WorldWideScience

Sample records for oil blends electronic

  1. Quantification of rice bran oil in oil blends

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.; Sharma, H. K.; Sengar, G.

    2012-11-01

    Blends consisting of physically refined rice bran oil (PRBO): sunflower oil (SnF) and PRBO: safflower oil (SAF) in different proportions were analyzed for various physicochemical parameters. The quantification of pure rice bran oil in the blended oils was carried out using different methods including gas chromatographic, HPLC, ultrasonic velocity and methods based on physico-chemical parameters. The physicochemical parameters such as ultrasonic velocity, relative association and acoustic impedance at 2 MHz, iodine value, palmitic acid content and oryzanol content reflected significant changes with increased proportions of PRBO in the blended oils. These parameters were selected as dependent parameters and % PRBO proportion was selected as independent parameters. The study revealed that regression equations based on the oryzanol content, palmitic acid composition, ultrasonic velocity, relative association, acoustic impedance, and iodine value can be used for the quantification of rice bran oil in blended oils. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at a 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above the 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification of rice bran oil. (Author) 23 refs.

  2. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    International Nuclear Information System (INIS)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Wan Md Zin Wan Yunus

    2007-01-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate

  3. Tribological Characteristics Evaluation of Mustard Oil Blends

    Directory of Open Access Journals (Sweden)

    Mohammed Hassan Jabal

    2018-03-01

    Full Text Available A progressive increase in the desire for environmentally friendly lubricants by users and strict government regulations for the use of these lubricants has provided an opportunity to use plant oils as biodegradable lubricants, therefore vegetable oils have been investigated to replace oil lubricants because of their maintaining the conditions of nature (environment properties. In this paper, the influences of the blending ratio of mustard seeds oil with commercial mineral oil (SAE40 on the tribological characteristics were investigated and compared with mineral oil using the four-ball tribotester. Mustard seeds oil was blended with mineral oil at a volumetric ratio ranging from 22.5 to 90%. All experimental works were confirmed to ASTM D4172-B standard. The results exhibit that some blends of mustard seeds oil with mineral oil have lower wear scar diameter, friction torque, Friction coefficient and a higher parameter of flash temperature value compared to mineral oil and neat mustard seed oil. In conclusion, the mustard seed oil blend (MU22.5 shows a better anti-wear and anti-friction performance compared to oil samples. Therefore, mustard seeds oil has the potential to be used as a lubricant of mating surfaces.

  4. Oxidative stability of diacylglycerol oil and butter blends containing diacylglycerols

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Nielsen, Nina Skall; Jacobsen, Charlotte

    2006-01-01

    Diacylglycerol (DAG) oils produced from sunflower oil and traditional sunflower oil were stored for 20 wk at 38 degrees C, and their oxidative stability was measured. Moreover, two butter blends were produced containing 40 wt-% DAG oil made from sunflower oil or rapeseed oil, respectively, as well...... as two control butter blends with sunflower oil or rapeseed oil. Their oxidative stability during storage at 5 degrees C for up to 12 wk was examined by similar means as for the pure oils. The storage study of the oils indicated that the DAG oil was oxidatively less stable as compared to sunflower oil......, but that they had similar sensory quality. Storage of the butter blends revealed that blends with the two types of rapeseed oil (triacylglycerol (TAG) or DAG oil) were oxidatively more stable than the blends containing oils from sunflower. There was no unambiguous indication of DAG butter blends having a different...

  5. Quantification of rice bran oil in oil blends

    Directory of Open Access Journals (Sweden)

    Mishra, R.

    2012-03-01

    Full Text Available Blends consisting of physically refined rice bran oil (PRBO: sunflower oil (SnF and PRBO: safflower oil (SAF in different proportions were analyzed for various physicochemical parameters. The quantification of pure rice bran oil in the blended oils was carried out using different methods including gas chromatographic, HPLC, ultrasonic velocity and methods based on physico-chemical parameters. The physicochemical parameters such as ultrasonic velocity, relative association and acoustic impedance at 2 MHz, iodine value, palmitic acid content and oryzanol content reflected significant changes with increased proportions of PRBO in the blended oils. These parameters were selected as dependent parameters and % PRBO proportion was selected as independent parameters. The study revealed that regression equations based on the oryzanol content, palmitic acid composition, ultrasonic velocity, relative association, acoustic impedance, and iodine value can be used for the quantification of rice bran oil in blended oils. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at a 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above the 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification of rice bran oil.

    Se analizaron diversos parámetros físico-químicos para la evaluación de mezclas de aceites en diferentes proporciones que incluyen: aceite de salvado de arroz físícamente refinado (PRBO: aceite de girasol (SNF y las mezclas PRBO: aceite de cártamo (SAF en diferentes proporciones. La cuantificación de la presencia del aceite de salvado de arroz en las mezclas se llevó a cabo por diferentes métodos, como cromatografía de gases (GC, cromatografía líquida (HPLC, ultrasonidos y métodos basados en otros parámetros f

  6. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    Science.gov (United States)

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  7. Absorption difference between diacylglycerol oil and butter blend containing diacylglycerol oil

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Jørgensen, Henry; Mu, Huiling

    2012-01-01

    butter blend (BDAG), triacylglycerol (TAG) butter blend (BTAG), DAG oil (ODAG) or TAG oil (OTAG) were prepared, and each was fed to a group of 8 male Wistar rats. The design of the experiment was a combined balance and feeding experiment. The rats fed the BTAG and ODAG‐diets had a significantly higher......This study aims at investigating whether the intake of butter blends containing diacylglycerol (DAG) oil may result in reduced fat accumulation, in similarity to DAG oil, and the potential metabolic differences between butter blends and DAG oil. Four experimental diets containing either 10 wt% DAG...... protein content than rats fed the BDAG and OTAG‐diets, and the fat content was significantly lower in rats fed the ODAG‐diet as compared to rats fed the OTAG and BDAG‐diets. A significantly higher content of ash was observed in rats fed the two TAG diets. The ratio of abdominal fat weight/body weight...

  8. A Study of the Use of Jatropha Oil Blends in Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic

  9. Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene-butadiene rubber (SBR) blend

    Energy Technology Data Exchange (ETDEWEB)

    Manshaie, R. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nouri Khorasani, S., E-mail: saied@cc.iut.ac.i [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jahanbani Veshare, S. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rezaei Abadchi, M. [Department of Polymer Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this study, physico-mechanical properties of NR/SBR blends cured by electron beam irradiation and sulfur were compared. The NR/SBR blends were prepared using a two-roll mill. Electron beam irradiations of 100-400 kGy were applied to cure the blends and changes in physico-mechanical properties were studied as a function of irradiation. Also, oil resistance and the effect of thermal ageing on mechanical properties of the blends were investigated. The results show that the irradiated blends have better mechanical properties than those cured by sulfur system. The irradiation cured samples also exhibited better heat stability than the sulfur cured samples. The blend cured by the highest dose shows the lowest swelling and high oil resistance compared with the other samples cured by irradiation.

  10. Determination of Component Contents of Blend Oil Based on Characteristics Peak Value Integration.

    Science.gov (United States)

    Xu, Jing; Hou, Pei-guo; Wang, Yu-tian; Pan, Zhao

    2016-01-01

    Edible blend oil market is confused at present. It has some problems such as confusing concepts, randomly named, shoddy and especially the fuzzy standard of compositions and ratios in blend oil. The national standard fails to come on time after eight years. The basic reason is the lack of qualitative and quantitative detection of vegetable oils in blend oil. Edible blend oil is mixed by different vegetable oils according to a certain proportion. Its nutrition is rich. Blend oil is eaten frequently in daily life. Different vegetable oil contains a certain components. The mixed vegetable oil can make full use of their nutrients and make the nutrients more balanced in blend oil. It is conducive to people's health. It is an effectively way to monitor blend oil market by the accurate determination of single vegetable oil content in blend oil. The types of blend oil are known, so we only need for accurate determination of its content. Three dimensional fluorescence spectra are used for the contents in blend oil. A new method of data processing is proposed with calculation of characteristics peak value integration in chosen characteristic area based on Quasi-Monte Carlo method, combined with Neural network method to solve nonlinear equations to obtain single vegetable oil content in blend oil. Peanut oil, soybean oil and sunflower oil are used as research object to reconcile into edible blend oil, with single oil regarded whole, not considered each oil's components. Recovery rates of 10 configurations of edible harmonic oil is measured to verify the validity of the method of characteristics peak value integration. An effective method is provided to detect components content of complex mixture in high sensitivity. Accuracy of recovery rats is increased, compared the common method of solution of linear equations used to detect components content of mixture. It can be used in the testing of kinds and content of edible vegetable oil in blend oil for the food quality detection

  11. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    Science.gov (United States)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  12. Swelling and tribological properties of melt-mixed fluoroelastomer/nitrile rubber blends under crude oil

    Science.gov (United States)

    Tagelsir, Yasin; Li, San-Xi; Lv, Xiaoren; Wang, Shijie; Wang, Song; Osman, Zeinab

    2018-01-01

    The melt-mixed fluoroelastomer (FKM)/ nitrile rubber (NBR) blends of (90/10, 80/20, 70/30, 60/40 and 50/50) ratios with same hardness were prepared, and their swelling and tribological properties under crude oil were investigated for the purpose of developing high performance cost-effective elastomers meeting requirement of oil extraction progressive cavity pump stator. Differential scanning calorimetry confirmed compatible blend system for all blends. Field emission scanning electron microscopy (FE-SEM) showed co-continuous morphology of 200-400 nm phase size for all blends, expect FKM/NBR (90/10) which exhibited partially continuous phase morphology of 100-250 nm phase size. The results of swelling and linear wear tests under crude oil indicated that swelling percentage, coefficient of friction and specific wear rate of FKM/NBR blends were much better than NBR, with FKM/NBR (90/10 and 80/20) showing swelling percentage and specific wear rate very close to FKM. Attenuated total reflectance-Fourier transform infrared spectroscopy disclosed that fracture of macromolecular chains was the main mechanochemical effect of unswollen and swollen worn surfaces, in addition to oxygenated degradation detected with increasing NBR ratio in the blends. The fracture of macromolecular chains resulted in slight fatigue wear mechanism, which was also confirmed by FE-SEM of the worn surfaces.

  13. Data Fusion of Electronic Nose and Electronic Tongue for Detection of Mixed Edible-Oil

    OpenAIRE

    Men, Hong; Chen, Donglin; Zhang, Xiaoting; Liu, Jingjing; Ning, Ke

    2014-01-01

    For the problem of the waste of the edible-oil in the food processing, on the premise of food security, they often need to add new edible-oil to the old frying oil which had been used in food processing to control the cost of the production. Due to the fact that the different additive proportion of the oil has different material and different volatile gases, we use fusion technology based on the electronic nose and electronic tongue to detect the blending ratio of the old frying oil and the n...

  14. CONSIDERATIONS ABOUT THE USE OF LOVAGE LEAVES TO IMPROVE THE QUALITY OF EDIBLE VEGETABLE OILS AND OIL BLENDS

    Directory of Open Access Journals (Sweden)

    GEIDA SEVDAGUL SULIMAN

    2018-03-01

    Full Text Available We studied four edible vegetable oils and nine oil blends based on refined sunflower oil, in order to improve the quality characteristics of sunflower oil. The oils used for blends were linseed oil, grapeseed oil, and coconut oil. The physico-chemical properties demonstrated the superior features for oil blends, like lower acidity (measured by acid value and higher stability to autoxidation (measured by peroxide value and refractive index. The best combination for sunflower oil was with coconut oil (lower acidity, higher stability to autoxidation. For a supplementary improvement of properties, especially for the preservation of oils and oil blends, we tested the lovage (Levisticum officinale extract as additive. The obtained additivated mixtures demonstrated better quality characteristics, which recommend them for the human consumption.

  15. CONSIDERATIONS ABOUT THE USE OF LOVAGE LEAVES TO IMPROVE THE QUALITY OF EDIBLE VEGETABLE OILS AND OIL BLENDS

    OpenAIRE

    GEIDA SEVDAGUL SULIMAN; SEMAGHIUL BIRGHILA; ANCA DUMBRAVA

    2018-01-01

    We studied four edible vegetable oils and nine oil blends based on refined sunflower oil, in order to improve the quality characteristics of sunflower oil. The oils used for blends were linseed oil, grapeseed oil, and coconut oil. The physico-chemical properties demonstrated the superior features for oil blends, like lower acidity (measured by acid value) and higher stability to autoxidation (measured by peroxide value and refractive index). The best combination for sunflower oil was with coc...

  16. Analytical characterization of pure and blended watermelon (citrullus lanatus) oil: impact of blending on oxidative stability

    International Nuclear Information System (INIS)

    Azeem, M.W.; Nadeem, M.

    2015-01-01

    Analytical characterization of pure, blended watermelon (Citrulluslanatus) oil and impact of blending on oxidative stability was investigated. Watermelon oil was added with mango (Mangiferaindica L.) kernel oil at four different concentrations 5, 10, 15 and 20% (B 1, B2, B3 and B4) and referenced with a control (100% watermelon oil). All the blends were stored in transparent PET bottles at ambient temperature (25-28 degree C) for 3 months; storage stability was assessed at the interval of 1 month. Free fatty acid, unsaponifiable matter, saponification value, refractive index and iodine value of watermelon seed oil and mango kernel oil was 1.38%, 0.34%; 0.71%, 1.68%; 198, 193; 1.468, 1.457; 107.51, 54.62, respectively. The tocopherol content of watermelon oil, mango kernel oil, B1, B2, B3 and B4 was 127.49, 205.44, 135.24, 144.52, 156.81 and 169.34 mg/kg. delta tocopherol in watermelon oil, mango kernel oil, B1, B2, B3 and B4 was 55.26, 34.81, 53.64, 51.27, 50.14 and 48.23 mg/kg. Concentration of linoleic acid decreased from 50.78% to 30.17% when 40% mango kernel oil was added to watermelon oil. Oleic acid increased from 22.89% in watermelon oil to 25.19%, 28.84% and 30.64% in B1, B2, B3 and B4. The increase in peroxide value of watermelon oil, B1, B2, B3 and B4 was 10.07, 9.56, 7.62, 5.17 and 2.87 (meqO/sub 2//kg) in a time dependent manner. Induction period of pure watermelon oil was less than mango kernel oil and blends. These results suggest that chemical characteristics and oxidative stability of pure watermelon oil can be improved by blending with mango kernel oil. (author)

  17. Analytical Characterization of Pure and Blended Watermelon (Citrullus lanatus oil: Impact of Blending on Oxidative Stability

    Directory of Open Access Journals (Sweden)

    Muhammad Waqar Azeem

    2015-06-01

    Full Text Available Analytical characterization of pure, blended watermelon (Citrulluslanatus oil and impact of blending on oxidative stability was investigated. Watermelon oil was added with mango (Mangiferaindica L. kernel oil at four different concentrations 5, 10, 15 and 20% (B1, B2, B3 and B4 and referenced with a control (100% watermelon oil. All the blends were stored in transparent PET bottles at ambient temperature (25-28oC for 3 months; storage stability was assessed at the interval of 1 month. Free fatty acid, unsaponifiable matter, saponification value, refractive index and iodine value of watermelon seed oil and mango kernel oil was 1.38%, 0.34%; 0.71%, 1.68%; 198, 193; 1.468, 1.457; 107.51, 54.62, respectively. The α tocopherol content of watermelon oil, mango kernel oil, B1, B2, B3 and B4 was 127.49, 205.44, 135.24, 144.52, 156.81 and 169.34 mg/kg. δ tocopherol in watermelon oil, mango kernel oil, B1, B2, B3 and B4 was 55.26, 34.81, 53.64, 51.27, 50.14 and 48.23 mg/kg. Concentration of linoleic acid decreased from 50.78% to 30.17% when 40% mango kernel oil was added to watermelon oil. Oleic acid increased from 22.89% in watermelon oil to 25.19%, 28.84% and 30.64% in B1, B2, B3 and B4. The increase in peroxide value of watermelon oil, B1, B2, B3 and B4 was 10.07, 9.56, 7.62, 5.17 and 2.87 (meqO2/kg in a time dependent manner. Induction period of pure watermelon oil was less than mango kernel oil and blends. These results suggest that chemical characteristics and oxidative stability of pure watermelon oil can be improved by blending with mango kernel oil.

  18. Low density polyethylene (LDPE) / poli (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake

    International Nuclear Information System (INIS)

    Rocha, M.C.G.; Oliveira, C.I.R. de; Sanches, M.C.; Coelho, N.N.

    2014-01-01

    Blends of PHB and LDPE were prepared by melt mixing in a Haake internal mixer. Castor oil pressed cake was used as filler for the blends. In order to improve the interfacial adhesion between the filler and the polymers, a mercerization process with 5% NaOH solution was employed. This process was evaluated by several techniques such as: X-Ray diffraction, infrared spectroscopy and scanning electron microscopy (SEM). The mechanical properties were evaluated by traditional tensile stress-strain tests (ASTM D- 638). The obtained results showed that the mercerization process leads to better adhesion properties. The Young Modulus of the blends presented a tendency to increase with the addition of the castor oil cake.(author)

  19. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  20. Tough Blends of Polylactide and Castor Oil

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

    2012-10-10

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  1. Tough blends of polylactide and castor oil.

    Science.gov (United States)

    Robertson, Megan L; Paxton, Jessica M; Hillmyer, Marc A

    2011-09-01

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of l-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized-an order of magnitude larger than that of neat PLLA.

  2. Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends

    Directory of Open Access Journals (Sweden)

    S. M. Ashrafur Rahman

    2018-03-01

    Full Text Available Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required in the medicinal sector, there is a substantial low-value waste stream of essential oils that can be used in the transportation and agricultural sectors. This study investigated the influence of orange, eucalyptus, and tea tree oil on engine performance and combustion characteristics of a multi-cylinder compression ignition engine. Orange, eucalyptus, and tea tree oil were blended with diesel at 10% by volume. For benchmarking, neat diesel and 10% waste cooking biodiesel-diesel blend were also tested. The selected fuels were used to conduct engine test runs with a constant engine speed (1500 RPM (revolutions per minute at four loads. As the load increased, frictional power losses decreased for all of the fuel samples and thus mechanical efficiency increased. At higher loads (75% and 100%, only orange oil-diesel blends produced comparable power to diesel and waste cooking biodiesel-diesel blends. Fuel consumption (brake and indicated for the essential oil-diesel blends was higher when compared to base diesel and waste cooking biodiesel-diesel blends. Thermal efficiency for the essential oil-diesel blends was comparable to base diesel and waste cooking biodiesel-diesel blends. At higher loads, blow-by was lower for essential oil blends as compared to base diesel and waste cooking biodiesel-diesel blends. At 50% and 100% load, peak pressure was lower for all of the essential oil-diesel blends when compared to base diesel and waste cooking biodiesel-diesel blends. From the heat release rate curve, the essential oil-diesel blends ignition delay times were longer because the oils have lower cetane values. Overall, the low-value streams of these essential oils were found to be

  3. Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China.

    Science.gov (United States)

    Siddeeg, Azhari; Xia, Wenshui

    2015-12-01

    Seinat seed oil was blended with peanut oil for the enhancement of stability and chemical characteristics of the blend. The physicochemical properties (relative density, refractive index, free fatty acids, saponification value, iodine value and peroxide value) of seinat seed and peanut oil blends in ratios 95:5, 85:15, 30:70 and 50:50 proportions were evaluated, as well as oxidative stability index, deferential scanning calorimetric (DSC) characteristics and tocopherols content. Results of oil blend showed that there was no negative effect by the addition of seinat seed oil to peanut oil and also had decreased percentages of all saturated fatty acids except stearic acid, conversely, increased the levels of unsaturated fatty acids. As for the sensory evaluation, the panelist results showed that seinat seed oil blends had no significant differences (p blending of seinat seed oil with peanut oil had also increased the stability and tocopherols content. As Sudan is the first producer of seinat oil, blending of seinat seed oil with traditional oil like quality, and may decrease the consumption of other expensive edible oils.

  4. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    Science.gov (United States)

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  6. Tribological Characteristics Evaluation of Mustard Oil Blends

    OpenAIRE

    Mohammed Hassan Jabal; Muhannad Zaidan Khalefa

    2018-01-01

    A progressive increase in the desire for environmentally friendly lubricants by users and strict government regulations for the use of these lubricants has provided an opportunity to use plant oils as biodegradable lubricants, therefore vegetable oils have been investigated to replace oil lubricants because of their maintaining the conditions of nature (environment) properties. In this paper, the influences of the blending ratio of mustard seeds oil with commercial mineral oil (SAE40) on the ...

  7. Solids precipitation in crude oils, gas-to-liquids and their blends

    Science.gov (United States)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  8. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery

    OpenAIRE

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spe...

  9. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  10. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  11. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  12. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  13. Performance of the mineral blended ester oil-based drilling fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A.R.; Kamis, A.; Foo, K.S. [University Teknologi (Malaysia)

    2001-06-01

    A study was conducted in which the properties of ester oil-based drilling fluid systems were examined using a blended mixture of ester and synthetic mineral oil. Biodegradable invert emulsion ester-based fluids are preferred over mineral oil-based drilling fluids for environmental reasons, but they tend to cause alkaline hydrolysis resulting in solidification of the drilling fluid systems. The drilling fluid examined here consisted of Malaysian palm oil ester derivatives (methyl laureate ester or isopropyl laureate ester) blended with commercially available synthetic mineral oil. This mineral oil was added to reduce the problem of alkaline hydrolysis. This mixture, however, was found to be unstable and could not solve the problem at high temperature. The isopropyl laureate and mineral oil blended system was more stable towards the hydrolysis process up to 250 degrees F. In order to enhance the performance of an invert emulsion drilling fluid system, it was recommended that brine water content of the fluid system be lowered. 3 refs., 2 figs.

  14. Effects of Chemical Inter esterification on the Physicochemical Properties of Palm Stearin, Palm Kernel Oil and Soybean Oil Blends

    International Nuclear Information System (INIS)

    Siti, M. F.H.; Norizzah, A. R.; Zaliha, O.

    2012-01-01

    Palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) blends were formulated according to Design Expert 8.0.4 (2010). All the sixteen oil blends were subjected to chemical inter esterification (CIE) using sodium methoxide as the catalyst. The effects of chemical inter esterification on the slip melting point (SMP), solid fat content (SFC), triacylglycerol (TAG) composition and polymorphism were investigated. Palm based trans-free table margarine containing PS/PKO/SBO [49/20/31, (w/w)], was optimally formulated through analysis of multiple ternary phase diagrams and was found to have quite similar SMP and SFC profiles as compared with commercial table margarine. This study has shown that blending and chemical inter esterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their blends. (author)

  15. An Investigation into the Physico-chemical Properties of Transformer Oil Blends with Antioxidants extracted from Turmeric Powder

    Science.gov (United States)

    Dukhi, Veresha; Bissessur, Ajay; Ngila, Catherine Jane; Ijumba, Nelson Mutatina

    2013-07-01

    The blending of transformer oil (used mainly as an insulating oil) with appropriate synthetic antioxidants, such as BHT (2,6-di-tert-butyl-4-methylphenol) and DBP (2,6-di-tert-butylphenol) have been previously reported. This article is focused on the use of antioxidant extracts from turmeric (Curcuma longa), a natural source. Turmeric is well known for its antimicrobial, antioxidant and anticarcinogenic properties owing to the active nature of its components. Extracts from powdered turmeric were subsequently blended into naphthenic-based uninhibited virgin transformer oil, hereinafter referred to as extract-oil blends (E-OB). Thin-layer chromatography (TLC) of the oil blends revealed that five components extracted from turmeric powder were successfully blended into the oil. Subsequent gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of the compounds: curcumene, sesquiphellandrene, ar-turmerone, turmerone and curlone. Thermogravimetric analysis (TGA) of the extract-oil blends, containing various levels of extracts, revealed an average temperature shift of ˜8.21°C in the initial onset of degradation in comparison to virgin non-blended oil. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that an increase in the mass aliquot of turmeric extracts in the transformer oil increased the free radical scavenging activity of the oil. Electrical properties of the oil investigated showed that the dissipation factor in the blended oil was found to be lower than that of virgin transformer oil. Evidently, a lower dissipation value renders the oil blend as a superior insulator over normal virgin non-blended oil. This investigation elucidated improved physico-chemical properties of transformer oil blended with turmeric antioxidant extracts.

  16. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  17. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  18. [Determination of olive oil content in olive blend oil by headspace gas chromatography-mass spectrometry].

    Science.gov (United States)

    Jiang, Wanfeng; Zhang, Ning; Zhang, Fengyan; Yang, Zhao

    2017-07-08

    A method for the determination of the content of olive oil in olive blend oil by headspace gas chromatography-mass spectrometry (SH-GC/MS) was established. The amount of the sample, the heating temperature, the heating time, the amount of injection, the injection mode and the chromatographic column were optimized. The characteristic compounds of olive oil were found by chemometric method. A sample of 1.0 g was placed in a 20 mL headspace flask, and heated at 180℃ for 2700 s. Then, 1.0 mL headspace gas was taken into the instrument. An HP-88 chromatographic column was used for the separation and the analysis was performed by GC/MS. The results showed that the linear range was 0-100%(olive oil content). The linear correlation coefficient ( r 2 ) was more than 0.995, and the limits of detection were 1.26%-2.13%. The deviations of olive oil contents in the olive blend oil were from -0.65% to 1.02%, with the relative deviations from -1.3% to 6.8% and the relative standard deviations from 1.18% to 4.26% ( n =6). The method is simple, rapid, environment friendly, sensitive and accurate. It is suitable for the determination of the content of olive oil in olive blend oil.

  19. Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production

    International Nuclear Information System (INIS)

    Manh, Do-Van; Chen, Yi-Hung; Chang, Chia-Chi; Chang, Ching-Yuan; Hanh, Hoang-Duc; Chau, Nguyen-Hoai; Tuyen, Trinh-Van; Long, Pham-Quoc; Minh, Chau-Van

    2012-01-01

    The beneficial use of tung oil in pre-blended oil for the production of biodiesel was studied at various blending compositions of tung, canola and palm oils (C BT , C BC and C BP ). The effects of C BT , ultrasonic power (P WUS ) and sample loading (V L ) on the yield (Y F ) and the properties of acid value, iodine values (IV), kinematic viscosity (KV), density and cold filter plugging point (CFPP) were investigated. The pre-blending of tung oil with palm oil greatly decreases the CFPP of palm oil biodiesel, whereas the presence of canola and palm oils with tung oil reduces the IV and KV of tung oil biodiesel. For P WUS /V L = 0.92–2.08 W/mL, C BT can be as high as 60 wt.% with 30 wt.% C BC and 10 wt.% C BP to produce biodiesel with high Y F and satisfactory qualities of the said properties. -- Highlights: ► Yield and properties of tung oil biodiesel are improved as tung oil is pre-blended with canola and palm oils. ► Pre-blending of palm oil with tung and canola oils reduces the CFPP of palm oil biodiesel from 13 to −5 °C. ► A beneficial use of tung oil as high as 60 wt.% blended with canola and palm oils is achievable. ► A sufficient P WUS per sample volume is required to ensure satisfactory properties.

  20. Biodegradable Poly(D,L-Lactide)/Lipid Blend Microparticles Prepared by Oil-in-Water Emulsion Method for Controlled Release Drug Delivery

    OpenAIRE

    Yaowalak Srisuwan; Yodthong Baimark

    2014-01-01

    The effects of blend ratio and drug loading content of poly(D,L-lactide) (PDLL)/stearic acid blends on microparticle characteristics and drug release behaviors were evaluated. The blend microparticles were prepared by an oil-in-water emulsion solvent evaporation method for drug delivery of a poorly water-soluble model drug, indomethacin. The microparticles were characterized using a combination of scanning electron microscopy (SEM), light scattering particle size analysis, differential scanni...

  1. Blending of palm oil, palm stearin and palm kernel oil in the preparation of table and pastry margarine.

    Science.gov (United States)

    Norlida, H M; Md Ali, A R; Muhadhir, I

    1996-01-01

    Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of pastry margarine.

  2. The Improvement of Screening the Significant Factors of Oil Blends as Bio lubricant Base Stock

    International Nuclear Information System (INIS)

    Noor Hajarul Ashikin Shamsuddin; Rozaini Abdullah; Zainab Hamzah; Siti Jamilah Hanim Mohd Yusof

    2015-01-01

    A new formulation bio lubricant base stock was developed by blending of waste cooking oil (WCO) with Jatropha curcas oil (JCO). The objective of this research is to evaluate significant factors contributing to the production of oil blends for bio lubricant application. The significant factors used in this study were oil ratio (WCO:JCO), agitation times (min) and agitation speed (rpm). The blended oil bio based lubricant was used to determine the saponification, acid, peroxide and iodine values. The experimental design used in this study was the 2 level-factorial design. In this experiment, it was found that the effect of oil ratio and interaction of oil ratio and agitation speed gave the most significant effect in oil blends as bio lubricant base stock. The highest ratio of oil blend 80 %:20 % WCO:JCO, with low agitation speed of 300 rpm and low agitation time of 30 minutes gave the optimum results. The acid, saponification, peroxide and iodine values obtained were 0.517±0.08 mg KOH/ g, 126.23±1.62 mg/ g, 7.5±2.0 m eq/ kg and 50.42±2.85 mg/ g respectively. A higher ratio of waste cooking oil blends was found to be favourable as bio lubricant base stock. (author)

  3. Enhancement of antioxidative activity and cardiovascular protection in hamsters by camellia oil and soybean-camellia blended oil.

    Science.gov (United States)

    Chou, Ting-Yi; Lu, Yi-Fa; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2018-02-07

    The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig

    International Nuclear Information System (INIS)

    Xu, Yufu; Wang, Qiongjie; Hu, Xianguo; Li, Chuan; Zhu, Xifeng

    2010-01-01

    The diesel fuel was mixed with the rice husk bio-oil using some emulsifiers based on the theory of Hydrophile-Lipophile Balance (HLB). The lubricity of the bio-oil/diesel fuel blend was studied on a High Frequency Reciprocating Test Rig (HFRR) according to ASTM D 6079-2004. The microscopic topography and chemical composition on the worn surface were analyzed respectively using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The profile and surface roughness of the rubbed trace were measured using a profilometer. The chemical group and composition were studied by a Fourier transform infrared spectrometry (FTIR). The results showed that the lubrication ability of the present fuel blend was better than that of the Chinese conventional diesel fuel (number zero). However, the anti-corrosion and anti-wear properties of the fuel blend were not satisfactory in comparison with those of conventional diesel fuel.

  5. Stability of traditionally processed vegetable oils and their blends ...

    African Journals Online (AJOL)

    The objective of the study was to investigate the stability of traditionally processed palm oil (PO), sunflower oil (SO) and sesame oil (SSO) and their blends as function of storage conditions by analysing their physicochemical properties which included acid value, saponification value, peroxide value, iodine value and ...

  6. Palm oil based biofuel using blended crude palm oil/medium fuel oil: physical and thermal properties studies. Paper no. IGEC-1-015

    International Nuclear Information System (INIS)

    Chuah, T.G.; Zakiah, M.; Wan Hasamuddin, W.H.; Hj. Ahmad, H.; Fakhru'l-Razi, A.; Robiah, Y.; Choong, T.S.Y.; Yip, Y.F.

    2005-01-01

    Crude Palm Oil (CPO) is renewable bio-based resource. It is an attractive alternative fuel which provides the potential to reduce emission problems. CPO is an example of biofuels that can be blended with petroleum distillates as a fuel in mobile engines and industrial processes to help offset the increasing energy demand. This paper highlights the results of blended Crude Palm Oil (CPO)/Medium Fuel Oil (MFO) as an alternative environmentally friendly boiler's fuel. Heating values of the blend fuels have been measured using an oxygen bomb calorimeter. Combustion performance of a blend containing 50% CPO in MFO fuel was examined using a commercial boiler. The blend burned satisfactorily without major modification to the appliance and fuel delivery system. SO 2 emissions were 51.67% lower than MFO, H 2 S decreased about 55.61% while NO x were 18.67% reduced. Results indicate potential reductions of SO 2 , H 2 S and NO x , and greenhouse gas emissions for the petroleum distillates can be replaced with this blend. (author)

  7. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  8. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  9. Experimental investigation of engine emissions with marine gas oil-oxygenate blends

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Md. Nurun, E-mail: nurun.nabi@ntnu.no [Rajshahi University of Engineering and Technology (Bangladesh); Norwegian University of Science and Technology (NTNU) (Norway); Hustad, Johan Einar, E-mail: johan.e.hustad@ntnu.no [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  10. Oxidative stability of biodiesel blends derived from waste frying oils

    Directory of Open Access Journals (Sweden)

    Michael Feroldi

    2017-07-01

    Full Text Available The high cost of biodiesel production is mainly linked to the price of raw material.This factor has favored the use of alternative fats and oils such as those used in frying. Since biodiesel can be obtained from several vegetable and animal raw materials, the physicochemical characteristics of the fuel may vary considerably. One of these characteristics is the fatty acid composition. It directly affects the oxidative stability of biodiesel, which can be impaired when the fuel undergoes exposure to sunlight, metals, oxygen and high temperatures. In order to improve the oxidative stability of biodiesels produced from waste frying oil some studies involving blends of different raw materials have been carried out. In this sense, this work aimed to assess the characteristics resulting from the blending of soybean waste frying oil with other waste biodiesels in what concerns to oxidation. The blends of fatty materials were obtained by means of a 2² factorial design. The induction periods of biodiesel blends were enough to meet the ASTM D6751 standard. Swine fat was responsible for the increase in the induction period values.

  11. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  12. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  13. Film-forming properties of castor oil polyol ester blends in elastohydrodynamic conditions

    Science.gov (United States)

    The viscosities and elastohydrodynamic (EHD) film thickness properties of binary blends of castor oil with polyol esters were determined experimentally. Predicted blend viscosity was calculated from the viscosity of the pure blend components. Measured viscosity values were closer to the values pre...

  14. Heating Quality and Stability of Aqueous Enzymatic Extraction of Fatty Acid-Balanced Oil in Comparison with Other Blended Oils

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-01-01

    Full Text Available The heating performance of enzyme-assisted aqueous processing-extracted blended oil (EAEPO, hexane-extracted blended oil (HEBO, and three kinds of blended oils was investigated by varying the heating times. Oil degradation was monitored by analysis of the acid value (AV, peroxide value (PV, p-anisidine value (p-AV, color, and trans-fatty acid composition. The fatty acid ratios of EAEPO, HEBO, and the three kinds of blended oils were very similar (0.27 : 1.03 : 0.96, 0.27 : 1.08 : 1.16, 0.27 : 0.65 : 0.8, 0.27 : 0.6 : 0.84, and 0.27 : 0.61 : 0.79, resp.. The AV and color increased in proportion to the heating time for all the oils. There was a rapid increase in the PV and p-AV of EAEPO and HEBO after heating for only 1 h, whereas the other three blended oils showed a rapid increase after heating for 2 h or 6 h. Despite the highest trans-fatty acid content found for HEBO, this content was relatively low and remained low up to a heating time of 8 h. It was found that after heating, a fatty acid ratio relatively close to its ideal value (0.27 : 0.48 : 0.49 was maintained by EAEPO, which indicates that EAEPO is tolerant to heat treatment and is suitable for maintaining a healthy diet.

  15. A blend of Sodium Humate/SLES/Herbal Oils

    Directory of Open Access Journals (Sweden)

    Yeliz Akyiğit

    2013-08-01

    Full Text Available A blend of sodium humate (SH with anionic surfactants such as sodium lauryl ether sulfate (SLES was prepared by solution mixing at medium of herbal oils at 25, 50 and 75°C. Its miscibility studies were carried out by using physical techniques over an extended range of concentration and composition in buffer solution. In addition, to ascertain the state of miscibility of the blends, they were investigated by using UV-visible spectrophotometer and Fourier transform infrared (FTIR. These values revealed that the blend is miscible when the sodium humate content is more than %60 in the blend at all temperatures. There were no important differences in the characteristics of the blends at different temperatures.It was thought that the mechanism ofthe complex formation is realized by making strong intermolecular interaction like hydrogen bonds between the carbonyl groups in humic acid and hydroxyl groups in fatty acids.

  16. Changes on the Solid Fat Content of Palm Oil/ Sunflower Oil Blends via Inter esterification

    International Nuclear Information System (INIS)

    Suria Ramli; Azwani Mohd Lazim; Siti Aishah Hasbullah

    2013-01-01

    Physicochemical characteristics of binary blends containing refined-deodorized-bleached palm oil (RBDPO) and sunflower oil (SFO) were studied before and after chemical inter esterification at different temperature (110 degree Celsius (CIE1) and 80 degree Celsius (CIE2)) using sodium methoxide as catalyst. Thirty-three samples with different ratios were analyzed for triacylglycerol (TAG) composition, fatty acid composition (FAC) and solid fat content (SFC) profile. Upon CIE, extensive rearrangements of fatty acids among triacylglycerol (TAG) were seen. Generally, CIE not induced enormous changes in the TAG compositions of ratio 8:2 and 5:5 of RBDPO:SFO blends. However, CIE induced enormous changes in the TAG compositions of the 9:1, 7:3, 6:4, 4:6, 3:7, 2:8 and 1:9 blends, which some of the TAGs were increasing while the other decreasing. These changes in TAG profiles resulted in some changes in the physical properties (especially SFC) of the blends. Generally, the SFC of inter esterified blend were decreased after CIE1 and increased after CIE2, except for sample 10:0, 8:2, 7:3, 5:5 and 9:1 which were decreased after CIE1 and CIE2. As a conclusion, CIE1 and CIE2 successfully changed the physicochemical characteristics of the binary blends. (author)

  17. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    Science.gov (United States)

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  18. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... cause the product to be susceptible to oxidation due to the presence of high content of polyunsaturated fatty acids. Furthermore, FO could also influence the melting properties of the product. Therefore, in addition to determining the fatty acid position on the glycerol backbone, it is also pertinent...

  19. Combustion performance evaluation of air staging of palm oil blends.

    Science.gov (United States)

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.

  20. Chemical Characteristics of Mango (Mangifera Indica L.) Kernel Oil and Palm Oil Blends for Probable use as Vanaspati

    International Nuclear Information System (INIS)

    Atta Muhammad Arif; Irman Javed; Muhammad Abdullah; Muhammad Irman; Athar Mahmud; Muhammad Nadeem; Muhammad Ayaz

    2016-01-01

    Chemical characteristics of blends of palm oil and mango kernel oil for their probable use as vanaspati was studied. Crude mango kernel oil was blended with refined, bleached and deodorised palm oil from 10 %, 20 %, 30 %, 40 % and 50 % (T 1 , T 2 , T 3 , T 4 and T 5 ) market vanaspati was used as control. Concentration of trans fatty acids in control was 22.7 %, whereas, all the vanaspati samples were virtually trans-free. Slip melting points (degree Celsius) of control, T 1 , T 2 , T 3 , T 4 and T 5 were 37.5, 37.3, 36.4, 35.6, 34.8 and 34. Free fatty acids of control and T5 were respectively 0.11, 0.12 %. Polymer contents of control, T 1 , T 2 , T 3 , T 4 and T 5 , after three heating cycles (18 degree Celsius, for 8 hr) were 21.55 %, 20.97 %, 18.66 %, 17.61 % and 10.22 %, respectively with lower solid fat index (p<0.05). Blends of mango kernel oil and palm oil can be used for the formulation of trans-free vanaspati. (author)

  1. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  2. A Comparative Study on Formation of Polar Components, Fatty Acids and Sterols during Frying of Refined Olive Pomace Oil Pure and Its Blend Coconut Oil.

    Science.gov (United States)

    Ben Hammouda, Ibtissem; Triki, Mehdi; Matthäus, Bertrand; Bouaziz, Mohamed

    2018-04-04

    The frying performance of pure refined olive-pomace oil (ROPO) and blended with refined coconut oil (RCO) (80:20) was compared during a frying operation of French fries at 180 °C. Blending polyunsaturated oils with highly saturated or monounsaturated oils has been studied extensively, however in literature there is no study has been reported so far on blending ROPO (rich in monounsaturated fatty acids) with RCO (rich in saturated fatty acids) to formulate new frying oils. At the end of the frying process, the blend of ROPO/RCO exhibited a higher chemical stability than the pure ROPO based on total polar compounds (TPC), and polymers. The rate of TPC formation was achieved 23.3% and 30.6% for the blend and the pure oil, respectively. Trans and free fatty acids content, as well as anisidine value were also observed to be the highest in the pure ROPO. This study evaluated the frying performance in the search for appropriate frying oils to deliver healthy fried products with optimized nutritional qualities.

  3. Anti-inflammatory properties of blended edible oil with synergistic antioxidants.

    Science.gov (United States)

    Upadya, Haridas; Devaraju, C J; Joshi, Shashank R

    2015-01-01

    Blending of oil combines the potency of two edible oils and offers a balance of fatty acids. Various cooking preparations existing across different ethnicities and regions subject oil to different cooking temperatures thereby causing deterioration of the oil due to oxidative stress. In order to prevent the oxidative damage of unsaturated fatty acid, a blend of rice bran oil (RBO) and safflower oil (SO) (70:30) with an antioxidant technology was designed. A controlled trial was carried out to assess the efficacy of the blend on different biomarkers including lipid parameters and some important inflammatory markers that have the potency to lead to various lifestyle diseases. A prospective, double-blind, randomized, parallel group study (on 80 adult hyperlipidemic patients) was conducted for 3 months. During the study, all the subjects were recommended lifestyle modifications, which included, exercise regime and diet counseling; oil quantity consumed was 1 L/person/month for both the groups. The subjects were divided into two groups; one group, continued with their regularly consumed oil whereas, the other was given the test oil. Biomarkers assessed were lipid profile and seven other inflammatory markers were assessed. Low-density lipoprotein cholesterol (LDL-C) the primary marker for cardiovascular diseases showed a decrease of 56.07 ± 04.31 mg/dL and 31.98 ± 03.81 mg/dL (P < 0.001 by analysis of variance [ANOVA]) from baseline in test and control group, respectively, during 3 months. Similar reduction trends were observed for total cholesterol where -52.31 ± 13.04 mg/dL and 31.98 ± 04.12 mg/dL (P < 0.001 by ANOVA, between the groups) were seen in test and control group, respectively. Oxidized LDL and high sensitivity C-reactive protein showed a reduction of 2.23 ± 1.3 units/dL and 0.87 ± 2.85 mg/L in test group whereas; an increase of 1.04 ± 1.73 units/dL and 0.44 ± 2.37 mg/L was seen in the control group, respectively (P < 0.05 by Student's t-test, between

  4. Anti-inflammatory properties of blended edible oil with synergistic antioxidants

    Directory of Open Access Journals (Sweden)

    Haridas Upadya

    2015-01-01

    Full Text Available Background: Blending of oil combines the potency of two edible oils and offers a balance of fatty acids. Various cooking preparations existing across different ethnicities and regions subject oil to different cooking temperatures thereby causing deterioration of the oil due to oxidative stress. In order to prevent the oxidative damage of unsaturated fatty acid, a blend of rice bran oil (RBO and safflower oil (SO (70:30 with an antioxidant technology was designed. A controlled trial was carried out to assess the efficacy of the blend on different biomarkers including lipid parameters and some important inflammatory markers that have the potency to lead to various lifestyle diseases. Study Design: A prospective, double-blind, randomized, parallel group study (on 80 adult hyperlipidemic patients was conducted for 3 months. During the study, all the subjects were recommended lifestyle modifications, which included, exercise regime and diet counseling; oil quantity consumed was 1 L/person/month for both the groups. The subjects were divided into two groups; one group, continued with their regularly consumed oil whereas, the other was given the test oil. Biomarkers assessed were lipid profile and seven other inflammatory markers were assessed. Results: Low-density lipoprotein cholesterol (LDL-C the primary marker for cardiovascular diseases showed a decrease of 56.07 ± 04.31 mg/dL and 31.98 ± 03.81 mg/dL (P < 0.001 by analysis of variance [ANOVA] from baseline in test and control group, respectively, during 3 months. Similar reduction trends were observed for total cholesterol where −52.31 ± 13.04 mg/dL and 31.98 ± 04.12 mg/dL (P < 0.001 by ANOVA, between the groups were seen in test and control group, respectively. Oxidized LDL and high sensitivity C-reactive protein showed a reduction of 2.23 ± 1.3 units/dL and 0.87 ± 2.85 mg/L in test group whereas; an increase of 1.04 ± 1.73 units/dL and 0.44 ± 2.37 mg/L was seen in the control group

  5. A Complementary Biodiesel Blend from Soapnut Oil and Free Fatty Acids

    Directory of Open Access Journals (Sweden)

    Lu-Yen Chen

    2012-08-01

    Full Text Available Blends of biodiesels produced from soapnut oil and high-oleic free fatty acids (FFAs, which are potential non-edible oil feedstocks, were investigated with respect to their fuel properties. The soapnut oil methyl esters (SNME had satisfactory fuel properties with the exception of its high cold filter plugging point. In contrast, the biodiesel from the FFAs had favorable fuel properties such as a low cold filter plugging point of −6 °C; however, it exhibits poor oxidation stability with an induction period (IP of 0.2 h. The complementary blend of the SNME and the FFA-based biodiesel at various weight ratios was studied to improve the fuel properties. As a result, the biodiesel blend at a weight ratio of 70:30 can successfully meet all the biodiesel specifications, except the marginal oxidation stability. Furthermore, the effectiveness of N,N’-di-sec-butyl-p-phenylenediamine at the concentration between 100 and 500 ppm on the improvement in the oxidation stability of the biodiesel blend was examined. The relationship between the IP values associated with the consumption of antioxidants in the biodiesel blends was described by first-order reaction rate kinetics. In addition, the natural logarithm of IP (ln IP at various concentrations of antioxidant presented a linear relation with the test temperature. The IP at ambient temperature can be predicted based on the extrapolation of the temperature dependence relation.

  6. Performance of Jatropha Oil Blends in RD270 Two Cylinders Four ...

    African Journals Online (AJOL)

    The performance characteristics of RD270 two cylinder, four stroke diesel engine fuelled with jatropha oil and its blend with diesel are presented in this paper. The jatropha biodiesel was obtained from National Research Institutes for Chemical Technology, Zaria, Nigeria. The produced biodiesel was blended with neat ...

  7. Reduced Need of Lubricity Additives in Soybean Oil Blends Under Boundary Lubrication Conditions

    Science.gov (United States)

    Converging prices of vegetable oils and petroleum, along with increased focus on renewable resources, gave more momentum to vegetable oil lubricants. Boundary lubrication properties of four Extreme Pressure (EP) additive blends in conventional Soy Bean Oil (SBO) and Paraffinic Mineral Oil (PMO) of ...

  8. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  9. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.

    Science.gov (United States)

    Ferri, J M; Garcia-Garcia, D; Sánchez-Nacher, L; Fenollar, O; Balart, R

    2016-08-20

    In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10°C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    Full Text Available Fossil fuel resources are being depleted day by day and its use affects the environment adversely. Renewable energy is one of the alternate for sustainable development and biodiesel is one of the suitable alternate which can replace the diesel. The major hurdles in the successful commercialization of biodiesel are high feedstock cost and conversion technology to reduce viscosity. The choice of raw material and biodiesel production method must depend upon techno-economical view. There are some specific regions for different types of oil availability. It is therefore required to produce biodiesel from the mixture of oils to fulfill the requirements of energy demand in a particular country according to its suitability and availability of feedstock. Karanja and Linseed crops  are abundantly available in India. Biodiesel was produced from a mixture of Karanja and Linseed oils by alkaline transesterification. In this experimental study, biodiesel blends of 10%, 20% and 30% were used with diesel in a diesel engine at a constant speed of 1500 rpm with varying brake powers (loads from 0.5 kW to 3.5kW to evaluate brake thermal efficiency, brake specific fuel consumption,  brake specific energy consumption, exhaust gas temperature, mechanical efficiency, volumetric efficiency, air fuel ratio and smoke opacity. They were compared with diesel and found satisfactory. BTE was found to be  28.76% for B10 at 3.5kW load.  Smoke opacity was also found to be reduced with all blends. Smoke opacity was found to be reduced up to 10.23% for B10 biodiesel blend as compared to that of diesel at 3.5kW. Experimental investigation  has revealed that  biodiesel produced from a mixture of Karanja and Linseed oils can be successfully used in diesel engines without any engine modification  and B10 was found to be an optimum biodiesel blend in terms of brake thermal efficiency. Article History: Received April 14th 2016; Received in revised form June 25th 2016; Accepted

  11. Stability of traditionally processed vegetable oils and their blends ...

    African Journals Online (AJOL)

    physicochemical properties which included acid value, saponification value, peroxide value, iodine ... The oils and their blends were stored in two different conditions; one batch at the air-tight .... about 0.5 ml of starch indicator solution was.

  12. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  13. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  14. KARAKTERISTIK MINYAK CAMPURAN RED PALM OIL DENGAN PALM KERNEL OLEIN (Characteristics of Oil Blends from Red Palm Oil and Palm Kernel Olein

    Directory of Open Access Journals (Sweden)

    Maria Ulfah

    2016-10-01

    Full Text Available Characteristics of oil blends has been produced from red palm oil (RPO and palm kernel olein (PKOo with seven ratios with a total of 100, namely A (0:100, B (25:75, C (40:60, D (50:50, E (60:40, F (75:25 and G (100:0 v/v investigated with randomized complete block design. The result showed that different of ratio levels RPO and PKOo have some effects on peroxide value, saponification value, melting point, cloud point and β-carotene content from RPO-PKOo oil blends, but has not effect on free fatty acid content. Higher level of PKOo content on formulas oil blends were decreased of saponification value and melting point, but was increased of cloud point. The best of RPOPKOo oil blends has been obtained at ratio 50:50 (v/v, with 459.52 ppm β-carotene, 1.35 meq/kg peroxide value, 0.09 % free fatty acid, 202.60 saponification value, 24.15 oC melting point and 7.15 oC cloud point. Fatty acids composition were 1.24 % capric acid, 29.00 % lauric acid, 10.09 % miristic acid, 23.10 % palmitic acid, 5.84 linoleic acid, 27.30 % oleic acid and 3.43 % stearic acid. Keywords: Red palm oil, palm kernel olein, oil blends, chemical and physical properties ABSTRAK Sifat-sifat minyak campuran yang dihasilkan dari red palm oil (RPO dan palm kernel olein (PKOo dengan tujuh tingkat rasio yang totalnya 100, yaitu A (0:100, B (25:75, C (40:60, D (50:50, E (60:40, F (75:25 dan G (100:0 (v/v dikaji menggunakan rancangan acak lengkap kelompok. Hasil penelitian menunjukkan bahwa rasio RPO:PKOo mempengaruhi angka peroksida, angka penyabunan, melting point, cloud point dan kadar β-karoten dari minyak campuran RPO-PKOo yang dihasilkan, namun tidak mempengaruhi kadar asam lemak bebas. Peningkatan jumlah PKOo yang ditambahkan dalam minyak campuran RPO-PKOo, akan menurunkan angka penyabunan dan melting point, namun akan menaikkan cloud point. Produk minyak campuran RPO-PKOo terbaik diperoleh pada rasio 50:50 (v/v, dengan kadar β-karoten 459,52 ppm, angka peroksida 1,35 meq

  15. Physico-chemical properties of blends of palm olein with other vegetable oils

    Directory of Open Access Journals (Sweden)

    Mobin Siddique, Bazlul

    2010-12-01

    Full Text Available Palm oil (olein was blended with other edible oils for the enhancement of its market acceptability in terms of melting point depression and shelf life. The physico-chemical properties like viscosity, density, melting behavior, peroxide value (PV, saponification value (SV and iodine value (IV of four different binary blends with four vegetable oils were evaluated. Palm olein was found to be more stable against rancidity than the other oils. For the stability against oxidation and melting point depression the palm olein-canola (PO/CO blend was found to be better than the others. The Differential Scanning Calorimeter (DSC thermogram of the melting behavior of the blends traces some new polymorphs of the triglyceride. This study will help the oil producing industry to find out the most economically viable oil blends for cooking purposes, with maximum nutrition as well as desirable physico-chemical properties.

    Aceite de palma (oleína fue mezclada con otros aceites comestibles para aumentar su aceptabilidad en el mercado en términos de descenso del punto de fusión y mejora de su almacenamiento. Las propiedades físico-químicas tales como viscosidad, densidad, comportamiento en la fusión, valor de peróxidos (PV, valor de saponificación (SV e índice de yodo (IV de cuatro diferentes mezclas binarias con cuatro aceites vegetales fueron evaluadas. La oleína de palma fue más estable frente a la rancidez que otros aceites. En la estabilidad frente la oxidación y el descenso del punto de fusión, la mezcla de oleína de palma/canola (PO/CO fue mejor que las otras. Los termogramas del calorímetro diferencial de barrido (DSC referidos al comportamiento de fusión de las mezclas indican algunos nuevos polimorfismos de los triglicéridos. Este estudio podría ayudar a las empresas que elaboran aceites a encontrar los aceites económicamente más viables para cocinar, con buenas propiedades nutricionales, así como con unas propiedades f

  16. LDPE/PHB blends filled with castor oil cake

    Science.gov (United States)

    Burlein, Gustavo A.; Rocha, Marisa C. G.

    2015-05-01

    The response surface methodology (RSM) is a collection of mathematical techniques useful for developing, improving and optimizing process. In this study, RSM technique was applied to evaluate the effect of the components proportion on the mechanical properties of low density polyethylene (LDPE)/ poly (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake (CC). The blends were prepared by melt mixing in a twin screw extruder. Low density polyethylene, poly (3-hydroxy-butyrate) and castor oil pressed cake were represented by the input variables designated as LDPE, PHB and CC, respectively. As it was desirable to consider the largest LDPE content in the ternary system, the components of the mixture were subjected to the following constraints: 0.7 ≤ LDPE ≤ 1.0, 0≤ PHB≤0.3 e 0 ≤ CC ≤0.3. The mechanical properties of the different mixtures were determined by conventional ASTM tests and were evaluated through analysis of variance performed by the Minitab software. Some polynomial equations were tested in order to describe the mechanical behavior of the samples. The quadratic model in pseudo components was selected for describing the tensile behavior because it was the most efficient from a statistical point of view (p-value ≤ 0.05; coefficient of determination (r2) close to 1 and variation inflation factor (VIF) values PHB or CC. The tensile strength values of binary mixtures of LDPE lie in the range from 8.9 to 10 MPa. As some commercial grades of LDPE have mechanical strength in this range, it may be inferred that the addition of a certain amount of PHB or CC to LDPE may be considered as a possibility for obtaining LDPE based materials with increased susceptibility to biodegradation. The cubic model in pseudo components was selected for describe the flexural strength of the samples because it was the most adequate from a statistical point of view. However, the linear model in pseudo components was the most efficient to describe the flexural modulus

  17. Oil product blending optimization system; Sistema de otimizacao de misturas de derivados

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.L.P.; Sousa, L.C.F.; Joly, M.; Takahashi, M.T.; Magalhaes, M.V.O.; Mendonca, P.N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The current scenario of the world refining industry demands significant investment in the improvement of its products and production processes quality, either due to a competitive market or strict environmental restrictions, requiring deep changes in the oil companies. In this environment, blending optimization has been receiving increasing attention in both academic and industrial sectors resulting in the development and improvement of tools for decision support and realtime control. The main objective of these tools is to optimize, according to either an economic or an operational criterion, the fuel blending recipe, guaranteeing the product specification with minimum giveaway in the critical properties and avoiding the reblending process. This work presents a blending optimization system of oil products named OTIMIST and instances of its application in PETROBRAS' Recap refinery. (author)

  18. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride.

    Science.gov (United States)

    Xiong, Zhu; Li, Chao; Ma, Songqi; Feng, Jianxian; Yang, Yong; Zhang, Ruoyu; Zhu, Jin

    2013-06-05

    Bio-sourced polymers, polylactide (PLA) and starch, have been melt-blended by lab-scale co-extruder with tung oil anhydride (TOA) as the plasticizer. The ready reaction between the maleic anhydride on TOA and the hydroxyl on starch led TOA molecules to accumulate on starch and increased the compatibility of PLA/starch blends, which was confirmed by FT-IR analyses and SEM. The TOA could change the mechanical properties and physical behaviors of PLA/starch blends. DSC and DMA analysis show that the TOA layer on starch has an effect on the thermal behavior of PLA in the ternary blend. The enrichment of TOA on starch improves the toughness and impact strength of the PLA/starch blends. The adding amount of TOA in PLA/starch blends primarily determined the compatibility and mechanical properties of the resulted ternary blends. The tensile and impact fracture modes of the PLA/starch blend with or without TOA has also been investigated by SEM analysis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid-PLA, Poly(ε-caprolactone-PCL and Poly(3-hydroxybutyrate-PHB

    Directory of Open Access Journals (Sweden)

    María Jesús Garcia-Campo

    2017-11-01

    Full Text Available Ternary blends of poly(lactic acid (PLA, poly(3-hydroxybutyrate (PHB and poly(ε-caprolactone (PCL with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO, maleinized soybean oil (MSO and acrylated epoxidized soybean oil (AESO. The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM. All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  20. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB.

    Science.gov (United States)

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor; Balart, Rafael

    2017-11-22

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy's impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  1. Effects of composition and processing conditions on morphology and properties of thermoplastic elastomer blends of SEBS-PP-Oil and dynamically vulcanized EPDM-PP-Oil

    NARCIS (Netherlands)

    Sengupta, P.; Noordermeer, Jacobus W.M.

    2004-01-01

    This work presents a comparative study of the morphology and structure-related properties of thermoplastic elastomer blends based on SEBS-PP-oil and dynamically vulcanized EPDM-PP-oil prepared under identical conditions. Compositions of each blend type with three different SEBS-PP and EPDM-PP ratios

  2. Liquid Soap Production with Blends Of Rubber Seed Oil (RSO) And ...

    African Journals Online (AJOL)

    The production of liquid detergent using locally sourced palm fruit bunch (Elaeis Guineesis) waste saponier has been investigated. An optimum blend ratio of rubber seed oil to palm kernel oil RSO:PKO 20:80 being constituent elements used for the production of the soap; was obtained using the Duncan Multiple Range ...

  3. Comparative studies of the rheological behaviour of oil epoxy and oil polyesteramide blends with polymethacrylic acid

    Directory of Open Access Journals (Sweden)

    Ufana Riaz

    2017-05-01

    Full Text Available Polymer blends have replaced a variety of pristine polymers in different sectors due to their desired synergetic properties such as durability, heat resistance, reduced wear & tear, flexibility, chemical resistance and longer shelf life that can be achieved by making minor alterations in their compositions. The modification of polymer blends by using sustainable resource based polymers can not only fulfil our ecological but also our economic and social needs. The present work reports the compatibility studies of oil derived epoxy and polyesteramide blends with polymethacrylic acid (PMA. The aim is to highlight the role of rheology in predicting the compatibility of these blends in the solution and solid phases which is a crucial parameter that decides the processibility and viability of these materials for commercialization.

  4. Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review

    Directory of Open Access Journals (Sweden)

    T. P. Schuman

    2013-03-01

    Full Text Available Glycidyl esters of epoxidized fatty acids derived from soybean oil (EGS and linseed oil (EGL have been synthesized to have higher oxirane content, more reactivity and lower viscosity than epoxidized soybean oil (ESO or epoxidized linseed oil (ELO. The EGS and ESO, for comparison, were used neat and in blends with diglycidyl ether of bisphenol A (DGEBA. Thermosetting resins were fabricated with the epoxy monomers and either BF3 catalyst or anhydride. The curing behaviors, glass transition temperatures, crosslink densities and mechanical properties were tested. The results indicated that polymer glass transition temperatures were mostly a function of oxirane content with additional influence of glycidyl versus internal oxirane reactivity, pendant chain content, and chemical structure and presence of saturated components. EGS provided better compatibility with DGEBA, improved intermolecular crosslinking and glass transition temperature, and yielded mechanically stronger polymerized materials than materials obtained using ESO. Other benefits of the EGS resin blend systems were significantly reduced viscosities compared to either DGEBA or ESO-blended DGEBA counterparts. Therefore, EGS that is derived from renewable sources has improved potential for fabrication of structural and structurally complex epoxy composites, e.g., by vacuum-assisted resin transfer molding.

  5. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    Science.gov (United States)

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  6. Genotoxicity of diesel engine emissions during combustion of vegetable oils, mineral oil, and their blends; Gentoxizitaet von Dieselmotoremissionen bei Verbrennung von Pflanzenoelen, Mineraloeldiesel und deren Mischkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Joern

    2013-07-09

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils and that blends of diesel fuel and vegetable oil are mutagenic. Three different vegetable oils (linseed oil, LO; palm tree oil, PO; rapeseed oil, RO), blends of 20% vegetable oil and 80% diesel fuel (B20) and 50% vegetable oil and 50% diesel fuel (B50) as well as common diesel fuel (DF) were combusted in a heavy duty diesel engine. The exhaust was investigated for particle emissions and its mutagenic effect in comparison to emissions of DF. The engine was operated using European Stationary Cycle. Particle mass was determined gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison to DF it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by PO which was scarcely above DF. B50 revealed the lowest amount of TPM while B20 reached as high as DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. B50 showed higher mutagenic potential than B20. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. Vegetable oil blends seem to be less mutagenic than the pure oils with a shifted maximum compared to blends with biodiesel and DF. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. And

  7. Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends.

    Science.gov (United States)

    Xiong, Zhu; Zhang, Lisheng; Ma, Songqi; Yang, Yong; Zhang, Chuanzhi; Tang, Zhaobin; Zhu, Jin

    2013-04-15

    Blends of entirely bio-sourced polymers, namely polylactide (PLA) and starch, have been melt-compounded by lab-scale co-extruder with castor oil (CO) as a plasticizer. The enrichment of castor oil on starch had great effect on the properties of the blends. If the castor oil was mainly dispersed in PLA matrix, the properties of the blends were poor, but when the hexamethylenediisocyanate (HDI) was grafted on starch granules the ready reactions between the hydroxyl on CO and the isocyante on the HDI-grafted starch (HGSTs) brought CO molecules enriched on starch particles. DSC analysis shows that the CO layer on starch has a positive effect on the crystallization of PLA in the ternary blend. The accumulation of CO on starch greatly improves the toughness and impact strength of PLA/starch blends. The grafting content of HDI on the starch granules primarily determined the compatibility and properties of the resulted blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Anti-obesity effect of a traditional Chinese dietary habit-blending lard with vegetable oil while cooking.

    Science.gov (United States)

    Wang, Ji; Yan, Sisi; Xiao, Haisi; Zhou, Huijuan; Liu, Shuiping; Zeng, Yu; Liu, Biying; Li, Rongfang; Yuan, Zhihang; Wu, Jing; Yi, Jine; Razack, Yarou Bao Sero; Wen, Lixin

    2017-10-31

    Obesity, which is associated with dietary habits, has become a global social problem and causes many metabolic diseases. In China, both percentages of adult obesity and overweight are far lower compared to western countries. It was designed to increase the two levels of daily intake in human, namely 3.8% and 6.5%, which are recommendatory intake (25 g/d) and Chinese citizens' practical intake (41.4 g/d), respectively. The mice were respectively fed with feeds added with soybean oil, lard or the oil blended by both for 12 weeks. In the mice fed with diet containing 3.8% of the three oils or 6.5% blended oil, their body weight, body fat rate, cross-sectional area of adipocytes, adipogenesis and lipogenesis in adipose were decreased, whereas hydrolysis of triglyserides in adipose was increased. This study demonstrated that the oil mixture containing lard and soybean oil had a remarkable anti-obesity effect. It suggests that the traditional Chinese dietary habits using oils blended with lard and soybean oil, might be one of the factors of lower percentages of overweight and obesity in China, and that the increasing of dietary oil intake and the changing of its component resulted in the increasing of obesity rate in China over the past decades.

  9. Studies on the hypolipidemic effects of Coconut oil when blended with Tiger nut oil and fed to albino rats

    Directory of Open Access Journals (Sweden)

    El-Anany, A. M.

    2012-09-01

    Full Text Available Hyperlipidemia is a predominant risk factor for atherosclerosis and associated cardiovascular diseases (CVD. The international guidelines issued by the World Health Organization recommend a reduction in dietary saturated fat and cholesterol intake as a means to prevent hypercholesterolemia and CVD. The main objective of the current investigation was to evaluate the effects of feeding blended oils consisting of coconut oil (CNO with different proportions of Tiger nut oil (TNO on serum lipid levels in Albino rats. GLC analysis was performed to illustrate the fatty acid composition of the blended oils. Blended oils were obtained by mixing tiger nut oil with coconut oil at the volume ratios of 100:0, 70:30, 50:50, 25:75, 10:90 and 0:100. Fifty-six male albino rats were randomly divided into 7 groups of 8 rats each according to the oil type. The blended oils were fed to rats for a period of up to 10 weeks. Total cholesterol (T-Ch, high-density lipoprotein cholesterol (HDL-Ch, low-density lipoprotein cholesterol (LDL-Ch, and triglycerides (TG, were determined. The atherogenic Index (AI was calculated. The results showed that non-significant changes in all nutritional parameters were observed between the control group and the rats fed with the tested oils. The results also indicate that coconut oil had 86% saturated fatty acids. On TNO contains 66% oleic acid. Therefore, blending coconut oil with tiger nut oil can reduce the proportions of saturated to unsaturated fatty acids in CNO. The rats that were fed blended oils showed significantly reduced levels of serum cholesterol as compared to those fed CNO. The HDL levels were marginally enhanced in the rats that were fed blended oils. The total cholesterol and LDL cholesterol levels were controlled when TNO/CNO proportions varied between 25/75 and 70/30. This was reflected in the calculation of the atherogenic index. Similar changes were observed with serum triglyceride levels.

    La hiperlipidemia

  10. Carcinogenicity of petroleum lubricating oil distillates: effects of solvent refining, hydroprocessing, and blending.

    Science.gov (United States)

    Halder, C A; Warne, T M; Little, R Q; Garvin, P J

    1984-01-01

    Certain refining processes were investigated to determine their influence on the dermal carcinogenic activity of petroleum-derived lubricating oil distillates. Specifically, the effects of solvent refining, hydroprocessing, a combination of both processes, and the blending of oils processed using each technique were evaluated in standard mouse skin-painting bioassays. The refining process used as well as the level or severity of treatment greatly influenced the carcinogenic outcome of processed lubricating oils. Solvent refining at severities normally used appeared to eliminate carcinogenicity. In contrast, hydroprocessing alone at mild levels of treatment was successful only in reducing the carcinogenic potency; severe hydroprocessing conditions were necessary to eliminate carcinogenic activity without the use of additional refining processes. Carcinogenic activity could also be eliminated by following moderate solvent refining with mild hydroprocessing. Blending of hydroprocessed oils with solvent-refined oils resulted in a substantial reduction or even elimination of carcinogenic activity. However, the degree of protection obtained varied with the particular distillates used and appeared largely dependent on the inherent biological activity of the hydroprocessed oil.

  11. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  12. Heat release and engine performance effects of soybean oil ethyl ester blending into diesel fuel

    International Nuclear Information System (INIS)

    Bueno, Andre Valente; Velasquez, Jose Antonio; Milanez, Luiz Fernando

    2011-01-01

    The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high speed turbocharged direct injection engine. Modifications in fuel heat value, fuel-air equivalence ratio and combustion temperature were found to govern the impact resulting from the addition of biodiesel on engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in brake power and a reduction of 1.73% in sfc was observed with B10 blend.

  13. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  14. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  16. Effects of variation of oil and zinc oxide type on the gas barrier and mechanical properties of chlorobutyl rubber/epoxidised natural rubber blends

    International Nuclear Information System (INIS)

    Li, Lin; Zhang, Jin; Jo, Jae Ok; Datta, Sanjoy; Kim, Jin Kuk

    2013-01-01

    Highlights: ► A (90:10) blend of CIIR and ENR by weight was used as the base. ► Different process oil and ZnO were used to optimize the gas barrier property. ► The minimum oxygen permeability is obtained using sheet ZnO. - Abstract: In many polymer applications such as inner tire liners and fuel hoses, imparting excellent gas barrier property is of prime importance. Researches in this direction had been done based on a judicious choice of polymer type or a blend thereof and the compounding ingredients. Though butyl rubber has been the polymer of choice because of its excellent gas barrier property, yet researches were targeted to improve the same with further modification in the polymer type and variation in compounding ingredients. In this study, a (90:10) blend of chlorobutyl rubber (CIIR) and Epoxdised Natural Rubber (ENR) by weight was used as the base. Four different types of process oil and three different types of zinc oxide (ZnO) at fixed predetermined concentrations were used to optimize the gas barrier and mechanical properties. In this blend, recycled aromatic oil (RAE) and sheet zinc oxide were effective in imparting the best overall combination of properties. Scanning Electron Microscopic (SEM) studies of ZnO were done to understand the structure property relationship

  17. Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat

    Directory of Open Access Journals (Sweden)

    R.F. Beims

    2018-04-01

    Full Text Available This article presents the experimental data on the thermal cracking of soybean oil and blends with hydrogenated fat. Thermal cracking experiments were carried out in a plug flow reactor with pure soybean oil and two blends with hydrogenated fat to reduce the degree of unsaturation of the feedstock. The same operational conditions was considered. The data obtained showed a total aromatics content reduction by 14% with the lowest degree of unsaturation feedstock. Other physicochemical data is presented, such as iodine index, acid index, density, kinematic viscosity. A distillation curve was carried out and compared with the curve from a petroleum sample.

  18. Combined effects of thermal barrier coating and blending with diesel fuel on usability of vegetable oils in diesel engines

    International Nuclear Information System (INIS)

    Aydin, Hüseyin

    2013-01-01

    The possibility of using pure vegetable oils in a thermally insulated diesel engine has been experimentally investigated. Initially, the standard diesel fuel was tested in the engine, as base experiment for comparison. Then the engine was thermally insulated by coating some parts of it, such as piston, exhaust and intake valves surfaces with zirconium oxide (ZrO 2 ). The main purpose of engine coating was to reduce heat rejection from the walls of combustion chamber and to increase thermal efficiency and thus to increase performance of the engine that using vegetable oil blends. Another aim of the study was to improve the usability of pure vegetable oils in diesel engines without performing any fuel treatments such as pyrolysis, emulsification and transesterification. Pure inedible cottonseed oil and sunflower oil were blended with diesel fuel. Blends and diesel fuel were then tested in the coated diesel engine. Experimental results proved that the main purpose of this study was achieved as the engine performance parameters such as power and torque were increased with simultaneous decrease in fuel consumption (bsfc). Furthermore, exhaust emission parameters such as CO, HC, and Smoke opacity were decreased. Also, sunflower oil blends presented better performance and emission parameters than cottonseed oil blends. -- Highlights: ► Usability of two different vegetable oils in a coated diesel engine was experimentally investigated. ► A diesel engine was coated with ZrO 2 layer to make the combustion chamber insulated. ► Test results showed significant improvements in performance parameters. ► While only minor reductions were observed in emissions with coated engine operation

  19. Gamma and electron beam irradiation effects on SiR-EPDM blends

    Directory of Open Access Journals (Sweden)

    R. Deepalaxmi

    2014-07-01

    Full Text Available Ethylene Propylene Diene Monomer (EPDM is widely used as Cable Insulation Material (CIM due to its good mechanical strength. Silicone Rubber (SiR is used in high temperature environments due to its good di-electric properties/hydrophobicity. The blending of SiR-EPDM may result in the improvement in their specific properties. The SiR-EPDM blend of equal composition (50:50 was prepared. When such blends are used as Cable Insulation Materials (CIM, they should perform their safety functions throughout their installed life in Nuclear Power Plants (NPP. The CIM will be exposed to Gamma irradiation at the installed locations. The short time accelerated testing was carried out, in order to forecast long-term performance of CIM. Electron beam irradiation is widely used in cable manufacturing industries to improve the performance of the polymeric materials. In the current study, on the purpose to investigate the effect of gamma/electron beam irradiation on the 50–50 composition of SiR-EPDM blend, blend was exposed to 25 Mrad dose of gamma/electron beam irradiation. The electrical and mechanical parameters like Volume Resistivity (VRY, Surface Resistivity (SRY, Tensile Strength (TS, Elongation at Break (EB, Hardness (H of the virgin, gamma/electron beam irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier Transform Infrared Spectroscopy (FTIR. To determine the elemental composition of the materials at the surface, Energy Dispersive X-ray Analysis (EDAX has been done. Scanning Electron Microscopy (SEM analysis has been done to study the morphological changes. The occurrence of cross-linking is found to be the mechanism for ageing in gamma/electron beam irradiated SiR-EPDM blends.

  20. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2018-01-01

    Full Text Available The water-in-oil (W/O emulsification-diffusion method was used for construction of keratin (Ker, alginate (Alg, and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning electron microscope analysis show that the microparticles have different shapes: spherical, bowl-like, porous, and hollow, with several sizes depending on the blend ratio. FTIR and TG analyses indicated that the secondary structure and thermal stability of the microparticles were influenced by the Ker/Alg blend ratio. The interaction between functional groups of keratin and alginate was the main factor for both β-sheet structure and Td,max values of the microparticles. The results suggested that Ker/Alg blend microparticles might be applied in many fields by varying the Ker/Alg ratio.

  1. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  2. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends.

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  3. Bio-oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-04-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325 °C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  4. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Directory of Open Access Journals (Sweden)

    Lucía Botella

    2018-04-01

    Full Text Available The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons, middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  5. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here. PMID:29675406

  6. Antimicrobial Activity and the Chemical Composition of the Volatile Oil Blend from Allium sativum (Garlic Clove) and Citrus reticulata (Tangerine Fruit)

    OpenAIRE

    OO Johnson; GA Ayoola; T Adenipekun

    2013-01-01

    The synergistic effect in the antimicrobial activity of the volatile oil blend from Garlic clove (Allium sativum) and tangerine fruits (Citrus reticulata) were investigated and compared to antimicrobial activity when the individual volatile oils were used alone. The volatile oils were extracted by steam distillation using Clevenger hydrodistillator apparatus and each oil was tested for antimicrobial activity, while equal volume of these oils were blended and tested for antimicrobial activity....

  7. Production of vegetable oil blends and structured lipids and their effect on wound healing

    Directory of Open Access Journals (Sweden)

    Juliana Neves Rodrigues Ract

    2015-06-01

    Full Text Available Two oil blends (sunflower/canola oils 85/15 (BL1 and canola/linseed oils 70/30 (BL2, were prepared and enzymatically interesterified to be applied to surgically-induced wounds in rats. Following surgery, the animals were submitted to the Treatment with Physiological Saline (TPS (control group, Blends (TBL, and Structured Lipids (TSL. The control group (TPS received physiological saline solution for 15 days. In TBL, BL1 was administered during the inflammation phase (days 0-3 and BL2 in the tissue formation and remodeling phase (days 4-15. In TSL, Structured Lipid 1 (SL1 and Structured Lipid 2 (SL2 were used instead of BL1 and BL2, respectively. The aim of this study was to compare wound closure evolution among rats treated with the blends or structured lipids versus control rats treated with physiological saline. The wound healing process was evaluated by measuring the wound areas along the treatments and the concentrations of cytokines. An increase in the areas of wounds treated with the blends and structured lipids in the inflammatory phase was observed, followed by a steeper closure curve compared to wounds treated with physiological saline. The changes observed during the inflammatory phase suggest a potential therapeutic application in cutaneous wound healing which should be further investigated.

  8. Blends of nitrile butadiene rubber/poly (vinyl chloride: The use of maleated anhydride castor oil based plasticizer

    Directory of Open Access Journals (Sweden)

    Indiah Ratna Dewi

    2016-06-01

    Full Text Available Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH to produce bioplasticizer named maleated anhydride castor oil (MACO, and used in nitrile butadiene rubber (NBR/poly vinyl chloride (PVC blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0 showed the highest cure rate index (CRI. MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1 based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.

  9. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  10. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  11. Low density polyethylene (LDPE) / poli (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake; Misturas de polietileno de baixa densidade (PEBD) e poli(3-hidroxibutirato) (PHB) carregados com torta de mamona (TM)

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.C.G.; Oliveira, C.I.R. de; Sanches, M.C.; Coelho, N.N., E-mail: mrocha@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (IP/UERJ), Rio de Janeiro, RJ (Brazil). Instituto Politecnico

    2014-07-01

    Blends of PHB and LDPE were prepared by melt mixing in a Haake internal mixer. Castor oil pressed cake was used as filler for the blends. In order to improve the interfacial adhesion between the filler and the polymers, a mercerization process with 5% NaOH solution was employed. This process was evaluated by several techniques such as: X-Ray diffraction, infrared spectroscopy and scanning electron microscopy (SEM). The mechanical properties were evaluated by traditional tensile stress-strain tests (ASTM D- 638). The obtained results showed that the mercerization process leads to better adhesion properties. The Young Modulus of the blends presented a tendency to increase with the addition of the castor oil cake.(author)

  12. Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants

    International Nuclear Information System (INIS)

    Chen, Yi-Hung; Chen, Jhih-Hong; Luo, Yu-Min; Shang, Neng-Chou; Chang, Cheng-Hsin; Chang, Ching-Yuan; Chiang, Pen-Chi; Shie, Je-Lueng

    2011-01-01

    The feasibility of biodiesel production from jatropha (Jatropha curcas) oil was investigated with respect to the biodiesel blending properties and its oxidation stability with antioxidants. The JME (jatropha oil methyl esters) had the cetane number of 54, cold filter plugging point of -2 o C, density of 881 kg/m 3 at 15 o C, ester content of 99.4 wt.%, iodine value of 96.55 g I 2 /100 g, kinematic viscosity of 4.33 mm 2 /s at 40 o C, and oxidation stability of 3.86 h. Furthermore, the JME was blended with palm oil biodiesel and soybean oil biodiesel at various weight ratios and evaluated for fuel properties as compared to the relevant specifications. In addition, several antioxidants at concentrations between 100 and 1000 ppm were studied for their potential to improve the oxidation stability of the JME. The relationship between the IP (induction period) in the measurement of the oxidation stability associated with the antioxidant consumption in the JME was described by first-order reaction rate kinetics. Moreover, the ln IP (natural logarithm of the IP) at various concentrations of pyrogallol showed a linear relationship with the test temperature. The oxidation stability at ambient temperatures was predicted on the basis of an extrapolation of the temperature-dependent relationship. -- Highlights: → Jatropha oil methyl esters had satisfactory biodiesel properties except for the oxidation stability. → The oxidation stability and cold filter plugging point of the jatropha-based biodiesel blends cannot meet the EN 14214 requirements simultaneously. → The addition of pyrogallol was recommended for the stabilization of the jatropha oil methyl esters with a concentration of 100-250 ppm.

  13. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Overgaard, Jesper; Krogh, Anne Louise

    2007-01-01

    Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil...... Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma...... into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden...

  14. Antioxidant and chemical properties of essential oil extracted from blend of selected spices

    Directory of Open Access Journals (Sweden)

    Ochuko Lucky Erukainure

    2015-07-01

    Full Text Available Objective: To investigate the chemical properties of essential oil extracted from blends of selected Nigerian spices as well as its antioxidant protective potentials against free radical in vitro. Methods: Essential oil was extracted from selected spices blend consisting of Monodora myristica, Myristica fragrans, Tetrapleura tetraptera, and Aframomum sceptrum using a Clevenger type apparatus. Oil obtained was subjected to phytochemical and gas chromatography-mass spectrometer analysis as well as analyzed for antioxidant activity which covers for 1,1-diphenyl-2 picrylhydrazyl, nitric oxide scavenging activities and reducing property. Results: Gas chromatography-mass spectrometer analysis revealed over 50 compoundfs with α-phellandrene being the most predominant compound (27.32%, which was followed by (--β-bourbonene (15.78% and 5-(1-methylethyl-α-phellandrene (11.80%. Phytochemical analysis showed high flavonoid content and a lower phenolic content. The oil showed a dose like dependent effect on the1-diphenyl-2 picrylhydrazyl and nitric oxide scavenging activities, these activities increased with increasing concentration. The same was also observed for the reducing power properties of the oil. Conclusions: The antioxidant activities exhibited by the essential oil in vitro signify its protective potential against free radicals. The chemical constituents, α-phellandrene in particular and the studied phytochemicals may be responsible for these effects. However, in vivo study is needed to further authenticate this potency.

  15. Formulation of Zero-Trans Crystalized Fats Produced from Palm Stearin and High Oleic Safflower Oil Blends

    Directory of Open Access Journals (Sweden)

    Nydia E. Buitimea-Cantúa

    2017-01-01

    Full Text Available High intake of trans fat is associated with several chronic diseases such as cardiovascular disease and cancer. Fat blends, produced by direct blending process of palm stearin (PS with high oleic safflower oil (HOSO in different concentrations, were investigated. The effects of the PS addition (50, 70, or 90% and the rate of agitation (RA (1000, 2000, or 3000 rpm on physical properties, fatty acid profile (FAP, trans fatty acids (TFA, crystal structure, and consistency were researched. The blend containing 50% of each sort of oil (50% PS/50% HOSO showed that melting point and features were similar to the control shortening. The saturated fatty acids (SFA were higher followed by monounsaturated (MUFA and polyunsaturated fatty acids (PUFA. Significant differences in the content of palmitic and oleic acids among blends were observed. The 50% PS/50% HOSO blend contained higher oleic acid (42.9% whereas the 90% PS/10% HOSO was higher in palmitic acid (56.9%. The blending of PS/HOSO promoted the β crystal polymorphic forms. The direct blending process of equal amounts of PS and HOSO was an adequate strategy to formulate a new zero-trans crystallized vegetable fats with characteristics similar to commercial counterparts with well-balanced fats rich in both omega 3 and omega 6 fatty acids.

  16. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  17. Castor oil biodiesel and its blends as alternative fuel

    International Nuclear Information System (INIS)

    Berman, Paula; Nizri, Shahar; Wiesman, Zeev

    2011-01-01

    Intensive production and commercialization of biodiesel from edible-grade sources have raised some critical environmental concerns. In order to mitigate these environmental consequences, alternative oilseeds are being investigated as biodiesel feedstocks. Castor (Ricinus communis L.) is one of the most promising non-edible oil crops, due to its high annual seed production and yield, and since it can be grown on marginal land and in semi-arid climate. Still, few studies are available regarding its fuel-related properties in its pure form or as a blend with petrodiesel, many of which are due to its extremely high content of ricinoleic acid. In this study, the specifications in ASTM D6751 and D7467 which are related to the fatty acid composition of pure castor methyl esters (B100) and its blend with petrodiesel in a 10% vol ratio (B10) were investigated. Kinematic viscosity and distillation temperature of B100 (15.17 mm 2 s -1 and 398.7 o C respectively) were the only two properties which did not meet the appropriate standard limits. In contrast, B10 met all the specifications. Still, ASTM D7467 requires that the pure biodiesel meets the requirements of ASTM D6751. This can limit the use of a wide range of feedstocks, including castor, as alternative fuel, especially due to the fact that in practice vehicles normally use low level blends of biodiesel and petrodiesel. These issues are discussed in depth in the present study. -- Highlights: → CaME can be used as a biodiesel alternative feedstock when blended in petrodiesel. → Due to the high levels of ricinoleic acid maximum blending level is limited to 10%. → Today, CaME blends are not a viable alternative feedstock. → ASTM D7467 requires that pure biodiesel must meet all the appropriate limits.

  18. Crystallization of low saturated lipid blends of palm and canola oils with sorbitan monostearate and fully hydrogenated palm oil.

    Science.gov (United States)

    Barbosa, Karina Martins; Cardoso, Lisandro Pavie; Ribeiro, Ana Paula Badan; Kieckbusch, Theo Guenter; Buscato, Monise Helen Masuchi

    2018-03-01

    Several scientific investigations have focused on providing new strategies for supporting the development of low saturated and zero trans lipid materials, as healthier fat alternatives for food application. This work evaluated the consistency, crystallization behavior, microstructure and polymorphism of six blends composed of palm and canola oils at different concentrations (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100, in w/w%) added with 5.0% of fully hydrogenated palm oil (FHPO) or with a mixture of 2.5% of FHPO and 2.5% of sorbitan monostearate (SMS). The results were compared with the non-structured blends (standard samples). Through microstructure images, the formation of a more homogeneous and denser packed crystal network was observed for samples added with both crystallization modifiers (FHPO/SMS) compared to the corresponding standard samples, after stabilization at 25 °C during 3 h. In particular, enhanced crystallization modifications were observed for the 40:60 blend, in which the crystal form β' emerged after the addition of FHPO/SMS. Moreover, the 40:60 blend structured with FHPO/SMS showed increased consistency (from 30 to 658 g F /cm 2 ) and induced onset crystallization in a higher temperature (from 13.1 to 23.9 °C) compared with the non-structured one, due to the specific crystallization effects provided by both added structurants.

  19. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters

    Directory of Open Access Journals (Sweden)

    Mahdi ES

    2011-06-01

    Full Text Available Elrashid Saleh Mahdi1, Mohamed HF Sakeena1, Muthanna F Abdulkarim1, Ghassan Z Abdullah1,3, Munavvar Abdul Sattar2, Azmin Mohd Noor11Department of Pharmaceutical Technology, 2Department of Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia; 3Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur, MalaysiaBackground: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters.Methods: Nonionic surfactant blends of Tween® and Tween®/Span® series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween® 80 and five blends of Tween® 80/Span® 80 and Tween® 80/Span® 85 in the hydrophilic-lipophilic balance (HLB value range of 10.7–14.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature.Results: High solubilization capacity was obtained by Tween® 80 compared with other surfactants of Tween® series. High HLB blends of Tween® 80/Span® 85 and Tween® 80/Span® 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween® 80/Span® 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween® 80 and the oleyl group of the palm kernel oil esters.Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant

  20. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  1. Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine

    Directory of Open Access Journals (Sweden)

    Sunbong Lee

    2014-06-01

    Full Text Available Bio-oil (bio-oil was produced from chicken manure in a pilot-scale pyrolysis facility. The raw bio-oil had a very high viscosity and sediments which made direct application to diesel engines difficult. The bio-oil was blended with diesel fuel with 25% and 75% volumetric ratio at the normal temperature, named as blend 25. A rapid compression and expansion machine was used for a combustion test under the experimental condition corresponding to the medium operation point of a light duty diesel engine using diesel fuel, and blend 25 for comparison. The injection related pressure signal and cylinder pressure signal were instantaneously picked up to analyze the combustion characteristics in addition to the measurement of NOx and smoke emissions. Blend 25 resulted in reduction of the smoke emission by 80% and improvements of the apparent combustion efficiency while the NOx emission increased by 40%. A discussion was done based on the analysis results of combustion.

  2. Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol-oil blends.

    Science.gov (United States)

    Vaikousi, Hariklia; Lazaridou, Athina; Biliaderis, Costas G; Zawistowski, Jerzy

    2007-03-07

    The thermal properties, solubility characteristics, and crystallization kinetics of four commercial phytosterol preparations (soy and wood sterols and stanols) and their blends with corn oil were examined. Differential scanning calorimetry (DSC) revealed narrow melting peaks between 138 and 145 degrees C for all phytosterol samples, reversible on rescan. Broader and less symmetrical melting transitions at lower temperatures with increasing oil content were observed for two samples of phytosterol-oil admixtures. The estimated, from the solubility law, deltaH values (34.7 and 70.7 mJ/mg for wood sterols and stanols, respectively), were similar to the DSC experimental data. Fatty acid esters of soy stanols differing in the chain length of the acyl groups (C2-C12) exhibited suppression of the melting point and increase of the fusion enthalpy with increasing chain length of the acyl group; the propionate ester exhibited the highest melting point (Tm: 151 degrees C) among all stanol-fatty acid esters. Solubility of phytosterols in corn oil was low (2-3% w/w at 25 degrees C) and increased slightly with a temperature rise. Plant sterols appeared more soluble than stanols with higher critical concentrations at saturation. The induction time for recrystallization of sterol-oil liquid blends, as determined by spectrophotometry, depended on the supersaturation ratio. The calculated interfacial free energies between crystalline sediments and oil were smaller for sterol samples (3.80 and 3.85 mJ/m2) than stanol mixtures (5.95 and 6.07 mJ/m2), in accord with the higher solubility of the sterol crystals in corn oil. The XRD patterns and light microscopy revealed some differences in the characteristics among the native and recrystallized in oil phytosterol preparations.

  3. Human Milk Fat Substitute Produced by Enzymatic Interesterification of Vegetable Oil Blend

    Directory of Open Access Journals (Sweden)

    Semra Turan

    2007-01-01

    Full Text Available Palm oil, palm kernel oil, olive oil, sunflower oil, and marine oil blend, formulated in the mass ratio of 4.0:3.5:1.0:1.5:0.2, was subjected to interesterification catalyzed by lipase from Thermomyces lanuginosa (Lipozyme® TL IM for obtaining a product that contains similar triacylglycerol (TAG structure to that of human milk fat (HMF. Reactions were carried out in a double jacketed glass vessel equipped with magnetic stirrer at 60 °C for 2, 4, 6, 8, 12 and 24 h. The blend was analyzed for fatty acid composition of both total fatty acids and those at the sn-2 position after pancreatic lipase hydrolysis. After interesterification, TAGs were purified by thin layer chromatography and TAG species were determined according to the carbon number (CN by high-temperature gas chromatography. Enzymatic interesterification generated significant differences for all TAG species from CN30 to CN54. Concentrations of some TAG species (CN30, 32, 34, 36, 38, 50, 52 and 54 decreased, while some (CN40 to 48 increased after 24 h. TAG species with higher CN reached maximum levels at the end of 6 h of reaction time. The predominant TAGs of the reaction product after 24 h were CN46, 48, 50, 52 and 54 with ratios of 13.8, 18.2, 13.9, 17.8, and 12.1 %, respectively. These TAG species contain mainly 1,3-diunsaturated-2-saturated structure, like HMF.

  4. Prediction of the viscosity of lubricating oil blends at any temperature

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, R.M.; Bernardo, M.I.; Fernandez, A.M.; Folgueras, M.B. [University of Oviedo, Oveido (Spain). Dept. of Energy

    1996-04-01

    This paper discusses a method of predicting the viscosity of multicomponent base lubricating oil mixtures based on Andrade`s equation. The kinematic viscosity of three types of base lubricating oils and their binary and ternary mixtures were measured at different temperatures and the parameters of Andrade`s equation were calculated. The results obtained indicate that the Andrade parameters vary linearly with the mixture composition. From these linear equations, generalized mixing equations are derived which confirm the experimental results. By application of the mixing equations, a simple method is obtained for prediction of the viscosity of oil blends at any temperature from viscosity-temperature data of the oil components. The calculated viscosities gave an average absolute deviation of 10% over the temperature range 20-100{degree}C. 8 refs., 3 figs., 4 tabs.

  5. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  6. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  7. The dynamic model on the impact of biodiesel blend mandate (B5) on Malaysian palm oil domestic demand: A preliminary finding

    Science.gov (United States)

    Abidin, Norhaslinda Zainal; Applanaidu, Shri-Dewi; Sapiri, Hasimah

    2014-12-01

    Over the last ten years, world biofuels production has increased dramatically. The biodiesel demand is driven by the increases in fossil fuel prices, government policy mandates, income from gross domestic product and population growth. In the European Union, biofuel consumption is mostly driven by blending mandates in both France and Germany. In the case of Malaysia, biodiesel has started to be exported since 2006. The B5 of 5% blend of palm oil based biodiesel into diesel in all government vehicles was implemented in February 2009 and it is expected to be implemented nationwide in the nearest time. How will the blend mandate will project growth in the domestic demand of palm oil in Malaysia? To analyze this issue, a system dynamics model was constructed to evaluate the impact of blend mandate implementation on the palm oil domestic demand influence. The base run of simulation analysis indicates that the trend of domestic demand will increase until 2030 in parallel with the implementation of 5 percent of biodiesel mandate. Finally, this study depicts that system dynamics is a useful tool to gain insight and to experiment with the impact of changes in blend mandate implementation on the future growth of Malaysian palm oil domestic demand sector.

  8. Physicochemical studies on sunflower oil blended with cold pressed tiger nut oil during deep frying process

    Directory of Open Access Journals (Sweden)

    Ali Rehab, F. M.

    2012-10-01

    Full Text Available Sunflower oils were blended with different levels of cold pressed tiger nut oil. Blended oils were obtained by mixing tiger nut oil with sunflower oil at the volume ratios of 0:100, 10: 90, 20: 80, 30: 70, 40: 60, 50:50 and 100: 0. The effects of deep frying on physico-chemical parameters (Free Fatty Acid (FFA, Peroxide Value (PV, thiobarbituric acid value (TBA, iodine value, Total Polar Compounds (TPC, color and viscosity were evaluated over 30 hours of the frying process. The total phenolic content of native oils was determined. GLC analysis was performed to illustrate the fatty acid composition of sunflower oil, tiger nut oil and binary mixtures of them as well as their oxidation rates. The pure and blended oils were heated at 180 °C ± 5 °C, then frozen French fried potatoes were fried every 30 min. Oil samples were taken every 5 h and the entire continuous frying period was 30 h. The results showed that fresh sunflower oil had significantly the highest value of COX (7.25; while tiger nut oil had significantly the lowest (2.24. Mixing sunflower oil with different levels of tiger nut oil led to an increase in its stability against oxidation. The phenolic content of cold pressed tiger nut oil was about 3.3 times as high as that of sunflower oil. The analytical data showed that the lowest deterioration during the frying process occurred in tiger nut oil and the highest in sunflower. The changes in the physico-chemical parameters were controlled and significantly (P < 0.05 decreased when tiger nut /sunflower oil (W/W proportions were varied between 20/80 to 50/50. The obtained results indicate that mixing sunflower oil with cold pressed tiger nut oil increased the stability and hence improved the quality of sunflower oil during the frying process.

    Aceites de girasol se mezclaron con diferentes niveles de aceite de chufa prensado en frío. Se obtuvieron mezclas de aceite de chufa con girasol en las proporciones: 0:100, 10: 90, 20: 80, 30

  9. Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis

    International Nuclear Information System (INIS)

    López, I.; Quintana, C.E.; Ruiz, J.J.; Cruz-Peragón, F.; Dorado, M.P.

    2014-01-01

    Highlights: • Olive–pomace oil (OPO) biodiesel constitute a new second-generation biofuel. • Exergy efficiency and performance of OPO biodiesel, straight and blended with diesel fuel was evaluated. • OPO biodiesel, straight and blended, provided similar performance parameters. • OPO biodiesel, straight and blended, provided similar exergy efficiency compared to diesel fuel. • OPO biodiesel, straight and blended, provided no exergy cost increment compared to diesel fuel. - Abstract: Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment

  10. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  11. Cold Storage Stability of Blend Oil from Soybean Oil and Palm Oil with Different Melting Points%大豆油调和不同熔点棕榈液油的冷藏试验

    Institute of Scientific and Technical Information of China (English)

    吴苏喜; 刘立萍; 李慧; Ooi Cheng KEAT

    2012-01-01

    In order to provide references for preparing blend oil from soybean oil and palm oil with different melting points, the effects of different types and amounts of anti-crystallization agent and soybean oil-to-palm oil ratio on the cold storage stability of blend oil were studied. The best anti-crystallization agent was hydroxyl stearin at a dose of 0.025%. The blend oil A composed of 70% soybean oil, 30% palm olein with melting point of 10 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 16 hours at 0 ℃ and more than 72 h at 5℃. The blend oil B composed of 70% soybean oil, 30% palm olein with melting point of 18 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 30 h at 10℃. The blend oil C composed of 60% soybean oil, 40% palm olein with melting point of 18 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 20 h at 15℃. The blend oil D composed of 60% soybean oil, 40% μm olein with melting point of 24℃ and 0.025% hydroxy stearin could be kept transparent for more than 10 h.%为了制备适应不同储存温度的豆油.棕榈液油调和油,以大豆油与不同熔点棕榈液油为原料,采用冷藏试验方法优化抑晶剂种类、用量和调和油配方。结果表明,羟基硬脂精是效果最佳的抑晶剂,其最佳添加量为0.025%;调和油1(豆油70%+10℃棕榈油30%+羟基硬脂精0.025%)在0℃环境下储存可保持16h以上澄清透亮,在5℃条件可保持72h以上澄清透亮;调和油2(豆油70%+18℃棕榈油30%+羟基硬脂精0.025%)在10℃环境下可保持30h以上澄清透亮;调和油3(豆油60%+18℃棕榈油40%+羟基硬脂精0.025%)在15℃环境下可保持20h以上澄清透亮;调和油4(豆油60%+24℃棕榈油40%+羟基硬脂精0.025%)在20℃环境下可保持10h以上澄清透亮。

  12. Postprandial lipid responses of butter blend containing fish oil in a single-meal study in humans

    DEFF Research Database (Denmark)

    Overgaard, Julie; Porsgaard, Trine; Guo, Zheng

    2008-01-01

    blend with fish oil (352 mg n-3 long-chain PUFA (LCPUFA)) or the commercial butter blend. Blood samples were collected after the meals and in the fasting condition on the test day and the following morning, and were analysed for cholesterol absorption, plasma lipid profile and fatty acid composition....... No significant difference in the postprandial plasma fatty acid composition was observed between the groups, neither difference in cholesterol absorption, plasma cholesterol or the cholesterol contents of plasma lipoproteins. The incorporation of fish oil in the butter resulted in a significant lower......The postprandial effects of a butter product containing fish oil were investigated in a single-meal, randomized crossover study with a commercial butter product as the control. Twelve healthy males consumed two test meals with (13)C-labelled cholesterol (45 mg) and either an interesterified butter...

  13. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  14. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Engine performance and emission characteristics of plastic oil produced from waste polyethylene and its blends with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    This paper describes an experiment to determine the possibility of transforming waste plastics into a potential source of diesel fuel. Experiments were done on the use of various blends of plastic oil produced from waste polyethylene (WPE) with diesel fuel (D) at different volumetric ratios and the results were reviewed. WPE was thermally degraded with catalysis of sodium aluminum silicate at optimum conditions (414-480 degree celsius range and 1 h reaction time) and the collected oil was fractionated at various temperatures. The properties of the fuel blends at different volumetric ratios were measured in this study. It was shown that these blends can be used as fuel in compression ignition engines without any modification. With respect to engine performance and exhaust emission, it was found that using a 5% WPE-D (WPE5) blend instead of diesel fuel reduced carbon monoxide (CO) emission. However, the results of experiment showed that carbon dioxide (CO2) emission and oxides of nitrogen (NOx) emission rose.

  16. LDL-cholesterol lowering activity of a blend of rice bran oil and safflower oil (8:2) in patients with hyperlipidaemia: a proof of concept, double blind, controlled, randomised parallel group study.

    Science.gov (United States)

    Malve, Harshad; Kerkar, Prafulla; Mishra, Nidheesh; Loke, Sanjita; Rege, N N; Marwaha-Jaspal, Ankita; Jainani, Kiran J

    2010-11-01

    Cardiovascular diseases have emerged as major health burden worldwide in recent times. Low density lipoprotein cholesterol (LDL-C) serves as the primary marker for cardiovascular diseases. Reports suggest that rice bran oil has antihyperlipidaemic properties. However, current evidence suggests that no single oil can provide the recommended dietary fat ratio. Hence the present study was undertaken in patients with hyperlipidaemia to study effects of substitution of the cooking oil with a blend of 80% rice bran oil and 20% safflower oil on LDL-C levels. The selected patients (n = 73) were randomly assigned either to the study oil group (blend under study) or control oil group (the oil which the patient was using before). The lipid profile was monitored monthly in these patients for 3 months during which they consumed the oil as per the randomisation. At each follow up, LDL-C levels showed a significant reduction from baseline in the study oil group and reduction was more than that observed in the control group. It was also observed that the percentage of the respondents was higher in the study oil group. At the end of the study period, 82% patients from this group had LDL levels less than 150 mg% as against 57% in the control group. Thus, the substitution of usual cooking oil with a blend of rice bran oil and safflower oil (8:2) was found to exert beneficial effects on the LDL-C levels shifting them to low-risk lipid category.

  17. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  18. The use of Koroch seed oil methyl ester blends as fuel in a diesel engine

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2011-01-01

    An experimental investigation was carried out on a small direct injection (DI) diesel engine, fuelling the engine with 10% (B10), 20% (B20), 30% (B30) and 40% (B40) blending of Koroch seed oil methyl ester (KSOME) with diesel. The performance and combustion characteristics of the engine at various loads are compared and analyzed. The results showed higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE) for the KSOME blends. The engine indicated power (IP) was more for the blends up to B30, but found to be reduced for the blend B40 when compared to that of diesel. The engine combustion parameters such as pressure crank angle diagram, peak pressure, time of occurrence of peak pressure, net heat-release rate, cumulative heat release, ignition delay and combustion duration were computed. The KSOME blends exhibited similar combustion trend with diesel. However, the blends showed an early start of combustion with shorter ignition delay period. The study reveals the suitability of KSOME blends up to B30 as fuel for a diesel engine mainly used in generating sets and the agricultural applications in India without any significant drop in engine performance.

  19. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation

    NARCIS (Netherlands)

    Castro-Montoya, J.; Peiren, N.; Cone, J.W.; Zweifel, B.; Fievez, V.; Campeneere, De S.

    2015-01-01

    The effect of Agolin Ruminant, a blend of essential oils, on methane (CH4) emissions were investigated in two in vivo experiments and in four in vitro experiments. In the in vivo experiments, four lactating dairy cows and four beef heifers were supplemented 0.2 g/d of the essential oils (ca. 2–4 ppm

  20. A new analytical method for quantification of olive and palm oil in blends with other vegetable edible oils based on the chromatographic fingerprints from the methyl-transesterified fraction.

    Science.gov (United States)

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modification of mechanical and thermal property of chitosan–starch blend films

    International Nuclear Information System (INIS)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M.E.; Khan, Ruhul A.; Dafader, N.C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-01-01

    Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively. - Highlights: ► Chitosan–starch blend films (thickness 0.2 mm) were prepared by casting. ► To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. ► Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. ► Properties of the modified films such as tensile strength, elongation at break, water uptake, TGA, DMA, SEM, FTIR were studied. ► Results indicate that modification of chitosan–starch film with mustard oil improved the properties of the blend films which could be further modified by HEMA using gamma radiation.

  2. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques.

    Science.gov (United States)

    Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios

    2015-12-15

    European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

    International Nuclear Information System (INIS)

    Ahmad, A.; Mohd, D. H.; Abdullah, I.

    2005-01-01

    Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

  4. Antibacterial, antifungal, and antiviral effects of three essential oil blends.

    Science.gov (United States)

    Brochot, Amandine; Guilbot, Angèle; Haddioui, Laïla; Roques, Christine

    2017-08-01

    New agents that are effective against common pathogens are needed particularly for those resistant to conventional antimicrobial agents. Essential oils (EOs) are known for their antimicrobial activity. Using the broth microdilution method, we showed that (1) two unique blends of Cinnamomum zeylanicum, Daucus carota, Eucalyptus globulus and Rosmarinus officinalis EOs (AB1 and AB2; cinnamon EOs from two different suppliers) were active against the fourteen Gram-positive and -negative bacteria strains tested, including some antibiotic-resistant strains. Minimal inhibitory concentrations (MICs) ranged from 0.01% to 3% v/v with minimal bactericidal concentrations from Origanum vulgare EOs was antifungal to the six Candida strains tested, with MICs ranging from 0.01% to 0.05% v/v with minimal fungicidal concentrations from 0.02% to 0.05% v/v. Blend AB1 was also effective against H1N1 and HSV1 viruses. With this dual activity, against H1N1 and against S. aureus and S. pneumoniae notably, AB1 may be interesting to treat influenza and postinfluenza bacterial pneumonia infections. These blends could be very useful in clinical practice to combat common infections including those caused by microorganisms resistant to antimicrobial drugs. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Prediction Primary Available Blend Biodiesel of Waste Oil from Aurantiochytrium sp. for General Diesel Engines

    Directory of Open Access Journals (Sweden)

    Shu-Yao Tsai

    2018-01-01

    Full Text Available Chemical and enzyme transesterification were compared by discussing preliminary transesterification of waste oil of Aurantiochytrium sp., which was then used in transesterification for the primary available blend biodiesel for a general diesel engine in this study. We made progress on the winterized characteristics of the waste oil’s biodiesel of Aurantiochytrium sp. and its biodiesel, which included the reactivity parameters and properties. This approach led to the development of a novel idea for the evaluation of kinetic parameters of winterization, along with obtaining the suitable operation and storage conditions of biodiesel. Therefore, the waste oil of Aurantiochytrium sp. could be developed for biodiesel production and successfully made into a suitable blend diesel. Overall, we acquired the best condition of mixtures and the highly mixed rate of petrodiesel: biodiesel = 80 : 20 (activation energy of winterization 21.32 kJ/mol; onset temperature of winterization -4.15 °C; heat of combustion 43.15 MJ/kg; kinematic viscosity 3.51 mm2/s; flash point 67.5 °C, which was an appropriate blend biodiesel from the waste oil’s biodiesel of Aurantiochytrium sp.

  6. Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs

    International Nuclear Information System (INIS)

    Le, Nhu Y Thi; Pham, Duy Khanh; Le, Kim Hung; Nguyen, Phuong Tung

    2011-01-01

    SiO 2 nanoparticles (NPs) were synthesized by the sol–gel method in an ultrasound reactor and monodispersed NPs with an average particle size of 10–12 nm were obtained. The synergy occurring in blending NPs and anionic surfactant solutions was identified by ultra-low interfacial tension (IFT) reduction measured by a spinning drop tensiometer (Temco500). The oil displacement efficiency of the synergistic blends and surfactant solutions at Dragon South-East (DSE) reservoir temperature was evaluated using contact angle measurement (Dataphysics OCA 20). It was found that SiO 2 /surfactant synergistic blends displace oil as well as their original surfactant solutions at the same 1000 ppm total concentration. Abundant slag appearing in the SiO 2 /surfactant medium during oil displacement could be attributed to an adsorption of surfactants onto the NPs. The results indicate that at a concentration of 1000 ppm in total, the original surfactant SS16-47A and its blend with SiO 2 NPs in the ratio of 8:2 exhibited an IFT reduction as high as fourfold of the IFT recorded for the DSE oil–brine interface and very high speed of oil displacement. Therefore, it could potentially be applicable to enhanced oil recovery (EOR) in high-temperature reservoirs with high hardness-injection-brine, like the one at DSE. This opens up a new direction for developing effective EOR compositions, which require less surfactant and are environmentally safer

  7. Performance Test on Compression Ignition Engine by Blending Ethanol and Waste Plastic Pyrolysis Oil with Cetane Additive

    Science.gov (United States)

    Padmanabhan, S.; Ganesan, S.; Jeswin Arputhabalan, J.; Chithrala, Varun; Ganesh Bairavan, P.

    2017-05-01

    The demand for diesel fuel is higher than that of petrol throughout the world hence seeking alternative to mineral diesel is a natural choice. Alternative fuels should be easily available at lower cost, environment friendly and fulfill energy needs without modifying engine’s operational parameters. Waste to energy is the trend in the selection of alternate fuels. In this work, Waste Plastic Pyrolysis oil (WPPO), Ethanol, Diesel blend with Cetane additive has been attempted as an alternative fuel. A Twin cylinder, Direct Injection engine was used to assess the engine performance and emission characteristics of waste plastic pyrolysis oil with cetane additive. Experimental results of blended plastic fuel and diesel fuel were compared.

  8. Biodiesel production from Kutkura (Meyna spinosa Roxb. Ex.) fruit seed oil: Its characterization and engine performance evaluation with 10% and 20% blends

    International Nuclear Information System (INIS)

    Kakati, J.; Gogoi, T.K.

    2016-01-01

    Highlights: • Biodiesel is produced from Kutkura seed oil and its fatty acid composition is determined. • Important fuel properties of biodiesel derived from Kutkura seed oil are evaluated. • Properties of Kutkura seed oil and biodiesel are compared with other tree seed biodiesels. • Engine performance of 10% (B10) and 20% (B20) blending of Kutkura biodiesel is reported. • B10 and B20 showed better performance than conventional diesel fuel. - Abstract: Kutkura (Meyna spinosa Roxb.) is a plant species in the genus Meyna from the Rubiaceae family. Kutkura fruits are food items; the fruits and the leaves of the Kutkura plant are also used in traditional medicine. In this article, biodiesel produced from Kutkura fruit seed oil is characterized and compared with other tree seed based biodiesels. Oil content in Kutkura fruit seed was found 35.45%. Free fatty acid (FFA) content in the oil was 3.1%, hence base catalyzed transesterification was used directly for biodiesel production from Kutkura fruit seed oil. Kutkura fruit seed oil contained 7.187% palmitic, 5.382% stearic, 30.251% oleic and 52.553% linoleic acid. Calorific value, kinematic viscosity and density of Kutkura fruit seed oil were found 38.169 MJ/kg, 28.92 mm"2/s and 922.5 kg/m"3 respectively. However, after transesterification, these properties improved to 39.717 MJ/kg, 5.601 mm"2/s and 885.3 kg/m"3 respectively in case of the Kutkura fatty acid methyl ester (FAME). Apart from water content, all other properties of Kutkura FAME met the ASTM (D6751) and (EN14214) standards. Blending of Kutkura FAME with diesel up to 20% (vol.) however reduced water content down to an acceptable level of 0.038 wt.%. The kinematic viscosity also reduced to the level of conventional diesel after blending. Further, an engine performance study with biodiesel blends (B10 and B20) showed almost similar fuel consumption rate with diesel. Engine brake thermal efficiency (BTE) was more while the smoke emission was less with B

  9. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Magdy M., E-mail: magdysenna@hotmail.com [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Mostafa, Abo El-Khair B. [Chemistry Department, College for Girls, Ain Shams University, Cairo (Egypt); Mahdy, Sanna R.; El-Naggar, Abdel Wahab M. [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2016-11-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  10. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    International Nuclear Information System (INIS)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-01-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  11. Neural networks applied to characterize blends containing refined and extra virgin olive oils.

    Science.gov (United States)

    Aroca-Santos, Regina; Cancilla, John C; Pariente, Enrique S; Torrecilla, José S

    2016-12-01

    The identification and quantification of binary blends of refined olive oil with four different extra virgin olive oil (EVOO) varietals (Picual, Cornicabra, Hojiblanca and Arbequina) was carried out with a simple method based on combining visible spectroscopy and non-linear artificial neural networks (ANNs). The data obtained from the spectroscopic analysis was treated and prepared to be used as independent variables for a multilayer perceptron (MLP) model. The model was able to perfectly classify the EVOO varietal (100% identification rate), whereas the error for the quantification of EVOO in the mixtures containing between 0% and 20% of refined olive oil, in terms of the mean prediction error (MPE), was 2.14%. These results turn visible spectroscopy and MLP models into a trustworthy, user-friendly, low-cost technique which can be implemented on-line to characterize olive oil mixtures containing refined olive oil and EVOOs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Improving Vegetable Oil Fueled CI Engine Characteristics Through Diethyl Ether Blending

    KAUST Repository

    Vedharaj, S.

    2016-12-01

    In this research, the flow and ignition properties of vegetable oil (VO) are improved by blending it with diethyl ether (DEE). DEE, synthesized from ethanol, has lower viscosity than diesel and VO. When DEE is blended with VO, the resultant DEEVO mixtures have favorable properties for compression ignition (CI) engine operation. As such, DEEVO20 (20% DEE + 80% VO) and DEEVO40 (40% DEE + 60% VO) were initially considered in the current study. The viscosity of VO is 32.4*10−6 m2/s; the viscosity is reduced with the increase of DEE in VO. In this study, our blends were limited to a maximum of 40% DEE in VO. The viscosity of DEEVO40 is 2.1*10−6 m2/s, which is comparable to that of diesel (2.3*10−6 m2/s). The lower boiling point and flash point of DEE improves the fuel spray and evaporation for DEEVO mixtures. In addition to the improvement in physical properties, the ignition quality of DEEVO mixtures is also improved, as DEE is a high cetane fuel (DCN = 139). The ignition characteristics of DEEVO mixtures were studied in an ignition quality tester (IQT). There is an evident reduction in ignition delay time (IDT) for DEEVO mixtures compared to VO. The IDT of VO (4.5 ms), DEEVO20 (3.2 ms) and DEEVO40 (2.7 ms) was measured in IQT. Accordingly, the derived cetane number (DCN) of DEEVO mixtures increased with the increase in proportion of DEE. The reported mixtures were also tested in a single cylinder CI engine. The start of combustion (SOC) was advanced for DEEVO20 and DEEVO40 compared to diesel, which is attributed to the high DCN of DEEVO mixtures. On the other hand, the peak heat release rate decreased for DEEVO mixtures compared to diesel. Gaseous emissions such as nitrogen oxide (NOX), total hydrocarbon (THC) and smoke were reduced for DEEVO mixtures compared to diesel. The physical and ignition properties of VO are improved by the addition of DEE, and thus, the need for the trans-esterification process is averted. Furthermore, this blending strategy is simpler

  13. Improving Vegetable Oil Fueled CI Engine Characteristics Through Diethyl Ether Blending

    KAUST Repository

    Vedharaj, S.; Vallinayagam, R.; Sarathy, Mani; Dibble, Robert W.

    2016-01-01

    In this research, the flow and ignition properties of vegetable oil (VO) are improved by blending it with diethyl ether (DEE). DEE, synthesized from ethanol, has lower viscosity than diesel and VO. When DEE is blended with VO, the resultant DEEVO mixtures have favorable properties for compression ignition (CI) engine operation. As such, DEEVO20 (20% DEE + 80% VO) and DEEVO40 (40% DEE + 60% VO) were initially considered in the current study. The viscosity of VO is 32.4*10−6 m2/s; the viscosity is reduced with the increase of DEE in VO. In this study, our blends were limited to a maximum of 40% DEE in VO. The viscosity of DEEVO40 is 2.1*10−6 m2/s, which is comparable to that of diesel (2.3*10−6 m2/s). The lower boiling point and flash point of DEE improves the fuel spray and evaporation for DEEVO mixtures. In addition to the improvement in physical properties, the ignition quality of DEEVO mixtures is also improved, as DEE is a high cetane fuel (DCN = 139). The ignition characteristics of DEEVO mixtures were studied in an ignition quality tester (IQT). There is an evident reduction in ignition delay time (IDT) for DEEVO mixtures compared to VO. The IDT of VO (4.5 ms), DEEVO20 (3.2 ms) and DEEVO40 (2.7 ms) was measured in IQT. Accordingly, the derived cetane number (DCN) of DEEVO mixtures increased with the increase in proportion of DEE. The reported mixtures were also tested in a single cylinder CI engine. The start of combustion (SOC) was advanced for DEEVO20 and DEEVO40 compared to diesel, which is attributed to the high DCN of DEEVO mixtures. On the other hand, the peak heat release rate decreased for DEEVO mixtures compared to diesel. Gaseous emissions such as nitrogen oxide (NOX), total hydrocarbon (THC) and smoke were reduced for DEEVO mixtures compared to diesel. The physical and ignition properties of VO are improved by the addition of DEE, and thus, the need for the trans-esterification process is averted. Furthermore, this blending strategy is simpler

  14. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  15. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  16. Effects of electron-beam irradation on some structural properties of granulated polymer blends

    International Nuclear Information System (INIS)

    Zenkiewicz, Marian; Czuprynska, Joanna; Polanski, Julian; Karasiewicz, Tomasz; Engelgard, Wlodzimierz

    2008-01-01

    The aim of this article was to show the effects of the electron radiation dose and presence of a compatibiliser on the peak melting temperature (T pm ) of the crystalline phase, crystallinity (X c ), and melt flow rate (MFR) of granulated blends of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) as well as of blends of LDPE, HDPE, and PP. The purpose of applying the high-energy electron radiation with doses up to 300 kGy and of adding a compatibiliser was to enhance mechanical properties of the studied blends and, at the same time, to investigate the possibility of using this technique in the processes of recycling polymeric materials. As the compatibilisers, the styrene-ethylene/butylene-styrene elastomer grafted with maleic anhydride (SEBS-g-MA) and trimethylol propane trimethacrylate (TMPTA) were utilised; they were added at the amounts of 5, 10, and 15 wt% and 1, 2, and 3 wt%, respectively. The enhancement of mechanical properties was accompanied by the following effects, discussed in this article: (i) a decrease in the peak melting temperature upon the electron radiation for the crystalline phase of LDPE, HDPE, and PP that constituted the studied granulated blends and (ii) changes in MFR upon both the electron radiation and the addition of compatibilisers

  17. Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends.

    Science.gov (United States)

    Norizzah, Abd Rashid; Nur Azimah, Kamarulzaman; Zaliha, Omar

    2018-04-01

    Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  19. The effect of food type (fish nuggets or French fries) on oil blend degradation during repeated frying.

    Science.gov (United States)

    Flores-Álvarez, María Del Carmen; Molina-Hernández, Erika F; Hernández-Raya, José Concepción; Sosa-Morales, María Elena

    2012-11-01

    Oil that is reused multiple times for deep frying goes through changes in chemical composition and physical characteristics, affecting the quality of the fried foods. In this study, the effect of the food type (fish nuggets or French fries) on the degradation of an oil blend during the deep-fat frying of each food at 180°C during 12 days was determined, and the characteristics of the fried products were evaluated. The degradation of oil during repeated use was relatively faster when fish nuggets were fried than when French fries were fried, as higher values of total polar compounds were obtained. The results are useful for producers of French fries and fish nuggets, such as restaurants or fast foods sellers, providing them with practical guidelines within the permitted values established by the regulatory authorities. The studied foods have high economic importance and are different in their composition. Under the studied conditions, the tested oil blend may be used during 4 d (4 h per day) with a daily replenishment, without discarding the oil when frying fish nuggets, and must be discarded after 8 d when French fries are processed. This suggestion allows preparing safe fried foods for consumers. © 2012 Institute of Food Technologists®

  20. A new simplex chemometric approach to identify olive oil blends with potentially high traceability.

    Science.gov (United States)

    Semmar, N; Laroussi-Mezghani, S; Grati-Kamoun, N; Hammami, M; Artaud, J

    2016-10-01

    Olive oil blends (OOBs) are complex matrices combining different cultivars at variable proportions. Although qualitative determinations of OOBs have been subjected to several chemometric works, quantitative evaluations of their contents remain poorly developed because of traceability difficulties concerning co-occurring cultivars. Around this question, we recently published an original simplex approach helping to develop predictive models of the proportions of co-occurring cultivars from chemical profiles of resulting blends (Semmar & Artaud, 2015). Beyond predictive model construction and validation, this paper presents an extension based on prediction errors' analysis to statistically define the blends with the highest predictability among all the possible ones that can be made by mixing cultivars at different proportions. This provides an interesting way to identify a priori labeled commercial products with potentially high traceability taking into account the natural chemical variability of different constitutive cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    Science.gov (United States)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  2. PENINGKATAN KUALITAS DAN PROSES PEMBUATAN BIODIESEL DARI BLENDING MINYAK KELAPA SAWIT (PALM OIL DAN MINYAK KELAPA (COCONUT OIL DAN BANTUAN GELOMBANG ULTRASONIK

    Directory of Open Access Journals (Sweden)

    Hantoro Satriadi

    2015-01-01

    Full Text Available Keterbatasan solar sebagai sumber energi bahan bakunya tidak dapat diperbaharui menuntut adanya bahan baku alternatif yang dapat diperbaharui dan ramah lingkungan untuk pembuatan biodiesel. Reaksi utama produksi biodiesel adalah esterifikasi dan transestirifikasi yang berlangsung lambat dan membutuhkan banyak katalis dan alkohol. Reaksi yang terjadi belum sempurna dan belum memenuhi standar SNI dan ASTM. Untuk memperbaiki mutu biodiesel serta menghasilkan yield maksimal, maka dilakukan blending bahan baku antara minyak kelapa sawit dan minyak kelapa dan dengan bantuan gelombang ultrasonic. Penelitian ini bertujuan untuk mempelajari pengaruh variabel perbandingan volume minyak kelapa sawit dan minyak kelapa, perbandingan volume methanolminyak, dan persentase berat katalis terhadap minyak terhadap hasil atau yield biodiesel. Alat utama yang digunakan adalah reaktor yang dilengkapi pembangkit gelombang ultrasonic dengan temperature 60 oC, tekanan 1 atm, volume 3 liter, dan frekuensi 28 kHz. Variabel proses pada penelitian ini adalah perbandingan volume minyak sawit dan kelapa 2:1, 3:1, dan 4:1, pebandingan volume metanol-minyak 0,2:1, 0,25:1, dan 0,3:1, dan persentase berat katalis KOH terhadap minyak 0,3%, 0,5%, dan 0,7%. Hasil penelitian didapat konversi tertinggi dicapai pada variabel perbandingan volume minyak sawit dan kelapa 3:1, perbandingan volume metanol/minyak 0,25:1, dan persentase berat katalis terhadap minyak dengan yield 97,26%.[A Improvement of Quality and Process for Biodiesel Production from Palm Oil and Coconut Oil Blends with Ultrasound Assisted] Limitations of solar energy as a source of raw material cannot be renewed demands for alternative raw materials that are renewable and environmentally friendly for the manufacture of biodiesel. The main production of biodiesel reaction is esterification and transestirifikasi which runs slow and requires a lot of alcohol and a catalyst. Reactions that happen yet perfect, and has not met

  3. Response surface methodology (RSM) based multi-objective optimization of fusel oil -gasoline blends at different water content in SI engine

    International Nuclear Information System (INIS)

    Awad, Omar I.; Mamat, R.; Ali, Obed M.; Azmi, W.H.; Kadirgama, K.; Yusri, I.M.; Leman, A.M.; Yusaf, T.

    2017-01-01

    Highlights: • The optimal ratio ratio of fusel oil–gasoline blended fuels is proposed. • The water content of fusel oil was reduced from 13.5% to 6.5%. • The heating value of fusel oil was improved by 13%. • FAWE 20 fuels were found to be optimal values with a high desirability of 0.707. • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: The main objective of this study is to determine the optimal blend ratio of fusel oil–gasoline before and after water extraction (FBWE10, FBWE20, FAWE10, and FAWE20) regarding the performance and emissions of spark ignition engine using response surface methodology (RSM). The multi-objective optimization is applied to maximize the brake power, brake thermal efficiency and minimize the brake specific fuel consumption (BSFC), NOx emission, HC emission and CO emission. The water content of fusel oil has been extracted by employing rotary extractor method. The experimental of this study has been carried out with different fusel oil–gasoline blends, different throttle valve opening position (15%, 30%, 45% and 60%) and different engine speed (1500, 2500, 3500 and 4500 rpm). All the developed models for responses were determined to be statistically significant at 95% confidence level. The study results reveal an improvement in heating value of fusel oil after water extraction with FAWE20 (80 vol% gasoline fuel, 20 vol% fusel oil after water extracted) as the optimally blended fuel. The best condition of engine parameters with FAWE20 were 55.4% of WOT for load and 4499 rpm engine speed. In additional of the optimal values with a high desirability of 0.707 were 62.511 kW, 241.139 g/kW h, 36%, 1895.913 ppm140.829 ppm and % for brake power, BSFC, BTE, NO x , HC and CO emissions respectively. The reduction of water content in fusel oil has a statistical significance influence to increases BTE, NO x emission and decreases the BSFC, HC and CO emissions.

  4. Base catalyzed transesterification of acid treated vegetable oil blend for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar Ali [Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak 31750 (Malaysia)

    2010-10-15

    Biodiesel can be produced from low cost non-edible oils and fats. However, most of these sources are of high free fatty acid content which requires two stage transesterification to reduce the acid value and produce biodiesel. The acid treatment step is usually followed by base transesterification since the latter can yield higher conversions of methyl esters at shorter reaction time when compared with acid catalyzed reaction. In the current study, base transesterification in the second stage of biodiesel synthesis is studied for a blend of crude palm/crude rubber seed oil that had been characterized and treated with acid esterification. Optimum conditions for the reaction were established and effect of each variable was investigated. The base catalyzed transesterification favored a temperature of 55 C with methanol/oil molar ratio of 8/1 and potassium hydroxide at 2% (ww{sup -1}) (oil basis). The conversion of methyl esters exceeded 98% after 5 h and the product quality was verified to match that for biodiesel with international standards. (author)

  5. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    International Nuclear Information System (INIS)

    Schröder, O; Munack, A; Schaak, J; Pabst, C; Schmidt, L; Bünger, J; Krahl, J

    2012-01-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  6. Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI Engine’s Performance and Emissions

    Directory of Open Access Journals (Sweden)

    Suleyman Simsek

    2018-03-01

    Full Text Available With the increase of energy needs and environmental pollution, alcohol-based alternative fuels are used in spark-ignited (SI engines. Fusel oil, which is a by-product obtained through distillation of ethanol, contains some valuable alcohols. As alcohols are high-octane, they have an important place among the alternative fuels. Fusel also takes its place among those alternatives as it is high-octane and low on exhaust emissions. In this research, the effects of using blends of unleaded gasoline and improved fusel oil on engine performance and exhaust emissions were analyzed experimentally. A four-stroke, single-cylinder, spark-ignited engine was used in the experiments. The tests were conducted at a fixed speed and under different loads. The test fuels were blended supplying with fusel oil at rates incremented by 10%, up to 50%. Under each load, the engine’s performance and emissions were measured. Throughout the experiments, it has been observed that engine torque and specific fuel consumption increases as the amount of fusel oil in the blend is increased. Nitrogen oxide (NOx, carbon monoxide (CO, and hydrocarbon (HC emissions are reduced as the amount of fusel oil in the blends is increased.

  7. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  8. Experimental investigation of evaporation rate and emission studies of diesel engine fuelled with blends of used vegetable oil biodiesel and producer gas

    Directory of Open Access Journals (Sweden)

    Nanjappan Balakrishnan

    2015-01-01

    Full Text Available An experimental study to measure the evaporation rates, engine performance and emission characteristics of used vegetable oil methyl ester and its blends with producer gas on naturally aspirated vertical single cylinder water cooled four stroke single cylinder diesel engine is presented. The thermo-physical properties of all the bio fuel blends have been measured and presented. Evaporation rates of used vegetable oil methyl ester and its blends have been measured under slow convective environment of air flowing with a constant temperature and the values are compared with fossil diesel. Evaporation constants have been determined by using the droplet regression rate data. The fossil diesel, biodiesel blends and producer gas have been utilized in the test engine with different load conditions to evaluate the performance and emission characteristics of diesel engine and the results are compared with each other. From these observations, it could be noted that, smoke and hydrocarbon drastically reduced with biodiesel in the standard diesel engine without any modifications.

  9. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  10. Optimization of refinery product blending by using linear programming

    International Nuclear Information System (INIS)

    Ristikj, Julija; Tripcheva-Trajkovska, Loreta; Rikaloski, Ice; Markovska, Liljana

    1999-01-01

    The product slate of a simple refinery consists mainly of liquefied petroleum gas, leaded and unleaded gasoline, jet fuel, diesel fuel, extra light heating oil and fuel oil. The quality of the oil products (fuels) for sale has to comply with the adopted standards for liquid fuels, and the produced quantities have to be comply with the market needs. The oil products are manufactured by blending two or more different fractions which quantities and physical-chemical properties depend on the crude oil type, the way and conditions of processing, and at the same time the fractions are used to blend one or more products. It is in producer's interest to do the blending in an optimal way, namely, to satisfy the requirements for the oil products quality and quantity with a maximal usage of the available fractions and, of course, with a maximal profit out of the sold products. This could be accomplished by applying linear programming, that is by using a linear model for oil products blending optimization. (Author)

  11. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  12. Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate/Poly(acrylonitrile-co-butadiene Blends

    Directory of Open Access Journals (Sweden)

    Murugan N.

    2017-12-01

    Full Text Available This paper addresses the compatibility, morphological characteristics, crystallization, physico-mechanical properties and thermal stability of the melt mixed EMA/NBR blends. FTIR spectroscopy reveals considerable physical interaction between the polymers that explain the compatibility of the blends. DSC results confirm the same (compatibility and reveals that NBR hinders EMA crystallization. Mechanical and thermal properties of the prepared EMA/NBR blends notably enhance with increasing the fraction of EMA in the blends. Morphology study exhibit the dispersed particles in spherical shape in the nanometer level. Swelling and oil resistance study have also been carried out in details to understand the performance behaviour of these blends at service condition

  13. Physicochemical studies on sunflower oil blended with cold pressed tiger nut oil during the deep frying process; Estudios fisicoquimicos sobre mezclas de aceite de girasol con aceite de chufa prensado en frio durante el proceso de fritura

    Energy Technology Data Exchange (ETDEWEB)

    Al Rehah, F. M.; Anany, A. M.

    2012-07-01

    Sunflower oils were blended with different levels of cold pressed tiger nut oil. Blended oils were obtained by mixing tiger nut oil with sunflower oil at the volume ratios of 0:100, 10: 90, 20: 80, 30: 70, 40: 60, 50:50 and 100: 0. The effects of deep frying on physico-chemical parameters (Free Fatty Acid (FFA), Peroxide Value (PV), thiobarbituric acid value (TBA), iodine value, Total Polar Compounds (TPC), color and viscosity) were evaluated over 30 hours of the frying process. The total phenolic content of native oils was determined. GLC analysis was performed to illustrate the fatty acid composition of sunflower oil, tiger nut oil and binary mixtures of them as well as their oxidation rates. The pure and blended oils were heated at 180 degree centigrade {+-} 5 degree centigrade, then frozen French fried potatoes were fried every 30 min. Oil samples were taken every 5 h and the entire continuous frying period was 30 h. The results showed that fresh sunflower oil had significantly the highest value of COX (7.25); while tiger nut oil had significantly the lowest (2.24). Mixing sunflower oil with different levels of tiger nut oil led to an increase in its stability against oxidation. The phenolic content of cold pressed tiger nut oil was about 3.3 times as high as that of sunflower oil. The analytical data showed that the lowest deterioration during the frying process occurred in tiger nut oil and the highest in sunflower. The changes in the physico-chemical parameters were controlled and significantly (P < 0.05) decreased when tiger nut /sunflower oil (W/W) proportions were varied between 20/80 to 50/50. The obtained results indicate that mixing sunflower oil with cold pressed tiger nut oil increased the stability and hence improved the quality of sunflower oil during the frying process. (Author) 68 refs.

  14. Physical and sensory characteristics of pork sausages from enzymatically modified blends of lard and rapeseed oil during storage

    DEFF Research Database (Denmark)

    Cheong, L.Z.; Zhang, H.; Nersting, L.

    2010-01-01

    Physical and sensory characteristic of pork sausages produced from enzymatic interesterified blends of lard and rapeseed oil during storage were evaluated. All three enzymatic interesterified blends (IE90, IE70 and IE50) had ratios of unsaturated to saturated fatty acids within the range of 1.......47-2.84 which is favourable for cardiovascular disease risk reduction. Blends of IE90 and IE70 were found to have suitable solid fat content, melting and crystallization profile suitable for sausages production. Sausages were produced from blends of IE90 and IE70 with different muscle types (musculus...... longissimus dorsi and musculus sternomandibularis) and processing conditions such as cooling rates and final processing temperature. Cooling rate was found to have no significant (P>0.05) effect on hardness of the sausages throughout storage. Both musculus longissimus dorsi and high final processing...

  15. Crystalline structure of polypropylene in blends with thermoplastic elastomers after electron beam irradiation

    International Nuclear Information System (INIS)

    Steller, Ryszard; Zuchowska, Danuta; Meissner, Wanda; Paukszta, Dominik; Garbarczyk, Jozef

    2006-01-01

    Isotactic polypropylene (PP) was blended in extruder with 0-50% addition of styrene-ethylene/butylene-styrene (SEBS) and styrene-butadiene-styrene (SBS) block copolymers. Granulated blends were irradiated with electron beam (60 kGy) and 1 week later processed with injection molding machine. Properties of samples molded from irradiated and non-irradiated granulates were investigated using DSC, WAXS, MFR, SEM and mechanical and solubility tests. It was found that the SEBS based systems are more resistant to irradiation in comparison to similar blends with SBS copolymer. Such behavior can be explained by the presence of double bonds in elastic SBS block. Irradiation of PP-SBS blends leads to considerable structure changes of crystalline and amorphous PP phases and elastic SBS phase. It indicates creation of new (inter)phase consisting of products of grafting and cross-linking reactions. Irradiated PP-SBS blends show significant improvement of impact strength at low temperatures

  16. Processing influence on the morphology of PVDF/PMMA blends examined by scanning electron microscopy

    International Nuclear Information System (INIS)

    Freire, Estevao; Forte, Maria M.C.; Monteiro, Elisabeth E.C.

    2011-01-01

    PVDF/PMMA blends were melt blended in proportions of 20, 40 e 60% PVDF by weight in two different mixers, a low shear and a high shear mixer. The compositions obtained were examined by scanning electron microscopy. The results were correlated with the two types of processing and showed that the type of mixer affects the morphology of the blend. The morphologies obtained corroborated the NMR analysis demonstrating the phase separation phenomena and the effect of the type of mixer used in this study. (author)

  17. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  18. Stability of lime essential oil microparticles produced with protein-carbohydrate blends.

    Science.gov (United States)

    Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela

    2018-03-01

    The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  20. Oxidation and low temperature properties of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Brajendra K. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States); Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Suarez, Paulo A.Z. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States); LMC-IQ, Universidade de Brasilia, CP 4478, CEP 70919-970, Brasilia-DF (Brazil); Perez, Joseph M. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Erhan, Sevim Z. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States)

    2009-10-15

    Diesel-like fuels were synthesized by a pyrolysis method using soybean oil (pyrodiesel, PD) and soybean soapstock (SPD), respectively, as starting material. These pyrodiesel samples were compared with soy biodiesel (BD) samples. All these three biofuels (PD, SPD and BD) and their blends with high sulfur (HSD) and low sulfur (LSD) diesel fuels were evaluated by measuring a number of fuel properties, such as oxidative stability, low-temperature performance, acid value and corrosion properties. Compared to BD blends, PD and SPD and their blends were found to have better oxidative stability, though inferior acid values. SPD and its blends have better flow performance at low-temperature compared to BD and PD blends. All the biofuels and their blends met the copper corrosion requirement prescribed by US and European standard. Based on the results reported here, pyrodiesels from these two-different feedstocks have potential and will require some upgrading or change in pyrolysis conditions, if they are to be used as fuel blending component. (author)

  1. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules.

    Science.gov (United States)

    Li, Ru-Yi; Shi, Yan

    2018-02-01

    Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil. The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg -1 , GLU 100 g kg -1 and MD 475 g kg -1 of microencapsulation) conferred borage oil with high protection against lipid oxidation. The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    Science.gov (United States)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  3. Low - temperature properties of rape seed oil biodiesel fuel and its blending with other diesel fuels

    International Nuclear Information System (INIS)

    Kampars, V.; Skujins, A.

    2004-01-01

    The properties of commercial bio diesel fuel depend upon the refining technique and the nature of the renewable lipids from which it is produced. The examined bio diesel fuel produced from rape seed oil by the Latvian SIA 'Delta Riga' has better low-temperature properties than many other bio diesels; but a considerably higher cloud point (-5,7 deg C), cold filter plugging point (-7 deg C) and pour point (-12 deg C) than the examined petrodiesel (grade C, LST EN 590:2000) from AB 'Mazeikiu nafta'. The low-temperature properties considerably improve if blending of these fuels is used. The blended fuels with bio diesel contents up to 90% have lower cold filter plugging points than petrodollar's. The estimated viscosity variations with temperature show that the blended fuels are Arrenius-type liquids, which lose this property near the cold filter plugging point. (authors)

  4. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  5. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    OpenAIRE

    Srisuwan, Yaowalak; Srihanam, Prasong

    2018-01-01

    The water-in-oil (W/O) emulsification-diffusion method was used for construction of keratin (Ker), alginate (Alg), and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning ...

  6. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Kamrak, Juthamas; Kongsombut, Benjapol; Grehan, Gerard; Saengkaew, Sawitree; Kim, Kyo-Seon; Charinpanitkul, Tawatchai

    2009-01-01

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 μm at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa.

  7. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  8. Effect of Aromatic Oil on Phase Dynamics of S-SBR/BR Blends fro Passenger Car Tire Treads

    NARCIS (Netherlands)

    Rathi, Akansha; Hernández, M.; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Bergmann, C.; Trimbach, J.; Blume, Anke

    2015-01-01

    Even though S-SBR/BR blends are commonly used for passenger car tire treads, little is known about the phase dynamics arising from the local morphological heterogeneities. The present study aims at developing the understanding of: (i) the influence of aromatic oil on the dynamics of the individual

  9. Study of electron beam irradiation effects on morphologic properties of the PET/PP/PE/EVA polymeric blend

    International Nuclear Information System (INIS)

    Rossini, Edvaldo L.; Silva, Leonardo G. Andrade e; Wiebeck, Helio

    2009-01-01

    Amidst the pollutants, plastics and especially the 'PET bottles' packaging type, which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) have been causing big damage to the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by mechanical recycling 'PET bottles' after consumption, with the objective of finding a solution for this environmental problem. It was also studied the different ionizing radiation dose effects (25, 50, 75, 100, 150, 200, 300, 400 and 500 kGy) on the blend properties using an electron beam accelerator. The morphologic properties of the non-irradiated and irradiated polymeric blend were evaluated by the Light Microscopy (LM) and Scanning Electron Microscopy (SEM). The analysis of the results appeared to be a not mixing and compatible blend. The use of the ionizing radiation improved the homogeneity of the blend. These modifications have been randomized and irregular, depending directly on the dose of applied radiation. (author)

  10. Study of electron beam irradiation effects on morphologic properties of the PET/PP/PE/EVA polymeric blend

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Edvaldo L.; Silva, Leonardo G. Andrade e, E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2009-07-01

    Amidst the pollutants, plastics and especially the 'PET bottles' packaging type, which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) have been causing big damage to the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by mechanical recycling 'PET bottles' after consumption, with the objective of finding a solution for this environmental problem. It was also studied the different ionizing radiation dose effects (25, 50, 75, 100, 150, 200, 300, 400 and 500 kGy) on the blend properties using an electron beam accelerator. The morphologic properties of the non-irradiated and irradiated polymeric blend were evaluated by the Light Microscopy (LM) and Scanning Electron Microscopy (SEM). The analysis of the results appeared to be a not mixing and compatible blend. The use of the ionizing radiation improved the homogeneity of the blend. These modifications have been randomized and irregular, depending directly on the dose of applied radiation. (author)

  11. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  12. Determination of the density and the viscosities of biodiesel-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Ertan; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-12-15

    In this study, commercially available two different diesel fuels were blended with the biodiesels produced from six different vegetable oils (sunflower, canola, soybean, cottonseed, corn oils and waste palm oil). The blends (B2, B5, B10, B20, B50 and B75) were prepared on a volume basis. The key fuel properties such as density and viscosities of the blends were measured by following ASTM test methods. Generalized equations for predicting the density and viscosities for the blends were given and a mixing equation, originally proposed by Arrhenius and described by Grunberg and Nissan, was used to predict the viscosities of the blends. For all blends, it was found that there is an excellent agreement between the measured and estimated values of the density and viscosities. According to the results, the density and viscosities of the blends increased with the increase of biodiesel concentration in the fuel blend. (author)

  13. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Kamrak, Juthamas; Kongsombut, Benjapol; Charinpanitkul, Tawatchai [Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road, Patumwan, Bangkok 10330 (Thailand); Grehan, Gerard; Saengkaew, Sawitree [LESP/UMR CNRS6614/INSA et Universite de Rouen, BP 12, avenue de l' universite, 76801, Saint Etienne du Rouvray (France); Kim, Kyo-Seon [Department of Chemical Engineering, Faculty of Engineering, Kangwon National University, Chuncheon (Korea)

    2009-10-15

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 {mu}m at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa. (author)

  14. Effects of Electron Beam Irradiation on Binary Polyamide-6 Blends with Metallocene Copolymers

    International Nuclear Information System (INIS)

    Rosales, C.

    2006-01-01

    A versatile way to produce new materials with high Izod impact strength and reduced heat deformations is the irradiation of compatibilized blends. The effect of electron beam irradiation and different types of dispersed phase grafted copolymers on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends were investigated. Two metallocene copolymers (mEPDM and mPOE) grafted in-situ with maleic anhydride and two commercial maleated copolymers (EPDM-g-MA and mEPR-g-MA) were employed in binary blends with PA6 as matrix. The blends were prepared by extrusion with a composition of 80 wt. % of PA-6. The influence of the radical or functional groups generated in the grafting and the irradiation processes (25, 50, 100 and 200 kGy) was found by ATR-FTIR. The blends exhibited the characteristic thermal behavior of immiscible systems. All compatibilizers employed influenced the melting and crystallization behavior of the blend components without irradiation and an improvement in interface adhesion was clearly observed by SEM micrographs. The sizes of the dispersed phase in the non-irradiated reactive blends were in agreement with the viscosity ratios of the blend components. High toughness materials were obtained with ethylene-polypropylene-diene (mEPDM) grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 degree with the irradiation doses. However, the toughness of the blends with grafted metallocene polyethylenes was affected by the irradiation doses employed. Therefore, the gel content and tensile properties of the samples depended on the chain scission, crosslinking and/or grafting reactions of the blend components

  15. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    Science.gov (United States)

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, PDHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    Science.gov (United States)

    Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and , respectively, while they are in the orientations and for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap

  17. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    Directory of Open Access Journals (Sweden)

    Hongbo Qin

    2017-12-01

    Full Text Available For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100 and (111 are isotropic, while the Poisson’s ratio at plane (110 exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger

  18. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.

    Science.gov (United States)

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-12-12

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and , respectively, while they are in the orientations and for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of

  19. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  20. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.

    Science.gov (United States)

    Cha, Thye San; Chen, Jian Woon; Goh, Eng Giap; Aziz, Ahmad; Loh, Saw Hong

    2011-11-01

    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (pdifferentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  2. Characterization of Oxidative Stability of Fish Oil- and Plant Oil-Enriched Skimmed Milk

    DEFF Research Database (Denmark)

    Saga, Linda C.; Kristinova, Vera; Kirkhus, Bente

    2013-01-01

    oat oil and camelina oil to protect fish oil in bulk and as fish oil-enriched skimmed milk emulsions was evaluated. Results of oxidative stability of bulk oils and blends assessed by the Schaal oven weight gain test and by the rancimat method showed significant increase in oxidative stability when oat...... oil was added to fish oil in only 5 and 10 %, whereas no protective effect of camelina oil was observed when evaluated by these methods. Moreover, fish oil blended with oat oil conferred the lowest PV and lower amounts of volatile compounds during the storage period of 14 days at 4 °C. Surprisingly......, skimmed milk supplemented with fish-oat oil blend gave the highest scores for off-flavors in the sensory evaluation, demonstrating that several methods, including sensory analysis, should be combined to illustrate the complete picture of lipid oxidation in emulsions....

  3. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    Science.gov (United States)

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  4. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Science.gov (United States)

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  5. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    International Nuclear Information System (INIS)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de

    2013-01-01

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO 3 + SrO + Sr (OH) 2 ) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  6. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Modhar A.; Yusup, Suzana; Ahmad, Murni M. [Universiti Teknologi PETRONAS, Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-12-15

    Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H{sub 2}SO{sub 4} after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect. (author)

  7. Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Vesterager Madsen, Morten; Carlé, Jon Eggert

    2012-01-01

    Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film thickness...... within each material group were found to vary for both the pure polymers and the blends. The stability ranking between the materials of the pure polymers was found to be similar to the ranking for their respective blends, implying that the photochemical stability of a pure polymer is a good measure...... of its associated blend stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT by high LUMO electron...

  8. Impact behaviour of polystyene/EPDM-rubber blends : influence of electron beam irradiation

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Borgmans, C.P.J.H.; Sanden, van der M.C.M.; Lemstra, P.J.

    1990-01-01

    Electron beam irradiation of polystyrene/ethylene propylene diene monomer (PS/EPDM) blends, using polystyrene/polybutadiene block copolymers as compatibilizers, resulted in a two to three fold increase in Izod impact value. This greatly increased impact resistance is probably related to

  9. Performance and emission study on waste cooking oil biodiesel and distillate blends for microturbine application

    Directory of Open Access Journals (Sweden)

    Ee Sann Tan

    2015-11-01

    Full Text Available Biodiesel is defined as domestic renewable energy resource, which can be derived from natural oils through the transesterification. The implementation of biodiesel is essential due to the energy depletion crisis and the impact on exacerbating environment caused by rapid consumption of conventional diesel. Waste cooking oil (WCO was used as the raw material to produce biodiesel in order to reduce wastes polluting the environment. This paper studies the technical potential of WCO biodiesel to be used as an alternative fuel for microturbine. The ASTM D6751 and ASTM D2881 standards were selected as references to evaluate the compatibility with distillate to be used as a microturbine fuel. The performance and emission tests were conducted employing a 30 kW microturbine, without any modification, using biodiesel and distillate blends up to maximum of 20% biodiesel mixing ratio. It was found that the thermal efficiency peaked at 20% biodiesel blend with distillate, despite the fact that biodiesel had a lower calorific value and a higher fuel consumption. The emission test results showed reduction of CO emission by increasing the WCO biodiesel mixing ratio, while NOx emission was dependent on the exhaust gas temperature. In conclusion, biodiesel derived from WCO has the potential to substitute distillate in the microturbine application.

  10. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  11. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-09-01

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure.

  12. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    International Nuclear Information System (INIS)

    Bee, Soo-Tueen; Ratnam, C.T.; Sin, Lee Tin; Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang; Rahmat, A.R.

    2014-01-01

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure

  13. Response surface methodology based optimization of diesel–n-butanol –cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics

    International Nuclear Information System (INIS)

    Atmanlı, Alpaslan; Yüksel, Bedri; İleri, Erol; Deniz Karaoglan, A.

    2015-01-01

    Highlights: • RSM based optimization for optimum blend ratio of diesel fuel, n-butanol and cotton oil was done. • 65.5 vol.% diesel fuel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC) was determined. • DnBC decreased brake torque, brake power, BTE and BMEP, while increased BSFC. • DnBC decreased NO x , CO and HC emissions. - Abstract: Many studies declare that 20% biodiesel is the optimum concentration for biodiesel–diesel fuel blends to improve performance. The present work focuses on finding diesel fuel, n-butanol, and cotton oil optimum blend ratios for diesel engine applications by using the response surface method (RSM). Experimental test fuels were prepared by choosing 7 different concentrations, where phase decomposition did not occur in the phase diagram of −10 °C. Experiments were carried out at full load conditions and the constant speed (2200 rpm) of maximum brake torque to determine engine performance and emission parameters. According to the test results of the engine, optimization was done by using RSM considering engine performance and exhaust emissions parameters, to identify the rates of concentrations of components in the optimum blend of three. Confirmation tests were employed to compare the output values of concentrations that were identified by optimization. The real experiment results and the R 2 actual values that show the relation between the outputs from the optimizations and real experiments were determined in high accordance. The optimum component concentration was determined as 65.5 vol.% diesel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC). According to engine performance tests brake torque, brake power, BTE and BMEP of DnBC decreased while BSFC increased compared to those of diesel fuel. NO x , CO and HC emissions of DnBC drastically decreased as 11.33%, 45.17% and 81.45%, respectively

  14. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend

    International Nuclear Information System (INIS)

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L.; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-01-01

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 μm

  15. Modification of the properties of NBR/EPDM blends vulcanized by gamma irradiation

    International Nuclear Information System (INIS)

    Abou Zeid, M.M.; Shaltout, N.A.; Mohamed, M.A.; El Miligy, A.A.

    2001-01-01

    Blends of nitrile-butadiene rubber, NBR with ethylene propylene diene monomer EPDM rubber with varying contents have been prepared. Unloaded or loaded blends with 40 phr of HAF carbon black have been vulcanized by using gamma irradiation. Mechanical properties, namely tensile strength, tensile modulus and elongation at break have been followed up as a function of irradiation dose as well as blend component compositions. Moreover, the susceptibility of prepared composites towards organic solvents and car oils has been followed up in terms of swelling number and soluble fraction measurements. The organic solvents used are toluene and dimethyl-formamide and oil are car lubricating and brake oils. The results indicated improvements in mechanical properties of blend composites with irradiation dose and increased content NBR in the blend. Also, susceptibility to fluids decreased appreciably with irradiation dose but with different extents for different fluids

  16. Effect of the High-Energy Electron Beam Irradiation on the Morphology and Mechanical Properties of PE/EVA Blends

    International Nuclear Information System (INIS)

    Razavi Aghjeh, M. K.

    2006-01-01

    The main objective of the present work was to study the effect of electron beam irradiation on the morphology and mechanical properties of PE/EVA blends. The melt compounding of the blends were carried out in an internal mixer. The small amount of the prepared blend samples were rapidly quenched in liquid nitrogen and the remained were compression molded into sheets. Sheets and quenched samples were then irradiated by a 10 MeV electron beam accelerator using different dose levels. The morphological studies for both, sheeted and quenched blends were performed on cryogenically fractured surfaces by using SEM technique. The mechanical properties of the sheeted samples were evaluated according to ASTM D638. The results of mechanical properties showed that, increasing in irradiation dose increases the tensile strength and decreases the elongation at break in all blend compositions. On the other hand, it was found that, for PE/EVA blends the extent of tensile strength increase, and elongation at break decrease, are more appreciable in compare to the neat PE and EVA. These results suggest that, the blend interface is more susceptible for irradiation induced crosslinking. This is because of more affinity of PE and EVA macroradicals to termination with together in compare to own macroradicals.The results of morphological studies showed that, irradiation can stabilize the blend morphology especially in co-continues regions, where the morphology is more unstable due to the heat coarsening

  17. Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    KAUST Repository

    Isakova, Anna

    2018-05-17

    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.

  18. Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    KAUST Repository

    Isakova, Anna; Karuthedath, Safakath; Arnold, Thomas; Howse, Jonathan; Topham, Paul D.; Toolan, Daniel Thomas William; Laquai, Fré dé ric; Lü er, Larry

    2018-01-01

    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.

  19. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  20. Performance and Emission of VCR-CI Engine with palm kernel and eucalyptus blends

    Directory of Open Access Journals (Sweden)

    Srinivas kommana

    2016-09-01

    Full Text Available This study aims at complete replacement of conventional diesel fuel by biodiesel. In order to achieve that, palm kernel oil and eucalyptus oil blend has been chosen. Eucalyptus oil was blended with methyl ester of palm kernel oil in 5%, 10% and 15% by volume. Tests were conducted with diesel fuel and blends on a 4 stroke VCR diesel engine for comparative analysis with 220 bar injection pressure and 19:1 compression ratio. All the test fuels were used in computerized 4 stroke single cylinder variable compression ratio engine at five different loads (0, 6, 12, 18 and 24 N m. Present investigation depicts the improved combustion and reduced emissions for the PKO85% + EuO15% blend when compared to diesel at full load conditions.

  1. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  2. Studies on physical properties and fractography of electron beam irradiated poly(vinyl chloride)/epoxidized natural rubber blend in the presence of trimethylolpropane triacrylate

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    The effect of irradiation on the 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was studied in the presence of 3 phr trimethylolpropane triacrylate (TMPTA). The blend was irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 200 kGy in air and room temperature. The tensile properties, resilience and gel fractions of the blends were measured. Electron beam irradiation of the blend in the presence of the TMPTA were found to cause crosslinking which in effect caused an enhancement in modulus and gel fraction together with a concomitant decline in ultimate elongation. The irradiation has resulted in a less hysteretic poly(vinyl chloride)/epoxidized natural rubber blend, with increased rebound resilience. The tensile strength of the blend reached a maximum at 60 kGy followed by a slight decrease at higher doses, implying embrittlement due to the excessive crosslinking. The scanning electron micrographs of the fracture surfaces of the irradiated blends show evidence consistent with the above contention. (Author)

  3. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  4. Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals

    NARCIS (Netherlands)

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, G.Q.

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli,

  5. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  6. Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2014-07-01

    Full Text Available Alternative fuels, like biodiesel, are being utilized as a renewable energy source and an effective substitute for the continuously depleting supply of mineral diesel as they have similar combustion characteristics. However, the use of pure biodiesel as a fuel for diesel engines is currently limited due to problems relating to fuel properties and its relatively poor cold flow characteristics. Therefore, the most acceptable option for improving the properties of biodiesel is the use of a fuel additive. In the present study, the properties of palm oil methyl esters with increasing additive content were investigated after addition of ethanol, butanol and diethyl ether. The results revealed varying improvement in acid value, density, viscosity, pour point and cloud point, accompanied by a slight decrease in energy content with an increasing additive ratio. The viscosity reductions at 5% additive were 12%, 7%, 16.5% for ethanol, butanol and diethyl ether, respectively, and the maximum reduction in pour point was 5 °C at 5% diethyl ether blend. Engine test results revealed a noticeable improvement in engine brake power and specific fuel consumption compared to palm oil biodiesel and the best performance was obtained with diethyl ether. All the biodiesel-additive blend samples meet the requirements of ASTM D6751 biodiesel fuel standards for the measured properties.

  7. Interesterification of engkabang (Shorea macrophylla) fat--canola oil blend with lipase from Candida antarctica to simulate the properties of lard.

    Science.gov (United States)

    Illiyin, Mohamed Roslan Nur; Marikkar, Jalaldeen Mohamed Nazrim; Loke, Mei Key; Shuhaimi, Musthafa; Mahiran, Basri; Miskandar, Mat Saari

    2014-01-01

    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.

  8. Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil

    International Nuclear Information System (INIS)

    Salaheldeen, Mohammed; Aroua, M.K.; Mariod, A.A.; Cheng, Sit Foon; Abdelrahman, Malik A.; Atabani, A.E.

    2015-01-01

    Highlights: • Properties of M. peregrina biodiesel are determined for the first time. • Biodiesel was produced easily by alkaline transesterification in one step. • The effect of diesel on the properties of biodiesel was examined. • M. peregrina is a potential crop for sustainable production of biodiesel. - Abstract: Moringaceae is a monogeneric family with a single genus i.e. Moringa. This family includes 13 species. All these species are known as medicinal, nutritional and water purification agents. This study reports, for the first time, on characterization of the biodiesel derived from crude Moringaperegrina seed oil and its blends with diesel. The crude oil was converted to biodiesel by the transesterification reaction, catalyzed by potassium hydroxide. High ester content (97.79%) was obtained. M. peregrina biodiesel exhibited high oxidative stability (24.48 h). Moreover, the major fuel properties of M. peregrina biodiesel conformed to the ASTM D6751 standards. However, kinematic viscosity (4.6758 mm 2 /s), density (876.2 kg/m 3 ) and flash point (156.5 °C) were found higher than that of diesel fuel. In addition, the calorific value of M. peregrina biodiesel (40.119 MJ/kg) was lower than the diesel fuel. The fuel properties of M. peregrina biodiesel were enhanced significantly by blending with diesel fuel. In conclusion, M. peregrina is a suitable feedstock for sustainable production of biodiesel only blended up to 20% with diesel fuel, considering the edibility of all other parts of this tree

  9. Energy value of poultry byproduct meal and animal-vegetable oil blend for broiler chickens by the regression method.

    Science.gov (United States)

    Cao, M H; Adeola, O

    2016-02-01

    The energy values of poultry byproduct meal (PBM) and animal-vegetable oil blend (A-V blend) were determined in 2 experiments with 288 broiler chickens from d 19 to 25 post hatching. The birds were fed a starter diet from d 0 to 19 post hatching. In each experiment, 144 birds were grouped by weight into 8 replicates of cages with 6 birds per cage. There were 3 diets in each experiment consisting of one reference diet (RD) and 2 test diets (TD). The TD contained 2 levels of PBM (Exp. 1) or A-V blend (Exp. 2) that replaced the energy sources in the RD at 50 or 100 g/kg (Exp. 1) or 40 or 80 g/kg (Exp. 2) in such a way that the same ratio were maintained for energy ingredients across experimental diets. The ileal digestible energy (IDE), ME, and MEn of PBM and A-V blend were determined by the regression method. Dry matter of PBM and A-V blend were 984 and 999 g/kg; the gross energies were 5,284 and 9,604 kcal/kg of DM, respectively. Addition of PBM to the RD in Exp. 1 linearly decreased (P blend to the RD linearly increased (P blend as follows: IDE = 10,616x + 7.350, r(2) = 0.96; ME = 10,121x + 0.447, r(2) = 0.99; MEn = 10,124x + 2.425, r(2) = 0.99. These data indicate the respective IDE, ME, MEn values (kcal/kg of DM) of PBM evaluated to be 3,537, 3,805, and 3,278, and A-V blend evaluated to be 10,616, 10,121, and 10,124. © 2015 Poultry Science Association Inc.

  10. Study of exhaust emissions of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on diesel engine emission characteristics and smoke opacity of the exhausts. The biggest NO x emissions, 1954 and 2078 ppm, at 2000 min -1 speed generate blends PRO10 (9.72%) and EPRO5 (11.13%) against, 1731 and 1411 ppm, produced from ERO5 (12%) and ERO10 (13.2% oxygen) blends. The carbon monoxide, CO, emissions emitted from a fully loaded engine fuelled with three agent blends EPRO5-7.5 at maximum torque and rated speed are higher by 39.5-18.8% and 27.5-16.1% and smoke opacity lower by 3.3-9.0% and 24.1-17.6% comparing with RO case. When operating at rated 2200 min -1 mode, the carbon dioxide, CO 2 , emissions are lower, 6.9-6.3 vol%, from blends EPRO5-7.5 relative to that from RO, 7.8 vol%, accompanied by a slightly higher emission of unburned hydrocarbons HC, 16 ppm, and residual oxygen contents O 2 , 10.4-12.0 vol%, in the exhausts

  11. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    Science.gov (United States)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  12. An Investigation of Viscosities, Calorific Values and Densities of Binary Biofuel Blends

    Directory of Open Access Journals (Sweden)

    Che Mat Sharzali

    2017-01-01

    Full Text Available Straight vegetable oil (SVO biofuel is a promising alternative to petroleum diesel fuel primarily due to its comparable physical properties to that of petroleum diesel fuel. However, the relatively higher viscosity of SVO limits its direct application in diesel engine. To resolve this issue, binary biofuel blends was introduced in this study to reduce the viscosity of SVO. In this work, a novel biofuel namely Melaleuca Cajuputi oil (MCO was used and blended with refined palm oil (RPO. A total of four blends with the mixing ratios of 20%, 40%, 50% and 60% of MCO were prepared. Various key properties of dynamic viscosity, calorific value and density of the blends were measured and benchmarked against the biodiesel standards based on ASTM D6751. It was found that viscosity and density of the blends decreased with the increase of MCO fraction. Meanwhile, the calorific value of the blends increased linearly as the MCO fraction increased. The blend of 40RPO60MCO was found to have comparable key properties of viscosity, calorific value and density to those of petroleum diesel fuel and ASTM D6751 standard.

  13. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on the biofuel kinematical viscosity, brake mean effective pressure (bmep), brake specific fuel consumption (bsfc) of a diesel engine and its brake thermal efficiency (bte). Addition into RO from 2.5 to 7.5 vol% of ethanol and petrol its viscosity at ambient temperature of 20 deg. C diminishes by 9.2-28.3% and 14.1-31.7%, respectively. Heating up to the temperature of 60 deg. C the viscosity of pure RO, blends ERO2.5-7.5 and PRO2.5-10 further diminishes 4.2, 3.9-3.8 and 3.9-3.6 times. At 1800 min -1 speed, the maximum brake mean effective pressure (bmep) higher up to 1.6% comparing with that of pure RO (0.77 MPa) ensure three agent blends EPRO5-7.5, whereas at rated 2200 min -1 speed, the bmep higher by 5.6% can be obtained when fuelling the engine with blend PRO2.5. Brake specific fuel consumption (bsfc) at maximum torque (240.2 g/kWh) and rated power (234.0 g/kWh) is correspondingly lower by 3.4% and 5.5% in comparison with pure RO when biofuel blends EPRO5 and PRO2.5 are used. The biggest brake thermal efficiency at maximum torque (0.40-0.41) and rated power (0.42-0.43) relative to that of RO (0.39) suggest blends PRO2.5 and EPRO5-7.5, respectively

  14. Dynamic mechanical properties of polymer blends of polypropylene and poly(ethylene-co-vinyl acetate) irradiated with fast electrons

    International Nuclear Information System (INIS)

    Mihaylova, M.; Kresteva, M.; Perena, J; Phillips, P.

    2001-01-01

    Extruded blends of polypropylene and poly(ethylene-co-vinyl acetate) irradiated with fast electrons were studied. The dynamic mechanical properties were investigated with respects to the blend composition and irradiation dose. Two glass transition temperatures corresponding to the glass transitions of the pure components were observed. Their existence is an evidence of immiscibility of the components. Nevertheless, the peaks broadening, the single jump in the storage modulus values and the changes of T g with the blend ratio suggest the creation of an interface region, leading to the improvement of the compatibility of the components. The irradiation with fast electrons at doses higher than 100 KGy results in single T g transition because of the broadening of the interface layer. (authors)

  15. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    Science.gov (United States)

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  16. Preliminary Validation of a High Docosahexaenoic Acid (DHA and -Linolenic Acid (ALA Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar Smolts.

    Directory of Open Access Journals (Sweden)

    Waldo G Nuez-Ortín

    Full Text Available Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA, a key omega-3 long-chain (≥C20 polyunsaturated fatty acid (n-3 LC-PUFA that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX with high DHA and ALA content using tuna oil (TO high in DHA and the flaxseed oil (FX high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO and a commercial-like oil blend diet (fish oil + poultry oil, FOPO over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  17. A systematic methodology for design of tailor-made blended products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti; Gernaey, Krist; Woodley, John

    2014-01-01

    A systematic methodology for design of tailor-made blended products has been developed. In tailor-made blended products, one identifies the product needs and matches them by blending different chemicals. The systematic methodology has four main tasks. First, the design problem is defined: the pro......, the methodology is highlighted through two case studies involving gasoline blends and lubricant base oils....

  18. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil

    Directory of Open Access Journals (Sweden)

    Dollah, S.

    2015-06-01

    Full Text Available The enzymatic interesterification (IE of palm olein (PO and virgin coconut oil (VCO with the high oleic acid (86% Moringa oleifera seed oil (MoO could yield a good source of oleic acid fat stock that may contain desirable nutritional and physical properties. Lipozyme RMIM resulted in different functionalities for the MoO/PO and MoO/VCO blends due to inherent changes in triacylglycerol (TAG compositions which, in turn, led to different trends in DSC thermograms and solid fat contents (SFC. The enzymatic IE of MoO/VCO increased U2S and S2U (up to 20% medium and long chain, MLCT while it decreased U3 (triunsaturated and S3 (trisaturated TAGs. The IE of the MoO/PO blends increased U2S and S3 (MMP, myristic, myristic, palmitic and decreased S2U, resulting in a lowering of melting points and SFC for MoO/VCO, while showing an increase in them for MoO/PO. A 2.55% increase in S3 after 24 h MoO/PO 30:70 IE revealed a 6.5% harder oil at 10 °C which may imply a wider application compared to the original liquid oils. Novel MLCTs with improved nutritional and physical properties were generated in the MoO/VCO blends after IE due to the incorporation of oleic acid and medium chain fatty acids. MoO/PO 50:50 and 70:30 w/w after 12 h IE and MoO/VCO 30:70 are suitable for incorporation into the fat phase in ice-cream formulations while, the spreadability and plasticity of MoO/VCO 70:30 improved at low temperatures. Both interesterified blends could be used as high oleic acid frying oils.La interesterificación enzimática (IE de la oleína de palma (PO, aceite de coco virgen (VCO con alto contenido en ácido oleico (86% y aceites de semilla de Moringa oleífera (MOO podría ser una buena fuente de ácido oleico con propiedades nutricionales y físicas deseables. La lipozyme RMIM produce diferentes funcionalidades para las mezclas MoO/PO y MoO/ VCO debido a los cambios inherentes en la composición de triacilgliceroles (TAG que, a su vez, dieron lugar a diferentes

  19. Microemulsions based on a sunflower lecithin-Tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10.

    Science.gov (United States)

    Chen, Huaiqiong; Guan, Yongguang; Zhong, Qixin

    2015-01-28

    The objectives of the present study were to improve the capability of microemulsions to dissolve peppermint oil by blending sunflower lecithin with Tween 20 and to study the possibility of codelivering lipophilic bioactive compounds. The oil loading in microemulsions with 20% (w/w) Tween 20 increased from 3% (w/w) to 20% (w/w) upon gradual supplementation of 6% (w/w) lecithin. All microemulsions had particles of lecithin. Therefore, natural surfactant lecithin can reduce the use of synthetic Tween 20 to dissolve peppermint oil and protect the degradation of dissolved lipophilic bioactive components in transparent products.

  20. Morphological and mechanical properties of polyamide 6/linear low density polyethylene blend compatibilized by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Shin, Boo Young; Han, Do Hung

    2014-01-01

    The aim of this study was to compatibilize immiscible polyamide 6 (PA6)/linear low density polyethylene (LLDPE) blend by using electron-beam initiated mediation process. Glycidyl methacrylate (GMA) was chosen as a mediator for cross-copolymerization at the interface between PA6 and LLDPE. The exposure process was carried out to initiate cross-copolymerization by the medium of GMA at the interface between PA and LLDPE. The mixture of the PA6/LLDPE/GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam radiation at various doses at room temperature. To investigate the results of this compatibilization strategy, the morphological and mechanical properties of the blend were analyzed. Morphology study revealed that the diameters of the dispersion particles decreased and the interfacial adhesion increased with respect to irradiation doses. The elongation at break of the blends increases significantly with increasing irradiation dose up to 100 kGy while the tensile strength and the modulus increased nonlinearly with increasing irradiation dose. The reaction mechanisms of the mediation process with the GMA mediator at the interface between PA6 and LLDPE were estimated. - Highlights: • PA6/LLDPE blend was compatibilized by the electron-beam initiated mediation process. • Interfacial adhesion was significantly enhanced by the radiation initiated cross-copolymerization. • The elongation at break of blend irradiated at 100 kGy was 4 times higher than PA6. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  1. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  2. Detection of argan oil adulterated with vegetable oils: New markers

    Energy Technology Data Exchange (ETDEWEB)

    Ourrach, I.; Rada, M.; Perez-Camino, M. C.; Benaissa, M.; Guinda, A

    2012-07-01

    This work aims to contribute to controlling the authenticity of pure argan oil, a valuable Moroccan product. Fatty acids, hydrocarbon fraction, 3,5-stigmastadiene, the alkyl esters of fatty acids, chlorophyllic pigments and physical properties such as viscosity, density and refractive index were studied in order to detect the adulteration of argan oil with edible vegetable oils. The results found in this study show that 3,5-stigmastadiene, kaurene and pheophytin-a can be used as possible new markers for argan oil blends of up to 5% with refined, sunflower and virgin olive oils. Due to the similarity of the fatty acid compositions of the edible oils studied and argan oil, fatty acids can be employed as markers for the detection of argan oil adulteration at levels higher than 10%. Among the physical properties studied, the refractive index shows significant differences for sunflower oil and its blend at 10% with argan oil. (Author) 35 refs.

  3. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine

    International Nuclear Information System (INIS)

    Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K.

    2017-01-01

    Highlights: • Neat lemongrass oil can be used as an alternate fuel in diesel engine. • The combined effect of nano emulsion and EGR using LGO25-DEE-Diesel is investigated. • The BTE is improved for nano emulsion fuel blend. • The NO_x and smoke emissions decrease significantly. • Cylinder pressure and Heat release rate increase with longer ignition delay. - Abstract: In the present experimental study, the combined effects of nanoemulsion and exhaust gas recirculation (EGR) on the performance, combustion and emission characteristics of a single cylinder, four stroke, variable compression ratio diesel engine fueled with neat lemongrass oil (LGO)-diesel-DEE (diethyl ether) blend are investigated. The Neat Lemongrass oil could be used as a new alternate fuel in compression ignition engines without any engine modifications. The entire investigation was conducted in the diesel engine using the following test fuels: emulsified LGO25, cerium oxide blended emulsified LGO25 and DEE added emulsified LGO25 with EGR respectively and compared with standard diesel and LGO25 (75% by volume of diesel and 25% by volume of lemongrass oil) fuels. The combined effect of DEE added nano-emulsified LGO25 with EGR yielded a significant reduction in NO_x and smoke emission by 30.72% and 11.2% respectively compared to LGO25. Furthermore, the HC and CO emissions were reduced by 18.18% and 33.31% respectively than with LGO25. The brake thermal efficiency and brake specific fuel consumption increased by 2.4% and 10.8% respectively than LGO25. The combustion characteristics such as cylinder pressure and heat release rate increased by 4.46% and 3.29% respectively than with LGO25. The combustion duration and ignition delay increase at nano-emulsified LGO25 with DEE and EGR mode but decrease for nano-emulsified LGO25 fuel.

  4. Comparative analysis of emission characteristics and noise test of an I.C. engine using different biodiesel blends

    Science.gov (United States)

    Hossain, Md. Alamgir; Rahman, Fariha; Mamun, Maliha; Naznin, Sadia; Rashid, Adib Bin

    2017-12-01

    Biodiesel is a captivating renewable resource providing the potential to reduce particulate emissions in compressionignition engines. A comparative study is conducted to evaluate the effects of using biodiesel on exhaust emissions. Exhaust smokiness, noise and exhaust regulated gas emissions such as carbon di oxides, carbon monoxide and oxygen are measured. It is observed that methanol-biodiesel blends (mustard oil, palm oil) cause reduction of emissions remarkably. Most of the harmful pollutants in the exhaust are reduced significantly with the use of methanol blended fuels. Reduction in CO emission is more with mustard oil blend compared to palm oil blend. Comparatively clean smoke is observed with biodiesel than diesel. It is also observed that, there is a decrease of noise while performing with biodiesel blends which is around 78 dB whereas noise caused by diesel is 80 dB. Biodiesel, more importantly mustard oil is a clean burning fuel that does not contribute to the net increase of carbon dioxide.

  5. Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface.

    Science.gov (United States)

    Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu

    2015-08-25

    The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.

  6. Influence of electron beam irradiation on the impact properties of polystyrene/EPDM rubber blends

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Sanden, van der M.C.M.; Haan, de J.W.; Ven, van de L.J.M.; Lemstra, P.J.

    1991-01-01

    The influence of electron beam (EB) irradiation on the impact properties of compatibilized polystyrene/ethylene-propylene-diene-monomer (PSIEPDM) blends was studied. The change in impact value upon irradiation proved to be strongly dependent on the type of compatibilizer used. Using a

  7. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  8. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  9. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend

    International Nuclear Information System (INIS)

    Wakil, M.A.; Kalam, M.A.; Masjuki, H.H.; Atabani, A.E.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Short identification of selected biodiesel feedstock. • Review of physicochemical properties for blended biodiesel. • Mathematical model for predicting properties of various biodiesel blends. - Abstract: The growing demand for green world serves as one of the most significant challenges of modernization. Requirements like largest usage of energy for modern society as well as demand for friendly milieu create a deep concern in field of research. Biofuels are placed at the peak of the research arena for their underlying benefits as mentioned by multiple researches. Out of a number of vegetable oils, only a few are used commercially for biodiesel production. Due to various limitations of edible oil, non-edible oils are becoming a profitable choice. Till today, very little percentage of biodiesel is used successfully in engine. The research is still continuing for improving the biodiesel usage level. Recently, it is found that the blended biodiesel from more than one feedstock provides better performance in engine. This paper reviews the physicochemical properties of different biodiesel blends obtained from various feedstocks with a view to properly understand the fuel quality. Moreover, a short description of each feedstock is given along with graphical presentation of important properties for various blend percentages from B0 to B100. Finally, mathematical model is formed for predicting various properties of biodiesel blend with the help of different research data by using polynomial curve fitting method. The results obtained from a number of literature based on this work shows that the heating value of biodiesel is about 11% lower than diesel except coconut (14.5% lower) whereas kinematic viscosity is in the range of 4–5.4 mm 2 /s. Flash point of all biodiesels are more than 150 °C, except neem and coconut. Cold flow properties of calophyllum, palm, jatropha, moringa are inferior to others. This would help to determine important properties of

  10. Evaluation of the therapeutic effect of Nigella sativa crude oil and its blend with omega-3 fatty acid-rich oils in a modified hepatorenal syndrome model in rats

    Directory of Open Access Journals (Sweden)

    Al-Okbi, S. Y.

    2015-12-01

    Full Text Available In the present study, the hepato and reno-protective effect of Nigella sativa crude oil and its binary blend with omega-3 fatty acid-rich oils (fish and flaxseed oils was studied in a modified hepatorenal syndrome model (MHRS in rats. MHRS was induced through feeding a high fructose diet followed by an intraperitoneal injection of galactosamine hydrochloride. Nigella oil and its different blends were given as a daily oral dose to MHRS rats. Two control groups of MHRS and normal healthy rats were run. Different biochemical and nutritional parameters were assessed. The induction of MHRS produced liver and kidney dysfunction, and elevated oxidative stress, an inflammatory biomarker, endothelin 1, and plasma cholesterol. Reduced plasma high density lipoprotein cholesterol, albumin and Ca and elevated urinary N-acetyl-β-D-Glucosaminidase and liver fats were noticed. The administration of Nigella crude oil that originally had 0.2% total omega-3 fatty acids or its blend with fish oil (17.9% omega-3 or flaxseed oil (42.1% omega-3 significantly improved all biochemical parameters of MHRS. There was no significant difference in the biochemical parameters among the different oil treated groups regardless of the omega-3 fatty acid content. This may point out to the potential profound effect of the volatile oil fraction of Nigella crude oil which may compensates for its low omega-3 content.En el presente estudio, el efecto hepato- y reno-protector de aceites crudos de Nigella sativa y su mezcla binaria con aceites ricos en ácidos grasos omega-3 (pescado y aceites de linaza fue estudiado en un modelo modificado de síndrome hepatorenal (MHRS en ratas. MHRS fue inducido a través de la alimentación de una dieta alta en fructosa seguido de la inyección intraperitoneal de clorhidrato de galactosamina. Diferentes aceites fueron suministrados como dosis oral diaria a ratas con MHRS. Se realizaron dos grupos de control de MHRS y ratas sanas normales. Se

  11. Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi Narayana Rao, G.; Sampath, S. [Sri Venkateswara College of Engineering, Sriperumbudur (India); Rajagopal, K. [Jawaharlal Nehru Technological Univ., Hyderabad (India)

    2008-04-01

    Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analyzed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution. Of the various alternate fuels under consideration, biodiesel is the most promising due to the following reasons: (1) Biodiesel can be used in the existing engine without any modifications. (2) Biodiesel is made entirely from vegetable sources; it does not contain any sulfur, aromatic hydrocarbons, metals or crude oil residues. (3) Biodiesel is an oxygenated fuel; emissions of carbon monoxide and soot tend to reduce. (4) Unlike fossil fuels, the use of biodiesel does not contribute to global warming as CO{sub 2} emitted is once again absorbed by the plants grown for vegetable oil/biodiesel production. Thus CO{sub 2} balance is maintained. (5) The Occupational Safety and Health Administration classifies biodiesel as a non-flammable liquid. (6) The use of biodiesel can extend the life of diesel engines because it is more lubricating than petroleum diesel fuel. (7) Biodiesel is produced from renewable vegetable oils/animal fats and hence improves the fuel or energy security and economy independence.

  12. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2008-01-01

    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  13. LENRA as compatibilizer in NR/HDPE blends

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed

    2006-01-01

    Polymer blends of 60/40 NR/RDPE were prepared using Brabender PL2000 Plasticorder with 60 g capacity. The blends were added with radiation-sensitive natural rubber (NR)-based compatibilizer, known as LENRA. They were irradiated with electron-beam radiation at various doses. The efficacy of the compatibilizer was monitored by measuring various properties of the blends such as physical and dynamic mechanical properties including morphological studies by electron microscopic technique. Early results show that the addition of LENRA improves the properties of the TPNR blends. (Author)

  14. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    Science.gov (United States)

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  15. Excessive Additive Effect On Engine Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2014-01-01

    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  16. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  17. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  18. Effect of soy oil, orange (Citrus sinensis) peel oil and their blends on total phospholipid, lipid peroxidation, and antioxidant defense system in brain tissues of normo rats

    Energy Technology Data Exchange (ETDEWEB)

    Erukainure, O.L.; Ajiboye, J.A.; Davis, F.F.; Obabire, K.; Okoro, E.E.; Adenekan, S.O.; Adegbola, M.V.; Awogbemi, B.J.; Odjobo, B.O.; Zaruwa, M.Z.

    2016-07-01

    Soy and orange peel (C. sinensis) oils were fed to albino male rats to determine their effects on malondialdehyde (MDA), total phospholipid (TP) content and oxidative stress biomarkers of brain tissue. Beside mouse chow, four diets were designed to contain 50% of their energy as carbohydrate, 35% as fat, and 15% as protein, and one lipid-free diet which had distilled water substituted for fat. Groups of five rats were each fed one of these diets, while a fifth group was fed pelletized mouse chow. A significant difference (p < 0.05) was observed in the TP of the mouse chow group. The TP was highest (p < 0.05) in those fed the soy and orange peel oil blend as compared to those fed these oils separately. Feeding soy oil led to decreased MDA in brain tissues and influenced the TP content. Significantly lower (p < 0.05) GSH and SOD activities were observed in the groups fed soy oil+orange peel oil, and soy oil diets respectively. Higher significant (p < 0.05) activities were observed in the orange oil fed group. Significantly higher (p < 0.05) catalase activity was observed in the lipid free diet fed group, which was followed by orange peel oil, and soy oil+orange peel oil diets, respectively. A combination of both oils may be useful in the management of certain neurological diseases or illnesses and protect against other oxidative stress complications. (Author)

  19. Compatibility of polyamide 6.6 and low density polyethylene polymeric blend using electron beam ionizing radiation

    International Nuclear Information System (INIS)

    Feitosa, Marcos Antonio Fernandes

    2008-01-01

    The plastic industry has recognized that mixture of polymers, called polymeric blends, yields new materials with improve properties and better features of those of the polymer blended. In most of the cases, blends are formed by immiscible components presenting separated phases, micro-structures or morphologies. One of the main factors for good mechanical performance is the interfacial adhesion of the blend components. The improvement of miscibility between the polymer components and the enhancement of blend performance is denominated of compatibility. This compatibility can be achieved by chemical methods or using ionizing radiation. The present work has as a main objective the study of the effect of the ionizing radiation from electron beam in the compatibility of the polyamide (PA) 6.6 and low density polyethylene (LDPE) 75%/25% wt blend, in the range of applied doses from 50 to 250 kGy. The compatibility effect was evaluated by mechanical test, which has shown improvement in the tensile strength and hardness properties and a reduction of the impact resistant. This mechanical behavior can be considered as a combination effect of the cross-linking, induced in the molecular structure on the polymers, and the increase of the miscibility of the blend components. The degree of compatibility was evaluated by the behavior of the glass transition temperatures (T g ) for the blend components obtained by dynamic mechanical analysis (DMA) measurements. The results have shown that the values of T g for PA 6.6 and LDPE get near by 8 deg C showing that the ionizing radiation have promoted a compatibility effect on the irradiated blend. (author)

  20. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    Science.gov (United States)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  1. LENRA as compatibilizer in NR/HDPE blends

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2004-01-01

    Polymer blends of 60/40 NR/HDPE were prepared using Brabender PL2000 plasticorder with 60g capacity. The blends were added with radiation sensitive natural rubber (NR)-based compatibilizer, known as LENRA. They were irradiated in air with electron beam radiation at various doses. The efficacy of the compatibilizer was monitored by measuring various properties of the blends such as physical and dynamic mechanical properties including morphological studies by electron microscopic technique. Early results show that the addition of LENRA improves the properties of the TPNR blends. (Author)

  2. Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN

    Science.gov (United States)

    Monavarian, Morteza; Hafiz, Shopan; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Heteroepitaxial semipolar and nonpolar GaN layers often suffer from high densities of extended defects including basal plane stacking faults (BSFs). BSFs which are considered as inclusions of cubic zinc-blende phase in wurtzite matrix act as quantum wells strongly affecting device performance. Band alignment in BSFs has been discussed as type of band alignment at the wurtzite/zinc blende interface governs the response in differential transmission; fast decay after the pulse followed by slow recovery due to spatial splitting of electrons and heavy holes for type- II band alignment in contrast to decay with no recovery in case of type I band alignment. Based on the results, band alignment is demonstrated to be of type II in zinc-blende segments in wurtzite matrix as in BSFs.

  3. Attributional and consequential environmental assessment of using waste cooking oil- and poultry fat-based biodiesel blends in urban buses: a real-world operation condition study

    Directory of Open Access Journals (Sweden)

    Mohammad Rajaeifar

    2017-09-01

    Full Text Available Urban public transportation sector in general is heavily dependent on fossil-oriented fuels, e.g., diesel. Given the fact that a major proportion of urban pollution and the consequent threats towards public health are attributed to this sector, serious efforts at both technical and political levels have been being made to introduce less-polluting fueling regimes, e.g., partial replacement of diesel with biodiesel. In line with that, the present study was aimed at evaluating the emissions attributed to 5% blends of waste cooking oil (WCO and poultry fat (PF biodiesel fuels (i.e., B5-WCO and B5-PF fuel blends when used in urban buses during idle operation mode. Moreover, the attributional and consequential environmental impacts of using these fuel blends were also investigated through a well to wheel life cycle assessment (LCA by considering the real-world condition combustion data using ten urban buses. The findings of the ALCA revealed that the application of 1 L B5-WCO fuel blend could potentially reduce the environmental burdens in human health, ecosystem quality, and resources damage categories compared with using the B5-PF fuel blend. The situation was opposite for climate change damage category in which using 1 L B5-PF fuel blend had a lower impact on the environment. Overall, the environmental hotspots in the B5-WCO and B5-PF life cycles were identified as the combustion stage as well as the diesel production and transportation. From the consequential perspective, using 1 L B5-WCO fuel blend could potentially decrease the environmental burdens in human health, ecosystem quality, and resources damage categories. While, the situation was different for climate change damage category where using 1 L B5-PF fuel blend could have a lower impact on the environment. In conclusion, using B5-WCO fuel blend as an alternative for diesel could be an environmentally-friendly decision for the Iranian urban transportation sector at the policy level as long

  4. Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend.

    Science.gov (United States)

    Chen, Huaiqiong; Zhong, Qixin

    2015-05-01

    Microemulsions are suitable for simultaneous delivery of flavour oils and lipophilic bioactive compounds in transparent beverages. In the present study, the feasibility of delivering β-carotene in microemulsions formulated with peppermint oil and a blend of Tween® 20 and various amounts of sunflower lecithin was investigated. The poorly water- and oil-soluble β-carotene was dissolved in the transparent microemulsions that had particles smaller than 10nm and were stable during ambient storage for 65 d. The inclusion of β-carotene did not change the flow-behaviour and Newtonian viscosity. The degradation of β-carotene in microemulsions during ambient storage, ultraviolet radiation, and thermal treatments at 60 and 80 °C followed first order kinetics and was greatly suppressed when compared to the solution control. The antioxidant potential of peppermint oil and a greater content of lecithin in microemulsions enabled the better protection of β-carotene. The studied microemulsions may find various applications in manufacturing transparent beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed,deacidified mixed crude palm oil blends

    Institute of Scientific and Technical Information of China (English)

    Khamphe Phoungthong; Surajit Tekasakul; Perapong Tekasakul; Gumpon Prateepchaikul; Naret Jindapetch; Masami Furuuchi; Mitsuhiko Hata

    2013-01-01

    Mixed crude palm oil (MCPO),the mixture of palm fiber oil and palm kernel oil,has become of great interest as a renewable energy source.It can be easily extracted from whole dried palm fruits.In the present work,the degummed,deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage.The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler.The 50% cut-off aerodynamic diameters for the first three stages were 10,2.5 and 1 μm,while the last stage collected all particles smaller than 1 μm.Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography.The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 μm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings),especially pyrene.The mass median diameter,PM and total PAH concentrations decreased when increasing the palm oil content,but increased when the running hours of the engine were increased.In addition,Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges.As the palm oil was increased,the BaPeq decreased gradually.Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  6. Orientation and properties of the blends on high-molecular mass polyacrylonitrile with trihydroxyethylenedimethacrylate under electron irradiation

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1998-01-01

    Molecular orientation of the drawn blends of high- molecular-mass poly(acrylonitrile) containing 5-50 wt % of trihydroxyethylenedimethacrylate and a change in the orientation of the drawn samples upon irradiation with accelerated electrons was studied by methods of birefringence, isometric heating, and IR dichroism. The degree of orientation of the unirradiated blends containing certain amounts of oligomer exceed that of the individual polymer. In the region of large drawing ratios, the differential degree of orientation of the polymer matrix is not affected by the irradiation, while the orientation of the oligomer component increase. High values of the strength (600-730 MPa) and the modulus (18-22 GPa) of the compositions are due to the presence of a crystalline skeleton formed by unfolded chains of the polymer matrix stabilized by the electron irradiation induced cross-linking

  7. Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV

    NARCIS (Netherlands)

    Offermans, T.; Hal, van P.A.; Meskers, S.C.J.; Koetse, M.M.; Janssen, R.A.J.

    2005-01-01

    The photophysical properties of a solution processed blend of two semiconducting polymers with electron donating and electron accepting properties, respectively, as used in polymer photovoltaic devices have been investigated. We show that in the binary mixture of

  8. Effects of electron beam irradiation on the property behaviour of poly(ether-block-amide) blended with various stabilisers

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; Barron, Valerie; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2015-01-01

    Radiosterilisation can induce modifications and/or degradation to transpire in poly(ether-block-amide) (PEBA) following irradiation. The current investigation utilises combined synergistic mixtures of stabilisers to minimise these effects, by melt blending them with the PEBA material. Hindered amine stabilisers (HAS), primary antioxidants and secondary antioxidants were the stabilisers incorporate to reduce/eliminate the effects of 50 kGy electron beam irradiation dose on the material. Results were discussed by comparing the stabilising efficiency of mixtures on the PEBA material in contrast to the control sample. Dynamic frequency sweeps demonstrated the formation of crosslinks, where the degree of crosslinking was dependent on the combination of stabilisers mixed in the base material (PEBA). The storage modulus displayed that PEBA blended with Irganox 565 had very slight changes in contrast to all other samples following irradiation. However, since this sample is a phenol containing system, severe discolouration was observed in comparison to other samples due to the oxidation of the hindered phenol. Overall, this study provides compelling evidence that a combined synergistic mixture of Irganox 565 (multifunctional phenolic antioxidant) and Tinuvin 783 (hindered amide light stabiliser) with PEBA, resulted in the best radiation stability. - Highlights: • PEBA was melt blended with various stabilisers. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • The incorporation of stabilisers into the PEBA material resulted in discolouration. • PEBA blended with Irganox 565 and Tinuvin 783 improved the radiation resistance

  9. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  10. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    Science.gov (United States)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p0.05) between G3 on day 0 and 56 days for total cholesterol. Meanwhile, total plasma HDLcholesterol content of rats fed with C8:0 was significantly higher (pstructured lipids effectively altered the plasma cholesterol levels of experimental rats.

  11. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    International Nuclear Information System (INIS)

    Siddiqua, Poppy; O'Leary, Stephen K.

    2016-01-01

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  12. Characterization of electron beam irradiated collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX) blends

    International Nuclear Information System (INIS)

    Dumitrascu, M.; Sima, E.; Minea, R.; Vancea, C.; Meltze, V.; Albu, M.G.

    2011-01-01

    Complete text of publication follows. The aim of the present study was to investigate the influence of electron beam irradiation on some blends of collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX). The blends were prepared by mixing different quantities of collagen, PVP and DEX in distilled water. After irradiation the obtained hydrogels were processed by controlled drying and freeze-drying. Both types of materials were characterized by FT-IR, FT-Raman, TG, DSC, water uptake and SEM. The intensity of the characteristic bands, in the range 2800-3600 cm -1 from FT-IR spectra, varied considerably as function of absorbed radiation dose. Raman spectra revealed the absence of the characteristic peak at 2700 cm -1 for irradiated blends at 30 kGy. Kinetic parameters were calculated from the TG, DTG and DSC data by means of isoconversion methods at different heating rates. Thereby a relation between absorbed radiation dose and activation energy was established. Water uptake studies were carried out in PBS solution (phosphate buffer saline) at 37 deg C and pH = 7.4 and the results revealed a decrease of the water uptake with increasing of absorbed radiation dose.

  13. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    Science.gov (United States)

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p  0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  14. Impact of palm biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Fazal, M.A.; Khan, Abdul Faheem; Fayaz, H.; Varman, M.

    2013-01-01

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NO x emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  15. Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels

    Directory of Open Access Journals (Sweden)

    Cherng-Yuan Lin

    2013-09-01

    Full Text Available Biodiesel produced from vegetable oils, animal fats and algae oil is a renewable, environmentally friendly and clean alternative fuel that reduces pollutants and greenhouse gas emissions in marine applications. This study investigates the influence of biodiesel blend on the characteristics of residual and distillate marine fuels. Adequate correlation equations are applied to calculate the fuel properties of the blended marine fuels with biodiesel. Residual marine fuel RMA has inferior fuel characteristics compared with distillate marine fuel DMA and biodiesel. The flash point of marine fuel RMA could be increased by 20% if blended with 20 vol% biodiesel. The sulfur content of residual marine fuel could meet the requirement of the 2008 MARPOL Annex VI Amendment by blending it with 23.0 vol% biodiesel. In addition, the kinematic viscosity of residual marine fuel could be reduced by 12.9% and the carbon residue by 23.6% if 20 vol% and 25 vol% biodiesel are used, respectively. Residual marine fuel blended with 20 vol% biodiesel decreases its lower heating value by 1.9%. Moreover, the fuel properties of residual marine fuel are found to improve more significantly with biodiesel blending than those of distillate marine fuel.

  16. Decomposition of PCBs in transformer oil using an electron beam accelerator

    International Nuclear Information System (INIS)

    Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung

    2012-01-01

    Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments. - Highlights: ► We developed a novel technology of decomposing PCBs in transformer oil using an electron beam. ► Distinct feature is accomplishing at ambient temperature and pressure without any additives. ► Residual PCBs were depended on absorption dose, but aliphatic chlorides were produced at higher dose. ► Treated oil can be reused as heating oil with chlorine removal technology developed here.

  17. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  18. Analytical Characterization of Butter Oil Enriched with Omega-3 and 6 Fatty Acid Sthrough Chia (Salvia hispanica L.) Seed Oil

    OpenAIRE

    Muhammad Nadeem; Muhammad Ajmal; Fazal Rahman; Muhammad Ayaz

    2015-01-01

    Analytical characterization of blends of butter oil and chia (Salvia hispanica L.) seed oil was performed. Chia oil was added in butter oil at four different levels i.e. 6.25%, 12.5%, 18.75% and 25% (T1, T2, T3 and T4), butter oil without any addition of chia oil served as control. Blends of butter oil and chia oil were packaged in tin containers, stored at ambient temperature (34±2oC) for 90-days. Iodine values of control, T1, T2, T3 and T4 were 36.85, 45.63, 57.22, 67.45 and 76.37 (cg/g).Co...

  19. Quantification of extra virgin olive oil in dressing and edible oil blends using the representative TMS-4,4'-desmethylsterols gas-chromatographic-normalized fingerprint.

    Science.gov (United States)

    Pérez-Castaño, Estefanía; Sánchez-Viñas, Mercedes; Gázquez-Evangelista, Domingo; Bagur-González, M Gracia

    2018-01-15

    This paper describes and discusses the application of trimethylsilyl (TMS)-4,4'-desmethylsterols derivatives chromatographic fingerprints (obtained from an off-line HPLC-GC-FID system) for the quantification of extra virgin olive oil in commercial vinaigrettes, dressing salad and in-house reference materials (i-HRM) using two different Partial Least Square-Regression (PLS-R) multivariate quantification methods. Different data pre-processing strategies were carried out being the whole one: (i) internal normalization; (ii) sampling based on The Nyquist Theorem; (iii) internal correlation optimized shifting, icoshift; (iv) baseline correction (v) mean centering and (vi) selecting zones. The first model corresponds to a matrix of dimensions 'n×911' variables and the second one to a matrix of dimensions 'n×431' variables. It has to be highlighted that the proposed two PLS-R models allow the quantification of extra virgin olive oil in binary blends, foodstuffs, etc., when the provided percentage is greater than 25%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  1. Binary blend Nanoparticles with defined morphology

    International Nuclear Information System (INIS)

    Ghazy, O.A.H.

    2008-01-01

    The word blend in linguistics means a word formed from two parts of two words. In polymer science polymer blends means polymer mixtures, a class of materials analogues to the metal alloys. Blending of polymers is a simple and economic way to create new materials meeting specific desired properties. The other alternative is to synthesize such materials eventually facing the organic chemistry design difficulties. The low entropy of mixing polymers makes the process thermodynamically unfavorable, unless there are some specific interactions between the mixed polymers. As a result, in thermal equilibrium typically a phase separation between the blend components takes place. The main challenge facing the blending of polymers is the control of the length scale of the phase separation. One of the most important applications, where the control of the phase separation is crucial for the performance is the organic solar cells. In organic solar cells a blend of an electron donating polymer and electron accepting one is formed. The dimensions of the phase separation between the two polymers should be in the range of the exciton diffusion length [1-3] (in semiconductors, exciton diffusion length is the average distance traveled by the electron-hole pair before recombination). Only under this condition the charge transfer at the interface between the two polymer layers can take place and the solar cell performs efficiently. The thin polymer blend layers for such applications are commonly deposited by spin coating from solution containing both polymers. The morphology of the thin layer prepared in this way is highly influenced by the preparation conditions such as the surface properties of the substrate, the solvent from which the blend was deposited, the temperature, and the annealing temperature [4-9]. Therefore controlling the length scale of phase separation in layers casted or spin coated from solutions is difficult and is a matter of trials and errors. Recently a novel

  2. Artesunate-induced testicular injury: Oil from selected spices blend modulates redox homeostasis and exacerbates steroidogenesis in rat models

    Directory of Open Access Journals (Sweden)

    John A. Ajiboye

    2016-12-01

    Full Text Available The therapeutic potential of oil from blends of selected culinary spices against artesunate-induced testicular injury in albino rats was investigated. Two groups of rats each were pretreated with the oil at 1.5 and 3.00 mL respectively for seven days and after which administered artesunate (100 mg/kg bw for seven days; two other groups were administered artesunate for seven days and after which post treated with the oil at both doses respectively for another seven days; another groups were co-administered artesunate and the oil for seven days. A group was administered artesunate only for seven days, while another was fed chows only. After sacrifice, the testicular homogenates of the rats were analysed for GSH, Superoxide Dismutase (SOD, Catalase (CAT, Lipid peroxidation (LPO, 3β-HSD and 17β-HSD activities. LPO and GSH levels, SOD and CAT activities were significantly (p < 0.05 higher in rats administered artesunate only, these were significantly lowered in all treatment groups. Administration of artesunate significantly suppressed steroidogenesis, this was attenuated in all treatment groups. The antioxidant, anti-lipid peroxidative and steriodogenetic effects of the oil indicate its protective potential against artesunate-induced oxidative testicular damage.

  3. First performance assessment of blends of jatropha, palm oil and soya bean biodiesel with kerosene as fuel for domestic purposes in rural-Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Quansah, E.; Preko, K.; Amekudzi, L.K. [Department of Physics, Kwame Nkrumah, University of Science and Technology (KNUST), University Post Office, PMB Kumasi (Ghana)

    2011-07-01

    Performance assessments of jatropha, palm oil and soya bean based biodiesel were carried out to investigate their potential use as conventional substitute for kerosene for domestic purposes in rural- Ghana. The assessments were done by comparing some of the combustion characteristics of blends of the biodiesel with kerosene. The blends were categorised as B100 (100% biodiesel), B80 (80% biodiesel and 20% kerosene), B60 (60% biodiesel and 40% kerosene), B40 (40% biodiesel and 60% kerosene), B20 (20% biodiesel and 80% kerosene) and B0 (pure kerosene). The results showed that the calorific values of the B100s were less than that of the B0 and decreasing in the order of jatropha, soya bean and palm oil. The wick wastage results for both the B100s and B0, revealed higher rates in the WTL than the BB even though the BB recorded low fuel consumption rates than the WTL for both B100s and B0. Similarly, the luminous intensity test with the B100s showed low values in WTL than the BB in a decreasing order of jatropha, soya bean and palm oil. However, B0 recorded higher luminous intensity values that were quite comparable in both WTL and BB.

  4. Study of oxidation stability of Jatropha curcas biodiesel/ diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand- 247667 (India)

    2011-07-01

    Biodiesel production is undergoing rapid technological reforms in industries and academia. This has become more obvious and relevant since the recent increase in the petroleum prices and the growing awareness relating to the environmental consequences of the fuel overdependency. However, the possibilities of production of biodiesel from edible oil resources in India is almost impossible, as primary need is to first meet the demand of edible oil that is already imported therefore it is essential to explore non-edible seed oils, like Jatropha curcas and Pongamia as biodiesel raw materials. The oxidation stability of biodiesel from Jatropha curcas oil is very poor. Therefore the aim of the present paper is to study the oxidation stability of Jatropha curcas biodiesel/ diesel blend. Also the effectiveness of various antioxidants is checked with respect to various blends of biodiesel with diesel.

  5. Impact of Blending on Strength Distribution of Ambient Cured Metakaolin and Palm Oil Fuel Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Taliat Ola Yusuf

    2014-01-01

    Full Text Available This paper investigates the influence of blending of metakaolin with silica rich palm oil fuel ash (POFA on the strength distribution of geopolymer mortar. The broadness of strength distribution of quasi-brittle to brittle materials depends strongly on the existence of flaws such as voids, microcracks, and impurities in the material. Blending of materials containing alumina and silica with the objective of improving the performance of geopolymer makes comprehensive characterization necessary. The Weibull distribution is used to study the strength distribution and the reliability of geopolymer mortar specimens prepared from 100% metakaolin, 50% and 70% palm and cured under ambient condition. Mortar prisms and cubes were used to test the materials in flexure and compression, respectively, at 28 days and the results were analyzed using Weibull distribution. In flexure, Weibull modulus increased with POFA replacement, indicating reduced broadness of strength distribution from an increased homogeneity of the material. Modulus, however, decreased with increase in replacement of POFA in the specimens tested under compression. It is concluded that Weibull distribution is suitable for analyses of the blended geopolymer system. While porous microstructure is mainly responsible for flexural failure, heterogeneity of reaction relics is responsible for the compression failure.

  6. The influence of electron beam irradiation on the mechanical and thermal properties of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    High energy electron beam irradiation of Poly (ether-block-amide) (Pebax) can induce modifications and/or degradation to transpire in the material subsequent to treatment. To minimise this, Pebax was blended with three stabilisers where each formulation was subjected to electron beam radiation at doses of 25, 50 and 75 kGy. Mechanical testing revealed that the virgin Pebax and the Pebax blended with Irganox B215 provided the best radiation resistance in terms of the tensile strength, elongation at break and Young's modulus. Upon increase in radiation dose from 25 to 75 kGy, a gradual diminution was observed for the melt flow index (MFI) of the virgin Pebax, whereas Pebax blended with Irganox B215 had a minute effect on the properties post irradiation. This study provides evidence that the stabilisers used can either promote undesirable effects or enhance the radiation resistance of Pebax material following radiation exposure. Highlights: • Mechanical properties of Pebax and Irganox 565 can be controlled by radiation dose • Virgin Pebax and Pebax blended with Irgnaox B215 provides good radiation resistance • MFI decreases gradually for the Virgin Pebax with an increase in radiation dose • Molecular weight of Pebax and Irganox B215 is less effected by radiation dose • Simultaneous chain scission and crosslinking/branching occurs during irradiation

  7. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-01-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  8. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-06-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  9. Effect of electron beam irradiation on the thermal properties of polycarbonate / polyester blend

    International Nuclear Information System (INIS)

    Zarie, K.A.

    2007-01-01

    The effect of electron beam irradiation on the thermal properties of Bayfol (polycarbonate/polyester blend) solid state nuclear track detector (SSNTD) was investigated. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) to obtain the activation energy of thermal decomposition for Bayfol detector. The thermogravimetric analysis (TGA) indicated that the Bayfol samples were decomposed in one main break down stage. Samples of 250 μm thickness sheets were exposed to electron beam irradiations in the dose range 20-600 KGy. The variation of melting temperatures with the electron dose was determined using differential thermal analysis (DTA). The results indicated that the electron irradiation in the dose range 200-600 KGy decreases the melting temperature of the Bayfol samples and this is most suitable for applications requiring the molding of this polymer at lower temperatures

  10. Innovation on Street Food Products (Instant Porridge and Cookies Based on Fortified Patin Fish Protein Concentrate with Red Palm Oil and Encaptulated Oil Fish

    Directory of Open Access Journals (Sweden)

    Dewita Dewita

    2015-02-01

    Full Text Available This research aimed to establish innovation on street food (instant porridge and cookiesfrom Patin Fish Protein Concentrate fortified by blending red palm oil and encaptulated patinfish’s oil. The Encaptulation was conducted by blending of red palm oil and patin fish’s oil usingspray dryer. The blending was consisted of three combinations namely 50 : 50 (A1, 40 : 60 (A2and 60 : 40 (A3 for ratio between red palm oil and patin fish’s oil. The best combination’s resultswas fortified into street food (instant porridge and cookies. The blending was tested by measureyield, fat and fatty acid profile. Moreover, organoleptics and proximate tests were carrie out for thebest treatment of blending in instant porridge and cookies. The results show that encaptulatedyield reached 55 % that rise from A1 treatment as the best treatment with fat content of 17.26%.Profile of unsaturated fatty acid especially fatty acid omega 9 from blending fish oil and palm oilwas 59.29%. The number of fatty acid omega 9 was higher than saturated fatty acid which was18.56%. Furthermore, based on organoleptic tests of instant porridge and cookies using under fiveyear children respondents, it was proven that 93% of children was like the products. Proximate analysis of instant porridge revealed that protein content was 11.04 %, water content was 5.03%,fat content was 1.92 % and ash was 0.64 %. However, proximate analysis showed that cookiesowned protein of 9.11%, fat of 17.03% , water content was 3.93% and ash of 1.38%.Keywords : Encaptulated fish, street food, patin fish protein concentrate, palm oil

  11. Innovation on Street Food Products (Instant Porridge and Cookies Based on Fortified Patin Fish Protein Concentrate with Red Palm Oil and Encaptulated Oil Fish

    Directory of Open Access Journals (Sweden)

    Dewita

    2016-02-01

    Full Text Available This research aimed to establish innovation on street food (instant porridge and cookies from Patin Fish Protein Concentrate fortified by blending red palm oil and encaptulated patin fish’s oil. The Encaptulation was conducted by blending of red palm oil and patin fish’s oil using spray dryer. The blending was consisted of three combinations namely 50 : 50 (A1, 40 : 60 (A2 and 60 : 40 (A3 for ratio between red palm oil and patin fish’s oil. The best combination’s results was fortified into street food (instant porridge and cookies. The blending was tested by measure yield, fat and fatty acid profile. Moreover, organoleptics and proximate tests were carrie out for the best treatment of blending in instant porridge and cookies. The results show that encaptulated yield reached 55 % that rise from A1 treatment as the best treatment with fat content of 17.26%. Profile of unsaturated fatty acid especially fatty acid omega 9 from blending fish oil and palm oil was 59.29%. The number of fatty acid omega 9 was higher than saturated fatty acid which was 18.56%. Furthermore, based on organoleptic tests of instant porridge and cookies using under five year children respondents, it was proven that 93% of children was like the products. Proximateanalysis of instant porridge revealed that protein content was 11.04 %, water content was 5.03%, fat content was 1.92 % and ash was 0.64 %. However, proximate analysis showed that cookies owned protein of 9.11%, fat of 17.03% , water content was 3.93% and ash of 1.38%.

  12. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  13. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  14. Decomposition of PCBs in transformer oil using an electron beam accelerator

    Science.gov (United States)

    Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung

    2012-07-01

    Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.

  15. Improving oxidative stability of liquid fish oil supplements for pets

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Griinari, Mikko; Jacobsen, Charlotte

    2017-01-01

    oxidative stability to the same extent as 2000 ppm mixed tocopherols in Oxipres. Overall, oxidative stability of fish oil or fish oil + vegetable oil blends was improved the most by addition of 5000 ppm rosemary extract and 500 ppm mixed tocopherols. A commercial oil blend with composition optimized based...... of fish oil by adding vegetable oils, mixed tocopherols and rosemary extract, and to formulate a commercial product according to the results obtained. The formulated product was evaluated against commercial fish oil products. An initial screening for antioxidative effect was performed by using Oxipres...... equipment. The effect of antioxidant and vegetable oil blends was examined in oils stored at 30 and 40°C by measuring peroxide value, volatile compounds with GC-MS and tocopherol content. Addition of vegetable oil and rosemary extract at high level (4000–6000 ppm) plus 600 ppm of mixed tocopherols increased...

  16. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  17. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  19. Certain investigation in a compression ignition engine using rice bran methyl ester fuel blends with ethanol additive

    Directory of Open Access Journals (Sweden)

    Krishnan Arumugam

    2017-01-01

    Full Text Available In this study and analysis, the physical properties such as calorific value, viscosity, flash, and fire point temperatures of rice bran oil methyl ester were found. The rice bran oil biodiesel has been prepared by transesterification process from pure rice bran oil in the presence of methanol and NaOH. Moreover, property enhancement of rice bran oil methyl ester was also made by adding different additives such as ethanol in various proportions. Rice bran oil methyl ester with 1, 3, and 5% ethanol were analyzed for its fuel properties. The effects of diesel-B20ROME blends with ethanol additive of 1, 3, and 5% on a compression ignition engine were examined considering its emissions. It is found that the increase in biodiesel concentration in the fuel blend influences CO2 and NOx emissions. On the other hand CO and HC emissions are reduced. It is interesting to observe the emission as ethanol-B20ROME blends, reduces CO2 and NOx which are the major contributors to global warming. As the NOx and CO2 can be reduced drastically by the proposed blends, the global warming can be reduced considerably.

  20. Electron beam pasteurised oil palm waste: a potential feed resource

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Hassan Hamdani Mutaat; Tamikazu Kume; Tachibana, H.

    2002-01-01

    Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

  1. Image analysis for composition monitoring. Commercial blends of olive and soybean oil - doi: 10.4025/actascitechnol.v35i2.15216

    Directory of Open Access Journals (Sweden)

    Jessica Kehrig Fernandes

    2013-04-01

    Full Text Available Olive oil represents an important component of a healthy and balanced dietary. Due to commercial features, characterization of pure olive oil and commercial mixtures represents an important challenge. Reported techniques can successfully quantify components in concentrations lower than 1%, but may present long delays, too many purification steps or use expensive equipment. Image analysis represents an important characterization technique for food science and technology. By coupling image and UV-VIS spectroscopy analysis, models with linear dependence on parameters were developed and could successfully describe the mixture concentration in the range of 0-100% in mass of olive oil content. A validation sample, containing 25% in mass of olive oil, not used for parameter estimation, was also used for testing the proposed procedure, leading to a prediction of 24.8 ± 0.6. Due to image analysis results,  3-parameter-based models considering only R and G components were developed for olive oil content prediction in mixtures with up to 70% in mass of olive oil, the same test sample was used and its concentration was predicted as 24.5 ± 1.2. These results show that image analysis represents a promising technique for on-line/in-line monitoring of blending process of olive soybean oil for commercial mixtures.  

  2. Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors

    International Nuclear Information System (INIS)

    Gadisa, Abay; Zhang, Fengling; Sharma, Deepak; Svensson, Mattias; Andersson, Mats R.; Inganaes, Olle

    2007-01-01

    The photovoltaic characteristics of solar cells based on alternating polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothia diazole)) (APFO-3), and poly(2,7-(9,9-didodecyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothiadiazole)) (APFO-4), blended with an electron acceptor fullerene molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), have been investigated and compared. The two copolymers have the same aromatic backbone structure but differ by the length of their alkyl side chain. The overall photovoltaic performance of the solar cells is comparable irrespective of the copolymer used in the active layer. However, the fill factor (FF) values of the devices are strongly affected by the copolymer type. Higher FF values were realized in solar cells with APFO-4 (with longer alkyl side chain)/PCBM bulk heterojunction active layer. On the other hand, devices with blends of APFO-3/APFO-4/PCBM were found to render fill factor values that are intermediate between the values obtained in solar cells with APFO-3/PCBM and APFO-4/PCBM active film. Upon using APFO-3/APFO-4 blends as electron donors, the cell efficiency can be enhanced by about 16% as compared to cells with either APFO-3 or APFO-4. The transport of holes in each polymer obeys the model of hopping transport in disordered media. However, the degree of energetic barrier against hopping was found to be larger in APFO-3. The tuning of the photovoltaic parameters will be discussed based on studies of hole transport in the pure polymer films, and morphology of blend layers. The effect of bipolar transport in PCBM will also be discussed

  3. Radiation crosslinking of polymer blends

    International Nuclear Information System (INIS)

    Spenadel, L.

    1979-01-01

    Rocked by the one-two punch of rising energy costs and tougher pollution controls, a growing number of companies are looking to radiation crosslinking as a cheaper, cleaner alternative to heat and costly chemical crosslinking agents such as peroxides. With the development of larger, more powerful electron beam machines it is now possible to irradiate parts as thick as 400 mils in a single pass. Two application areas which have been investigated at our laboratory are the electron beam processing of thermoplastic elastomeric automotive parts and EPDM electrical insulation. This paper covers work carried out to develop the necessary technology base for the radiation crosslinking of ethylene propylene/polyolefin blends. Initial results indicate that EP/PE blends of electrical insulation quality cross-link quite readily when irradiated. On the other hand, EP/PP blends developed for automotive fascia require the addition of crosslinking monomers such as trimethylol propane trimethacrylate in order for crosslinking to predominate over chain scission. Crosslinking EP/PP blends improve mar resistance, flexural set and deformation at elevated temperatures. These are all key properties for automotive fascia. (author)

  4. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    Science.gov (United States)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  5. Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities

    International Nuclear Information System (INIS)

    Andersson, Jim; Furusjö, Erik; Wetterlund, Elisabeth; Lundgren, Joakim; Landälv, Ingvar

    2016-01-01

    Highlights: • Biomethanol from co-gasified black liquor and pyrolysis oil at different capacities. • Enables higher biofuel production for given available amount of black liquor. • Opportunity for cost efficient black liquor gasification also in small pulp mills. • The methanol can be cost competitive to 2nd generation ethanol and fossil fuels. • Fewer pulp mills would need to be converted to meet given biofuel demand. - Abstract: The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed. It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment

  6. Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure

    International Nuclear Information System (INIS)

    Feng, X.; Garboczi, E.J.; Bentz, D.P.; Stutzman, P.E.; Mason, T.O.

    2004-01-01

    A scanning electron microscope (SEM) point-counting technique was employed to study the hydration of plain portland and blended cement pastes containing fly ash or slag. For plain portland cement pastes, the results for the degree of cement hydration obtained by the SEM point-counting technique were consistent with the results from the traditional loss-on-ignition (LOI) of nonevaporable water-content measurements; agreement was within ±10%. The standard deviation in the determination of the degree of cement hydration via point counting ranged from ±1.5% to ±1.8% (one operator, one sample). For the blended cement pastes, it is the first time that the degree of hydration of cement in blended systems has been studied directly. The standard deviation for the degree of hydration of cement in the blended cement pastes ranged from ±1.4% to ±2.2%. Additionally, the degrees of reaction of the mineral admixtures (MAs) were also measured. The standard deviation for the degree of fly ash reaction was ±4.6% to ±5.0% and ±3.6% to ±4.3% for slag. All of the analyses suggest that the SEM point-counting technique can be a reliable and effective analysis tool for use in studies of the hydration of blended cement pastes

  7. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  8. The roles of liquid epoxidized natural rubber acrylate (LENRA) as compatibiliser in NR/HDPE blends: structural studies by electron microscopy and SANS techniques

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed; Abdul Aziz Mohamed

    2006-01-01

    Further works have been carried out to determine the roles of LENRA in inducing compatibility between immiscible blends of NR/HDPE 60/40. In addition to electron microscopy images, SANS technique has been used to determine the interface thickness between the blend components. Phase-separated structures of HDPE domain embedded in NR matrix were observed by electron microscopy technique. From the results so far, the combination of 15% LENRA and 200 kGy EB radiation gives us the best Porod plot indicating the more meaningful SANS results. (Author)

  9. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.

    2014-01-01

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NO x emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  10. The impact of oil dispersant solvent on performance

    International Nuclear Information System (INIS)

    Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.; Becker, K.W.; Daling, P.S.

    1995-01-01

    Modern oil spill dispersant formulations are concentrated blends of surface active agents (surfactants) in a solvent carrier system. The surfactants are effective for lowering the interfacial tension of the oil slick and promoting and stabilizing oil-in-water dispersions. The solvent system has 2 key functions: (1) reduce viscosity of the surfactant blend to allow efficient dispersant application, and (2) promote mixing and diffusion of the surfactant blend into the oil film. A more detailed description than previously given in the literature is proposed to explain the mechanism of chemical dispersion and illustrate how the surfactant is delivered by the solvent to the oil-water interface. Laboratory data are presented which demonstrate the variability in dispersing effectiveness due to different solvent composition, particularly for viscous and emulsified test oils with viscosities up to 20,500 mPa·s. Other advantages of improved solvent components can include reduced evaporative losses during spraying, lower marine toxicity and reduced protective equipment requirements. Through this improved understanding of the role of the solvent, dispersants which are more effective over a wider range of oil types are being developed

  11. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  12. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  13. Potential Application of ENR/EPDM Blends

    Directory of Open Access Journals (Sweden)

    B.L. Chan

    2017-06-01

    Full Text Available Since the process and conversion of natural rubber into epoxidized natural rubber (ENR was discovered and patented by I. R. Gelling of the Malaysian Rubber Product Research Association  (or now known as the Tun Razak laboratory, Brickendonbury, Hertford, in the United Kingdom, there are more than 10 000 technical and technological papers cited in the internet. Information on ENR is available, not only in the the English language but also other languages like Chinese, Malay, French, Thai and even German languages are used. NR is the most versatile and reactive rubber/elastomer. It is an advanced natural rubber which could be potentially used as a starting material for the development of other rubbers, modifie elastomers, for grafting, plastic-based materials and also thermoplastic rubbers. Its reactivity is dependent on its epoxy groups, the opening of its ring structure, and also the subsequent structures of carboxylic groups and the in-situ side-chains “carbon – carbon” double bonds (> C = C <. In some instances, up to 65% epoxidation of NR is possible and achieved for more oil resistance. For these reasons, there are many new and advanced materials which have been formed and developed in the last two decades. Among them, some of the recent research work is listed here. Apart from studies of compounding the ENR itself and its potential uses, there are many rubber-rubber blends and ENR rubber-plastics blends, some of the studies cited are “uses of new and advanced chemicals”  and synthetic rubbers:  ENR/NBR, ENR/PVC, ENR/polylactic acid blends, ENR/copolyester blends, ENR/Copolyamide Blends, ENR/poly (vinylidene fluorideblends, ENR/Carbon Nanotubes with co-agent Trimethylol Propane Triacrylate, ENR /recycled silicon materials, and ENR/copolymer of n-butyl acrylate/butyl methacrylate “grafted”. Each of these blends has its own characteristics in terms of processing, enhancement of processing like safety, scorch, oil and water

  14. Morphology Evolution of Polycarbonate-Polystyrene Blends During Compounding

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, Kristoffer; Johannsen, Ib

    2001-01-01

    The morphology evolution of polycarbonate-polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, re-melt blending in a twin-screw extruder and tri-melt blending in an injection-moulding machine, was investigated using......-empirical model. The results show that the formation of co-continuous morphology strongly depends on blend composition and melt blending method, whereas the model prediction for phase inversion deviates from the experimental values. Further, we found that the initial mechanism of morphology evolution involves...... scanning electron microscopy (SEM) Co examine nine blend compositions. Blends were prepared at compositions where phase inversion was expected to occur according to model predictions. The experimental results were compared to the values of the point of phase inversion calculated with the semi...

  15. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  16. Vitamin E Contents and Oxidative Stability of Red Palm Oils Blended Chicken Nuggets during Frozen Storage

    International Nuclear Information System (INIS)

    Nurkhuzaiah Kamaruzaman; Abdul Salam Babji; Wan Rosli Wan Ismail; Peng, F.S.

    2015-01-01

    Red Palm Oil (RPO) has a high oxidative stability and contains high levels of natural antioxidants, such as vitamin E and carotenoids. In this study, Vitamin E contents and lipid oxidation of chicken nuggets blended with red palm oil consist of NVRO, NVRO-100 and NVRO-50 were compared against the control chicken fat treatment, each containing 10 % fat. Vitamin E contents, thiobarbituric acid (TBA) values and peroxide values (PV) for all samples were measured throughout 4 months of storage at -18 degree Celsius. All the vitamin E homologues were decreased. α-tocopherol and α-tocotrienol decreased faster meanwhile δ-tocopherol decreased slower than other homologues. Besides that, Vitamin E content in NVRO and NVRO-100 was significantly decreased (p<0.05) from 767.15 to 482.14 μg/ g and 842.73 to 672.36 μg/ g respectively. TBA and PV values for all samples chicken nuggets increased throughout 3 months of frozen storage but started to decrease thereafter. However, chicken nuggets formulated with NVRO, NVRO-100 and NVRO-50 significantly reduced (p<0.05) TBA and PV values compared with chicken fat treatments. This study showed that frozen storage influence vitamin E stability and the potential of utilization of red palm oils in improving nutritional quality and reducing lipid oxidation of chicken nugget. (author)

  17. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  18. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  19. [Rapid discriminating hogwash oil and edible vegetable oil using near infrared optical fiber spectrometer technique].

    Science.gov (United States)

    Zhang, Bing-Fang; Yuan, Li-Bo; Kong, Qing-Ming; Shen, Wei-Zheng; Zhang, Bing-Xiu; Liu, Cheng-Hai

    2014-10-01

    In the present study, a new method using near infrared spectroscopy combined with optical fiber sensing technology was applied to the analysis of hogwash oil in blended oil. The 50 samples were a blend of frying oil and "nine three" soybean oil according to a certain volume ratio. The near infrared transmission spectroscopies were collected and the quantitative analysis model of frying oil was established by partial least squares (PLS) and BP artificial neural network The coefficients of determina- tion of calibration sets were 0.908 and 0.934 respectively. The coefficients of determination of validation sets were 0.961 and 0.952, the root mean square error of calibrations (RMSEC) was 0.184 and 0.136, and the root mean square error of predictions (RMSEP) was all 0.111 6. They conform to the model application requirement. At the same time, frying oil and qualified edible oil were identified with the principal component analysis (PCA), and the accurate rate was 100%. The experiment proved that near infrared spectral technology not only can quickly and accurately identify hogwash oil, but also can quantitatively detect hog- wash oil. This method has a wide application prospect in the detection of oil.

  20. Determination of gel content and SEM morphology for sago-PVA blends film

    International Nuclear Information System (INIS)

    Sarada Idris; Zulkafli Ghazali; Kamarudin Hashim

    2006-01-01

    Blends of polyvinyl alcohol and sago starch have been prepared to evaluate the potential of producing biodegradable products. Glycerol was introduced in the blends to improve the flexibility of the films as plasticizer in order more flexible film. These blends have been subjected to electron beam irradiation to evaluate and characterized radiation effect on the blends. Subsequently films were produced from this blend. The gel content of un-irradiated and irradiated films as evidence of cross linking was measured and discussed. This paper also discuss the films morphology from Scanning Electron Microscopy(SEM) observation. (Author)

  1. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  2. Comparative toxicology of four crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, L.M.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology; Brown, R.S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2003-07-01

    Fish that are chronically exposed to polycyclic aromatic hydrocarbons (PAHs) exhibit dioxin-like toxicity characterized by blue sac disease and the induction of cytochrome P4501A (CYP1A). This study compared the relative toxicity of four crude oils (Scotian Shelf, MESA, the synthetic Alberta Sweet Mixed Blend, and Alaskan North Slope Crude Oil), in causing the disease in rainbow trout embryos living in simulated spawning beds with hydrocarbon-contaminated gravel. Each oil had different chemical characteristics and PAH concentrations. The study confirmed the assumption that the Alberta Sweet Mixed Blend would be the most toxic due to its high PAH concentration. The results suggest that the main cause of toxicity in crude oil is due to the presence, concentration, and conformation of specific PAHs.

  3. Diluent and bitumen, an uneasy mix : considerations for treating, blending, transportation, marketing and refining

    Energy Technology Data Exchange (ETDEWEB)

    Todd, C. [Connacher Oil and Gas Ltd., Calgary, AB (Canada)

    2009-07-01

    This presentation evaluated several issues regarding the use of diluent as a blending agent with Canadian bitumen. Heavy and viscous crude oils are commonly diluted with condensates and gasolines. This improves field processing, transportability in pipelines and acceptability in markets and refineries. The demand for such diluent is increasing because of the large amounts of heavy oil and bitumen currently produced in Canada. The current tenable price of diluents has meant that a wide range of diluent sources and components are finding their way into the Canadian diluent supply stream. This has raised concerns regarding diluent performance and the affect on blended crude oils. The cost of diluent is among the most controllable expense associated with most bitumen production projects. Market factors were considered in this presentation, such as supply demand; price and infrastructure; operational processing and blending issues; diluent quality and component variability; and downstream issues such as refinery processing and production. tabs., figs.

  4. Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves

    Energy Technology Data Exchange (ETDEWEB)

    Kratzeisen, M.; Mueller, J. [Institut fuer Agrartechnik, Universitaet Hohenheim (440e), Garbenstrasse 9, D-70593 Stuttgart (Germany)

    2010-11-15

    Influence of phosphorus lipids on formation of deposits and performance of plant oil pressure stoves was investigated. Refined coconut oil with an original phosphorous content of 5.9 mg/kg was used as base for fuel blends by adding lecithin to adjust increased phosphorous concentrations of 32.2, 51.6 and 63.0 mg/kg. The fuel blends were analysed for acid value, iodine value, total contamination, ash content and Conradson carbon residue according to standard methods. In burning trials, the specific fuel consumption, the required frequency of nozzle cleaning and the amount of deposits in the vaporizer were measured. Results showed an exponential increase of deposits in the vaporizer when phosphorous content was increased: deposits amounted to 0.12 g/kg of consumed fuel for unblended coconut oil and 0.92 g/kg for the blend with the highest phosphorous content. Furthermore, increased phosphorous content caused higher fuel consumption of 0.375 kg/h compared to 0.316 kg/h for the control. (author)

  5. Research and field trials with a blend of ethanol in diesel oil

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K.E. [Autoemission K-E E Consultant, Nykoeping (Sweden)

    1999-03-01

    The aim of this report is to summarize the experiences acquired and data generated during the project named `The mixed fuel project` which was carried out during the years 1993 to 1997. The project was initiated after that some information had been collected in Australia, where a similar project was underway. The Australian project showed some interesting data and within that project an emulsifier had been developed - an emulsifier which has also been used in the Swedish project. In order to avoid a costly development of a method for blending ethanol in diesel oil, a form of co-operation was established between the people involved in Australia and those involved in Sweden. The content of ethanol in diesel oil used in Australia was 15 % and the investigations in Sweden reported further down in this report the ratio 15 % ethanol in MK 1 (an environmentally classified diesel fuel in Sweden) was the best alternative to be used also in Sweden. Twelve reports have been studied and used as references in order to summarize the results and experiences from the project. In order to fulfil the obligations of the project many institutions, private and community companies, consultants and universities in Sweden were involved. In the report presents the main results from the different investigations and field trials with ethanol-diesel fueled vehicles. It can be said that there are no technical problems connected to the use of ethanol-diesel fuel but the most serious drawback is the cost of the fuel. There is also a need for further development of the technology of making a homogenous emulsion of ethanol in diesel oil at a reasonable cost. The main advantage of using the mixed fuel is that the emission of particles is considerably reduced. The emission of CO{sub 2} is also reduced when the ethanol is produced from biomass using an environmentally friendly method 17 refs, 22 figs, 22 tabs

  6. Heat shrink ability of electron-beam-modified thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer and polyethylene

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chaki, T.K.; Bhowmick, Anil K.

    2000-01-01

    The heat shrink ability of electron-beam-irradiated thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer (EVA) and low-density polyethylene (LDPE) has been investigated in this paper. The effects of temperature, time and extent of stretching and shrinkage temperature and time have been reported. Based on the above data, the optimized conditions in terms of high heat shrinkage and low amnesia rating have been evaluated. Influence of radiation doses (0-500 kGy), multifunctional sensitizer levels (ditri methylol propane tetraacrylate, DTMPTA), and blend proportions on heat shrink ability has been explained with the help of gel fraction and X-ray data. With the increase in radiation dose, gel fraction increases, which in turn gives rise to low values of heat shrinkage and amnesia rating. At a constant radiation dose and blend ratio, percent heat shrinkage is found to decrease with increase in DTMPTA level. Gel content increases with the increase in EVA content of the blend at a constant radiation dose and monomer level, giving rise to decrease in heat shrink ability. Heat shrinkage increases with the increase in percent crystallinity, although the amnesia rating follows the reverse trend.

  7. Heat shrink ability of electron-beam-modified thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer and polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Chaki, T.K.; Bhowmick, Anil K. E-mail: anilkb@rtc.iitkgp.ernet.in

    2000-11-01

    The heat shrink ability of electron-beam-irradiated thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer (EVA) and low-density polyethylene (LDPE) has been investigated in this paper. The effects of temperature, time and extent of stretching and shrinkage temperature and time have been reported. Based on the above data, the optimized conditions in terms of high heat shrinkage and low amnesia rating have been evaluated. Influence of radiation doses (0-500 kGy), multifunctional sensitizer levels (ditri methylol propane tetraacrylate, DTMPTA), and blend proportions on heat shrink ability has been explained with the help of gel fraction and X-ray data. With the increase in radiation dose, gel fraction increases, which in turn gives rise to low values of heat shrinkage and amnesia rating. At a constant radiation dose and blend ratio, percent heat shrinkage is found to decrease with increase in DTMPTA level. Gel content increases with the increase in EVA content of the blend at a constant radiation dose and monomer level, giving rise to decrease in heat shrink ability. Heat shrinkage increases with the increase in percent crystallinity, although the amnesia rating follows the reverse trend.

  8. Cure and mechanical behaviors of cycloaliphatic/DGEBA epoxy blend system using electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, G.Y.; Park, S.J. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2002-05-01

    4-Vinyl-1- cyclohexene diepoxide (VCE)/ diglycidyl ether of bisphenol -A(DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. the effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system varied within 100:0, 80:20, 60:40. 40:60 20:80, and 0:100wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor (K{sub 1C}) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chide structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T{sub max}), and decomposition activation energy (E{sub d}) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum K{sub 1C} value showed at mixing ratio of 40:60 wt% in this blend system. (author). 22 refs., 2 tabs., 6 figs.

  9. Lemon peel oil – A novel renewable alternative energy source for diesel engine

    International Nuclear Information System (INIS)

    Ashok, B.; Thundil Karuppa Raj, R.; Nanthagopal, K.; Krishnan, Rahul; Subbarao, Rayapati

    2017-01-01

    Highlights: • Novel biofuel is extracted from lemon peels through steam distillation process. • Lemon peel oil is found to be a potential, renewable alternate eco-friendly fuel. • Significant vibration is observed with 100% lemon peel oil. • Reduction of CO, HC and smoke emission are observed with lemon peel oil blends. • Lemon peel oil blends are showed higher brake thermal efficiency than diesel fuel. - Abstract: The present research work has embarked on to exploit the novel renewable and biodegradable source of energy from lemon fruit rinds. A systematic approach has been made in this study to find the suitability of lemon peel oil for internal combustion engines and gensets applications. Extracted lemon peel oil is found to exhibit comparatively very low viscosity, flash point and boiling point than that of conventional diesel. Various blends of lemon peel oil have been prepared with conventional diesel with volumetric concentration of 20%, 40%, 50% and 100% and their physical and chemical properties are evaluated for its suitability in direct injection diesel engine. Lower cetane index of lemon peel oil significantly influences the ignition delay period and peak heat release rate that lead to the penalty in NOx emissions. Interestingly, the diesel engine performance characteristics have been improved to a remarkable level with higher proportions of lemon peel oil in the blends. In addition, the reduction of BSCO, BSHC and smoke emission is proportional to the lemon oil concentration in the blends. Overall diesel engine characteristics indicated that lemon peel oil can partially or completely replace the petroleum diesel usage to a great extent in developing countries like India.

  10. Desempenho de misturas pré-aquecidas de óleo de soja cru e diesel como combustível para motores agrícolas Performance of preheated crude soybean oil-diesel blends as fuel in agricultural engines

    Directory of Open Access Journals (Sweden)

    José Fernando Schlosser

    2007-10-01

    Full Text Available O óleo de soja é um dos óleos vegetais que têm potencial de uso como combustível para motores diesel, pois é renovável, seguro e de fácil utilização. Em temperatura ambiente, o óleo cru apresenta uma viscosidade cerca de dez vezes maior que a do óleo diesel. Para reduzir a viscosidade do óleo de soja a níveis aceitáveis, é necessária uma temperatura de aquecimento em torno de aproximadamente 60°C ou misturá-lo com óleo diesel. O objetivo deste estudo foi avaliar o desempenho do óleo de soja cru e suas misturas com óleo diesel, pré-aquecidas antes da bomba injetora entre 57°C e 68°C, como combustível para motores diesel. O desempenho das misturas combustíveis foi avaliado num motor monocilíndrico de injeção indireta e comparado com o obtido pelo óleo diesel. Os ensaios de curta duração foram conduzidos entre 1.800 e 2.800rpm, sob condição de plena carga em dinamômetro hidráulico. Ensaios realizados a 68°C apresentaram sempre os melhores valores para torque, potência e consumo específico de combustível do que a 57°C. Uma mistura composta por 70% de óleo de soja e 30% de óleo diesel, aquecida a 68°C, apresentou os melhores resultados.Crude soybean oil is one of the vegetable oils that have potential for use as fuel for diesel engines. Soybean oil is renewable, and is safe and easy to handle. At room temperature crude oil has a viscosity about ten times higher than that of diesel oil. To lower soybean oil's viscosity to the acceptable levels a heating temperature at least 60°C is needed or blending with diesel fuel. The objective of this study was evaluating the soybean oil and blends performance as a fuel for diesel engines. On both crude soybean oil and soybean oil blends were used pre-heating temperature levels on the range between 57°C and 68°C, before fuel pump. The performance of the fuel blends were evaluated in a single cylinder indirect injection diesel engine and compared with the performance

  11. Gamma- and electron dose response of the electrical conductivity of polyaniline based polymer blends

    International Nuclear Information System (INIS)

    Sevil, U.A.; Gueven, O.; Slezsak, I.

    2002-01-01

    Complete text of publication follows. Conducting polymers, also known as 'synthetic metals' have been the subject of widespread investigations over the past decade due to their very promising characteristics. Polyaniline (PANI) holds a special position among conducting polymers in that its most highly conducting doped form can be reached by protonic acid doping or oxidative doping. It was published earlier, that the electrical conductivity of some polyaniline based polymer composites increases to a significant extent when irradiated to gamma, electron or UV radiation. The aim of the present study was to measure the high frequency conductivity of blended films of PANI with poly(vinylchloride), PVC, and chlorinated poly(propylene) irradiated in air to different doses. In order to find the most suitable composition od these composites the mass percentage of PANI within the PPCl and PVC matrix was changed between 5 - 30%. These samples were then gamma irradiated and the induced electrical conductivity was measured in the 1 kHz - 1 MHz frequency range to determine the most sensitive evaluation conditions. After selecting both the most suitable measuring conditions as well as the blend compositions the dose response of the chosen samples was determined in the dose range of 10 - 250 kGy. With respect to potential dosimetry application the effect of electron irradiation, the effect of irradiation temperature and the stability of the irradiated samples have also been investigated

  12. Contribution of different constituents to the toxicity of the essential oil ...

    African Journals Online (AJOL)

    The lethal toxicity of the major constituent of the essential oils of Vernonia amygdalina and Xylopia aetiopica, and of selected blends of these against Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) was compared with those of the full blends of the essential oils. The compounds were assayed in amounts and ...

  13. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  14. A drop penetration method to measure powder blend wettability.

    Science.gov (United States)

    Wang, Yifan; Liu, Zhanjie; Muzzio, Fernando; Drazer, German; Callegari, Gerardo

    2018-03-01

    Water wettability of pharmaceutical blends affects important quality attributes of final products. We investigate the wetting properties of a pharmaceutical blend lubricated with Magnesium Stearate (MgSt) as a function of the mechanical shear strain applied to the blend. We measure the penetration dynamics of sessile drops deposited on slightly compressed powder beds. We consider a blend composed of 9% Acetaminophen 90% Lactose and 1% MgSt by weight. Comparing the penetration time of water and a reference liquid Polydimethylsiloxane (silicon oil) we obtain an effective cosine of the contact angle with water, based on a recently developed drop penetration method. We repeat the experiments for blends exposed to increasing levels of shear strain and demonstrate a significant decrease in water wettability (decrease in the cosine of the contact angle). The results are consistent with the development of a hydrophobic film coating the powder particles as a result of the increased shear strain. Finally, we show that, as expected dissolution times increase with the level of shear strain. Therefore, the proposed drop penetration method could be used to directly assess the state of lubrication of a pharmaceutical blend and act as a quality control on powder blend attributes before the blend is tableted. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  16. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.

    Science.gov (United States)

    Liang, Li; Chen, Fang; Wang, Xingguo; Jin, Qingzhe; Decker, Eric Andrew; McClements, David Julian

    2017-06-14

    There is great interest in the formulation of plant-based foods enriched with nutrients that promote health, such as polyunsaturated fatty acids. This study evaluated the impact of sunflower phospholipid type on the formation and stability of flaxseed oil-in-water emulsions. Two sunflower lecithins (Sunlipon 50 and 90) with different phosphatidylcholine (PC) levels (59 and 90%, respectively) were used in varying ratios to form emulsions. Emulsion droplet size, charge, appearance, microstructure, and oxidation were measured during storage at 55 °C in the dark. The physical and chemical stability increased as the PC content of the lecithin blends decreased. The oxidative stability of emulsions formulated using Sunlipon 50 was better than emulsions formulated using synthetic surfactants (SDS or Tween 20). The results are interpreted in terms of the impact of emulsifier type on the colloidal interactions between oil droplets and on the molecular interactions between pro-oxidants and oil droplet surfaces.

  17. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  18. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  19. Effect of temperature on the density of palm oil bio diesel and its blends with conventional diesel

    International Nuclear Information System (INIS)

    Benjumea H, Pedro N; Chaves N, German; Vargas R, Claudia M

    2006-01-01

    The density is a property of easy measurement which can be correlated with other key properties for evaluating fuel performance in diesel engines, such as calorific value and cetane number. Additionally, the density is one of the most important parameters in connection with fuel storage, transportation and commercialization. In this paper, experimental results showing the temperature dependence of the density for palm oil bio diesel and its 5% and 20% blends with conventional petroleum derived diesel fuel are presented. The experimental results were adequate fixed by linear regressions resulting in regression coefficients close to 1. For calculating the density of the BACPACPM blends a simple mixing law (weighted mass average) was proposed leading to absolute maximum deviations lesser than 0.5% of measured data. The density experimental results for the different tested fuels were compared with the estimated values from the volume correction method proposed by the Astm D1250 standard for hydrocarbon type fuels. For the neat BACP case (B100) the absolute maximum deviation was within 0.32% of measured data indicating that the mentioned correction method is also adequate for predicting the volumetric temperature behavior of substances having different chemical nature such as the methylesters of fatty acids.

  20. Analytical Characterization of Butter Oil Enriched with Omega-3 and 6 Fatty Acid Sthrough Chia (Salvia hispanica L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2015-12-01

    Full Text Available Analytical characterization of blends of butter oil and chia (Salvia hispanica L. seed oil was performed. Chia oil was added in butter oil at four different levels i.e. 6.25%, 12.5%, 18.75% and 25% (T1, T2, T3 and T4, butter oil without any addition of chia oil served as control. Blends of butter oil and chia oil were packaged in tin containers, stored at ambient temperature (34±2oC for 90-days. Iodine values of control, T1, T2, T3 and T4 were 36.85, 45.63, 57.22, 67.45 and 76.37 (cg/g.Concentration of omega-3 fatty acids in T1, T2, T3 and T4 were 4.17%, 7.39%, 12.55% and 16.74%. The extent of omega-6 fatty acids in T1, T2, T3 and T4 was 2.81%, 2.94%, 3.15% and 3.32%.Concentration of omega-3 and 6 fatty acids in butter oil can be increased by chia oil.

  1. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  2. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils

    Science.gov (United States)

    de Rapper, Stephanie; Kamatou, Guy; Viljoen, Alvaro

    2013-01-01

    The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC) assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC) was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%), additive (48.9%), non-interactive (23.7%), and antagonistic (0.7%) interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender. PMID:23737850

  3. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils

    Directory of Open Access Journals (Sweden)

    Stephanie de Rapper

    2013-01-01

    Full Text Available The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%, additive (48.9%, non-interactive (23.7%, and antagonistic (0.7% interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender.

  4. Fuel properties of loofah (Luffa cylindrica L.) biofuel blended with ...

    African Journals Online (AJOL)

    ajl6

    Fuel properties of loofah oil and its ethyl ester blended with diesel were experimentally determined. ... The escalating prices of petroleum fuels, the .... equation developed by Bamgboye and Hansen (2008) was used to ..... Renewable Energy.

  5. The effects PCSO-524?, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial

    OpenAIRE

    Mickleborough, Timothy D; Sinex, Jacob A; Platt, David; Chapman, Robert F; Hirt, Molly

    2015-01-01

    Background The purpose of the present study was to evaluate the effects of PCSO-524?, a marine oil lipid and n-3 LC PUFA blend, derived from New Zealand green- lipped mussel (Perna canaliculus), on markers of muscle damage and inflammation following muscle damaging exercise in untrained men. Methods Thirty two untrained male subjects were randomly assigned to consume 1200?mg/d of PCSO- 524? (a green-lipped mussel oil blend) or placebo for 26 d prior to muscle damaging exercise (downhill runni...

  6. Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Kalim, E-mail: deshmukh.kalim@gmail.com [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Ahamed, M. Basheer [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Sadasivuni, Kishor Kumar [Mechanical and Industrial Engineering Department, Qatar University, P.O. Box 2713, Doha (Qatar); Ponnamma, Deepalekshmi; AlMaadeed, Mariam Al-Ali [Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Khadheer Pasha, S.K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai, 400019 (India); Chidambaram, K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India)

    2017-01-15

    In this work, Graphene Oxide (GO) reinforced novel polymer composites comprising of poly (4-styrenesulfonic acid) (PSSA) and polyvinyl alcohol (PVA) blend matrix have been developed using colloidal processing technique. The properties and the structure of prepared composites were investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy (UV), Thermogravimetric analysis (TGA), Polarized optical microscopy (POM), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The FTIR and Raman spectroscopy analysis indicate the strong interfacial interaction between GO and PSSA/PVA blend matrix. The XRD and SEM analysis confirm that GO was fully exfoliated into individual graphene sheets and dispersed homogeneously within the polymer matrix. The effective reinforcement of GO into PSSA/PVA blend matrix has resulted in the enhancement of dielectric constant. The dielectric constant has increased from 82.67 (50 Hz, 150 °C) for PSSA/PVA (50/50) blend to 297.91 (50 Hz, 150 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. The dielectric loss (tan δ) has increased from 1.56 (50 KHz, 140 °C) for PSSA/PVA (50/50) blend to 2.64 (50 KHz, 140 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. These findings provide a new insight to fabricate flexible, high-k dielectric composite as a promising material for energy storage applications. - Highlights: • Graphene Oxide was prepared from natural graphite using modified Hummers method. • Novel PSSA/PVA/GO composites were prepared by reinforcing GO into PSSA/PVA blend matrix. • Molecular level dispersion of GO in PSSA/PVA blend matrix was successfully achieved. • Enhancement in the dielectric constant was observed due to effective reinforcement of GO in PSSA/PVA blend matrix. • PSSA/PVA/GO composites with high dielectric performances can be considered for energy storage applications.

  7. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    Energy Technology Data Exchange (ETDEWEB)

    Bonan, Roberta F. [Departamento de Engenharia de Materiais (DEMAT), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Bonan, Paulo R.F.; Batista, André U.D.; Sampaio, Fábio C.; Albuquerque, Allan J.R. [Centro de Ciências da Saúde (CCS), Universidade Federal da Paraíba (UFPB), Cidade Universitária, 58.051-900 João Pessoa, PB (Brazil); Moraes, Maria C.B. [Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Ecológica, W/5 Norte (Final) Cenargen (Laboratório de Semioquímicos) ASA NORTE, 70770900 Brasília, DF (Brazil); Mattoso, Luiz H.C. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação Agropecuária (CNPDIA), Rua XV de Novembro, 1452, Centro, 13.560, 970 São Carlos, SP (Brazil); Glenn, Gregory M. [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Bioproduct Chemistry and Engineering - BCE, Albany, CA 94710 (United States); and others

    2015-03-01

    In this study poly(lactic acid) (PLA) and polyvinylpyrrolidone (PVP) micro- and nanofiber mats loaded with Copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The Copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/PVP blends containing 20% (wt.%) oil were spun and characterized by scanning electron microscopy (SEM) and by studying the surface contact angle, in vitro release rate, and antimicrobial activity. All compositions evaluated were able to produce continuous and smooth fibers by SBS. The addition of PVP increased fiber diameter, and decreased the surface contact angle. GC analysis demonstrated that the main component of the Copaiba oil was β-caryophyllene, a known antimicrobial agent. In vitro release tests of Copaiba oil volatiles demonstrated a higher release rate in fibers containing PVP. Fiber mats made from blends containing higher amounts of PVP had greater antimicrobial action against Staphylococcus aureus. The results confirm the potential of the fiber mats for use in controlled drug release and could lead to promising applications in the biomedical field. - Highlights: • An efficient method for production of antimicrobial nanofiber mats using solution blow spinning was reported. • Nanofiber mats containing Copaiba oil were efficient against Staphylococcus aureus. • Nanofiber composition changed morphological properties and antimicrobial action.

  8. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    Science.gov (United States)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  9. Study of the Rancimat test method in measuring the oxidation stability of biodiesel ester and blends

    Energy Technology Data Exchange (ETDEWEB)

    Berthiaume, D.; Tremblay, A. [Oleotek Inc., Thetford Mines, PQ (Canada)

    2006-11-15

    This paper provided details of a study conducted to examine the oxidation stability of biodiesel blends. The study tested samples of canola oil, soybean oil, fish oil, yellow grease, and tallow. The EN 14112 (Rancimat) method was used to compare oxidation stability results obtained in previous tests conducted in the United States and Europe. The aim of the study was also to evaluate the influence of peroxide value (PV), acid value (AV) and feedstock source on the the oxidative stability of different samples. The study also evaluated the possibility of developing a validated test method developed from the EN 14112 methods to specifically consider biodiesel blends. Results of the study indicated that the Rancimat method was not suitable for measuring the oxidation stability of biodiesels blended with petrodiesels. No direct correlation between oxidative stability and PV or AV was observed. It was concluded that fatty acid distribution was not a principal factor in causing changes in oxidation stability. 22 refs., 3 tabs., 1 fig.

  10. Efficacy of specific gravity as a tool for prediction of biodiesel-petroleum diesel blend ratio

    Science.gov (United States)

    Prediction of volumetric biodiesel/petrodiesel blend ratio (VBD) from specific gravity (SG) data was the subject of the current investigation. Fatty acid methyl esters obtained from soybean, palm, and rapeseed oils along with chicken fat (SME-1, SME-2, PME, RME, and CFME) were blended (0 to 20 volum...

  11. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  12. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield s...

  13. Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amna T

    2014-02-01

    Full Text Available Touseef Amna,1 M Shamshi Hassan,2 Jieun Yang,1 Myung-Seob Khil,2 Ki-Duk Song,3 Jae-Don Oh,3 Inho Hwang1 1Department of Animal Sciences and Biotechnology, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, South Korea; 3Genomic Informatics Center, Hankyong National University, Anseong, South Korea Abstract: Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU, developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM, energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for

  14. Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Zullaikah Siti

    2018-01-01

    Full Text Available The utilization of Indonesia low rank coal should be maximized, since the source of Indonesia law rank coals were abundant. Pyrolysis of this coal can produce liquid product which can be utilized as fuel and chemical feedstocks. The yield of liquid product is still low due to lower of comparison H/C. Since coal is non-renewable source, an effort of coal saving and to mitigate the production of greenhouse gases, biomass such as oil palm empty fruit bunch (EFB would added as co-feeding. EFB could act as hydrogen donor in co-pyrolysis to increase liquid product. Co-pyrolysis of Indonesia low rank coal and EFB were studied in a drop tube reactor under the certain temperature (t= 500 °C and time (t= 1 h used N2 as purge gas. The effect of blending ratios of coal/EFB (100/0, 75/25, 50/50, 25/75 and 0/100%, w/w % on the yield and composition of liquid product were studied systematically. The results showed that the higher blending ratio, the yield of liquid product and gas obtained increased, while the char decreased. The highest yield of liquid product (28,62 % was obtained used blending ratio of coal/EFB = 25/75, w/w%. Tar composition obtained in this ratio is phenol, polycyclic aromatic hydrocarbons, alkanes, acids, esters.

  15. POWER PERFOMANCE UNDER CONSTANT SPEED TEST WITH PALM OIL BIODIESEL AND ITS BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    E. U. U. Ituen

    2010-06-01

    Full Text Available The torque and power performance tests were carried out with a single cylinder techno four-stroke diesel engine under constant speeds of 2000, 1500 and 1100 rpm. Five fuels, the Dura Palm Oil biodiesel/diesel blend at 10/90 vol/vol, B210 and the diesel or Automotive gas oil (ago, the reference fuel, were involved. Brake torque and brake power data were plotted against brake mean effective pressure (Bmep since the latter is independent of engine speed and size and it is an indication of how power and torque are obtained per litre of fuel. The curves for the torque versus Bmep for the five fuels merged into single straight line curve which extended to the origin and with a gradient of 0.0719 m3 for all the three speed tests of 2000, 1500 and 1100 rpm. Similarly, the power versus Bmep curves for the five fuels merged into one straight curve which also extended to the origin but with different gradients of 0.0151, 0.0113, 0.0083 for 2000, 1500 and 1100 rpm respectively. Therefore, the five fuels had similar torque and power performance characteristics in the engine. The straight line curve which can be extrapolated to any value can be used for the engine designs, that is determining vd from the relation, T=V/4 or Bp=VdN/2

  16. Electronic trading system and returns volatility in the oil futures market

    International Nuclear Information System (INIS)

    Liao, Huei-Chu; Lee, Yi-Huey; Suen, Yu-Bo

    2008-01-01

    This paper uses daily Brent crude prices to investigate the employment of electronic trading on the returns conditional volatility in the oil futures market. After a suitable GARCH model is established, the conditional volatility series are found. The Bai and Perron model is then used to find two significant structural breaks for these conditional volatility series around two implementation dates of electronic trading. This result indicates that the change in the trading system has significant impacts on the returns volatility since our estimated second break date is very close to the all-electronic trade implementation date. Moreover, the conditional volatility in the all-electronic trading period is found to be more dominated by the temporal persistence rather than the volatility clustering effect. All these evidence can shed some light for explaining the high relationship between more volatile world oil price and the more popular electronic trade. (author)

  17. Putting blended learning to work: A case study from a multinatonal oil company.

    NARCIS (Netherlands)

    Collis, Betty; Bianco, M.; Margaryan, A.; Waring, Burney

    2005-01-01

    Blended learning can be operationalised in many different ways. At Shell International Exploration and Production, a form of blended learning focusing on learning while in the workplace through work-based activities within technology-supported courses has been evolving since 2000, with approximately

  18. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  19. Field effect measurements on charge carrier mobilities in various polymer-fullerene blend compositions

    International Nuclear Information System (INIS)

    Hauff, Elizabeth von; Parisi, Juergen; Dyakonov, Vladimir

    2006-01-01

    In this study we investigated materials typically used in polymer photovoltaics. Field effect measurements were performed in order to determine the hole mobilities in the conjugated polymer poly(3-hexylthiophene) (P3HT) and the electron mobilities in the methanofullerene[6,6]-phenyl C 61 -butyric acid methyl ester (PCBM), and, particularly, in the polymer-fullerene composite blends. Regarding the pure films, electron mobilities in PCBM were found to be in the 10 -2 cm 2 /Vs range, and hole mobilities in P3HT were found to be in the 10 -3 cm2/Vs range. In the PCBM:P3HT blends, it was found that varying the PCBM content in PCBM:P3HT blends led to a steep increase in electron mobility with increasing PCBM content, while the hole mobility was found to slightly decrease with the increasing PCBM concentration. In 2:1 PCBM:P3HT tempered blends, the charge carrier mobilities were found to be roughly balanced, at 10 -3 cm 2 /Vs. For improved electron transport in the blends, tempering was found to be crucial

  20. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  1. Large scale oil lease automation and electronic custody transfer

    International Nuclear Information System (INIS)

    Price, C.R.; Elmer, D.C.

    1995-01-01

    Typically, oil field production operations have only been automated at fields with long term production profiles and enhanced recovery. The automation generally consists of monitoring and control at the wellhead and centralized facilities. However, Union Pacific Resources Co. (UPRC) has successfully implemented a large scale automation program for rapid-decline primary recovery Austin Chalk wells where purchasers buy and transport oil from each individual wellsite. This project has resulted in two significant benefits. First, operators are using the system to re-engineer their work processes. Second, an inter-company team created a new electronic custody transfer method. This paper will describe: the progression of the company's automation objectives in the area; the field operator's interaction with the system, and the related benefits; the research and development of the new electronic custody transfer method

  2. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S.; Rezende, Maira L.; Rosa, Derval S.

    2009-01-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras R ) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex R ) film in both methods studied. (author)

  3. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  4. Effects of petroleum oil and soybean oil in adjuvants for postemergence herbicides

    International Nuclear Information System (INIS)

    Harrison, S.K.

    1985-01-01

    Soybean oil is an abundant and renewable resource through annual crop production. The replacement of paraffin oil with soybean oil in agricultural adjuvants would create an additional market for surplus soybeans and help alleviate dependence on non-renewable petroleum oil. Field and laboratory experiments were conducted to compare effects of a petroleum oil-emulsifier blend (POC) and a soybean oil-emulsifier blend (SBOC) as adjuvants for postemergence herbicides. In field experiments, little difference was observed between POC and SBOC in the ability to enhance control of velvetleaf (Abutilon theophrasti Medik.) with 0.6 or 1.1 kg/ha bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Control of giant foxtail (Setaria faberi Herrm.) with 0.1 kg/ha sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} was enhanced more by POC than by SBOC. The effects of adjuvants and relative humidity (RH) on absorption, translocation, and metabolism of the methyl ester of 14 C-haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid} in corn (Zea mays L.) were investigated. Addition of 1.0% (v/v) POC to the treatment solution resulted in greater foliar absorption and translocation of 14 C than addition of 1.0% (v/v) SBOC

  5. Structural characterization of Poly aniline blended with polyacrylamide

    International Nuclear Information System (INIS)

    Fayek, S.A.; El-Sayed, S.M.; Sayed, W.M.

    2007-01-01

    Poly aniline / polyacrylamide blends in presence of different catalysts were prepared. X-ray diffraction studies reveal that the samples produced are crystalline. Optical gap of the blend in the presence of NaCIO 4 used as a catalyst is greater than that in the presence of (NH 4 ) 2 S 2 O 8 as a catalyst. The structure of polyacrylamide (PAM) blended with poly aniline (PANI) were investigated by infrared spectroscopy, Grain size was identified using scanning electron microscopy [SEM

  6. Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends

    Directory of Open Access Journals (Sweden)

    Antti Takala

    2015-08-01

    Full Text Available The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs, the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene (PAT blends with ethylenevinylacetate-elastomers (EVA and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology.

  7. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Nofar, M. [Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada and CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2 (Canada); Heuzey, M. C.; Carreau, P. J., E-mail: pierre.carreau@polymtl.ca [Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4 (Canada); Kamal, M. R. [CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2 (Canada); Randall, J. [NatureWorks LLC, 15305 Minnetonka Boulevard, Minnetonka, Minnesota 55345 (United States)

    2016-07-15

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacial properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s{sup −1} at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s{sup −1} induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.

  8. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    International Nuclear Information System (INIS)

    Nofar, M.; Heuzey, M. C.; Carreau, P. J.; Kamal, M. R.; Randall, J.

    2016-01-01

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacial properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s"−"1 at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s"−"1 induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.

  9. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  10. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.

    Science.gov (United States)

    Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M

    2008-04-01

    In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.

  11. Prediction of compatibility of crude oils with condensate (C5+); Previsao de compatibilidade de petroleos e condensado (C5+)

    Energy Technology Data Exchange (ETDEWEB)

    Zilio, Evaldo Lopez; Santos, Maria de Fatima Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ramos, Antonio Carlos da Silva; Rolemberg, Marlus Pinheiro [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil)

    2008-07-01

    Due to the recent raise of the national natural gas demand and to the need of flowing the condensates (C5+) produced from the NGPP (Natural Gas Processing Plant) by adding them to the streams of the crude oil, there was the need to carry out the compatibility prediction of one condensate with two onshore crude oils from Espirito Santo. The model to predict the compatibility among crude oils and among crude oils and oil products is based on the use of the solubility parameter of the oils. To apply it, the solubility parameter of each crude oil or oil product is measured and the parameter of their blend is calculated. If this value is beneath the asphaltenes flocculation parameter, the blend is incompatible; if it is above, the blend is compatible. In this article, the compatibility predictions were done according to the Solubility Parameter Model to two blends: the condensate C with the crude oil X and with the crude oil Y. The model predictions are that both blends are incompatible at given proportions. To check the predictions, the same two blends were experimentally carried out. It must be emphasized that the compatibility tests were done at atmospheric pressure and at the temperature of 15 deg C. These tests consist in adding the condensate to the crude oil with a titrater and visualizing the asphaltenes precipitation at an optical microscope. The experimental results were equivalent to the values predicted by the model. It is worth mentioning that there were several practical difficulties, as the high volatility of the condensate and the fact that the temperatures to determine the parameters and to carry out the tests were very lower than the operation temperature. Therefore, a security factor was applied on the predictions (less 20%). (author)

  12. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  13. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  14. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  15. Electronic techniques for subsea oil exploration and extraction

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Subsea oil exploration and extraction is becoming increasingly difficult, costly, and dangerous. Electronics is contributing to make offshore work easier and safer. It is used for positioning ships or oil rigs, for remotely controlling well-heads and tool reentry operations, for pipelaying operations, and for monitoring underwater equipment. It is also tending to replace men in diving operations. The specific achievements of THOMPSON--CSF in this field are described. Fully automated operation of the winches on the ETPM 1601 barge proved successful during a recent pipelaying operation. The technique used by THOMPSON--CSF in this venture allowed a single operator to control all the maneuvers. These are briefly described. (MCW)

  16. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  17. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  18. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties

    Energy Technology Data Exchange (ETDEWEB)

    Trakarnpruk, Wimonrat; Porntangjitlikit, Suriya [Petrochemistry and Polymer Science, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-07-15

    Biodiesel was prepared from palm oil by transesterification with methanol in the presence of 1.5%K loaded-calcined Mg-Al hydrotalcite. Fatty acid methyl esters content of 96.9% and methyl ester yield of 86.6% were achieved using a 30:1 methanol to oil molar ratio at 100{sup o}C for 6 h and 7 wt% catalyst. The biodiesel was characterized and its impact on elastomer properties was evaluated. The compatibility of B10 diesel blend (10% biodiesel) with six types of elastomers commonly found in fuel systems (NBR, HNBR, NBR/PVC, acrylic rubber, co-polymer FKM, and terpolymer FKM) were investigated. The physical properties of elastomers after immersion in tested fuels (for 22, 670, and 1008 h at 100{sup o}C) were measured according to American Society of Testing and Materials (ASTM). These include swelling (mass change and volume change), hardness, tensile and elongation, as well as the dynamic mechanical property. The results showed that properties of NBR, NBR/PVC and acrylic rubber were affected more than other elastomers. This is due to the absorption and dissolving of biodiesel by rubber in these samples. Co-polymer FKM and terpolymer FKM which are fluoroelastomers show little property change. (author)

  19. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjoy Kumar, E-mail: sanjoydasju@gmail.com; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit{sup ®}RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8 h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2 ± 1.25 μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~ 90%), minimum loss (~ 10%) and prolonged drug release for 8 h (91.25%) which may be considered as favourable criteria of controlled release dosage form. - Graphical abstract: Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design. - Highlights: • Simplex lattice design was used to optimize ketoprofen-loaded microspheres. • Polymeric blend (Ethylcellulose and Eudragit® RL 100) was used. • Microspheres were prepared by oil-in-oil emulsion solvent evaporation method. • Optimized formulation depicted favourable

  20. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  1. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  2. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil

    OpenAIRE

    Dong Liu; Hongli Li; Lin Jiang; Yongming Chuan; Minglong Yuan; Haiyun Chen

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differ...

  3. Analytical Characterization of Butter Oil Enriched with Omega-3 and 6 Fatty Acids Through Chia (Salvia hispanica L.) Seed Oil

    International Nuclear Information System (INIS)

    Nadeem, M.; Ajmal, M.; Rehman, F.; Ayaz, M.

    2015-01-01

    Analytical characterization of blends of butter oil and chia (Salvia hispanica L.) seed oil was performed. Chia oil was added in butter oil at four different levels i.e. 6.25 percentage, 12.5 percentage, 18.75 percentage and 25 percentage (T/sub 1/, T/sub 2/, T/sub 3/ and T/sub 4/), butter oil without any addition of chia oil served as control. Blends of butter oil and chia oil were packaged in tin containers, stored at ambient temperature (34±2 degree C) for 90-days. Iodine values of control, T/sub 1/, T/sub 2/, T/sub 3/ and T/sub 4/ were 36.85, 45.63, 57.22, 67.45 and 76.37 (cg/g percentage). Concentration of omega-3 fatty acids in T/sub 1/, T/sub 2/, T/sub 3/ and T/sub 4/ were 4.17 percentage, 7.39 percentage, 12.55 percentage and 16.74 percentage. The extent of omega-6 fatty acids in T/sub 1/, T/sub 2/, T/sub 3/ and T/sub 4/ was 2.81 percentage, 2.94 percentage, 3.15 percentage and 3.32 percentage. Concentration of omega-3 and 6 fatty acids in butter oil can be increased by chia oil. (author)

  4. Effect of lubricant oil additive on size distribution, morphology, and nanostructure of diesel particulate matter

    International Nuclear Information System (INIS)

    Wang, Yuesen; Liang, Xingyu; Shu, Gequn; Wang, Xiangxiang; Sun, Xiuxiu; Liu, Changwen

    2014-01-01

    Highlights: • Pour point depressant (PPD) has great impact on particulate matters. • The number of nanoparticles increases sharply after PPD is added. • Ambiguous boundaries can be found when the PPD additive was added. • PPD changes the size distribution into bimodal logarithmic. • Three nanostructure parameters are changed greatly by PPD. - Abstract: Effects of lubricant oil additive on the characterization of particles from a four-cylinder turbocharged diesel engine were investigated. Neat diesel and blended fuel containing oil pour point depressant (PPD) additive were chosen as the test fuels. Effects of different fuels on size distribution, morphology, and nanostructure of the diesel particles were studied. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) were employed to study the morphology and nanostructure parameters. Particle size distribution was measured by fast particulate spectrometer (DMS 500). According to the experimental results, distribution of the primary particles size of the two fuels conforms to Gaussian distribution, whereas the mean diameter of blended fuel is larger than that of neat diesel at 1200 rpm, which is contrarily smaller at 2400 rpm. Besides, fractal dimension (D f ) of aggregates increases close to 2 (D f = 1.991), indicating that the structure became compacter with adding PPD. As to the nanostructure parameters of the blended fuel particles, the layer fringe length decreases from 1.191 nm to 1.064 nm, while both the separation distance and tortuosity increase. The changes in the nanostructure parameters indicate that the particles are more ordered and compressed with burning pure diesel. Results of blended fuel from DMS show that more particles, particularly nucleation mode particles, were discharged. In addition, its size distribution become bimodal logarithmic at 2400 rpm. All these results can provide new information of the effects of oil PPD additive on the formation and characterization of

  5. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Ahmad Hussain; Farid Nasir Ani

    2010-01-01

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NO x ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NO x and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  6. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  7. Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Eun S. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Frankowski, David J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hudson, Samuel M. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Spontak, Richard J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States) and Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)]. E-mail: Rich_Spontak@ncsu.edu

    2007-04-15

    Protein membranes have been prepared by mixing gelatin (G) with Bombyx mori silk fibroin (SF) and using aqueous methanol (MeOH) to induce SF crystallization. Amorphous blends of these polymers appear quasi-homogeneous, as discerned from visual observation, electron microscopy and Fourier-transform infrared (FTIR) spectroscopy. Upon subsequent exposure to aqueous MeOH, SF undergoes a conformational change from random-coil to {beta}-sheet. This transformation occurs in pure SF, as well as in each of the G/SF blends, as discerned from FTIR spectroscopy and thermal calorimetry. The influence of MeOH-induced SF crystallization on structure and property development has been measured as functions of blend and solvent composition. By preserving a support scaffold above the G helix-to-coil transition temperature, the formation of crystalline SF networks in G/SF blends can be used to stabilize G-based hydrogels or generate SF membranes for biomaterial, pharmaceutical and gas-separation purposes. The present study not only examines the properties of G/SF blends before and after SF crystallization, but also establishes the foundation for future research into thermally-responsive G/SF bioconjugates.

  8. Rheological behaviour of hydrocolloids for oil recovery; Comportamento reologico de hidrocoloides para recuperacao de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Denise Z.; Franca, Francisca P. de; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Dutra, Eduardo S.S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil); Naccache, Monica F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    In crude oil extraction, water can be injected into the well (secondary oil recovery). The amount of the oil extracted decrease after some operation time. In order to improve the oil recovery, polymer flooding would subsequently be used (tertiary oil recovery). The aim of this work was to study the rheological behavior of polyacrylamide, xanthan gum, guar gum and their blends in seawater solutions, and the rheology of a crude oil. Dynamic measurements of the pure polymers (1000 ppm) and blends (2000 ppm) exhibited G' values lower than G'' in low frequencies, and inversion of G' and G'' curves in frequencies between 20 and 30 rad/s. The xanthan gum presented the greatest values of G' when compared to the other polymers, which means that its structure is more rigid. The oil showed G' values lower than G'' values in low and high frequencies of oscillation. Steady measurements revealed pseudoplastic behavior for polymers and Newtonian behavior for the oil. In shear rates around 10 s{sup -1}, polyacrylamide/xanthan blend would be the most appropriate for the extraction of the oil presented. (author)

  9. Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

    KAUST Repository

    Cates, Nichole C.

    2010-06-08

    Fullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study of intercalation in an amorphous polymer. We study blends of the widely studied amorphous polymer poly(2-methoxy-5-(3studied amorphous polymer poly(,7·studied amorphous polymer poly(-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) with a variety of molecules using photoluminescence measurements, scanning electron microscopy, and space-charge limited current mobility measurements. The blends with elevated hole mobilities exhibit complete photoluminescence quenching and show no phase separation in a scanning electron microscope. We conclude that intercalation occurs in MDMO-PPV:fullerene blends and is responsible for the increase in the MDMO-PPV hole mobility by several orders of magnitude when it is blended with fullerenes, despite the dilution of the hole-conducting polymer with an electron acceptor. © 2010 American Chemical Society.

  10. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst

    International Nuclear Information System (INIS)

    Mahesh, Sneha E.; Ramanathan, Anand; Begum, K.M. Meera S.; Narayanan, Anantharaman

    2015-01-01

    Highlights: • KBr impregnated CaO has been used as heterogeneous catalyst. • Efficient use of waste cooking oil as feedstock. • Response Surface Methodology was used to optimize process parameters. - Abstract: This research paper deals with the synthesis of a heterogeneous catalyst (KBr/CaO) from commercial calcium oxide and potassium bromide by wet impregnation method. This solid catalyst was tested for transesterification of waste cooking oil (WCO). The synthesized catalyst was characterized by Fourier Transform Infrared spectrometry (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. Transesterification reaction parameters were varied to obtain the maximum yield of biodiesel. Response Surface Methodology (RSM) using Central Composite Design (CCD) was employed to study the effect of the process variables like methanol to oil ratio, catalyst loading and reaction time. The optimum conditions obtained using regression models were found to be 12:1 methanol: oil ratio, 3 wt% catalyst loading and 1.8 h reaction time. The composition of FAME was determined using Gas Chromatography–Mass Spectrometry (GC–MS). The performance and emission characteristics for various blends of biodiesel (B10, B20, B50 and B100) were investigated in a four stroke direct injection diesel engine. The results indicated that the brake thermal efficiency, particulate matter, unburned hydrocarbons, carbon monoxide emissions reduced with increased concentration of biodiesel in the fuel blends, whereas the specific fuel consumption, NO x emissions and exhaust gas temperature increased

  11. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends.

    Science.gov (United States)

    Jayakumar, S; Sudha, P N

    2013-03-15

    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners

    Directory of Open Access Journals (Sweden)

    Stefanie Bärwinkel

    2016-08-01

    Full Text Available Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS, has been investigated by transmission electron microscopy (TEM. Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like styrene acrylonitrile (SAN phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed.

  13. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol) Blend Nanofibers

    OpenAIRE

    Shuai Li; Xu-Hong Yang

    2014-01-01

    Wool keratin/poly(vinyl alcohol) (PVA) blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution...

  14. Mechanical properties of polyamide 6,6/low density polyethylene blend by ionizing radiation

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Feitosa, Marcos A.F.

    2007-01-01

    Polymer blending is a growing scientific and commercial development activity. In most of the cases, polymeric blends are formed by thermodynamically immiscible components. Such blends require the use of compatibilizers that, often, are copolymers, graft copolymers or any mean that improves the dispersion and adhesion of the blend phases. Compatibility of a polymer blend plays an important role in determining the blend properties for its end use. In this work, the improvement of mechanical properties of PA 6,6/LDPE 75/25% wt/wt composition blend, using electron radiation, was studied. Samples for mechanical test were melt-mixed in an extruder and then injection-molded. These samples were electron irradiated to overall doses of 50, 100, 150, 200 and 250 kGy. Tensile measurements have shown that the strength at break increases with an increase of radiation dose. Hardness Shore D measurements show that this property also increases as a function of radiation dose. On the other hand, Impact Izod tests show that the resistance to impact decreases with the increase of radiation dose. The behavior of these bulk and surface properties implies that ionizing radiation produces changes in the mechanical performance of the irradiated blend due to a combined radiation inducing effects, cross-linking and the compatibility of blend components. (author)

  15. Unmasking of Olive Oil Adulteration Via a Multi-Sensor Platform

    Directory of Open Access Journals (Sweden)

    Marco Santonico

    2015-08-01

    Full Text Available Methods for the chemical and sensorial evaluation of olive oil are frequently changed and tuned to oppose the increasingly sophisticated frauds. Although a plethora of promising alternatives has been developed, chromatographic techniques remain the more reliable yet, even at the expense of their related execution time and costs. In perspective of a continuous increment in the number of the analyses as a result of the global market, more rapid and effective methods to guarantee the safety of the olive oil trade are required. In this study, a novel artificial sensorial system, based on gas and liquid analysis, has been employed to deal with olive oil genuineness and authenticity issues. Despite these sensors having been widely used in the field of food science, the innovative electronic interface of the device is able to provide a higher reproducibility and sensitivity of the analysis. The multi-parametric platform demonstrated the capability to evaluate the organoleptic properties of extra-virgin olive oils as well as to highlight the presence of adulterants at blending concentrations usually not detectable through other methods.

  16. Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges

    Directory of Open Access Journals (Sweden)

    Thanh Xuan NguyenThi

    2018-05-01

    Full Text Available Density and compressibility are primordial parameters for the optimization of diesel engine operation. With this objective, these properties were reported for waste cooking oil biodiesel and its blends (5% and 10% by volume mixed with diesel. The density measurements were performed over expanded ranges of pressure (0.1 to 140 MPa and temperature (293.15 to 353.15 K compatible with engine applications. The isothermal compressibility was estimated within the same experimental range by density differentiation. The Fatty Acid Methyl Esters (FAMEs profile of the biodiesel was determined using a Gas Chromatography–Mass Spectrometry (GC-MS technique. The storage stability of the biodiesel was assessed in terms of the reproducibility of the measured properties. The transferability of this biodiesel fuel was discussed on the basis of the standards specifications that support their use in fuel engines. Additionally, this original set of data represents meaningful information to develop new approaches or to evaluate the predictive capability of models previously developed.

  17. Dioxin monitoring in fats oils for the feed industry

    NARCIS (Netherlands)

    Asselt, van E.D.; Sterrenburg, P.

    2011-01-01

    The aim of the present project was to determine the most critical steps in the production of fats and oils. First, production processes of vegetables oils, animal fat, fish oil, biodiesel and fat blending were studied and experts from the industry as well as in-house dioxin experts were consulted to

  18. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  19. Preparation and characterization of soaps made from soya bean oil ...

    African Journals Online (AJOL)

    This research work deals with the preparation of soaps from neem oil and soya bean oil blends and analyses the soap produced. The soaps were produced using cold process technique by varying the percentage of oils; (soya bean oil and neem oil) in the ratio of 100%, 90/10%, 80/20%, 70/30%, 60/40%, 50/50%, 40/60%, ...

  20. Study on properties of poly(vinyl alcohol/polyacrylonitrile blend film

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available In this work, a series of poly(vinyl alcohol (PVA/polyacrylonitrile (PAN blend films with different PAN mole contents were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. Surface morphologies of PVA/PAN blend films were analyzed by Scanning Electronic Microscopy (SEM and Atomic Force Microscopy (AFM. Thermal, mechanical, and chemical properties of PVA/PAN blend films were investigated by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, Tensile Tests, and Surface Contact Angle Tests. The results showed that the introduction of PAN could exert marked effects on the properties of PVA films.

  1. Production of bio diesel from chicken frying oil

    International Nuclear Information System (INIS)

    Bakir, E.T.; Fadhil, A.B.

    2011-01-01

    Chicken fried oil was converted into different bio diesels through single step transesterification and two step transesterification, namely acid-base and base-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The results showed that two step base catalyzed transesterification was better compared to other methods. It resulted in higher yield and better fuel properties. Transesterification of fried chicken oil was monitored by TLC technique and compared with that of the parent oil. Fuel properties of the products have been measured and found markedly enhanced compared to those of the parent oil. Also, the values satisfied the standard limits according to the ASTM standards. Blending of the better bio diesel sample with petro diesel was made using three volume percentages (10, 30 and 50% v/v). The results disclosed that blending had slight effect on the original properties of petro diesel.

  2. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Haiying Tang; Steven O. Salley; K.Y. Simon Ng [Wayne State University, Detroit, MI (United States). Department of Chemical Engineering and Materials Science

    2008-10-15

    The formation of precipitates in biodiesel blends may have serious implications for diesel engine fuel delivery systems. Precipitates were observed in Soybean oil (SBO-), cottonseed oil (CSO-), and poultry fat (PF-) based biodiesel blends after storage at 4{sup o}C. CSO- and PF-based biodiesel had a lower mass of precipitates observed than the SBO-based. Moreover, different rates of precipitate formation were observed for the B20 versus the B100. These suggested that the formation of precipitate during cold temperature storage was dependent on the feedstock and blend concentration. The solvency effects of biodiesel blends were more pronounced at low temperature than at room temperature leading to a higher amount of precipitates formed. Fourier transform infrared (FTIR) spectra, and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that steryl glucosides are the major cause of precipitate formation in SBO-based biodiesel; while for PF-based biodiesel, the precipitates are due to mono-glycerides. However, the precipitates from CSO-based biodiesel are due to both steryl glucosides and mono-glycerides. 45 refs., 11 figs., 2 tabs.

  3. Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection

    International Nuclear Information System (INIS)

    Mangus, Michael; Kiani, Farshid; Mattson, Jonathan; Tabakh, Daniel; Petka, James; Depcik, Christopher; Peltier, Edward; Stagg-Williams, Susan

    2015-01-01

    Researchers across the globe are searching for energy sources to replace the petroleum-based fuels used by the transportation sector. A fuel of particular interest is biodiesel, produced from a diverse variety of feedstock oils with differing fuel properties that alter the operation and emissions of the engines using them. As biodiesel may be mixed with petroleum-based diesel, the fuel being used by a diesel engine may vary by both biodiesel blend percentage and source. Therefore, the influence of biodiesel properties as a function of blend is important to understand. In this study, four biodiesels, produced from palm, jatropha, soybean, and beef tallow, are tested with blends of petroleum diesel at ratios of 5%, 10%, 20%, and 50% biodiesel content. The results are compared with tests of neat diesel and each biodiesel. Using electronic injection, timing is modulated to normalize combustion phasing for all fuels tested to directly investigate the effects of biodiesel on combustion. Results indicate that fuel viscosity, energy content, and molecular structure have distinct influences on combustion that must be considered for engine calibration. When adjusted for combustion timing, biodiesel blends also showed a general decrease in NO x emissions compared to ultra-low sulfur diesel. - Highlights: • Biodiesel injection timing is adjusted to remove cetane number effect on combustion. • When combustion is normalized, biodiesel NO x emissions are lower than those of ULSD. • Four distinct biodiesels used in blends from 0% to 100% biodiesel/ULSD fraction. • Correlating fuel properties to combustion/emissions is useful for engine calibration

  4. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Yasar, Abdulkadir; Guerue, Metin; Altiparmak, Duran

    2010-01-01

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO x emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO 2 emissions did not vary with the blend fuels significantly.

  5. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali; Yasar, Abdulkadir [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2010-12-15

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO{sub x} emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO{sub 2} emissions did not vary with the blend fuels significantly. (author)

  6. Utilization of some non-edible oil for biodiesel production ...

    African Journals Online (AJOL)

    In this work, the production of biodiesel from four sources of non-edible oils, namely jatropha, animal fat, waste vegetable oil and castor oil was carried out. It was done using an acid esterification process followed by alkali transesterification in the laboratory. Subsequently the physicochemical properties for four blends B100 ...

  7. Preparation of LDPE/LNR Blend Via Emulsion Dispersion

    International Nuclear Information System (INIS)

    Rusli Daik; Yee Lee Ching

    2007-01-01

    Low density polyethylene (LDPE)/ liquid natural rubber (LNR) blends with the composition of 100LDPE/ 0LNR, 70LDPE/ 30LNR, 60LDPE/ 40LNR and 40LDPE/ 60LNR were prepared via dispersion of LDPE and LNR emulsion. LNR was obtained via photochemical sensitization of natural rubber (NR). Emulsion of LNR was prepared by using sodium dodecyl sulfate (SDS) and 1-hexanol as the emulsifier and co- emulsifier respectively. Emulsion of LDPE was prepared in the same way by using LDPE solution in carbon tetrachloride, SDS and 1-hexanol. LDPE/ LNR blends were prepared via mixing of LNR and LDPE emulsions. Mechanical properties of the blends were analyzed by tensile, hardness and impact test. Optimum mechanical properties were observed for composite with composition of 60LDPE/ 40LNR that showed the maximum value of stress and strain. The glass transition temperature, T g , of the blends as obtained from differential scanning calorimetric (DSC) showed that the blends were homogeneous. Morphology study by using scanning electron microscopy (SEM) also indicates the homogeneity of LDPE/ LNR blends produced. (author)

  8. Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends

    OpenAIRE

    LIU Jing-ru; XIA Yang-yang; GAO Li-qun; YU Qiang

    2017-01-01

    The dynamic viscoelastic behavior and phase morphology of high impact polystyrene (HIPS)/high density polyethylene (HDPE) blends were investigated by dynamic rheological test and scanning electron microscopy (SEM). The compatibilizing effect of 1%(mass fraction, same as below) micron-CaCO3 and nano-CaCO3 on HIPS/HDPE(30/70) immiscible blend was compared. The results indicate that the complex viscosity and storage modulus of HIPS/HDPE blends at low frequencies show positive deviation from the ...

  9. Biodiesel Production from Castor Oil and Its Application in Diesel Engine

    Directory of Open Access Journals (Sweden)

    S Ismail

    2014-12-01

    Full Text Available In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.

  10. Studies of PVC/ENR blends: blend compositions

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2002-01-01

    Blends of poly(vinyl chloride/epoxidized natural rubber (PVC/ENR) were prepared by using Bra bender Plasticorder at compositions ranging from 0-100% PVC. They were blended at 150 degree C mixing temperature, 50 rpm rotor speed and 10 minutes mixing time. The blends were characterized for tensile strength , elongation at break, glass transition temperatures and Fourier transform infra red spectroscopy (FTIR). Results revealed that as the PVC content increases the blend behaviour changes from elastomeric to glassy. However the blends found to be compatible at all compositions. (Author)

  11. Phase Segregation in Polystyrene?Polylactide Blends

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  12. Investigation of Oxidation stability of Pongamia Biodiesel and its blends

    Directory of Open Access Journals (Sweden)

    Gaurav Dwivedi

    2016-03-01

    Full Text Available Biodiesel from Pongamia oil is one of the promising non edible sources in India. But the main problem of using Pongamia biodiesel as fuel is its poor stability characteristics. Poor stability leads to gum formation which further leads to a storage problem of these fuels for a longer period of time. This paper investigates the methodology of improving the stability characteristics of Pongamia biodiesel by blending with diesel and use of the antioxidant Pyrogallol. The experimental investigation shows that blending with diesel and using of antioxidant Pyrogallol improves the stability characteristics of Pongamia biodiesel significantly. Results of the study show that the optimum amount of antioxidant (PY for pure PB20 is 300 ppm to maintain the oxidation stability specification and blending of diesel with Pongamia shows that PB10 requires no additive to maintain its stability characteristics.

  13. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    Science.gov (United States)

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-10-01

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  14. Structural and electronic properties of TiX (X=N, As) in rock salt and zinc blende phase: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Verma, U. P.; Nayak, V. [School of Studies in Phyics, jiwaji University, Gwalior-474011 (India)

    2016-05-23

    Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.

  15. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle

    2007-01-01

    The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  16. Development of a method for the characterization of the oxidation stability of domestic heating oil and domestic heating oil with alternative components using chemiluminescence; Entwicklung einer Analysemethode zur Charakterisierung der Oxidationsstabilitaet von Heizoel EL und Heizoel EL A mittels Chemilumineszenz

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Winfried; Lukito, Jayadi; Schloss, Heide vom [Oel-Waerme-Institut gGmbH (OWI), Aachen-Herzogenrath (Germany)

    2013-04-15

    The project's aim was to develop a process that serves to determine the oxidation stability of heating oil - FAME-/ heating oil - vegetable oil-blends clearly. Due to a directed energy input by means of the process of chemiluminescence, statements about the storage stability and the thermal stability of blends can be made. During the process the ageing of blend components and of the heating oil are taken into consideration. As a result, ageing processes and products of pure heating oil as well as biogenic components can be determined. It was shown that the process is applicable to blends up to an admixture of at least 20 % (V/V) of biogenic components, whereby blends with higher admixture shares can be analyzed as well. According to DIN SPEC 51603 - 6 'Heating Oil Alternative' the admixture of FAME is limited to 20 %(V/V) and the admixture of vegetable oil to 5 % (V/V) because of the distillation range. On the basis of these investigations it could be shown how oxidation products influence the signal process of the chemiluminescence radiation and how they can be correlated by a measurable physical value. Moreover, a new evaluation criterion has been developed. By means of this criterion a good reproducibility - regarding the determination of the oxidation stability according to the chemiluminescence methodology for non-aged fuels - can be achieved. The fuel characteristic decrease in the stability of the tested fuels can be represented only partially by the chemiluminescence process, as the measured values are subject to fluctuations. (orig.)

  17. Mechanical and thermal properties of physically-blended-plastic films

    International Nuclear Information System (INIS)

    Abu Issa, M. S.

    1983-10-01

    Low density polyethylene (LDPE) and isotactic polypropylene (PP) blend were produced in film form and were characterized by a number of techniques such as wide-angle x-ray diffraction (WAXD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and instron tensile testing. Results of WAXD and DTA showed conclusively that the two components in the blend are incompatible. SEM micrographs indicated that the 60/40 and 40/60 PP/PE blends show approximately fine homogeneous dispersion of the minor component into the matrix of the major component. The mechanical properties of the blend films improved with respect to the PE homo polymer. The improvement was more remarkable with the increase of the PP component in the blend. Results obtained in this work were explained in terms of crystallinity and the crystallite orientation. 28 refs., 29 figs., 5 tabs. (A.M.H.)

  18. Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Syuhada; Ahmad, S. H. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan (Malaysia); Ratnam, C. T. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang (Malaysia); Athirah, Nurul [School of Materials and Mineral Resources, USM Engineering Campus (Malaysia)

    2013-11-27

    The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.

  19. Maltodextrin and oils in the diet of weaned piglets

    Directory of Open Access Journals (Sweden)

    L. Hauptli

    2016-12-01

    Full Text Available The objective of this study was to evaluate the performance of piglets fed two sources of oil (soybean and palm oil combined with maltodextrin and a blend of palm oil microencapsulated with maltodextrin, as well as the apparent digestibility coefficients of these diets. A total of 162 piglets weaned at 21 days, with a mean initial weight of 5.42 ± 0.55 kg, were allocated in a randomized block design consisting of three treatments and 18 replicates of three animals each. The following treatments were evaluated: T1: diet containing soybean oil [3.03% in the pre-initial (I and initial (II diets] and maltodextrin (10.0% in I and 5.93% in II; T2: diet containing palm oil (3.03% in I and II and maltodextrin (10.0% in I and 5.93% in II; T3: diet containing a blend of palm oil microencapsulated with maltodextrin (10.0% in I and II and maltodextrin added to the blend (4.07% in I so that the percentage of maltodextrin would be identical in the diets of the three treatments. The performance and digestibility data were submitted to analysis of variance using the MIXED and GLM procedures, respectively, of the SAS package and means were compared by the Tukey test (P0.05 in DFI, ADG or FC were observed between piglets submitted to the different treatments. The ADC of dry matter was 4.25% lower (P<0.05 for the diet containing palm oil microencapsulated with maltodextrin compared to the soybean oil diet. The ADC of ether extract was 54% higher (P<0.05 in the soybean oil diet compared to the palm oil diet, which negatively affected the ether extract digestibility coefficient. In conclusion, palm oil microencapsulated or not with maltodextrin can replace soybean oil in the diets of weaned piglets without compromising their performance.

  20. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  1. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points

    Directory of Open Access Journals (Sweden)

    B. P. Nusantoro

    2018-01-01

    Full Text Available A calculation procedure for formulating lauric and palmitic fat blends has been developed based on grouping TAG melting points. This procedure offered more flexibility in choosing the initial fats and oils and eventually gave deeper insight into the existing chemical compositions and better prediction on the physicochemical properties and microstructure of the fat blends. The amount of high, medium and low melting TAGs could be adjusted using the given calculation procedure to obtain the desired functional properties in the fat blends. Solid fat contents and melting behavior of formulated fat blends showed particular patterns with respect to ratio adjustments of the melting TAG groups. These outcomes also suggested that both TAG species and their quantity had a significant influence on the crystallization behavior of the fat blends. Palmitic fat blends, in general, were found to exhibit higher SFC values than those of Lauric fat blends. Instead of the similarity in crystal microstructure, lauric fat blends were stabilized at β polymorph while palmitic fat blends were stabilized at β’ polymorph.

  2. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points

    International Nuclear Information System (INIS)

    Nusantoro, B.P.; Yanty, N.A.M.; Van de Walle, D.; Hidayat, C.; Danthine, S.; Dewettinck, K.

    2017-01-01

    A calculation procedure for formulating lauric and palmitic fat blends has been developed based on grouping TAG melting points. This procedure offered more flexibility in choosing the initial fats and oils and eventually gave deeper insight into the existing chemical compositions and better prediction on the physicochemical properties and microstructure of the fat blends. The amount of high, medium and low melting TAGs could be adjusted using the given calculation procedure to obtain the desired functional properties in the fat blends. Solid fat contents and melting behavior of formulated fat blends showed particular patterns with respect to ratio adjustments of the melting TAG groups. These outcomes also suggested that both TAG species and their quantity had a significant influence on the crystallization behavior of the fat blends. Palmitic fat blends, in general, were found to exhibit higher SFC values than those of Lauric fat blends. Instead of the similarity in crystal microstructure, lauric fat blends were stabilized at β polymorph while palmitic fat blends were stabilized at β’ polymorph. [es

  3. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  4. Functional palm oil-based margarine by enzymatic interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme was a...

  5. Morphologies and mechanical properties of syndiotactic polypropylene (sPP)/polyethylene (PE) blends

    NARCIS (Netherlands)

    Loos, J.; Bonnet, M.; Petermann, J.

    2000-01-01

    The tensile properties of blends based on syndiotactic polypropylene (sPP) and high-density polyethylene (HDPE) have been studied. In order to understand the unexpected decrease in ductility, the crystallization behavior of these blends was characterized by transmission electron microscopy and

  6. Friction and wear study of NR/SBR blends with Si3N4Filler

    Science.gov (United States)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  7. Characterization of Emulsions of Fish Oil and Water by Cryo Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Horn, Anna Frisenfeldt; Jacobsen, Charlotte

    Addition of fish oil to industrially prepared food products is attractive to the food industry because of the well-documented health effects of the omega 3 fatty acids in the fish oil [1]. Polyunsaturated Fatty Acids including omega 3 fatty acids are highly susceptible to lipid oxidation due...... to the many double bonds. Emulsions of fish oil in water are potential candidates for a delivery system of fish oil to food products. It has been suggested that oxidation of oil-in-water emulsions is initiated at the interface between oil and water. It has also been proposed that oxidation is to some extent...... is to characterize fish oil in water emulsions with respect to oil droplet size, distribution, and ultimately to view the structure and thickness of the interface layer. A freeze-fractured surface viewed at low temperatures under the scanning electron microscope is a promising strategy to reveal variations...

  8. Preparation and Effect of Gamma Radiation on The Properties and Biodegradability of Poly(Styrene/Starch) Blends

    Science.gov (United States)

    Ali, H. E.; Abdel Ghaffar, A. M.

    2017-01-01

    Biodegradable blends based on Poly(styrene/starch) Poly(Sty/Starch) were prepared by the casting method using different contents of starch in the range of 0-20 wt% aiming at preparing disposable packaging materials. The prepared bio-blends were Characterized by Fourier transform infrared (FTIR), swelling behavior, mechanical properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the swelling behavior slightly increased with increasing starch content and not exceeding 7.5%. The results showed that by increasing irradiation dose up to 5 kGy, the mechanical properties of the prepared PSty/10 wt% Starch blend film modified than other blend films, and hence it is selected. Also the water resistant increased, by irradiation of the selected PSty/10 wt% Starch blend film. The intermolecular hydrogen bonding interaction between Starch and PSty of the PSty/10 wt% Starch blend film promote a more homogenous blend film as shown in scanning electron microscopy (SEM). The prepared Poly(Sty/Starch) blends with different compositions and the selected irradiated PSty/10 wt% Starch blend were subjected to biodegradation in soil burial tests for 6 months using two different types of soils; agricultural and desert soils, then analyzed gravimetrically and by scanning electron microscopy (SEM). The results suggested that there is a possibility of using irradiated PSty/10 wt% Starch at a dose of 5 kGy as a potential candidate for packaging material.

  9. Effects of Engine Cooling Water Temperature on Performance and Emission Characteristics of a Ci Engine Operated with Biofuel Blend

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2017-03-01

    Full Text Available The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.

  10. Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation

    DEFF Research Database (Denmark)

    Gardini, Diego; Mortensen, Peter Mølgaard; Carvalho, Hudson W. P.

    2014-01-01

    Hydrodeoxygenation (HDO) is proposed as an efficient way to remove oxygen in bio-oil, improving its quality as a more sustainable alternative to conventional fuels in terms of CO2 neutrality and relative short production cycle [1]. Ni and Ni-MoS2 nanoparticles supported on ZrO2 show potential...... as high-pressure (100 bar) catalysts for purification of bio-oil by HDO. However, the catalysts deactivate in presence of sulfur, chlorine and potassium species, which are all naturally occurring in real bio-oil. The deactivation mechanisms of the Ni/ZrO2 have been investigated through scanning...... transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Catalytic testing has been performed using guaiacol in 1-octanol acting as a model compound for bio-oil. Addition of sulphur (0.3 vol% octanethiol) in the feed...

  11. Oil from biomass corncob tar as a fuel

    International Nuclear Information System (INIS)

    Zhang, Hongmei; Wang, Jun

    2007-01-01

    In this study, biomass corncob tar oil (B-oil I and B-oil II) was extracted and its characteristics were measured. The characterization data show some similarities and differences among B-oil I, B-oil II and the Diesel: flash point. The densities and viscosities are higher than that of Diesel fuel. The solidifying point for B-oil I and B-oil II were lower than that of Diesel. The heating value of B-oil I and B-oil II were about 85.6% and 87.3% of that ordinary Diesel fuel (OD). The distillation temperatures of B-oil I and B-oil II were lower than that of Diesel fuel, with the 50% evaporation point being as much as 10 o C and 4 o C lower and the 90% evaporation point being 10 o C and 2 o C lower, respectively. These evaporation characteristics implied better cold starting and warm up properties of B-oil I and B-oil II than that of Diesel fuel. B-oil I and B-oil II were blended with Diesel in 10% and 20% by volume. Engine tests have been conducted with the aim of obtaining comparative measures of torque, thermal efficiency, specific fuel consumption and emissions such as CO, smoke density and NO to evaluate and compute the behavior of the Diesel engine running on the above mentioned fuels. The reduction in exhaust emissions, together with the increases in torque and thermal efficiency and the reduction in specific fuel consumption made the blends of B-oil I and B-oil II a suitable alternative fuel for Diesel and could help in controlling air pollution

  12. CURING AND MECHANICAL PROPERTIES OF CHLOROSULPHONATED POLYETHYLENE RUBBER BLEND

    Directory of Open Access Journals (Sweden)

    Jaroslava Budinski-Simendić

    2011-09-01

    Full Text Available In this paper, the curing and mechanical properties of two series of prepared blends, i.e., chlorosulphonated polyethylene (CSM/isobutylene-co-isoprene (IIR rubber blends and chlorosulphonated polyethylene (CSM/chlorinated isobutylene-co-isoprene (CIIR rubber blends were carried out. Blends were prepared using a two-roll mill at a temperature of 40-50 °C. The curing was assessed using a Monsanto oscillating disc rheometer R-100. The process of vulcanization accelerated sulfur of pure rubbers and their blends was carried out in an electrically heated laboratory hydraulic press under a pressure of about 4 MPa and 160 °C. The stress-strain experiments were performed using a tensile tester machine (Zwick 1425. Results indicate that the scorch time, ts2, and optimum cure time, tc90, increase with increasing CSM content in both blends. The value of modulus at 100 and 300% elongation and tensile strength increases with increasing CSM content, whereas elongation at break shows a decreasing trend. The enhancement in mechanical properties was supported by data of crosslink density in these samples obtained from swelling measurement and scanning electron microscopy studies of the rubber blends fractured surfaces

  13. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  14. Assessing the reaction conditions to mediate the milkfat-soybean oil enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    Ariela Veloso de Paula

    Full Text Available Summary A food grade lipase from Rhizopus oryzae immobilized on a hybrid polysiloxane-polyvinyl alcohol matrix (SiO2-PVA was used as the biocatalyst to mediate the interesterification reactions of a blend containing 65% milkfat and 35% soybean oil. All the reactions occurred in an inert nitrogen atmosphere in cylindrical glass reactors (80 mL with 40 g of the milkfat-soybean oil blend. The influence of the following variables was evaluated: biocatalyst loading (250-1500 activity units per gram of blend, biocatalyst moisture content (5-20%, temperature (45-60 °C and incubation time (2-48 h. The reactions were monitored by determining the free fatty acid content, triacylglycerol (TAGs composition in carbon species, and the consistency of the interesterified (IE products. The reaction conditions were set based on the parameters that provided a high interesterification yield and good consistency of the final product within the ideal range (200 to 800 gf cm-2. Hence the best results were obtained using a biocatalyst loading of 500 U g-1 of blend with 10% moisture content at 45 °C for 4 h. Under these conditions the consistency of the interesterified product was 539.7 ± 38 gf cm-2. The results demonstrated the potential of the immobilized lipase to alter the TAGs profile of the milkfat-soybean oil blend, allowing for the production of structured lipids.

  15. Blend or not to blend: a study investigating faculty members perceptions of blended teaching

    Directory of Open Access Journals (Sweden)

    Mehmet A Ocak

    2010-12-01

    Full Text Available This study examined faculty members’ perceptions of blended teaching from several perspectives. A total of 73 faculty members in Turkish Higher Education context participated in the study by completing an online survey that combined quantitative and qualitative approaches. Based on a data analysis, the faculty members’ perceptions were sorted into six categories: (a satisfaction with blended teaching, (b perceived impact on the role of the faculty, (c perceived impact on student learning, (d perceived impact on student motivation, (e advantages of blended teaching, and (f disadvantages of blended teaching. Findings indicated that faculty members were likely to agree that blended teaching provides a high degree of satisfaction and that it requires more time and commitment from the faculty. The faculty members perceived that blended teaching improves student learning and, to some extent, improves motivation. The faculty members also emphasized the importance of institutional support and the use of technology to mitigate student problems. This study presents these faculty members’ perceptions, which are helpful for those planning to implement a blended teaching approach, and makes suggestions for trouble-shooting and taking advantage of the opportunities in a blended environment successfully.

  16. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  17. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends

    International Nuclear Information System (INIS)

    Tesfa, B.; Gu, F.; Mishra, R.; Ball, A.D.

    2013-01-01

    Highlights: • Lower heating values of neat biodiesel and its blends were measured experimentally. • Lower heating value prediction models were developed based on the density and viscosity values of the fuel. • The predication models were validated by measured values and previous models. • The prediction models were used to predict the lower heating value of 24 biodiesel feedstock types produced globally. • The effects of lower heating vale on brake specific fuel consumption and thermal efficiency were investigated. - Abstract: The heating value of fuel is one of its most important physical properties, and is used for the design and numerical simulation of combustion processes within internal combustion (IC) engines. Recently, there has been a significant increase in the use of dual fuel and blended fuels in compression ignition (CI) engines. Most of the blended fuels include biodiesel as one of the constituents and hence the objective of this study is to investigate the effect of biodiesel content to lower heating value (LHV) and to develop new LHV prediction models that correlate the LHV with biodiesel fraction, density and viscosity. Furthermore, this study also investigated the effects of the LHV on CI engines performance parameters experimentally. To achieve the above mentioned objectives density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc.) were measured as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. The engine experimental work was conducted on a four-cylinder, four-stroke, direct injection (DI) and turbocharged diesel engine by using rapeseed oil and normal diesel blends. Based on the experimental results, models were developed which have the capability to predict the LHV corresponding to different fractions, densities and viscosities of

  18. Performance and emission characteristics of an agricultural diesel engine fueled with blends of Sal methyl esters and diesel

    International Nuclear Information System (INIS)

    Pali, Harveer S.; Kumar, N.; Alhassan, Y.

    2015-01-01

    Highlights: • Sal seed oil is unexplored biodiesel feedstock which is abundantly found in India. • Sal seed oil has good oxidation stability. • Performance and emission characteristics of the blends of Sal methyl esters with diesel evaluated. • At higher loads, CO, HC and smoke emissions of SME blends were lower than diesel. - Abstract: The present work deals with an underutilized vegetable oil; Sal seed oil (Shorea robusta) as a feedstock for biodiesel production. The production potential of Sal seed oil is very promising (1.5 million tons in a year) in India. The pressure filtered Sal seed oil was transesterified into Sal Methyl Ester (SME). The kinematic viscosity (5.89 cSt), density (0.8764 g/cc) and calorific value (39.65 MJ/kg) of the SME were well within the ASTM/EN standard limits. Various test fuels were prepared for the engine trials by blending 10%, 20%, 30% and 40% of SME in diesel on volumetric basis and designated as SME10, SME20, SME30 and SME40 respectively. The BTE, in general, was found to be decreased with increased volume fraction of SME in the blends. At full load, BSEC for SME10, SME20, SME30 and SME40 were 13.6 MJ/kW h, 14.3 MJ/kW h, 14.7 MJ/kW h and 14.8 MJ/kW h respectively as compared to 13.9 MJ/kW h in case of diesel. At higher load conditions, CO, UHC and smoke emissions were found lower for all SME blends in comparison to neat diesel due to oxygenated nature of fuel. SME10, SME20, SME30 and SME40 showed 51 ppm, 44 ppm, 46 ppm and 48 ppm of UHC emissions respectively as compared to 60 ppm of diesel. The NOx emissions were found to be increased for SME based fuel in comparison to neat diesel operation. At peak load condition, SME10, SME20, SME30 and SME40 had NOx emissions of 612 ppm, 644 ppm, 689 ppm and 816 ppm as compared to 499 ppm for diesel. It may be concluded from the experimental investigations that Sal seed biodiesel is a potential alternative to diesel fuel for reducing dependence on crude petroleum derived fuels and

  19. Physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption.

    Science.gov (United States)

    Noda, Yasuhiro; Watanabe, Kazuya; Sanagawa, Akimasa; Sobajima, Yu; Fujii, Satoshi

    2011-10-31

    Pressure ulcers can form with excess pressure and shearing stress on skin tissue. Because pressure ulcer is often accompanies by exudates, selection of appropriate topical emulsion ointment is difficult. Blended ointments consisting of emulsion base and water-soluble base are clinically used for adjustment of wound moist environment. Because regulating the amount of wound exudates can enhance treatment efficacy, two new blended ointments were developed. LY-SL blended ointment consisted of lysozyme hydrochloride water-in-oil (w/o) emulsion (LY-cream) and sulfadiazine macrogol (polyethylene glycol) ointment (SL-pasta). TR-SL blended ointment consisted of tretinoin tocoferil oil-in-water (o/w) emulsion (TR-cream) and SL-pasta (TR-SL). LY-SL and TR-SL were applied to Franz diffusion cell with cellulose membranes for the evaluation of water absorption characteristics at 32 °C. Water absorption rate constants (mg/cm(2)/min(0.5)) were 12.5, 16.3 and 34.6 for LY-cream, TR-cream and SL-pasta, respectively. Water absorption rate constants for LY-SL and TR-SL (SL-pasta 70%) exhibited intermediate values of 21.2 and 27.2, as compared to each ointment alone, respectively. Because amount of water absorbed was linearly related to square root of time, it was suggested that water-absorbable macrogol was surrounded by oily ingredients forming matrix structure. This diffusion-limited structure may regulate water absorption capacity. This is the first report of physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption. The blended ointment can properly regulate amount of exudates in wounds and may be useful for treatment of pressure ulcers. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    Science.gov (United States)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  1. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    Science.gov (United States)

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. EVA reactive blending with Si–H terminated polysiloxane by carbonyl hydrosilylation reaction: From compatibilised blends to crosslinking networks

    International Nuclear Information System (INIS)

    Bonnet, J.; Bounor-Legaré, V.; Alcouffe, P.; Cassagnau, P.

    2012-01-01

    A new and original method based on carbonyl hydrosilylation was developed to prepare ethylene-vinyl acetate (EVA)/polysiloxane polymer blends. This focused on the addition of hydrogenosilane groups (SiH) from polysiloxane to the carbonyl groups of EVA. The influence of the nature of the polysiloxane on blend properties was investigated by rheology and scanning electron microscopy. Mixing of a low viscosity polysiloxane with a high viscosity EVA matrix produced a two-phase morphology. The occurrence of the hydrosilylation reaction at the EVA/polysiloxane interface promoted a homogenisation of the blend depending on the molar ratio SiH/vinyl acetate groups, [SiH]/[VA], and the viscosity ratio of the blend. Two distinct behaviours were observed. The formation of a crosslinked network under shear was obtained for a low viscosity ratio between polysiloxane and EVA (λ polysiloxane/EVA = 4.0 × 10 −6 ) with a high concentration of SiH groups ([SiH]/[VA] = 0.5), while the formation of a compatibilised blend was observed for high molar mass polysiloxanes (Mn > 15,000 g mol −1 ) with a low concentration of SiH ([SiH]/[VA] −3 ). -- Highlights: ► Carbonyl hydrosilylation reaction was found to enhance EVA/polysiloxane immiscible blends. ► EVA crosslinking was obtained with a low molar mass polysiloxane. ► EVA compatibilisation was obtained with a high molar mass polysiloxane. ► Shear rate was found to improve the hydrosilylation reaction at the interface. ► A two-phase morphology of the blends was observed after reaction with fine polysiloxane nodules.

  3. Study of the Effects of Ethanol As an Additive with a Blend of Poultry Litter Biodiesel and Alumina Nanoparticles on a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2017-12-01

    Full Text Available With the increasing population and rise in industrialization, the demand for petroleum reserves is increasing almost daily. This is causing depletion of the non-renewable energy resources. This work aims to find an alternative fuel for diesel engines. The use of poultry litter oil biodiesel obtained from poultry industry waste, which is a non-edible source for biodiesel, is very encouraging as an alternative fuel for diesel engines. The aim of this study is to observe and maximize the performance of poultry litter oil biodiesel by adding alumina nanoparticles and ethanol. The biodiesel is prepared with acid and the base catalysed transesterification of poultry litter oil with methanol using concentrated sulphuric acid and potassium hydroxide as catalysts. The experimentation is carried out on a CI engine with three different blends - B20 biodiesel blend, B20 biodiesel blend with 30 mg/L alumina nanoparticles, and B20 biodiesel blend with 30 mg/L alumina nanoparticles and 15 ml/L ethanol. The performance, combustion and emission characteristics of all three blends are compared with neat diesel. The results of the experiment show that ethanol as an additive improves the combustion and performance characteristics. It increases the brake thermal efficiency and peak cylinder pressure. It also reduces CO and UBHC emissions and there is a marginal increase in NOx emissions as compared to neat diesel.

  4. 3D-morphology reconstruction of nanoscale phase-separation in polymer memory blends

    NARCIS (Netherlands)

    Khikhlovskyi, S.; Breemen, van A.J.J.M.; Michels, J.J.; Janssen, R.A.J.; Gelinck, G.; Kemerink, M.

    2015-01-01

    In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple

  5. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  6. In vitro antioxidant and hypoglycemic activities of Ethiopian spice blend Berbere.

    Science.gov (United States)

    Loizzo, Monica R; Di Lecce, Giuseppe; Boselli, Emanuele; Bonesi, Marco; Menichini, Federica; Menichini, Francesco; Frega, Natale Giuseppe

    2011-11-01

    The metal chelating activity, antioxidant properties, and the effect on carbohydrate-hydrolyzing enzymes of Ethiopian spice blend Berbere have been investigated. Berbere contains a total amount of phenols corresponding to 71.3 mg chlorogenic acid equivalent per gram of extract and a total flavonoid content of 32.5 mg quercetin equivalent per gram of extract. An increase of the resistance towards forced oxidation was obtained when Berbere was added to sunflower oil. In order to evaluate the bioactivity of the non-polar constituents, an n-hexane extract was obtained from Berbere. The gas chromatography-mass spectrometry analysis revealed the presence of 19 fatty acids constituents (98.1% of the total oil content). Among them, linoleic acid was the major component (72.0% of the total lipids). The ethanolic extract had the highest ferric-reducing ability power (35.4 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC(50)) value of 34.8 μg/ml. Moreover, this extract exhibited good hypoglycemic activity against α-amylase (IC(50) = 78.3 μg/ml). In conclusion, Ethiopian spice blend Berbere showed promising antioxidant and hypoglycemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from functional point of view and for the revalorization of the spice blend in gastronomy also outside the African country.

  7. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  8. Characterization and Behavior of Cold Lake Blend and Western Canadian Select Diluted Bitumen Products

    Science.gov (United States)

    Unconventional diluted bitumen (dilbit) oil products present an increasing environmental concern because of extensive transport in North America, recent spills into aquatic habitats, and limited understanding of environmental fate and toxicity. Dilbits are blends of highly weathe...

  9. Modification of polymer blends by irradiation

    International Nuclear Information System (INIS)

    Zuchowska, D.; Zagorski, Z.P.

    1999-01-01

    Modification of polymers, especially of polyolefin-elastomer blends (e. g. ethylene/propylene/diene terpolymer, ethylene propylene copolymer, ethylene/vinyl acetate copolymer etc.), by irradiation with a beam of fast electrons is discussed. Irradiation of polymer blends usually results in enhanced interactions between the constituents, caused among other things, by grafting induced at the polymer interphase. As a result, mechanical properties are affected to an extent depending on the proportion and type of constituent polymers, stabilizer content and radiation dose. Breaking strength (σ) relative elongation at break (ε) and melt flow rate (MFR), were examined for a triblock styrene/butadiene/styrene (SBS) copolymer, polypropylene (PP), and a PP-SBS blend (50:50 by wt.). In PP, the content of the crystal phase was determined. Irradiation was found to make SBS crosslink, as a result, σ rose by 25% and ε remained unaffected. PP was found to become degraded upon irradiation (MFR rose as much as 16 times), thereby σ and ε decreased considerably. In pure PP, the content of the crystal phase was found to increase. The variations of σ and ε in the irradiated PP-SBS blend follow a tendency similar to that in the SBS copolymer examined. This fact suggests the SBS copolymer to have a decisive effect on the macroscopic properties of the PP-SBS blend. (author)

  10. Optimization of transesterification reaction conditions for the production of biodiesel from oil blend of castor bean and soybean; Otimizacao das condicoes reacionais de transesterizacao para producao de biodiesel a partir de mistura de oleos de mamona e soja

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ana Katerine de Carvalho Lima; Lima, Milena Gouveia Oliveira de; Pontes, Luiz Antonio M.; Teixeira, Leonardo S.G. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Almeida, Daniel Freire; Costa, Tales Santana Martins; Menezes; Mateus Della Cella; Santos, Iran Talis Viana; Almeida, Selmo Q. [Universidade Salvador (UNIFACS), BA (Brazil)

    2012-07-01

    Biodiesel is an alternative fuel to diesel oil, and industrially obtained by the transesterification of triglycerides of fatty acids from vegetable oils and/or animal fats. Currently, the main raw material used to produce biodiesel in Brazil is soybean oil. The inclusion of other raw materials from different cultures in this sector is important and aims to reduce dependence on a single oilseed, assign specific characteristics to the product and encourage the development of family farming. The use of blends of soybean oil and castor for biodiesel may prove an important strategy to minimize the negative effects and maximize the positives of each oilseed. In this work, we carried out an experimental study using full factorial design 2{sup 4}, to increase the conversion of esters, by conventional transesterification, using as feedstock a blend of oils containing 20% castor and 80% soybean. The aim of this study was to evaluate the influence of mixing ratio of oil: methanol, KOH concentration, temperature and reaction time in biodiesel production. It was found that the variation of these parameters affected the conversion of esters and quality of biodiesel produced. Conversions above 95% were obtained, and the best conversion was 99.05% at 25 deg C in a reaction time of 20 minutes using 2% KOH as a catalyst and a molar ratio methanol/oil 12:1. In order to reduce the costs of the process with respect to amount of methanol used without affecting the conversion of esters, we identified a second set of process conditions, which used the same conditions of temperature, reaction time and catalyst concentration and a different molar ratio methanol/oil (6:1) which gave a conversion of esters of 98.59%. (author)

  11. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  12. Utilization of waste cooking oil as an alternative fuel for Turkey.

    Science.gov (United States)

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  13. Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study

    International Nuclear Information System (INIS)

    Li, X.F.; Zhang, J.; Xu, B.; Yao, K.L.

    2012-01-01

    Electronic structures and magnetism of Cu-doped zinc-blende ZnO have been investigated by the first-principle method based on density functional theory (DFT). The results show that Cu can induce stable ferromagnetic ground state. The magnetic moment of supercell including single Cu atom is 1.0 μ B . Electronic structure shows that Cu-doped zinc-blende ZnO is a p-type half-metallic ferromagnet. The half-metal property is mainly attribute to the crystal field splitting of Cu 3d orbital, and the ferromagnetism is dominated by the hole-mediated double exchange mechanism. Therefore, Cu-doped zinc-blende ZnO should be useful in semiconductor spintronics and other applications. - Highlights: → Magnetism of Cu-doped zinc-blende ZnO. → Cu-doped zinc-blende ZnO shows interesting half-metal character. → Total energies calculations reveal that Cu can induce ferromagnetic ground state. → Ferromagnetism dominated by the hole-mediated double exchange mechanism.

  14. Compatibilization efficiency of carboxylated nitrile rubber and epoxy pre-polymer in nitrile/acrylic rubber blends

    Directory of Open Access Journals (Sweden)

    Micheli L. Celestin

    2013-01-01

    Full Text Available An investigation has been made of the effects from a compatibilizer, viz. carboxylated nitrile rubber (XNBR, on several properties of nitrile rubber (NBR and acrylic rubber (ACM blends, including curing characteristics, mechanical, dynamic mechanical and dielectric properties. The presence of XNBR until 10 phr resulted in an improvement of the ultimate tensile properties, especially elongation at break. The mechanical properties associated to the volume fraction of rubber in the network (Vr and torque values suggest the co-vulcanization phenomenon imparted by the compatibilization. The oil resistance of NBR/ACM (50:50 wt. (% blends (compatibilized and non compatibilized was similar to that observed for pure ACM and significantly higher than NBR. The addition of small amounts of epoxy pre-polymer in combination with XNBR resulted in an additional improvement of the tensile properties. The dynamic mechanical and dielectric properties of the blends were also investigated. The loss modulus values of the compatibilized blends were significantly lower indicating an increase of the elastic characteristics. All blends presented two dielectric relaxation peaks confirming the heterogeneity of the compatibilized blends

  15. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh