are hollow cylinders with an outer and inner diameter of around 1.75 cm and 0.25 cm, respectively. Combustion is carried out in a furnace with wall temperatures of about 230°C and a constant air velocity of 0.7 m/s. Five out of 13 char briquettes are not feasible because they melt during combustion. Briquettes made from 100% PE wastes burn in substantially shorter duration than those from mixed plastic wastes. Char #1 and #5 are excellent due to their highest energy release, whereas #10 show the worst performance.

  11. Mission Success for Combustion Science

    Science.gov (United States)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  12. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally de

  13. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  14. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  15. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  16. Challenges of oxyfuel combustion modeling for carbon capture

    Science.gov (United States)

    Kangwanpongpan, T.; Klatt, M.; Krautz, H. J.

    2012-04-01

    From the policies scenario from Internal Energy Agency (IEA) in 2010, global energy demand for coal climbs from 26% in 2006 to 29% in 2030 and most of demands for coal comes from the power-generation sector [1]. According to the new Copenhagen protocol [3], Global CO2 emission is rising from power generation due to an increasing world demand of electricity. For Energy-related CO2 emission in 2009, 43% of CO2 emissions from fuel combustion were produced from coal, 37% from oil and 20% from gas [4]. Therefore, CO2 capture from coal is the key factor to reduce greenhouse gas emission. Oxyfuel combustion is one of the promising technologies for capturing CO2 from power plants and subsequent CO2 transportation and storage in a depleted oil or gas field or saline-aquifer. The concept of Oxyfuel combustion is to remove N2 from the combustion process and burn the fuel with a mixture composed of O2 and CO2 together with recycled flue gas back into combustion chamber in order to produce a flue gas consisting mainly of CO2. This flue gas can be easily purified, compressed and transported to storage sites. However, Oxyfuel plants are still in the phase of pilot-scaled projects [5] and combustion in Oxyfuel conditions must be further investigated for a scale-up plant. Computational fluid dynamics (CFD) serves as an efficient tool for many years in Oxyfuel combustion researches [6-12] to provide predictions of temperature, heat transfer, and product species from combustion process inside furnace. However, an insight into mathematical models for Oxyfuel combustion is still restricted due to many unknown parameters such as devolatilization rate, reaction mechanisms of volatile reactions, turbulent gaseous combustion of volatile products, char heterogeneous reactions, radiation properties of gaseous mixtures and heat transfer inside and through furnace's wall. Heat transfer drastically changes due to an increasing proportion of H2O and CO2 in these Oxyfuel conditions and the degree

  17. The High-value Utilization of Pyrolysis Oil from Combustible Solid Waste Under Reducing Atmosphere%还原性气氛下可燃固体废弃物热解油高值利用途径

    Institute of Scientific and Technical Information of China (English)

    仲兆平

    2016-01-01

    The main components of solid waste as waste cardboard, waste tire and waste PVC were chosen for the experiment in a tube reactor to produce pyrolysis oil. The yield and components data of each pyrolysis oil were obtained. Principal component alalysis was used to analyze the influence of NaOH, HY-51, original attapulgite (OA) and purified attapulgite (PA) on the pyrolysis oil of waste tire. It can be concluded that PA has great potential on catalyzing the pyrolysis of waste tire to produce aromatic hydrocarbons. Study on mixed pyrolysis of the three components shows that the optimized temperature of pyrolysis oil yield is the same as single component, and that when the blending rate of three mixed components is mean, their influence to each other is minimised. Column chromatography and catalytic esterification were chosen for upgrade research of pyrolysis oil of solid waste. The column chromatography experiment result shows that dichloromethane and acetone have good separation efficiency for hydrocarbons, which reaches 37.63%. The catalytic pyrolysis mechanism research of waste cardboard was carried out on a PY-GC/MS platform. The results show that HZSM-5 (HZ) has a good ability for cracking the oligomers, increasing the hydrocarbons and lowering the aldehydes and scids, which is being proved to be a good- performance catalyst. HY-51 would decrease the content of aldehydes and increase the yield of hydrocarbons, while do not promote the crack of oligomers, increase the content of acids, and get coking leading to inactivation. It indicates that HY-51 needs further modification for the using in the catalytic pyrolysis of waste cardboard despite its high catalytic activity. ReY shows a limited catalytic effect for the pyrolysis of waste cardboard, while PA performances an ignorable effect. Various active metal ions were loaded on catalyst HZSM-5 for modification. The catalytic pyrolysis mechanism research of waste tire was carried out on a PY-GC/MS platform. The

  18. The first turbulent combustion

    CERN Document Server

    Gibson, C H

    2005-01-01

    The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydr...

  19. Open sesame: Identification of sesame oil and oil soot ink in organic deposits of Tang Dynasty lamps from Astana necropolis in China

    National Research Council Canada - National Science Library

    Shevchenko, Anna; Yang, Yimin; Knaust, Andrea; Verbavatz, Jean-Marc; Mai, Huijuan; Wang, Bo; Wang, Changsui; Shevchenko, Andrej

    2017-01-01

    .... We found that ruminant (mostly, sheep) fat, cattle ghee and sesame oil were common combustibles in Astana and concluded that sesame as an oilseed appeared in China under Tang Dynasty concomitantly with the expansion of Buddhism.

  20. Filtration combustion: Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  1. Combustion Properties of Straw Briquettes

    Directory of Open Access Journals (Sweden)

    Zhao Qing-ling

    2013-05-01

    Full Text Available The low bulk density of straw is one of the major barriers, which blocks the collection, handling, transportation and storage. Densification of biomass into briquettes/pellets is a suitable method of increasing the bulk density of biomass. Yet in the process, a tremendous amount of air is ejected from biomass grind, which brings substantial specific variation including combustion property. Among them, combustion property is critical for proper design and operation of burning facilities. Therefore, a series of tests about combustion properties of 75mm diameter corn briquettes were done. First, the combustion process (ignition, full flaming and glowing phases., precipitation of tar were investigated by a heating stove, then, Some ash sample from the muffle burner was subjected to an ash melting characteristic test. The results show the combustion of briquettes takes more time than that of raw straw from ignition to complete combustion; in order to meet complete combustion in a short time, the raw straw needs more supply air volume than briquettes under the same α value; the temperature of furnace chamber should been controlled under 900°C, which help to reduce the dark smoke, tar and slag.

  2. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  3. Experimental study on performance that carbon dioxide inhibits coal oxidation and spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    DENG Jun; LI Shi-rong; ZHANG Yan-ni; MU Ying; ZHANG Yang

    2011-01-01

    Adopting oil-bath temperature programming experiment and gas chromatography,CO2's inhibitory performance on spontaneous combustion of Tingnan Coal Mine sample was analyzed.Through temperature rise rate test experiment,the accuracy,stability and reliability of the improved oil-bath temperature programming system applied in this experiment was proved to be superior to the traditional system.Spontaneous combustion characters parameters test of coal sample in pure air was carried out with this system and offered comparison standard for research in next stage.Temperature programming to coal sample was further conducted in oil-bath with different concentration of CO2.Testing results are compared with parameters of concentration of CO,O2,temperature,CO generation rate and O2 consumption rate tested and calculated in previous experiment in pure air.Methods of proportioning between concentration of CO and O2,CO concentration and temperature,CO generation rate and O2 consumption rate were applied to eliminate obstructions from certain external factors such as inlet of CO2; meanwhile influences of CO2 of different concentrations to coal oxidation and spontaneous combustion were investigated.Also CO2 inhibition technique was used in spontaneous combustion prevention in workface No.106 of Tingnan Coal Mine,data collected from which indicate that CO2 performs well in inhibiting coal oxidation and spontaneous combustion.

  4. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  5. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  6. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  7. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  8. Regulation possibilities of biomass combustion

    Science.gov (United States)

    Suzdalenko, Vera; Gedrovics, Martins; Zake, Maija; Barmina, Inesa

    2012-11-01

    The focus of the recent experimental research is to analyze the regulation possibilities of biomass combustion. Three possibilities were chosen as part of this research: a) biomass cofiring with propane, b) swirling flow with re-circulation zone, and c) use of a permanent magnet. The aim of the research is to provide stable, controllable and effective biomass combustion with minimum emissions. The special pilot device was created where biomass can be combusted separately and co-fired with propane. Wood pellets were used during the experiments.

  9. Combustion-gas recirculation system

    Science.gov (United States)

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  10. Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler

    Directory of Open Access Journals (Sweden)

    Radomiak Henryk

    2017-01-01

    Full Text Available In recent years the numerical modelling of biomass combustion has been successfully applied to determine the combustion mechanism and predict its products. In this study the influence of the addition of waste glycerin in biomass wood pellets on the chemical composition of exhaust gases has been investigated. The pellets have been prepared from spruceand pine wood sawdust without and with addition of waste glycerin. The waste glycerol is a undesirable by-product of biodiesel transesterification at oil manufacturing. The produced pellets were being burned in the 10 kW domestic boiler adapted to wood pellets combustion. The possibilities of pollutants generation (CO2, CO, NOx SOx and compounds containing chlorine in the exhaust gases coming from the boiler were numerically calculated using the latest version of CHEMKIN-PRO software, introduced by the American company Reaction Design. The results of the calculations correspond to the data obtained on a real object, in particular: combustion temperature, gas pressure, residence time of fuel in the burner, air flow, fuel consumption, as well as elementary composition of fuel supplied into the boiler. The proposed method of predicting the chemical composition of exhaust gases allows proper control of the combustion process and can be considered as an important step in reducing the pollutants (lower emission of NOx, SOx and CO2 neutral and thus to contribute to the improvement of the environmental quality. In addition, knowledge of the amounts of Clbased compounds produced in combustion process (under given conditions, can serve as an important hint in terms of corrosion prevention of boiler- and chimney steels.

  11. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  12. THE COMBUSTION ACTION VERIFICATION AND ESTIMATE OF COMBUSTION EFFICIENCY IN AVIATION GAS#TURBINE ENGINE COMBUSTION CHAMBERS

    OpenAIRE

    2011-01-01

    Verification results of combustion action simulating and estimate of calculation combustion efficiency that was given by simulating were shown. Mathematical model and its assumption are described. Execution calculations method was shown. Results of simulating are shown; their comparative analyses with results of experiment were executed. Accuracy of combustion action mathematical modeling by combustion efficiency in model with oneand two-stage reactions of combustion was estimated. The infere...

  13. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  14. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  15. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight, a

  16. Rotary-piston internal combustion engine. Rotationskolbenbrennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D.

    1991-08-08

    Rotary-piston internal combustion engine in trochoidal design with a slide bearing piston which is controlled by a synchronous gear. The gear is covered by an insert unit which is screwed at the eccentric. The insert unit seals the synchronous gear from the remaining machine parts; it has a hollow cylinder which covers the hollow gear of the synchronous gear and is eccentric to the eccentric shaft; it is sealed with a sealing ring from a shoulder of the piston. A further hollow cylinder is coaxial to the eccentric shaft; it surrounds the mount part with a clearance for the pinion; it projects into the boring at the side of the shaft and it is sealed by a sealing ring from the boring. An annular space which is sealed from the remaining engine rooms is on the other side of the bearing. The oil which escapes from the bearing is led from this annular space through the cooling rooms of the piston to the synchronous gear. The oil is carried off into a drain channel through the space which is formed by the coaxial hollow cylinder in the sidewall.

  17. Plasma-supported coal combustion in boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  18. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    Science.gov (United States)

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  19. Fuel oil and LPG; Fioul et GPL

    Energy Technology Data Exchange (ETDEWEB)

    Philippon, A. [UFIP, Union Francaise des Industries Petroliere, 75 - Paris (France)

    1997-12-31

    The impacts of new environmental regulations on the heavy fuel oil and refining French markets, are studied. Illustrated with numerous diagrams concerning oil price evolution, fuel price comparison, market shares, consumption data, etc., it is shown that a brutal elimination of high sulfur content oil fuels would cause an extremely negative impact for the refining industry and for the French economy. Sulfur content limits should be kept at their present levels and users should be free to select technical choices in order to keep within these limits, either through fume desulfurization either through fuel-natural gas mixed combustion

  20. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  1. Combustion Process Modelling and Control

    Directory of Open Access Journals (Sweden)

    Vladimír Maduda

    2007-10-01

    Full Text Available This paper deals with realization of combustion control system on programmable logic controllers. Control system design is based on analysis of the current state of combustion control systems in technological device of raw material processing area. Control system design is composed of two subsystems. First subsystem is represented by software system for measured data processing and for data processing from simulation of the combustion mathematical model. Outputs are parameters for setting of controller algorithms. Second subsystem consists from programme modules. The programme module is presented by specific control algorithm, for example proportional regulation, programmed proportional regulation, proportional regulation with correction on the oxygen in waste gas, and so on. According to the specific combustion control requirements it is possible built-up concrete control system by programme modules. The programme modules were programmed by Automation studio that is used for development, debugging and testing software for B&R controllers.

  2. Putting combustion optimization to work

    Energy Technology Data Exchange (ETDEWEB)

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  3. Flameless Combustion for Gas Turbines

    Science.gov (United States)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  4. OIL SHALE ASH UTILIZATION IN INDUSTRIAL PROCESSES AS AN ALTERNATIVE RAW MATERIAL

    OpenAIRE

    Azeez Mohamed, Hussain; Campos, Leonel

    2016-01-01

    Oil shale is a fine-grained sedimentary rock with the potential to yield significant amounts of oil and combustible gas when retorted. Oil shale deposits have been found on almost every continent, but only Estonia, who has the 8th largest oil shale deposit in the world has continuously utilized oil shale in large scale operations. Worldwide, Estonia accounts for 80% of the overall activity involving oil shale, consuming approximately 18 million tons while producing 5–7 million tons of oil sha...

  5. Investigation of combustion and characterization of solid fuels by means of the gas-potentiometric method

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, H.; Trippler, S.; Rau, H. [Otto-von-Guericke University, Magdeburg (Germany). Chemical Inst.

    1998-12-31

    Based on experiences of many years in using solid electrolyte oxygen sensors in gas and oil flames the Gas-Potentiometric Combustion Analysis (GPCA) was developed as a new in-situ method for investigation of the complex processes of solid fuel combustion. It consists of fuel combustion in a fluidized bed reactor and the simultaneous measurement of oxygen consumption due to combustion by placing a gas-potentiometric oxygen sensor immediately in the combustion zone, i.e. the fluidizing bed. For each solid fuel, including relevant waste materials and biofuels, a characteristic oxygen concentration-time curve as a `finger print` is obtained reflecting combustion behaviour. On the basis of the burn-out curves several fuel specific parameters are derivable, e.g. the burn-out time of the fuel sample. By using a specially developed oxygen balance model the effective reaction rate constant and a value for the relative reactivity for comparison of various fuels is obtained. Finally, the overall activation energy for macrokinetics of the whole combustion process can be estimated. The combustion behaviour of a wide range of solid materials (several fuels, waste, biomass) was studied. The surface structure of all materials was studied by using the gas adsorption method (N{sub 2}). The GPCA proved to be a suitable in-situ measuring technique for investigation of solid fuel combustion and a useful method for fuel characterization. A concept for the construction of a `Gas-Potentiometric Combustion Analyzer` as a new device for cheap and fast fuel characterization was developed. 24 refs., 15 figs., 6 tabs.

  6. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    Science.gov (United States)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  7. Effect of metallic additives on in situ combustion of Huntington Beach crude experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baena, C.J.; Castanier, L.M.; Brigham, W.E.

    1990-08-01

    The economics and applicability of an in-situ combustion process for the recovery of crude oil are dictated to a large extent by the nature and the amount of fuel formed during the process. The aim of this work is to use combustion tube studies to determine on a quantitative basis, how the nature and the amount of fuel formed could be changed by the presence of metallic additives. These experiments follow from the qualitative observations on the effect of metallic additives on the in-situ combustion of Huntington Beach crude oil made by De los Rios (1987) at SUPRI. He performed kinetic studies on the oxidation of Huntington Beach crude in porous media and showed that the nature of the fuel formed changed when metallic additives were present. Combustion tube runs were performed using the metallic additives: ferrous chloride (FeCl{sub 2{center dot}}4H{sub 2}O), zinc chloride (ZnCl{sub 2}) and stannic chloride (SnCl{sub 4{center dot}}5H{sub 2}O). Unconsolidated cores were prepared by mixing predetermined amounts of an aqueous solution of the metal salt, Huntington Beach crude oil, Ottawa sand and clay in order to achieve the desired fluid saturations. The mixture was then tamped into the combustion tube. Dry air combustion tube runs were performed keeping the conditions of saturation, air flux and injection pressure approximately the same during each run. The nature of the fuel formed and its impact on the combustion parameters were determined and compared with a control run -- an experiment performed with no metallic additive. 30 refs., 33 figs., 6 tabs.

  8. Oil risk in oil stocks

    NARCIS (Netherlands)

    Scholtens, Bert; Wang, L

    2008-01-01

    We assess the oil price sensitivities and oil risk premiums of NYSE listed oil & gas firms' returns by using a two-step regression analysis under two different arbitrage pricing models. Thus, we apply the Fama and French (1992) factor returns in a study of oil stocks. In all, we find that the return

  9. Oil risk in oil stocks

    NARCIS (Netherlands)

    Scholtens, Bert; Wang, L

    2008-01-01

    We assess the oil price sensitivities and oil risk premiums of NYSE listed oil & gas firms' returns by using a two-step regression analysis under two different arbitrage pricing models. Thus, we apply the Fama and French (1992) factor returns in a study of oil stocks. In all, we find that the return

  10. Tailoring next-generation biofuels and their combustion in next-generation engines.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O' Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  11. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  12. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  13. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  14. Combustion tests of coal-water slurry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, G.A. Jr.; Johnson, S.A.; Vecci, S.J.

    1982-03-01

    The results of an experimental test program to determine the combustion characteristics of coal-water slurry (CWS) fuels (65 to 75 percent dry coal by weight and exhibiting room temperature viscosities of about 1000 cp) are presented. The slurry tested contained 66 percent solids by weight and was produced from a beneficiated high volatile eastern bituminous coal. The CWS and its parent coal were each fired in B and W's 4.0 x 10/sup 6/ Btu/hr Basic Combustion Test Unit. Each fuel was also subjected to extensive laboratory analysis work. No burner or atomizer development work was done - the primary objective of the study being to demonstrate that the CWS could be fired with existing fuel oil handling equipment.

  15. Chemistry and combustion of fit-for-purpose biofuels.

    Science.gov (United States)

    Rothamer, David A; Donohue, Timothy J

    2013-06-01

    From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  17. Rotary internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, J.

    1989-12-05

    This patent describes an internal combustion engine assembly. It includes: a central rotor means formed with at least one peripheral fuel cavity. The cavity having a first surface defining a thrust surface and a second surface defining a contoured surface; a housing means enclosing the rotor and having an internal wall encircling the rotor. The internal wall being intercepted by at least two recesses defining cylinder means. The housing means and the rotor means being relatively rotatable; piston means individual to each the cylinder means and reciprocable therein; each piton means having a working face complementary to aid contoured surface; and power means for urging the working face into intimate areal contact with the contoured surface to create a first seal means. The housing means having at lest one fuel inlet port, at least one fuel ignition means and at least one exhaust port whereby during the course of a revolution of the rotor means relative to the housing means, the first seal means, the power means, the respective ports, the ignition means and the fuel cavity cooperate to develop fuel compression, fuel ignition and exhaust functions.

  18. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Laskaris, M.A.; Broitman, K.; Natale, S.E.

    1991-08-27

    This patent describes improvement in a two-stroke internal combustion engine adapted to run on a diesel or a kerosene type of fuel, and including a piston connected to the crankshaft of the engine to move within a cylinder through a first stroke from a top dead center position to a bottom dead center position and through a second stroke from the bottom dead center position back to the top dead center position. The improvement comprises: means providing a cylinder head at the top end of the engine cylinder in the shape of an open bowl having a generally cup-shaped configuration including a sidewall portion, a spark plug positioned centrally within the bowl at the top end of the cylinder, and means for injecting fuel into the top end of the engine cylinder at a location between the spark plug and the sidewall portion, the fuel injecting means including an injection nozzle having a plurality of nozzle openings therein, the nozzle openings being constructed and arranged to discharge a plurality of plume-like sprays into the top end of the cylinder at a location within the bowl, two of the sprays being directed from the nozzle to diverge and pass along opposite sides of the spark plug, and additional sprays being directed from the nozzle against the sidewall portion or the cylinder head to be deflected therefrom back toward the piston and the spark plug to thereby form a cloud of fuel over the spark plug for good ignition.

  19. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals.

    Science.gov (United States)

    Dmitrienko, Margarita A; Nyashina, Galina S; Strizhak, Pavel A

    2017-09-15

    Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. DIVERSIDAD BACTERIANA ASOCIADA A BIOPELÍCULAS ANÓDICAS EN CELDAS DE COMBUSTIBLE MICROBIANAS ALIMENTADAS CON AGUAS RESIDUALES

    Directory of Open Access Journals (Sweden)

    Alexander MORA COLLAZOS

    2017-01-01

    Full Text Available El presente trabajo evaluó la diversidad bacteriana asociada a las biopelículas formadas sobre los ánodos de celdas de combustible microbianas, por medio del análisis del gen del ARNr 16S y observaciones por microscopía electrónica de barrido. Se construyeron celdas de combustible microbianas de una cámara que permanecieron en operación durante 30 días utilizando muestras ambientales como inóculo y único sustrato energético; las celdas fueron monitoreadas en función de la producción de energía durante el desarrollo del experimento; al finalizar los ensayos, se realizó la caracterización molecular y observaciones mediante microscopía electrónica de barrido a las biopelículas formadas. Se reportan valores de densidad de potencia máxima de 4,85 mW/m 2 para el agua residual doméstica y de 1,85 mW/m 2 para el caso del agua residual industrial, con disminuciones de 71 % de la DBO para el agua residual doméstica y de 59 % de la DBO para el caso del agua residual industrial. Se logró la recuperación de 15 secuencias únicas provenientes de la amplificación del gen del ARNr 16S obtenidas a partir de las biopelículas formadas sobre los ánodos. El análisis filogenético ubicó estas secuencias en la clase Deltaproteobacteria . Los dos sustratos ambientales contienen una importante e interesante diversidad microbiana, mostrándolos promisorios para la construcción y operación de MFC y la implementación de procesos de biodegradación de materia orgánica.

  1. Désulfuration : avant, pendant ou après la combustion ? Synthèse bibliographique Desulfurization: Before, During Or After Combustion? Bibliographic Synthesis

    Directory of Open Access Journals (Sweden)

    Benchecroun N.

    2006-11-01

    Full Text Available Les perspectives d'applications de nouvelles normes aux émissions des grandes installations de combustion, tant aux Etats-Unis qu'en Europe de l'Ouest ont suscité de nombreuses recherches. Les diverses publications qui leur sont consacrées traitent le plus souvent de la combustion de charbons et, beaucoup plus rarement, de l'adaptabilité de ces procédés à des combustibles liquides ou de techniques spécifiques. Les principaux points technico-économiques qui se dégagent sur la désulfuration des combustibles liquides sont donnés dans cet article. Enfin, au-delà des aspects techniques, on notera que la désulfuration des combustibles liquides, et plus particulièrement du fuel lourd, est liée à deux aspects plus politiques : - l'application de normes sur les émissions des installations de combustion (ou les dérogations possibles qui concernent non seulement les oxydes de soufre mais aussi les oxydes d'azote et les particules contenues dans les fumées; - l'avenir des fuels lourds tant sur le plan quantitatif (marché que qualitatif (constitution du pool fuel et spécifîcations. The prospects that new emission standards will be applied to large combustion installations, both in the United States and Western Europe, have given rise to extensive research. The different publications devoted to this research usually deal with coal combustion and more rarely with the suitability of such processes for liquid fuels or specific techniques. The leading technico-economic points involved in the desulfurization of liquid fuels are given in this article. Likewise, over and beyond the technical aspects, it can be seen that the desulfurization of liquid fuels, and more particularly of heavy fuel oil, is linked to two more politicalaspects:(a the application of standards on emissions from combustion installations (or possible derogations concerning not only sulfur oxides but also nitrogen oxides and particles contained in fumes;(b the future of

  2. Numerical analysis of a one-dimensional multicomponent model of the in-situ combustion process

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Stenby, Erling Halfdan

    2013-01-01

    , the model is based on SARA representation of a petroleum mixture (saturates–aromatics–resins–asphaltenes), which may react differently with oxygen and produce other components (for example, light oils and coke). In total, the model contains 14 components, which may undergo 15 chemical reactions. The set...... of reactions in the original model of M.R. Kristensen has been modified in order to account for secondary combustion of the light oil fraction. The results of the model implementation are applied to the four heavy oil systems and qualitatively compared to the results of previous experimental studies. A new...

  3. Bio-oil from Flash Pyrolysis of Agricultural Residues

    DEFF Research Database (Denmark)

    Ibrahim, Norazana

    bio-oils. Mainly the influence of feedstock type (wheat straw, rice husk and pine wood), feedstock water content and reactor temperature on the yield of char, bio-oil and gas were investigated. The storage stability of bio-oils with respect to changes in viscosity, water content and pH were...... liquid organics yield. In addition, the chemical compositions of the bio-oils and the chars of the investigated feedstocks were also analyzed. The utilization of the pyrolysis oil in static combustion equipments such as boilers and turbine have shown that the suitability of the pyrolysis oil...... to substitute fossil fuel. However, several limitations still arise due to the instability of the pyrolysis oil that may cause problems with transport and storage. Pyrolysis oil contains more than hundred of chemical compounds and has a wide range of volatility (different boiling points). The stability...

  4. Surrogate fuel formulation for light naphtha combustion in advanced combustion engines

    KAUST Repository

    Ahmed, Ahfaz

    2015-03-30

    Crude oil once recovered is further separated in to several distinct fractions to produce a range of energy and chemical products. One of the less processed fractions is light naphtha (LN), hence they are more economical to produce than their gasoline and diesel counterparts. Recent efforts have demonstrated usage of LN as transportation fuel for internal combustion engines with slight modifications. In this study, a multicomponent surrogate fuel has been developed for light naphtha fuel using a multi-variable nonlinear constrained optimization scheme. The surrogate, consisting of palette species n-pentane, 2-methylhexane, 2-methylbutane, n-heptane and toluene, was validated against the LN using ignition quality tester following ASTM D6890 methodology. Comparison of LN and the surrogate fuel demonstrated satisfactory agreement.

  5. FOR-1: zapping worn-out wells for left-behind oil

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, M.D.

    1980-09-25

    This review of enhanced oil recovery predicts oil extracted from old wells will provide over 50% of the US crude production by 1995. Economic incentives and new regulations are encouraging industry's commercialization of enhanced oil recovery techniques. Fire recovery techniques are diagrammed and described: steam blasting, waterflooding, underground burning, chemical altering, and gas mixing. A major breakthrough is the development of a multi-solid, fluidized-bed combustion system for oil-field steam generators.

  6. Twenty-second symposium (international) on combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The following research areas were discussed at the symposium: coal combustion: carbon burnout, pyrolysis, furnaces, laboratory-scale combustion, and fluidized bed combustion; combustion-generated particulates: soot inception, growth, and soot formation in diffusion flames; engine combustion; turbulent combustion: flames in vortices, fractals and cellular automations, nonpremixed flames, premixed flames, premixed flame structure, and lifted flames; reaction kinetics: hydrocarbon oxidation, free radical chemistry, unsaturated species, aromatics, and nitrogen compounds/pollutant formation; combustion generated NO/sub x/ and SO/sub x/; fires: flame spread, radiation, characterization, and unsteady flames; Laminar flames: structure, opposed-flow combustion, shape, propagation/extinction, and inhibition, oscillations, microgravity; ignition; detonations; dusts; propellants; diagnostics; combustion of drops, sprays, and dispersions, and slurries. Individual projects are processed separately for the data bases. (CBS)

  7. Combustion iron distribution and deposition

    Science.gov (United States)

    Luo, Chao; Mahowald, N.; Bond, T.; Chuang, P. Y.; Artaxo, P.; Siefert, R.; Chen, Y.; Schauer, J.

    2008-03-01

    Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble (Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble (Fe(II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.

  8. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  9. Flash pyrolysis fuel oil: bio-pok

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  10. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NOx emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mathematical Model of Piston Ring Sealing in Combustion Engine

    Directory of Open Access Journals (Sweden)

    Koszałka Grzegorz

    2015-01-01

    Full Text Available This paper presents a mathematical model of piston-rings-cylinder sealing (TPC of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.

  12. Mathematical Model of Piston Ring Sealing in Combustion Engine

    OpenAIRE

    Koszałka Grzegorz; Guzik Mirosław

    2015-01-01

    This paper presents a mathematical model of piston-rings-cylinder sealing (TPC) of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The pape...

  13. Petroleum Oils

    Science.gov (United States)

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  14. Oil spills

    National Research Council Canada - National Science Library

    Moghissi, A.A

    1980-01-01

    Contents: Oil spills on land as potential sources of groundwater contamination / J.J. Duffy, E. Peake and M.F. Mohtadi -- Ecological effects of experimental oil spills in eastern coastal plain estuaries...

  15. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    Science.gov (United States)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  16. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  17. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  18. Oil Shale

    Science.gov (United States)

    Birdwell, Justin E.

    2017-01-01

    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  19. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    Science.gov (United States)

    2012-11-01

    Tasks 8 and 9: Kinetic model validation) Today’s Presentation 2. Multispecies diagnostics in a flow reactor with Mid-IR and molecular beam mass...S-Curve Competition between low T RO2 kinetics high T chain branching reactions 0.00 0.02 0.04 0.06 0.08 0.10 0.12 1x10 5 2x10 5 3x10 5 4x10...in Plasma assisted combustion • LTC in turbulent combustion at engine time scales 0-D modeling of DME /O2/He (0.03/0.1/0.896) ignition, P = 72

  20. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  1. Mineral oils

    Science.gov (United States)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  2. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  3. Development and evaluation of coal/water mixture combustion technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

    1981-08-01

    The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

  4. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  5. A comprehensive fractal char combustion model☆

    Institute of Scientific and Technical Information of China (English)

    Yuting Liu; Rong He

    2016-01-01

    The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are general y slower than in the air-mode and the effect of the char-CO2 gasification reac-tion becomes obvious only when the temperature is relatively high and the O2 concentration is relatively low.

  6. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  7. Combustion synthesis method and products

    Science.gov (United States)

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  8. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  9. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  10. Autodesk Combustion 4 fundamentals courseware

    CERN Document Server

    Autodesk,

    2005-01-01

    Whether this is your first experience with Combustion software or you're upgrading to take advantage of the many new features and tools, this guide will serve as your ultimate resource to this all-in-one professional compositing application. Much more than a point-and-click manual, this guide explains the principles behind the software, serving as an overview of the package and associated techniques. Written by certified Autodesk training specialists for motion graphic designers, animators, and visual effects artists, Combustion 4 Fundamentals Courseware provides expert advice for all skill le

  11. Free Energy and Internal Combustion Engine Cycles

    CERN Document Server

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  12. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  13. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  14. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  15. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  16. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  17. Combustion Chemistry Diagnostics for Cleaner Processes.

    Science.gov (United States)

    Kohse-Höinghaus, Katharina

    2016-09-12

    Climate change, environmental problems, urban pollution, and the dependence on fossil fuels demand cleaner, renewable energy strategies. However, they also ask for urgent advances in combustion science to reduce emissions. For alternative fuels and new combustion regimes, crucial information about the chemical reactions from fuel to exhaust remains lacking. Understanding such relations between combustion process, fuel, and emissions needs reliable experimental data from a wide range of conditions to provide a firm basis for predictive modeling of practical combustion processes.

  18. Simulation study on combustion of biomass

    Science.gov (United States)

    Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.

    2017-01-01

    Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.

  19. Characterisation of fuels for advanced pressurised combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R.; Hupa, M. [Aabo Akademi University, Aabo/Turku (Finland). Dept. of Chemical Engineering

    1998-12-31

    For a set of 15 fuels the behaviour during devolatilisation and char gasification was characterised under laboratory conditions typical for pressurised fluidised bed combustors and gasifiers: 800-1100{degree}C, 1-25 bar, 100-3000 K/s fuel particle heating rate. The fuels ranged from bituminous coals via lignites and peat to wood, in addition two types of black liquor, Estonian oil shale and Orimulsion were studied. A pressurised thermogravimetric reactor, a pressurised grid heater and a simple, atmospheric pressure entrained flow or fixed bed reactor with gas analysis were used to measure the effect of temperature, pressure and heating rate on solid residue yield after fuel devolatilisation in nitrogen and the reactivity of the char produced. Several software codes were applied to directly simulate the devolatilisation and/or the char combustion or gasification of a single fuel particle. In the experiments the fuel particle size was 100-150 micrometer. Fuel particle heating rate did not have a big effect on the solid residue yield after pyrolysis. Total system pressure, however, had a significant effect. For `older` fuels, such as the coals, increased pressure gave increased char reactivity, whilst for `younger` fuels (lignite, peat, wood) char reactivity was largely unaffected. Comparing carbon dioxide and steam gasification showed that steam gasification is slightly faster (as known) for coal, however being slower for `younger` fuels, wood and peat. This must be related to the absence of catalytically active elements in the `younger` fuels. A comparison of chars pyrolysed in nitrogen and in the presence of an oxidising agent showed that the first process gives a char with a more open structure and a lower surface reactivity. This might be of importance to PFBC development. Black liquor, Estonian oil shale and Orimulsion were a typical fuels when compared to the other eleven fuels. 28 refs., 24 figs., 13 tabs.

  20. Characterisation of fuels for advanced pressurised combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R.; Hupa, M.; Backman, P.; Forssen, M.; Karlsson, M.; Kullberg, M.; Sorvari, V.; Uusikartano, T. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group; Nurk, M. [Tallinskij Politekhnicheskij Inst., Tallinn (Estonia)

    1997-10-01

    The objective of the research was to determine a set of fuel characteristics which quantify the behaviour of a fuel in a typical pressurised combustor or gasifier environment, especially in hybrid processes such as second generation PFBC. One specific aspect was to cover a wide range of fuels, including several coal types and several grades of peat and biomasses: 7 types of coal, 2 types of peat, 2 types of wood, 2 types of black liquor, Estonian oil shale and Venezuelan Orimulsion were studied. The laboratory facilities used are a pressurised thermogravimetric reactor (PTGR), a pressurised grid heater (PGH) and an atmospheric entrained flow quartz tube reactor, with gas analysis, which can be operated as a fixed bed reactor. A major part of the work was related to fuel devolatilisation in the PGH and sequential devolatilisation and char gasification (with carbon dioxide or steam) in the PTGR. The final part of that work is reported here, with the combustion of Estonian oil shale at AFBC or PFBC conditions as additional subject. Devolatilisation of the fuels at atmospheric pressure in nitrogen while monitoring gaseous exhausts, followed by ultimate analysis of the chars has been reported earlier. Here, results on the analysis of the reduction of NO (with and without CO) on chars at atmospheric pressure in a fixed bed reactor are reported. Finally, a comparison is given between experimental results and direct numerical simulation with several computer codes, i.e. PyroSim, developed at TU Graz, Austria, and the codes Partikkeli, Pisara and Cogas, which were provided by VTT Energy, Jyvaeskylae

  1. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  2. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  3. 30 CFR 56.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 56.4104 Section 56.4104... Control Prohibitions/precautions/housekeeping § 56.4104 Combustible waste. (a) Waste materials, including... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall...

  4. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  5. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  6. Retene-a molecular marker of wood combustion in ambient air

    Science.gov (United States)

    Ramdahl, Thomas

    1983-12-01

    The use of wood as a fuel has increased since the oil embargo in 1973. Several studies have shown that wood combustion may make a significant contribution to air pollution. Using 14C as a tracer for contemporary carbonaceous materials, 30-70% of the atmospheric carbon has been shown to originate from wood combustion in areas affected by this source1-3. Other studies have shown that emissions from wood combustion contain large amounts of particles4-6 and organic compounds, one class being poly cyclic aromatic hydrocarbons (PAH)7-11. However, these compounds are also formed by combustion of other carbonaceous materials. In our studies on PAH in wood combustion emissions and in ambient air in wood-heated residential areas, we have identified several PAH compounds which may be related to combustion of coniferous wood. These are alkylated phenanthrene compounds with the main compound 1-methyl-7-isopropylphenanthrene (trivial name retene) formed by thermal degradation of resin compounds in the wood.

  7. Olive cake combustion in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Topal, H.; Durmaz, A. [Gazi Univ, Ankara (Turkey). Dept. of Mechanical Engineering; Atimtay, A.T. [Middle East Technical Univ., Ankara (Turkey). Dept. of Environmental Engineering

    2002-07-01

    This paper presents the results of a study in which an environmentally sound technology was developed for biomass usage for energy production in Turkey. A circulating fluidized bed of 125 mm diameter and 1,800 mm height was used to determine the combustion characteristics of olive cake (OC) produced in Turkey. Olive cake, an olive oil milling waste product, is available in large amounts at a very low cost. Efficient use of OC in energy production solves the problem of waste management and contributes to meeting targets of the Kyoto Protocol. In this study, olive cake alone and olive cake plus lignite mixtures were burned in separate experiments and in various ratios. A new feeding mechanism was developed to feed the olive cake to the bed. On-line concentrations of oxygen, sulphur dioxide, carbon dioxide, carbon monoxide, nitrogen oxides and total hydrocarbons were measured in the flue gas along with temperature distribution in the bed. Emissions were compared with national standards and combustion efficiency of the olive cake plus lignite coal mixtures and olive cake alone were calculated. The optimum operating parameters were described. OC burned with 94 to 98.5 per cent efficiency. The combustion efficiency increased with increased excess air ratio because volatiles released from the fuel were burned more completely. 3 refs., 5 tabs., 6 figs.

  8. From fire whirls to blue whirls and combustion without pollution

    CERN Document Server

    Xiao, Huahua; Oran, Elaine S

    2016-01-01

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. While fire whirls have long been studied for fire safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This paper presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, seeding an idea of exploiting the high-efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a blue whirl. A blue whirl is smaller, very stable, and burns completely blue-violet in a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this new state points to new pathways for highly effi...

  9. Kinetics of in situ combustion. SUPRI TR 91

    Energy Technology Data Exchange (ETDEWEB)

    Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

    1993-07-01

    Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

  10. Pyrolysis and combustion kinetics of lycopodium particles in thermogravimetric analysis

    Institute of Scientific and Technical Information of China (English)

    Seyed Alireza Mostafavi; Sadjad Salavati; Hossein Beidaghy Dizaji; Mehdi Bidabadi

    2015-01-01

    Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250−550 °C where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500−600 °C, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error.

  11. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  12. The Mutagenic Potential Caused by the Emissions from Combustion of Crude Glycerin and Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Daniel Terruggi Mazak

    2015-04-01

    Full Text Available This study evaluated the use of crude glycerin as an alternative of energy generation to replace the traditional fuels. The Tradescantia stamen hair mutation assay (Trad-SH was applied to study the mutagenic effects caused by the emissions generated in the direct combustion of diesel oil and glycerin in a flame tube furnace. Tradescantia inflorescences were exposed to gaseous emissions from the combustion tests in a fumigation chamber for 30-40 min. The analysis of variance and the Tukey test were applied to compare the differences between six test groups (intoxicated with emissions from glycerin and diesel oil combustion and a control group. Only one glycerin group showed statistical differences (0.05, possibly due to the complexity of the burning process and impurities, besides the acrolein present in its emissions. The high heating value (HHV of crude glycerin (25.5 MJ/kg was lower than diesel oil (45.19 MJ/kg, but it was comparable to other fuels. Although the use of glycerin as a biofuel could be an important aspect to be considered, the results showed that the glycerin had a substantial mutagenic potential similar to that of diesel oil.

  13. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  14. The environmental impact of orimulsion combustion in large utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

    1997-07-01

    There is considerable worldwide interest in the practical use of Orimulsion as a replacement fuel in both oil and coal fired utility boilers. Practical experience of such applications has been gained in Canada, UK, Japan, Europe and USA. Fundamental work has demonstrated the different combustion characteristics of Orimulsion which has been termed the {open_quotes}fourth{close_quotes} fossil fuel to the fossil fuels normally used for power generation and how, in certain circumstances, these can be used to advantage in the application of Orimulsion in utility boiler combustion systems. Orimulsion is an emulsify ed fuel prepared from naturally occurring bitumen deposits located in the Orinoco Basin in Venezuela and comprises approximately 70% bitumen and 30% water. Compared to the heavier fuel oils the sulphur content of Orimulsion is medium to high, the ash content is high with high levels of Vanadium and Nickel. The ash content is enhanced by the addition of Magnesium compounds, to the commercial fuel, to mitigate against the potential in boiler corrosion effects arising form the Va, Na and S content in the fuel.

  15. Fluidized-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Kudjoi, A.; Heinolainen, A.; Hippinen, I.; Lu, Y. [Helsinki University of Technology, Espoo (Finland). Lab. of Energy Economics and Power Plant Engineering

    1998-12-31

    Hybrid combined cycle processes have been presented as possibilities for power generation in the future. In the processes based on partial gasification of coal, the solid materials removed from a gasifier (i.e. fly ash and bed char) contain unburned fuel, which is burned either in an atmospheric or a pressurised fluidised-bed. Pressurised fluidised-bed (PFB) combustion of gasification residues were studied experimentally by Helsinki University of Technology. The gasification residues, i.e. cyclone fines and bed chars, came from pilot scale PFB gasification tests of bituminous coals. The combustion efficiency was high in cyclone fines combustion. The calcium sulphide oxidised effectively to calcium sulphate in the combustion of cyclone fines. In bed char combustion the residual sulphide contents in solids after combustion were still relatively high. In general, sulphur dioxide emissions in residue combustion were low. The recarbonation of calcium oxide was observed in bed char combustion. Fuel-N conversion to NO{sub x} during bed char combustion and in most of the test runs with cyclone fines was higher than in bituminous coal combustion. In bed char combustion the conversion was significantly higher than in cyclone fines combustion. NO{sub x} emissions increased with increasing excess air for both residues, as was expected. In bed char combustion the highest NO{sub x} emissions were measured at higher pressure. Calculated mass reactivity values of equal particle size of all bed chars studied had similar trends with burnout. The biggest particles had the lowest reactivity values throughout the combustion, while reactivity for finer particles was at considerably higher level and sharply increases with burnout. In the constant combustion conditions used in the tests, no significant differences were observed in rate-controlling mechanisms for bed char fractions studied. 25 refs., 13 figs., 15 tab.

  16. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  17. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  18. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Directory of Open Access Journals (Sweden)

    D. Subramaniam, A. Murugesan, A. Avinashy

    2013-01-01

    Full Text Available In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME, neem oil methyl esters (NOME, and Waste Cooking Oil Methyl Esters (WCOME were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel a reduction in performance, combustion, and emission characteristics were clear from the study.

  19. Comparative study on systems of residual water treatment in the process industry by evaporation, using fossils fuels or solar energy; Estudio comparativo sobre sistemas de tratamiento de aguas residuales de la industria de procesamiento por evaporacion, utilizando combustibles fosiles o energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Landgrave Romero, Julio; Canseco Contreras, Jose [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The residual water treatment of the process industry, nowadays is an imminent necessity in our country. In the present study two different forms are considered to concentrate residual waters: multiple effect evaporation and solar evaporation. The use of solar evaporation lagoons is a good possibility to conserving energy by means of the diminution of fossil fuel consumption. The design basis of the evaporation systems via multiple effect, as well as solar evaporation, the results of the respective sizing and the estimation of the corresponding costs are presented. A practical case is described on the cooking of cotton linters (flock) [Spanish] El tratamiento de aguas residuales de la industria de proceso, hoy en dia es una necesidad inminente en nuestro pais. En el presente trabajo se consideran dos formas distintas para concentrar las aguas residuales: evaporacion de multiple efecto y evaporacion solar. El empleo de lagunas de evaporacion solar es una buena posibilidad para conseguir el ahorro de energia mediante disminucion del consumo de combustibles fosiles. Se presentan las bases de diseno de los sistemas de evaporacion via multiple efecto, asi como solar, los resultados del dimensionamiento respectivo y la estimacion de los costos correspondientes. Se describe un caso practico sobre el cocido de linters de algodon (borra)

  20. Fast Pyrolysis of Biomass in a Spout-fluidized Bed Reactor--Analysis of Composition and Combustion Characteristics of Liquid Product from Biomass

    Institute of Scientific and Technical Information of China (English)

    陈明强; 王君; 王新运; 张学才; 张素平; 任铮伟; 颜涌捷

    2006-01-01

    In order to gain insight into the fast pyrolysis mechanism of biomass and the relationship between bio-oil composition and pyrolysis reaction conditions, to assess the possibility for the raw bio-oil to be used as fuel, and to evaluate the concept of spout-fluidized bed reactor as the reactor for fast pyrolysis of biomass to prepare fuel oil, the composition and combustion characteristics of bio-oil prepared in a spout-fluidized bed reactor with a designed maximum capacity 5 kg/h of sawdust as feeding material, were investigated by GC-MS and thermogravimetry. 14 aromatic series chemicals were identified. The thermogravimetric analysis indicated that the bio-oil was liable to combustion, the combustion temperature increased with the heating rate, and only minute ash was generated when it burned. The kinetics of the combustion reaction was studied and the kinetic parameters were calculated by both Ozawa-Flynn-Wall and Popsecu methods. The results agree well with each other. The most probable combustion mechanism functions determined by Popescu method are f(α)=k(1-α)2(400~406 ℃), f(α)=1/2k(1-α)3 (406~416 ℃) and f( α)=2k(1-α)3/2 (416~430 ℃) respectively.

  1. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  2. THE PHYSICAL AND CHEMICAL CHARACTERIZATION OF THE EMISSIONS FROM A RESIDENTIAL OIL BOILER

    Science.gov (United States)

    The toxicity of emissions from the combustion of home heating oil and the use of residential oil boilers (ROB) is an important health concern. Yet scant physical and chemical information about the emissions from this source are available for dispersion, climate, and source-recep...

  3. CHARACTERIZATION OF AIR TOXICS FROM AN OIL-FIRED FIRETUBE BOILER

    Science.gov (United States)

    Tests were conducted on a commercially available firetube package boiler running on #2 through #6 oils to determine the emissions levels of hazardous air pollutants (HAPs) from the combustion of four fuel oils. Flue gas was sampled to determine levels of volatile and semivolatile...

  4. Reduction of Sulphur Content of Urals Crude Oil Prior to Processing ...

    African Journals Online (AJOL)

    As such, the safety of the personnel and the equipment is at high risk during the processing of Urals crude oil in ... products on automotive and combustion engines. This has led to the ... important task of oil refining industry (Zhanget al.,. 2009).

  5. Possibilities of the use of heating oil residues. Moeglichkeiten der Verwertung von Heizoelresten

    Energy Technology Data Exchange (ETDEWEB)

    Froebel, J. (DBI Gas- und Umwelttechnik GmbH, Leipzig (Germany)); Kaiser, G. (DBI Gas- und Umwelttechnik GmbH, Leipzig (Germany))

    1994-08-01

    An industrial-scale experiment is described in which residues of heating oil produced by brown coal liquefaction were added to raw brown coal and combusted in grate furnaces satisfactory results. The problem of heating oil residues has its origines in the energy policy of the former GDR; methods of disposal are therefore of interest especially in the new East German states. (orig.)

  6. Determination of cadmium, zinc, copper chromium and arsenic in crude oils

    NARCIS (Netherlands)

    Stigter, J.B.; Haan, H.P.M. de; Guicherit, R.

    1998-01-01

    One of the sources of trace heavy metal elements in air are emissions by the oil industry, either directly through stack emissions from refineries or indirectly from emissions of combustion of hydrocarbons. Emission estimates are based mainly on the trace metal content of the crude oil processed. Fr

  7. Secondary combustion device for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    Craver, R.D.

    1989-08-08

    This patent describes in a wood burning stove including an exhaust flue opening, a combustion chamber for primary combustion having an access door, a support for wood to be burned and a primary air inlet means for supplying air to support primary combustion of the wood to produce flue gases containing combustible particulate material, plenum means for directing the flue gases in a direction from the combustion chamber to the flue opening in a preselected path, and secondary combustion means for burning the particulate material in the flue gases before flue gases through the exhaust flue opening. The improvement comprising: the combustion chamber having a flue gas exit opening extending laterally across the top of the combustion chamber and communicating the combustion chamber with the plenum means, an elongated manifold extending laterally across and above the combustion chamber substantially coextensively with the flue gas exit opening, a number of air opening spaced longitudinally along the manifold and facing opposite the direction of the flue gases closely adjacent the flue gas exit opening, and an air inlet means for supplying ambient, secondary combustion air to the manifold for counterflow thereof from the openings into the path of the flue gases in a plurality of distinct jets.

  8. Measurement and simulation of swirling coal combustion

    Institute of Scientific and Technical Information of China (English)

    Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

    2013-01-01

    Particle image velocimetry (PIV),thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios.Eulerian-Lagrangian large-eddy simulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model,presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models,particle devolatilization and particle combustion models,are simultaneously used to simulate swirling coal combustion.Statistical LES results are validated by measurement results.Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion.Particles are shown to concentrate along the periphery of the coherent structures.Combustion flame is located in the high vorticity and high particle concentration zones.Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

  9. Combustion diagnostic for active engine feedback control

    Science.gov (United States)

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  10. Engine oil. How does it cope with millions of explosions? Oil analytics enables valuable insights.; Motorenoel. Wie verkraftet es millionfache Explosionen? Oelanalytik ermoeglicht wertvolle Einblicke

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, Michael [Adam Opel AG, Ruesselsheim (Germany)

    2012-07-01

    During engine operation the engine oil is faced with millions of explosions, high local temperatures and a mix of aggressive combustion gases and fuel components. The kind of oil aging depends also on the driving profile of the engine. The lecture describes the major oil analysis methods and their value. For each single parameter the correlation to the operating profiles will be discussed. This leads to a classification of driving conditions concerning their influence on the specific oil aging and the individual oil change information to the driver. (orig.)

  11. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    Excellent optical access for laser- based diagnostic measurements ; (ii) Accurate experimental control of boundary conditions; (iii) Aerodynamic flame...potential to extend methods based on bimodal approximations, such as the BML [21] framework , by permitting inter- mediate fluid states, which is of...identify the impact of the major chemical pathways on combustion mode transitions. The conceptual multifluid approach of Spalding can be used to avoid

  12. HEAVY OIL UPGRADING WITH MINIMAL INVESTMENT COST

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By making best use of the low value by-products and maximum utilization of the existed processing units to minimize the investment cost,several heavy oil upgrading processes have been developed and put into practice in China.For domestic sweet crudes,RFCC combined with decanted oil coking or deasphalting has been selected.By RFCC-coking or deasphalting synergy,inferior quality feedstock can be accepted and needle coke and paving asphalt are produced.For imported sulfur crudes,high vacuum distillation combined with asphalt production and combined coking with the use of coke in cement industry and Fluidized Bed Combustion are recommend.

  13. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-21

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines.'' The EPA... Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines...

  14. Environmental survey - tar sands in situ processing research program (Vernal, Uintah County, Utah). [Reverse-forward combustion; steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q.

    1980-03-01

    Research will be done on the reverse-forward combustion and steam injection for the in-situ recovery of oil from tar sands. This environmental survey will serve as a guideline for the consideration of environmental consequences of such research. It covers the construction phase, operational phase, description of the environment, potential impacts and mitigations, coordination, and alternatives. (DLC)

  15. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  16. Study on Influence of Functional Composition Distribution on Combustion Performance of a Modified Single Base Propellant

    Institute of Scientific and Technical Information of China (English)

    刘波; 王琼林; 刘少武; 于慧芳; 李达; 姚月娟; 潘清; 魏伦

    2012-01-01

    The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in this propellant was determined by using FTIR micro-spectroscopy. Its combustion performance was investigated by means of closed-bomb and interior ballistic tests. The results show that the concentration of NG distributes parabolically along the radius and the con- centration of NA decreases from the surface to the centre exponentially. The deeper the NG impregnates, the slower the NA concentration decreases, the stronger the progressive combustion is and the better the interior ballistic performance is. When the depth corresponding to maximum NG concentration is about 1/2 of the web and the NA decreases slowly, the pro- gressive combustion is the strongest and the interior ballistic performance is the best.

  17. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  18. Combustion characteristics of Athabasca froth treatment tailings in a simulated fluidilized bed

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, P.; Ghosh, M.; Speirs, B. C. [Imperial Oil Resources (Canada); Leon, M. A.; Rao, S.; Dutta, A.; Basu, P. [Greenfield Research Inc. (Canada)

    2011-07-01

    In surface-mined oil sands, a stream of water, asphaltenes, solids and residual bitumen/solvent, known as PFT tailings, is created during the bitumen production process. The aim of this study was to investigate the use of this PFT tailings stream as a fuel source for combustion in a fluidized bed for energy recovery. To do so, physical and fluidization characteristics of the fuel as well as combustion kinetics were assessed through laboratory analysis. In addition, the fuel's combustion characteristics were investigated through experiments in a quartz wool matrix tubular reactor and theoretical calculations at various moisture contents. Results showed that this fuel can be burned in a fluidized bed with a reactivity comparable to that of coal samples. This research found that PFT tailings could be used to generate energy during disposal but further work will have to be undertaken in a hot CFB combustor to confirm this.

  19. Engine oil wear resistance

    Directory of Open Access Journals (Sweden)

    A.N. Farhanah

    2015-03-01

    Full Text Available Lubricants play a vital role in an internal combustion engine to lubricate parts and help to protect and prolong the engine life. Lubricant also will help to reduce wear by creating lubricating film between the moving parts hence reduce metal-to-metal contacts. Engine oil from three different manufacturers with the same SAE viscosity grade available in market does not mean it will have the same lubricity for an engine. In this study, commercial mineral lubrication oil (SAE 10W-30 from three manufacturers was investigated to compare the lubrication performance at three different temperatures (40˚C, 70˚C and 100˚C in 60 minutes time duration by using four ball wear tester. The speed will be varied from 1000 rpm to 2500 rpm. Results show that all three lubricants have different lubricity performance; the smaller the wear scar, the better the lubricant since the lubricant can protect the moving surfaces from direct metal-to-metal contact occur.

  20. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  1. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove

    2009-01-01

    of in situ combustion processes is the formation and sustained propagation of a high-temperature combustion front. Using the models developed, we study the impact of phase behavior on ignition/extinction dynamics as a function of the operating conditions. We show that when operating close to ignition/extinction...... branches, a change of phase behavior model will shift the system from a state of ignition to a state of extinction or vice versa. For both the rigorous equation of state based and a simplified, but commonly used, K-value-based phase behavior description we identify areas of operating conditions which lead...... phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...

  2. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  3. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  4. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  5. SPECIFIC EMISSIONS FROM BIOMASS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2014-02-01

    Full Text Available This paper deals with determining the specific emissions from the combustion of two kinds of biomass fuels in a small-scale boiler. The tested fuels were pellets made of wood and pellets made of rape plant straw. In order to evaluate the specific emissions, several combustion experiments were carried out using a commercial 25 kW pellet-fired boiler. The specific emissions of CO, SO2 and NOx were evaluated in relation to a unit of burned fuel, a unit of calorific value and a unit of produced heat. The specific emissions were compared with some data acquired from the reference literature, with relatively different results. The differences depend mainly on the procedure used for determining the values, and references provide no information about this. Although some of our experimental results may fit with one of the reference sources, they do not fit with the other. The reliability of the references is therefore disputable.

  6. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  7. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  8. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    Science.gov (United States)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  9. Antidiabetic oils.

    Science.gov (United States)

    Berraaouan, Ali; Abid, Sanae; Bnouham, Mohamed

    2013-11-01

    Many studies have demonstrated evidence of the health benefits of natural products. Plant extracts have been tested on a variety of physiological disorders, including diabetes mellitus. Studies have tested aqueous extracts, plant fractions extracts, families of active of compounds, and specific active compounds. In this review, we describe the antidiabetic effects of vegetable oils. Information was collected from ScienceDirect and PubMed databases using the following key words: Diabetes mellitus, Oils, Vegetable oils, Type 1 diabetes, type 2 diabetes, antidiabetic effect, antihyperglycemic, antidiabetic oil. We have compiled approximately ten vegetable oils with including experimental studies that have demonstrated benefits on diabetes mellitus. There are soybean, argan, olive, palm, walnut, black cumin, safflower, Colocynth, Black seed, Rice bran, Cinnamom, and Rocket oils. For each vegetable oil, we investigated on the plant's traditional uses, their pharmacological activities and their antidiabetic effects. It seems that many vegetable oils are really interesting and can be used in the improvement of human health, particularly, to prevent or to treat diabetes mellitus complications.

  10. Coconut Oil

    Science.gov (United States)

    ... immune system. Despite coconut oil's high calorie and saturated fat content, some people use it by mouth to ... Coconut oil is high in a saturated fat called medium chain triglycerides. These fats work differently than other types of saturated fat in the body. However, research on the effects ...

  11. CSIR helps prevent spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vuuren, M. van (CSIR Energy Technology (South Africa))

    1992-03-01

    Heaps of stockpiled coal could present a fire hazard due to the risk of spontaneous combustion. Regular monitoring of stockpiles and bunker testing of coals help to prevent stockpile fires. This brief article describes the recent upgrading of the CSIR's bunker test facility that enables coal producers, users and exporters to test their products under simulated conditions that duplicate the actual conditions under which coal is stored. 2 photos.

  12. Radiation/Catalytic Augmented Combustion.

    Science.gov (United States)

    1980-09-01

    NATIO& NAk H(fJI At tl TANUAHTOb 19 A ~omm.81-0287 LVL RADIATION/CATALYTIC AUGMENTED COMBUST ION MOSHE LAVID CORPORATE RESEARCH-TECHNOLOGY FEASIBILITY...refinements as necessary. i. Perform cannular combustor experiments to Investigate ignition and flame attachment in flowing, liquid -fuel, unpremixed...stabilizer, with a sintered metal disk on the downstream side through which hot gases or products of partial fuel oxidation can be passed. Experimental

  13. Laser Optics/Combustion Diagnostics.

    Science.gov (United States)

    1986-07-01

    been demonstrated. CARS measurements of axial and 0.12 radial temperature profiles in a highly sooting flame compared favorably with profiles...of Number-Density Equation ’Eckbreth. A.C. and Hatt. R.., "CARS Thermomrry in a The third-order susceptibility can be rewritten to show its Sooting ... Flame ." Combustion and Homie, Vol. 36. 1979, pp. 87-98. explcitdepndece ponthenumer ensty Roh. %W.B.. "Coherent Anti-Stokcs Raman Scattering ofexpici

  14. ABB Combustion Engineering nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  15. Vortex Simulation of Turbulent Combustion

    Science.gov (United States)

    1992-11-19

    TURBULENT COMBUSTION (AFOSR Grant No. 89-0491) Principal Investigator: Ahmed F. Ghoniem Department of Mechanical Engineering Massachusetts Institute of...Heavy Industries, Nagoya, Japan.(talk and discussion). 17. 1990, Mazda Motor Co., Yokohama, Japan, (talk and discussion). 18. 1990, American Math Society...VORTICITY LAYERS UNDER NON-SYMMETRIC CONDITIONS Omar M. Kniot and Ahmed F. Ghoniem Department of Mechanical Engineering Massachusetts Institute of

  16. Nitrogen release during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  17. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Ingermann Petersen, H.; Sund Soerensen, H.; Thomsen, E.; Guvad, C.

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  18. Demonstration of Active Combustion Control

    Science.gov (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  19. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  20. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  1. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  2. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    OpenAIRE

    2010-01-01

    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  3. CFBC to burn oil shale in the northern Negev

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, M.; Podshivalov, V. (Israel Electric Corp., Haifa (Israel)); Wohlfarth, A.; Schwartz, M. (PAMA, Mishov Rotem (Israel))

    1994-09-01

    This paper describes a 525 MWe power station designed to run on a high sulphur, high moisture content oil shale. Fluidized bed combustion is expected to be used by all three of the main 150 MWe units as well as by the initial demonstration unit which is rated at some 75 MWe. (UK)

  4. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation.

    Science.gov (United States)

    Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano

    2017-05-15

    Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  6. Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction

    OpenAIRE

    Styring, P.; Armstrong, K.

    2015-01-01

    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO2 sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination a...

  7. Experiments and Modeling of Multi-Component Fuel Behavior in Combustion

    Science.gov (United States)

    1984-05-01

    heteroatom components. Such models will be necessary input to the large computer codes which calculate the characteristics of two phase reacting flows...methane -nd acetylene accompanied by soot formation. The trends are similar for the two fuels except that JP-4 produces more methane than JP-7. Both fuels...fuels vii1 be increasingly important as the sources shift to heavier petroleum , oil shale, tar sands and coal derived fuels. The combustion of such

  8. Oil shale production and power generation in Estonia; Economic and environmental dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Barabaner, N.I.; Kaganovich, I.Z. (Estonian Academy of Sciences, Tallinn (Estonia). Inst. of Economics)

    1993-06-01

    Combustive oil shale is the main type of fuel used in Estonian power plants. The economic state of the oil shale mining industry has deteriorated during the last decade. The development of oil shale production and use in power generation is accompanied by severe environmental pollution. The future of shale based power generation in Estonia depends on building new small capacity mines, in conjunction with the renovation and reconstruction of existing power plants and implementing measures to protect the environment. (author)

  9. Oil and the future: Taking bearings in the greenhouse in a post Brent Spar world

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, J.

    1995-12-31

    The paper discusses future oil combustion. A greenhouse-related environmental driving-force seems set to emerge in the capital markets in the years ahead. This will severely compound other already serious environment-related financial problems blighting the oil-industry`s access to capital radar screen. The wise oil company is now, increasingly clearly, the company thinking about how to begin repositioning itself for the twenty-first century as a total energy company. 6 refs.

  10. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  11. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  12. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  13. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  14. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  15. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  16. Assessing the potential of utilisation and storage strategies for post-combustion CO2 emissions reduction

    Directory of Open Access Journals (Sweden)

    Peter eStyring

    2015-03-01

    Full Text Available The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture are considered. These are carbon capture and sequestration/storage (CCS, enhanced hydrocarbon recovery (EHR and carbon dioxide utilization (CDU to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO2 sequestered based on equivalent boundary conditions. This is achieved using a 'cradle to grave approach' where the final destination and fate of any product is considered. The input boundary is pure CO2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the 'cradle to gate' approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  17. Experimental research on combustion fluorine retention using calcium-based sorbets during coal combustion (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    QI Qing-jie; LIN Zhi-yan; LIU Jian-zhong; WU Xian; ZHOU Jun-hu; CEN Ke-fa

    2008-01-01

    In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermo-dynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention.

  18. Fuel combustion test in constant volume combustion chamber with built-in adaptor

    Institute of Scientific and Technical Information of China (English)

    JEONG; DongSoo; CHO; GyuBack; CHOI; SuJin; LEE; JinSoo

    2010-01-01

    Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process.

  19. Chapter 8: Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen; Bellman, Don; Paynter, Dave; Wykowski, Jim

    2016-09-06

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleum fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.

  20. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering