WorldWideScience

Sample records for ohvt technology roadmap

  1. OHVT technology roadmap [2000

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A.

    2000-02-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  2. OHVT technology roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Office of Heavy Vehicle Technologies (OHVT) Technology Roadmap presents the OHVT multiyear program plan. It was developed in response to recommendations by DOE`s heavy vehicle industry customers, including truck and bus manufacturers, diesel engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The technical plan is presented for three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); and (3) class 1-2 (pickups, vans, and sport utility vehicles). The Roadmap documents program goals, technical targets, and technical approaches. Issues addressed include engine efficiency, fuel efficiency, power requirements, emissions, and fuel flexibility. 8 figs., 9 tabs.

  3. OHVT Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A.

    2001-10-22

    The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in

  4. Mineral Processing Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-09-01

    This document represents the roadmap for Processing Technology Research in the US Mining Industry. It was developed based on the results of a Processing Technology Roadmap Workshop sponsored by the National Mining Association in conjunction with the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies. The Workshop was held January 24 - 25, 2000.

  5. Fundamentals of technology roadmapping

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.; Bray, O.H.

    1997-04-01

    Technology planning is important for many reasons. Globally, companies are facing many competitive problems. Technology roadmapping, a form of technology planning can help deal with this increasingly competitive environment. While it has been used by some companies and industries, the focus has always been on the technology roadmap as a product, not on the process. This report focuses on formalizing the process so that it can be more broadly and easily used. As a DOE national security laboratory with R&D as a major product, Sandia must do effective technology planning to identify and develop the technologies required to meet its national security mission. Once identified, technology enhancements or new technologies may be developed internally or collaboratively with external partners. For either approach, technology roadmapping, as described in this report, is an effective tool for technology planning and coordination, which fits within a broader set of planning activities. This report, the second in a series on technology roadmapping, develops and documents this technology roadmapping process, which can be used by Sandia, other national labs, universities, and industry. The main benefit of technology roadmapping is that it provides information to make better technology investment decisions by identifying critical technologies and technology gaps and identifying ways to leverage R&D investments. It can also be used as a marketing tool. Technology roadmapping is critical when the technology investment decision is not straight forward. This occurs when it is not clear which alternative to pursue, how quickly the technology is needed, or when there is a need to coordinate the development of multiple technologies. The technology roadmapping process consists of three phases - preliminary activity, development of the technology roadmap, and follow-up activity.

  6. Metalcasting Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1998-01-01

    The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry. The Roadmap outlines key goals for products and markets, materials technology, manufacturing technology, environmental technology, human resources, and industry health programs. The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry. The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry.

  7. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  8. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  9. Technology Roadmaps: Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The development of Technology Roadmaps: Smart Grids -- which the IEA defines as an electricity network that uses digital and other advanced technologies to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demands of end users -- is essential if the global community is to achieve shared goals for energy security, economic development and climate change mitigation. Unfortunately, existing misunderstandings of exactly what smart grids are and the physical and institutional complexity of electricity systems make it difficult to implement smart grids on the scale that is needed. This roadmap sets out specific steps needed over the coming years to achieve milestones that will allow smart grids to deliver a clean energy future.

  10. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  11. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  12. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  13. Aluminum Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-02-01

    This roadmap describes the industry's R&D strategy, priorities, milestones, and performance targets for achieving its long-term goals. It accounts for changes in the industry and the global marketplace since the first roadmap was published in 1997. An updated roadmap was published November 2001. (PDF 1.1 MB).

  14. Technology Roadmap: Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Hydropower could double its contribution by 2050, reaching 2,000 GW of global capacity and over 7,000 TWh. This achievement, driven primarily by the quest of clean electricity, could prevent annual emissions of up to 3 billion tonnes of CO2 from fossil-fuel plants. The bulk of this growth would come from large plants in emerging economies and developing countries. Hydroelectricity’s many advantages include reliability, proven technology, large storage capacity, and very low operating and maintenance costs. Hydropower is highly flexible, a precious asset for electricity network operators, especially given rapid expansion of variable generation from other renewable energy technologies such as wind power and photovoltaics. Many hydropower plants also provide flood control, irrigation, navigation and freshwater supply. The technology roadmap for Hydropower details action needed from policy makers to allow hydroelectric production to double, and addresses necessary conditions, including resolving environmental issues and gaining public acceptance.

  15. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  16. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  17. Technology Roadmapping for Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.

    2003-02-26

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects.

  18. Catalyst technology roadmap report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, N.B.

    1997-06-01

    This report outlines the future technology needs of the Chemical Industry in the area of catalysis and is a continuation of the process that produced the report Technology Vision 2020: The U.S. Chemical Industry and the Council for Chemical Research`s (CCR) Chemical Synthesis Team follow-up work in chemical synthesis. Vision 2020 developed a 25-year vision for the chemical industry and outlined the challenges to be addressed in order to achieve this vision. This report, which outlines the catalysis technology roadmap, is based on the output of the CCR`s Chemical Synthesis Team, plus a workshop held March -20-21, 1997, which included about 50 participants, with catalysis experts from industry, academia, and government. It is clear that all participants view catalysis as a fundamental driver to the 0274 economic and environmental viability of the chemical industry. Advances in catalytic science and technology are among the most crucial challenges to achieving the goals of the chemical industry advanced in Vision 2020.

  19. Forest Products Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  20. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  1. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  2. Concentrating Solar Power. Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Concentrating solar power can contribute significantly to the world's energy supply. As shown in this roadmap, this decade is a critical window of opportunity during which CSP could become a competitive source of electrical power to meet peak and intermediate loads in the sunniest parts of the world. This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid technological progress, cost reductions and expanded industrial manufacturing of CSP equipment to enable mass deployment. Importantly, this roadmap also establishes a foundation for greater international collaboration. The overall aim of this roadmap is to identify actions required - on the part of all stakeholders - to accelerate CSP deployment globally. Many countries, particularly in emerging regions, are only just beginning to develop CSP. Accordingly, milestone dates should be considered as indicative of urgency, rather than as absolutes. This roadmap is a work in progress. As global CSP efforts advance and an increasing number of CSP applications are developed, new data will provide the basis for updated analysis. The IEA will continue to track the evolution of CSP technology and its impacts on markets, the power sector and regulatory environments, and will update its analysis and set additional tasks and milestones as new learning comes to light.

  3. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  4. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  5. Roadmap for Process Equipment Materials Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  6. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    Energy Technology Data Exchange (ETDEWEB)

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The

  7. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  8. Technology Roadmaps: Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The emerging technology known as concentrating solar power, or CSP, holds much promise for countries with plenty of sunshine and clear skies. Its electrical output matches well the shifting daily demand for electricity in places where airconditioning systems are spreading. When backed up by thermal storage facilities and combustible fuel, it offers utilities electricity that can be dispatched when required, enabling it to be used for base, shoulder and peak loads. Within about one to two decades, it will be able to compete with coal plants that emit high levels of CO2. The sunniest regions, such as North Africa, may be able to export surplus solar electricity to neighbouring regions, such as Europe, where demand for electricity from renewable sources is strong. In the medium-to-longer term, concentrating solar facilities can also produce hydrogen, which can be blended with natural gas, and provide low-carbon liquid fuels for transport and other end-use sectors. For CSP to claim its share of the coming energy revolution, concerted action is required over the next ten years by scientists, industry, governments, financing institutions and the public. This roadmap is intended to help drive these indispensable developments.

  9. Lunar Surface Systems Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; Meseroll, Robert; Quiter, John; Shannon, Russell; Easton, John W.; Madaras, Eric I.; BrownTaminger, Karen M.; Tabera, John T.; Tellado, Joseph; Williams, Marth K.; Zeitlin, Nancy P.

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  10. Introduction to technology roadmapping: The semiconductor industry association`s technology roadmapping process

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.

    1997-04-01

    A technology roadmap is the result of a strategic technology planning process that cooperatively identifies (1) a particular industry`s common product and process performance targets, (2) the technology alternatives and milestones for meeting these targets, and (3) a common technology path for research and development activities. The author describes a successful major roadmapping experience - the Semiconductor Industry Association`s Technology Roadmapping Process, which culminated in a workshop held in 1992. The report explains the committee structure and processes that were used both before and after the workshop and presents principles and practices that can aid future technology roadmappers. Appendix 1 summarizes the process from a committee-structure viewpoint. Appendix 2 summarizes the process from a functional view-point. Appendix 3 answers some frequently asked questions about technology roadmapping.

  11. Technology Roadmap: Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Pattharaporn Suntharasaj

    2010-04-01

    Full Text Available With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. This paper develops a roadmap for a hypothetical company (XI which is seeking to be successful in this market. The roadmapping process starts with gathering data through literature research and expert opinions, and progress through defining the market/product/technology layers, linking and integrating these layers, and finally creating a labon-a-chip for disease diagnostics technology roadmap.

  12. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  13. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  14. Roadmap for In-Space Propulsion Technology

    Science.gov (United States)

    Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.

  15. Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community (2002)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-10-01

    The Industrial Technology Program (ITP) convened industry workshops in 2001 to update the 1999 roadmap. The revised plan, in which the combustion industry lays out the R&D initiatives to meet its performance targets for the next 20 years, is presented in the Industrial Combustion Technology Roadmap. This roadmap showcases a comprehensive R&D plan for the industry and specifies the coordination and alignment of key groups, such as industry, academia, and the federal government, to meet the future energy and environmental goals of the industry.

  16. Technology Roadmaps: China Wind Energy Development Roadmap 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The report shows how China, already the world's largest wind market, could reach 1 000 GW of wind power by the middle of the century, an achievement that would reduce carbon dioxide emissions by 1.5 gigatonnes per year, or roughly equivalent to the combined CO2 emissions of Germany, France and Italy in 2009. The China Wind Energy Roadmap is the first national roadmap that has been developed by a country with IEA support, drawing from its global roadmap series.

  17. Technology Roadmap: Wind Energy. 2013 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The IEA Wind Power Technology Roadmap 2013 Edition recognises the very significant progress made since the first edition was published in 2009. The technology continues to improve rapidly, and costs of generation from land-based wind installations continue to fall. Wind power is now being deployed in countries with good resources without any dedicated financial incentives. The 2013 Edition targets an increased share (15% to 18%) of global electricity to be provided by wind power in 2050, compared to 12% in the original roadmap of 2009. However, increasing levels of low-cost wind still require predictable, supportive regulatory environments and appropriate market designs. The challenges of integrating higher levels of variable wind power into the grid need to be addressed. For offshore wind, much remains to be done to develop appropriate large-scale systems and to reduce costs. The 2013 Wind Power Roadmap also provides updated analysis on the barriers that exist for the technology and suggests ways to address them, including legal and regulatory recommendations.

  18. Open Technology Development: Roadmap Plan

    Science.gov (United States)

    2006-04-01

    Linux Apache MySql (PHP/ Perl /Python) integrated services. This standardized "stack" of open source technologies enables robust web based information...ACTD Office • Sue Payton, AS&C Office • LTG Robert M. Shea, Joint Staff, J-6 • David Scantling, OSD, Business Transformation Office • Fritz

  19. Cryogenic Fluid Management Technology Development Roadmaps

    Science.gov (United States)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  20. Railroad and locomotive technology roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry

  1. Railroad and locomotive technology roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry

  2. Background paper on Technology Roadmaps (TRMs)

    Energy Technology Data Exchange (ETDEWEB)

    More, E.; Phaal, R. [Institute for Manufacturing IfM, Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Londo, H.M.; Wurtenberger, L.; Cameron, L.R. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-04-15

    This background paper reports on the use of technology roadmaps (TRMs) related to climate change mitigation and adaptation technologies. The study is motivated by the UNFCCC Conference of the Parties (CoP) request to the Technology Executive Committee (TEC) to catalyse the development and use of TRMs as facilitative tools for action on mitigation and adaptation. Having originated in industry, TRMs are now used extensively in policy settings too, however their widespread use across sectors and by different stakeholders has resulted in a lack of understanding of their real value to help catalyse cooperation towards technological solutions to the problems presented by climate change. Consequently this background paper presents (1) an overview of different TRM methods, (2) an initial analysis of gaps and barriers in existing TRMs, and (3) a review of current TRM good practices.

  3. The 2017 terahertz science and technology roadmap

    Science.gov (United States)

    Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; Davies, A. G.; Hoffmann, Matthias C.; Booske, John; Paoloni, Claudio; Gensch, M.; Weightman, P.; Williams, G. P.; Castro-Camus, E.; Cumming, D. R. S.; Simoens, F.; Escorcia-Carranza, I.; Grant, J.; Lucyszyn, Stepan; Kuwata-Gonokami, Makoto; Konishi, Kuniaki; Koch, Martin; Schmuttenmaer, Charles A.; Cocker, Tyler L.; Huber, Rupert; Markelz, A. G.; Taylor, Z. D.; Wallace, Vincent P.; Axel Zeitler, J.; Sibik, Juraj; Korter, Timothy M.; Ellison, B.; Rea, S.; Goldsmith, P.; Cooper, Ken B.; Appleby, Roger; Pardo, D.; Huggard, P. G.; Krozer, V.; Shams, Haymen; Fice, Martyn; Renaud, Cyril; Seeds, Alwyn; Stöhr, Andreas; Naftaly, Mira; Ridler, Nick; Clarke, Roland; Cunningham, John E.; Johnston, Michael B.

    2017-02-01

    Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to ‘real world’ applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

  4. The pharmaceutical technology landscape: a new form of technology roadmapping

    NARCIS (Netherlands)

    Tierney, R.; Hermina, W.; Walsh, S.T.

    2013-01-01

    Practitioners are finding it increasingly difficult to develop effective roadmapping efforts for many new products and innovations. We argue that this difficulty stems from the fundamental differences between many of today's innovations and earlier ones. Many current innovations are: using technolog

  5. The pharmaceutical technology landscape: a new form of technology roadmapping

    NARCIS (Netherlands)

    Tierney, Robert; Tierney, R.; Hermina, W.; Walsh, Steven Thomas

    2013-01-01

    Practitioners are finding it increasingly difficult to develop effective roadmapping efforts for many new products and innovations. We argue that this difficulty stems from the fundamental differences between many of today's innovations and earlier ones. Many current innovations are: using technolog

  6. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...

  7. Technology Development Roadmaps - a Systematic Approach to Maturing Needed Technologies

    Energy Technology Data Exchange (ETDEWEB)

    John W. Colllins; Layne Pincock

    2010-07-01

    Abstract. Planning and decision making represent important challenges for all projects. This paper presents the steps needed to assess technical readiness and determine the path forward to mature the technologies required for the Next Generation Nuclear Plant. A Technology Readiness Assessment is used to evaluate the required systems, subsystems, and components (SSC) comprising the desired plant architecture and assess the SSCs against established Technology Readiness Levels (TRLs). A validated TRL baseline is then established for the proposed physical design. Technology Development Roadmaps are generated to define the path forward and focus project research and development and engineering tasks on advancing the technologies to increasing levels of maturity. Tasks include modeling, testing, bench-scale demonstrations, pilot-scale demonstrations, and fully integrated prototype demonstrations. The roadmaps identify precise project objectives and requirements; create a consensus vision of project needs; provide a structured, defensible, decision-based project plan; and, minimize project costs and schedules.

  8. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  9. Technology roadmapping for strategy and innovation charting the route to success

    CERN Document Server

    Isenmann, Ralf; Phaal, Robert

    2013-01-01

    Technology roadmapping is a core method to help companies and other organisations gain orientation for future opportunities and changes. This book is a key resource for technology roadmapping – it provides expert knowledge in four areas: To frame/embed technology roadmapping To structure the process and tasks of technology roadmapping To implement technology roadmapping into corporate strategies To link technology roadmapping to further instruments of strategic planning and corporate foresight This comprehensive survey of technology roadmapping includes papers from leading European, American and Asian experts: It provides an overview of different methods of technology roadmapping and the interactions between them It familiarises readers with the most important sub-methods It embeds/links technology roadmapping to the overall framework of management research and business studies This book, the first of a series, is unique: it aims to become the leading compendium for technology roadmapping knowledge and prac...

  10. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  11. Technology roadmap for lithium ion batteries 2030; Technologie-Roadmap Lithium-Ionen-Batterien 2030

    Energy Technology Data Exchange (ETDEWEB)

    Thielmann, Axel; Isenmann, Ralf; Wietschel, Martin [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2010-07-01

    The technology roadmap for lithium ion batteries 2030 presents a graphical representation of the cell components, cell types and cell characteristics of lithium ion batteries and their connection with the surrounding technology field from today through 2030. This is a farsighted orientation on the way into the future and an implementation of the ''Roadmap: Batterieforschung Deutschland'' of the BMBF (Federal Ministry of Education and Science). The developments in lithium ion batteries are identified through 2030 form today's expert view in battery development and neighbouring areas. (orig.)

  12. Technology roadmapping: The integration of strategic and technology planning for competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.H.; Garcia, M.L.

    1997-04-01

    Technology roadmapping is a form of technology planning that can help organizations deal with an increasingly competitive environment. As a DOE laboratory with R&D as a major product, Sandia must do effective technology planning to identify and develop technologies required to meet its mission. Once technology enhancements or new technologies are identified, they may be developed internally or collaboratively with external partners. For either approach, technology roadmapping is an effective tool for technology planning and coordination, which fits within a broader set of planning activities. Potential benefits of roadmapping include identifying critical technologies and gaps, coordination of research activities, and improved marketing information. Roadmapping is particularly useful when investment decisions are not straightforward and for coordinating the development of multiple technologies, especially across multiple projects. This paper formalizes and documents the technology roadmapping process. It describes the process and shows how it fits within an overall strategic and technology planning process. The technology roadmapping process consists of three phases: preliminary activity, development of the roadmap, and followup activity. Preliminary activity includes: satisfy essential conditions, provide leadership/sponsorship, and define the scope and boundaries for the roadmap. Development of the technology roadmap includes: (1) Identify the {open_quotes}product{close_quotes} that will be the focus of the roadmap. (2) Identify the critical system requirements and their targets. (3) Specify the major technology areas. (4) Specify the technology drivers and their targets. (5) Identify technology alternatives and their time lines. (6) Recommend the technology alternatives that should be pursued. (7) Create the technology roadmap report. Follow-up activity includes: (1) Critique and validate the roadmap. (2) Develop an implementation plan. (3) Review and update.

  13. Power Tower Technology Roadmap and cost reduction plan.

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  14. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.

    2017-08-01

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

  15. Evaluation of the technology roadmap for intelligent building technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    A Technology Roadmap (TRM) is a process tool developed to help Canadian industries identify and address the technology challenges in the future. This report presented the findings from an evaluation of the Technology Roadmap for Intelligent Building Technologies (IBT TRM) that began in 1999 and was released in 2002. The IBT TRM was a collaborative research project between industry and 5 Canadian federal government organizations. The project was managed by the Continental Automated Buildings Association (CABA). The purpose of the TRM was to clarify the challenges and opportunities in the general area of intelligent building technologies. The lack of understanding of IBTs by the construction industry was identified by participants as a significant national issue because it was the major obstacle to the adoption of emerging technologies. New initiatives launched by the IBT TRM as a consequence of the evaluation include the creation of the Intelligent and Integrated Buildings Council (IIBC) sub-committee of CABA to act on the recommendations of the TRM; and planning by CABA for a new TRM to focus on residential rather than commercial buildings. It was also noted that a valuable network of contracts was created during the evaluation process. Various promotional initiatives were reviewed. It was concluded that Industry Canada should continue to play a continued role in the TRM, particularly in the area of fostering and facilitating the development of regulations and standards; further leveraging the expertise of federal research facilities; encouraging international trade efforts; and exploring the applications of intelligent building technologies to other industries. It was suggested that TRMs support the sector's strategic objectives related to the development, adaptation, diffusion and use of sustainable technologies.

  16. Technology Roadmaps: A guide to development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    New low-carbon technologies show clear potential for transforming the global energy system, but a key challenge remains: what steps do governments and industry need to take to ensure their development and deployment? Roadmapping, used for decades in technology-intensive industries, is a useful tool to help address complicated issues strategically at the national, regional and global levels. To help turn political statements and analytical work into concrete action, the International Energy Agency (IEA) is developing a series of global roadmaps devoted to low-carbon energy technologies. This guide is aimed at providing countries and companies with the context, information and tools they need to design, manage and implement an effective energy roadmap process.

  17. Science and Technology Roadmapping to Support Project Planning

    Energy Technology Data Exchange (ETDEWEB)

    Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

    2001-07-01

    Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

  18. Next Generation Integrated Power System: NGIPS Technology Development Roadmap

    Science.gov (United States)

    2007-11-30

    Technology Development Roadmap – Ser 05D/349 APPROVED FOR PUBLIC RELEASE 24 PCM (Inverter transformer co nverter) PCM (Inverter transformer converter) HVDC ...Technology Development Roadmap – Ser 05D/349 APPROVED FOR PUBLIC RELEASE 27 P C M -1 AMVAC HFAC HVDC or 1000 VDC via PCM-4 MVAC HFAC HVDC or 1000 VDC...require additional development. 3.9.2 PCM-2A A PCM-2A is an evolution of the PCM-2 of the IFTP system. For HVDC and HFAC systems, it converts

  19. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  20. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  1. An Interim Report on NASA's Draft Space Technology Roadmaps

    Science.gov (United States)

    2011-01-01

    NASA has developed a set of 14 draft roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each of these roadmaps focuses on a particular technology area (TA). The roadmaps are intended to foster the development of advanced technologies and concepts that address NASA's needs and contribute to other aerospace and national needs. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The statement of task states that "based on the results of the community input and its own deliberations, the steering committee will prepare a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps." This interim report, which does not include formal recommendations, addresses that one element of the study charge. NASA requested this interim report so that it would have the opportunity to make an early start in modifying the draft roadmaps based on feedback from the panels and steering committee. The final report will address all other tasks in the statement of task. In particular, the final report will include a prioritization of technologies, will describe in detail the prioritization process and criteria, and will include specific recommendations on a variety of topics, including many of the topics mentioned in this interim report. In developing both this interim report and the final report to come, the steering committee draws on the work of six study panels organized by technical area, loosely following the organization of the 14 roadmaps, as follows: A Panel 1: Propulsion and Power TA01 Launch Propulsion Systems TA02 In-Space Propulsion Technologies TA03 Space Power and Energy Storage Systems TA13

  2. Power sources manufactures association : power technology roadmap workshop - 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, John S.

    2006-03-01

    The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

  3. Roadmap for engaging consumers in using health information technology.

    Science.gov (United States)

    Long, Sandra; Khairat, Saif

    2014-01-01

    As healthcare costs continue to grow, one method proposed to help reduce costs is consumer engagement in prevention, management, and self-care. This results in less costs incurred by providers and the healthcare system overall. Using consumer Health Information Technology (HIT) makes it easier for consumers to be engaged in managing their own health. The purpose of this research is to develop a strategic roadmap for providers to use when engaging consumers in HIT. Interviews and a literature search of journals and other publications were completed to find successful actions related to engagement of consumers. The research used included healthcare entities in addition to strategic planning practices within business administration. The findings were used to create a method for developing a consumer HIT engagement roadmap. A roadmap was also successfully developed, which can be utilized by organizations as a basis for tailoring their own strategic plans.

  4. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    Science.gov (United States)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; Bender, Peter; Brinker, Edward; Crow, John; Spero, Robert; deVine Glenn; Ziemer, John

    2013-01-01

    Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA

  5. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  6. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  7. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ziagos, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Phillips, Benjamin R. [SRA International, Inc. and Geothermal Technologies Office, Washington, DC (United States); Boyd, Lauren [Geothermal Technologies Office, Washington, DC (United States); Jelacic, Allan [SRA International, Inc., Washington, DC (United States); Stillman, Greg [Geothermal Technologies Office, Washington, DC (United States); Hass, Eric [U.S. DOE, Golden, CO (United States)

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  8. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  9. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin R. [SRA International Inc. and Geothermal Technologies Office, Washington, DC (United States); Ziagos, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsteinsson, Hildigunnur [Geothermal Technologies Office, Washington, DC (United States); Hass, Eric [Geothermal Technologies Office, Golden, CO (United States)

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energy’s Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  10. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  11. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  12. MEANING : a roadmap to knowledge technologies

    NARCIS (Netherlands)

    Rigau, G.; Magnini, B.; Agirre, E.; Vossen, P.; Carroll, J.

    2002-01-01

    Knowledge Technologies need to extract knowledge from existing texts, which calls for advanced Human Language Technologies (HLT). Progress is being made in Natural Language Processing but there is still a long way towards Natural Language Understanding. An important step towards this goal is the dev

  13. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  14. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  15. Analysis on Technology Roadmap of Agricultural Equipment Industry in Chongqing

    Institute of Scientific and Technical Information of China (English)

    Chongjing; TAN; Jin; YE; Shi; YANG

    2014-01-01

    Since the subsidizing agricultural machine purchase was launched in 2004,the agriculture equipment industry in Chongqing has progressed by leaps and bounds,but it is still faced with a few urgent problems,which requires the coordination of stakeholders,with an aim to establish a clear direction of the development of industry and a technology route. With planting industry as an example,this paper applies the principle and method of industry technology roadmap to analyse the market demand,industry target,technology barrier and R & D demand of agricultural equipment industry in Chongqing. Based on the results,the top technology R & D items of agricultural equipment industry in Chongqing are obtained. Finally,the following suggestions are put forward: integrating resources,constructing platform and improving innovation ability; constructing agricultural industry park and promoting clustered development of agricultural equipment industry; strengthening finance and taxation support; strengthening construction of agricultural mechanization infrastructure; substantially developing socialized service of agricultural machinery.

  16. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    NARCIS (Netherlands)

    Ferrari, A.C.; Dekker, C.; Vandersypen, L.M.K.; Van Der Zant, H.S.J.; et. al.

    2014-01-01

    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphen

  17. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    DEFF Research Database (Denmark)

    Ferrari, Andrea C.; Bonaccorso, Francesco; Falko, Vladimir;

    2015-01-01

    We present the science and technology roadmap (STR) for graphene, related twodimensional (2d) crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. The roadmap was developed within the framework of the Euro...

  18. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    NARCIS (Netherlands)

    Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'ko, Vladimir; Novoselov, Konstantin S.; Roche, Stephan; Boggild, Peter; Borini, Stefano; Koppens, Frank H. L.; Palermo, Vincenzo; Pugno, Nicola; Garrido, Jose A.; Sordan, Roman; Bianco, Alberto; Ballerini, Laura; Prato, Maurizio; Lidorikis, Elefterios; Kivioja, Jani; Marinelli, Claudio; Ryhaenen, Tapani; Morpurgo, Alberto; Coleman, Jonathan N.; Nicolosi, Valeria; Colombo, Luigi; Fert, Albert; Garcia-Hernandez, Mar; Bachtold, Adrian; Schneider, Gregory F.; Guinea, Francisco; Dekker, Cees; Barbone, Matteo; Sun, Zhipei; Galiotis, Costas; Grigorenko, Alexander N.; Konstantatos, Gerasimos; Kis, Andras; Katsnelson, Mikhail; Vandersypen, Lieven; Loiseau, Annick; Morandi, Vittorio; Neumaier, Daniel; Treossi, Emanuele; Pellegrini, Vittorio; Polini, Marco; Tredicucci, Alessandro; Williams, Gareth M.; Hong, Byung Hee; Ahn, Jong-Hyun; Kim, Jong Min; Zirath, Herbert; van Wees, Bart J.; van der Zant, Herre; Occhipinti, Luigi; Di Matteo, Andrea; Kinloch, Ian A.; Seyller, Thomas; Quesnel, Etienne; Feng, Xinliang; Teo, Ken; Rupesinghe, Nalin; Hakonen, Pertti; Neil, Simon R. T.; Tannock, Quentin; Loefwander, Tomas; Kinaret, Jari

    2015-01-01

    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European

  19. Roadmap will point way for future intelligent building technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2001-12-31

    A project, funded by five government departments, is underway to develop a roadmap, or guide, for intelligent building technologies to help the construction industry by identifying emerging technologies and market niches, and thereby help stakeholders to make investment and policy decisions. The project concentrates on technologies related to high-rise residential, commercial, industrial and institutional buildings, and covers a spectrum from main equipment to sensors, and communications, artificial reasoning and automated controls for energy management, office automation, indoor environment, local area networking, security, fire control, and maintenance scheduling. The project is overseen by the Institute for Research in Construction of the National Research Council. Also participating is the Continental Automated Building Association (CABA) who act as project managers. Steering committee membership includes representatives from Bell Canada, Honeywell, Hydro-Quebec, IBM, NRC, Natural Resources Canada, Nortel Networks, Siemens and Tridel Corporation. The project is expected to be completed in late spring/early summer of 2001.

  20. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  1. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    Science.gov (United States)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  2. Exploration and Mining Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-09-01

    This Exploration and Mining Technology Roadmap represents the third roadmap for the Mining Industry of the Future. It is based upon the results of the Exploration and Mining Roadmap Workshop held May 10 ñ 11, 2001.

  3. Policy and Technology Readiness: Engaging the User and Developer Community to Develop a Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Jarrod; Barr, Jonathan L.; Burtner, Edwin R.; West, Curtis L.; Kielman, Joseph

    2015-05-16

    A key challenge for research roadmapping in the crisis response and management domain is articulation of a shared vision that describes what the future can and should include. Visioning allows for far-reaching stakeholder engagement that can properly align research with stakeholders needs. Engagement includes feedback from researchers, policy makers, general public, and end-users on technical and non-technical factors. This work articulates a process and framework for the construction and maintenance of a stakeholder-centric research vision and roadmap in the emergency management domain. This novel roadmapping process integrates three pieces: analysis of the research and technology landscape, visioning, and stakeholder engagement. Our structured engagement process elicits research foci for the roadmap based on relevance to stakeholder mission, identifies collaborators, and builds consensus around the roadmap priorities. We find that the vision process and vision storyboard helps SMEs conceptualize and discuss a technology's strengths, weaknesses, and alignment with needs

  4. Designing Program Roadmaps to Catalyze Community Formation: A Case Study of the Long-Term Stewardship Science and Technology Roadmapword

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brent; Hanson, Duane; Matthern, Gretchen

    2003-02-27

    A number of broad perspective technology roadmaps have been developed in the last few years as tools for coordinating nation-wide research in targeted areas. These roadmaps share a common characteristic of coalescing the associated stakeholder groups into a special-interest community that is willing to work cooperatively in achieving the roadmap goals. These communities are key to roadmap implementation as they provide the collaborative energy necessary to obtain the political support and funding required for identified science and technology development efforts. This paper discusses the relationship between roadmaps and special-interest communities, using the recently drafted Department of Energy's Long-Term Stewardship Science and Technology Roadmap as a case study. Specific aspects this roadmap's design facilitated the development of a long-term stewardship community while specific realities during roadmap development impacted the realization of the design.

  5. A technology roadmap of assistive technologies for dementia care in Japan.

    Science.gov (United States)

    Sugihara, Taro; Fujinami, Tsutomu; Phaal, Robert; Ikawa, Yasuo

    2015-01-01

    The number of elderly people in Japan is growing, which raises the issue of dementia, as the probability of becoming cognitively impaired increases with age. There is an increasing need for caregivers, who are well-trained, experienced and can pay special attention to the needs of people with dementia. Technology can play an important role in helping such people and their caregivers. A lack of mutual understanding between caregivers and researchers regarding the appropriate uses of assistive technologies is another problem. A vision of person-centred care based on the use of information and communication technology to maintain residents' autonomy and continuity in their lives is presented. Based on this vision, a roadmap and a list of challenges to realizing assistive technologies have been developed. The roadmap facilitates mutual understanding between caregivers and researchers, resulting in appropriate technologies to enhance the quality of life of people with dementia.

  6. Technology Roadmap Research Program for the Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  7. Industrial Combustion Technology Roadmap. A Technology Roadmap by and for the Industrial Combustion Community

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    The U.S. combustion industry is among the most productive, efficient, and technologically sophisticated in the world and remains vital to the nation’s economic competitiveness and national security. As the industry looks forward, it confronts tremendous growth opportunities but also significant technical and market challenges. Future industry success will depend on the industry's ability to respond to competitive pressures as well as public expectations for a clean and sustainable industry. Much progress has been made in understanding the fundamental science of combustion; however, much more is needed as regulatory and competitive forces push the industry to develop combustion equipment with better performance, lower environmental impact, and greater flexibility. Immense opportunities exist for companies to develop and apply new technology responding to these needs. Unfortunately, few companies can accept the high technical and financial risk required for the research if the technology is not adopted widely enough to provide a payback on their investment.

  8. PVT roadmap. A European guide for the development and market introduction of PVT technology

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M. [ECN Renewable Energy in the Built Environment DEGO, Petten (Netherlands); Affolter, P. [Solstis, Lausanne (Switzerland); Eisenmann, W. [Institut fuer Solarenergieforschung ISFH, Emmerthal (Germany); Fechner, H. [Arsenal Research, Vienna (Austria); Rommel, M. [Fraunhofer ISE, Freiburg (Germany); Schaap, A. [Ecofys, Utrecht (Netherlands); Soerensen, H. [Esbensen, Copenhagen (Denmark); Tripanagnostopoulos, Y. [University of Patras, Patras (Greece)

    2006-06-15

    The aim of the roadmap is to identify promising markets for PVT (PhotoVoltaic Thermal) technology , and to identify the economical, policy, legislative and technical bottlenecks. In addition, the roadmap wants to inform the parties in the market on PVT. It thereby targets a broad range of professionals, including policy makers, solar manufacturers, installers and researchers. This work has been carried out within the PVT forum project, which is part of the EU-supported project PV-Catapult. The aim of PVT Forum is to lay the foundations for a large-scale introduction of PVT technology in Europe by means of this roadmap. In order to construct the roadmap, a two-step approach was taken. As a first step, PVT experts, PV and solar thermal industries and other stakeholders were brought together in two workshops, connected to the PVSEC 2004 in Paris and the Eurosun conference 2004 in Freiburg, to identify drivers and barriers for PVT. The results of these two workshops, that were presented in two workshop reports, were used as input for the roadmap presented here. As a second step, the PVT roadmap was written, formulating the necessary actions that should be taken on short, medium and long term in order to enlarge the market for PVT products. The chapters of the roadmap are written and reviewed by the various participants in PVT Forum. These participants have been selected for this project on the basis of their contribution to PVT development over the last years.

  9. National solar technology roadmap: Nano-architecture PV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-06-01

    This roadmap addresses nano-architecture solar cells that use nanowires, nanotubes, and nanocrystals, including single-component, core-shell, embedded nanowires or nanocrystals either as absorbers or transporters.

  10. Trends in robotics: A summary of the Department of Energy`s critical technology roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Eicker, P.J.

    1998-08-10

    Technology roadmaps serve as pathways to the future. They call attention to future needs for research and development; provide a structure for organizing technology forecasts and programs; and help communicate technological needs and expectations among end users and the research and development (R and D) community. Critical Technology roadmaps, of which the Robotics and Intelligent Machines (RIM) Roadmap is one example, focus on enabling or cross-cutting technologies that address the needs of multiple US Department of Energy (DOE) offices. Critical Technology roadmaps must be responsive to mission needs of the offices; must clearly indicate how the science and technology can improve DOE capabilities; and must describe an aggressive vision for the future of the technology itself. The RIM Roadmap defines a DOE research and development path for the period beginning today, and continuing through the year 2020. Its purpose is to identify, select and develop objectives that will satisfy near- and long-term challenges posed by DOE`s mission objectives. If implemented, this roadmap will support DOE`s mission needs while simultaneously advancing the state-of-the-art of RIM. For the purposes of this document, RIM refers to systems composed of machines, sensors, computers and software that deliver processes to DOE operations. The RIM Roadmap describes how such systems will revolutionize DOE processes, most notably manufacturing, hazardous and remote operations, and monitoring and surveillance. The advances in DOE operations and RIM discussed in this document will be possible due to the developments in many other areas of science and technology, including computing, communication, electronics and micro-engineering. Modern software engineering techniques will permit the implementation of inherently safe RIM systems that will depend heavily on software.

  11. Energy Technology Roadmaps: A Guide to Development and Implementation. 2014 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    New low-carbon technologies show clear potential for transforming the global energy system, but a key challenge remains: what steps do governments and industry need to take to ensure their development and deployment? Roadmapping, used for decades in technology-intensive industries, is a useful tool to help address complicated issues strategically at the national, regional and global levels. To help turn political statements and analytical work into concrete action, the International Energy Agency (IEA) is developing a series of global roadmaps devoted to low-carbon energy technologies. Drawing upon the extensive IEA experience, this guide is aimed at providing countries and companies with the context, information and tools needed to design, manage and implement an effective energy technology roadmap process relevant to their own local circumstances and objectives. This edition of the Energy Technology Roadmaps: a guide to development and implementation includes more detailed guidance on how to identify key stakeholders, develop a technology baseline and development of indicators to help track progress against roadmap milestones. The IEA hopes that this guide and the examples and references it offers, together with the new IEA How2Guides, which provide technology-specific guidance, will help national and local policy makers and industry to develop strategies that accelerate the deployment of low-carbon energy technologies worldwide.

  12. SUPPLIER SELECTION STRATEGY AND MANUFACTURING FLEXIBILITY: IMPACT OF QUALITY AND TECHNOLOGY ROADMAPS

    Directory of Open Access Journals (Sweden)

    Muhamad Jantan

    2006-01-01

    Full Text Available The study evaluates the relationship between technology, quality, cost and delivery performance-based, supplier selection strategies, and manufacturing flexibilities namely, product flexibility, launch flexibility, and volume flexibility. Moreover, the moderating impact of supplier management strategies, namely quality roadmap and technology roadmap on the above relationships were also explored. The data for the study was drawn from a sample of companies listed in the factory directory published by the Penang Development Corporation (PDC. A postal survey of 120 manufacturers provided a return of 92 usable responses. The results reveal that the selection of suppliers based on technological and quality performance positively affects all the three dimensions of manufacturing flexibility, with complementary effects of good technology and quality roadmaps. Technology and quality roadmaps act as predictors for product and volume flexibilities. However, when launch flexibility is the focus, both technology and quality roadmaps moderate the impact of supplier selection strategies. Details of the findings, theoretical and practical implications, and the research limitation are discussed.

  13. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  14. Strategic Program Planning Lessons Learned In Developing The Long-Term Stewardship Science and Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, B.W.; Hanson, D.J.; Matthern, G.E.

    2003-04-24

    Technology roadmapping is a strategic planning method used by companies to identify and plan the development of technologies necessary for new products. The U.S. Department of Energy's Office of Environmental Management has used this same method to refine requirements and identify knowledge and tools needed for completion of defined missions. This paper describes the process of applying roadmapping to clarify mission requirements and identify enhancing technologies for the Long-Term Stewardship (LTS) of polluted sites after site cleanup has been completed. The nature of some contamination problems is such that full cleanup is not achievable with current technologies and some residual hazards remain. LTS maintains engineered contaminant barriers and land use restriction controls, and monitors residual contaminants until they no longer pose a risk to the public or the environment. Roadmapping was used to clarify the breadth of the LTS mission, to identify capability enhancements needed to improve mission effectiveness and efficiency, and to chart out the research and development efforts to provide those enhancements. This paper is a case study of the application of roadmapping for program planning and technical risk management. Differences between the planned and actual application of the roadmapping process are presented along with lessons learned. Both the process used and lessons learned should be of interest for anyone contemplating a similar technology based planning effort.

  15. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  16. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  17. Roadmaps for the Development of Technologies Related to Danish Wave Power Systems

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, H. J.

    2015-01-01

    The Danish Partnership for Wave Power was established in 2011 under the project "New strategy for wave power through industrial partnership" [1] funded by the Danish Energy Technology Development and Demonstration Program. The core of this partnership is nine active Danish wave energy developers...... seconded by offshore industry, and research institutions. The Danish Partnership for Wave Power has further been consolidated through the follow-on Roadmap project described in this paper. The roadmap project has in detail investigated how the four most common technology areas for wave power developers can...... activities (research, development and test) are necessary to achieve the desired level of technology i.e. in 2020. The Roadmaps can thus be used to prioritize and coordinate technology development projects....

  18. A National Roadmap for Vadose Zone Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kowall, Stephen Jacob

    2001-08-01

    This roadmap is a means of achieving, to the best of our current knowledge, a reasonable scientific understanding of how contaminants of all forms move in the vadose geological environments. This understanding is needed to reduce the present uncertainties in predicting contaminant movement, which in turn will reduce the uncertainties in remediation decisions.

  19. 1998 technology roadmap for integrated circuits used in critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dellin, T.A.

    1998-09-01

    Integrated Circuits (ICs) are being extensively used in commercial and government applications that have extreme consequences of failure. The rapid evolution of the commercial microelectronics industry presents serious technical and supplier challenges to this niche critical IC marketplace. This Roadmap was developed in conjunction with the Using ICs in Critical Applications Workshop which was held in Albuquerque, NM, November 11--12, 1997.

  20. Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Indian cement industry is one of the most efficient in the world. Its efforts to reduce its carbon footprint by adopting the best available technologies and environmental practices are reflected in the achievement of reducing total CO2 emissions to an industrial average of 0.719 tCO2/t cement in 2010 from a substantially higher level of 1.12 tCO2/t cement in 1996. However, because the manufacturing process relies on the burning of limestone, it still produced 137 MtCO2 in 2010 – approximately 7% of India’s total man-made CO2 emissions. Yet opportunity for improvement exists, particularly in relation to five key levers that can contribute to emissions reductions: alternative fuel and raw materials; energy efficiency; clinker substitution; waste heat recovery and newer technologies. This roadmap sets out one pathway by which the Indian cement industry can reach its targets to improve energy efficiency and reduce CO2 emissions by 2050, thereby laying the foundation for low-carbon growth in the years beyond. The Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry builds on the global IEA technology roadmap for the cement sector developed by the IEA and the World Business Council for Sustainable Development’s Cement Sustainability Initiative. It outlines a possible transition path for the Indian cement industry to reduce its direct CO2 emissions intensity to 0.35 tCO2/t cement and support the global goal of halving CO2 emissions by 2050.

  1. RESET Roadmap for European research on Smartcard rElated Technologies

    NARCIS (Netherlands)

    Gras, F.; Le Dantec, B.; Trebucq, O.; Cucinelli, B; Leduc, M.; Simplot, D.; Bueker, U.; Barthe, G.; Michaud, B.; Hartel, P.H.; Thevenot, B.; Moedl, A.; Quisquater, J.J.; Thomasson, J.P.; Canto, E.

    2003-01-01

    The objective of RESET (Roadmap for European research on Smartcard related Technologies) is to investigate the RTD needs corresponding to current and expected future technology gaps, identified by the industry and resulting from market and product trends foreseen by smart card industrial players. Th

  2. Transition Management: Case Study of an Energy Efficiency Technology Roadmap in Turkey

    Directory of Open Access Journals (Sweden)

    Şiir Kilkiş

    2014-12-01

    Full Text Available This paper integrates several streams of literature in transition management and proposes a holistic framework for its application in policy-making. Separate fields of study, such as motors of change and strategic intelligence tools, are unified in a single analytical process. The process involves five steps that may be repeated until a desired policy objective is achieved. The pilot, integrated technology roadmap process that has been launched in Turkey is analyzed as a case study. The Energy Efficiency Technology Roadmap has been completed with the participation of over 160 experts in 5 different stages. It involved the collection of over 349 Delfi statements, their consolidation for a Delfi survey with 16 statements, the analysis of the results, a focal group meeting to develop roadmaps for the 7 selected goals, and the consultation of the roadmaps to the sector. The paper concludes that an integrated technology roadmap process, as described in the pilot case study, provides an advanced version of transition management, which is needed to mobilize research, development, and innovation for sustainable development.

  3. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Atalla, Rajai [USDA Forest Service, Washington, DC (United States); Beecher, James [USDA Forest Service, Washington, DC (United States); Caron, Robert [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Catchmark, Jeffrey [Pennsylvania State Univ., State College, PA (United States); Deng, Yulin [Georgia Inst. of Technology, Atlanta, GA (United States); Glasser, Wolfgang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Gray, Derek [McGill Univ., Montreal, QC (Canada); Haigler, Candace [North Carolina State Univ., Raleigh, NC (United States); Jones, Philip [Imerys, Paris (France); Joyce, Margaret [Western Michigan Univ., Kalamazoo MI (United States); Kohlman, Jane [USDA Forest Service, Washington, DC (United States); Koukoulas, Alexander [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Lancaster, Peter [Weyerhaeuser Company, Longview, WA (United States); Perine, Lori [American Forest and Paper Association, Washington, DC (United States); Rodriguez, Augusto [Georgia-Pacific Corporation, Atlanta, GA (United States); Ragauskas, Arthur [Georgia Inst. of Technology, Atlanta, GA (United States); Wegner, Theodore [USDA Forest Service, Washington, DC (United States); Zhu, Junyong [USDA Forest Service, Washington, DC (United States)

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  4. Synthesizing R&D Data: Experiences from the Integrated Manufacturing Technology Roadmap (IMTR) Project

    Energy Technology Data Exchange (ETDEWEB)

    merrell, m.a.

    1999-05-05

    IMTR is a tremendous undertaking to assess the current state and future needs of Manufacturing Technology R&D. A follow-on project to the roadmaps is the development and populating of a Gap Analysis database containing current R&D abstracts related to the roadmaps' technical elements. Efficiently identifying the R&D projects within scope presents many travails of synthesizing data from across a wide spectrum. Challenges to this project were directly proportional to the lack of single-source data collections.

  5. How to develop technology roadmaps? The case of a Hospital Automation Company

    Directory of Open Access Journals (Sweden)

    Giseli Valentim Rocha

    2016-06-01

    Full Text Available Abstract This paper presents the results of research conducted in a hospital automation company. The research examined the importance of innovation and technology management processes for small companies and how these factors can be developed more successfully. The paper proposes the use of a Technology Roadmapping (TRM method to assist these companies in the management of their technology processes to better understand the economic and social context in which they operate and to better exploit market opportunities. The results show that Technology Roadmapping can assist these companies in management support and technological planning while exploring and sharing the connection between technological resources, organizational goals and environmental changes. This research addresses the lack of studies on conducting TRM and details the importance of the method.

  6. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  7. Effective methodology to derive strategic decisions from ESA exploration technology roadmaps

    Science.gov (United States)

    Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio

    2016-09-01

    Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one

  8. Roadmapping and Strategy in Science, Technology and Innovation: Why connectivity matters

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    The thesis focuses on the coordination of technology-intensive innovation activities at both sector and firm levels, supported by the use of the strategic roadmapping method. Investigations combine qualitative and quantitative research methods; using a narrative approach in the form of interviews...... to uncover innovation and technology barriers, and a social network analysis of stakeholders’ role in relation to two technology platforms: TPWind and ZEP (Zero Emission Platform), during a five-year period when the roadmaps 2020 were developed. In this respect, the thesis emphasizes the view of innovation...... as an interactive process to develop competences among technology users, producers, research institutions, and politicians. As a result, knowledge on how the platforms evolved, and their dynamics, provide new reflections on the innovation systems approach: that connectivity seems to change along the changes...

  9. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  10. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  11. Community resources and technologies developed through the NIH Roadmap Epigenomics Program.

    Science.gov (United States)

    Satterlee, John S; Beckel-Mitchener, Andrea; McAllister, Kim; Procaccini, Dena C; Rutter, Joni L; Tyson, Frederick L; Chadwick, Lisa Helbling

    2015-01-01

    This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.

  12. LAW ENFORCEMENT TECHNOLOGY ROADMAP: LESSONS TO DATE FROM THE NORTHWEST TECHNOLOGY DESK AND THE NORTHWEST FADE PILOTS

    Energy Technology Data Exchange (ETDEWEB)

    West, Curtis L.; Kreyling, Sean J.

    2011-04-01

    The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.

  13. Enterprise Architecture (EA) Roadmap

    Data.gov (United States)

    Office of Personnel Management — The Enterprise Roadmap reflects the information technology (IT) investment priorities established in agency PortfolioStat reviews, as well as IT program decisions...

  14. PVT roadmap. A European guide for the development and market introduction of PVT technology

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M. [ECN Renewable Energy in the Built Environment DEGO, Petten (Netherlands); Affolter, P. [Solstis, Lausanne (Switzerland); Eisenmann, W. [Institut fuer Solarenergieforschung ISFH, Emmerthal (Germany); Fechner, H. [Arsenal Research, Vienna (Austria); Rommel, M. [Fraunhofer ISE, Freiburg (Germany); Schaap, A. [Ecofys, Utrecht (Netherlands); Soerensen, H. [Esbensen, Copenhagen (Denmark); Tripanagnostopoulos, Y. [University of Patras, Patras (Greece)

    2005-11-15

    In PVT technology, heat is extracted from PV cells. In this way, a device is made that produces both electricity and heat. In the EU-funded co-ordination action PV-Catapult, workshops on PVT were organised at the PVSEC 2004 Conference in Paris and the Eurosun 2004 conference in Freiburg, to obtain active participation of the PV and solar thermal communities. Currently, the results of the workshops are used in the drafting of a roadmap for the large-scale introduction of PVT technology on the market. First results will be presented here.

  15. A roadmap for the development and market introduction of PVT technology

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M.; Elswijk, M.J. [ECN Renewable Energy in the Built Environment DEGO, Petten (Netherlands)

    2005-11-15

    In PVT technology, heat is extracted from PV cells. In this way, a device is made that produces both electricity and heat. In the EU funded coordination action PV-Catapult, workshops on PVT were organised at the PVSEC 2004 Conference in Paris and the Eurosun 2004 conference in Freiburg, to obtain active participation of the PV and solar thermal communities. Currently, the results of the workshops are used in the drafting of a roadmap for the large scale introduction of PVT technology on the market. First results will be presented here.

  16. An interim report on NASA's draft space technology roadmaps

    National Research Council Canada - National Science Library

    2011-01-01

    For the National Aeronautics and Space Administration (NASA) to achieve many of its space science and exploration goals over the next several decades, dramatic advances in space technology will be necessary...

  17. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O' Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system

  18. Approach to technology prioritization in support of moon initiatives in the framework of ESA exploration technology roadmaps

    Science.gov (United States)

    Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio

    2017-10-01

    Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of

  19. Situation awareness of active distribution network: roadmap, technologies, and bottlenecks

    DEFF Research Database (Denmark)

    Lin, Jin; Wan, Can; Song, Yonghua

    2016-01-01

    that operators are aware of operation states and potential risks. Current solutions in distribution supervisory control and data acquisition (DSCADA) as well as the distribution automation system (DAS) generally are not able to meet the technology requirements of SA. In this paper, the authors’ participation...

  20. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; Wallace, Shawn

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  1. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  2. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  3. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  4. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  5. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  6. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; Partridge, Harry; Sherman, Aaron; McCabe, Mary

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware

  7. Patterning roadmap: 2017 prospects

    Science.gov (United States)

    Neisser, Mark

    2017-06-01

    Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.

  8. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap

    OpenAIRE

    Hurlbert, Eric A.; Manfletti, Chiara; Sippel, Martin

    2016-01-01

    As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTD...

  9. Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update

    Energy Technology Data Exchange (ETDEWEB)

    Mc Dannel, Gary Eidson

    2001-09-01

    This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, “Program and Project Management for the Acquisition of Capital Assets.” Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

  10. Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies: Hydrogen and Fuel Cells

    DEFF Research Database (Denmark)

    Cerri, I.; Lefebvre-Joud, F.; Holtappels, Peter

    A group of experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European...

  11. A study on the framework for selecting core R and D programmes in Energy Technology Roadmap by the DEA approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Kon; Mogi, Gento; Kim, Jong Wook

    2007-07-01

    South Korea is the 10th largest energy consumer in the world because of the poor country of natural resources such as petroleum, coal, and natural gas. It is essential to solve the energy difficulty of secure supply and demand of national energy. We established the energy technology roadmap to prepare for the next 10 years. We clustered 3 core technological sectors such as technology for high oil prices, the United nations framework for climate change, and the hydrogen economy. But we didn't prioritize the weights of energy technology development in energy technology roadmap. To allocate the finite resources efficiently, we cluster the preferred groups and non-preferred groups by the data envelopment analysis (DEA) approach. Through the scientific decision making approach, we can allocate R and D capacity, budget, and infrastructures efficiently to produce outstanding R and D outputs. (auth)

  12. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  13. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  14. Implementing the South African additive manufacturing technology roadmap - the role of an additive manufacturing centre of competence

    Directory of Open Access Journals (Sweden)

    Du Preez, Willie Bouwer

    2015-08-01

    Full Text Available The Rapid Product Development Association of South Africa (RAPDASA expressed the need for a national Additive Manufacturing Roadmap. Consequentially, the South African Department of Science and Technology commissioned the development of a South African Additive Manufacturing Technology Roadmap. This was intended to guide role-players in identifying business opportunities, addressing technology gaps, focusing development programmes, and informing investment decisions that would enable local companies and industry sectors to become global leaders in selected areas of additive manufacturing. The challenge remains now for South Africa to decide on an implementation approach that will maximize the impact in the shortest possible time. This article introduces the concept of a national Additive Manufacturing Centre of Competence (AMCoC as a primary implementation vehicle for the roadmap. The support of the current leading players in additive manufacturing in South Africa for such a centre of competence is shared and their key roles are indicated. A summary of the investments that the leading players have already made in the focus areas of the AMCoC over the past two decades is given as confirmation of their commitment towards the advancement of the additive manufacturing technology. An exposition is given of how the AMCoC could indeed become the primary initiative for achieving the agreed national goals on additive manufacturing. The conclusion is that investment by public and private institutions in an AMCoC would be the next step towards ensuring South Africa’s continued progress in the field.

  15. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunn, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Durbin, Samual [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); England, Jeff [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lindgren, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meier, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-05

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.

  16. Finnish national roadmap for the implementation of the environmental technologies action plan for the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, M.

    2006-07-01

    In January 2004, the European Commission launched the Environmental Technologies Action Plan (ETAP). ETAP rests on a broad definition of environmental technology, embracing all technologies which prove less harmful to the environment than their alternatives. In the spring of 2005, the revised EU Competitive Strategy set greater challenges than before for environmental technology. This so-called 'Lisbon Strategy,' and the EU's Economic and Employment policy guidelines which enlarge on it, focus on the importance of innovativeness and efficient use of resources as a competitive factor throughout the EU. When submitting national reports in conjunction with the Lisbon Strategy, member states also report annually on ETAP's progress at national level. Finland's national implementation of ETAP is coordinated by the Ministry of Trade and Industry with help from an ad hoc group consisting of representatives from other ministries, funding bodies, industrial organisations and research institutions. The Ministry of the Environment is responsible for the EU-level co-ordination of preparatory work related to measures involved in ETAP implementation. This National Roadmap has been drawn up by the Ministry of Trade and Industry and processed by the national ETAP ad hoc group, and a draft of it has been posted for public comment on the Ministry of Trade and Industry's website. Regional players were also heard during the preparations. The document defines national goals and actions connected with promoting environmental technologies. All actions described have either been recently implemented, are in progress or are planned. The challenges presented are matched with ideas which are 'common property' about how environmental technologies should be promoted, the cases mentioned describing Finnish best practices in this regard. Resource and energy efficiency, as well as environmental benignity, have traditionally constituted the basis of new

  17. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  18. BMT Roadmap: A User-Centered Design Health Information Technology Tool to Promote Patient-Centered Care in Pediatric Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Runaas, Lyndsey; Hanauer, David; Maher, Molly; Bischoff, Evan; Fauer, Alex; Hoang, Tiffany; Munaco, Anna; Sankaran, Roshun; Gupta, Rahael; Seyedsalehi, Sajjad; Cohn, Amy; An, Larry; Tewari, Muneesh; Choi, Sung Won

    2017-05-01

    Health information technology (HIT) has great potential for increasing patient engagement. Pediatric hematopoietic cell transplantation (HCT) is a setting ripe for using HIT but in which little research exists. "BMT Roadmap" is a web-based application that integrates patient-specific information and includes several domains: laboratory results, medications, clinical trial details, photos of the healthcare team, trajectory of transplant process, and discharge checklist. BMT Roadmap was provided to 10 caregivers of patients undergoing first-time HCT. Research assistants performed weekly qualitative interviews throughout the patient's hospitalization and at discharge and day 100 to assess the impact of BMT Roadmap. Rigorous thematic analysis revealed 5 recurrent themes: emotional impact of the HCT process itself; critical importance of communication among patients, caregivers, and healthcare providers; ways in which BMT Roadmap was helpful during inpatient setting; suggestions for improving BMT Roadmap; and other strategies for organization and management of complex healthcare needs that could be incorporated into BMT Roadmap. Caregivers found the tool useful and easy to use, leading them to want even greater access to information. BMT Roadmap was feasible, with no disruption to inpatient care. Although this initial study is limited by the small sample size and single-institution experience, these initial findings are encouraging and support further investigation.

  19. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  20. The GRIP method for collaborative roadmapping workshops

    DEFF Research Database (Denmark)

    Piirainen, Kalle

    2015-01-01

    Technology roadmapping is a well-known tool for technology management, but practical advice for facilitating collaborative roadmapping workshops is relatively scarce. To cater for this need, we have designed a method for collaborative roadmapping, dubbed the GRIP method, for facilitating group work...

  1. A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission

    Science.gov (United States)

    Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall

    2013-01-01

    This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently

  2. The 2012 Plasma Roadmap

    Science.gov (United States)

    Samukawa, Seiji; Hori, Masaru; Rauf, Shahid; Tachibana, Kunihide; Bruggeman, Peter; Kroesen, Gerrit; Whitehead, J. Christopher; Murphy, Anthony B.; Gutsol, Alexander F.; Starikovskaia, Svetlana; Kortshagen, Uwe; Boeuf, Jean-Pierre; Sommerer, Timothy J.; Kushner, Mark J.; Czarnetzki, Uwe; Mason, Nigel

    2012-06-01

    Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap. Although roadmaps are common in the microelectronic industry and other fields of research and development, constructing a roadmap for the field of low-temperature plasmas is perhaps a unique undertaking. Realizing the difficulty of this task for any individual, the plasma section of the Journal of Physics D Board decided to meet the challenge of developing a roadmap through an unusual and novel concept. The roadmap was divided into 16 formalized short subsections each addressing a particular key topic. For each topic a renowned expert in the sub-field was invited to express his/her individual visions on the status, current and future challenges, and to identify advances in science and technology required to meet these challenges. Together these contributions form a detailed snapshot of the current state of the art which clearly shows the lifelines of the field and the challenges ahead. Novel technologies, fresh ideas and concepts, and new applications discussed by our authors demonstrate that the road to the future is wide and far reaching. We hope that this special plasma science and technology roadmap will provide guidance for colleagues, funding agencies and government institutions. If successful in doing so, the roadmap will be periodically updated to continue to help in guiding the field.

  3. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    Science.gov (United States)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction

  4. Education Roadmap for Mining Professionals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-12-01

    This document represents the roadmap for education in the U.S. mining industry. It was developed based on the results of an Education Roadmap Workshop sponsored by the National Mining Association in conjunction with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies. The Workshop was held February 23, 2002 in Phoenix, Arizona.

  5. Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    CERN Document Server

    Postman, Marc

    2009-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary s...

  6. EV Charging Infrastructure Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Karner, Donald [Electric Transportation Inc., Rogers, AR (United States); Garetson, Thomas [Electric Transportation Inc., Rogers, AR (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  7. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

  8. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    Science.gov (United States)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  9. Roadmap on structured light

    Science.gov (United States)

    Rubinsztein-Dunlop, Halina; Forbes, Andrew; Berry, M. V.; Dennis, M. R.; Andrews, David L.; Mansuripur, Masud; Denz, Cornelia; Alpmann, Christina; Banzer, Peter; Bauer, Thomas; Karimi, Ebrahim; Marrucci, Lorenzo; Padgett, Miles; Ritsch-Marte, Monika; Litchinitser, Natalia M.; Bigelow, Nicholas P.; Rosales-Guzmán, C.; Belmonte, A.; Torres, J. P.; Neely, Tyler W.; Baker, Mark; Gordon, Reuven; Stilgoe, Alexander B.; Romero, Jacquiline; White, Andrew G.; Fickler, Robert; Willner, Alan E.; Xie, Guodong; McMorran, Benjamin; Weiner, Andrew M.

    2017-01-01

    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.

  10. Compromises of Bali Roadmap

    Institute of Scientific and Technical Information of China (English)

    Wang Jingmin; Wei Dong

    2008-01-01

    The Bali Roadmap, as the breakthrough on intergovernmental negotiation of climate change mitigation, having brought United States on track, is still a result of compromises. The major compromises of the Bali Roadmap are centered around three issues of quantifying emission reduction targets, developing countries' obligations as well as quantifying developed countries' financial assistance in developing countries' capacity building on climate change. It is found that the rationalities behind these compromises are the national interests. Due to the fact, achieving cohesion among all nations in climate change actions is very difficult. Therefore, the Bali Roadmap may lead to a tough way with distant hope. However, technology innovation and well-designed economic instruments would be helpful and supportive for further international negotiation and cooperation.

  11. Solar Photovoltaic Hydrogen: The Technologies and Their Place in Our Roadmaps and Energy Economics

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L. L.; Broussard, K.

    2004-08-01

    Future solar photovoltaics-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of roadmap predictions on photovoltaic and hydrogen pathways-and whether solar-hydrogen fit in these strategies and timeframes. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined.

  12. Solar photovoltaic hydrogen: the technologies and their place in our road-maps and energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Laboratory, Golden, Colorado (United States); Broussard, K. [Southern Univ., Baton Rouge, LA (United States)

    2004-07-01

    Future solar photovoltaic-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of road-map predictions on photovoltaic and hydrogen pathways and whether solar-hydrogen fit in these strategies and time-frames. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined. (authors)

  13. A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame.

    Science.gov (United States)

    Siontorou, Christina G; Batzias, Fragiskos A

    2014-03-01

    Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences

  14. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  15. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap

    Science.gov (United States)

    Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi; hide

    2016-01-01

    As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.

  16. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  17. The 2017 Magnetism Roadmap

    Science.gov (United States)

    Sander, D.; Valenzuela, S. O.; Makarov, D.; Marrows, C. H.; Fullerton, E. E.; Fischer, P.; McCord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; Hillebrands, B.; Kent, A. D.; Jungwirth, T.; Gutfleisch, O.; Kim, C. G.; Berger, A.

    2017-09-01

    Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics. Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an

  18. Technology roadmapping, uma alternativa no delineamento da pesquisa agropecuária e sua aplicação na cadeia de cenoura Technology roadmapping, an alternative for designing agricultural research and its application on the carrot chain

    Directory of Open Access Journals (Sweden)

    Silvia S Onoyama

    2012-12-01

    Full Text Available Este trabalho tem como objetivo discutir a aplicação do método "Technology roadmapping" (TRM na definição da programação de pesquisa da cadeia de cenoura da Embrapa Hortaliças, considerando um horizonte de 15 anos. Esta cadeia produtiva foi escolhida por ser a cenoura uma das olerícolas de maior importância socioeconômica do Brasil, pelo histórico de projetos da Embrapa Hortaliças com impactos positivos nesta cadeia e pela motivação da equipe em realizar estudos prospectivos para identificar demandas reais e potenciais de pesquisa à cultura. A aplicação do TRM obedeceu a seguinte ordem cronológica: 1 definição do escopo do estudo prospectivo; 2 entedimento do contexto da cadeia de valor da cenoura para facilitar o processo de adaptação do TRM; 3 estabelecimento do modelo conceitual do roadmapping adaptado da representação gráfica básica com quatro macrocamadas indicadoras: mercado, negócio, linhas de pesquisa e recursos (físico, financeiro, humano e competências; 4 realização de pesquisas em fontes primárias e secundárias com produtores, atacadistas, empresas de semente, supermercados, processadoras, consumidores e pesquisadores; e 5 realização de workshop com parceiros externos e colaboradores e reuniões posteriores com os grupos temáticos para a construção do mapa da rota tecnológica. A aplicação do TRM, do ponto de vista gerencial, possibilitou um levantamento atualizado da realidade da cadeia produtiva de cenoura no Brasil e a explicitação clara de ações de pesquisa visando a atender as demandas priorizadas desta cadeia. Contemplou ainda a verificação dos recursos humanos e materiais necessários para atender as ações de pesquisa distribuídas no tempo. Na esfera científica, constatou-se a flexibilidade do método ao ser aplicado com sucesso no setor olerícola, podendo se extender para as demais cadeias de hortaliças bem como do agronegócio.This study aimed to present the application of

  19. Pressure Garment Subsystem Roadmap

    Science.gov (United States)

    Ross, Amy J.

    2010-01-01

    The Constellation program pressure garment subsystem (PGS) team has created a technical roadmap that communicates major technical questions and how and when the questions are being answered in support of major project milestones. The roadmap is a living document that guides the team priorities. The roadmap also communicates technical reactions to changes in project priorities and funding. This paper presents the roadmap and discusses specific roadmap elements in detail as representative examples to provide insight into the meaning and use of the roadmap.

  20. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  1. NASA Strategic Roadmap Summary Report

    Science.gov (United States)

    Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon

    2005-01-01

    In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.

  2. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  3. The NASA Astrobiology Roadmap

    Science.gov (United States)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; Liskowsky, David R.; Meadows, Victoria S.; Meyer, Michael A.; Pilcher, Carl B.; Nealson, Kenneth H.; Spormann, Alfred M.; Trent, Jonathan D.; Turner, William W.; Woolf, Neville J.; Yorke, Harold W.

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  4. The NASA Astrobiology Roadmap.

    Science.gov (United States)

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  5. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  6. Technology Roadmap for Chang’E Program%嫦娥工程技术发展路线

    Institute of Scientific and Technical Information of China (English)

    裴照宇; 王琼; 田耀四

    2015-01-01

    The moon is the nearest celestial body of the earth.Because of its unique spatial position and broad prospects of scientific exploration,it has become the preferred objective and consecutive option of human space exploration and resource utilization.In this paper,at first the development and accomplishments of the world’s major space powers on lunar exploration are retrospected,and their future development plans are summarized.Then the development idea and technology roadmaps for the Chinese Lunar Exploration Program are introduced in details. Finally future development direction of Chinese lunar exploration is analyzed and a concept of robotic lunar science station mission before 2030 is proposed.%月球是距离地球最近的天体,以其独特的空间位置、广阔的科学探索前景,成为人类地外天体探测和资源利用的首选目标和持续选择。简要总结世界各主要航天大国的探月发展历程和后续计划,详细介绍了我国探月工程(嫦娥工程)“绕”“落”“回”三步走的发展思路和技术路线,分析了后续的发展方向,提出了2030年前月球机器人科研站任务设想。

  7. Study on Analysis Approaches for Technology Roadmapping of Low-Carbon Industry%低碳产业技术路线图分析方法研究

    Institute of Scientific and Technical Information of China (English)

    盛济川; 曹杰

    2011-01-01

    Technology Roadmapping(TRM) is introduced into the study for low-carbon technology development strategy.The methods,tools and approaches of developing technology roadmaps in low-carbon industry are discussed and analyzed.According to analyzing the objectives and drivers of technology roadmaps in low-carbon industry,the common vision and missions are proposed.Research findings indicate the method which is combined Bibliometric Analysis with Delphi Survey is suitable for low-carbon technology foresight,and the index system for Delphi Survey is established for low-carbon industry studying.Based on the analysis of survey data,the method and example of developing technology roadmaps in low-carbon industry are proposed.Research findings also indicate it is necessary to establish a regular update mechanism after the completion of developing roadmaps,and the specific update mechanism which is used for TRM in low-carbon industry is elaborated.%将技术路线图方法引入到低碳产业技术发展战略研究之中,对制定低碳产业技术路线图的方法和工具进行了讨论和分析。通过分析低碳产业技术路线图的对象和驱动力,明确了路线图的共同愿景和使命。研究表明,在进行低碳技术预见时,采取文献计量分析和德尔菲法相结合的方法是一种比较合适的技术预见方法,并建立了适合低碳产业需要的问卷指标体系。在对调查数据分析的基础上,提出了绘制低碳产业技术路线图的方法和范式。在完成路线图的制定工作后,需要建立起定期的更新机制,并阐述了具体的适用于建立低碳产业技术路线图更新机制的工作流程。

  8. Partnership for Wave Power - Roadmaps

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen;

    This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...

  9. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  10. Architecture design study and technology roadmap for the Planet Formation Imager (PFI)

    CERN Document Server

    Monnier, John D; Kraus, Stefan; Baron, Fabien; Creech-Eakman, Michelle; Dong, Ruobing; Isella, Andrea; Merand, Antoine; Michael, Ernest; Minardi, Stefano; Mozurkewich, David; Petrov, Romain; Rinehard, Stephen; Brummelaar, Theo ten; Vasisht, Gautum; Wishnow, Ed; Young, John; Zhu, Zhaohuan

    2016-01-01

    The Planet Formation Imager (PFI) Project has formed a Technical Working Group (TWG) to explore possible facility architectures to meet the primary PFI science goal of imaging planet formation in situ in nearby star- forming regions. The goals of being sensitive to dust emission on solar system scales and resolving the Hill-sphere around forming giant planets can best be accomplished through sub-milliarcsecond imaging in the thermal infrared. Exploiting the 8-13 micron atmospheric window, a ground-based long-baseline interferometer with approximately 20 apertures including 10km baselines will have the necessary resolution to image structure down 0.1 milliarcseconds (0.014 AU) for T Tauri disks in Taurus. Even with large telescopes, this array will not have the sensitivity to directly track fringes in the mid-infrared for our prime targets and a fringe tracking system will be necessary in the near-infrared. While a heterodyne architecture using modern mid-IR laser comb technology remains a competitive option (...

  11. Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap

    Science.gov (United States)

    Ghaffarian, Reza

    2015-01-01

    The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.

  12. Developing an integrated technology roadmapping process to meet regional technology planning needs: the e-bike pilot study

    NARCIS (Netherlands)

    Cowan, Kelly R.; Daim, Tugrul U.; Walsh, Steven T.; Kocaoglu, Dundar F.; Anderson, Timothy R.; Daim, Tugrul U.; Kozanoglu, Dilek Cetindamar; Niwa, Kiyoshi; Perman, Gary

    2014-01-01

    Smart grid is a promising class of new technologies offering many potential benefits for electric utility systems, including possibilities for smart appliances which can communicate with power systems and help to better match supply and demand. Additional services include the ability to better integ

  13. Developing an integrated technology roadmapping process to meet regional technology planning needs: the e-bike pilot study

    NARCIS (Netherlands)

    Cowan, Kelly R.; Daim, Tugrul U.; Walsh, Steven Thomas; Kocaoglu, Dundar F.; Anderson, Timothy R.; Daim, Tugrul U.; Kozanoglu, Dilek Cetindamar; Niwa, Kiyoshi; Perman, Gary

    2014-01-01

    Smart grid is a promising class of new technologies offering many potential benefits for electric utility systems, including possibilities for smart appliances which can communicate with power systems and help to better match supply and demand. Additional services include the ability to better

  14. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge

    2017-01-01

    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document...... capacity of electric large-scale heat pumps with more than 1 MW thermal output, operating in European DH systems. The survey is the first database of its kind containing the technical characteristics of these heat pumps, and provides the basis for the analysis of this paper. By quantifying the heat sources...... that such developments can begin now with technologies currently available. We present a database and the status of the technology and its ability of expansion to other European locations by reviewing experiences aimed at further research or application in the heating industry. This is based on a survey of the existing...

  15. 平衡记分卡理念下的产业技术路线图战略执行力研究%Study on Industry Technology Roadmapping Strategic Implementation from Balanced Scorecard Perspective

    Institute of Scientific and Technical Information of China (English)

    佟瑞; 李从东

    2012-01-01

    技术路线图与其他管理工具之间的关系研究一直是国内外学术界及实务界所关注的热点,平衡记分卡与技术路线图之间建立起的联系对组织战略的执行至关重要。基于案例,建立了平衡记分卡理念下的产业技术路线图战略执行力模型,创新性地发展了平衡计分卡,尝试解决技术路线图后期跟进,更新和战略执行问题。%The linkage and integration of technology roadmapping with other management tools has been hot issue in both academia and practitioners. It is critical to link balanced scorecard to technology roadmapping when dealt with organization strategy and its implementation. Based on a case study, this paper proposes a strategy implementation model of technology roadmapping from Balanced Scorecard perspective, innovatively developing current Balanced Scorecard and trying to deal with some problems like technology roadmapping follow up,update and implementation.

  16. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  17. 基于技术推力的外向开放式创新技术路线图研究%Study on Technology Roadmapping for Outbound Open Innovation Based on Technology Push

    Institute of Scientific and Technical Information of China (English)

    盛济川

    2012-01-01

    由于外向开放式创新可以为企业赢得巨大的战略利益和收益,企业需要在技术商业化过程中同时兼顾内部和外部的技术开发,并寻找二者间的均衡点。在传统T—plan方法的基础上,在外向开放式创新中引入技术路线图方法,提出了外向开放式创新技术推力路线图(TPROOI),并举例说明该方法在企业外向开放式创新中的应用。%Outbound open innovation offers great strategic benefits and revenues, so firms need to take into account the internal and external technology exploitation in the process of technology commercialize, and find the equilibri- um point between them. Based on traditional T-plan method, the method of technology push roadmapping for out- bound open innovation (TPROOI) is proposed though introducing technology roadmapping (TRM) into outbound open innovation, and an example is shown in this article. The method may help firms find the best way of technology commercialize in both product and technology market, and provide an effective tool for firms to implement outbound open innovation.

  18. Roadmapping při řízení technologií výroby energie z obnovitených zdrojů

    Directory of Open Access Journals (Sweden)

    Katarzyna Halicka

    2015-03-01

    Full Text Available Purpose of the article: The main objective of this paper is to present the possibility of using the method of technology roadmapping to build the route of development of RES technologies. The article is of review-theoretical character and is the beginning of further work in this area. Methodology/methods: General scheme of route development of RES technologies has been developed, inter alia, on the basis of evaluation studies of Polish and foreign literature and conceptual study work in the field of graphic presentation of routes, as well as the experience of the author associated with the management and planning in the energy market. Scientific aim: The scientific purpose of this study was to identify and present the basic assumptions of the design of routes of development of RES technologies and to construct a general scheme of the routes of development of renewable energy technologies. Findings: This paper presents the basic principles for the design of routes of development of renewable energy technologies. Based on a detailed review of the designed routes of development of technologies in the area of renewable energy, recommendations for the design of routes of development of RES technologies have been formulated. Also, a base the concept of the routes of RES technologies has been proposed. Conclusions: The basic project of the RES route will enable the coordination of the development of the technological potential of renewable energy sources, as well as the development of the routes of implementation of the desired vision of the development of technologies using renewable energy sources in Poland in two time perspectives: 2030 and up to 2050. It will also generate the knowledge needed in the development of the appropriate energy policy of the country. Knowledge obtained in this way can provide a basis for energy security management of the state.

  19. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  20. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  1. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple

  2. Roadmap on optical security

    Science.gov (United States)

    Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam

    2016-08-01

    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections

  3. Vision 2020. Reaction Engineering Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Klipstein, David H. [Reaction Design, San Diego, CA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  4. Roadmap on ultrafast optics

    Science.gov (United States)

    Reid, Derryck T.; Heyl, Christoph M.; Thomson, Robert R.; Trebino, Rick; Steinmeyer, Günter; Fielding, Helen H.; Holzwarth, Ronald; Zhang, Zhigang; Del'Haye, Pascal; Südmeyer, Thomas; Mourou, Gérard; Tajima, Toshiki; Faccio, Daniele; Harren, Frans J. M.; Cerullo, Giulio

    2016-09-01

    The year 2015 marked the 25th anniversary of modern ultrafast optics, since the demonstration of the first Kerr lens modelocked Ti:sapphire laser in 1990 (Spence et al 1990 Conf. on Lasers and Electro-Optics, CLEO, pp 619-20) heralded an explosion of scientific and engineering innovation. The impact of this disruptive technology extended well beyond the previous discipline boundaries of lasers, reaching into biology labs, manufacturing facilities, and even consumer healthcare and electronics. In recognition of such a milestone, this roadmap on Ultrafast Optics draws together articles from some of the key opinion leaders in the field to provide a freeze-frame of the state-of-the-art, while also attempting to forecast the technical and scientific paradigms which will define the field over the next 25 years. While no roadmap can be fully comprehensive, the thirteen articles here reflect the most exciting technical opportunities presented at the current time in Ultrafast Optics. Several articles examine the future landscape for ultrafast light sources, from practical solid-state/fiber lasers and Raman microresonators to exotic attosecond extreme ultraviolet and possibly even zeptosecond x-ray pulses. Others address the control and measurement challenges, requiring radical approaches to harness nonlinear effects such as filamentation and parametric generation, coupled with the question of how to most accurately characterise the field of ultrafast pulses simultaneously in space and time. Applications of ultrafast sources in materials processing, spectroscopy and time-resolved chemistry are also discussed, highlighting the improvements in performance possible by using lasers of higher peak power and repetition rate, or by exploiting the phase stability of emerging new frequency comb sources.

  5. Research & Development Roadmap for Next-Generation Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on the proposed initiatives.

  6. SSIP Phase I Roadmap

    Science.gov (United States)

    Vinh, Megan; Lucas, Anne; Taylor, Cornelia; Kelley, Grace; Kasprzak, Christina

    2014-01-01

    This roadmap provides a description of the activities involved in the development of the State Systemic Improvement Plan (SSIP) (SPP/APR Indicators C11 and B17) due to the Office of Special Education Programs (OSEP) on April 1, 2015. The roadmap is intended to support states with completing Phase I of the SSIP process. This document provides…

  7. Planetary Data System (PDS) Strategic Roadmap

    Science.gov (United States)

    Law, Emily; McNutt, Ralph; Crichton, Daniel J.; Morgan, Tom

    2016-07-01

    The Planetary Data System (PDS) archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA's Science Mission Directorate (SMD) sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. The Planetary Science Division (PSD) within the SMD at NASA Headquarters has directed the PDS to set up a Roadmap team to formulate a PDS Roadmap for the period 2017-2026. The purpose of this activity is to provide a forecast of both the rapidly changing Information Technology (IT) environment and the changing expectations of the planetary science communities with respect to Planetary Data archives including, specifically, increasing assessability to all planetary data. The Roadmap team will also identify potential actions that could increase interoperability with other archive and curation elements within NASA and with the archives of other National Space Agencies. The Roadmap team will assess the current state of the PDS and report their findings to the PSD Director by April 15, 2017. This presentation will give an update of this roadmap activity and serve as an opportunity to engage the planetary community at large to provide input to the Roadmap.

  8. Roadmap on optical energy conversion

    Science.gov (United States)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  9. Roadmap on optical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-06-24

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  10. ESTABLISH A CREATIVE ENVIRONMENT FOR ROADMAPPING IN ACADEMY- FROM THE PERSPECTIVE OF I-SYSTEM METHODOLOGY

    Institute of Scientific and Technical Information of China (English)

    Tieju MA; Andrzej P. WIERZBICKI; Yoshiteru NAKAMORI

    2007-01-01

    Roadmapping, originated from industry as a strategic planning tool, is attracting increasing applications in academy. Based on the recognition that roadmapping is a knowledge creation process,this paper analyzes what kind of support is needed or helpful for establishing a creative environment for roadmapping in academy and reviews various types of such support from the perspective of i-system methodology. As case studies of such support, this paper further introduces roadmapping pratices in Janpan Advanced Institute of Science and Technology.

  11. Hanford Site Secondary Waste Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.

    2009-01-29

    performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  12. Energy Roadmap 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    On 15 December 2011, the European Commission adopted the Communication 'Energy Roadmap 2050'. The EU is committed to reducing greenhouse gas emissions to 80-95% below 1990 levels by 2050 in the context of necessary reductions by developed countries as a group. In the Energy Roadmap 2050 the Commission explores the challenges posed by delivering the EU's decarbonisation objective while at the same time ensuring security of energy supply and competitiveness. The Energy Roadmap 2050 is the basis for developing a long-term European framework together with all stakeholders.

  13. China's bioenergy industry development roadmap

    Institute of Scientific and Technical Information of China (English)

    Shi Yuanchun; Li Shizhong; Liu Xuejun

    2009-01-01

    Positive development of renewable energy, saving and substitution of fossil energy, promotion of the energy structure adjustment are the inevitable strategy choices of China's sustainable development. This paper discussed the China's bioenergy resources status, development targets and technology development roadmaps. China has 136. 140 million hm2 of marginal land, which distribute mainly in western and northern regions. There are 1 billion t of crop resi-dues and forestry waste annually, and 300 million t can be used to produce different kinds of bioenergies. And organic waste and manure can generate 50 billion m3 of biogas. The discussed development target indicated that it can construct a biomass oilfield with the capacity of 100 million t/year and reduce 200 million t of CO2 emission by 2020. The bioen-ergy technology development roadmap indicated that the bioethanol mainly uses non grain starch and hemicellulose prod-ucts as raw materials in the near-term (2006- 2010). The biodiesel technology will focus on the advanced production technology, FT diesel, liquefaction of biomass and raw material production technology.

  14. Roadmap on silicon photonics

    Science.gov (United States)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  15. 基于综合集成方法论的产业技术路线图研究%Industry Technology Roadmapping research Based on Meta-Synthesis Methodology

    Institute of Scientific and Technical Information of China (English)

    佟瑞

    2012-01-01

    This paper proposes an idea that industry technology roadmapping could be considered to be an open complex giant system, from which consensus emergence can be demonstrated and handled by meta-synthesis. It clarified industry technology roadmapping process is actually a complex system modeling, technology roadmapping itself should be a hall for workshop of Meta-synthetic engineering-HWMSE. Therefore, it should be handled by meta-synthesis proprosed by Qian Xuesen, from qualitative to quantitative methodology. And finally, TRM consensus system emergence model is built.%提出产业技术路线图是一个开放的复杂巨系统,应当用综合集成方法去解释技术路线图绘制过程的共识涌现现象.阐明了产业技术路线图绘制过程就是一个复杂系统建模过程,把产业技术路线图研讨会看成综合集成研讨厅体系,因此应当运用钱学森提出的处理开放复杂巨系统的方法——从定性到定量的综合集成方法.最后建立了产业技术路线图共识系统涌现模型.

  16. ULS Systems Research Roadmap

    Science.gov (United States)

    2008-03-01

    capability Framework for incorporating additional ULS systems research Motivate Research • The roadmap shows how an individual research initiative...6.2.2 Metaheuristics in Software Engineering 6.2.3 Digital Evolution 6.3.1 Design of All Levels 6.3.2 Design Spaces and Design Rules 6.3.3 Harnessing...achieving a future ULS systems capability Framework for incorporating additional ULS systems research Motivate Research • The roadmap shows how an

  17. Roadmapping as a Tool for Renewing Regulatory Practices

    DEFF Research Database (Denmark)

    Borch, Kristian; Norus, Jesper

    2004-01-01

    The aim of this paper is to explore technological roadmaps to identify key issuesconcerning the development and utilization of stem cells. From a review of the politicaldecision making processes in three countries, Denmark, the Netherlands, and Germanywe suggest that technological roadmapping...... in this emerging and discontinuedtechnology can provide critical policy information. This type of policy intelligence canbe used to rethink the regulatory practices away from today's framework basedregulation of the emerging technologies towards a regulatory policy based on how todevelop regulatory practices based...

  18. 76 FR 66040 - NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft...

    Science.gov (United States)

    2011-10-25

    ... National Institute of Standards and Technology NIST Framework and Roadmap for Smart Grid Interoperability... and Technology (NIST) seeks comments on the draft NIST Framework and Roadmap for Smart Grid..., 2011. The entire draft version of the NIST Framework and Roadmap for Smart Grid Interoperability...

  19. ESOC Knowledge Management Roadmap

    Directory of Open Access Journals (Sweden)

    Roberta Mugellesi Dow

    2009-10-01

    Full Text Available Generally, the task of a roadmap is to make sure that from the given starting point we can achieve the final destination within the specified constraints. This paper describes the roadmap developed and followed to implement Knowledge Management (KM in ESOC. Once having recognized the need of KM and performed some benchmark activities, the first important step of the roadmap is to lay down the foundation for KM at ESOC. This foundation consists of setting up the organization of KM, performing an analysis of the knowledge existing in the different technical domains and conducting the knowledge coverage and criticality analysis. Based on the obtained results, an appraisal is performed with the conclusion that specific actions such as the development of knowledge capture, sharing and preservation methodologies in ESOC, should be followed up. Next phase of the roadmap is dedicated to expand existing KM tools as well as designing and launching new prototypes. The paper presents also the model developed for the expansion of the KM system. The model is based on the application of the Minimum Factor Law, known earlier in the agricultural field, to the field of KM. Finally, the last step of the roadmap is the institutionalization of the KM system.

  20. Avionics Collaborative Engineering Technology Delivery Order 0035: Secure Knowledge Management (SKM) Technology Research Roadmap - Technology Trends for Collaborative Information and Knowledge Management Research

    Science.gov (United States)

    2004-06-01

    International Corporation 4031 Colonel Glenn Highway Beavercreek, OH 45431-1673 Nikolaos G. Bourbakis Wright State University Information Technology...NUMBER 2432 5e. TASK NUMBER 04 6. AUTHOR(S) Russell F. Moody (Science Applications International Corporation) Nikolaos G. Bourbakis (Wright...modeling, retrieving, distributing, and publishing documents on the Web ( Bourbakis ) − Research cryptanalysis. − System security. − Self-healing

  1. The ethanol industry from the analysis technology road maps; A industria do etanol a partir da analise de roadmaps tecnologicos

    Energy Technology Data Exchange (ETDEWEB)

    Calil Neto, Antonio; Guimaraes, Maria Jose de Oliveira Cavalacanti; Freire, Estevao [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2012-07-01

    The behavior of the ethanol industry in the coming years should be buoyed by several factors, among which gain prominence: feedstock, conversion technologies and products. This article aims, from the analysis of technological road maps, is dealing with Brazil in the face of the global market, is primarily addressing the international context, to assess which technologies tend to predominate, with emphasis on the ethanol industry, addressing convergent and complementary the technology road maps, especially regarding the barriers and challenges, costs and logistics, and other broader issues that govern the production of sustainable feedstock, conversion technologies and biofuels industry, with emphasis on ethanol. Conventional biofuels today are generally not competitive with fossil fuels at market prices, except for the cane ethanol already has a good performance in economic terms. Moreover, strategies for first generation ethanol differ from those for the second generation, which is at an earlier stage of technology development and still subject to comparatively high production costs. The non-economic fundamental barrier to the development of biofuels, particularly ethanol, is the uncertainty as to its sustainability. The debate sometimes on competition with food production and the potential destruction of valuable ecosystems put biofuels in the center of the discussion about sustainability. The challenges facing the ethanol industry range from the need to implement on a large scale to reduce costs along the production chain, through the need for second-generation technologies to reach the level of market, with the behavior of these factors and others will depend on each setting route. (author)

  2. Technical Comparative Analysis of "Best of Breed" Turnkey Si-Based Processes and Equipment, to be Used to Produce a Combined Multi-entity Research and Development Technology Roadmap for Thick and Thin Silicon PV

    Energy Technology Data Exchange (ETDEWEB)

    Hovel, Harold [The Solar Energy Consortium, Kingston, NY (United States); Prettyman, Kevin [The Solar Energy Consortium, Kingston, NY (United States)

    2015-03-27

    A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques

  3. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  4. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  5. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  6. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  7. Proceedings of the Technology Roadmap Workshop on Communication and Control Systems for Distributed Energy Implementation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-05-01

    More than 50 experts from energy and information technology industries, Federal and State government agencies, universities, and National Laboratories participated in the “Communication and Control Systems for Distributed Energy Implementation and Testing Workshop” in Reston, Virginia, on May 14-15, 2002. This was a unique workshop in that, for the first time, representatives from the information technology sector and those from energy-related industries, Federal and State government agencies, universities, and National Laboratories, gathered to discuss these issues and develop a set of action-oriented implementation strategies. A planning committee of industry, consultant, and government representatives laid the groundwork for the workshop by identifying key participants and developing an appropriate agenda. This document reflects the ideas and priorities discussed by workshop participants.

  8. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad;

    2014-01-01

    Six different strategies have recently been proposed for the European Union (EU) energy system in the European Commission's report, Energy Roadmap 2050. The objective for these strategies is to identify how the EU can reach its target of an 80% reduction in annual greenhouse gas emissions in 2050...

  9. Roadmap of Infinite Results

    DEFF Research Database (Denmark)

    Srba, Jiří

    2002-01-01

    This paper provides a comprehensive summary of equivalence checking results for infinite-state systems. References to the relevant papers will be updated continuously according to the development in the area. The most recent version of this document is available from the web-page http://www.brics.dk/~srba/roadmap....

  10. Materials Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  11. Engineering and technology talent for innovation and knowledge-based economies competencies, leadership, and a roadmap for implementation

    CERN Document Server

    Abdulwahed, Mahmoud

    2017-01-01

    This book introduces and analyzes the models for engineering leadership and competency skills, as well as frameworks for industry-academia collaboration and is appropriate for students, researchers, and professionals interested in continuous professional development. The authors look at the organizational structures of engineering education in knowledge-based economies and examine the role of innovation and how it is encouraged in schools. It also provides a methodological framework and toolkit for investigating the needs of engineering and technology skills in national contexts. A detailed empirical case study is included that examines the leadership competencies that are needed in knowledge-based economies and how one university encourages these in their program. The book concludes with conceptual modeling and proposals of specific organizational structures for implementation in engineering schools, in order to enable the development of necessary skills for future engineering graduates.

  12. The Technology Roadmap Design of Hubei Industrial Robot Industry Development%湖北省工业机器人产业化发展技术路线图设计

    Institute of Scientific and Technical Information of China (English)

    张红霞; 徐会波; 聂晶晶

    2015-01-01

    Through the analysis of Hubei industrial robot competitive advantage, combined with the characteristic of Hubei regional economy, the roadmap of Hubei industrial robot industry is designed; and the key technology of industrial robot and the advantage products of the related enterprises are analysed and researched. Hubei industry robot breakthroughs in key technologies roadmap is also designed,the nodes and trend of Hubei industrial robot technology development and industrialization development are forecasted.%通过对湖北省工业机器人优势竞争力的分析,结合湖北区域经济特点,设计了湖北省工业机器人产业发展路线图;并对工业机器人关键技术和相关企业优势产品进行了分析研究,设计了湖北省工业机器人关键技术突破路线图,对湖北地区工业机器人技术发展和产业化发展节点及趋势进行了预测。

  13. Análise da utilização do technology roadmapping como meio de seleção de produto de referência para a engenharia reversa Analysis of the use of technology roadmapping as a means of selecting a reference product for reverse engineering

    Directory of Open Access Journals (Sweden)

    Lucas Barbosa Alves

    2011-01-01

    Full Text Available Para uma empresa de base tecnológica (EBT se manter competitiva ela precisa buscar a redução do tempo de desenvolvimento de seus produtos e a inserção de tecnologias-chave. O presente trabalho tem como objetivo analisar a utilização do Technology Roadmapping (TRM como meio de seleção de um produto de referência para a aplicação de um processo de Engenharia Reversa (ER, como parte do processo de desenvolvimento de produtos de uma EBT. A integração entre essas técnicas foi analisada por meio de um estudo de caso. A realização das partes de mercado, produto e tecnologia do TRM forneceu meios para que fosse encontrado, no mercado, um produto de referência que possuísse características diferenciadas, possibilitando a aplicação de uma ER. O resultado foi o desenvolvimento de um produto, em tempo reduzido, focado nas necessidades dos clientes e do mercado, com tecnologias e funcionalidades avançadas e melhoradas no que diz respeito ao seu referencial. Evidenciou-se a melhoria em fatores importantes do produto como custos de produção, preço de venda, custos de instalação, tempo de instalação, adaptabilidade e peso do produto. A integração entre as técnicas forneceu meios para a empresa inserir no mercado um produto que já possuísse vantagem competitiva devido à superioridade obtida durante seu desenvolvimento. Após a análise dos resultados, foi possível sistematizar a utilização do TRM como meio de seleção do produto de referência para a aplicação da ER.For a technology-based company (TBC to remain competitive, it must focus on reducing development time and on introducing key technologies into its products. This paper aims to analyze the use of Technology Roadmapping (TRM as a means of selecting a reference product for the application of a process of reverse engineering (RE, as a part of the product development process of a TBC. The integration between those techniques was analyzed through a case study

  14. Technology Roadmap and Formation Process of the Property for Internet of Things%物联网的技术路线及属性形成

    Institute of Scientific and Technical Information of China (English)

    王群; 钱焕延

    2012-01-01

    区别于传统强调人与人连接的互联网,物联网是互联网的技术扩展和应用延伸.本文阐述了物联网融合传感器网络、EPC系统和泛在网络的泛在多元信息获取方式,利用电信网、互联网以及广电网等通信网络和各类接入网络实现泛在数据传送,为社会不同行业的应用需求提供泛在服务能力.指出物联网的技术路线是在现有互联网的基础上,通过借鉴和吸收相关学科的研究和应用成果,形成的一个物理空间与虚拟空间、人与物交叉融合的信息服务基础平台;物联网的根本属性是泛在化,即泛在网络,具体体现在泛在互联、泛在技术支持和泛在应用整合等方面.%Different from the internet, IoT extendes the techniques and applications of internet. The IoT's connection object from man to man, be extended to man to machine and machine to machine. Based on the convergence of the sensor network, EPC system and ubiquitous network, the IoT provides a ubiquitous multi-information access methods. Based on the convergence of internet, telecommunications network, cable TV and various types of access networks, the IoT achieves ubiquitous data transfer. The functionality of the IoT is to provide ubiquitous service capabilities for different socio-professional. A core idea of IoT's technology roadmap is convergence, on the basis of internet, by learning and absorbing the research and application results of related discipline, formes a information services infrastructure platform that combines the physical space and virtual space and man and machine. A core idea of IoT's fundamental properties is ubiquitous, also known as the ubiquitous network, including ubiquitous interconnected, ubiquitous technical supported and ubiquitous application integrated.

  15. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. National Hydrogen Roadmap Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy future and outline the key barriers and needs to achieve the hydrogen vision. The National Hydrogen Roadmap Workshop was held April 2-3, 2002. These proceedings were compiled into a formal report, The National Hydrogen Energy Roadmap, which is also available online.

  17. NASA's New Thermal Management Systems Roadmap; Whats in it, What it Means

    Science.gov (United States)

    Swanson, Ted

    2016-01-01

    In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.

  18. MEGAHIT Roadmap: Applications for Nuclear Electric Propulsion

    OpenAIRE

    Jansen, Frank; Semenkin, Alexander; Bauer, Waldemar; WORMS, Jean-Claude; Detsis, Emmanouil; CLIQUET-MORENO, Elisa; Masson, Frederic; Ruault, Jean-Marc; Gaia, Enrico; Cristina, T.M.; Tinsley, Tim; Hodgson, Zara

    2014-01-01

    The paper introduces the three EC funded nuclear electric propulsion funded projects DiPoP, MEGAHIT and DEMOCRITOS. It describes in detail the European-Russian MEGAHIT project - the study outputs, the proposal for a key technology plan, a plan for a political and public supportable reference space mission. Moreover the content of the MEGAHIT global roadmap for international realization of the INPPS (International Nuclear Power and Propulsion System) is sketched.

  19. Electrical and Electronics Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Electrical and Electronics Technical Team’s (EETT's) mission is to enable cost-effective, smaller, lighter, and efficient power electronics and electric motors for electric traction drive systems (ETDSs) while maintaining performance of internal combustion engine (ICE)-based vehicles. The EETT also identifies technology gaps, establishes R&D targets, develops a roadmap to achieve technical targets and goals, and evaluates the R&D progress toward meeting the established R&D targets and goals.

  20. 区域行业技术路线图产业边界范围界定初探%Definition of Industry Boundaries and Scope in Regional Industrial Technology Roadmap

    Institute of Scientific and Technical Information of China (English)

    高自省

    2011-01-01

    Due to the limitations of regional industrial development and its lacking in integrity and stability, the definition of industry boundaries in technology roadmap becomes a complex problem. While using flexibly the basic principles of " modular" , " integrity" , and " stability" , we should focus on the important factors of industrial development strategy, vision target, regional resource situation, regional industrial development, regional industrial development trend and market requirements, etc. After that, we can define boundaries and scope of regional industry technology roadmap scientifically.%由于区域产业发展的局限性、不完整性、不稳定性等特点,区域行业技术路线图产业边界范围界定就成为一个复杂的问题,因此,要在灵活掌握适用“模块化”、“完整性”、“稳定性”等基本原则的同时,着重考虑产业发展战略和产业愿景目标、区域资源状况、区域产业发展现状、区域产业发展趋势、市场需求等重要因素,方可科学合理界定区域行业技术路线图产业边界范围.

  1. Web-Based Documentation System for Dynamic Roadmaps

    Science.gov (United States)

    Hassan, Sajid; Chishti, Ahsan; Elamvazuthi, Chandran

    2006-01-01

    Technology Roadmapping is a consensus-driven process to identify, evaluate, and select technology alternatives to satisfy the needs of a particular group of people. It serves as a high-level planning tool to support the development, implementation, and communication of technology development strategies and plans. The outcome of a technology…

  2. A Roadmap to Interstellar Flight

    CERN Document Server

    Lubin, Philip

    2016-01-01

    In the nearly 60 years of spaceflight we have accomplished wonderful feats of exploration that have shown the incredible spirit of the human drive to explore and understand our universe. Yet in those 60 years we have barely left our solar system with the Voyager 1 spacecraft launched in 1977 finally leaving the solar system after 37 years of flight at a speed of 17 km/s or less than 0.006% the speed of light. As remarkable as this is we will never reach even the nearest stars with our current propulsion technology in even 10 millennium. We have to radically rethink our strategy or give up our dreams of reaching the stars, or wait for technology that does not currently exist. While we all dream of human spaceflight to the stars in a way romanticized in books and movies, it is not within our power to do so, nor it is clear that this is the path we should choose. We posit a technological path forward, that while not simple, it is within our technological reach. We propose a roadmap to a program that will lead to...

  3. The EU fusion programme and roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pero, H., E-mail: Herve.Pero@ec.europa.eu [European Commission, DG-RTD, CDMA 05/146, B-1049 Brussels (Belgium); Paidassi, S. [European Commission, DG-RTD, CDMA 05/146, B-1049 Brussels (Belgium)

    2013-02-15

    Highlights: ► The EU fusion programme has to evolve from today's research to a strong goal-oriented programme driven by an ambitious roadmap. ► The programme shall focus on ITER and reactor-relevant technologies development. ► A new structure based on joint programming will be developed to implement the programme during Horizon 2020. -- Abstract: To meet ITER and fusion energy challenges, a gradual transition of the EU fusion programme priorities from today's fusion research to a strongly goal-oriented programme with clear milestones is required. This transition and the programme priorities should be driven by an ambitious, yet realistic roadmap to be agreed by EU fusion stakeholders. The programme must primarily focus on: ensuring the success of ITER; and research and development of reactor-relevant technologies. Industry must be involved early in the implementation and international collaboration should be conducted as part of a strategic approach. Joint programming should be a cornerstone of the EU fusion programme in Horizon 2020. Options for the new structure and current actions required to implement the roadmap during Horizon 2020 will be presented.

  4. 基于技术进化理论的破坏性创新预测与实现模型%Model for Roadmapping Disruptive Innovation Based on Technology Evolution Theory

    Institute of Scientific and Technical Information of China (English)

    孙建广; 檀润华; 江屏

    2012-01-01

    破坏性创新是一种便宜、方便、简单的产品技术创新,它的实现可以使企业技术实现有效增长,也可以利用其开发出的新产品创立新的企业.由于现有破坏性创新预测与实现方法无法有效地对破坏性技术进行搜索,在激烈的市场竞争中,对于处于成熟期的产品,有效的新产品开发变得极为困难.基于破坏性创新的发生条件,对破坏性创新的预测与产生方法进行了深入研究,为了考察破坏性技术的可预测性,研究技术进化路线上的破坏性创新节点及其破坏性创新的技术进化过程,建立了新市场破坏创新和低端破坏创新的详细的实现模型.所提出的方法既可用于新兴企业的新产品开发,也可用于市场主流企业的未来技术规划.%Disruptive innovation (DI) is a kind of technology innovation which is cheaper, better, and more convenient. DI can create enterprise technology growth and establish entirely new enterprises through its newly developed products. Because existing Disruptive innovation roadmapping can't search for disruptive technologies effectively, to develop effective new products in the maturity period becomes quite difficult, in intensive of fierce market competition. DI roadmapping is in-depth studied based on the occurring conditions of DI. hi order to investigate the predictability of disruptive technology, me disruptive bifurcation points on technological evolution path and the technological evolution process of DI are discussed. Finally, detailed process models of new-market DI and low-end DI are established. This methodology can be used for both developing new products of newly built enterprises and helping more senior enterprises to predict the future of technologies.

  5. A European Roadmap for Thermometry

    Science.gov (United States)

    Machin, G.; Bojkovski, J.; del Campo, D.; Dogan, A. K.; Fischer, J.; Hermier, Y.; Merlone, A.; Nielsen, J.; Peruzzi, A.; Ranostaj, J.; Strnad, R.

    2014-04-01

    A technical roadmap for thermometry has been constructed by the EURAMET Technical Committee for Thermometry (TC-T). The roadmap first identified the key triggers that need to be addressed; these included societal grand challenges and the essential scientific metrology to ensure the continued fitness and relevance of the SI unit, the kelvin. In addition, triggers focusing on innovation to support industrial competitiveness such as improvement in product quality and energy efficiency were considered. Clear targets to help address the triggers were formulated; these in turn provide direction to the required temperature measurement research until 2025 and beyond. Although constructed by EURAMET TC-T, the identified societal grand challenges are common within all metrology regions; hence, the roadmap has wider applicability beyond the EURAMET region. A roadmap only ever captures current thinking at the time of formulation, and hence, as with all roadmaps, requires regular revision. For this roadmap this revision will be performed around 2016. This exercise identified that significant research and development were required by the thermometry community if it is to contribute to meet the grand challenges faced by society. The research areas identified here will inform and guide the direction of thermometry research of the national measurement institutes in the EURAMET region over the next decade.

  6. Development of the INEEL Site Wide Vadose Zone Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Yonk, Alan Keith

    2001-09-01

    The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that the long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.

  7. Organizational modes for inbound and outbound open innovation based on technology roadmap%内向和外向开放式创新组织模式研究——基于技术路线图视角

    Institute of Scientific and Technical Information of China (English)

    盛济川; 吉敏; 朱晓东

    2013-01-01

    In the implementation of Inbound Open Innovation (IOI) and Outbound Open Innovation (OOI),the key is which organizational modes can effective use internal and external knowledge or technologies for enterprises.The methods of "Market Pull Roadmapping for Inbound Open Innovation (MPRIOI) " and "Technology Push Roadmapping for Outbound Open Innovation (TPROOI) " are integrated on the basis of the coupling relationship between inbound open innovation and outbound open innovation in the paper.The inbound open innovation can use the organizational modes of non-equity alliance,purchase of technical services and in-licensing in the stages of market analysis,product analysis and technical analysis respectively.Otherwise,the outbound open innovation can use the organizational modes of non-equity alliance,supply of technical services and out-licensing in the stages of technical analysis,product analysis and market analysis respectively.The technology roadmap can help enterprises make decisions between internal technology exploration and external technology exploitation,and find the best equilibrium point of the innovation strategy within inbound open innovation,outbound open innovation and closed innovation.%在内向和外向开放式创新过程中,企业采取何种组织模式才能有效利用内部和外部的知识或技术是企业成功实施的关键所在.基于内向开放式创新和外向开放式创新的耦合关系,本文将内向开放式创新市场拉力路线图(MPRIOI)和外向开放式创新技术推力路线图(TPROOI)进行了整合.内向开放式创新企业在市场分析、产品分析和技术分析三个阶段,可分别采用非股权战略联盟、购买技术服务和购买技术授权的组织模式实现内向开放式创新;外向开放式创新企业在技术分析、产品分析和市场分析三个阶段,可分别采用非股权战略联盟、提供技术服务和提供技术授权的组织模式实现外向开放式创新.借助技术

  8. Roadmap on optical metamaterials

    Science.gov (United States)

    Urbas, Augustine M.; Jacob, Zubin; Dal Negro, Luca; Engheta, Nader; Boardman, A. D.; Egan, P.; Khanikaev, Alexander B.; Menon, Vinod; Ferrera, Marcello; Kinsey, Nathaniel; DeVault, Clayton; Kim, Jongbum; Shalaev, Vladimir; Boltasseva, Alexandra; Valentine, Jason; Pfeiffer, Carl; Grbic, Anthony; Narimanov, Evgenii; Zhu, Linxiao; Fan, Shanhui; Alù, Andrea; Poutrina, Ekaterina; Litchinitser, Natalia M.; Noginov, Mikhail A.; MacDonald, Kevin F.; Plum, Eric; Liu, Xiaoying; Nealey, Paul F.; Kagan, Cherie R.; Murray, Christopher B.; Pawlak, Dorota A.; Smolyaninov, Igor I.; Smolyaninova, Vera N.; Chanda, Debashis

    2016-09-01

    Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.

  9. A roadmap for innovation.

    Science.gov (United States)

    Hodgetts, Timothy J

    2014-06-01

    Medicine has historically advanced during conflict, but military medical services have consistently regressed during peace. As over a decade of campaigning in Iraq and Afghanistan draws to a close, securing the legacy of hard won clinical lessons and retaining flexibility to adapt to new patterns of illness and injury during contingency is critical. Central to sustaining exceptional outcomes for future operations and to maintaining the current position of the Defence Medical Services as providers of clinical excellence is retaining the capability to innovate. This capability must extend across the spectrum of clinical innovation-concepts, guidelines, equipment (invention and adoption), curricula (design, assessment and refinement), research and Defence diplomacy. To achieve this requires a strategy, a 'roadmap', with a clear vision, end state and centres of gravity (core strengths that must be protected). The direction for innovation will be guided by emergent analysis of the future character of military medicine. Success will be determined by ensuring the conditions are met to protect and enhance the existing 'winning culture'. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Solar-electric power: The U.S. photovoltaic industry roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-01-01

    To meet this challenge, we — the U.S.-based PV industry — have developed this roadmap as a guide for building our domestic industry, ensuring U.S. technology ownership, and implementing a sound commercialization strategy that will yield significant benefits at minimal cost. Putting the roadmap into action will call for reasonable and consistent co-investment by our industry and government in research and technology development.

  11. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  12. Roadmap on neurophotonics

    Science.gov (United States)

    Cho, Yong Ku; Zheng, Guoan; Augustine, George J.; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S.; Vellekoop, Ivo M.; Booth, Martin J.; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko

    2016-09-01

    Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken.

  13. Biogas Opportunities Roadmap Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-01

    In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.

  14. The NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond and Recent Radiation Highlights

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    This presentation is a NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond. This roadmap provides a snapshot for current plans and collaborations on testing and evaluation of electronics as well as a discussion of the technology selection approach.

  15. Concentrating Solar Power Gen3 Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vidal, Judith [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wagner, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andraka, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-01-01

    Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE has supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.

  16. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  17. Built-Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  18. Roadmap for H{sub 2} in the Nordic Countries

    Energy Technology Data Exchange (ETDEWEB)

    Dannemand Andersen, P.; Greve, O.K.; Kruger Nielsen, S.

    2004-12-01

    This report reports on a roadmap workshop held in Roskilde in 2004 as part of the Nordic H{sub 2} Energy Foresight project. The workshop outlined a sequence of implementation and mutual interdependence of the hydrogen technology visions from today (2004) and until 2030. Furthermore, barriers, needs and drivers for realising the visions were discussed at the workshop in relation to science an education (needs for scientific research, needs for competences) and government (energy and industry policy, public R and D, early market stimulation, standardisation, safety). The roadmaps outlined key issues and challenges in hydrogen and fuel cell energy development and suggested paths that Nordic industry, energy companies, academia and governments may take to expand the use of hydrogen and fuel cell-based energy. Roadmap exercises offer a collective and consultative process, with the processes itself being equally important as the outcome. Hence, the aim is not to predict or suggest exact targets for hydrogen in the Nordic countries by 2030 nor putting up exact ways to achieve these targets. Bur by setting up ambitious and realistic targets and putting up roadmaps we can challenge our understanding of a future hydrogen society and be better able to suggest policies and decisions today. (au)

  19. Study on the technology roadmapping for open fuzzy front end: integration of market pull and technology push%开放式模糊前端的技术路线图研究——市场拉力与技术推力的结合

    Institute of Scientific and Technical Information of China (English)

    盛济川; 曹杰

    2012-01-01

    在T-plan和技术推力方法(MTP)的基础上,将开放式创新和技术路线图引入模糊前端,提出了开放式模糊前端的技术路线图(TROFFE),通过三个阶段的六次决策,绘制出创意的技术路线图并用于降低模糊前端的不确定性,并通过开放式创新获取市场和技术的信息。同时将技术推力和市场拉力有效结合起来,不区分创意的产生来源,使得该方法具有更广泛的适用性。%Based on T-plan and the method of technology push(MTP),the technology roadmapping for open fuzzy front end(TROFFE) is proposed though introducing open innovation and technology roadmapping(TRM) into fuzzy front end(FFE).The roadmap for the initial idea which is developed by six decisions of three stages can be used to reduce the uncertainty of FFE,and the information of market and technology can be obtained by open innovation.The method of TROFFE had a wide range of application,because of ignoring the source of idea by the integration of market pull and technology push.

  20. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  1. Roadmap to the SRS computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.

    1994-07-05

    This document outlines the major steps that must be taken by the Savannah River Site (SRS) to migrate the SRS information technology (IT) environment to the new architecture described in the Savannah River Site Computing Architecture. This document proposes an IT environment that is {open_quotes}...standards-based, data-driven, and workstation-oriented, with larger systems being utilized for the delivery of needed information to users in a client-server relationship.{close_quotes} Achieving this vision will require many substantial changes in the computing applications, systems, and supporting infrastructure at the site. This document consists of a set of roadmaps which provide explanations of the necessary changes for IT at the site and describes the milestones that must be completed to finish the migration.

  2. A Tool Design of Cobit Roadmap Implementation

    Directory of Open Access Journals (Sweden)

    Karim Youssfi

    2014-08-01

    Full Text Available Over the last two decades, the role of information technology in organizations has changed from primarily a supportive and transactional function to being an essential prerequisite for strategic value generation. The organizations based their operational services through its Information Systems (IS that need to be managed, controlled and monitored constantly. IT governance (ITG, i.e. the way organizations manage IT resources, has became a key factor for enterprise success due to the increasing enterprise dependency on IT solutions. There are several approaches available to deal with ITG. These methods are diverse, and in some cases, long and complicated to implement. One well-accepted ITG framework is COBIT, designed for a global approach. This paper describes a design of a tool for COBIT roadmap implementation. The model is being developed in the course of ongoing PhD research.

  3. Heat Roadmap Europe 3 (STRATEGO)

    DEFF Research Database (Denmark)

    Connolly, David; Hansen, Kenneth; Drysdale, David

    Heat Roadmap Europe 3 is from work package 2 of the STRATEGO project (http://stratego-project.eu/). It quantifies the impact of implementing various energy efficiency measures in the heating and cooling sectors of five EU Member States: Czech Republic, Croatia, Italy, Romania, and the United King...... States to simultaneously reduce energy demand, imported fossil fuels, carbon dioxide emissions, and the cost of the heating, cooling, and electricity sectors....

  4. VERAM - Vision and Roadmap for European Raw Materials

    Science.gov (United States)

    Baumgarten, Wibke; Vashev, Boris

    2017-04-01

    The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The

  5. Unmanned Ground Systems Roadmap

    Science.gov (United States)

    2011-07-01

    Squad Mission Support System SOC .............................. Special Operations Command SOFC ............................ Solid Oxide Fuel Cell ...technologies may be used to match a given Use Profile: Table 5. Power Use Profiles Energy Storage Energy Harvesting Fuel Cells Engines Lead Acid...significant amount of research and development in both Government and Industry have been devoted to the areas of energy storage, fuel cells , and small

  6. The 2016 oxide electronic materials and oxide interfaces roadmap

    Science.gov (United States)

    Lorenz, M.; Ramachandra Rao, M. S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; Shan, F. K.; Grundmann, M.; Boschker, H.; Mukherjee, J.; Priyadarshini, M.; DasGupta, N.; Rogers, D. J.; Teherani, F. H.; Sandana, E. V.; Bove, P.; Rietwyk, K.; Zaban, A.; Veziridis, A.; Weidenkaff, A.; Muralidhar, M.; Murakami, M.; Abel, S.; Fompeyrine, J.; Zuniga-Perez, J.; Ramesh, R.; Spaldin, N. A.; Ostanin, S.; Borisov, V.; Mertig, I.; Lazenka, V.; Srinivasan, G.; Prellier, W.; Uchida, M.; Kawasaki, M.; Pentcheva, R.; Gegenwart, P.; Miletto Granozio, F.; Fontcuberta, J.; Pryds, N.

    2016-11-01

    Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by

  7. Russia plans to announce the first national technology roadmap%俄罗斯公布国家技术计划首批路线图

    Institute of Scientific and Technical Information of China (English)

    刘光武; 叶慧杰

    2016-01-01

    In response to the rapid rise of a new round of global technological revolution, Russian President Vladimir Putin stated to establish "National Technology Plan" in the 2014 State of the Union, the core objective is to develop high-tech market which has broad prospects in the next 15 to 20 years, and cultivate some technology-based large enterprises with international influence.%为应对新一轮全球技术革命的迅速兴起,俄罗斯总统普京在2014年国情咨文中倡议建立“国家技术计划”,其核心目标是发展未来15~20年具有广阔前景的新兴高技术市场,培育出若干具备国际影响力的技术型大企业。

  8. IPAC Firefly Development Roadmap

    OpenAIRE

    Wu, Xiuqin

    2015-01-01

    IPAC Firefly package has been developed in IRSA (NASA/IPAC Infrared Science Archive) in last six years. It is a software package utilizing state-of-the art AJAX technology to provide an interactive web user interface for astronomers. It has been used to build Spitzer Heritage Archive, WISE Image Service, Planck Visualization, PTF Image Service, and the new IRSA finder chart. It provides three major components: table display, FITS images visualization, and 2D plot. All three highly interactive...

  9. Computer Network Defense Roadmap

    Science.gov (United States)

    2009-05-01

    IA posture and relies on an effective triad of people, technology, and CND operations. Strategic Outcomes The strategic outcome of the DON CND...protection la yers, decreasing h t e likelihood of success. Founded on the principle of a strong IA posture, D ON CND relies on an effective triad of...or attack. It collects, normalizes, correlates, and analyzes data to determine cyber attack profiles in real time. • Data at Rest ( DAR ) Encryption

  10. Strategic Program Planning Lessons Learned in Developing the LTS S&T Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Duane Hanson; Brent Dixon; Gretchen Matthern

    2003-07-01

    Technology roadmapping is a strategic planning method used by companies to identify and plan the development of technologies necessary for new products. The U.S. Department of Energy’s Office of Environmental Management has used this same method to refine requirements and identify knowledge and tools needed for completion of defined missions. This paper describes the process of applying roadmapping to clarify mission requirements and identify enhancing technologies for the Long-Term Stewardship (LTS) of polluted sites after site cleanup has been completed. The nature of some contamination problems is such that full cleanup is not achievable with current technologies and some residual hazards remain. LTS maintains engineered contaminant barriers and land use restriction controls, and monitors residual contaminants until they no longer pose a risk to the public or the environment. Roadmapping was used to clarify the breadth of the LTS mission, to identify capability enhancements needed to improve mission effectiveness and efficiency, and to chart out the research and development efforts to provide those enhancements. This paper is a case study of the application of roadmapping for program planning and technical risk management. Differences between the planned and actual application of the roadmapping process are presented along with lessons learned. Both the process used and lessons learned should be of interest for anyone contemplating a similar technology based planning effort.

  11. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Connolly, David; Lund, Henrik

    2015-01-01

    of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...... by assessing various parameters such as socio-economic costs and energy efficiency improvements in the national energy systems. The results demonstrate the economically feasible levels of heat savings and heat production for various European countries, highlighting differences in their national conditions...

  12. Continuing the International Roadmapping Effort - An Introduction to the Evolution of the ISECG Global Exploration Roadmap

    Science.gov (United States)

    Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.

  13. Roadmap of optical communications

    Science.gov (United States)

    Agrell, Erik; Karlsson, Magnus; Chraplyvy, A. R.; Richardson, David J.; Krummrich, Peter M.; Winzer, Peter; Roberts, Kim; Fischer, Johannes Karl; Savory, Seb J.; Eggleton, Benjamin J.; Secondini, Marco; Kschischang, Frank R.; Lord, Andrew; Prat, Josep; Tomkos, Ioannis; Bowers, John E.; Srinivasan, Sudha; Brandt-Pearce, Maïté; Gisin, Nicolas

    2016-06-01

    Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

  14. Information and communication technologies for operating of smart distribution grids based on the German standardization roadmap; Informations- und Kommunikationstechnologien zur Betriebsfuehrung smarter Verteilungsnetze auf Basis der Deutschen Normungsroadmap

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Christoph [IT4Power, Zug (Switzerland); Buchholz, Bernd Michael [NTB Technoservice, Pyrbaum (Germany); Hampel, Herman [iAD GmbH, Grosshabersdorf (Germany); Naumann, A. [Magdeburg Univ. (Germany)

    2012-07-01

    The current challenges of the distribution networks are caused by a growing volume of distributed energy in-feed and new types of load. They require the introduction of information and communication technologies (ICT) down to the low voltage level. Innovative monitoring and control tasks are developed in the framework of the European lighthouse project ''Web2Energy'' (W2E) and performed in the practice of the 20/0.4 kV network of the HSE AG in Darmstadt. The overview of the realized functions is given and the related information exchange between the control centre and the distributed plants is considered. The project applies the standards IEC 61850 for data communication and IEC 61968/70 for the data management (CIM - Common Information Model) in the control center (CC). The client - server architecture of the developed communication system is considered in detail. The project related W2E CC serves the aspects of smart distribution also in the context with market activities. Data acquisition and control of the 20/0.4 kV terminals and the various power plants are executed by a mini remote terminal unit. The W2E RTU offers a 100 MBd Ethernet interface providing the IEC 61850 protocol for the access to the communication system. The required application specific extensions of the standards are discussed and the first experiences for application in the practice are demonstrated. (orig.)

  15. VistA 4 Product Roadmap

    Data.gov (United States)

    Department of Veterans Affairs — The VistA 4 Product Roadmap outlines how the Department of Veterans Affairs (VA), under the direction of the VistA Evolution Program, will build upon the previous...

  16. Roadmap-Based Level Clearing of Buildings

    KAUST Repository

    Rodriguez, Samuel

    2011-01-01

    In this paper we describe a roadmap-based approach for a multi-agent search strategy to clear a building or multi-story environment. This approach utilizes an encoding of the environment in the form of a graph (roadmap) that is used to encode feasible paths through the environment. The roadmap is partitioned into regions, e.g., one per level, and we design region-based search strategies to cover and clear the environment. We can provide certain guarantees within this roadmap-based framework on coverage and the number of agents needed. Our approach can handle complex and realistic environments where many approaches are restricted to simple 2D environments. © 2011 Springer-Verlag.

  17. Codes & standards research, development & demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-22

    This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for SDOs to develop performance-based codes and standards for a commercial hydrogen fueled transportation sector in the U.S.

  18. Hydrogen delivery technology rRoadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-11-01

    Hydrogen holds the long-term potential to solve two critical problems related to the energy infrastructure: U.S. dependence on foreign oil and U.S. emissions of greenhouse gases and pollutants. The U.S. transportation sector is almost completely reliant on petroleum, over half of which is currently imported, and tailpipe emissions remain one of the country’s key air quality concerns. Fuel cell vehicles operating on hydrogen produced from domestically available resources – including renewable resources, coal with carbon sequestration, or nuclear energy – would dramatically decrease greenhouse gases and other emissions, and would reduce dependence on oil from politically volatile regions of the world. Clean, domestically-produced hydrogen could also be used to generate electricity in stationary fuel cells at power plants, further extending national energy and environmental benefits.

  19. Cross-functional shifts in roadmapping: Sequence analysis of roadmapping practices at a large corporation

    NARCIS (Netherlands)

    Simonse, W.L.; Perks, H.

    2014-01-01

    This study unravels the nature of inter-functional integration in roadmapping. Roadmapping is indicated as an important innovation phenomenon and is practiced by multiple large organizations. Functional integration is widely acknowledged to play a significant role in enhancing new product success. R

  20. Finding a roadmap to achieve large neuromorphic hardware systems.

    Science.gov (United States)

    Hasler, Jennifer; Marr, Bo

    2013-01-01

    Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are reaching physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Toward this end, the authors provide a glimpse at what the technology evolution roadmap looks like for these systems so that Neuromorphic engineers may gain the same benefit of anticipation and foresight that IC designers gained from Moore's law many years ago. Scaling of energy efficiency, performance, and size will be discussed as well as how the implementation and application space of Neuromorphic systems are expected to evolve over time.

  1. Italy 100% Renewable: A Suitable Energy Transition Roadmap

    CERN Document Server

    Meneguzzo, Francesco; Albanese, Lorenzo; Pagliaro, Mario

    2016-01-01

    We outline a realistic energy transition roadmap for Italy, in which the whole energy demand is met by electricity generated by low cost renewable energy technologies, namely solar photovoltaic, wind and hydroelectric power. We assess the amount of extra power and storage capacity to be installed along with costs, return on investment and payback time. Based on cost, renewable nature and scalability, storage in energy dense polysaccharides enzymatically synthesized from carbon dioxide, water and surplus electricity is proposed to meet the significant storage requirements.

  2. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    Science.gov (United States)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  3. a Roadmap to Advance Understanding of the Science of Space Weather

    Science.gov (United States)

    Schrijver, K.; Kauristie, K.; Aylward, A.; De Nardin, C. M.; Gibson, S. E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M. A.; Heynderickx, D.; Jakowski, N.; Kalegaev, V. V.; Lapenta, G.; Linker, J.; Liu, S.; Mandrini, C. H.; Mann, I. R.; Nagatsuma, T.; Nandy, D.; Obara, T.; O'Brien, T. P., III; Onsager, T. G.; Opgenoorth, H. J.; Terkildsen, M. B.; Valladares, C. E.; Vilmer, N.

    2015-12-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. A COSPAR/ILWS team recently completed a roadmap that identifies the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications and costs for society. This presentation provides a summary of the highest-priority recommendations from that roadmap.

  4. Sign language for the information society: an ICT roadmap for South African Sign Language

    CSIR Research Space (South Africa)

    Olivrin, G

    2008-11-01

    Full Text Available This paper provides a scientific roadmap towards a multiligual and inclusive society in which Sign Language features and empowers us all. Case studies present the technologies, products and services of tomorrow, which respond to the needs for visual...

  5. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  6. Monoplane 3D Overlay Roadmap versus Conventional Biplane 2D Roadmap Technique for Neurointervenional Procedures.

    Science.gov (United States)

    Jang, Dong-Kyu; Stidd, David A; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham; Lopes, Demetrius K

    2016-09-01

    We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (poverlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique.

  7. Creating small roadmaps for solving motion planning problems

    NARCIS (Netherlands)

    Geraerts, R.J.; Overmars, M.H.

    2005-01-01

    In robot motion planning, many algorithms have been proposed that create a roadmap from which a path for a moving object can be extracted. These algorithms generally do not give guarantees on the quality of the roadmap, i.e. they do not promise that a path will always be found in the roadmap if one

  8. NASA Astrophysics Technology Needs

    Science.gov (United States)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  9. Roadmap for cardiovascular circulation model.

    Science.gov (United States)

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J

    2016-12-01

    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Indonesia ergonomics roadmap: where we are going?

    Science.gov (United States)

    Wignjosoebroto, Sritomo

    2007-12-01

    There are so many definitions for ergonomics terms such as human factors, human factors engineering, human engineering, human factors psychology, engineering psychology, applied ergonomics, occupational ergonomics, industrial ergonomics and industrial engineering. The most inclusive terms are ergonomics and human factors. Both represent the study of work and the interaction between people and their work environmental systems. The main objective is especially fitting with the need to design, develop, implement and evaluate human-machine and environment systems that are productive, comfortable, safe and satisfying to use. The work of the ergonomists in Indonesia--most of them are academicians--have one thing in common, i.e. with the appropriate type of ergonomic approaches to interventions; there would be improvements in productivity, quality of working conditions, occupational safety and health (OSH), costs reduction, better environment, and increase in profits. So many researches, training, seminars and socialization about ergonomics and OSH have been done concerning micro-to-macro themes; but it seems that we are practically still running at the same place up to now. In facts, workers are still working using their traditional or obsolete methods in poor working conditions. Accidents are still happening inside and outside industry with the main root-cause being human "unsafe behavior" and errors. Industrial products cannot compete in the global market, and so many manufacturing industries collapsed or relocated to foreign countries. This paper discusses such a roadmap and review what we ergonomists in Indonesia have done and where we are going to? This review will be treated in the field of ergonomics and OSH to take care the future Indonesia challenges. Some of the challenges faced are care for the workers, care for the people, care for the quality and productivity of work, care for the new advanced technologies, care for the environment, and last but not least

  11. The Forest Fibre Industry. 2050 Roadmap to a low-carbon bio-economy

    Energy Technology Data Exchange (ETDEWEB)

    Presas, T.; Mensink, M.

    2011-11-15

    In March 2011, the European Commission published a 'Roadmap for moving to a competitive low-carbon economy in 2050', a discussion document to explore the future of climate change policy. The document models pathways towards 2050 and the possible contribution of different sectors. It will be followed by an 'energy roadmap' towards the end of 2011 and will be combined with other roadmaps on, for example, the future of transport. In time, it will lead to a new 'climate change and energy package'. The outcome will be crucial for Europe's pulp, paper and wood products industries, which operate at the crossroads of renewable energy policy, emission trading, industrial and raw material policies. Climate change policy, too, has a major influence on the future of these sectors. After all, climate change policy is, essentially, industrial policy. This roadmap attempts to lay out the future of the forest fibre industry - the pulp, paper and board and wood products sectors combined - and its potential to meet future consumer demands, stay competitive and deliver a CO2 emission reduction in line with the modelled overall industrial reduction of 80% by 2050, compared to 1990 levels. The roadmap explores the technical, financial and resource constraints that lie ahead, and the policy framework that will be needed to tackle them. Our roadmap is an exploration into the future. The CO2 reduction envisaged can only be achieved when the right policy framework is in place. The sector can play its part as long as it remains profitable and attractive to investments, keeps access to fibre and other raw materials and receives enough support to bring breakthrough technologies within reach.

  12. Regional Open Innovation Roadmapping: A New Framework for Innovation-Based Regional Development

    Directory of Open Access Journals (Sweden)

    Wim Schwerdtner

    2015-02-01

    Full Text Available To foster sustainable regional development, many regions rely on innovations. To safeguard the generation of innovations and their market introduction, companies have increasingly used technology roadmapping and open innovation. The project INNOrural (Innovations for sustainable rural development expanded these concepts by applying them to regions. This led to the rise of the “Regional Open Innovation Roadmapping” framework for innovation-based regional development (ROIR. This framework was tested by conducting two innovation roadmapping processes in the model region of Märkisch-Oderland (MOL, Germany: the certification of regional wood fuel and the establishment of a competence center for precision farming technology. Both innovation ideas were selected during the roadmapping process by applying a sustainability assessment. After 12 months, two complete roadmaps were ready for implementation. Key principles of ROIR were identified, including the use of a clear and replicable sustainability assessment method, the involvement of all relevant stakeholder groups in the early process and the cooperation between regional and subject experts. Generally, the broader adaptation of ROIR for additional regions will be useful. Nevertheless, the ROIR processes need to be evaluated in depth to develop a better understanding and to provide evidence of the benefits and limitations of this approach.

  13. Extremely Large Telescope Project Selected in ESFRI Roadmap

    Science.gov (United States)

    2006-10-01

    In its first Roadmap, the European Strategy Forum on Research Infrastructures (ESFRI) choose the European Extremely Large Telescope (ELT), for which ESO is presently developing a Reference Design, as one of the large scale projects to be conducted in astronomy, and the only one in optical astronomy. The aim of the ELT project is to build before the end of the next decade an optical/near-infrared telescope with a diameter in the 30-60m range. ESO PR Photo 40/06 The ESFRI Roadmap states: "Extremely Large Telescopes are seen world-wide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge allowing detailed studies of inter alia planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the Dark Matter and Dark Energy which dominate the Universe. The European Extremely Large Telescope project will maintain and reinforce Europe's position at the forefront of astrophysical research." Said Catherine Cesarsky, Director General of ESO: "In 2004, the ESO Council mandated ESO to play a leading role in the development of an ELT for Europe's astronomers. To that end, ESO has undertaken conceptual studies for ELTs and is currently also leading a consortium of European institutes engaged in studying enabling technologies for such a telescope. The inclusion of the ELT in the ESFRI roadmap, together with the comprehensive preparatory work already done, paves the way for the next phase of this exciting project, the design phase." ESO is currently working, in close collaboration with the European astronomical community and the industry, on a baseline design for an Extremely Large Telescope. The plan is a telescope with a primary mirror between 30 and 60 metres in diameter and a financial envelope of about 750 m Euros. It aims at more than a factor ten improvement in overall performance compared to the current leader in ground based astronomy: the ESO Very Large

  14. Strategic Green Energy Roadmap 2011 for South Korea; Koreaanse strategische groene energie roadmap 2011

    Energy Technology Data Exchange (ETDEWEB)

    Wijlhuizen, P.

    2011-08-23

    The South Korean energy system depends for 97% on import. The remaining three percent of the energy need is covered by hydropower, solar panels and wind turbines. Korea is looking for alternatives, both for import and for fossil fuels. In 2008, Korea developed its 'Low carbon, green growth' policy, followed by the first 'Strategic green energy roadmap' one year later. Mid-2011 the Ministry of Knowledge Economy published an updated roadmap. [Dutch] Zuid-Korea is voor de energievoorziening voor 97% afhankelijk van import. De resterende drie procent van de energiebehoefte wordt door waterkracht, zonnepanelen en windmolens opgewekt. Korea zoekt naar alternatieven voor zowel import als voor fossiele brandstoffen. In 2008 kwam Korea met het 'Low carbon, green growth' beleid en een jaar later kwam de eerste 'Strategische groene energie roadmap' uit. Midden 2011 kwam het Ministry of Knowledge Economy met een ge-updatete roadmap.

  15. SCENET roadmap for superconductor digital electronics

    NARCIS (Netherlands)

    Brake, ter H.J.M.; Buchholz, F.-Im.; Burnell, G.; Claeson, T.; Crete, D.; Febvre, P.; Gerritsma, G.J.; Hilgenkamp, H.; .........,; Rogalla, H.; .........,

    2006-01-01

    The roadmap gives an overview on status and future developments in Superconducting Digital Electronics (SDE). Key areas in SDE under focus are applications, circuit simulation and design, circuit fabrication, interfacing and testing, cooling and system aspects, and new devices and materials. Care wa

  16. Sampling Techniques for Probabilistic Roadmap Planners

    NARCIS (Netherlands)

    Geraerts, R.J.; Overmars, M.H.

    2004-01-01

    The probabilistic roadmap approach is a commonly used motion planning technique. A crucial ingredient of the approach is a sampling algorithm that samples the configuration space of the moving object for free configurations. Over the past decade many sampling techniques have been proposed. It is

  17. EPA Nitrogen and Co-Pollutant Roadmap

    Science.gov (United States)

    Cross-media, integrated, multi-disciplinary approach to sustainably manage reactive nitrogen and co-pollutant loadings to air and water to reduce adverse impacts on the environment and human health. The goal of the Roadmap is to develop a common understanding of the Agency's rese...

  18. A Comparative Study of Probabilistic Roadmap Planners

    NARCIS (Netherlands)

    Geraerts, R.J.; Overmars, M.H.

    2004-01-01

    The probabilistic roadmap approach is one of the leading motion planning techniques. Over the past eight years the technique has been studied by many different researchers. This has led to a large number of variants of the approach, each with its own merits. It is difficult to compare the different

  19. Astrobiology: A Roadmap for Charting Life in the Universe

    Science.gov (United States)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  20. An ESA roadmap for geobiology in space exploration

    Science.gov (United States)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space

  1. NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe

    Science.gov (United States)

    White, Nicholas E.

    2005-01-01

    The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.

  2. NASA strategic roadmap: origin, evolution, structure, and density of the universe

    Science.gov (United States)

    White, Nicholas E.

    2005-08-01

    The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA's approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.

  3. Hydrogen Delivery Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  4. Vision 2020: 2000 Separations Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stephen [Center for Waster Reduction Technologies; Beaver, Earl [Practical Sustainability; Bryan, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-01-01

    This report documents the results of four workshops on the technology barriers, research needs, and priorities of the chemical, agricultural, petroleum, and pharmaceutical industries as they relate to separation technologies utilizing adsorbents, crystallization, distillation, extraction, membranes, separative reactors, ion exchange, bioseparations, and dilute solutions.

  5. Monoplane 3D Overlay Roadmap versus Conventional Biplane 2D Roadmap Technique for Neurointervenional Procedures

    Science.gov (United States)

    Jang, Dong-Kyu; Stidd, David A.; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham

    2016-01-01

    Purpose We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. Materials and Methods A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. Results During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (p<0.001), procedure time (P=0.023), total radiation dose (p=0.001), and fluoroscopy dose (P=0.017) relative to Group 1. During Time Period 2, there was no difference of immediate angiographic results and procedure complications between the two groups. Through the transition from Time Period 1 to Time Period 2, Group 2 demonstrated decreased fluoroscopy time (p< 0.001), procedure time (p=0.022), and procedure complication rate (p=0.041) in Time Period 2 relative to Time Period 1. Conclusion The monoplane 3D overlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique. PMID:27621947

  6. A Roadmap for NEAMS Capability Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, David E [ORNL

    2011-11-01

    The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3

  7. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  8. Built Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsyth, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sinclair, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, F. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  9. Finding a Roadmap to achieve Large Neuromorphic Hardware Systems

    Directory of Open Access Journals (Sweden)

    Jennifer eHasler

    2013-09-01

    Full Text Available Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are meeting hard physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Towards this end, the authors provide a glimpse at what the technology evolution roadmap looks like for these systems so that Neuromorphic engineers may gain the same benefit of anticipation and foresight that IC designers gained from Moore's law many years ago. Scaling of energy efficiency, performance, and size will be discussed as well as how the implementation and application space of Neuromorphic systems are expected to evolve over time.

  10. Danish roadmap for large-scale implementation of electrolysers

    DEFF Research Database (Denmark)

    Skov, Iva Ridjan; Mathiesen, Brian Vad

    is increasing with higher shares of intermittent renewable energy in the system. Storing electrons into chemical energy via electrolysis opens door to cheaper ways of energy storage than direct electricity storage or heat storage. In order to meet the targets for 100% renewable energy in 2050, and to follow......Water electrolysis is an established chemical process that has been used in industry for many years. The interest of using electrolysis for other purposes than industry is present, but execution of its implementation in the system is behind. This has to change, as the need for electricity storage...... the energy system planning projections conducted that include electrolysis as an important part of the future energy system, Denmark needs to start implementing electrolyser capacities in the energy system. The roadmap divided into 4 phases based on stakeholders’ inputs, previous studies on technologies...

  11. Strategic Roadmap 2024: Powering the Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    Strategic Roadmap 2024 applies our historic mission to the dynamic and evolving industry environment that includes myriad new regulations, the growing presence of interruptible and intermittent generation resources and constraints on our hydro resources. It also ties together Western’s strategy, initiatives, capital budgets and annual targets to move the agency in one direction, continue to meet customer needs and provide the best value as an organization.

  12. Design Through Analysis (DTA) roadmap vision.

    Energy Technology Data Exchange (ETDEWEB)

    Blacker, Teddy Dean; Adams, Charles R.; Hoffman, Edward L.; White, David Roger; Sjaardema, Gregory D.

    2004-10-01

    The Design through Analysis Realization Team (DART) will provide analysts with a complete toolset that reduces the time to create, generate, analyze, and manage the data generated in a computational analysis. The toolset will be both easy to learn and easy to use. The DART Roadmap Vision provides for progressive improvements that will reduce the Design through Analysis (DTA) cycle time by 90-percent over a three-year period while improving both the quality and accountability of the analyses.

  13. Global Solidarity Opinion Poll: A Roadmap

    OpenAIRE

    Pollet, Ignace; Huyse, Huib; Schulpen, Lau; Keulemans, Shelena

    2011-01-01

    DevCom network (OECD) has launched the idea of a multi-country survey, provisionally named the Global Solidarity Opinion Poll (GSOP), to be held in the DAC-countries as well as in emerging donor and recipient countries. In order to enable OECD Development Centre to proceed efficiently towards these objectives, an obvious idea was thought to draw a roadmap, holding advice on the institutional, scientific, logistic and financial elements of this project, as well as clarifying the added value...

  14. The 2016 Thermal Spray Roadmap

    Science.gov (United States)

    Vardelle, Armelle; Moreau, Christian; Akedo, Jun; Ashrafizadeh, Hossein; Berndt, Christopher C.; Berghaus, Jörg Oberste; Boulos, Maher; Brogan, Jeffrey; Bourtsalas, Athanasios C.; Dolatabadi, Ali; Dorfman, Mitchell; Eden, Timothy J.; Fauchais, Pierre; Fisher, Gary; Gaertner, Frank; Gindrat, Malko; Henne, Rudolf; Hyland, Margaret; Irissou, Eric; Jordan, Eric H.; Khor, Khiam Aik; Killinger, Andreas; Lau, Yuk-Chiu; Li, Chang-Jiu; Li, Li; Longtin, Jon; Markocsan, Nicolaie; Masset, Patrick J.; Matejicek, Jiri; Mauer, Georg; McDonald, André; Mostaghimi, Javad; Sampath, Sanjay; Schiller, Günter; Shinoda, Kentaro; Smith, Mark F.; Syed, Asif Ansar; Themelis, Nickolas J.; Toma, Filofteia-Laura; Trelles, Juan Pablo; Vassen, Robert; Vuoristo, Petri

    2016-12-01

    Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.

  15. AstRoMap European Astrobiology Roadmap.

    Science.gov (United States)

    Horneck, Gerda; Walter, Nicolas; Westall, Frances; Grenfell, John Lee; Martin, William F; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R; Rettberg, Petra; Capria, Maria Teresa

    2016-03-01

    The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system.

  16. Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings

    Energy Technology Data Exchange (ETDEWEB)

    Stukel, Laura [Elevate Energy, Chicago, IL (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Adomatis, Sandra [Adomatis Appraisal Services, Punta Gorda, FL (United States); Foley, Craig [Sustainable Real Estate Consulting Services, Somerville, MA (United States); Parsons, Laura [Center for Sustainable Energy, San Diego, CA (United States); James, Mark [Vermont Law School, South Royalton, VT (United States). Inst. for Energy and Environment; Mastor, Roxana-Andreea [Vermont Law School, South Royalton, VT (United States). Inst. for Energy and Environment; Wedewer, Lindsey [Colorado Energy Office, Denver, CO (United States)

    2017-04-13

    Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listing service (MLS).

  17. Grid Interaction Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  18. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop

    Science.gov (United States)

    Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2017-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163

  19. Science and Technology Test Mining: Disruptive Technology Roadmaps

    Science.gov (United States)

    2007-11-02

    has engendered a new type of commerce , commonly referred to as electronic commerce , or eCommerce . But despite the phenomenal growth of eCommerce , the...to bridge the gap between electronic 30 and traditional commerce . It represents one of the earliest examples of a new breed of commerce we call...both electronic and physical commerce . With consumers able to find the best price regardless of where they shop, the physical retailer is left at a

  20. Codes and standards research, development and demonstration roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-22

    C&S RD&D Roadmap - 2008: This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for Standards Development Organizations (SDOs) to develop performance-based codes and standards for a commercial hydrogen fueled transportation sector in the U.S.

  1. Teknologisk roadmap viser vej til vækstteknologier

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    2013-01-01

    Hvilke teknologier er fremtidens vækstteknologier, som skal begunstiges med offentlige investeringer? Det har de nye EU-roadmap 2020-processer vist sig overlegne til at udpege – ikke mindst i forhold til den tidligere udskældte picking the winners-strategi. I roadmap-processerne kortlægges koordi...

  2. 76 FR 11308 - Aviation Noise Impacts Roadmap Annual Meeting

    Science.gov (United States)

    2011-03-01

    ... TRANSPORTATION Federal Aviation Administration Aviation Noise Impacts Roadmap Annual Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of meeting participation. SUMMARY: This notice advises interested persons that the First Annual Meeting of the Aviation Noise Impacts Roadmap will be held on...

  3. Roadmap to PLE - A Research Route to Empower the Use of Personal Learning Environments (PLEs

    Directory of Open Access Journals (Sweden)

    Maria Chiara Pettenati

    2010-10-01

    Full Text Available In this position paper we argue that in order to design, deploy and evaluate institutional Personal Learning Environments, a system-level Roadmap should be developed accounting for the progressive expansion towards the following evolutions directions: from closed (VLE to Open Learning Environments (OLE; from the individual-group, to individual-network and individual-collective relations; from using structured learning resources to using any type of content; from being instructor/institution-led by being self-regulated and self-managed; from being aimed at learning in the university system to supporting work-based learning; from being centered around web 2.0 to being empowered by web 3.0 tools and technologies. In order to accompany the development of such a Roadmap, an operational definition and hexagonal model of the PLE is presented in this paper together with its three-steps evolutionary process.

  4. EADS Roadmap for Launch Vehicles

    Science.gov (United States)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2

  5. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  6. Challenges for Product Roadmapping in Inter-company Collaboration

    Science.gov (United States)

    Suomalainen, Tanja; Tihinen, Maarit; Parviainen, Päivi

    Product roadmapping is a critical activity in product development, as it provides a link between business aspects and requirements engineering and thus helps to manage a high-level view of the company’s products. Nowadays, inter-company collaboration, such as outsourcing, is a common way of developing software products, as through collaboration, organisations gain advantages, such as flexibility with in-house resources, savings in product development costs and gain a physical presence in important markets. The role of product roadmapping becomes even more critical in collaborative settings, since different companies need to align strategies and work together to create products. In order to support companies in improving their own product roadmapping processes, this paper first gives an overview of product roadmapping and then discusses in detail an empirical study of the current practices in industry. The presented results particularly focus on the most challenging and important activities of product roadmapping in collaboration.

  7. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  8. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  9. Successful user experience strategy and roadmaps

    CERN Document Server

    Rosenzweig, Elizabeth

    2015-01-01

    Successful User Experience: Strategy and Roadmaps provides you with a hands-on guide for pulling all of the User Experience (UX) pieces together to create a strategy that includes tactics, tools, and methodologies. Leveraging material honed in user experience courses and over 25 years in the field, the author explains the value of strategic models to refine goals against available data and resources. You will learn how to think about UX from a high level, design the UX while setting goals for a product or project, and how to turn that into concrete actionable steps. After reading this book, y

  10. A roadmap for educational research in pharmacy.

    Science.gov (United States)

    McLaughlin, Jacqueline E; Dean, Meredith J; Mumper, Russell J; Blouin, Robert A; Roth, Mary T

    2013-12-16

    Educational research must play a critical role in informing practice and policy within pharmacy education. Understanding the educational environment and its impact on students, faculty members, and other stakeholders is imperative for improving outcomes and preparing pharmacy students to meet the needs of 21st century health care. To aid in the design and implementation of meaningful educational research within colleges and schools of pharmacy, this roadmap addresses philosophy and educational language; guidelines for the conduct of educational research; research design, including 4 approaches to defining, collecting, and analyzing educational data; measurement issues; ethical considerations; resources and tools; and the value of educational research in guiding curricular transformation.

  11. Roadmap for optofluidics

    Science.gov (United States)

    Minzioni, Paolo; Osellame, Roberto; Sada, Cinzia; Zhao, S.; Omenetto, F. G.; Gylfason, Kristinn B.; Haraldsson, Tommy; Zhang, Yibo; Ozcan, Aydogan; Wax, Adam; Mugele, Frieder; Schmidt, Holger; Testa, Genni; Bernini, Romeo; Guck, Jochen; Liberale, Carlo; Berg-Sørensen, Kirstine; Chen, Jian; Pollnau, Markus; Xiong, Sha; Liu, Ai-Qun; Shiue, Chia-Chann; Fan, Shih-Kang; Erickson, David; Sinton, David

    2017-09-01

    Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new research field and it is only in the last decade that there has been a large increase in the number of optofluidic applications, as well as in the number of research groups, devoted to the topic. Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices, fluid-based and controlled lenses, optical sensors for fluids and for suspended particles, biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have been recently demonstrated, suggests that optofluidic technologies will become more and more common in everyday life in the future, causing a significant impact on many aspects of our society. A characteristic of this research field, deriving from both its interdisciplinary origin and applications, is that in order to develop suitable solutions a combination of a deep knowledge in different fields, ranging from materials science to photonics, from microfluidics to molecular biology and biophysics, is often required. As a direct consequence, also being able to understand the long-term evolution of optofluidics research is not easy. In this article, we report several expert contributions on different topics so as to provide guidance for young scientists. At the same time, we hope that this document will also prove useful for funding institutions and stakeholders to better understand the perspectives and opportunities offered by this research field.

  12. Roadmap Carpet 2030; Routekaart Tapijt 2030

    Energy Technology Data Exchange (ETDEWEB)

    Koppert, P. [Verenigde Nederlandse Tapijtfabrikanten VNTF, Zeist (Netherlands); Roemgens, B. [DNV, Bilthoven (Netherlands)

    2012-06-15

    In 2010 a sectoral analysis and market research for living, offices and the care sector were carried out. In 2011, ambitions, formulated in a previous brochure for the carpet sector, were elaborated in this roadmap. It aims at giving direction to strengthening the carpet industry in the field of innovation and sustainability, including the realization of far-reaching energy efficiency. In preparing the roadmap five themes are explored: (1) markets of the future: care sector, office and residential buildings; (2) Health and comfort: indoor climate and maintenance; (3) New materials: bio-based and nano; (4) Flexible production: high-efficient and on-demand; and (5) Return and recycling: collection and qualitative reuse [Dutch] In 2010 zijn een sectoranalyse en marktverkenningen voor wonen, kantoor en zorginstellingen uitgevoerd. De eerdere brochure 'Visie tapijt 2030' beschrijft een richtinggevende visie op de tapijtsector. In 2011 zijn de ambities uit die visie verder uitgewerkt tot deze Routekaart Tapijt 2030 die richting geeft aan het versterken van de tapijtsector op het gebied van innovatie en duurzaamheid, met inbegrip van een vergaande energie-efficiency. Voor het opstellen van de Routekaart zijn vijf thema's uitgewerkt: (1) markten van de toekomst: zorg, kantoren en residentieel; (2) Gezond en gemak: binnenklimaat en onderhoud; (3) Nieuwe materialen: bio-based en nano; (4) Flexibele productie: hoog efficient en on-demand; en (5) Retour en recycling: inzamelen en hoogwaardig hergebruiken.

  13. International Smart Grid Roadmaps and their Assessment

    Directory of Open Access Journals (Sweden)

    Michael Specht

    2013-03-01

    Full Text Available In US and Europe many approaches and efforts exist with different viewpoints and focuses on what is understood as smart grids. One agreement of almost all approaches is the need for standardization to operate smart grids. Thus, several roadmaps and studies, mainly dealing with smart grid standardization, were developed. However, these documents are also focusing different parts of smart grid realizations and were mainly devised independently from each other. In this contribution, an overview on the most important approaches is given and furthermore, a set of identified core standards is introduced. Though, to make reliable statements about the approaches it is necessary to have a methodology enabling comparability and measurability. Hence, the Smart Grid Maturity Model (SGMM is presented as a starting point for the assessment of projects and roadmaps. Since it does not meet all requirements for such assessments, because it was developed to assess utilities and follows a one-size-fits-all approach, a configuration approach based on several parameters, representing significant characteristics, is suggested.

  14. Roadmap for sustainable water resources in southwestern North America.

    Science.gov (United States)

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades.

  15. Roadmap ICT 2030; Routekaart ICT 2030

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    Extra attention for 'ICT and energy' can lead to significant energy savings, both in the ICT sector (Greening of ICT), as in other sectors (Greening by ICT). That has been elaborated as a vision of ICT Office in this roadmap. Actions are formulated to get started. Innovations and measures are connected to energy saving targets [Dutch] Extra aandacht voor 'ICT en energie' kan leiden tot grote energiebesparingen, zowel in de ICT sector zelf (Greening of ICT), als in andere sectoren (Greening by ICT). Dat is in deze Routekaart als visie van ICT-Office uitgewerkt. Acties zijn geformuleerd om daadwerkelijk aan de slag te kunnen gaan. Aan de innovaties en maatregelen zijn doelstellingen ten aanzien van energiebesparing gekoppeld, die zijn vertaald naar concrete bedragen.

  16. Roadmapping Future E-Government Research

    Science.gov (United States)

    Bicking, Melanie

    Global electronic markets, virtual organisations, virtual identities, virtual products and services, and Internet-related crime are growing in prominence and importance. In a world that is increasingly non-physical and borderless, what are government's roles, responsibilities and limitations? The Internet plays a central role within the transformation process from traditional governments towards modern and innovative government that the requirements of an Information Society. Based on the findings of the eGovRTD2020 project, that aims at identifying key research challenges and at implementing a model for a holistic government with horizon 2020, this paper explains the necessity to investigate and understand the Internet and in particular government's role and responsibilities in it. Furthermore, the paper provides a research roadmap that details how to address certain issue related research questions.

  17. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    Science.gov (United States)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  18. Transistor roadmap projection using predictive full-band atomistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Salmani-Jelodar, M., E-mail: m.salmani@gmail.com; Klimeck, G. [Network for Computational Nanotechnology and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, S. [Intel Corporation, 2501 Northwest 229th Avenue, Hillsboro, Oregon 97124 (United States); Ng, K. [Semiconductor Research Corporation (SRC), 1101 Slater Rd, Durham, North Carolina 27703 (United States)

    2014-08-25

    In this letter, a full band atomistic quantum transport tool is used to predict the performance of double gate metal-oxide-semiconductor field-effect transistors (MOSFETs) over the next 15 years for International Technology Roadmap for Semiconductors (ITRS). As MOSFET channel lengths scale below 20 nm, the number of atoms in the device cross-sections becomes finite. At this scale, quantum mechanical effects play an important role in determining the device characteristics. These quantum effects can be captured with the quantum transport tool. Critical results show the ON-current degradation as a result of geometry scaling, which is in contrast to previous ITRS compact model calculations. Geometric scaling has significant effects on the ON-current by increasing source-to-drain (S/D) tunneling and altering the electronic band structure. By shortening the device gate length from 20 nm to 5.1 nm, the ratio of S/D tunneling current to the overall subthreshold OFF-current increases from 18% to 98%. Despite this ON-current degradation by scaling, the intrinsic device speed is projected to increase at a rate of at least 8% per year as a result of the reduction of the quantum capacitance.

  19. U.S. SOCOM Grand Challenge #3: NREL Technical Roadmap for a Man-Portable Power Supply System for TALOS

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaps, Colton [National Renewable Energy Lab. (NREL), Golden, CO (United States); Symko-Davies, Martha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cale, James [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    The purpose of this report is to propose a technical roadmap for power supply technology to power the Tactical Assault Light Operator Suit (TALOS), an armored, powered exoskeleton currently in development for U.S. Special Operations Command operators. TALOS' power supply system must meet size targets similar to the size of a large backpack while providing significant electrical power for an entire mission cycle without resupply. This report proposes a staged development path based on three fundamental technical approaches.

  20. Summary of the International Workshop on Magnetic Fusion Energy (MFE) Roadmapping in the ITER Era; 7-10 September 2011, Princeton, NJ, USA

    Science.gov (United States)

    Neilson, G. H.; Federici, G.; Li, J.; Maisonnier, D.; Wolf, R.

    2012-04-01

    With the ITER project now well under way, the countries engaged in fusion research are planning, with renewed intensity, the research and major facilities needed to develop the science and technology for harnessing fusion energy. The Workshop on MFE Roadmapping in the ITER Era was organized to provide a timely forum for an international exchange of technical information and strategic perspectives on how best to tackle the remaining challenges leading to a magnetic fusion DEMO, a nuclear fusion device or devices with a level of physics and technology integration necessary to cover the essential elements of a commercial fusion power plant. Presentations addressed issues under four topics: (1) Perspectives on DEMO and the roadmap to DEMO; (2) Technology; (3) Physics-Technology integration and optimization; and (4) Major facilities on the path to DEMO. Participants identified a set of technical issues of high strategic importance, where the development strategy strongly influences the overall roadmap, and where there are divergent understandings in the world community, namely (1) the assumptions used in fusion design codes, (2) the strategy for fusion materials development, (3) the strategy for blanket development, (4) the strategy for plasma exhaust solution development and (5) the requirements and state of readiness for next-step facility options. It was concluded that there is a need to continue and to focus the international discussion concerning the scientific and technical issues that determine the fusion roadmap, and it was suggested that an international activity be organized under appropriate auspices to foster international cooperation on these issues.

  1. A roadmap for photovoltaic-thermal panels. Combination of techniques offers many advantages; Een roadmap voor pv-thermische panelen. Combinatie van technieken biedt vele voordelen

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M. [ECN Energie Gebouwde Omgeving en Netten, Petten (Netherlands)

    2006-10-15

    In PVT technology, heat is extracted from PV cells. In this way, a device is made that produces both electricity and heat. In the EU funded coordination action PV-Catapult, workshops on PVT were organised at the PVSEC 2004 Conference in Paris and the Eurosun 2004 conference in Freiburg, to obtain active participation of the PV and solar thermal communities. Currently, the results of the workshops are used in the drafting of a roadmap for the large scale introduction of PVT technology on the market. First results will be presented here. [Dutch] Zonnepanelen (oftewel pv-panelen) produceren elektriciteit uit zonlicht. In de volle zon kan de temperatuur van zonnepanelen flink oplopen. Gewone zonnepanelen maken van deze warmte geen gebruik, maar in PVT-modules (pv-thermische modules) wordt deze warmte benut voor de productie van warm water of warme lucht. Het resultaat is een apparaat dat zowel warmte als stroom produceert uit zonlicht.

  2. A roadmap for gene system development in Clostridium.

    Science.gov (United States)

    Minton, Nigel P; Ehsaan, Muhammad; Humphreys, Christopher M; Little, Gareth T; Baker, Jonathan; Henstra, Anne M; Liew, Fungmin; Kelly, Michelle L; Sheng, Lili; Schwarz, Katrin; Zhang, Ying

    2016-10-01

    Clostridium species are both heroes and villains. Some cause serious human and animal diseases, those present in the gut microbiota generally contribute to health and wellbeing, while others represent useful industrial chassis for the production of chemicals and fuels. To understand, counter or exploit, there is a fundamental requirement for effective systems that may be used for directed or random genome modifications. We have formulated a simple roadmap whereby the necessary gene systems maybe developed and deployed. At its heart is the use of 'pseudo-suicide' vectors and the creation of a pyrE mutant (a uracil auxotroph), initially aided by ClosTron technology, but ultimately made using a special form of allelic exchange termed ACE (Allele-Coupled Exchange). All mutants, regardless of the mutagen employed, are made in this host. This is because through the use of ACE vectors, mutants can be rapidly complemented concomitant with correction of the pyrE allele and restoration of uracil prototrophy. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Once available, the pyrE host may be used to stably insert all manner of application specific modules. Examples include, a sigma factor to allow deployment of a mariner transposon, hydrolases involved in biomass deconstruction and therapeutic genes in cancer delivery vehicles. To date, provided DNA transfer is obtained, we have not encountered any clostridial species where this technology cannot be applied. These include, Clostridium difficile, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium botulinum, Clostridium perfringens, Clostridium sporogenes, Clostridium pasteurianum, Clostridium ljungdahlii, Clostridium autoethanogenum and even Geobacillus thermoglucosidasius. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A Commercialization Roadmap for Carbon-Negative Energy Systems

    Science.gov (United States)

    Sanchez, D.

    2016-12-01

    The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.

  4. The Netherlands Roadmap for Large-scale Research Facilities; Nederlandse Roadmap Grootschalige Onderzoeksfaciliteiten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    Large-scale research facilities are of inestimable strategic value for science and research and, hence, for the Dutch knowledge economy. In July 2007, the Dutch Minister of Education, Culture and Science set up the National Roadmap Committee for Large-Scale Research Facilities, whose main task was to advise him as to which large-scale research facilities the Netherlands should construct or participate in within an international context. In the present advisory report, the Committee presents 25 large-scale research facilities whose construction or operation the Committee believes is important for the robustness and innovativeness of the Dutch science system. [Dutch] Grootschalige onderzoeksfaciliteiten zijn van onschatbaar strategisch belang voor onderzoek en wetenschap en daarmee voor de Nederlandse kenniseconomie. De Minister van OCW heeft in juli 2007 de Commissie Nationale Roadmap Grootschalige Onderzoeksfaciliteiten ingesteld met het primaire doel hem te adviseren welke grootschalige onderzoeksfaciliteiten geschikt zijn om in Nederland zelf te bouwen of om in een internationale context aan mee te doen. De Commissie presenteert in dit advies 25 grootschalige onderzoeksfaciliteiten waarvan naar het oordeel van de Commissie de bouw en exploitatie van belang zijn voor de vitaliteit en het innovatief vermogen van het Nederlandse wetenschap systeem.

  5. 3D roadmap in neuroangiography: technique and clinical interest

    Energy Technology Data Exchange (ETDEWEB)

    Soederman, Michael; Andersson, T. [Karolinska Hospital, Department of Neuroradiology, Stockholm (Sweden); Babic, D.; Homan, R. [Philips Medical Systems, Best (Netherlands)

    2005-10-01

    We present the first clinical results obtained with a novel technique: the three-dimensional [3D] roadmap. The major difference from the standard 2D digital roadmap technique is that the newly developed 3D roadmap is based on a rotational angiography acquisition technique with the two-dimensional [2D] fluoroscopic image as an overlay. Data required for an accurate superimposition of the previously acquired 3D reconstructed image on the interactively made 2D fluoroscopy image, in real time, are stored in the 3D workstation and constitute the calibration dataset. Both datasets are spatially aligned in real time; thus, the 3D image is accurately superimposed on the 2D fluoroscopic image regardless of any change in C-arm position or magnification. The principal advantage of the described roadmap method is that one contrast injection allows the C-arm to be positioned anywhere in the space and allows alterations in the distance between the x-ray tube and the image intensifier as well as changes in image magnification. In the clinical setting, the 3D roadmap facilitated intravascular neuronavigation with concurrent reduction of procedure time and use of contrast medium. (orig.)

  6. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  7. Catalyzing strategic transformation to a low-carbon economy. A CCS roadmap for China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hengwei; Gallagher, Kelly Sims [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States)

    2010-01-15

    China now faces the three hard truths of thirsting for more oil, relying heavily on coal, and ranking first in global carbon dioxide (CO{sub 2}) emissions. Given these truths, two key questions must be addressed to develop a low-carbon economy: how to use coal in a carbon-constrained future? How to increase domestic oil supply to enhance energy security? Carbon Capture and Storage (CCS) may be a technological solution that can deal with today's energy and environmental needs while enabling China to move closer to a low-carbon energy future. This paper has been developed to propose a possible CCS roadmap for China. To develop the roadmap, we first explore major carbon capture opportunities in China and then identify critical CCS-enabling technologies, as well as analyze their current status and future prospects. We find that coal gasification or polygeneration in combination with CCS could be a nearly unbeatable combination for China's low-carbon future. Even without CCS, gasification offers many benefits: once coal is gasified into syngas, it can be used for many different purposes including for alternative fuels production, thereby increasing the domestic oil supply and the flexibility of the energy system. (author)

  8. Catalyzing strategic transformation to a low-carbon economy: A CCS roadmap for China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hengwei, E-mail: hengwei_liu@hks.harvard.ed [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Gallagher, Kelly Sims [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States)

    2010-01-15

    China now faces the three hard truths of thirsting for more oil, relying heavily on coal, and ranking first in global carbon dioxide (CO{sub 2}) emissions. Given these truths, two key questions must be addressed to develop a low-carbon economy: how to use coal in a carbon-constrained future? How to increase domestic oil supply to enhance energy security? Carbon Capture and Storage (CCS) may be a technological solution that can deal with today's energy and environmental needs while enabling China to move closer to a low-carbon energy future. This paper has been developed to propose a possible CCS roadmap for China. To develop the roadmap, we first explore major carbon capture opportunities in China and then identify critical CCS-enabling technologies, as well as analyze their current status and future prospects. We find that coal gasification or polygeneration in combination with CCS could be a nearly unbeatable combination for China's low-carbon future. Even without CCS, gasification offers many benefits: once coal is gasified into syngas, it can be used for many different purposes including for alternative fuels production, thereby increasing the domestic oil supply and the flexibility of the energy system.

  9. Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-01-15

    This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level, bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.

  10. Food for thought ... A toxicology ontology roadmap.

    Science.gov (United States)

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    Foreign substances can have a dramatic and unpredictable adverse effect on human health. In the development of new therapeutic agents, it is essential that the potential adverse effects of all candidates be identified as early as possible. The field of predictive toxicology strives to profile the potential for adverse effects of novel chemical substances before they occur, both with traditional in vivo experimental approaches and increasingly through the development of in vitro and computational methods which can supplement and reduce the need for animal testing. To be maximally effective, the field needs access to the largest possible knowledge base of previous toxicology findings, and such results need to be made available in such a fashion so as to be interoperable, comparable, and compatible with standard toolkits. This necessitates the development of open, public, computable, and standardized toxicology vocabularies and ontologies so as to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. Such ontology development will support data management, model building, integrated analysis, validation and reporting, including regulatory reporting and alternative testing submission requirements as required by guidelines such as the REACH legislation, leading to new scientific advances in a mechanistically-based predictive toxicology. Numerous existing ontology and standards initiatives can contribute to the creation of a toxicology ontology supporting the needs of predictive toxicology and risk assessment. Additionally, new ontologies are needed to satisfy practical use cases and scenarios where gaps currently exist. Developing and integrating these resources will require a well-coordinated and sustained effort across numerous stakeholders engaged in a public-private partnership. In this communication, we set out a roadmap for the development of an integrated toxicology ontology

  11. The 2015 super-resolution microscopy roadmap

    Science.gov (United States)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  12. Xenomicrobiology: a roadmap for genetic code engineering.

    Science.gov (United States)

    Acevedo-Rocha, Carlos G; Budisa, Nediljko

    2016-09-01

    Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non-natural building blocks in living cells. In this context, genetic code engineering respectively enables the re-design of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Roadmap for the international, accelerator-based neutrino programme

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Beijing, Inst. High Energy Phys. (China); de Gouvêa, A. [Northwestern Univ., Evanston, IL (United States); Duchesneau, D. [CNRS/IN2P3. Univ. Paris (France). Observatoire de Paris. AstroParticule et Cosmologie (APC); Geer, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gomes, R. [Federal University of Goias (Brazil); Kim, S. B. [Seoul National Univ. (Korea, Republic of); Kobayashi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Long, K. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL); Maltoni, M. [Autonomous Univ. of Madrid (Spain); Mezzetto, M. [Univ. of Padua (Italy); Mondal, N. [Tata Inst. of Fundamental Research, Bombay (India); Shiozawa, M. [Univ. of Tokyo (Japan); Sobczyk, J. [Univ. of Wroclaw (Poland); Tanaka, H. A. [TRIUMF, Vancouver, BC (Canada); Wascko, M. [Imperial College, London (United Kingdom); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-26

    In line with its terms of reference the ICFA Neutrino Panel has developed a roadmap for the international, accelerator-based neutrino programme. A "roadmap discussion document" was presented in May 2016 taking into account the peer-group-consultation described in the Panel's initial report. The "roadmap discussion document" was used to solicit feedback from the neutrino community---and more broadly, the particle- and astroparticle-physics communities---and the various stakeholders in the programme. The roadmap, the conclusions and recommendations presented in this document take into account the comments received following the publication of the roadmap discussion document. With its roadmap the Panel documents the approved objectives and milestones of the experiments that are presently in operation or under construction. Approval, construction and exploitation milestones are presented for experiments that are being considered for approval. The timetable proposed by the proponents is presented for experiments that are not yet being considered formally for approval. Based on this information, the evolution of the precision with which the critical parameters governinger the neutrino are known has been evaluated. Branch or decision points have been identified based on the anticipated evolution in precision. The branch or decision points have in turn been used to identify desirable timelines for the neutrino-nucleus cross section and hadro-production measurements that are required to maximise the integrated scientific output of the programme. The branch points have also been used to identify the timeline for the R&D required to take the programme beyond the horizon of the next generation of experiments. The theory and phenomenology programme, including nuclear theory, required to ensure that maximum benefit is derived from the experimental programme is also discussed.

  14. The Roadmap to achieve EU goals on urban mobility

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Gudmundsson, Henrik; Schippl, Jens

    2015-01-01

    Is it possible to change urban mobility in Europe to achieve ambitious sustainability goals? If so, who should dowhat by when? These questions are answered in a new Roadmap on urban mobility prepared as part of the European FP7 research project TRANSFORuM.......Is it possible to change urban mobility in Europe to achieve ambitious sustainability goals? If so, who should dowhat by when? These questions are answered in a new Roadmap on urban mobility prepared as part of the European FP7 research project TRANSFORuM....

  15. The Roadmap to achieve EU goals on urban mobility

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Gudmundsson, Henrik; Schippl, Jens;

    2015-01-01

    Is it possible to change urban mobility in Europe to achieve ambitious sustainability goals? If so, who should dowhat by when? These questions are answered in a new Roadmap on urban mobility prepared as part of the European FP7 research project TRANSFORuM.......Is it possible to change urban mobility in Europe to achieve ambitious sustainability goals? If so, who should dowhat by when? These questions are answered in a new Roadmap on urban mobility prepared as part of the European FP7 research project TRANSFORuM....

  16. The anatomy of a distributed motion planning roadmap

    KAUST Repository

    Jacobs, Sam Ade

    2014-09-01

    © 2014 IEEE. In this paper, we evaluate and compare the quality and structure of roadmaps constructed from parallelizing sampling-based motion planning algorithms against that of roadmaps constructed using sequential planner. Also, we make an argument and provide experimental results that show that motion planning problems involving heterogenous environments (common in most realistic and large-scale motion planning) is a natural fit for spatial subdivision-based parallel processing. Spatial subdivision-based parallel processing approach is suited for heterogeneous environments because it allows for local adaption in solving a global problem while taking advantage of scalability that is possible with parallel processing.

  17. Mirror Technology Roadmap for NASA's Exoplanet Exploration Program

    Science.gov (United States)

    Lawson, Peter R.; Shaklan, Stuart B.; Balasubramanian, K.

    2011-01-01

    There are several possible approaches to designing exoplanet missions: (1) Coronagraphs (2) Interferometers (3) Starshades Wavefront sensing and control is the central concern, not mirror size (1) Starlight suppression with deformable mirrors (2) Thermal and structural stability (3) Metrology for sensing and control Diffraction-limited optical primary mirrors 4-m or larger are needed to detect Earthlike planets (1) Surface figure similar to HST required (2) Smaller primary mirrors can be used with aggressive coronagraph designs, but the stability tolerances become the driving concern (3) Stability tolerances of coronagraphs are greatly reduced when larger primaries are used in conjunction with 8th-order masks Long term vision for large telescope development includes space-based segmented-mirror telescopes using actively-controlled glass segments or silicon carbide hybrid-mirror designs

  18. Kuveyt Türk payment systems technology roadmap

    OpenAIRE

    Turan, Ayşe

    2014-01-01

    ACKNOWLEDGEMENTS, iii -- ABSTRACT, iv -- ÖZET, v -- LIST OF FIGURES, x -- LIST OF TABLES, xi -- LIST OF ABBREVIATIONS, xii -- 1. INTRODUCTION, 1 -- 1.1 Participants in a Payment System, 2 -- 1.2 Types of Payment Systems, 2 -- 1.2.1 Large-value Payment Systems (LVPS), 2 -- 1.2.2 Retail Payments, 3 -- 1.2.3 Retail Payment Instruments, 3 -- 1.2.3.1.1 Cash payments, 3 -- 1.2.3.1.2 Non-cash payments, 4 -- 1.2.3.1.2.1 Payment Cards, 4 -- 1.2.3.1.2.1.1 Credit Cards, 5 -- 1.2.3.1.2.1.2 Prepaid Cards,...

  19. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  20. Planning and roadmapping technological innovations cases and tools

    CERN Document Server

    Pizarro, Melinda; Talla, Rajasree

    2014-01-01

    Across industries, firms vary broadly on how they operate with respect to their Research & Development (R&D) activities.  This volume presents a holistic approach to evaluating the critical elements of R&D management, including planning, organization, portfolio management, project management, and knowledge transfer—by assessing R&D management from different sectors.  Featuring empirical research and in-depth case studies from industries as diverse as medical imaging, electric vehicles, and cyber security, the authors identify common features of successful R&D management, despite fundamental differences, such as company size, number of employees, industry sector, and the R&D budget.  In particular, they consider the implications for decision making with respect to resource allocation and investments, such as site selection, purchasing, and cross-departmental communication.

  1. SQUIDs in biomagnetism: a roadmap towards improved healthcare

    Science.gov (United States)

    Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka

    2016-11-01

    Globally, the demand for improved health care delivery while managing escalating costs is a major challenge. Measuring the biomagnetic fields that emanate from the human brain already impacts the treatment of epilepsy, brain tumours and other brain disorders. This roadmap explores how superconducting technologies are poised to impact health care. Biomagnetism is the study of magnetic fields of biological origin. Biomagnetic fields are typically very weak, often in the femtotesla range, making their measurement challenging. The earliest in vivo human measurements were made with room-temperature coils. In 1963, Baule and McFee (1963 Am. Heart J. 55 95-6) reported the magnetic field produced by electric currents in the heart (‘magnetocardiography’), and in 1968, Cohen (1968 Science 161 784-6) described the magnetic field generated by alpha-rhythm currents in the brain (‘magnetoencephalography’). Subsequently, in 1970, Cohen et al (1970 Appl. Phys. Lett. 16 278-80) reported the recording of a magnetocardiogram using a Superconducting QUantum Interference Device (SQUID). Just two years later, in 1972, Cohen (1972 Science 175 664-6) described the use of a SQUID in magnetoencephalography. These last two papers set the scene for applications of SQUIDs in biomagnetism, the subject of this roadmap. The SQUID is a combination of two fundamental properties of superconductors. The first is flux quantization—the fact that the magnetic flux Φ in a closed superconducting loop is quantized in units of the magnetic flux quantum, Φ0 ≡ h/2e, ≈ 2.07 × 10-15 Tm2 (Deaver and Fairbank 1961 Phys. Rev. Lett. 7 43-6, Doll R and Näbauer M 1961 Phys. Rev. Lett. 7 51-2). Here, h is the Planck constant and e the elementary charge. The second property is the Josephson effect, predicted in 1962 by Josephson (1962 Phys. Lett. 1 251-3) and observed by Anderson and Rowell (1963 Phys. Rev. Lett. 10 230-2) in 1963. The Josephson junction consists of two weakly coupled superconductors

  2. Information for policy makers 2. Analysis of the EU's energy roadmap 2050 scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Hannah; Healy, Sean; Loreck, Charlotte; Matthes, Felix [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Freiburg im Breisgau (Germany); Fischedick, Manfred; Lechtenboehmer, Stefan; Samadi, Sascha; Venjakob, Johannes [Wuppertal Institut (Germany)

    2012-05-15

    With growing concerns about climate change, energy import dependency and increasing fuel costs, a political consensus has formed in Europe in recent years about the need to transform the way we supply and consume energy. However, there is less political consensus on the specific steps that need to be taken in order to achieve a future sustainable energy system. Questions about which technologies should be used to what extent and how fast changes in the energy system should be instituted are being discussed on the European Union as well as on the Member State level. Energy scenarios are seen as a helpful tool to guide and inform these discussions. Several scenario studies on the European energy system have been released in recent years by stakeholders like environmental NGOs and industry associations. A number of these studies have recently been analysed by the Oeko-Institut and the Wuppertal Institute within an ongoing project commissioned by the Smart Energy for Europe Platform (SEFEF). The project aims to advance the debate on the decarbonisation of the energy system in the EU as well as its Member States during the course of 2012 and to make contributions to the scientific literature on this topic. Analysis within the project focuses on the development of the electricity system, as this system today is the main source for CO{sub 2} emissions and is widely regarded to be the key to any future decarbonisation pathway. The paper at hand summarises the analyses accomplished based on scenarios developed within the recently released Energy Roadmap 2050 of the European Union. The Roadmap explores different energy system pathways, which are compatible with the EU's long-term climate targets. It is a highly influential publication and will play a significant role in determining what will follow the EU's 2020 energy agenda. The Roadmap's analysis is currently discussed by EU and Member States policymakers as well as by stakeholders throughout Europe

  3. Roadmap biorefineries within the scope of action plans of the Federal Government for the material and energetic utilization of renewable raw materials; Roadmap Bioraffinerien im Rahmen der Aktionsplaene der Bundesregierung zur stofflichen und energetischen Nutzung nachwachsender Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    In order to determine the current status and the further energy demand of different biorefinery concepts, the Federal Government has announced the development of a 'Roadmap biorefineries' under involvement of business and science. This comprehensive overview on different technologies and on possibilities of realization now is available and includes the following aspects: (1) Biorefineries in te context of utilizing biomass; (2) Definition and systematics of biorefineries, state of the art and initial situation; (3) Technological description and analysis; (4) Economic and ecologic classification; (5) Challenges of the establishment of biorefineries - SWOT analysis; (6) need for action.

  4. A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace

    Science.gov (United States)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David

    2016-01-01

    equipment certification and operational approval of new procedures are addressed in a way that minimizes their impact on the transition by deferring a change in the assignment of separation responsibility until a large body of operational data is available to support the safety case for this change in the last roadmap step.This paper will relate the roadmap steps to ongoing activities to clarify the economics-based transition to these technologies for operational use.

  5. A Framework of Integrated Policy-Technology Roadmap (P-TRM) and Its Use:Examples of Wind Turbine and Solar PV Industries%基于政策工具的政策-技术路线图(P-TRM)框架构建与实证分析--以中国风机制造业和光伏产业为例

    Institute of Scientific and Technical Information of China (English)

    黄萃; 徐磊; 钟笑天; 苏竣

    2014-01-01

    作为新兴的技术创新管理工具,技术路线图( TRM)越来越多地被用于研究技术创新的过程,以减少创新过程中的不确定性。传统的技术路线图主要考虑市场、产品和技术3个维度的变量,政策维度变量对于产业技术创新过程的影响不是其关注焦点。在剖析传统的技术路线图研究机理的基础上,尝试把政策维度纳入技术路线图的研究范畴,分析政策维度上需求面、环境面和供给面等政策工具类型与传统技术路线图中市场、产品和技术等3个维度之间互动关系和影响路径,尝试构建包含政策分析维度的政策-技术路线图( P-TRM),同时还结合产业发展阶段的研究范畴,分析了各类政策工具在产业不同发展时期的政策与产业技术创新之间作用机制。在此结合产业发展阶段的政策-技术路线图分析框架的基础上,绘制中国风电产业和光伏产业的政策-技术路线图( P-TRM),实证分析政策-技术路线图( P-TRM)对于若干产业技术创新与演进规律的解释力。%Technology roadmap ( TRM) , an emerging instrument of technology management, is increasingly applied to the process of technological innovation to reduce uncertainty. Traditional TRM usually consists of three dimensions:mar-ket, product, and technology, and does not take the impact of policy into account. Based on the principles of traditional TRM, this paper incorporates the policy dimension and establishes an Integrated Policy-Technology Roadmap (P-TRM). The P-TRM can display the interaction relationship between three types of policy instruments, i. e. demand, supply and environment side policies, and the market-product-technology analytical dimension. Moreover, the influence mechanisms of policy instruments in different development phases are also revealed. The P-TRM framework is exempli-fied with two cases of wind turbine and solar PV industries to explain the technology

  6. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    Science.gov (United States)

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  7. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    Science.gov (United States)

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  8. European IST-programme roadmap for Optical Communications

    DEFF Research Database (Denmark)

    Ackaert, Ann; Demeester, Piet; Lagasse, Paul;

    2003-01-01

    On the basis of European IST project results in the field of photonics, the OPTIMIST thematic network has produced a roadmap for optical communications. This work is described in the present article which provides scenarios for the evolution of the optical network in the coming 10 years. Predicta...

  9. Local randomization in neighbor selection improves PRM roadmap quality

    KAUST Repository

    McMahon, Troy

    2012-10-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K\\'), that first computes the K\\' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K\\'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  10. Reachability-based Analysis for Probabilistic Roadmap Planners

    NARCIS (Netherlands)

    Geraerts, R.J.; Overmars, M.H.

    2007-01-01

    In the last fifteen years, sampling-based planners like the Probabilistic Roadmap Method (PRM) have proved to be successful in solving complex motion planning problems. While theoretically, the complexity of the motion planning problem is exponential in the number of degrees of freedom, sampling-bas

  11. Reachability-based Analysis for Probabilistic Roadmap Planners

    NARCIS (Netherlands)

    Geraerts, R.J.; Overmars, M.H.

    2007-01-01

    In the last fifteen years, sampling-based planners like the Probabilistic Roadmap Method (PRM) have proved to be successful in solving complex motion planning problems. While theoretically, the complexity of the motion planning problem is exponential in the number of degrees of freedom,

  12. Used fuel disposition research and development roadmap - FY10 status.

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in

  13. Higher Americium Oxidation State Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Goff, George S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shehee, Thomas C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-18

    -solvent-extraction separations are also under investigation. The first would separate Am(VI) by co-crystallization with uranium and the other oxidizable actinides as their nitrate salts. This novel idea has been successful in lab scale testing, and merits further investigation. Similarly, success has been achieved in separations using inorganic or hybrid ion exchange materials to sorb the lanthanides and actinides, while allowing pentavalent americium to elute. This is the only technique currently investigating Am(V), despite the advantages of this oxidation state with regard to its higher stability. The ultimate destination for this roadmap is to develop an americium separation that can be applied under process conditions, preferably affording a co-separation of the actinyl (VI) ions. Toward that end, emphasis is given here to selection of a solvent extraction flowsheet for testing in the INL centrifugal contactor hot test bed during FY16. A solvent extraction process will be tested mainly because solvent extraction separations of Am(VI) are relatively mature and the test bed currently exists in a configuration to support them. Thus, a major goal of FY16 is to select the oxidant/ligand combination to run such a test using the contactors. The only ligands under consideration are DAAP and DEHBA. This is not to say that ion exchange and co-crystallization techniques are unimportant. They merit continued investigation, but are not mature enough for hot test bed testing at this time.

  14. 5G wireless technologies

    CERN Document Server

    Alexiou, Angeliki

    2017-01-01

    Mobile data traffic is expected to exceed traffic from wired devices in the next couple of years. This book presents a roadmap of 5G, from advanced radio technologies to innovative resource management approaches and novel network architectures and system concepts.

  15. Codes and Standards Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Codes and Standards Tech Team (CSTT) mission is to enable and facilitate the appropriate research, development, & demonstration (RD&D) for the development of safe, performance-based defensible technical codes and standards that support the technology readiness and are appropriate for widespread consumer use of fuel cells and hydrogen-based technologies with commercialization by 2020. Therefore, it is important that the necessary codes and standards be in place no later than 2015.

  16. National Research Council Dialogue to Assess Progress on NASA's Systems Engineering Cost/Risk Analysis Capability Roadmap Development: General Background and Introduction

    Science.gov (United States)

    Regenie, Victoria

    2005-01-01

    Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  17. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

  18. Mission Assurance Modeling and Simulation: A Cyber Security Roadmap

    Science.gov (United States)

    Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna

    2012-01-01

    This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.

  19. HTA Implementation Roadmap in Central and Eastern European Countries

    DEFF Research Database (Denmark)

    Kaló, Zoltán; Gheorghe, Adrian; Huic, Mirjana

    2016-01-01

    to healthcare financing decisions can improve the allocative efficiency of scarce resources. However, few CEE countries have a clear roadmap for HTA implementation. Examples from high-income countries may not be directly relevant, as CEE countries cannot allocate so much financial and human resources...... for substantiating policy decisions with evidence. Our objective was to describe the main HTA implementation scenarios in CEE countries and summarize the most important questions related to capacity building, financing HTA research, process and organizational structure for HTA, standardization of HTA methodology......, use of local data, scope of mandatory HTA, decision criteria, and international collaboration in HTA. Although HTA implementation strategies from the region can be relevant examples for other CEE countries with similar cultural environment and economic status, HTA roadmaps are not still fully...

  20. Implementing the Research Data Management Policy: University of Edinburgh Roadmap

    Directory of Open Access Journals (Sweden)

    Robin Rice

    2013-11-01

    Full Text Available This paper discusses work to implement the University of Edinburgh Research Data Management (RDM policy by developing the services needed to support researchers and fulfil obligations within a changing national and international setting. This is framed by an evolving Research Data Management Roadmap and includes a governance model that ensures cooperation amongst Information Services (IS managers and oversight by an academic-led steering group. IS has taken requirements from research groups and IT professionals, and at the request of the steering group has conducted pilot work involving volunteer research units within the three colleges to develop functionality and presentation for the key services. The first pilots cover three key services: the data store, a customisation of the Digital Curation Centre’s DMPonline tool, and the data repository. The paper will report on the plans, achievements and challenges encountered while we attempt to bring the University of Edinburgh RDM Roadmap to fruition.

  1. Astroparticle physics in Europe gets a new roadmap

    CERN Multimedia

    Fabio Capello

    2011-01-01

    After publishing its first strategy plan in 2008, the AStroParticle European Research Area (ASPERA) – a network of European national funding agencies responsible for astroparticle physics – has just published an update. The new document provides an overview of the activities of the astroparticle physics community, makes recommendations for future projects and emphasizes the role of networking and sharing among the funding agencies.   The new strategies for Astroparticle Physics (ApP) – the research field at the intersection of astrophysics, particle physics and cosmology – were discussed at a meeting held in Paris on 21 and 22 November, when a new roadmap was presented to the community. “An update of the strategic plan published in 2008 was needed because of the significant progress made in recent years,” explains Arnaud Marsollier, ASPERA press officer. “In this new roadmap, ASPERA gives an updated overview of ApP Projects ...

  2. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  3. Access to the Sea: A Roadmap for Expedition Planning

    Science.gov (United States)

    DeSilva, A. M.; Girguis, P. R.

    2014-12-01

    The planning process for expeditionary oceanography often spans many years and involves multiple steps, starting from the initial proposal, to logistics planning, cruise execution, post-cruise and scientific reporting. Each year the University-National Oceanographic Laboratory System (UNOLS) Fleet supports a broad spectrum of research operations and their associated logistics support requirements. Operations can vary from single Principle Investigator (PI) cruises to multi-investigators field programs with multi-disciplinary research objectives in locations all over the world. Over the past decade, the process for access to the sea has evolved and continues to be refined through the critical feedback of scientists, marine technicians, and ship operators. Under UNOLS guidance, key guidelines have been identified for all phases of cruise planning; from pre-award to post-expedition to help ensure that the research objectives of programs can be met and that optimal use of our Nation's oceanographic facilities is maintained. An expeditionary roadmap has been created that captures the major milestones essential to executing a research cruise. The roadmap has been introduced during early career scientist workshops and also during the Chief Scientist Training Cruise programs of recent years. It is a useful planning tool not only for early career scientists and new ship users, but also for experienced sea-going scientists. The roadmap will soon be available as a resource tool on the new UNOLS website. This poster will feature the roadmap for expeditionary planning and offer key information about requirements and tips for a successful, safe, research cruise experience. In addition, existing and new requirements associated with custom clearances, export licensing requirements and additional planning considerations also needed when the research requires special facilities such as aircraft or deep submergence vehicles will be discussed.

  4. Codecharts roadmaps and blueprints for object-oriented programs

    CERN Document Server

    Eden, Amnon H

    2011-01-01

    NEW LANGUAGE VISUALIZES PROGRAM ABSTRACTIONS CLEARLY AND PRECISELY Popular software modelling notations visualize implementation minutiae but fail to scale, to capture design abstractions, and to deliver effective tool support. Tailored to overcome these limitations, Codecharts can elegantly model roadmaps and blueprints for Java, C++, and C# programs of any size clearly, precisely, and at any level of abstraction. More practically, significant productivity gains for programmers using tools supporting Codecharts have been demonstrated in controlled experiments. Hundreds of figures a

  5. A 21st century roadmap for human health risk assessment.

    Science.gov (United States)

    Pastoor, Timothy P; Bachman, Ammie N; Bell, David R; Cohen, Samuel M; Dellarco, Michael; Dewhurst, Ian C; Doe, John E; Doerrer, Nancy G; Embry, Michelle R; Hines, Ronald N; Moretto, Angelo; Phillips, Richard D; Rowlands, J Craig; Tanir, Jennifer Y; Wolf, Douglas C; Boobis, Alan R

    2014-08-01

    The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources.

  6. planSOEC. R and D and commercialization roadmap for SOEC electrolysis. R and D of SOEC stacks with improved durability. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.; Friis Pedersen, C.; Nielsen, Jens Ulrik [Topsoe Fuel Cells A/S, Kgs. Lyngby (Denmark); Mogensen, M.; Hoejgaard Jensen, S.; Ming Chen [Technical Univ. of Denmark. Fuel Cells and Solid State Chemistry Div., DTU Risoe Campus, Roskilde (Denmark); Sloth, M. [H2 Logic A/S, Herning (Denmark)

    2011-05-15

    The project has been divided into two parts: PART 1: Formulation of a R and D and commercialization roadmap for SOEC electrolysis. PART 2: Conducting R and D of SOEC stacks with improved durability. The purpose of Part 1 has been to develop a R and D and commercialisation roadmap for hydrogen and CO production plants based on the solid oxide electrolysis cell (SOEC) technology. SOEC technology is still on an early R and D stage but years of extensive R and D within SOFC technology provides a strong platform for an accelerated commercialisation. However, in order to guide the future SOEC R and D activities towards reaching commercial market requirements a detailed roadmap is necessary. An overall strategy for R and D of various electrolysis technologies in Denmark already exists{sup 2}, formulated in the Hydrogen Production working group in the Danish Hydrogen and Fuel Cell Partnership. The SOEC roadmap developed as part of the planSOEC project supplements the overall strategy, by conducting an updated analysis of state-of-the-art. Also planSOEC provides a detailed analysis of requirements for different market applications for SOEC, which enables formulation of precise and detailed R and D targets. The objectives of Part 2 in this project were multiple: 1) To investigate durability of solid oxide cells (SOCs) and stack components under industrially relevant (''harsh'') electrolysis operating conditions; 2) to investigate performance of standard TOFC (Topsoe Fuel Cell A/S) SOC stacks (based on state-of-the-art solid oxide cells) under mild electrolysis operating conditions ({<=}0.75 A/cm{sup 2}); 3) to further develop SOEC stack computer models available at Riso DTU and TOFC. Accordingly four lines of work were carried out in the here reported project: 1) Investigation of corrosion resistance of interconnect alloys. 2) Cell and stack element testing. 3) SOEC stack testing. 4) SOEC stack modeling. (LN)

  7. Fuel Pathway Integration Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  8. EU Energy Roadmap 2050. Surrogate for an ambitious decarbonisation policy?; EU-Energy Roadmap 2050. Surrogat fuer eine ehrgeizige Dekarbonisierungspolitik?

    Energy Technology Data Exchange (ETDEWEB)

    Geden, Oliver; Fischer, Severin [Stiftung Wissenschaft und Politik (SWP), Berlin (Germany)

    2012-10-15

    When the 'Energy Roadmap 2050' of the European Commission was first published, it was presented as a blueprint of the future development of the European power supply system. Now, just a few months later, it becomes clear that the impending decisions on the energy and climate policy goals of the EU beyond 2020 will be influenced only marginally by the roadmap of the EU Commission: There is too much opposition in the 27 EU member states. On the one hand, the consensus reached in 2007, i.e. that energy policy should be oriented along climate policy goals, has been broken. On the other hand, the EU member states are not prepared to accept restrictions of national sovereignty in the energy policy sector.

  9. Web-based Academic Roadmaps for Careers in the Geosciences

    Science.gov (United States)

    Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.

    2007-12-01

    To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly

  10. Used fuel disposition research and development roadmap - FY10 status.

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in

  11. Integrating the Integrators - A Roadmap to Success

    Energy Technology Data Exchange (ETDEWEB)

    C. Conner; C. Olson

    1999-02-01

    The U.S. Department of Energy Environmental Management's (DOE-EM) investments in science and technology, as well as science and technology investments associated with other parts of the DOE are aimed at meeting the Departments cleanup goals. These investments, primarily focused on EM's cleanup mission, comprise the Environmental Quality Research and Development (R&D) portfolios. Synchronizing EM's Cleanup Project Managers (operations facility and process owners throughout the DOE complex) operational needs with EM R&D including the extensive work of the six Focus Areas (major thrust areas within DOE-EM) has been a continuing challenge. This recent initiative to better integrate the R&D program is in response to evolving needs within the Department to apply proven systems engineering methods to clarify requirements and define EM's process to effectively orchestrate their R&D Program. To optimize this partnership, DOE-EM's Integration Program is successfully unifying the operational needs with the R&D as described in this paper.

  12. Integrating the Integrators - A Roadmap to Success

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Craig Stott; Conner, Craig C

    1999-03-01

    The U.S. Department of Energy Environmental Management's (DOE-EM) investments in science and technology, as well as science and technology investments associated with other parts of the DOE are aimed at meeting the Departments cleanup goals. These investments, primarily focused on EM's cleanup mission, comprise the Environmental Quality Research and Development (R&D) portfolios. Synchronizing EM's Cleanup Project Managers (operations facility and process owners throughout the DOE complex) operational needs with EM R&D including the extensive work of the six Focus Areas (major thrust areas within DOE-EM) has been a continuing challenge. This recent initiative to better integrate the R&D program is in response to evolving needs within the Department to apply proven system engineering methods to clarify requirements and define EM's process to effectively orchestrate their R&D Program. To optimize this partnership, DOE-EM's Integration Program is successfully unifying the operational needs with the R&D as described in this paper.

  13. Practical roadmap and limits to nanostructured photovoltaics.

    Science.gov (United States)

    Lunt, Richard R; Osedach, Timothy P; Brown, Patrick R; Rowehl, Jill A; Bulović, Vladimir

    2011-12-22

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power conversion efficiency (PCE). With the emergence of a multitude of nanostructured photovoltaic (nano-PV) device architectures, the question has arisen of where both the practical and the fundamental limits of performance reside in these new systems. Here, the former is addressed a posteriori. The specific challenges associated with improving the electrical power conversion efficiency of various nano-PV technologies are discussed and several approaches to reduce their thermal losses beyond the single bandgap limit are reviewed. Critical considerations related to the module lifetime and cost that are unique to nano-PV architectures are also addressed. The analysis suggests that a practical single-junction laboratory power conversion efficiency limit of 17% and a two-cell tandem power conversion efficiency limit of 24% are possible for nano-PVs, which, when combined with operating lifetimes of 10 to 15 years, could position them as a transformational technology for solar energy markets.

  14. A covenant of halflings? developing a roadmap for the european urban transport goal

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Schippl, Jens; Anderton, Karen

    2015-01-01

    of a roadmap for urban transport needs to adopt a broad and open approach, given the diversity among member states and cities across Europe. Also it was found that replacing conventional vehicles and fuels is an important but not sufficient strategy to reach the goal. A roadmap to reach towards the ‘halving...

  15. Scenario-Driven Roadmapping to cope with uncertainty: Its application in the construction industry

    NARCIS (Netherlands)

    Siebelink, Remco; Halman, Johannes I.M.; Hofman, Erwin

    2016-01-01

    Roadmapping is widely considered as an appropriate approach for matching short-term actions to long-term goals. However, current roadmapping approaches fall short in effectively considering the uncertainty associated with future developments. In particular, existing methods cannot cope with

  16. Competencies - a roadmap for CERN Staff

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Back in November, the new CERN Competency Model (CCM), a framework defining the competencies that “ drive performance and lead to excellence”, was introduced by Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, in a special edition of the "Spotlight on CERN" interviews.   What are competencies? Competencies are the characteristics that allow you to do the job you have been assigned. In more precise terms, competencies may be described as the knowledge, skills and types of behaviour that individuals demonstrate in carrying out a given task. Listing all the competencies that make CERN work is an impossible task but one can identify the two main types: technical and behavioural. Both are needed to work effectively in this Organization. While technical competencies are simply the domains of expertise that CERN needs – examples include physics, mechanical engineering and information technology – behavioural competencies are th...

  17. All-Embracing Manufacturing Roadmap System

    CERN Document Server

    Halevi, Gideon

    2012-01-01

    All-embracing manufacturing is a system that aims to dissolve the complexity of the manufacturing process and restore the inherent simplicity. It claims that production is very simple and flexible by nature. However, the complexity is a result of the production system approach which makes it rigid and therefore complex. All-embracing manufacturing introduces flexibility to production planning, it eliminates constraints, bottlenecks, and disruptions automatically while it restores the simplicity. No decision is made ahead of time, but only at the time of execution. It introduces technology as dominant part of manufacturing. It is a computer oriented system that imitates human behavior i.e. practically as any of us behave in daily personal life.

  18. Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography

    Science.gov (United States)

    Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter

    2013-04-01

    The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress

  19. Roadmap to a tobacco epidemic: transnational tobacco companies invade Indonesia.

    Science.gov (United States)

    Hurt, Richard D; Ebbert, Jon O; Achadi, Anhari; Croghan, Ivana T

    2012-05-01

    Indonesia is the world's fifth largest cigarette market in the world but for decades, transnational tobacco companies (TTCs) have had limited success infiltrating this market, due to their inability to compete in the kretek market. Kreteks are clove/tobacco cigarettes that most Indonesians smoke. To determine how Phillip Morris International (PMI) and British American Tobacco (BAT) have now successfully achieved a substantial market presence in Indonesia. We analyzed previously secret, tobacco industry documents, corporate reports on Indonesia operations, the Tobacco Trade press, Indonesia media, and "The Roadmap". Internal, corporate documents from BAT and PMI demonstrate that they had known for decades that kreteks are highly carcinogenic. Despite that knowledge, BAT and PMI now own and heavily market these products, as well as new more westernised versions of kreteks. BAT and PMI used their successful basic strategy of keeping cigarettes affordable by maintaining the social responsibility of smoking and opposing smoke-free workplace laws but in the 21st century, they added the acquisition of and westernisation of domestic kretek manufacturers as an additional strategy. These acquisitions allowed them to assert influences on health policy in Indonesia and to grow their business under current government policy embodied in the 2007-2020 Roadmap of Tobacco Products Industry and Excise Policy which calls for increased cigarette production by 12% over the next 15 years. PMI and Bat have successfully entered and are expanding their share in the Indonesia cigarette market. Despite the obvious and pervasive influence of the tobacco industry on policy decisions, the Indonesian government should ratify the FCTC and implement effective legislation to reduce tobacco consumption and exposure to tobacco smoke and revise the Roadmap to protect future generations of Indonesians.

  20. Roadmap to a Sustainable Structured Trusted Employee Program

    Energy Technology Data Exchange (ETDEWEB)

    Coates, Cameron W [ORNL; Eisele, Gerhard R [ORNL

    2013-08-01

    Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trusted Employee Program (STEP).

  1. A maritime roadmap in the cloud

    Science.gov (United States)

    Spoelstra, George

    2013-04-01

    Web mapping has morphed from sharing maps and geospatial information to a geospatial content management system that supports collaboration. The new iteration allows for the publication and sharing with others, as well as the access to rich global base data through cloud services. The European EMODnet initiative provides an excellent showcase to the world what can be achieved today. This presentation will highlight the latest developments on portal and geospatial cloud services as the basis for sharing in a Marine SDI, and how the maritime community can benefit from this right away. Various examples of maritime cloud services (Emodnet, Eye on Earth) will be discussed to illustrate the capabilities provided by these developments. New technologies and especially those dealing with the latest web-trends are easily consumed and applied. This introduces a risk of a series of new services and start-ups all competing for our attention causing the reverse effect of what we try achieve: easier access to collaborative information and better tools to analyze and understand it. Instead we end up looking for a road map. Esri long supports data interoperability and sharing, and understands these challenges. In this presentation we will give an insider's view on Esri's vision for a road map that allows data managers and data users to collaborate effectively using a platform approach, optimizing cloud computing and GIS to allow access from many devices and for many applications. The presentation will conclude by highlighting how this platform can be implemented and utilized, supported by the ocean content initiative, to facilitate collaborative knowledge building, decision making and knowledge management in general in oceanography and ocean sciences.

  2. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  3. A Region-Based Strategy for Collaborative Roadmap Construction

    KAUST Repository

    Denny, Jory

    2015-01-01

    © Springer International Publishing Switzerland 2015. Motion planning has seen much attention over the past two decades. A great deal of progress has been made in sampling-based planning, whereby a planner builds an approximate representation of the planning space. While these planners have demonstrated success inmany scenarios, there are still difficult problems where they lack robustness or efficiency, e.g., certain types of narrow spaces. Conversely, human intuition can often determine an approximate solution to these problems quite effectively, but humans lack the speed and precision necessary to perform the corresponding low-level tasks (such as collision checking) in a timely manner. In this work, we introduce a novel strategy called Region Steering in which the user and a PRM planner work cooperatively to map the space while maintaining the probabilistic completeness property of the PRMplanner. Region Steering utilizes two-way communication to integrate the strengths of both the user and the planner, thereby overcoming the weaknesses inherent to relying on either one alone. In one communication direction, a user can input regions, or bounding volumes in the workspace, to bias sampling towards or away from these areas. In the other direction, the planner displays its progress to the user and colors the regions based on their perceived usefulness.We demonstrate that Region Steering provides roadmap customizability, reduced mapping time, and smaller roadmap sizes compared with fully automated PRMs, e.g., Gaussian PRM.

  4. Adoption of Electronic Health Records: A Roadmap for India

    Science.gov (United States)

    2016-01-01

    Objectives The objective of the study was to create a roadmap for the adoption of Electronic Health Record (EHR) in India based an analysis of the strategies of other countries and national scenarios of ICT use in India. Methods The strategies for adoption of EHR in other countries were analyzed to find the crucial steps taken. Apart from reports collected from stakeholders in the country, the study relied on the experience of the author in handling several e-health projects. Results It was found that there are four major areas where the countries considered have made substantial efforts: ICT infrastructure, Policy & regulations, Standards & interoperability, and Research, development & education. A set of crucial activities were identified in each area. Based on the analysis, a roadmap is suggested. It includes the creation of a secure health network; health information exchange; and the use of open-source software, a national health policy, privacy laws, an agency for health IT standards, R&D, human resource development, etc. Conclusions Although some steps have been initiated, several new steps need to be taken up for the successful adoption of EHR. It requires a coordinated effort from all the stakeholders. PMID:27895957

  5. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-03

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponents of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)

  6. The offer network protocol: Mathematical foundations and a roadmap for the development of a global brain

    Science.gov (United States)

    Heylighen, Francis

    2017-01-01

    The world is confronted with a variety of interdependent problems, including scarcity, unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires coordinated action. The present paper proposes the development of a self-organizing system for coordination, called an "offer network", that would use the distributed intelligence of the Internet to match the offers and needs of all human, technological and natural agents on the planet. This would maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks in which each consumed resource (need) is also produced (offer). After sketching the elements of a mathematical foundation for offer networks, the paper proposes a roadmap for their practical implementation. This includes step-by-step integration with technologies such as the Semantic Web, ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed manner, thus functioning like a Global Brain for humanity.

  7. The offer network protocol: Mathematical foundations and a roadmap for the development of a global brain

    Science.gov (United States)

    Heylighen, Francis

    2016-12-01

    The world is confronted with a variety of interdependent problems, including scarcity, unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires coordinated action. The present paper proposes the development of a self-organizing system for coordination, called an "offer network", that would use the distributed intelligence of the Internet to match the offers and needs of all human, technological and natural agents on the planet. This would maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks in which each consumed resource (need) is also produced (offer). After sketching the elements of a mathematical foundation for offer networks, the paper proposes a roadmap for their practical implementation. This includes step-by-step integration with technologies such as the Semantic Web, ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed manner, thus functioning like a Global Brain for humanity.

  8. A Governance Roadmap and Framework for EarthCube

    Science.gov (United States)

    Governance Steering Committee, EarthCube

    2013-04-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  9. From vision to action: roadmapping as a strategic method and tool to implement climate change adaptation - the example of the roadmap 'water sensitive urban design 2020'.

    Science.gov (United States)

    Hasse, J U; Weingaertner, D E

    2016-01-01

    As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.

  10. Roadmap towards justice in urban climate adaptation research

    Science.gov (United States)

    Shi, Linda; Chu, Eric; Anguelovski, Isabelle; Aylett, Alexander; Debats, Jessica; Goh, Kian; Schenk, Todd; Seto, Karen C.; Dodman, David; Roberts, Debra; Roberts, J. Timmons; Vandeveer, Stacy D.

    2016-02-01

    The 2015 United Nations Climate Change Conference in Paris (COP21) highlighted the importance of cities to climate action, as well as the unjust burdens borne by the world's most disadvantaged peoples in addressing climate impacts. Few studies have documented the barriers to redressing the drivers of social vulnerability as part of urban local climate change adaptation efforts, or evaluated how emerging adaptation plans impact marginalized groups. Here, we present a roadmap to reorient research on the social dimensions of urban climate adaptation around four issues of equity and justice: (1) broadening participation in adaptation planning; (2) expanding adaptation to rapidly growing cities and those with low financial or institutional capacity; (3) adopting a multilevel and multi-scalar approach to adaptation planning; and (4) integrating justice into infrastructure and urban design processes. Responding to these empirical and theoretical research needs is the first step towards identifying pathways to more transformative adaptation policies.

  11. Structured Crowdsourcing: A B2B Innovation Roadmap

    DEFF Research Database (Denmark)

    Edgeman, Rick; Engell, Toke; Jensen, Nik Grewy

    Crowdsourcing is an increasingly popular source of both ideas and funding. Crowdsourcing in a B2B context is less well understood and, as such, much of our discussion will highlight business-to-business crowdsourcing. More generally discussion will address crowdsourcing relative to innovation...... from crowd-sourcing efforts. The roadmap emphasizes on early stages in the overall innovation management activity that is related to development and specification of the task to be crowdsourced, the identification of the crowd, the creation of the environment to connect the crowdsourcer, the task...... and the crowd, motivation of the crowd, and actual activities in reaching the crowd. Managing the input from the crowd is regarded as a later stage in the overall innovation management but also as a focal point in the arguments for improving B2B crowdsourcing. In crowd selection processes this paper aims...

  12. The European Hematology Association Roadmap for European Hematology Research

    DEFF Research Database (Denmark)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke

    2016-01-01

    research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness...... diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs...... across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments...

  13. A roadmap for the integration of culture into developmental psychopathology.

    Science.gov (United States)

    Causadias, José M

    2013-11-01

    In this paper, I propose a roadmap for the integration of culture in developmental psychopathology. This integration is pressing because culture continues to be somewhat disconnected from theory, research, training, and interventions in developmental psychopathology, thus limiting our understanding of the epigenesis of mental health. I argue that in order to successfully integrate culture into developmental psychopathology, it is crucial to (a) study cultural development, (b) consider both individual-level and social-level cultural processes, (c) examine the interplay between culture and biology, and (d) promote improved and direct cultural assessment. I provide evidence in support of each of these guidelines, present alternative conceptual frameworks, and suggest new lines of research. Hopefully, that these directions will contribute to the emerging field of cultural development and psychopathology, which focuses on the elucidation of the cultural processes that initiate, maintain, or derail trajectories of normal and abnormal behavior.

  14. Open innovation in early drug discovery: roadmaps and roadblocks.

    Science.gov (United States)

    Reichman, Melvin; Simpson, Peter B

    2016-05-01

    Open innovation in pharmaceutical R&D evolved from a triple helix of convergent paradigm shifts in academic, industrial and government research sectors. The birth of the biotechnology sector catalyzed shifts in location dynamics that led to the first wave of open innovation in pharmaceutical R&D between big pharma and startup companies. The National Institutes of Health (NIH) Roadmap was a crucial inflection point that set the stage for a new wave of open innovation models between pharmaceutical companies and universities that have the potential to transform the pharmaceutical R&D landscape. We highlight the attributes of leading protected open innovation models that foster the sharing of proprietary small molecule collections by lowering the risk of premature escape of intellectual property, particularly structure-activity data.

  15. European IST-programme roadmap for Optical Communications

    DEFF Research Database (Denmark)

    Ackaert, Ann; Demeester, Piet; Lagasse, Paul

    2003-01-01

    On the basis of European IST project results in the field of photonics, the OPTIMIST thematic network has produced a roadmap for optical communications. This work is described in the present article which provides scenarios for the evolution of the optical network in the coming 10 years....... Predictable developments in optical components, sub-systems and systems and their consequenses on the architecture and performances of the networks are analysed. Specific interest is focused on the various parts of the network structure namely the access, the metropolitan area, the wide ares and the global...... networks. Technical documents elaborated by the OPTIMIST consortium and minutes from IST workshops can be found on the website http://ww.ist-optimist.org/. They constitute a main source for further information....

  16. Roadmap NRK 2012-2030; Routekaart NRK 2012-2030

    Energy Technology Data Exchange (ETDEWEB)

    Krebbekx, J.; Duivenvoorde, G.; De Wolf, W. [Berenschot Groep, Utrecht (Netherlands); Lenselink, J. [Energy Experts International, Huissen (Netherlands)

    2012-01-15

    This roadmap identifies how RKI companies (rubber and synthetic materials) can create new revenue opportunities: development of sustainable products, switching from petroleum to carbon chains from biobased materials, closing the material chain (reuse/recycling). Also within their own organizations more efficiency can be achieved by continuing to invest in innovation in processes and innovation in the organization itself. A selective overview is given of innovation projects [Dutch] In deze routekaart wordt aangegeven op welke wijze RKI-bedrijven (rubber en kunststoffen) nieuwe omzetkansen kunnen creeren: ontwikkelen van duurzame producten; overschakelen van aardolie naar koolstofketens uit biobased materialen; sluiten van de materiaalketen (hergebruik/recycling). Ook binnen de eigen organisatie kan er meer rendement worden behaald door te blijven investeren in innovatie in de eigen processen en innovatie in de eigen organisatie. Er is een overzicht gegeven van alle mogelijke verzamelde en geselecteerde innovatieprojecten.

  17. Used fuel extended storage security and safeguards by design roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); England, Jeffrey [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Scherer, Carolynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Michael. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rauch, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  18. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  19. Lean Manufacturing Implementation for Multinational Companies with Production Subsidiary in Brazil: Development of A Roadmap

    Directory of Open Access Journals (Sweden)

    L. Goehnera,

    2016-06-01

    Full Text Available Foreign multinational companies with a production subsidiary in Brazil are in general recognized as high-level productive companies; however, their productivity potential is mostly not fully achieved. Lean Manufacturing (LM has been proved as a valuable aid to achieve competitiveness in the long run. Regarding the rising importance of successfully implementing LM at multinationals in Brazil and an apparent lack of discussion regarding LM in Brazil this paper aims to propose a comprehensive implementation roadmap, which enables a multinational on a basis of a systematic approach, to achieve an advanced sustainable LM system in a practical manner. The insights of literature and case studies are combined to develop the roadmap. The roadmap was developed so that both companies, those, which have not started yet their journey towards LM, as well as those that have taken already the first steps can use the roadmap. However, the roadmap was built on a broad empirical basis. It should be noticed that it is impossible to consider all factors influencing the LMI at multinationals operating in Brazil in a real world setting. As a result, the roadmap should not be regarded as a ready implementation plan, which has to be strictly followed. Instead, it should be seen as a guideline, which helps a multinational to develop its own, detailed and fitted plan for successfully implementing LM and establishing a learning organization.

  20. Roadmap for Developing of Brokering as a Component of EarthCube

    Science.gov (United States)

    Pearlman, J.; Khalsa, S. S.; Browdy, S.; Duerr, R. E.; Nativi, S.; Parsons, M. A.; Pearlman, F.; Robinson, E. M.

    2012-12-01

    The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Key to achieving the EarthCube vision is establishing a process that will guide the evolution of the infrastructure through community engagement and appropriate investment so that the infrastructure is embraced and utilized by the entire geosciences community. In this presentation we describe a roadmap, developed through the EarthCube Brokering Concept Award, for an evolutionary process of infrastructure and interoperability development. All geoscience communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for consolidating these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. This process of consolidation will be achieved by creating "interfaces," what we call "brokers," between systems. Brokers connect disparate systems without imposing new burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities targeted to specific communities. These pilots can then grow into larger prototypes addressing intercommunity problems working

  1. National cyber defense high performance computing and analysis : concepts, planning and roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Keliiaa, Curtis M.

    2010-09-01

    There is a national cyber dilemma that threatens the very fabric of government, commercial and private use operations worldwide. Much is written about 'what' the problem is, and though the basis for this paper is an assessment of the problem space, we target the 'how' solution space of the wide-area national information infrastructure through the advancement of science, technology, evaluation and analysis with actionable results intended to produce a more secure national information infrastructure and a comprehensive national cyber defense capability. This cybersecurity High Performance Computing (HPC) analysis concepts, planning and roadmap activity was conducted as an assessment of cybersecurity analysis as a fertile area of research and investment for high value cybersecurity wide-area solutions. This report and a related SAND2010-4765 Assessment of Current Cybersecurity Practices in the Public Domain: Cyber Indications and Warnings Domain report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.

  2. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  3. Roadmap 2050: McKinsey and company lay down the low-carbon gauntlet to the EU

    Energy Technology Data Exchange (ETDEWEB)

    Probert, T.

    2010-05-15

    A report issued by the European Climate Foundation, 'Roadmap 2050: A practical guide to a prosperous low-carbon Europe' appears to have dispelled concerns that the decarbonization of the European Union's power sector is profligate fantasy. The overall conclusion of the report is that by 2050, Europe could achieve an economy-wide, affordable reduction of GHG emission of at least 80% compared to 1990 levels. Realizing this radical transformation, however, requires fundamental changes to the European energy system. This would only be possible with a nearly zero-carbon power supply that emits 5% or less of baseline GHG emissions. Such a supply could be realised by further developing and deploying low carbon technologies that are already commercially available or in later-stage development like CCS, and by expanding the trans-European transmission grid. 1 ref., 3 figs.

  4. Big Data Analytics and Machine Intelligence Capability Development at NASA Langley Research Center: Strategy, Roadmap, and Progress

    Science.gov (United States)

    Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward

    2016-01-01

    In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.

  5. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  6. A Roadmap for the Detection and Characterization of Other Earths

    Science.gov (United States)

    Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J.

    2010-01-01

    The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21st century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: What are the conditions for planet formation and the emergence of life? This main theme is addressed through further questions: - How do gas and dust give rise to stars and planets? - How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers*)? - How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earth-like planets.

  7. New Roadmap for the Journey From Internist to Rheumatologist.

    Science.gov (United States)

    Criscione-Schreiber, Lisa G; Brown, Calvin R; O'Rourke, Kenneth S; Fuchs, Howard A; Putterman, Chaim; Tan, Irene J; Valeriano-Marcet, Joanne; Hsieh, Evelyn; Zirkle, Sarah; Bolster, Marcy B

    2017-06-01

    Measurement is necessary to gauge improvement. US training programs have not previously used shared standards to assess trainees' mastery of the knowledge, skills, and attitudes necessary to practice rheumatology competently. In 2014, the Accreditation Council for Graduate Medical Education (ACGME) Next Accreditation System began requiring semiannual evaluation of all medicine subspecialty fellows on 23 internal medicine subspecialty reporting milestones. Since these reporting milestones are not subspecialty specific, rheumatology curricular milestones were needed to guide rheumatology fellowship training programs and fellows on the training journey from internist to rheumatologist. Rheumatology curricular milestones were collaboratively composed by expanding the internal medicine reporting milestones to delineate the specific targets of rheumatology fellowship training within 6 ACGME core competencies. The 2006 American College of Rheumatology core curriculum for rheumatology training programs was updated. A total of 80 rheumatology curricular milestones were created, defining progressive learning through training; most focus on patient care and medical knowledge. The core curriculum update incorporates the new curricular milestones and rheumatology entrustable professional activities. Rheumatology curricular milestones are now available for implementation by rheumatology fellowship training programs, providing a clear roadmap for specific training goals and a guide to track each fellow's achievement over a 2-year training period. The comprehensive core curriculum delineates the essential breadth of knowledge, skills, and attitudes that define rheumatology, and provides a guide for educational activities during fellowship training. These guiding documents are now used to train and assess fellows as they prepare for independent rheumatology practice as the next generation of rheumatologists. © 2016, American College of Rheumatology.

  8. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Directory of Open Access Journals (Sweden)

    Bjoern Marcus von Reumont

    2014-12-01

    Full Text Available Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  9. RF MEMS: status of the industry and roadmaps

    Science.gov (United States)

    Bouchaud, Jeremie; Wicht, Henning

    2005-01-01

    Microsystems for Radio Frequency applications, known as RF MEMS, have entered the commercialization phase in 2003. Bulk Acoustic Wave filters are already produced in series and first commercial samples of switches are available. On the other hand, reliability and packaging problems are still a major hurdle especially for switches and tunable capacitors. Will RF MEMS hold their promise to be one of the future major businesses for MEMS? The presentation will give an overview on RF MEMS applications and market players. WTC will highlight technical challenges that still have to be solved to open mass markets such as mobile telephony and WLAN. WTC will also present applications of RF MEMS and opportunities in niche markets with high added value like military and space applications. WTC will provide a regional analysis and compare R&D focus and public funding situation in North America, Europe and Asia. Finally, WTC will present an updated product roadmap market forecast for RF MEMS devices for the 2004-2008 time period.

  10. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Science.gov (United States)

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  11. Modeling Influenza Virus Infection: A Roadmap for Influenza Research

    Directory of Open Access Journals (Sweden)

    Alessandro Boianelli

    2015-10-01

    Full Text Available Influenza A virus (IAV infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization.

  12. ROAMER: roadmap for mental health research in Europe.

    Science.gov (United States)

    Haro, Josep Maria; Ayuso-Mateos, José Luis; Bitter, Istvan; Demotes-Mainard, Jacques; Leboyer, Marion; Lewis, Shôn W; Linszen, Donald; Maj, Mario; McDaid, David; Meyer-Lindenberg, Andreas; Robbins, Trevor W; Schumann, Gunter; Thornicroft, Graham; Van Der Feltz-Cornelis, Christina; Van Os, Jim; Wahlbeck, Kristian; Wittchen, Hans-Ulrich; Wykes, Til; Arango, Celso; Bickenbach, Jerome; Brunn, Matthias; Cammarata, Pamela; Chevreul, Karine; Evans-Lacko, Sara; Finocchiaro, Carla; Fiorillo, Andrea; Forsman, Anna K; Hazo, Jean-Baptiste; Knappe, Susanne; Kuepper, Rebecca; Luciano, Mario; Miret, Marta; Obradors-Tarragó, Carla; Pagano, Grazia; Papp, Szilvia; Walker-Tilley, Tom

    2014-01-01

    Despite the high impact of mental disorders in society, European mental health research is at a critical situation with a relatively low level of funding, and few advances been achieved during the last decade. The development of coordinated research policies and integrated research networks in mental health is lagging behind other disciplines in Europe, resulting in lower degree of cooperation and scientific impact. To reduce more efficiently the burden of mental disorders in Europe, a concerted new research agenda is necessary. The ROAMER (Roadmap for Mental Health Research in Europe) project, funded under the European Commission's Seventh Framework Programme, aims to develop a comprehensive and integrated mental health research agenda within the perspective of the European Union (EU) Horizon 2020 programme, with a translational goal, covering basic, clinical and public health research. ROAMER covers six major domains: infrastructures and capacity building, biomedicine, psychological research and treatments, social and economic issues, public health and well-being. Within each of them, state-of-the-art and strength, weakness and gap analyses were conducted before building consensus on future research priorities. The process is inclusive and participatory, incorporating a wide diversity of European expert researchers as well as the views of service users, carers, professionals and policy and funding institutions.

  13. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  14. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  15. Materials R and D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Derek, E-mail: derek.stork@ccfe.ac.uk [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching, 85748 Germany (Germany); Agostini, Pietro [ENEA, Brasimone Research Centre, 40032, Camugnano, Bologna (Italy); Boutard, Jean-Louis [CEA, cab HC, Saclay, F-91191, Gif-sur-Yvette (France); Buckthorpe, Derek [AMEC, Booths Park, Chelford Road, Knutsford, Cheshire, WA16 8QZ (United Kingdom); Diegele, Eberhard [Karlsruhe Institute for Technology, IMF-I, D-7602, Karlsruhe (Germany); Dudarev, Sergei L. [Euratom-CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); English, Colin [National Nuclear Laboratory, 5th Floor, Chadwick House, Warrington Road, Birchwood Park, WA3 6AE (United Kingdom); Federici, Gianfranco [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching, 85748 Germany (Germany); Gilbert, Mark R. [Euratom-CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Gonzalez, Sehila [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching, 85748 Germany (Germany); Ibarra, Angel [CIEMAT, Avda. Complutense 40, Madrid (Spain); Linsmeier, Christian [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung–Plasmaphysik, EURATOM Association, 52425 Jülich (Germany); Puma, Antonella Li [CEA, DEN, Saclay, DM2S, SERMA, F-91191, Gif-sur-Yvette (France); Marbach, Gabriel [CEA, cab HC, Saclay, F-91191, Gif-sur-Yvette (France); Packer, Lee W. [Euratom-CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Raj, Baldev [Indian National Academy of Engineering, Shaheed Jeet Singh Marg, New Delhi 110016 (India); Rieth, Michael [Karlsruhe Institute for Technology, IMF-I, D-7602, Karlsruhe (Germany); Tran, Min Quang [Ecole Polytechnique Federale de Lausanne—CRPP, Association Euratom-Switzerland, 1015 Lausanne (Switzerland); and others

    2014-10-15

    The findings of the EU Fusion Programme's ‘Materials Assessment Group’ (MAG), assessing readiness of Structural, Plasma Facing (PF) and High Heat Flux (HHF) materials for DEMO, are discussed. These are incorporated into the EU Fusion Power Roadmap [1], with a decision to construct DEMO in the early 2030s. The methodology uses project-based and systems-engineering approaches, the concept of Technology Readiness Levels, and considers lessons learned from Fission reactor material development. ‘Baseline’ materials are identified for each DEMO role, and the DEMO mission risks analysed from the known limitations, or unknown properties, associated with each baseline material. R and D programmes to address these risks are developed. The DEMO assessed has a phase I with a ‘starter blanket’: the blanket must withstand ≥2 MW yr m{sup −2} fusion neutron flux (equivalent to ∼20 dpa front-wall steel damage). The baseline materials all have significant associated risks, so development of ‘Risk Mitigation Materials’ (RMM) is recommended. The R and D programme has parallel development of the baseline and RMM, up to ‘down-selection’ points to align with decisions on the DEMO blanket and divertor engineering definition. ITER licensing experience is used to refine the issues for materials nuclear testing, and arguments are developed to optimise scope of materials tests with fusion neutron (‘14 MeV’) spectra before DEMO design finalisation. Some 14 MeV testing is still essential, and the Roadmap requires deployment of a ≥30 dpa (steels) testing capability by 2026. Programme optimisation by the pre-testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams is discussed along with the minimum 14 MeV testing programme, and the key role which fundamental and mission-oriented modelling can play in orienting the research.

  16. Quantitative Analysis on the Energy and Environmental Impact of the Korean National Energy R&D Roadmap a Using Bottom-Up Energy System Model

    Directory of Open Access Journals (Sweden)

    Sang Jin Choi

    2017-03-01

    Full Text Available According to the Paris Agreement at the 21st Conference of the Parties, 196 member states are obliged to submit their Intended Nationally Determined Contributions (INDC for every 5 years. As a member, South Korea has already proposed the reduction target and need to submit the achievement as a result of the policies and endeavors in the near future. In this paper, a Korean bottom-up energy system model to support the low-carbon national energy R&D roadmap will be introduced and through the modeling of various scenarios, the mid-to long-term impact on energy consumptions and CO2 emissions will be analyzed as well. The results of the analysis showed that, assuming R&D investments for the 11 types of technologies, savings of 13.7% with regards to final energy consumptions compared to the baseline scenario would be feasible by 2050. Furthermore, in the field of power generation, the generation proportion of new and renewable energy is expected to increase from 3.0% as of 2011 to 19.4% by 2050. This research also suggested that the analysis on the Energy Technology R&D Roadmap based on the model can be used not only for overall impact analysis and R&D portfolio establishment, but also for the development of detailed R&D strategies.

  17. A physiome interoperability roadmap for personalized drug development.

    Science.gov (United States)

    Thomas, Simon; Wolstencroft, Katherine; de Bono, Bernard; Hunter, Peter J

    2016-04-06

    The goal of developing therapies and dosage regimes for characterized subgroups of the general population can be facilitated by the use of simulation models able to incorporate information about inter-individual variability in drug disposition (pharmacokinetics), toxicity and response effect (pharmacodynamics). Such observed variability can have multiple causes at various scales, ranging from gross anatomical differences to differences in genome sequence. Relevant data for many of these aspects, particularly related to molecular assays (known as '-omics'), are available in online resources, but identification and assignment to appropriate model variables and parameters is a significant bottleneck in the model development process. Through its efforts to standardize annotation with consequent increase in data usability, the human physiome project has a vital role in improving productivity in model development and, thus, the development of personalized therapy regimes. Here, we review the current status of personalized medicine in clinical practice, outline some of the challenges that must be overcome in order to expand its applicability, and discuss the relevance of personalized medicine to the more widespread challenges being faced in drug discovery and development. We then review some of (i) the key data resources available for use in model development and (ii) the potential areas where advances made within the physiome modelling community could contribute to physiologically based pharmacokinetic and physiologically based pharmacokinetic/pharmacodynamic modelling in support of personalized drug development. We conclude by proposing a roadmap to further guide the physiome community in its on-going efforts to improve data usability, and integration with modelling efforts in the support of personalized medicine development.

  18. ROADIDEA- Roadmap for radical innovations in European transport services

    Science.gov (United States)

    Saarikivi, P.

    2009-09-01

    Weather plays a key role in most traffic accidents, in which over 40.000 European citizens are killed and more than 1,2 million injured every year. It is thus clear that innovations are needed to develop better road weather services to make traffic safer. As transport is responsible of 20% of green house gas emissions in Europe, such services are also needed that make traffic more efficient and reduce congestion. ROADIDEA "Roadmap for radical innovations in European transport services” is a FP7/INFSO Collaboration project that started in 2007 and continues until mid-2010, see www.roadidea.eu. The main objective is to study the potential of the European transport service sector for innovations, analysing available data sources, revealing existing problems and bottlenecks, and developing better methods and models to be utilised in service platforms. These will be capable of providing new, innovative services for various transport user groups. The fourteen partners of ROADIDEA come from Finland, Sweden, the Netherlands, Germany, Italy, Hungary, Croatia and Slovenia. The differences of the existing transport systems and available data sources in these countries are analysed as well as the problems caused by local climate and geography. The innovation process is key activity of the project and will be described in detail in the presentation. It has produced more than 100 ideas during two consecutive brainstorming seminars. Ideas have been analysed and the most potential ones shortlisted for further development. These include e.g. advanced friction models, road condition and fog warning systems, which receive input from hybrid (mobile and fixed combined) observing systems and automated messages from private cars. The Hamburg Port with increasing congestion needs multi-modal traffic model that takes weather into account. New semi-public high-quality ways to travel need to be innovated to reduce the use of private cars in the battle against climate change.

  19. Towards nZEB - Some Examples of National Requirements and Roadmaps

    DEFF Research Database (Denmark)

    Jagemar, Lennart; Schmidt, Michael; Allard, Francis;

    2011-01-01

    A recent benchmarking study on implementation on EPBD 2002 by REHVA (Seppänen & Goeders 2010) revealed a large variation in the energy performance regulations of the different countries. Not only the performance levels are different, but even the units, in which the performance is measured...... in the definition of energy performance in [kWh/m2,a]. Many countries have prepared long term roadmaps with detailed targets, Figure 1. Such roadmaps help the industry to be prepared and committed to the targets. For example, in Norway, zero energy buildings are expected in 2027, but in UK carbon neutral buildings...

  20. Research and Development Roadmap For Next-Generation Low-Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-07-01

    The Department of Energy commissioned this roadmap to establish a set of high-priority research and development (R&D) activities that will accelerate the transition to low-GWP refrigerants across the entire heating, ventilation, air-conditioning and refrigeration (HVAC&R) industry. The schedule of R&D activities occurs within an accelerated five-year timeframe, and covers several prominent equipment types. The roadmap is organized around four primary objectives to: assess and mitigate safety risks, characterize refrigerant properties, understand efficiency and environmental tradeoffs, and support new refrigerant and equipment development.

  1. KNOWLEDGE SYNTHESIS IN TECHNOLOGY DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    Yukihiro YAMASHITA; Yoshiteru NAKAMORI; Andrzej P. WIERZBICKI

    2009-01-01

    This paper introduces a knowledge construction model called the i-System for knowledge integration and creation and its relation to the new concept of the Creative Space. The five ontological elements of the i-System are Intelligence, Involvement, Imagination, Intervention, and Integration corresponding to five diverse dimensions of the Creative Space. The paper discusses the meanings and functions of these dimensions in knowledge integration and creation, and presents applications of the i-System to technology roadmapping and archiving.

  2. EURO-CARES: European Roadmap for a Sample Return Curation Facility and Planetary Protection Implications.

    Science.gov (United States)

    Brucato, John Robert

    2016-07-01

    A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop

  3. Introduction and Analysis of Synthetic Biology Roadmap of the UK%英国合成生物学路线图

    Institute of Scientific and Technical Information of China (English)

    李振兴

    2013-01-01

    英国高度重视发展合成生物学,并将合成生物学作为可能引领未来经济发展的4个新兴技术产业之一,不仅对合成生物学研究予以大力支持,也致力于促进合成生物学研究和技术的商业化。为谋求在合成生物学领域世界领先地位,英国商业、创新与技能部专门成立了英国合成生物学路线图协调组,开展路线图研究,制定并发布了英国合成生物学路线图研究报告。对英国最新发布的英国合成生物学路线图从发展合成生物学的重要意义、英国谋求引领未来合成生物学发展地位、路线图研究框架和制定过程、路线图涉及的主题及促进合成生物学发展的措施等5个方面进行了解析,以期为我国开展有关政策研究和确定发展重点提供参考。%Synthetic biology is one of the four priorities of emerging technologies and industries in the UK. UK has made a lot of investment on both scientific research of synthetic biology and its commercialization. Recently, the Department of Business, Innovation and Skill (BIS) set up a special group to draw up the roadmap of synthetic biology in the UK. In this paper, the main contents of the roadmap were introduced and analyzed from ifve aspects in order to contribute to the policy study and priorities selection of synthetic biology in China. The ifve aspects are as follows:the importance of developing synthetic biology;UK’s target of leading the global synthetic biology;research framework and making process of roadmap;themes concerning the roadmap;measures to prompt development of synthetic biology.

  4. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  5. Observation and integrated Earth-system science: A roadmap for 2016–2025

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.; Trenberth, Kevin; Asrar, Ghassem R.; Balmaseda, M. A.; Burrows, John P.; Cias, Philippe; Drinkwater, Mark; Friedlingstein, P.; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Ernesto, Lopez-Baeza; Penner, Joyce E.; Scholes, Robert; Shepherd, Ted

    2016-04-20

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  6. Survey of Technologies for the Airport Border of the Future

    Science.gov (United States)

    2014-04-01

    market is still nascent but growing quickly. Consulting firms Frost & Sullivan and Acuity Market Intelligence both predict a 20% compound annual...technology detects a potential threat.65 According to a recent market report by Frost and Sullivan (April 2013)66, some of the technologies likely...Technological Breakthroughs in Sensors for Threat Detection - Technology Market Penetration and Roadmapping: Frost and Sullivan ;April 2013. 67. Nicas J. Can

  7. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    Science.gov (United States)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  8. Roadmap for human resources for expanded Indian nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.K. [Bhabha Atomic Research Centre, Mumbai (India); Indian Nuclear Society (India); Srinivasan, G.R.; Goyal, O.P. [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    This paper deals with detailed requirement of human resources for all phases of nuclear power plant, for the manufacturing sector and the probable roadmap for achieving India's target. The accident in Fukushima has brought out that only nuclear power that avoids being a threat to the health and safety of the population and the environmental will be acceptable to the society and for this to be achieved human resources could be a single major contributor. India has ambitious plan of achieving 20,000MW by 2020 and 63,000MW by 2050. It is felt out of the three resources men, material and money; the critical shortage would be human resources both in quality and quantity. As per IAEA report (Publication of 2008 edition of energy, electricity and nuclear power estimates for the period of 2030), nuclear capacity must grow to at least 1.8 times current capacity by 2030 if global temperature rises are to be kept at 2°C. Objective of recruiting and training human resources for Indian Industry can be as follows: a) For catering domestic market. b) For catering international market later on for nuclear industries outside India. As India will be an important future international player. The above would require a multiplication of human resources by nearly seven times. In addition it has to be wholesome covering all levels and all skills and all disciplines and stages covering the whole nuclear cycle including regulators. Human resources are required for design and engineering, construction, commissioning, operation, manufacturing and for support services. The manpower for these has to be trained to achieve high quality of nuclear standards. Presently Indian Department of Atomic Energy(DAE) runs several training schools giving one year Post Graduate, tailor made courses. This needs to be multiplied by Joint efforts. Training should be on 'SAT (Systematic Approach to Training)' methodology to ensure focussed, specific, needed to culminate in safe, reliable and

  9. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  10. Internal Consistency in Components of International Management/International Business Syllabi: Roadmaps with Mixed Messages

    Science.gov (United States)

    Veliyath, Rajaram; Adams, Janet S.

    2005-01-01

    The course syllabus is a contract between instructor and students, a schedule of course assignments and activities, and a roadmap delineating objectives and checkpoints in the course. It is also a planning and reference tool for both students and instructor, and it models professors' expectations for their students. This study investigated whether…

  11. Assistive Robotics in Robotics for healthcare, roadmap study for the EC

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M. de; Cremers, G.; Rensma, A.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  12. Prospective registration and results disclosure of clinical trials in the Americas: a roadmap toward transparency.

    Science.gov (United States)

    Krleža-Jeriç, Karmela; Lemmens, Trudo; Reveiz, Ludovic; Cuervo, Luis Gabriel; Bero, Lisa Anne

    2011-07-01

    The objective of this article is to propose a roadmap toward transparency of clinical trials in the Americas by their prospective registration and results disclosure. This will broaden access to more complete and accurate data and facilitate evidence-informed decision-making and participation in research. Consequently, it should have a positive impact on people's health and should promote trust in health research. Existing initiatives were identified, registration of trials was analyzed following the World Health Organization (WHO) standards on trial registration, and a roadmap is proposed to address the gaps in advancing transparency. The analysis shows that, in spite of numerous regional and country initiatives, clinical trials taking place in nonEnglish-speaking parts of the Americas are underregistered. A roadmap is proposed to enhance research governance and good research practice by improving the transparency of clinical trials. The proposed roadmap includes strategies for implementing WHO international standards for trial registration, for developing international standards of public disclosure of trial results, and for a potential role of the Pan American Health Organization.

  13. A roadmap for the EU White Paper goal on Urben Transport

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Schippl, Jens; Leiren, Merethe Dotterud;

    2015-01-01

    policy options, the diverse interests of stakeholders involved in urban mobility in Europe. The paper draws on data gathered in the EU FP7 TRANSFORuM project, including workshop dialogues with stakeholders representing different interests in and perspectives on urban transport and mobility. The main...... and the outcomes of the roadmap process and will also discuss the perspectives for implementation....

  14. The european hematology association roadmap for european hematology research: A consensus document

    NARCIS (Netherlands)

    A. Engert (Andreas); C.L. Balduini (Carlo); A. Brand (Anneke); B. Coiffier (B.); C. Cordonnier (Charlotte); H. Döhner (Hartmut); De Wit, T.D. (Thom Duyvené); Eichinger, S. (Sabine); W.E. Fibbe (Willem); Green, T. (Tony); De Haas, F. (Fleur); A. Iolascon (Achille); T. Jaffredo (Thierry); Rodeghiero, F. (Francesco); Sall Es, G. (Gilles); J.J. Schuringa; J.-L. André (Jean-Luc); I. André-Schmutz (Isabelle); A. Bacigalupo; P-Y. Bochud (Pierre-Yves); M.L. den Boer (Monique); C. Bonini (Chiara); C. Camaschella (Clara); A. Cant (Andrew); M.D. Cappellini (Maria); M. Cazzola; Celso, C.L. (Cristina Lo); M.A. Dimopoulos (Meletios); Douay, L. (Luc); E.A. Dzierzak (Elaine); H. Einsele (Hermann); A.J.M. Ferreri (Andrés J.M.); De Franceschi, L. (Lucia); Gaulard, P. (Philippe); B. Göttgens (Berthold); A. Greinacher (Andreas); P. Gresele (Paolo); J. Gribben (John); De Haan, G. (Gerald); Hansen, J.-B. (John-Bjarne); A. Hochhaus (Andreas); Kadir, R. (Rezan); S.V. Kaveri (Srini); Kouskoff, V. (Valerie); Kühne, T. (Thomas); Kyrle, P. (Paul); P. Ljungman; Maschmeyer, G. (Georg); S. Mendez-Ferrer (S.); Milsom, M. (Michael); Mummery, C. (Christine); G.J. Ossenkoppele (Gert); A. Pecci (Alessandro); F. Peyvandi (Flora); J.N.J. Philipsen (Sjaak); P.H. Reitsma; J.M. Ribera (Josep Maria); Risitano, A. (Antonio); Rivella, S. (Stefano); W. Ruf (Wolfram); Schroeder, T. (Timm); Scully, M. (Marie); G. Socie (Gerard); F.J.T. Staal (Frank); S. Stanworth (Simon); Stauder, R. (Reinhard); S. Stilgenbauer (S.); Tamary, H. (Hannah); K. Theilgaard-Mönch (K.); Thein, S.L. (Swee Lay); H. Tilly (Herve); M. Trneny (Marek); Vainchenker, W. (William); A.M. Vannucchi (Alessandro); Viscoli, C. (Claudio); Vrielink, H. (Hans); Zaaijer, H. (Hans); Zanella, A. (Alberto); Zolla, L. (Lello); J.J. Zwaginga (Jaap); Martinez, P.A. (Patricia Aguilar); E. van den Akker (Eric); Allard, S. (Shubha); N.P. Anagnou (Nicholas); Andolfo, I. (Immacolata); Andrau, J.-C. (Jean-Christophe); Angelucci, E. (Emanuele); D.J. Anstee (David J.); Aurer, I. (Igor); H. Avet-Loiseau (Hervé); Y. Aydinok (Yesim); Bakchoul, T. (Tamam); Balduini, A. (Alessandra); Barcellini, W. (Wilma); Baruch, D. (Dominique); Baruchel, A. (André); J. Bayry (Jagadeesh); Bento, C. (Celeste); A. van den Berg (Anemone); Bernardi, R. (Rosa); Bianchi, P. (Paola); A. Bigas (Anna); A. Biondi (Andrea); Bohonek, M. (Milos); Bonnet, D. (Dominique); Borchmann, P. (Peter); Borregaard, N. (Niels); Brækkan, S. (Sigrid); M.R.M. Van Den Brink (Marcel R. M.); Brodin, E. (Ellen); L. Bullinger (Lars); C. Buske (Christian); Butzeck, B. (Barbara); J. Cammenga (Jörg); G. Campo (Gianluca); I. Carbone; Cervantes, F. (Francisco); S. Cesaro; P. Charbord (Pierre); F.H.J. Claas (Frans); Cohen, H. (Hannah); Conard, J. (Jacqueline); Coppo, P. (Paul); Vives Corron, J.-L. (Joan-Lluis); Da Costa, L. (Lydie); Davi, F. (Frederic); H.R. Delwel (Ruud); Dianzani, I. (Irma); Domanović, D. (Dragoslav); Donnelly, P. (Peter); Drnovšek, T.D. (Tadeja Dovč); M. Dreyling (Martin); Du, M.-Q. (Ming-Qing); Dufour, C. (Carlo); C. Durand (Charles); Efremov, D. (Dimitar); A. Eleftheriou (Androulla); Elion, J. (Jacques); M. Emonts (Marieke); M. Engelhardt (Monika); Ezine, S. (Sophie); J.H.F. Falkenburg (Frederik); Favier, R. (Remi); M. Federico (M.); P. Fenaux (Pierre); J. Fitzgibbon (Jude); Flygare, J. (Johan); R. Foà; L. Forrester (Lesley); Galacteros, F. (Frederic); Garagiola, I. (Isabella); C. Gardiner (Chris); Garraud, O. (Olivier); Van Geet, C. (Christel); H. Geiger (Hartmut); J. Geissler (Jan); U. Germing (Ulrich); Ghevaert, C. (Cedric); D. Girelli (Domenico); Godeau, B. (Bertrand); Gökbuget, N. (Nicola); H. Goldschmidt (Hartmut); A.C. Goodeve; T. Graf (Thomas); Graziadei, G. (Giovanna); Griesshammer, M. (Martin); Gruel, Y. (Yves); F. Guilhot (François); Von Gunten, S. (Stephan); I.C. Gyssens (Inge); J.P. Halter (Joerg P.); C.N. Harrison (Claire N.); C.L. Harteveld (Cornelis); Hellström-Lindberg, E. (Eva); Hermine, O. (Olivier); Higgs, D. (Douglas); Hillmen, P. (Peter); Hirsch, H. (Hans); Hoskin, P. (Peter); G. Huls (Gerwin); Inati, A. (Adlette); Johnson, P. (Peter); Kattamis, A. (Antonis); Kiefel, V. (Volker); M. Kleanthous (Marina); Klump, H. (Hannes); Krause, D. (Daniela); Hovinga, J.K. (Johanna Kremer); Lacaud, G. (Georges); Lacroix-Desmazes, S. (Sébastien); Landman-Parker, J. (Judith); Legouill, S. (Steven); Lenz, G. (Georg); M. Von Lilienfeld-Toal (Marie); M.M. von Lindern (Marieke); Lopez-Guillermo, A. (Armando); Lopriore, E. (Enrico); Lozano, M. (Miguel); E. Macintyre; M. Makris (M.); Mannhalter, C. (Christine); J.H.A. Martens (Joost); S. Mathas (Stephan); Matzdorff, A. (Axel); A. Medvinsky (Alexander); Menendez, P. (Pablo); G. Migliaccio (Giovanni); Miharada, K. (Kenichi); Mikulska, M. (Malgorzata); V. Minard (Véronique); Montalbán, C. (Carlos); De Montalembert, M. (Mariane); E. Montserrat (Emili); P.-E. Morange (P.); Mountford, J. (Joanne); Muckenthaler, M. (Martina); C. Müller-Tidow (Carsten); Mumford, A. (Andrew); B. Nadel (Bertrand); Navarro, J.-T. (Jose-Tomas); El Nemer, W. (Wassim); Noizat-Pirenne, F. (France); O’Mahony, B. (Brian); J. Oldenburg (Johannes); Olsson, M. (Martin); R.A. Oostendorp (Robert); A. Palumbo (Antonio); F. Passamonti (Francesco); R. Patient (Roger); De Latour, R.P. (Regis Peffault); F. Pflumio (Françoise); Pierelli, L. (Luca); Piga, A. (Antonio); Pollard, D. (Debra); M.H.G.P. Raaijmakers (Marc H.G.P.); J. Radford (John); Rambach, R. (Ralf); Koneti Rao, A.; Raslova, H. (Hana); Rebulla, P. (Paolo); Rees, D. (David); V. Ribrag (Vincent); A.W. Rijneveld (Anita); Rinalducci, S. (Sara); T. Robak (Tadeusz); Roberts, I. (Irene); Rodrigues, C. (Charlene); F.R. Rosendaal (Frits); Rosenwald, A. (Andreas); Rule, S. (Simon); R. Russo (Roberta); Saglio, G. (Guiseppe); Sanchez, M. (Mayka); Scharf, R.E. (Rüdiger E.); Schlenke, P. (Peter); Semple, J. (John); J. Sierra (Jorge); So-Osman, C. (Cynthia); Soria, J.M. (José Manuel); K. Stamatopoulos (K.); Stegmayr, B. (Bernd); H. Stunnenberg (Henk); D.W. Swinkels (Dorine); Barata, J.P.T. (João Pedro Taborda); T. Taghon (Tom); Taher, A. (Ali); E. Terpos (Evangelos); Thachil, J. (Jecko); Tissot, J.D. (Jean Daniel); I.P. Touw (Ivo); Toye, A. (Ash); Trappe, R. (Ralf); Traverse-Glehen, A. (Alexandra); Unal, S. (Sule); S. Vaulont (Sophie); V. Viprakasit (Vip); Vitolo, U. (Umberto); R. van Wijk (Richard); Wójtowicz, A. (Agnieszka); S. Zeerleder (Sacha); B. Zieger (Barbara)

    2016-01-01

    textabstractThe European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hem

  15. The European Hematology Association Roadmap for European Hematology Research : a consensus document

    NARCIS (Netherlands)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob

    2016-01-01

    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology rese

  16. Rehabilitation robotics in robotics for healthcare ; a roadmap study for the European Commission

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M.de; Cremers, G.; Rensma, A.R.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  17. Assistive Robotics in Robotics for healthcare, roadmap study for the EC

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M. de; Cremers, G.; Rensma, A.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  18. Sustainable Electronic Roadmap and Forum Summary; Sustainable Electronics Forum, October 15-18, 2012, Racine, WI

    Science.gov (United States)

    The Roadmap presents critical issues and research questions for each theme. For Theme 1, the issues for limiting the harm from materials and process in electronics industry include identifying the chemicals in products, production process, in the extraction of virgin materials, i...

  19. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    NARCIS (Netherlands)

    Turnyanskiy, M.; Neu, R.; Albanese, R.; Ambrosino, R.; Bachmann, C.; Brezinsek, S.; Donne, A. J. H.; Eich, T.; Falchetto, G.; G Federici,; Kalupin, D.; Litaudon, X.; Mayoral, M.; McDonald, D. C.; Reimerdes, H.; Romanelli, F.; Wenninger, R.; You, J. H.

    2015-01-01

    Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been establishe

  20. A roadmap for evolving towards optical intra-data-center networks

    DEFF Research Database (Denmark)

    Dittmann, Lars; Fagertun, Anna Manolova; Kamchevska, Valerija

    2016-01-01

    The first part of this paper focuses on presenting an updated view on the state of the art in data center networks. The European project COSIGN has provided industrial optical data center network roadmaps, strategies and a techno-economic analysis of the involved industrial partners’ value propos...

  1. Creating Change in Health Care: Developing a Shared Understanding and Roadmap for Action.

    Science.gov (United States)

    Maurer, Maureen E; Dardess, Pam; Frosch, Dominick L; Carman, Kristin L

    2015-01-01

    The Patient and Family Engagement Framework and the Roadmap for Patient and Family Engagement in Healthcare Practice and Research are tools designed to create a shared understanding of what patient and family engagement is and how it can be translated into concrete action. ©2015 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  2. Rehabilitation robotics in robotics for healthcare ; a roadmap study for the European Commission

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M.de; Cremers, G.; Rensma, A.R.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  3. The european hematology association roadmap for european hematology research : A consensus document

    NARCIS (Netherlands)

    A. Engert (Andreas); C.L. Balduini (Carlo); A. Brand (Anneke); B. Coiffier (Bertrand); C. Cordonnier (Charlotte); H. Döhner (Hartmut); De Wit, T.D. (Thom Duyvené); Eichinger, S. (Sabine); W.E. Fibbe (Willem); Green, T. (Tony); De Haas, F. (Fleur); A. Iolascon (Achille); T. Jaffredo (Thierry); F. Rodeghiero (Francesco); G. Salles (Gilles); J.J. Schuringa (Jan Jacob)

    2016-01-01

    textabstractThe European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hem

  4. The European Hematology Association Roadmap for European Hematology Research : a consensus document

    NARCIS (Netherlands)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob

    2016-01-01

    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology rese

  5. U.S. Department of Energy Office of Indian Energy Policy and Programs: Strategic Roadmap 2025

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The U.S. Department of Energy Office of Indian Energy Policy and Programs Strategic Roadmap 2025 outlines strategic target areas and tactical actions to ensure the Office remains aligned with its congressional mandates and DOE goals, and that it can be responsive to changing conditions in Indian Country and the nation.

  6. 75 FR 15710 - Submission for OMB Review; Comment Request; Process Evaluation of the NIH's Roadmap...

    Science.gov (United States)

    2010-03-30

    ... make decisions about structural or procedural changes within NIH that may be necessary to support cross... Evaluation of the NIH's Roadmap Interdisciplinary Research Work Group Initiatives SUMMARY: Under the... or IC), the National Institutes of Health has submitted to the Office of Management and Budget...

  7. The roadmap for low price- high performance IR detector based on LWIR to NIR light up-conversion approach

    Science.gov (United States)

    Kipper, R.; Arbel, D.; Baskin, E.; Fayer, A.; Epstein, A.; Shuall, N.; Saguy, A.; Veksler, D.; Spektor, B.; Ben-Aharon, D.; Garber, V.

    2009-05-01

    The introduction of an uncooled microbolometer image sensor about a decade ago enabled cost reduction of IR cameras. As a result, the available markets grew both in military and civilian applications. Since then, the price of microbolometer was gradually reduced due to introduction of devices with smaller pixel, maturity of the technology and quantity growth. However, the requirement for a vacuum package still limits the price of microbolometer based cameras to several thousands of dollars. Sirica's novel wavelength conversion technology aims at breaking this paradigm by being uncooled and vacuumless, lowering IR camera prices by an order of magnitude, opening the way to new mass markets. Sirica's proprietary IR-to-Visible/NIR conversion layer allows for low-cost high performance LWIR detector with no requirement for cooling and vacuum packaging. In the last years, the development efforts focused on development of the conversion media. Recently, a parallel effort for the integration of the conversion layer together with other detector components has started. Packaging of detector components, such as conversion layer, pumping light source, dichroic filter, and their coupling with silicon CMOS image sensor have great importance from a price-performance point of view. According to the company's business-development roadmap, the detector prototype should be available during the first quarter of 2010.

  8. Evaluation of Sampling Recommendations From the Influenza Virologic Surveillance Right Size Roadmap for Idaho.

    Science.gov (United States)

    Rosenthal, Mariana; Anderson, Katey; Tengelsen, Leslie; Carter, Kris; Hahn, Christine; Ball, Christopher

    2017-08-24

    The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. The aim of this study was to compare Roadmap sampling recommendations with Idaho's influenza virologic surveillance to determine implementation feasibility. We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho's influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients' tested specimens to census estimates by age, sex, and health district residence. Among outpatients surveilled, Idaho's mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Insufficient numbers of respiratory specimens are submitted to IBL for influenza

  9. Innovative Technologies for Global Space Exploration

    Science.gov (United States)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  10. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  11. Roadmap for the Future of Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Zhang, Jian; Athalye, Rahul A.

    2015-01-26

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. For commercial building energy codes to continue to progress as they have over the last 40 years, the next generation of building codes will need to provide a path that is led by energy performance, ensuring a measurable trajectory toward net zero energy buildings. This report outlines a vision to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building-specific prescriptive packages that are designed both to be cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target, as demonstrated by whole building energy

  12. Roadmap on optical rogue waves and extreme events

    Science.gov (United States)

    Akhmediev, Nail; Kibler, Bertrand; Baronio, Fabio; Belić, Milivoj; Zhong, Wei-Ping; Zhang, Yiqi; Chang, Wonkeun; Soto-Crespo, Jose M.; Vouzas, Peter; Grelu, Philippe; Lecaplain, Caroline; Hammani, K.; Rica, S.; Picozzi, A.; Tlidi, Mustapha; Panajotov, Krassimir; Mussot, Arnaud; Bendahmane, Abdelkrim; Szriftgiser, Pascal; Genty, Goery; Dudley, John; Kudlinski, Alexandre; Demircan, Ayhan; Morgner, Uwe; Amiraranashvili, Shalva; Bree, Carsten; Steinmeyer, Günter; Masoller, C.; Broderick, Neil G. R.; Runge, Antoine F. J.; Erkintalo, Miro; Residori, S.; Bortolozzo, U.; Arecchi, F. T.; Wabnitz, Stefan; Tiofack, C. G.; Coulibaly, S.; Taki, M.

    2016-06-01

    this point of view, a number of the scientists who work in this area of research have come together to present their research in a single review article that will greatly benefit all interested parties of this research direction. Whether the authors of this ‘roadmap’ have similar views or different from the original concept, the potential reader of the review will enrich their knowledge by encountering most of the existing views on the subject. Previously, a special issue on optical rogue waves (2013 J. Opt. 15 060201) was successful in achieving this goal but over two years have passed and more material has been published in this quickly emerging subject. Thus, it is time for a roadmap that may stimulate and encourage further research.

  13. Strategic Roadmap for the U.S. Geoscience Information Network

    Science.gov (United States)

    Allison, M. L.; Gallagher, K. T.; Richard, S. M.; Hutchison, V. B.

    2012-04-01

    An external advisory working group has prepared a 5-year strategic roadmap for the U.S. Geoscience Information Network (USGIN). USGIN is a partnership of the Association of American State Geologists (AASG) and the U.S. Geological Survey (USGS), who formally agreed in 2007 to develop a national geoscience information framework that is distributed, interoperable, uses open source standards and common protocols, respects and acknowledges data ownership, fosters communities of practice to grow, and develops new Web services and clients. The intention of the USGIN is to benefit the geological surveys by reducing the cost of online data publication and access provision, and to benefit society through easier (lower cost) access to public domain geoscience data. This information supports environmental planning, resource-development, hazard mitigation design, and decision-making. USGIN supposes that sharing resources for system development and maintenance, standardizing data discovery and creating better access mechanisms, causes cost of data access and maintenance to be reduced. Standardization in a wide variety of business domains provides economic benefits that range between 0.2 and 0.9% of the gross national product. We suggest that the economic benefits of standardization also apply in the informatics domain. Standardized access to rich data resources will create collaborative opportunities in science and business. Development and use of shared protocols and interchange formats for data publication will create a market for user applications, facilitating geoscience data discovery and utility for the benefit of society. The USGIN Working Group envisions further development of tools and capabilities, in addition to extending the community of practice that currently involves geoinformatics practitioners from the USGS and AASG. Promoting engagement and participation of the state geological surveys, and increasing communication between the states, USGS, and other

  14. Learning beyond the Science Classroom: A Roadmap to Success

    Science.gov (United States)

    Starr, Laura; Minchella, Dennis

    2016-01-01

    Today's college graduates compete in a global market fueled by rapid innovation and constant technological advances. In order to be able to contribute to and advance in these highly demanding careers, workers not only require advanced scientific and technological knowledge but they also need to possess versatility, collaborative problem-solving…

  15. 中国地热能发展路线图%A Roadmap to Geothermal Energy Development in China

    Institute of Scientific and Technical Information of China (English)

    庞忠和; 胡圣标; 汪集旸

    2012-01-01

    中国地热能潜力巨大,可以为应对气候变化作出显著贡献.本文提出中国地热能技术发展途径是“四化”,即多元化、规模化、精细化、绿色化;地热能产业发展道路是“三步走”,即近期——中低温利用与高温水热发电、中期——中低温水热发电、远期——干热发电与利用.政府的政策引导与产、学、研、用相结合是实现地热能技术与产业发展目标之关键.%China possesses a high potential of geothermal energy. A suitable roadmap for technology and industry development is required in order to realize the vision meeting demand on global climate change mitigation. It is proposed that the future geothermal technology development in China will be characterized by the diversification of resources and utilizations, the scale enlargement of development projects, the refinement of advanced technologies, and sustainability guarantee. The geothermal industry development will be focused on low-medium temperature direct use and high- temperature geothermal power generation in the near future, power generation from low-medium temperature in middle period, and Hot Dry Rock (HDR) energy combined heal and power in the long term. The leading role piayeel by government, supplemented by the coordination among researchers, educators, producers, and consumers will be the key to successful geothermal technology and industry development in China.

  16. Roadmap VNMI (Association of the Dutch Metallurgical Industry). Input of renewable energy; Roadmap VNMI. Inzet van hernieuwbare energie

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, A.J.; Luxembourg, S.L.; Seebregts, A.J.; Lensink, S.M. [ECN Beleidsstudies, Petten (Netherlands)

    2011-04-15

    , a pre-defined calculation for this new subsidy concept has been reviewed. A long-term, fixed power sales price for the participating companies of 50 euro/MWh and a calculated Carbon Leakage compensation, based on a CO2 emission factor of 581 kg/MWh, resulted in a cost decrease for the Dutch government for the majority of the calculated price scenarios. For those scenario variants in which these conditions resulted in a cost increase for the Dutch government, the long-term fixed power sales price was increased to mitigate the additional costs. From this analysis it follows that a fixed power sales price of 62 euro/MWh is sufficient to prevent additional costs for the highest price scenario. [Dutch] De Nederlandse metaalindustrie en metaalgieterijen participeren in convenanten om hun pro-ductie energie-efficienter uit te voeren. In samenspraak met AgentschapNL heeft deze sector besloten om een 'Roadmap 2030' te ontwikkelen, waarin verschillende strategieen worden ge-schetst om energie-efficientie te bereiken. Onderdeel hiervan is de mogelijke toepassing van hernieuwbare elektriciteit, opgewekt via derden of direct voor eigen gebruik. De metaalsector heeft daarom ECN gevraagd wat de verwachte kosten en baten zijn van een omschakeling naar de hernieuwbare elektriciteitsopties: zon (PV), wind en biomassa op de korte en lange termijn en wat volgt uit een vergelijking van de kosten met de baten. In aanvulling hierop is een nieuw door de sector voorgesteld subsidievoorstel (het 'DAAN' concept) voor hernieuwbare elektriciteit geanalyseerd. Uit dit onderzoek blijkt dat tot 2020, behoudens gunstige omstandigheden voor wind op land en biomassameestook, hernieuwbare elektriciteit op of boven de gemiddelde elektriciteitsprijs wordt geproduceerd en dat de kosten hoger zijn dan de baten. Hoewel de onzekerheid toeneemt, laat de doorkijk voor de periode 2020-2030 zien dat de productiekosten van wind op land dan onder de verwachte gemiddelde elektriciteitsprijs

  17. 2012-2025 Roadmap of I.R.Iran’s Disaster Health Management

    Science.gov (United States)

    Ardalan, Ali; Rajaei, Mohammad Hossein; Masoumi, Gholamreza; Azin, Ali; Zonoobi, Vahid; Sarvar, Mohammad; Vaskoei Eshkevari, khorshid; Ahmadnezhad, Elham; Jafari, Gelareh

    2012-01-01

    Objective: In line with Iran’s Comprehensive Health Sector Road Map, the National Institute of Health Research at the Tehran University of Medical Sciences developed the 2012-2025 road map of Disaster Health Management (DHM), including goals and objectives, strategies, activities and related prerequisites. This article presents the process and results of this road mapping project. Methods: The project started with an expanded literature review followed by stakeholder analysis to assess level of interest and impact of related organizations to DHM; STEEP.V methodology to define determinants with a potential impact on Iran’s HDM for duration of 2012 to 2025; strength, weakness, opportunity and threat (SWOT) analysis and formulation of goals and objectives, strategies, activities, and prerequisites. Brainstorming, group discussion and interviews with key informants were used for data collection; nominal group technique was used whenever prioritization was necessary, and Delphi panel methodology was applied for consensus development. Results: STEEP.V analysis revealed the most important Social, Technological, Environmental, Economic, Political and Value-based determinants. Iran’s DHM mission and vision were defined respectively as “Mitigation from, preparedness for, response to and recovery from consequences of natural and man-made hazards at the community level as well as to the health facilities and resources of I.R.Iran” and “In 2025, Iran’s DHM will be the most developed system in the region resulting in the least vulnerability, the highest readiness in health facilities and resources, and the highest and most effective contribution of the Iranian community to disaster resilience”, respectively. Sixteen strategies and related activities, along with the necessary prerequisites, were developed. Conclusions: This was the first attempt at comprehensive strategic planning in the field of DHM in Iran. The current framework provides Iran’s health system

  18. Silicon integrated nanophotonics: from fundamental science to manufacturable technology (Presentation Video)

    Science.gov (United States)

    Vlasov, Yurii A.

    2015-02-01

    The IBM Silicon Nanophotonics technology enables cost-efficient optical links that connect racks, modules, and chips together with ultralow power single-die optical transceivers. I will give an overview of its historical development, technology differentiators, current status and a roadmap.

  19. The EU's roadmap for moving to a low-carbon economy. Aspirations and reality for refiners

    Energy Technology Data Exchange (ETDEWEB)

    Lichtscheidl, J.; Buchsbaum, A.; Bachmann, G. [OMV Refining and Marketing GesmbH, Wien (Austria)

    2012-07-01

    Europe's refining industry is facing huge challenges. About 20% of the capacity should be reduced as soon as possible. And more capacities will become idle after 2020. About 35 % of the refineries changed their ownership, were sold or closed during the last four years. The EU has set up a roadmap to move to a low-carbon economy. The Renewable Energy Directive asks for a share of energy from renewable sources in all forms of transport of at least 10 % in 2020. The Fuel Quality Directive requests a mandatory 6% reduction of CO{sub 2} in energy equivalent content of transport fuels by 2020. And the EU Emission-Trading-System for CO{sub 2} sets a reduction target of 21% for refining which is part of the ETS sectors for the next trading period 2013-2020. This target has to be calculated on best available technology which means that for less efficient refiners the target will be significantly higher. New emission targets for refineries will be fixed by the Industrial Emission Directive and the revised BAT document soon. A European Tax Directive is being prepared which will base the tax on the energy content and CO{sub 2} footprint of the fuels. And a new Energy Efficiency Directive will ask for substantial reductions in the energy demand. Their impact on refineries can hardly be estimated today. While the targets are set the roadmap to fulfil all these remains misty. Other than purchasing biofuels from the market, buying CO{sub 2} credits and trying to compensate these additional costs with even tougher cost cutting measures, are there other options the refining industry can do? This paper will try to show possible options which are investigated for OMV refineries such as: - Improve significantly the efficiency of the power production; - Use existing units for co-processing bio components; - Reconfigure the waste heat recovery system, and - equally important -; - Rate high key performance indicators for energy demand. These measures have to be fully compatible with

  20. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing - t4 report*.

    Science.gov (United States)

    Basketter, David A; Clewell, Harvey; Kimber, Ian; Rossi, Annamaria; Blaauboer, Bas; Burrier, Robert; Daneshian, Mardas; Eskes, Chantra; Goldberg, Alan; Hasiwa, Nina; Hoffmann, Sebastian; Jaworska, Joanna; Knudsen, Thomas B; Landsiedel, Robert; Leist, Marcel; Locke, Paul; Maxwell, Gavin; McKim, James; McVey, Emily A; Ouédraogo, Gladys; Patlewicz, Grace; Pelkonen, Olavi; Roggen, Erwin; Rovida, Costanza; Ruhdel, Irmela; Schwarz, Michael; Schepky, Andreas; Schoeters, Greet; Skinner, Nigel; Trentz, Kerstin; Turner, Marian; Vanparys, Philippe; Yager, James; Zurlo, Joanne; Hartung, Thomas

    2012-01-01

    Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new products (such as nanoparticles or cell therapies), the limited predictivity of traditional tests for human health effects, duration and costs of current approaches, and animal welfare considerations. The latter holds especially true in the context of the scheduled 2013 marketing ban on cosmetic ingredients tested for systemic toxicity. Based on a major analysis of the status of alternative methods (Adler et al., 2011) and its independent review (Hartung et al., 2011), the present report proposes a roadmap for how to overcome the acknowledged scientific gaps for the full replacement of systemic toxicity testing using animals. Five whitepapers were commissioned addressing toxicokinetics, skin sensitization, repeated-dose toxicity, carcinogenicity, and reproductive toxicity testing. An expert workshop of 35 participants from Europe and the US discussed and refined these whitepapers, which were subsequently compiled to form the present report. By prioritizing the many options to move the field forward, the expert group hopes to advance regulatory science.

  1. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  2. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Wendy (Harvard Environmental Law and Policy, Cambridge, MA (US)); Chohen, Leah; Kostakidis-Lianos, Leah; Rundell, Sara (Harvard Law School, Cambridge, MA (US))

    2009-03-01

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in the absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.

  3. A METHODOLOGY FOR DEVELOPING A ROADMAP TOWARDS LOCAL LOW-CARBON SOCIETY COSIDERING IMPLEMENTATION COST

    Science.gov (United States)

    Gomi, Kei; Kim, Jaegyu; Matsuoka, Yuzuru

    We have developed a methodology for developing roadmaps towards low-carbon society in local government. A quantification tool called "Backcasting Tool" (BCT) was developed. BCT estimates implementation schedule of all policies and actions considering their relationship, financial constraints of the actors, and co-benefit of the policies. The methodology was applied in Shiga prefecture, Japan, and a roadmap which consists of more than 240 policies is estimated considering direct costs paid by public and private sectors. As a result, cumulative implementation cost was 7.3 trillion yen in which public sector bear 17%. Cumulative emission reduction was 101MtCO2, and average emission reduction cost was 73 thousand yen/tCO2.

  4. A roadmap for bridging basic and applied research in forensic entomology.

    Science.gov (United States)

    Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S

    2011-01-01

    The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.

  5. Mixed-Variable Requirements Roadmaps and their Role in the Requirements Engineering of Adaptive Systems

    CERN Document Server

    Jureta, Ivan; Ernst, Neil A

    2011-01-01

    The requirements roadmap concept is introduced as a solution to the problem of the requirements engineering of adaptive systems. The concept requires a new general definition of the requirements problem which allows for quantitative (numeric) variables, together with qualitative (binary boolean) propositional variables, and distinguishes monitored from controlled variables for use in control loops. We study the consequences of these changes, and argue that the requirements roadmap concept bridges the gap between current general definitions of the requirements problem and its notion of solution, and the research into the relaxation of requirements, the evaluation of their partial satisfaction, and the monitoring and control of requirements, all topics of particular interest in the engineering of requirements for adaptive systems [Cheng et al. 2009]. From the theoretical perspective, we show clearly and formally the fundamental differences between more traditional conception of requirements engineering (e.g., Z...

  6. Combating antibiotic resistance - A Policy Roadmap to Reduce Use of Medically Important Antibiotics in Livestock

    DEFF Research Database (Denmark)

    Price, Lance B.; Newland, Jason; Bole, Aparna

    edical and public health organizations around the world agree that more prudent use of antibiotics in human medicine and in livestock production is paramount to slow the spread of antibiotic resistance. Of particular concern is the widespread use of antibiotics important to human medicine in food...... animals. In the U.S., such use accounts for 70% of all sales of medically important antibiotics. It is against this backdrop that 12 antibiotic resistance experts from the fields of infectious disease medicine, veterinary medicine, microbiology, epidemiology and public health joined to craft a policy...... roadmap to help move the U.S. forward in addressing the contribution of livestock antibiotic use to the growing global threat of antibiotic resistance. The policy roadmap consists of 11 core policy recommendations that are aimed at a broad set of stakeholders: federal, state and local policymakers, food...

  7. The European Hematology Association Roadmap for European Hematology Research: a consensus document.

    Science.gov (United States)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob

    2016-02-01

    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.

  8. Toward Simulating Realistic Pursuit-Evasion Using a Roadmap-Based Approach

    KAUST Repository

    Rodriguez, Samuel

    2010-01-01

    In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. We demonstrate the utility of this approach for a variety of scenarios including pursuit-evasion on terrains, in multi-level buildings, and in crowds. © 2010 Springer-Verlag Berlin Heidelberg.

  9. A New Security Paradigm for Anti-Counterfeiting: Guidelines and an Implementation Roadmap

    Science.gov (United States)

    Lehtonen, Mikko

    Product counterfeitingand piracy continue to plague brand and trademark owners across industry sectors. This chapter analyses the reasons for ineffectiveness of past technical anti-counterfeitingstrategies and formulates managerial guidelines for effective use of RFID in anti-counterfeiting. An implementation roadmap toward secure authentication of products tagged with EPC Gen-2 tags is proposed and possible supply chain locations for product checks are discussed.

  10. Linking Six Sigma to simulation: a new roadmap to improve the quality of patient care.

    Science.gov (United States)

    Celano, Giovanni; Costa, Antonio; Fichera, Sergio; Tringali, Giuseppe

    2012-01-01

    Improving the quality of patient care is a challenge that calls for a multidisciplinary approach, embedding a broad spectrum of knowledge and involving healthcare professionals from diverse backgrounds. The purpose of this paper is to present an innovative approach that implements discrete-event simulation (DES) as a decision-supporting tool in the management of Six Sigma quality improvement projects. A roadmap is designed to assist quality practitioners and health care professionals in the design and successful implementation of simulation models within the define-measure-analyse-design-verify (DMADV) or define-measure-analyse-improve-control (DMAIC) Six Sigma procedures. A case regarding the reorganisation of the flow of emergency patients affected by vertigo symptoms was developed in a large town hospital as a preliminary test of the roadmap. The positive feedback from professionals carrying out the project looks promising and encourages further roadmap testing in other clinical settings. The roadmap is a structured procedure that people involved in quality improvement can implement to manage projects based on the analysis and comparison of alternative scenarios. The role of Six Sigma philosophy in improvement of the quality of healthcare services is recognised both by researchers and by quality practitioners; discrete-event simulation models are commonly used to improve the key performance measures of patient care delivery. The two approaches are seldom referenced and implemented together; however, they could be successfully integrated to carry out quality improvement programs. This paper proposes an innovative approach to bridge the gap and enrich the Six Sigma toolbox of quality improvement procedures with DES.

  11. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  12. A roadmap and best practices for organizations to reduce racial and ethnic disparities in health care.

    Science.gov (United States)

    Chin, Marshall H; Clarke, Amanda R; Nocon, Robert S; Casey, Alicia A; Goddu, Anna P; Keesecker, Nicole M; Cook, Scott C

    2012-08-01

    Over the past decade, researchers have shifted their focus from documenting health care disparities to identifying solutions to close the gap in care. Finding Answers: Disparities Research for Change, a national program of the Robert Wood Johnson Foundation, is charged with identifying promising interventions to reduce disparities. Based on our work conducting systematic reviews of the literature, evaluating promising practices, and providing technical assistance to health care organizations, we present a roadmap for reducing racial and ethnic disparities in care. The roadmap outlines a dynamic process in which individual interventions are just one part. It highlights that organizations and providers need to take responsibility for reducing disparities, establish a general infrastructure and culture to improve quality, and integrate targeted disparities interventions into quality improvement efforts. Additionally, we summarize the major lessons learned through the Finding Answers program. We share best practices for implementing disparities interventions and synthesize cross-cutting themes from 12 systematic reviews of the literature. Our research shows that promising interventions frequently are culturally tailored to meet patients' needs, employ multidisciplinary teams of care providers, and target multiple leverage points along a patient's pathway of care. Health education that uses interactive techniques to deliver skills training appears to be more effective than traditional didactic approaches. Furthermore, patient navigation and engaging family and community members in the health care process may improve outcomes for minority patients. We anticipate that the roadmap and best practices will be useful for organizations, policymakers, and researchers striving to provide high-quality equitable care.

  13. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnyanskiy, M., E-mail: mikhail.turnyanskiy@euro-fusion.org [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Neu, R. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Technische Universität München, Fachgebiet Plasma-Wand-Wechselwirkung, D-85748 Garching (Germany); Albanese, R.; Ambrosino, R. [Assoc. EURATOM/ENEA/CREATE/DIETI – Univ. Napoli Federico II, Via Claudio 21, I-80125 (Italy); Bachmann, C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Brezinsek, S. [Association EURATOM/Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Donne, T. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Eich, T. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Falchetto, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Reimerdes, H. [EPFL, CRPP, CH-1015 Lausanne (Switzerland); Romanelli, F.; Wenninger, R. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany)

    2015-10-15

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  14. Assuring Quality in E-Learning Course Design: The Roadmap

    Science.gov (United States)

    Vlachopoulos, Dimitrios

    2016-01-01

    Quality Assurance (QA) concepts and applications in Higher Education (HE) emerge from evolving meanings related to HE's dynamic relationship with social, economic, cultural, and technological developments. The latter has been redefined by the growth spurred by the forms distance and online education acquired during the last decades. Creating a…

  15. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.|info:eu-repo/dai/nl/375268456; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Schropp, Ruud; Faaij, A.

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  16. Roadmap to tracking based business and intelligent products

    NARCIS (Netherlands)

    Holmström, J.; Kajosaari, R.; Främling, K.; Langius, E.A.F.

    2009-01-01

    Item-centric tracking is an opportunity to increase visibility and control in different operations of a company. The economical feasibility of item-centric tracking is based on recent technological developments for monitoring the material flow on the item-level instead of the material type-level. It

  17. Unmanned Systems Integrated Roadmap, FY2013-2038

    Science.gov (United States)

    2014-01-01

    UGS must meet. Those environments could include being thrown or launched, climbing hills or stairs , and hopping and landing upright. The technologies...Persistent Resilience ......................................................................................................... 61 4.5.1 Size, Weight ...unmanned systems are inherently more persistent based on significantly better fuel/ weight ratios, unmanned systems’ design schema can be better optimized

  18. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Schropp, Ruud; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  19. A comprehensive research roadmap for ICT and ageing

    NARCIS (Netherlands)

    Camarihna-Matos, L.M.; Afsarmanesh, H.; Ferrada, F.; Oliveira, A.I.; Rosas, J.

    2013-01-01

    Ageing societies face tough challenges namely in terms of the pressure on their healthcare and social security systems, which makes it urgent to find new models to accommodate current demographic trends. A possible answer to this challenge may come from new integrated and technology-supported servic

  20. From highways to hyways. California's hydrogen roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Arnold Schwarzenegger wants to turn California into the world's leader in hydrogen technology. For example, by 2010 the West Coast state wants to have 100 filling stations to secure a basic supply of hydrogen for automobile drivers. And the program includes even more extensive measures. (orig.)

  1. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, Ruud; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  2. Electric Vehicles Scenarios and a Roadmap for India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Pathak, Minal

    This report is an attempt to look at the present EV landscape, recent developments in EV markets and the emergent EV technology research. The report analyses future scenarios of passenger transport in India with a specific focus on the role of EVs. The scenarios span from 2010 to 2035 and are ana...

  3. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    Science.gov (United States)

    2005-06-01

    sample sources to be exfoliated cells, body fluids such as blood and saliva, and breath. Collection of tissues and other body fluids requiring risky...M.B., and Miller, A . C . , 2001. “Radiation exposure assessment using cytological and molecular biomarkers,” Radiat. Prot. Dosimetry 9 7, 17–23

  4. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

  5. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    Science.gov (United States)

    2005-01-01

    crude oil production is also changing rapidly (Fig. 4) and additional uncertainty is expected. On the other hand, the fact that fossil fuel resources...day 02 59 42 04 m Figure 4. Top companies in crude oil production in 1972 versus 1995, in million barrels per day. Original data taken from DOE...to Refineries 14.2 Crude Oil Stock Changes, Losses, and Unaccounted for (Net) 0.3 Crude Oil Production 6.5 Unfinished Oils, Blending Components, and

  6. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    Energy Technology Data Exchange (ETDEWEB)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  7. Building a Roadmap for the Biomaterials Science and Technology to Serve Military Needs

    Science.gov (United States)

    2005-08-01

    only tool available is actigraphy , used to estimate sleep time and predict soldier performance subject to sleep deprivation. A number of gaps have been...3) fabricate in a cost-efficient way graded scaffolds with truly engineered and reproducible pore architecture and surface properties. While the...capabilities for situation-dependent missions may include measurement of core temperature, body orientation, and actigraphy , a measure of acceleration

  8. United States Air Force (USAF) Semantic Interoperability Capabilities Based Assessment and Technology Roadmap

    Science.gov (United States)

    2007-03-01

    behavioural aspects of the phenomenology. To enable reasoning about actual real world objects and events, we must provide a way to map (subscribe...application platform for creating Semantic Web applications such as: blogs, wikis, feed aggregators, etc., with built-in SPARQL support and incorporation...RacerPro is an OWL reasoner and inference server for the Semantic Web Raptor The Raptor RDF parser toolkit is a free software / Open Source C library

  9. AISI/DOE Technology Roadmap Program: Cold Work Embrittlement of Interstitial Free Steel

    Energy Technology Data Exchange (ETDEWEB)

    John T Bowker; Pierre Martin

    2002-10-31

    This work addresses the issues of measurement of secondary cold work embrittlement (SCWE) of an IF steel in deep-drawn parts using laboratory tests, and its correlation with real part fracture. It aimed at evaluating the influence of the steel chemistry and processing condition, microstructure, and test conditions, on SCWE as well as the effect of SCWE on fatigue properties. Size 6-in. cups produced with various draw ratios or trimmed at different heights were tested to determine the ductile-to-brittle-transition temperature (DBTT) as a function of strain. The 2-in. cup/expansion test, bend test and fracture of notched specimens were also used to generate information complementary to that provided by the 6-inch cup/expansion test. The relationship between laboratory tests and fracture in real parts was established by testing large-scale parts. The fatigue behavior was investigated in the as-rolled and deep drawn (high stain) conditions, using prestrained specimens taken from the wall of a formed part.

  10. Impact of Smart Grid Technologies on Peak Load to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The IEA's Smart Grids Technology Roadmap identified five global trends that could be effectively addressed by deploying smart grids. These are: increasing peak load (the maximum power that the grid delivers during peak hours), rising electricity consumption, electrification of transport, deployment of variable generation technologies (e.g. wind and solar PV) and ageing infrastructure. Along with this roadmap, a new working paper -- Impact of Smart Grid Technologies on Peak Load to 2050 -- develops a methodology to estimate the evolution of peak load until 2050. It also analyses the impact of smart grid technologies in reducing peak load for four key regions; OECD North America, OECD Europe, OECD Pacific and China. This working paper is a first IEA effort in an evolving modelling process of smart grids that is considering demand response in residential and commercial sectors as well as the integration of electric vehicles.

  11. Preparing the optics technology to observe the hot universe

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, Eric; Wallace, Kotska;

    2014-01-01

    is the Silicon Pore Optics (SPO) [1 to 23], a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry. The paper provides an overview of the programmatic background, the status of SPO technology and gives an outline of the development roadmap...... and activities undertaken and planned by ESA on optics, coatings [24 to 30] and test facilities [31, 33]....

  12. Deep space propulsion a roadmap to interstellar flight

    CERN Document Server

    Long, K F

    2012-01-01

    As humans take their first tentative steps off our home planet, and debate the costs/benefits of sending people back to the Moon and perhaps on to Mars, we must also start to make plans for the day when we will venture forth as pioneers farther out into the Solar System and beyond - perhaps far, far beyond - to explore and settle new worlds around other stars. It is vital that we develop the deep space propulsion technologies that will take us there, first to explore with robotic probes, then to follow ourselves. This is necessary so that if anything catastrophic happened to Earth, our species would survive. And the possibilities for catastrophe are great. An impacting asteroid ended the reign of the dinosaurs, and today we have many other threats such as global war, climate change, pollution, resource limitations and overpopulation. In this book, Kelvin F. Long takes us on all the possible journeys - the mission targets, the technologies we might use to power such journeys, and what scientific knowledge we a...

  13. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  14. Integrated environmental modeling: a vision and roadmap for the future

    Science.gov (United States)

    Laniak, Gerard F.; Olchin, Gabriel; Goodall, Jonathan; Voinov, Alexey; Hill, Mary; Glynn, Pierre; Whelan, Gene; Geller, Gary; Quinn, Nigel; Blind, Michiel; Peckham, Scott; Reaney, Sim; Gaber, Noha; Kennedy, Philip R.; Hughes, Andrew

    2013-01-01

    Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems are characterized by the extent of the environmental system involved, dynamic and interdependent nature of stressors and their impacts, diversity of stakeholders, and integration of social, economic, and environmental considerations. IEM provides a science-based structure to develop and organize relevant knowledge and information and apply it to explain, explore, and predict the behavior of environmental systems in response to human and natural sources of stress. During the past several years a number of workshops were held that brought IEM practitioners together to share experiences and discuss future needs and directions. In this paper we organize and present the results of these discussions. IEM is presented as a landscape containing four interdependent elements: applications, science, technology, and community. The elements are described from the perspective of their role in the landscape, current practices, and challenges that must be addressed. Workshop participants envision a global scale IEM community that leverages modern technologies to streamline the movement of science-based knowledge from its sources in research, through its organization into databases and models, to its integration and application for problem solving purposes. Achieving this vision will require that the global community of IEM stakeholders transcend social, and organizational boundaries and pursue greater levels of collaboration. Among the highest priorities for community action are the development of standards for publishing IEM data and models in forms suitable for automated discovery, access, and integration; education of the next generation of environmental stakeholders, with a focus on transdisciplinary research, development, and

  15. The WHF Roadmap for Reducing CV Morbidity and Mortality Through Prevention and Control of Rheumatic Heart Disease.

    Science.gov (United States)

    Palafox, Benjamin; Mocumbi, Ana Olga; Kumar, R Krishna; Ali, Sulafa K M; Kennedy, Elizabeth; Haileamlak, Abraham; Watkins, David; Petricca, Kadia; Wyber, Rosemary; Timeon, Patrick; Mwangi, Jeremiah

    2017-03-20

    Rheumatic heart disease (RHD) is a preventable non-communicable condition that disproportionately affects the world's poorest and most vulnerable. The World Heart Federation Roadmap for improved RHD control is a resource designed to help a variety of stakeholders raise the profile of RHD nationally and globally, and provide a framework to guide and support the strengthening of national, regional and global RHD control efforts. The Roadmap identifies the barriers that limit access to and uptake of proven interventions for the prevention and control of RHD. It also highlights a variety of established and promising solutions that may be used to overcome these barriers. As a general guide, the Roadmap is meant to serve as the foundation for the development of tailored plans of action to improve RHD control in specific contexts.

  16. Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.

  17. A solar fuels roadmap for Australia - study outcomes

    Science.gov (United States)

    Hinkley, James T.; McNaughton, Robbie K.; Hayward, Jennifer A.; Lovegrove, Keith

    2017-06-01

    This paper summarises the key findings and recommendations of a 3.5 year study into the research, development and demonstration priorities to establish a solar fuels industry in Australia. While Australia has one of the best solar resources in the world, it also has an abundance of conventional fuels such as coal and natural gas. The country is heavily dependent on fossil fuels for its primary energy supply and international trade, and is seeking pathways to reduce emissions intensity. While renewable electricity will be able to displace fossil fuels in the electricity sector, this only addresses about 16% of energy consumption by end use. Concentrating solar fuels (CSF) are produced either in full or in part from concentrated solar energy, and can provide either complete or partial reduction of the CO2 emissions associated with energy consumption. Our study reviewed the various potential solar thermal technology pathways and feedstocks available to produce a range of CSF products such as hydrogen, ammonia, methanol and synthetic gasoline or diesel. We conducted what we believe to be the broadest and most sophisticated evaluation of the many options to identify those that are most prospective, including an evaluation of the expected final fuel costs. The study identified the following opportunities for CSF: • Australia: substitution of imported liquid fuels (gasoline and diesel) with synthetic CSF options would provide fuel security through the utilization of domestic resources. Ammonia is also a potentially attractive CSF product as it is produced in large quantities for fertilisers and explosives. • Export markets: Australia has significant trading relationships with many Asian countries in the energy domain, and CSF fuels could provide a long term future to enable such relationships to continue - or grow - in a carbon constrained world. Japan in particular is considering how to transition to a hydrogen economy, and could be a customer for CSF hydrogen or

  18. Arachnoid membrane: the first and probably the last piece of the roadmap.

    Science.gov (United States)

    Lü, Jian

    2015-03-01

    Most neurosurgical procedures could be performed noninvasively by working through the natural corridors provided by the subarachnoid cisterns. In consequence, the subarachnoid cisterns have been considered as the roadmaps for the microneurosurgeons. The concept and the contents of the cisterns have been well known and described, but the knowledge of the detailed anatomy of the arachnoid membranes, which are the real septa of the cisterns and provide the practical and important landmarks and planes for the dissections during the brain surgeries, is still lacking. The present article reviews the previous reports of the intracranial arachnoid membranes with a special emphasis on the microsurgical anatomy and the clinical significance.

  19. A conceptual roadmap for setting up a system of units in the New SI context

    CERN Document Server

    Mari, Luca

    2016-01-01

    The definition of a system of units is analysed here as a structural problem, for which the physical theory provides the necessary conditions of realization but remains as backgrounder. The structurally more sophisticated option is provided by the so-called Global Constant Definitions, discussed in this paper through a conceptual roadmap intended to separate the components of the definitions based on theoretical foundation from those related to conventional features and, at the same time, to ensure the structural stability of the system and its partial modularity and therefore flexibility. The critical case of the so-called New SI is used as an illustration example.

  20. Improved Oceanographic Measurements from SAR Altimetry: Results and Scientific Roadmap from ESA CryoSat Plus for Oceans Project

    Science.gov (United States)

    Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.

    2016-08-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.