WorldWideScience

Sample records for ohio state university reactor

  1. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  2. Loading and initial start-up testing of the low-enrichment uranium core for the Ohio State University research reactor

    International Nuclear Information System (INIS)

    Talnagi, J.W.

    1989-01-01

    Conversion of the Ohio State University Research Reactor (OSURR) from high-enrichment uranium (HEU) fuel to low-enrichment uranium (LEU) fuel elements was begun in August 1985, with funding provided by the U.S. Department of Energy (DOE) and the university. Conversion of the OSURR from HEU to LEU fuel was successfully completed. The reactor is operational at 10-kW steady-state thermal power. Measurements of selected core parameters have been made and compared with predicted values and previous values for the HEU core. In general, measured results agree well with predicted performance, and minor changes have been detected in certain core parameters as a result of the change to LEU fuel. Future plans include additional core testing and a possible increase in operating power

  3. Neutronic design of a LEU [low enriched uranium] core for the Ohio State University research reactor

    International Nuclear Information System (INIS)

    Seshadri, M.D.; Aybar, H.S.; Aldemir, T.

    1987-01-01

    The 10 kw HEU fuelled Ohio State University Reactor (OSURR) will be upgraded to operate at 500 kW with standardized 125 g 235 U LEU U 3 Si 2 fuel plates. An earlier scoping study based on two-dimensional diffusion calculations has identified the potential LEU core configurations for the conversion/upgrade of OSURR using the standardized plates in a 16-plate (+ 2 dummy plates) standard and 10-scoping study is improved for a more precise determination of the excess reactivities and safety rod worths for these potential configurations. Comparison of the results obtained by the improved model to experimental results and to the results of full-core Monte Carlo simulations shows excellent agreement. The results also indicate that the conversion/upgrade of OSURR can be realized with three possible LEU core configurations while maintaining a cold, clean shutdown margin of 1.57-1.91 % Δ k/k, depending on the configuration used. (Author)

  4. The Use of Institutional Repositories: The Ohio State University Experience

    Science.gov (United States)

    Connell, Tschera Harkness

    2011-01-01

    In this paper the author compares the use of digital materials that have been deposited in The Ohio State University (OSU) Knowledge Bank (KB). Comparisons are made for content considered in scope of the university archives and those considered out of scope, for materials originating from different campus sources, and for different types of…

  5. Analysis of photorefractive keratectomy (PRK) results at The Ohio State University

    Science.gov (United States)

    Roberts, Cynthia J.; Lembach, R. G.

    1993-06-01

    The Ohio State University (OSU) is one site of an FDA controlled investigational study to evaluate the safety and efficacy of excimer laser photorefractive keratectomy (PRK). This is a report of the current Phase III results at OSU for cases at 6 months post surgery as of 12/31/92.

  6. Qualitative assessment of the value of the Ohio State University TRIGA reactor

    International Nuclear Information System (INIS)

    Binney, S.E.; Johnson, A.G.

    1989-01-01

    The Oregon State University (OSU) TRIGA Reactor (OSTR) is a major regional research, training, and service facility. The OSTR supports a wide variety of organizations at the local, state, regional, national, and international levels. Examples of usage of the OSTR are given in this paper to serve as a basis for assessing the value of the OSTR to its user organizations. It is difficult to assess the value of a facility such as the OSTR quantitatively, primarily because a dollar value cannot be assigned to many of the services that the OSTR performs, e.g., forensic analysis to assist police agencies in criminal cases. Significant qualitative statements can be made, however, to demonstrate the fact that the value of a research reactor facility such as the OSTR substantially outweighs the capital and operating costs of such a facility. Analysis of the data presented above clearly indicates that the value of the OSTR facility is overwhelmingly positive, i.e., the benefits associated with the services provided by the OSTR facility outweigh the cost of providing such services by perhaps as much as an order of magnitude

  7. Oregon State University TRIGA Reactor annual report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.; Ringle, J.C.

    1979-08-31

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included.

  8. Oregon State University TRIGA Reactor annual report

    International Nuclear Information System (INIS)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.; Ringle, J.C.

    1979-01-01

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included

  9. University Reactor Sharing Program. Period covered: September 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Hajek, B.K.; Myser, R.D.; Miller, D.W.

    1982-12-01

    During the period from September 1, 1981 to August 31, 1982, the Ohio State University Nuclear Reactor Laboratory participated in the Reactor Sharing Program by providing services to eight colleges and universities. A laboratory on Neutron Activation Analysis was developed for students in the program. A summary of services provided and a copy of the laboratory procedure are attached. Services provided in the last funded period were in three major areas. These were neutron activation analysis, nuclear engineering labs, and introductions to nuclear research. One group also performed radiation surveys and produced isotopes for calibration of their own analytical equipment

  10. University Reactor Instrumentation grant program. Final report, September 7, 1990--August 31, 1995

    International Nuclear Information System (INIS)

    Talnagi, J.W.

    1998-01-01

    The Ohio State University Nuclear Reactor Laboratory (OSU NRL) participated in the Department of Energy (DOE) grant program commonly denoted as the University Reactor Instrumentation (URI) program from the period September 1990 through August 1995, after which funding was terminated on a programmatic basis by DOE. This program provided funding support for acquisition of capital equipment targeted for facility upgrades and improvements, including modernizing reactor systems and instrumentation, improvements in research and instructional capabilities, and infrastructure enhancements. The staff of the OSU NRL submitted five grant applications during this period, all of which were funded either partially or in their entirety. This report will provide an overview of the activities carried out under these grants and assess their impact on the OSU NRL facilities

  11. Mixed enrichment core design for the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Mayo, C.W.; Verghese, K.; Huo, Y.G.

    1997-12-01

    The North Carolina State University PULSTAR Reactor license was renewed for an additional 20 years of operation on April 30, 1997. The relicensing period added additional years to the facility operating time through the end of the second license period, increasing the excess reactivity needs as projected in 1988. In 1995, the Nuclear Reactor Program developed a strategic plan that addressed the future maintenance, development, and utilization of the facility. Goals resulting from this plan included increased academic utilization of the facility in accordance with its role as a university research facility, and increased industrial service use in accordance with the mission of a land grant university. The strategic plan was accepted, and it is the intent of the College of Engineering to operate the PULSTAR Reactor as a going concern through at least the end of the current license period. In order to reach the next relicensing review without prejudice due to low excess reactivity, it is desired to maintain sufficient excess reactivity so that, if relicensed again, the facility could continue to operate without affecting users until new fuel assistance was provided. During the NC State University license renewal, the operation of the PULSTAR Reactor at the State University of New York at Buffalo (SUNY Buffalo) was terminated. At that time, the SUNY Buffalo facility had about 240 unused PULSTAR Reactor fuel pins with 6% enrichment. The objective of the work reported here was to develop a mixed enrichment core design for the NC State University PULSTAR reactor which would: (1) demonstrate that 6% enriched SUNY buffalo fuel could be used in the NC State University PULSTAR Reactor within the existing technical specification safety limits for core physics parameters; (2) show that use of this fuel could permit operating the NC State University PULSTAR Reactor to 2017 with increased utilization; and (3) assure that the decision whether or not to relicense the facility would

  12. Research related to boron neutron capture therapy at The Ohio State University

    International Nuclear Information System (INIS)

    Barth, R.F.; Soloway, A.H.; Alam, F.

    1986-01-01

    Research in the area of boron neutron capture therapy (BNCT) at The Ohio State University is a highly multidisciplinary effort involving approximately twenty investigators in nine different departments. Major areas of interest include: (1) Boronation of monoclonal antibodies directed against tumor-associated antigens for the delivery of 10 B; (2) Synthesis of 10 B-containing derivatives of promazines and porphyrins that possess tumor-localizing properties; (3) Development of a rat model for the treatment of glioblastoma by BNCT; (4) Quantitation and microdistribution of 10 B in tissues by means of a solid state nuclear track detector. The ultimate goal of this research is to carry out the extensive preclinical studies that are required to bring BNCT to the point of a clinical trial. 13 references

  13. Archive of Geosample Data and Information from the Ohio State University Byrd Polar and Climate Research Center (BPCRC) Sediment Core Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Byrd Polar and Climate Research Center (BPCRC) Sediment Core Repository operated by the Ohio State University is a partner in the Index to Marine and Lacustrine...

  14. Archive of information about geological samples available for research from the Ohio State University Byrd Polar and Climate Research Center (BPCRC) Polar Rock Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Rock Repository (PRR) operated by the Byrd Polar and Climate Research Center (BPCRC) at the Ohio State University is a partner in the Index to Marine and...

  15. The United States fluoride-salt-cooled high-temperature reactor program

    International Nuclear Information System (INIS)

    Holcomb, David E.

    2013-01-01

    ) is leading an integrated university research project team consisting of the University of California at Berkeley (UCB) and the University of Wisconsin (UW). The university program includes developing a test reactor conceptual design, hydraulic and thermal performance modeling using surrogate materials, and material performance testing. Ohio State University, Georgia Institute of Technology, and Johns Hopkins University also have FHR supportive technology development programs under way. (author)

  16. The Graduate Program in Pharmacology at the Ohio State University College of Pharmacy

    Science.gov (United States)

    Burkman, Allan M.

    1976-01-01

    Ohio State's traditional graduate program is discussed in terms of student requirements, including competence in research strategy and experimental design, manipulative technique, and oral and written communication. Methods for meeting these requirements are reviewed briefly. (LBH)

  17. Use of the Oregon State University TRIGA reactor for education and training

    International Nuclear Information System (INIS)

    Dodd, B.

    1989-01-01

    This paper summarizes the recent use of the Oregon State University TRIGA Reactor (OSTR) for education and training. In particular, data covering the last 5 yr are presented, which cover education through formal university classes, theses, public information, and school programs. Training is covered by presenting data on domestic and foreign reactor operator training, health physics training, and neutron activation analysis training. While education and training only occupy ∼16% of the OSTR's total use time, nevertheless, this is an important mission of all nonpower reactors that cannot be performed effectively in any other way

  18. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

    Directory of Open Access Journals (Sweden)

    Rizzoni Giorgio

    2015-01-01

    Full Text Available The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR. Hybrid Electric Vehicle (HEV technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a series of control algorithms that have been developed in simulation and implemented in prototype vehicles for charge-sustaining HEVs at OSU-CAR. These solutions span from fuzzy-logic control algorithms to more sophisticated model-based optimal control methods. Finally, methods developed for plug-in HEVs energy management are also discussed

  19. Getting Real Results with Ohio State University Extension’s Real Money. Real World. Program

    Directory of Open Access Journals (Sweden)

    Theresa M. Ferrari

    2010-06-01

    Full Text Available Youth development organizations have a unique opportunity to offer programs that help young people develop financial skills they need to become successful adults. This article describes Ohio State University Extension’s Real Money. Real World. (RMRW and the systematic approach used to evaluate its effectiveness. The RMRW curriculum includes an active, hands-on experience that gives young people the opportunity to make lifestyle and budget choices similar to those they will make as adults. The realistic simulation creates a teachable moment. The outcomes of the statewide evaluation clearly indicate the curriculum accomplishes its goals of raising awareness, changing attitudes, and motivating students to plan for behavior changes concerning financial management, education, and career choices. The article concludes with a discussion of the organizational outcomes of conducting the evaluation.

  20. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  1. University research reactors in the United States: Their role and value

    International Nuclear Information System (INIS)

    1988-01-01

    This report is primarily addressed to the people who make decisions affecting the levels of future university reactor programs URR: university administrators, department heads, federal policy makers, state and local policy makers, those in industry and government who depend upon a supply of nuclear-trained personnel, and those who are concerned with the future of the many sciences that benefit from the unique capabilities of nuclear-based techniques as well as from the nuclear sciences themselves. The major thrust of this report is to illustrate the scientific and social benefits and contributions associated with well-managed and well-funded university reactor programs. The intent is to help a decision maker gain a perspective and appreciation of the scientific, academic, social, and technical values of URR programs. The report also examines the role of university-like reactors in Europe, where a productive community of researchers is apparently served in an exemplary manner. The committee, assesses the security and safeguard needs at small reactors in a university setting in order to help gain a perspective on the potential hazards and relative risks involved. The last chapter discusses the kind of commitment and support needed if a significant population of URRs is to remain productive. 83 refs., 11 figs., 2 tabs

  2. Education and training activities at North Carolina State University's PULSTAR reactor

    International Nuclear Information System (INIS)

    Mayo, C.W.

    1992-01-01

    Research reactor utilization has been an integral part of the North Carolina State University's (NCSU's) nuclear engineering program since its inception. The undergraduate curriculum has a strong teaching laboratory component. Graduate classes use the reactor for selected demonstrations, experiments, and projects. The reactor is also used for commercial power reactor operator training programs, neutron radiography, neutron activation analysis (NAA), and sample and tracer activation for industrial short courses and services as part of the university's land grant mission. The PULSTAR reactor is a 1-MW pool-type reactor that uses 4% enriched UO 2 pellet fuel in Zircaloy II cladding. Standard irradiation facilities include wet exposure ports, a graphite thermal column, and a pneumatic transfer system. In the near term, general facility upgrades include the installation of signal isolation and computer data acquisition and display functions to improve the teaching and research interface with the reactor. In the longer term, the authors foresee studies of new core designs and the development of beam experiment design tools. These would be used to study modifications that may be desired at the end of the current core life and to undertake the development of new research instruments

  3. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  4. The Ohio Schools Pest Management Survey: A Final Report.

    Science.gov (United States)

    2001

    In 2001, the Environmental Studies Senior Capstone Seminar class at Denison University helped the state of Ohio work to prevent harmful pesticide use in schools. In cooperation with Ohio State University's Integrated Pest Management (IPM) in Schools Program, Denison conducted a statewide survey of school districts to determine current pest…

  5. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Pennsylvania State University

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Evaluation Report for the application filed by the Pennsylvania State University for a renewal of Operating License R-2 to continue to operate the Pennsylvania State University Breazeale Reactor (PSBR) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the campus in University Park, Pennsylvania. On the basis of its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the environment

  6. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  7. Ten-year utilization of the Oregon State University TRIGA Reactor (OSTR)

    International Nuclear Information System (INIS)

    Ringle, John C.; Anderson, Terrance V.; Johnson, Arthur G.

    1978-01-01

    The Oregon State University TRIGA Reactor (OSTR) has been used heavily throughout the past ten years to accommodate exclusively university research, teaching, and training efforts. Averages for the past nine years show that the OSTR use time has been as follows: 14% for academic and special training courses; 44% for OSU research projects; 6% for non-OSU research projects; 2% for demonstrations for tours; and 34% for reactor maintenance, calibrations, inspections, etc. The OSTR has operated an average of 25.4 hours per week during this nine-year period. Each year, about 20 academic courses and 30 different research projects use the OSTR. Visitors to the facility average about 1,500 per year. No commercial radiations or services have been performed at the OSTR during this period. Special operator training courses are given at the OSTR at the rate of at least one per year. (author)

  8. Pennsylvania State University Breazeale Nuclear Reactor. Thirtieth annual progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1985-08-01

    This report is the thirtieth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor and covers such topics as: personnel; reactor facility; cobalt-60 facility; education and training; Radionuclear Application Laboratory; Low Level Radiation Monitoring Laboratory; and facility research utilization

  9. Ohio State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio

  10. Ohio State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  11. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  12. Applications of Oregon State University's TRIGA reactor in health physics education

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1990-01-01

    The Oregon State University TRIGA reactor (OSTR) is used to support a broad range of traditional academic disciplines, including anthropology, oceanography, geology, physics, nuclear chemistry, and nuclear engineering. However, it also finds extensive application in the somewhat more unique area of health physics education and research. This paper summarizes these health physics applications and briefly describes how the OSTR makes important educational contributions to the field of health physics

  13. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Michigan State University (Docket No. 50-294)

    International Nuclear Information System (INIS)

    1984-08-01

    This Safety Evaluation Report for the application filed by the Michigan State University (MSU) for a renewal of operating license number R-114 to continue to operate the TRIGA Mark I research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Michigan State University and is located on the campus of Michigan State University in East Lansing, Ingham County, Michigan. The staff concludes that the TRIGA reactor facility can continue to be operated by MSU without endangering the health and safety of the public

  14. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  15. Joseph V. Denney, the Land-Grant Mission, and Rhetorical Education at Ohio State: An Institutional History

    Science.gov (United States)

    Mendenhall, Annie S.

    2011-01-01

    This essay provides an account of The Ohio State University's (OSU) rhetoric department during the tenure of Joseph Villiers Denney, arguing that he appropriated and repurposed national trends in education and rhetoric in ways that complicate the narrative of rhetoric and composition's decline in the late nineteenth century. In this essay, the…

  16. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  17. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  18. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  19. Safety evaluation report related to the renewal of the operating license for the Washington State University TRIGA reactor. Docket No. 50-27

    International Nuclear Information System (INIS)

    1982-05-01

    This Safety Evaluation Report for the application filed by the Washington State University (WSU) for a renewal of operating license number R-76 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Washington State University and is located on the WSU campus in Pullman, Whitman County, Washington. The staff concludes that the TRIGA reactor facility can continue to be operated by WSU without endangering the health and safety of the public

  20. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  1. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  2. Twenty-ninth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor, July 1, 1983-June 30, 1984

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1984-07-01

    The twenty-ninth annual progress report of the operation of the Pennsylvania State University Breazeale Reactor is submitted in accordance with the requirements of Contract DE-AC02-76ER03409 with the United States Department of Energy. This report also provides the University administration with a summary of the operation of the facility for the past year

  3. Andiamo, a Graphical User Interface for Ohio University's Hauser-Feshbach Implementation

    Science.gov (United States)

    Brooks, Matthew

    2017-09-01

    First and foremost, I am not a physicist. I am an undergraduate computer science major/Japanese minor at Ohio University. However, I am working for Zach Meisel, in the Ohio University's physics department. This is the first software development project I've ever done. My charge is/was to create a graphical program that can be used to more easily set up Hauser-Feshbach equation input files. The input files are of the format expected by the Hauser-Feshbach 2002 code developed by a handful of people at the university. I regularly attend group meetings with Zach and his other subordinates, but these are mostly used as a way for us to discuss our progress and any troubles or roadblocks we may have encountered. I was encouraged to try to come with his group to this event because it could help expose me to the scientific culture of astrophysics research. While I know very little about particles and epic space events, my poster would be an informative and (hopefully) inspiring one that could help get other undergraduates interested in doing object oriented programming. This could be more exposure for them, as I believe a lot of physics majors only learn scripting languages.

  4. U.S. Department of Energy University Reactor Instrumentation Program Final Report for 1992-94 Grant for the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Vernetson, William G.

    1999-01-01

    Overall, the instrumentation obtained under the first year 1992-93 University Reactor Instrumentation Program grant assured that the goals of the program were well understood and met as well as possible at the level of support provided for the University of Florida Training Reactor facility. Though the initial grant support of $21,000 provided toward the purchase of $23,865 of proposed instrumentation certainly did not meet many of the facility's needs, the instrumentation items obtained and implemented did meet some critical needs and hence the goals of the Program to support modernization and improvement of reactor facilities such as the UFTR within the academic community. Similarly, the instrumentation obtained under the second year 1993-94 University Reactor Instrumentation Program grant again met some of the critical needs for instrumentation support at the UFTR facility. Again, though the grant support of $32,799 for proposed instrumentation at the same cost projection does not need all of the facility's needs, it does assure continued facility viability and improvement in operations. Certainly, reduction of forced unavailability of the reactor is the most obvious achievement of the University Reactor Instrumentation Program to date at the UFTR. Nevertheless, the ability to close out several expressed-inspection concerns of the Nuclear Regulatory Commission with acquisition of the low level survey meter and the area radiation monitoring system is also very important. Most importantly, with modest cost sharing the facility has been able to continue and even accelerate the improvement and modernization of a facility, especially in the Neutron Activation Analysis Laboratory, that is used by nearly every post-secondary school in the State of Florida and several in other states, by dozens of departments within the University of Florida, and by several dozen high schools around the State of Florida on a regular basis. Better, more reliable service to such a broad

  5. Ohio University tandem Van de Graaff accelerator. Final report

    International Nuclear Information System (INIS)

    Lane, R.O.

    1977-11-01

    A summary is given of the work carried out at the John Edwards Tandem Accelerator Laboratory of Ohio University during the period 1970 to 1977 on studies of neutron-nucleus interactions and nuclear structure using neutrons as probes. This work utilizes the main and unique characteristic of the accelerator: high current, high voltage tandem. Certain applied areas were also studied, such as the production of short-lived isotopes for use in medical diagnoses, production of very high neutron intensity to observe possible sputtering effects, and proton induced x-ray emission with a microprobe beam

  6. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  7. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  8. Ohio State University Nuclear Reactor Laboratory HEU fuel shipment summary. Final

    International Nuclear Information System (INIS)

    1997-01-01

    In November 1988, OSURR converted from HEU fuel to LEU fuel. As a result they needed to get rid of their HEU fuel by shipping it to Savannah River. The players in the fuel shipping game are: OSURR as the keeper of the fuel; DOE as the owner of fuel and shipper of record; Tri-State Motor Transit Co. for transporting the cask; Muth Brothers as the rigger responsible for getting the cask on and off the truck and in and out of the building; Hoffman LaRoche/Cintichem as the owner of the cask; Savannah River as the receiver of the fuel; and the NRC for approval of the Security Plan, QA Plan, etc. This report gives a chronological history of the events from February 1989 to June 1, 1995, the actual day of shipment. The cask was received at Savannah River on June 2, 1995

  9. Economic effects of Ohio's smoke-free law on Kentucky and Ohio border counties.

    Science.gov (United States)

    Pyles, Mark K; Hahn, Ellen J

    2011-01-01

    To determine if the Ohio statewide smoke-free law is associated with economic activity in Ohio or Kentucky counties that lie on the border between the two states. In November 2006, Ohio implemented a comprehensive statewide smoke-free law for all indoor workplaces. A feasible generalised least squares (FLGS) time series design to estimate the impact of the Ohio smoke-free law on Kentucky and Ohio border counties. Six Kentucky and six Ohio counties that lie on the border between the two states. All reporting hospitality and accommodation establishments in all Kentucky and Ohio counties including but not limited to food and drinking establishments, hotels and casinos. Total number of employees, total wages paid and number of reported establishments in all hospitality and accommodation services, 6 years before Ohio's law and 1 year after. There is no evidence of a disproportionate change in economic activity in Ohio or Kentucky border counties relative to their non-border counterparts. There was no evidence of a relation between Ohio's smoke-free law and economic activity in Kentucky border counties. The law generated a positive influence on wages and number of establishments in Ohio border counties. The null result cannot be explained by low test power, as minimum changes necessary in the dependent variables to detect a significant influence are very reasonable in size. Our data add to the large body of evidence that smoke-free laws are neutral with respect to the hospitality business across jurisdictions with and without laws.

  10. Safety evaluation report related to the renewal of the operating license for the Research Reactor at the State University of New York at Buffalo, Docket No. 50-57

    International Nuclear Information System (INIS)

    1983-05-01

    This Safety Evaluation Report for the application filed by the State University of New York at Buffalo for a renewal of Operating License R-77 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned by the State University of New York and is located on the campus in Buffalo, New York. Based on its technical review, the staff concludes that the reactor facility can continue to be operated by the University without endangering the health and safety of the public or endangering the environment

  11. Strong leadership and teamwork drive culture and performance change: Ohio State University Medical Center 2000-2006.

    Science.gov (United States)

    Sanfilippo, Fred; Bendapudi, Neeli; Rucci, Anthony; Schlesinger, Leonard

    2008-09-01

    Several characteristics of academic health centers have the potential to create high levels of internal conflict and misalignment that can pose significant leadership challenges. In September 2000, the positions of Ohio State University (OSU) senior vice president for health sciences, dean of the medical school, and the newly created position of chief executive officer of the OSU Medical Center (OSUMC) were combined under a single leader to oversee the OSUMC. This mandate from the president and trustees was modeled after top institutions with similar structures. The leader who assumed the role was tasked with improving OSUMC's academic, clinical, and financial performance. To achieve this goal, the senior vice president and his team employed the service value chain model of improving performance, based on the premise that leadership behavior/culture drives employee engagement/satisfaction, leading to customer satisfaction and improved organizational performance. Implementing this approach was a seven-step process: (1) selecting the right leadership team, (2) assessing the challenges and opportunities, (3) setting expectations for performance and leadership behavior, (4) aligning structures and functions, (5) engaging constituents, (6) developing leadership skills, and (7) defining strategies and tracking goals. The OSUMC setting during this period provides an observational case study to examine how these stepwise changes, instituted by strong leadership and teamwork, were able to make and implement sound decisions that drove substantial and measurable improvements in the engagement and satisfaction of faculty and staff; the satisfaction of students and patients; and academic, clinical, and financial performance.

  12. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  13. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-07-01

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain on the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.

  14. Safety-evaluation report related to the renewal of the operating license for the research reactor at the Iowa State University (Docket No. 50-116)

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by the Iowa State University (ISU) for a renewal of the Class 104 Operating License R-59 to continue to operate its Argonaut-type research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Iowa State University, and is located on the ISU campus in Ames, Story County, Iowa. The staff concludes that the reactor facility can continue to be operated by ISU without endangering the health and safety of the public. The principal matters reviewed are: design, testing, and performance of the reactor components and systems; the expected consequences of credible accidents; the licensee's management organization; the method used for the control of radiological effluents; the licensee's technical specifications; financial data and information; the physical protection program; procedures for training reactor operators; and emergency plans. 11 references, 15 figures, 13 tables

  15. Future plans on the Kyoto University Research Reactor (KUR)

    International Nuclear Information System (INIS)

    Shibata, Seiichi

    2000-01-01

    The Research Reactor Institute (RRI), Kyoto University, for aiming at performing the 'Experiments using a reactor and its related research', was established in Showa 38 (1963) as a cooperative research institute for universities and so on in allover Japan. Operation using KUR of one of main facilities in RRI was started by 1 MW of its rated output in 1964, and converted to 5 MW in 1968, after which through development , addition and modification of various research apparatus it has been proposed to the cooperative application researches with universities and so on in allover Japan, hitherto. Among these periods, its research organization is improved to six departments containing twenty divisions and two attached research facilities to progress some investigations on future plans at RRI for response to new researching trends. Here were described on present state of research on use of low concentrated uranium fuels at research reactor, and future plans on neutron factory and hybrid reactor. The former aims at establishment of a new research facility capable of alternating to KUR for future academic research on research reactor containing high quality and high degree application of neutron field and safety management and feature upgrading of nuclear energy. And, the latter aims at development on an accelerator drive uncritical reactor combined an accelerator neutron source and an uncritical reactor. (G.K.)

  16. Digital Learning Compass: Distance Education State Almanac 2017. Ohio

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Ohio. The sample for this analysis is comprised of all active, degree-granting…

  17. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  18. Advancing Postsecondary Opportunity, Completion, and Productivity: Essential Performance Indicators for Ohio and Selected Peer States. 2012-2013

    Science.gov (United States)

    Midwestern Higher Education Compact, 2014

    2014-01-01

    This report portrays various performance indicators that are intended to facilitate an assessment of the postsecondary education system in Ohio. Descriptive statistics are presented for Ohio and five other comparison states as well as the nation. Comparison states were selected according to the degree of similarity of population characteristics,…

  19. University Reactor Instrumentation Grant. Final report 08/06/1998 - 08/13/1999

    International Nuclear Information System (INIS)

    Bajorek, S. M.

    2000-01-01

    A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license

  20. DOE/university reactor sharing

    International Nuclear Information System (INIS)

    Young, H.H.

    1985-01-01

    The objective of the US Department of Energy's program of reactor sharing is to strengthen nuclear science and engineering instruction and nuclear research opportunities in non-reactor-owning colleges and universities. The benefits of the program and need for the continuation of the program in the future are discussed

  1. Refurbishment of the Oregon State University rotating rack

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1991-01-01

    TRIGA reactors have experienced operational difficulties with the rotating racks used for sample irradiation. The most common problem occurs when the rack seizes, and the corrective action taken is replacement of the rack assembly. This paper describes the symptoms leading to rack failure and a refurbishment procedure to correct the problem without replacing the rack at the Oregon State University TRIGA Reactor (OSTR) Facility. This procedure was accomplished with extraordinary results from an operational and a radiation protection standpoint. The refurbishment has extended the useful life of this reactor facility with minimal financial impact. Given the declining number of university-based research reactors, it is in the nation's best interest to maintain the currently operating research reactor facilities, and the described procedure can aid in achieving that goal

  2. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  3. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  4. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  5. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2010-01-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  6. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K.; Allison, C.M. [Innovative Systems Software, 1242 South Woodruff Avenue, Idaho Falls, Idaho 83404 (United States)

    2010-07-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  7. Education for university students, high school teachers and the general public using the Kinki University Reactor

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2007-01-01

    Atomic Energy Research Institute of Kinki University is equipped with a nuclear reactor which is called UTR-KINKI. UTR is the abbreviation for University Teaching and Research Reactor. The reactor is the first one installed in Japanese universities. Though the reactor is owned and operated by Kinki University, its use is widely open to scientists and students from other universities and research institutions. The reactor is made the best of teaching instrument for the training of high school teachers. In addition, the reactor is utilized for general public education concerning atomic energy. (author)

  8. University of Arizona TRIGA reactor. Annual utilization report, 1984-1985

    International Nuclear Information System (INIS)

    Nelson, G.W.

    1986-01-01

    This is the annual report for the University of Arizona TRIGA Reactor under Contract No. DE-AC02-76ER02096 covering the period July 1, 1984 through June 30, 1985, including the 1984-85 Academic Year. The purpose of this report is to document the facility usage which is possible because of DOE support under the contract. The reactor is operated under License R-52 with the United States Nuclear Regulatory Commission

  9. By Design: Professional Development School Partnerships at the Gladys W. and David H. Patton College of Education, Ohio University and Athens City Schools

    Science.gov (United States)

    Weade, Ginger; Kennedy, Marcy Keifer; Armstrong, Jennifer; Douglas, Maria; Hoisington, Liz; More, Stephanie; Mullins, Heidi; West, Lindsey; Helfrich, Sara; Kennedy, Chris; Miles, Tracy; Payne, Sue; Camara, Kristin; Lemanski, Laura; Henning, John; Martin, Carl

    2014-01-01

    Outreach and engagement that connects the Patton College at Ohio University with P-12 schools has been a strong tradition in the Southeastern Ohio/Appalachian region. In the mid-1980s, a partnership aligned with the Coalition of Essential Schools and 9 "Common Principles"' was one of the first. Alignment with 19 "Postulates" of…

  10. Status of Japanese university reactors

    International Nuclear Information System (INIS)

    Fujita, Yoshiaki

    1999-01-01

    Status of Japanese university reactors, their role and value in research and education, and the spent fuel problem are presented. Some of the reactors are now faced by severe difficulties in continuing their operation services. The point of measures to solve the difficulties is suggested. (author)

  11. DOE University Reactor Sharing Program. Renewal for 1994--1995

    International Nuclear Information System (INIS)

    Chappas, W.J.; Adams, V.G.

    1994-01-01

    The Department of Energy University Reactor Sharing Program at University of Maryland, College Park (UMCP) has, once again, stimulated a broad use of the reactor facilities by undergraduate and graduate students, visitors, and professionals. Participants are exposed to topics such as nuclear engineering, radiation safety, and nuclear reactor operations. This information is presented through various means including tours, slide presentations, experiments, and discussions. Student research using the MUTR is also encouraged. In addition, the Reactor Sharing Program here at the University of Maryland does not limit itself to the confines of the TRIGA reactor facility. Incorporated in the program are the Maryland University Neutron Activation Analysis Laboratory, the Maryland University Radiation Effects Laboratory, and the UMCP 2x4 Thermal Hydraulic Loop. These facilities enhance and give an added dimension to the tours and experiments

  12. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  13. Reactor console replacement at Washington State University

    International Nuclear Information System (INIS)

    Lovas, Thomas A.

    1978-01-01

    A replacement reactor console was installed in 1977 at the W.S.U. 1 MW TRIGA-fueled reactor as the final step in an instrumentation upgrade program. The program was begun circa 1972 with the design, construction and installation of various systems and equipment. Major instruments were installed in the existing console and tested in the course of reactor operation. The culmination of the program was the installation of a cubicle designed and constructed to house the updated instrumentation. (author)

  14. U.S. Department of Energy University Reactor Sharing Program at the University of Florida. Final report for period August 15, 2000 - May 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Vernetson, William G.

    2002-01-01

    Department of Energy Grant Number DE-FG02-96NE38152 was supplied to the University of Florida Training Reactor (UFTR) facility through the U.S. Department of Energy's University Reactor Sharing Program. The renewal proposal submitted in January 2000 originally requested over $73,000 to support various external educational institutions using the UFTR facilities in academic year 2000-01. The actual Reactor Sharing Grant was only in the amount of $40,000, all of which has been well used by the University of Florida as host institution to support various educational institutions in the use of our reactor and associated facilities as indicated in the proposal. These various educational institutions are located primarily within the State of Florida. However, when the 600-mile distance from Pensacola to Miami is considered, it is obvious that this Grant provides access to reactor utilization for a broad geographical region and a diverse set of user institutions serving over fourteen million inhabitants throughout the State of Florida and still others throughout the Southeast.

  15. Severe transient analysis of the Penn State University Advanced Light Water Reactor

    International Nuclear Information System (INIS)

    Borkowski, J.A.

    1988-08-01

    The Penn State University Advanced Light Water Reactor (PSU ALWR) incorporates various passive and active ultra-safe features, such as continuous online injection and letdown for pressure control, a raised-loop primary system for enhanced natural circulation, a dedicated primary reservoir for enhanced thermal hydraulic control, and a secondary shutdown turbine. Because of the conceptual design basis of the project, the dynamic system modeling was to be performed using a code with a high degree of flexibility. For this reason the modeling has been performed with the Modular Modeling System (MMS). The basic design and normal transients have been performed successfully with MMS. However, the true test of an inherently safe concept lies in its response to more brutal transients. Therefore, such a demonstrative transient is chosen for the PSU ALWR: a turbine trip and reactor scram, concurrent with total loss of offsite ac power. Diesel generators are likewise unavailable. This transient demonstrates the utility of the pressure control system, the shutdown turbine generator, and the enhanced natural circulation of the PSU ALWR. The low flow rates, low pressure drops, and large derivative states encountered in such a transient pose special problems for the modeler and for MMS. The results of the transient analyses indicate excellent performance by the PSU ALWR in terms of inherently safe operation. The primary coolant enters full natural circulation, and removes all decay heat through the steam generators. Further, the steam generators continually supply sufficient steam to the shutdown power system, despite the abrupt changeover to the auxiliary feedwater system. Finally, even with coincident failures in the pressurization system, the primary repressurizes to near-normal values, without overpressurization. No core boiling or uncovery is predicted, and consequently fuel damage is avoided. 17 refs., 19 figs., 4 tabs

  16. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murthy, G.S.

    1999-01-01

    At low power research reactor is being set up in Andhra University to cater to the needs of researchers and isotope users by the Department of Atomic Energy in collaboration with Andhra University. This reactor is expected to be commissioned by 2001-02. Departments like Chemistry, Earth Sciences, Physics, Life Sciences, Pharmacy, Medicine and Engineering would be the beneficiaries of the availability of this reactor. In this paper, details of the envisaged research programme and training activities are discussed. (author)

  17. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab

  18. Conversion and standardization of university reactor fuels using low-enrichment uranium - Options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The U.S. Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the U.S. Department of Energy. (author)

  19. Measuring the productivity of university research reactors

    International Nuclear Information System (INIS)

    Voth, M.H.

    1989-01-01

    University Research Reactors (URRs) on 33 campuses in the United States provide valuable contributions to academic instruction and research programs. In most cases, there are no alternative diagnostic techniques to supplant the need for a reactor and associated facilities. Since URRs constitute a major financial commitment, it is important that they be operated in a productive manner. Productivity may be defined as the sum of new knowledge generated, existing knowledge transferred to others, and analytical services provided to assist in the generation of new knowledge; another definition of productivity is this sum expressed as a function of the cost incurred. In either case, a consistent measurement is difficult and more qualitative than quantitative. A uniform reporting system has been proposed that defines simplified categories through which meaningful comparisons can be performed

  20. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murty, G.S.

    1999-01-01

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  1. The first university research reactor in India

    Energy Technology Data Exchange (ETDEWEB)

    Murty, G.S. [Co-ordinator, Low Power Research Reactor, Andhra Univ., Visakapatnam (India)

    1999-08-01

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  2. OhioLINK: Implementing Integrated Library Services across Institutional Boundaries.

    Science.gov (United States)

    Hawks, Carol Pitts

    1995-01-01

    Discusses the implementation of the OhioLINK (Ohio Library and Information Network) system, an integrated library system linking 23 public and private academic institutions and the Ohio State Library. Topics include a history of OhioLINK; organizational structure; decision-making procedures; public relations strategies; cooperative circulation;…

  3. U.S. university reactors: What they are and what they do

    International Nuclear Information System (INIS)

    Young, H.H.

    1992-01-01

    One of the most underappreciated facts in the academic and industrial communities today is that there are 35 licensed university nuclear research and training reactors in operation on 33 campuses (two universities have two reactors each) in 25 states. These facilities, in conjunction with their respective nuclear engineering and science departments, provide the professional expertise and the backbone of our nation's human resources for exploiting the nuclear sciences and technology on which so much of society depends today. Areas of contribution and service include biomedical applications (therapy and diagnosis), radioisotope tracer applications, neutron activation analysis and detection, materials testing and enhancement, neutron radiography applications, and radioisotope production, to name just a few

  4. The FLIP fuel experience at Washington State University

    International Nuclear Information System (INIS)

    Lovas, Thomas A.

    1977-01-01

    The Washington State University TRIGA-fueled modified G.E. reactor was refueled with a partial TRIGA-FLIP core in February, 1976. The final core loading consisted of 35 FLIP and 75 Standard TRIGA fuel rods and provided a core excess reactivity of $7.98. The observed performance of the reactor did not deviate significantly from the design predictions and specifications. Pulsing tests revealed a maximum power output of 1850 MW with a fuel temperature of 449 deg. C from a $2.50 pulse. Slight power fluctuations at 1 Megawatt steady-state operation and post-pulse power oscillations were observed. (author)

  5. Science to support the understanding of Ohio's water resources, 2016-17

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  6. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  7. Ohio state information handbook: formerly utilized sites remedial action program

    International Nuclear Information System (INIS)

    1981-01-01

    This volume is one of a series produced under contract with the DOE, by POLITECH CORPORATION to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Ohio. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full test of relevant statutes and regulations

  8. Ohio state information handbook: formerly utilized sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-09

    This volume is one of a series produced under contract with the DOE, by POLITECH CORPORATION to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Ohio. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full test of relevant statutes and regulations.

  9. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  10. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  11. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Tigliole, A. Borio Di; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Provasi, M.C.; Salvini, A.; Scian, G.; Vinciguerra, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  12. Lessons from Ebola: Sources of Outbreak Information and the Associated Impact on UC Irvine and Ohio University College Students

    OpenAIRE

    Koralek, Thrissia; Runnerstrom, Miryha G.; Brown, Brandon J.; Uchegbu, Chukwuemeka; Basta, Tania B.

    2016-01-01

    Objectives. We examined the role of outbreak information sources through four domains: knowledge, attitudes, beliefs, and stigma related to the 2014 Ebola virus disease (EVD) outbreak. Methods. We conducted an online survey of 797 undergraduates at the University of California, Irvine (UCI) and Ohio University (OU) during the peak of the outbreak. We calculated individual scores for domains and analyzed associations to demographic variables and news sources. Results. Knowledge of EVD was low ...

  13. Ohio Department of Transportation State Infrastructure Bank Annual Financial Report : Federal Fiscal Year 2009

    Science.gov (United States)

    2009-01-01

    The Ohio Department of Transportation is pleased to present the Federal : Fiscal Year (FFY) 2009 State Infrastructure Bank (SIB) Annual Financial : Report. : The portfolio of the FFY 2009 SIB had a total of nine loans totaling $9.0 : million and one ...

  14. The value and cost of university research reactors

    International Nuclear Information System (INIS)

    Harling, O.K.; Bernard, J.A.

    1989-01-01

    In this paper the authors provide a brief overview of the value and costs of U.S. university research reactors (URRs). More than three dozen URRs are currently operating in an approximately equal number of states. These URRs are an important part of the U.S. capabilities in nuclear science and technology. These multipurpose research facilities are located on the campuses of universities and colleges and therefore are easily accessible to university staff and students as well as to the high-technology industries, which often are located near universities. The close proximity, i.e., convenient location, to a diverse user base is a major reason for the multifaceted applications of URRs, including basic and applied science, technology, education, and industrial applications. The URRs have an extraordinarily broad range of applicability, including medicine and the life sciences, materials science, environmental sciences, earth and planetary sciences, and nuclear energy

  15. Using the Wisconsin-Ohio Reference Evaluation Program (WOREP) to Improve Training and Reference Services

    Science.gov (United States)

    Novotny, Eric; Rimland, Emily

    2007-01-01

    This article discusses a service quality study conducted in the Pennsylvania State University Libraries. The Wisconsin-Ohio Reference Evaluation Program survey was selected as a valid, standardized instrument. We present our results, highlighting the impact on reference training. A second survey a year later demonstrated that focusing on…

  16. University Reactor Sharing Program. Final report, September 30, 1992--September 29, 1994

    International Nuclear Information System (INIS)

    Wehring, B.W.

    1995-01-01

    Over the past 20 years, the number of nuclear reactors on university campuses in the US declined from more than 70 to less than 40. Contrary to this trend, The University of Texas at Austin constructed a new reactor facility at a cost of $5.8 million. The new reactor facility houses a new TRIGA Mark II reactor which replaces an in-ground TRIGA Mark I reactor located in a 50-year old building. The new reactor facility was constructed to strengthen the instruction and research opportunities in nuclear science and engineering for both undergraduate and graduate students at The University of Texas. On January 17, 1992, The University of Texas at Austin received a license for operation of the new reactor. Initial criticality was achieved on March 12, 1992, and full power operation, on March 25, 1992. The UT-TRIGA research reactor provides hands-on education, multidisciplinary research and unique service activities for academic, medical, industrial, and government groups. Support by the University Reactor Sharing Programs increases the availability of The University of Texas reactor facility for use by other educational institutions which do not have nuclear reactors

  17. Participation in the United States Department of Energy Reactor Sharing Program. Annual report, September 1981-August 1982

    International Nuclear Information System (INIS)

    Brenizer, J.S.; Benneche, P.E.

    1982-12-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics and is used to support educational programs in engineering and science at the University of Virginia and at other area colleges and universities. The University of Virginia Research Reactor (UVAR) is the highest power (two megawatts thermal power) and most utilized (total power production in 1981 and nearly 5000 megawatt-hours) research reactor in the mid-Atlantic States. In addition, a second, small (50 watt) reactor is also available for use in educational programs in the region. The University of Virginia has received support under the US Department of Energy (DOE) Reactor Sharing Program every year since 1978 to assist in meeting this objective. This report documents the major educational accomplishments under the Reactor Sharing Program for the period September 1981 through August 1982

  18. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  19. Ohio Department of Transportation State Infrastructure Bank Annual Financial Report : Federal Fiscal Year 2004

    Science.gov (United States)

    2004-01-01

    The Ohio Department of Transportation is pleased to present the Federal Fiscal : Year 2004 State Infrastructure Bank (SIB) Annual Financial Report. The portfolio of : the FFY 04 SIB had a total of nineteen loans in the amount of $47,340,891. : A comp...

  20. Ohio Department of Transportation State Infrastructure Bank Annual Financial Report : Federal Fiscal Year 2008

    Science.gov (United States)

    2008-01-01

    The Ohio Department of Transportation is pleased to present the Federal Fiscal Year (FFY) 2008 State Infrastructure Bank (SIB) Annual Financial Report. The portfolio of the FFY 2008 SIB had a total of five loans totaling $22.1 million. Since the begi...

  1. Ohio Department of Transportation State Infrastructure Bank Annual Financial Report : Federal Fiscal Year 2007

    Science.gov (United States)

    2007-01-01

    The Ohio Department of Transportation is pleased to present the Federal : Fiscal Year (FFY) 2007 State Infrastructure Bank (SIB) Annual Financial : Report. : The portfolio of the FFY 2007 SIB had a total of 13 loans and 1 bond in the : amount of $17....

  2. Final-Independent Confirmatory Survey Report For The Reactor Building, Hot Laboratory, Primary Pump House, And Land Areas At The Plum Brook Reactor Facility, Sandusky, Ohio DCN:2036-SR-01-10

    International Nuclear Information System (INIS)

    Bailey, Erika N.

    2011-01-01

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  3. New training reactor at Dresden Technical University

    International Nuclear Information System (INIS)

    Hansen, W.; Knorr, J.; Wolf, T.

    2006-01-01

    A total of 14 low-power (up to 10 W) training reactors have been operated at German universities, 9 of them officially classified as being operational in 2004, though for very different uses. This number is expected to drop sharply. The only comprehensive upgrading of a training reactor took place at Dresden Technical University: AKR-2, the most modern facility in Germany, started routine operation in April 2005, under a newly granted license pursuant to Sec. 7, Subsec. 1 of the German Atomic Energy Act, for training students in nuclear technology, for suitable research projects, and a a center of information about reactor technology and nuclear technology for the interested public. One special aspect of this refurbishment was the installation of digital safety I and C systems of the TELEPERM XS line, which are used also in other modern plants. This fact, plus the easy possibility to use the plant for many basic experiments in reactor physics and radiation protection, make the AKR-2 attractive also to other users (e.g. for training reactor personnel or other persons working in nuclear technology). (orig.)

  4. Digital control for the Penn State Breazeale reactor

    International Nuclear Information System (INIS)

    Raiskums, G.A.

    1991-01-01

    Digital control has been an integral part of Canada deuterium uranium (CANDU) nuclear power reactor technology since the 1960s. Much of the high CANDU production reliability can be attributed to the fault-tolerant and flexible control algorithms achievable with digital control. Atomic Energy of Canada Limited (AECL) has now transported this technology to research reactors, using industrial-grade microcomputers to solve equipment aging and spares obsolescence problems so prevalent at older installations. The open architecture of the Intel 8086-based computers provides for wide availability and reasonably priced, quality hardware from numerous sources. AECL recently supplied the Pennsylvania State University Breazeale Reactor (PSBR) with a new console containing a digital control and monitoring system. The reactor safety system (RSS) was also replaced with hardwired relay logic and truly analog state-of-the-art wide range nuclear instrumentation supplied by AECL's subcontractor, Gamma-Metrics. Retaining analog hardware for the mandated RSS functions was key to minimizing licensing efforts and the extensive verification and validation that would be required for safety system software. This paper elaborates on the digital control and monitoring portion of the PSBR console replacement, with emphasis on the key system objectives

  5. First-Quarter Academic Performance. Indicators as Predictors of College Attrition: A Study of the 1976-1980 Class at Central State University.

    Science.gov (United States)

    Rodney, Elaine

    The validity of students' first-quarter academic performance in predicting attrition at Central State University, Ohio, was investigated. It was hypothesized that freshmen who performed satisfactorily during the first quarter were more likely to complete their baccalaureate programs than were those who performed less well. Data on 287 students…

  6. DOE University Reactor Sharing Program. Final technical report for 1996--1997

    International Nuclear Information System (INIS)

    Chappas, W.J.; Adams, V.G.

    1998-01-01

    The Department of Energy University Reactor Sharing Program at University of Maryland, College Park (UMCP) has, once again, stimulated a broad use of the reactor and radiation facilities by undergraduate and graduate students, visitors, and professionals. Participants are exposed to topics such as nuclear engineering, radiation safety, and nuclear reactor operations. This information is presented through various means including tours, slide presentations, experiments, and discussions. Student research using the MUTR is also encouraged. In addition, the Reactor Sharing Program here at the University of Maryland does not limit itself to the confines of the TRIGA reactor facility. Incorporated in the program are the Maryland University Radiation Effects Laboratory, and the UMCP 2 x 4 Thermal Hydraulic Loop. These facilities enhance and give an added dimension to the tours and experiments. The Maryland University Training Reactor (MUTR) and the associated laboratories are made available to any interested institution six days a week on a scheduled basis. Most institutions are scheduled at the time of their first request--a reflection of their commitment to the Reactor Sharing Program. The success of the past years by no means guarantees future success. Therefore, the reactor staff is more aggressively pursuing its outreach program, especially with junior colleges and universities without reactor or radiation facilities; more aggressively developing demonstration and training programs for students interested in careers in nuclear power and radiation technology; and more aggressively up-grading the reactor facilities--not only to provide a better training facility but to prepare for relicensing in the year 2000

  7. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  8. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  9. University of Florida--US Department of Energy 1994-1995 reactor sharing program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1996-06-01

    The grant support of $24,250 (1994-95?) was well used by the University of Florida as host institution to support various educational institutions in the use of UFTR Reactor. All users and uses were screened to assure the usage was for educational institutions eligible for participation in the Reactor Sharing Program; where research activities were involved, care was taken to assure the research was not funded by grants for contract funding from outside sources. Over 12 years, the program has been a key catalyst for renewing utilization of UFTR both by external users around the State of Florida and the Southeast and by various faculty members within the University of Florida. Tables provide basic information about the 1994-95 program and utilization of UFTR

  10. Participation in the United States Department of Energy Reactor Sharing Program. Annual report, September 1982-August 1983

    International Nuclear Information System (INIS)

    Brenizer, J.S.; Benneche, P.E.

    1984-03-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics and is used to support educational programs in engineering and science at the University of Virginia and at other area colleges and universities. The University of Virginia Research Reactor (UVAR) is the highest power (two megawatts thermal power) and most utilized (total power production in 1982 was over 5500 megawatt-hours) research reactor in the mid-Atlantic states. In addition, a second, small (50 watt) reactor is also available for use in educational and research programs. A major objective of this facility is to expand its support of educational programs in the region. The University of Virginia has received support under the US Department of Energy (DOE) Reactor Sharing Program every year since 1978 to assist in meeting this objective. This report documents the major educational accomplishments under the Reactor Sharing Program for the period September 1982 through August 1983

  11. Participation in the United States Department of Energy Reactor Sharing Program. Annual report, September 1983-August 1984

    International Nuclear Information System (INIS)

    Mulder, R.U.; Benneche, P.E.

    1984-11-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics and is used to support educational programs in engineering and science at the University of Virginia and at other area colleges and universities. The University of Virginia Research Reactor (UVAR) is the highest power (two megawatts thermal power) and most utilized (total power production in 1983 was over 6000 megawatt-hours) research reactor in the mid-Atlantic states. In addition, a second, small (50 watt) reactor is also available for use in educational and research programs. A major objective of this facility is to expand its support of educational programs in the region. The University of Virginia has received support under the US Department of Energy (DOE) Reactor sharing Program every year since 1978 to assist in meeting this objective. This report documents the major educational accomplishments under the Reactor Sharing Program for the period September 1983 through August 1984

  12. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  13. Applying Systems Thinking to Improve Special Education in Ohio

    Science.gov (United States)

    Levenson, Nathan

    2012-01-01

    This report was written at the request of the Thomas B. Fordham Institute and the Educational Service Center of Central Ohio, to inform the discussion of state-level policy makers and other stakeholders on how to improve the quality and cost-effectiveness of services provided to Ohio's students with special needs. It is critical for Ohio to find…

  14. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee`s annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs.

  15. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    International Nuclear Information System (INIS)

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee's annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs

  16. 76 FR 47221 - Ohio; Major Disaster and Related Determinations

    Science.gov (United States)

    2011-08-04

    ... determined that the damage in certain areas of the State of Ohio resulting from severe storms and flooding... apply for assistance under the Hazard Mitigation Grant Program. (The following Catalog of Federal... of a major disaster for the State of Ohio (FEMA-4002-DR), dated July 13, 2011, and related...

  17. Calibration of A Prompt Gamma Neutron Activation Analysis (PGNAA) Facility: Experience at the Oregon State University TRIGA Reactor

    International Nuclear Information System (INIS)

    Norlida Yussup

    2011-01-01

    A prompt gamma neutron activation analysis (PGNAA) facility at Oregon State University (OSU) TRIGA reactor has been built in year 2008 and been operated since then. PGNAA is a technique used to determine the presence and quantity of trace elements such as boron, hydrogen and carbon which are more difficult to detect with other neutron analysis method. A calibration is essential to ensure the system works as required and the output is valid and reliable. The calibration was carried out by using Standard Reference Material (SRM). Besides, background data was also acquired for comparisons and analysis. The results are analyzed and discussed in this paper. (author)

  18. Status report and approaches for siting a low level waste disposal facility in Ohio

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    On July 24, 1991, Michigan was expelled from the Midwest Interstate Low Level Radioactive Waste Compact. This action resulted in Ohio becoming the primary host state based on actions taken by the commission in 1987 when Ohio was designated as first alternate host state. Ohio recognized early on that the existing Midwest Compact needed to be amended and negotiations on a compact document that met the concerns of Ohio were initially completed in June 1993. A region-wide review and comment period was provided and meetings or hearings on the amended and restated compact were completed in all party states with the unamimous adoption of the document by the Commission on November 29, 1993. The document will now be forwarded to the party state for action by their state legislatures. Ohio is expected to enact the compact amendments first with each of the other states following in short order. On October 30, 1992 the governor of Ohio appointed a 13 member blue ribbon committee on siting criteria. In September 1993, the Blue Ribbon Commission on Siting Criteria and Ohio's Low-Level Radioactive Waste Advisory Committee each issued their reports to the Governor, the leadership of the Ohio General Assembly, and the general public. The Blue Ribbon Commission Report focused on concerns relative to siting while the advisory committee concentrated on the overall administrative structural process associated with developing, licensing and operating a low-level waste facility in Ohio. Legislation is currently being drafted based on these reports. Ohio leadership will consider the package in the session which begins in January 1995

  19. Fire history in the Ohio River Valley and its relation to climate

    Science.gov (United States)

    Daniel A. Yaussy; Elaine Kennedy. Sutherland

    1994-01-01

    Annual wildfire records (1926-77) from the national forests in states bordering the Ohio River (lllinois, Indiana, Kentucky, Missouri, Ohio, and West Virginia) were compared to climate records to assess relationships. Summaries of spring and fall fire seasons obtained for the Daniel Boone National Forest in Kentucky (1970-92) and for the State of Ohio (1969-84,...

  20. Researches at the University of Tokyo fast neutron sources reactor, YAYOI

    International Nuclear Information System (INIS)

    Koshizuka, S.; Oka, Y.; Saito, I.

    1992-01-01

    The Fast neutron source reactor YAYOI was critical in 1971 at the Nuclear Engineering Research Laboratory, the Faculty of Engineering, the University of Tokyo (UTNL). The core is fueled with the enriched uranium surrounded by the depleted uranium. YAYOI is the first fast reactor in Japan. Many types of studies have been carried out by the researchers of the University of Tokyo in these 20 years. It also contributed to the Japan's national project of developing fast breeder reactors. The reactor is opened to the visiting researchers from universities and research institutes. YAYOI has also been utilized for education of undergraduate and graduate students of the Department of Nuclear Engineering of the University of Tokyo. The present paper briefly summerizes past and present researchers. (author)

  1. A Collaborative, Ongoing University Strategic Planning Framework: Process, Landmines, and Lessons

    Science.gov (United States)

    Hill, Susan E. Kogler; Thomas, Edward G.; Keller, Lawrence F.

    2009-01-01

    This article examines the strategic planning process at Cleveland State University, a large metropolitan state university in Ohio. A faculty-administrative team used a communicative planning approach to develop a collaborative, ongoing, bottom-up, transparent strategic planning process. This team then spearheaded the process through plan…

  2. Experimental investigation of onset of nucleate boiling in this rectangular channels

    International Nuclear Information System (INIS)

    Belhadj, M.; Christensen, R.N.; Aldemir, T.

    1988-01-01

    The 10 kW, HEU fueled Ohio State University Research Reactor (OSURR) will be upgraded to operate with plate type LEU U 3 Si 2 , fuel elements in the power range 250-500 kW. The core will be cooled by natural convection and an onset of nucleate boiling (ONB) margin of 1.2 will be maintained in the hot channel under steady-state operation. The validity of the correlations used for predicting ONB in plate type research reactors is not known for low heat flux-low velocity flows. An experiment has been set up at The Ohio State University to investigate ONB for laminar flow in this rectangular channels. The results show that: The Bergles-Rohsenow correlation and the correlation proposed by Ricque and Siboul predict higher and lower ONB fluxes than actual, respectively. The ONB heat flux is flow velocity dependent

  3. 75 FR 65696 - Ohio Disaster #OH-00025 Declaration of Economic Injury

    Science.gov (United States)

    2010-10-26

    ... Counties: Auglaize, Mercer. Contiguous Counties: Ohio: Allen, Darke, Hardin, Logan, Shelby, Van Wert... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12359] Ohio Disaster OH-00025 Declaration of... Economic Injury Disaster Loan (EIDL) declaration for the State of Ohio, dated 10/19/2010. Incident: Toxic...

  4. Implementation of the Ohio College Library Center's Proposed Serials Control Subsystem at the University of South Florida Library: Some Preliminary Considerations.

    Science.gov (United States)

    Twitchell, Anne; Sprehn, Mary

    An evaluation of the Ohio College Library Center's (OCLC) proposed Serials Control Subsystem was undertaken to determine what effect the system would have on the operation of the Serials Department at the University of South Florida (USF) Library. The system would consist of three components: 1) claiming--identifying missing issues and generating…

  5. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  6. Better Buildings NW Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Kevin [Toledo-Lucas County Port Authority, Toledo, OH (United States)

    2015-03-04

    When the Toledo Lucas County Port Authority (TLCPA) filed for the Department of Energy EECBG grant in late 2009, it was part of a strategic and Board backed objective to expand the organization’s economic development and financing programs into alternative energy and energy efficiency. This plan was filed with the knowledge and support of the areas key economic development agencies. The City of Toledo was also a key partner with the Mayor designating a committee to develop a Strategic Energy Policy for the City. This would later give rise to a Community Sustainability Strategic Plan for Toledo, Lucas County and the surrounding region with energy efficiency as a key pillar. When the TLCPA signed the grant documents with the DOE in June of 2010, the geographic area was severely distressed economically, in the early stages of a recovery from over a 30% drop in business activity and high unemployment. The TLCPA and its partners began identifying potential project areas well before the filing of the application, continuing to work diligently before the formal award and signing of the grant documents. Strong implementation and actions plans and business and financing models were developed and revised throughout the 3 year grant period with the long term goal of creating a sustainable program. The TLCPA and the City of Toledo demonstrated early leadership by forming the energy improvement district and evaluating buildings under their control including transportation infrastructure and logistics, government services buildings and buildings which housed several for profit and not for profit tenants while completing significant energy efficiency projects that created public awareness and confidence and solid examples of various technologies and energy savings. As was stated in the DOE Award Summary, the undertaking was focused as a commercial program delving into Alternative Energy Utility Districts; what are referred to in Ohio Statute as Energy Special Improvement

  7. Radiological characterization survey results for Gaskill Hall, Miami University, Oxford, Ohio (OXO015)

    International Nuclear Information System (INIS)

    Kleinhans, K.R.; Murray, M.E.; Carrier, R.F.

    1996-04-01

    Between October 1952 and February 1957, National Lead of Ohio (NLO), a primary contractor for the Atomic Energy Commission (AEC), subcontracted certain uranium machining operations to Alba Craft Laboratory, Incorporated, located at 10-14 West Rose Avenue, Oxford, Ohio. In 1992, personnel from Oak Ridge National Laboratory (ORNL) confirmed the presence of residual radioactive materials from the AEC-related operations in and around the facility in amounts exceeding the applicable Department of Energy (DOE) guidelines. Although the amount of uranium found on the property posed little health hazard if left undisturbed, the levels were sufficient to require remediation to bring radiological conditions into compliance with current guidelines, thus ensuring that the public and the environment are protected. Because it was suspected that uranium may have been used in the past in the immediate vicinity of Alba Craft in a Miami University building a team from ORNL, performed a radiological characterization survey of that structure in January 1994. The survey was conducted at the request of DOE as a precautionary measure to ensure that no radioactive residuals were present at levels exceeding guidelines. The survey included the determination of directly measured radiation levels and the collection of smear samples to detect possible removable alpha and beta-gamma activity levels, and comparison of these data to the guidelines. Results of the survey showed that all measurements were below the applicable guideline limits set by DOE

  8. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  9. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  10. University Reactor Sharing Program

    International Nuclear Information System (INIS)

    Reese, W.D.

    2004-01-01

    Research projects supported by the program include items such as dating geological material and producing high current super conducting magnets. The funding continues to give small colleges and universities the valuable opportunity to use the NSC for teaching courses in nuclear processes; specifically neutron activation analysis and gamma spectroscopy. The Reactor Sharing Program has supported the construction of a Fast Neutron Flux Irradiator for users at New Mexico Institute of Mining and Technology and the University of Houston. This device has been characterized and has been found to have near optimum neutron fluxes for A39/Ar 40 dating. Institution final reports and publications resulting from the use of these funds are on file at the Nuclear Science Center

  11. Computer modeling of the dynamic processes in the Maryland University Training Reactor - (MUTR)

    International Nuclear Information System (INIS)

    White, Bernard H. IV; Ebert, David

    1988-01-01

    The simulator described in this paper models the behaviour of the Maryland University Training Reactor (MUTR). The reactor is a 250 kW, TRIGA reactor. The computer model is based on a system of five primary equations and eight auxiliary equations. The primary equations consist of the prompt jump approximation, a heat balance equation for the fuel and the moderator, and iodine and xenon buildup equations. For the comparison with the computer program, data from the reactor was acquired by using a personal computer (pc) which contained a Strawberry Tree data acquisition Card, connected to the reactor. The systems monitored by the pc were: two neutron detectors, fuel temperature, water temperature, three control rod positions and the period meter. The time differenced equations were programmed in the basic language. It has been shown by this paper, that the MUTR power rise from low power critical to high power, can be modelled by a relatively simple computer program. The program yields accurate agreement considering the simplicity of the program. The steady state error between the reactor and computer power is 4.4%. The difference in steady state temperatures, 112 deg. C and 117 deg. C, of the reactor and computer program, respectively, also yields a 4.5% error. Further fine tuning of the coefficients will yield higher accuracies

  12. Report on application results of the nuclear reactor in Atomic Energy Research Laboratory, Rikkyo University. April 1994 - March 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report is on researching action state, application state, management state, and others of 1994 fiscal year at the Atomic Energy Research Laboratory, Rikkyo University. The experimental reactor has been used for the studies such as application of neutron radioactivity analysis to multi fields, application of fission and alpha track method to age determination and metallurgy, hot atom chemistry, neutron radiation effect on semiconductors and others, nuclear data measurement, organism, materials and products using neutron radiography, and development and application to inspection of radiation detectors such as neutron detector. This report was a report shown as a shape of research results of actions of the researchers. And, another report of colaborate research results using the Rikkyo University reactor was also published from the Atomic Energy Center, the University of Tokyo begun since April, 1974. (G.K.)

  13. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  14. Model development for the dynamic analysis of the OSU inherently safe reactor. Part 1

    International Nuclear Information System (INIS)

    Aybar, H.S.

    1992-01-01

    Faculty and students in the Nuclear Engineering Program at the Ohio State University (OSU) have proposed a conceptual design for an inherently safe 340 MWe power reactor. The design is based on the state-of-the-art technology of LWRs and the High Temperature Gas- cooled Reactors (HTGRs). The OSU Inherently Safe Reactor (OSU-ISR) concept uses shorter than standard BWR fuel elements in the reactor core. All the fluid on the primary side is contained within a Prestressed Concrete Reactor Vessel (PCRV). This important feature significantly reduces the probability of a LOCA. A new feature of the OSU-ISR is an operator independent steam driven Emergency Core Cooling System (ECCS) housed within the PCRV. In accident conditions where the steam generators are incapacitated, steam from the core drives a jet injector, which takes water from the suppression pool and pumps it into the core cavity to maintain core coverability. The preliminary analysis of the concept was performed as a design project in the Nuclear Engineering Program at the OSU during the Spring of 1985, and published in ''Nuclear Technology.'' The use of a PCRV for ducting and containment and the replacement of forced recirculation with natural circulation on the primary side significantly improve the inherent safety of the plant. Currently, work is in progress for the refinement of the OSU-ISR concept, partially supported by a grant from the U.S. Department of Energy

  15. Power reactors in member states

    International Nuclear Information System (INIS)

    1975-01-01

    This is the first issue of a periodical computer-based listing of civilian nuclear power reactors in the Member States of the IAEA, presenting the situation as of 1 April 1975. It is intended as a replacement for the Agency's previous annual publication of ''Power and Research Reactors in Member States''. In the new format, the listing contains more information about power reactors in operation, under construction, planned and shut down. As far as possible all the basic design data relating to reactors in operation have been included. In future these data will be included also for other power reactors, so that the publication will serve to give a clear picture of the technical progress achieved. Test and research reactors and critical facilities are no longer listed. Of interest to nuclear power planners, nuclear system designers, nuclear plant operators and interested professional engineers and scientists

  16. NCSU Reactor Sharing Program

    International Nuclear Information System (INIS)

    Perez, P.B.

    1993-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities

  17. Profesional medical library education in the United States in relation to the qualifications of medical library manpower in Ohio.

    Science.gov (United States)

    Rees, A M; Rothenberg, L; Denison, B

    1968-10-01

    THE PRESENT SYSTEM OF EDUCATION FOR MEDICAL LIBRARY PRACTICE IN THE UNITED STATES CONSISTS OF FOUR MAJOR COMPONENTS: graduate degree programs in library science with specialization in medical librarianship; graduate degree programs in library science with no such specialization; postgraduate internships in medical libraries; continuing education programs. Data are presented illustrating the flow of graduates along these several educational pathways into medical library practice.The relevance of these educational components to the current medical library work force is discussed with reference to manpower data compiled for Ohio. The total number of medical library personnel in Ohio in 1968 is 316. Of this total, only forty-two (approximately 14 percent) have received any formal library training. Seventy persons have only a high school education. From these figures, it is concluded that there is no standard or essential qualification which is universally accepted as educational preparation for work in medical libraries; that the comparative sophistication of the educational programs in medical librarianship has yet to be reflected widely in general medical library practice; that an increasingly large number of non-professional or ancillary personnel are being, and will continue to be, utilized in medical libraries; that large numbers of untrained persons have sole responsibility for medical libraries; and that appropriate educational programs will have to be designed specifically for this type of personnel.

  18. Construction of reactor and outline of breaking state

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji

    1980-01-01

    The Mihama No. 1 reactor of Kansai Electric Power Co., Inc., is the first power-generating PWR in Japan, and it commenced the commercial operation in November, 1970. In June, 1972, the leak of steam generator tubes occurred, and the reactor was stopped for about a half year. In the second periodic inspection in March, 1973, the accident of broken fuel rods was discovered, but it was generally published in December, 1976. In August, 1974, the leak of steam generator tubes occurred again, and since then, the reactor was stopped for a long period. From October, 1978, the reactor has entered the test operation called cycling operation. The Kyoto University Reactor Research Institute lent the cask for transporting the broken pieces of the fuel rods to Kansai Electric Power Co., and obtained the investigation report of Japan Atomic Energy Research Institute, Based on the contract. The accident investigation group of the KURRI has pursued the causes of the accident and examined the propriety of the countermeasures. The outline of the construction of the reactor is described. The upper part of two fuel rods broke and fell on the baffle supporting plate. The broken fuel assembly was named C-34. About a half of fuel pellets and the cladding tube of several tens cm have not yet recovered. The state of break and the presumption of the causes are reported. (Kako, I.)

  19. Operational experience with the TRIGA reactor of the University of Pavia

    International Nuclear Information System (INIS)

    Borio di Tigliole, A.; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Salvini, A.; Scian, G.; Vinciguerra, G.

    2008-01-01

    The TRIGA Mark II research reactor of the University of Pavia is in operation since 1965. The annual operational time at nominal power (250 kW) is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities and BNCT research. Few tens of hours per year are dedicated also to electronic devices irradiation and student training courses. Few homemade upgrading of the reactor were realized in the past two years: components of the secondary/tertiary cooling circuit were substituted and a new radiation area monitoring system was installed. Also the Instrumentation and Control (I and C) system was almost completely refurbished. The presentation describes the major extraordinary maintenance activities implemented and the status of main reactor systems: - The I and C System: complete substitution, channel-by-channel without changing the operating and safety logics; - Tertiary and secondary water-cooling circuits: complete substitution of the tertiary water-cooling circuit and partial substitution of the components of the secondary water-cooling circuit; - Reactor Building Air Filtering and Ventilation System: installation of a computerized air filtering and ventilation system; - Radiation Area Monitoring System: new system based on a commercial micro-computer and an home-made software developed on Lab-View platform. The system is made of a network of different instruments coupled, trough a serial bus line RS232, with a data acquisition station; - Fuel Elements: at the moment, the core is made of 48 Aluminium clad and 34 SST clad TRIGA fuel elements controlled periodically for their elongation and/or bowing. All components and systems undergo ordinary maintenance according to the Technical Prescriptions and to the 'Good Practice Procedures'. In summary, the TRIGA reactor of the University of Pavia shows a very good technical state and, at the moment, there are no political or

  20. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Hayashi, Takeo

    1979-01-01

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m 2 . There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  1. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  2. Neutronics modeling of TRIGA reactor at the University of Utah using agent, KENO6 and MCNP5 codes

    International Nuclear Information System (INIS)

    Yang, X.; Xiao, S.; Choe, D.; Jevremovic, T.

    2010-01-01

    The TRIGA reactor at the University of Utah is modelled in 2D using the AGENT state-of-the-art methodology based on the Method of Characteristics (MOC) and R-function theory supporting detailed reactor analysis of reactor geometries of any type. The TRIGA reactor is also modelled using KENO6 and MCNP5 for comparison. The spatial flux and reaction rates distribution are visualized by AGENT graphics support. All methodologies are in use in to study the effect of different fuel configurations in developing practical educational exercises for students studying reactor physics. At the University of Utah we train graduate and undergraduate students in obtaining the Nuclear Regulatory Commission license in operating the TRIGA reactor. The computational models as developed are in support of these extensive training classes and in helping students visualize the reactor core characteristics in regard to neutron transport under various operational conditions. Additionally, the TRIGA reactor is under the consideration for power uprate; this fleet of computational tools once benchmarked against real measurements will provide us with validated 3D simulation models for simulating operating conditions of TRIGA. (author)

  3. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  4. A university contribution to reactor safety

    International Nuclear Information System (INIS)

    Hall, W.B.

    1980-01-01

    The total UK university effort available for research specifically directed towards reactor safety is certainly small in comparison with that in industry. To be worth while, the work should complement that in the industry, and ways in which this can, and in some cases does, happen, will be discussed. There is, however, another reason for university involvement: the need for an informed body of opinion on matters of reactor safety outside the industry. Without this it is difficult for the public and its representatives to assure themselves that the depth and scope of safety analysis is commensurate with the seriousness of the problem, and that the best available data and techniques are being used. An independent inspectorate is an essential element in this philosophy, but in addition there is much to be said for exposing the arguments to scrutiny by the widest possible range of informed critics. Such people will be much more effective if they are themselves involved in real problems in the field. In a university, this involvement is probably best achieved through research; as mentioned above, the type of research should preferably complement that being carried out in the industry. The current situation, and the future, are discussed. (author)

  5. The Ohio Partnership for the Far East Region Science Teachers

    Science.gov (United States)

    Beiersdorfer, Raymond; Sturrus, W. Gregg

    2008-03-01

    The Ohio Partnership for Far East Region Science Teachers (OPFERST) is a three-year project funded by Federal Math Science Partnership Funds through a grant to the Ohio Dept. of Education. OPFERST is a partnership (opferst.ysu.edu) of Youngstown State University science and education faculty, trained facilitators and the county and city science consultants. Every (47) school district in the region signed on and during the first year 32 districts participated. During the first two years, 198 teachers representing Ashtabula, Columbiana, Mahoning and Trumbull Counties, as well as Warren City and Youngstown City schools have participated. The vision of OPFERST is to improve the teaching and learning of the Ohio Science Academic Content Standards. Project goals are: 1) Increase science content knowledge of teachers; 2) Implement effective instructional practices; 3) Improve students performance in science; and 4) Develop professional learning communities which will lead to programmatic changes within districts. Goals one through three are met by modeling inquiry-based methods for teaching science content standards. Goal four is met by ongoing meetings through-out the school year, classroom visits by YSU faculty and fieldtrips to the YSU Campus by classes led by OPFERST teachers. Evaluation of OPFERST includes demographic and classroom practice data, pre- and post-tests of participants, journals, homework and the administration of evaluation instruments with some OPFERST participants' students.

  6. Ohio Schools Cautiously Rebuild: Uncertainty in State and Local Funds Affects Strategies. Budget

    Science.gov (United States)

    Patton, Wendy

    2015-01-01

    Policy Matters Ohio periodically surveys schools about fiscal conditions and operational strategies. The Ohio Association of School Business Officials provided a link to such a survey in their newsletter of December 2014 through February 2015. Fifty-three respondents, representing 8.6 percent of districts and including representatives from all…

  7. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  8. Overdose Deaths Related to Fentanyl and Its Analogs - Ohio, January-February 2017.

    Science.gov (United States)

    Daniulaityte, Raminta; Juhascik, Matthew P; Strayer, Kraig E; Sizemore, Ioana E; Harshbarger, Kent E; Antonides, Heather M; Carlson, Robert R

    2017-09-01

    Ohio is experiencing unprecedented loss of life caused by unintentional drug overdoses (1), with illicitly manufactured fentanyl (IMF) emerging as a significant threat to public health (2,3). IMF is structurally similar to pharmaceutical fentanyl, but is produced in clandestine laboratories and includes fentanyl analogs that display wide variability in potency (2); variations in chemical composition of these drugs make detection more difficult. During 2010-2015, unintentional drug overdose deaths in Ohio increased 98%, from 1,544 to 3,050.* In Montgomery County (county seat: Dayton), one of the epicenters of the opioid epidemic in the state, unintentional drug overdose deaths increased 40% in 1 year, from 249 in 2015 to 349 in 2016 (estimated unadjusted mortality rate = 57.7 per 100,000) (4). IMFs have not been part of routine toxicology testing at the coroner's offices and other types of medical and criminal justice settings across the country (2,3). Thus, data on IMF test results in the current outbreak have been limited. The Wright State University and the Montgomery County Coroner's Office/Miami Valley Regional Crime Laboratory (MCCO/MVRCL) collaborated on a National Institutes of Health study of fentanyl analogs and metabolites and other drugs identified in 281 unintentional overdose fatalities in 24 Ohio counties during January-February 2017. Approximately 90% of all decedents tested positive for fentanyl, 48% for acryl fentanyl, 31% for furanyl fentanyl, and 8% for carfentanil. Pharmaceutical opioids were identified in 23% of cases, and heroin in 6%, with higher proportions of heroin-related deaths in Appalachian counties. The majority of decedents tested positive for more than one type of fentanyl. Evidence suggests the growing role of IMFs, and the declining presence of heroin and pharmaceutical opioids in unintentional overdose fatalities, compared with 2014-2016 data from Ohio and other states (3-5). There is a need to include testing for IMFs as part

  9. Predicting University Preference and Attendance: Applied Marketing in Higher Education Administration.

    Science.gov (United States)

    Cook, Robert W.; Zallocco, Ronald L.

    1983-01-01

    A multi-attribute attitude model was used to determine whether a multicriteria scale can be used to predict student preferences for and attendance at universities. Data were gathered from freshmen attending five state universities in Ohio. The results indicate a high level of predictability. (Author/MLW)

  10. Music Education in the Curriculum of Ohio Charter Schools

    Science.gov (United States)

    Hedgecoth, David M.

    2017-01-01

    The purpose of the current investigation is to examine the extent to which music education is present in the curriculum of Ohio charter schools. These community schools, as they are identified within the state, enroll over 120,000 students across Ohio. While the mission and focus of these schools are easily found in promotional literature and…

  11. Unique educational opportunities at the Missouri University research reactor

    International Nuclear Information System (INIS)

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-01-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduate students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups

  12. Modification of the Penn State Reactor to allow transverse and rotational core motion to increase operational versatility

    International Nuclear Information System (INIS)

    Hughes, Daniel E.

    1994-01-01

    At Penn State the Nuclear Engineering students have the opportunity to perform experiments in reactor physics, work with reactor and radiation instrumentation, and operate a nuclear reactor. These activities are done at the Penn State Breazeale Reactor (PSBR), a General Atomics Mark III TRIGA reactor. Unfortunately this activity alone can not fully support the facility. The PSBR is mandated by Penn State to provide a portion of its operating budget by selling services to users outside as well as inside Penn State. In order to increase the marketability of PSBR an upgrade program was started to increase the quality and versatility of operation. The PSBR is the longest operating university reactor in the United States. The first phase of the upgrade program began in 1992. The quality of operation was increased by replacing a 1965 vintage console with a more reliable digital control and monitoring system. The present phase of the upgrade program is to increase the versatility of operation by modifying the reactor to allow transverse and rotational core motion. Adding two more degrees of motion to the reactor core increases the capability of the facility to meet the needs of present and future users. This upgrade is being financed by a grant from the Department of Energy and matching funds from Penn State. (author)

  13. Performance of small reactors at universities for teaching, research, training and service (TRTS): thirty five years' experience with the Dalhousie University SLOWPOKE-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chatt, A., E-mail: a.chatt@dal.ca [Dalhousie Univ., Trace Analysis Research Centre, Dept. of Chemistry, Halifax, Nova Scotia (Canada)

    2013-07-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility, operated during 1976-2011, was the only research reactor in Atlantic Canada as well as the only one associated with a chemistry department in a Canadian university. The most outstanding features of the facility included: a rapid (100 ms) cyclic pneumatic sample transfer system, a permanently installed Cd-site, and a Compton-suppression gamma-ray spectrometer. The usage encompassed fundamental as well as applied studies in various fields using neutron activation analysis (NAA). The facility was used for training undergraduate/graduate students, postdoctoral fellows, technicians, and visiting scientists, and for cooperative projects with other universities, research organizations and industries. (author)

  14. University Reactor Instrumentation Program. Final report, September 30, 1993--March 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The University of Massachusetts Lowell Research Reactor has received a total of $115,723.00 from the Department of Energy (DOE) Instrumentation Program (DOE Grant No. DE-FG02-91ID13083) and $40,000 in matching funds from the University of Massachusetts Lowell administration. The University of Massachusetts Lowell Research Reactor has been serving the University and surrounding communities since it first achieved criticality in May 1974. The principle purpose of the facility is to provide a multidisciplinary research and training center for the University of Massachusetts Lowell and other New England academic institutions. The facility promotes student and industrial research, in addition to providing education and training for nuclear scientists, technicians, and engineers. The 1 MW thermal reactor contains a variety of experimental facilities which, along with a 0.4 megacurie cobalt source, effectively supports the research and educational programs of many university departments including Biology, Chemistry, Nuclear and Plastics Engineering, Radiological Sciences, Physics, and other campuses of the University of Massachusetts system. Although the main focus of the facility is on intra-university research, use by those outside the university is fully welcomed and highly encouraged

  15. Performance analysis of the intense slow-positron beam at the NC State University PULSTAR reactor

    International Nuclear Information System (INIS)

    Moxom, J.; Hathaway, A.G.; Bodnaruk, E.W.; Hawari, A.I.; Xu, J.

    2007-01-01

    An intense positron beam, for application in nanophase characterization, is now under construction at the 1 MW PULSTAR nuclear reactor at North Carolina State University (NCSU). A tungsten converter/moderator is used, allowing positrons to be emitted from the surface with energies of a few electron volts. These slow positrons will be extracted from the moderator and formed into a beam by electrostatic lenses and then injected into a solenoidal magnetic field for transport to one of three experimental stations, via a beam switch. To optimize the performance of the beam and to predict the slow-positron intensity, a series of simulations were performed. A specialized Monte-Carlo routine was integrated into the charged-particle transport calculations to allow accounting for the probabilities of positron re-emission and backscattering from multiple-bank moderator/converter configurations. The results indicate that either a two-bank or a four-bank tungsten moderator/converter system is preferred for the final beam design. The predicted slow-positron beam intensities range from nearly 7x10 8 to 9x10 8 e + /s for the two-bank and the four-bank systems, respectively

  16. Reactor-produced radionuclides at the University of Missouri Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ketring, A.R.; Evans-Blumer, M.S.; Ehrhardt, G.J. [University of Missouri Research Reactor, Colombia (United States). Departments of Radiology, Chemistry and Nuclear Engineering

    1997-10-01

    Nuclear medicine has primarily been a diagnostic science for many years, but today is facing considerable challenges from other modalities in this area. However, these competing techniques (magnetic resonance imaging, ultrasound, and computer-assisted tomography) in general are not therapeutic. Although early nuclear medicine therapy was of limited efficacy, in recent years a revolution in radiotherapy has been developing base don more sophisticated targeting methods, including radioactive intra-arterial microspheres, chemically-guided bone agents, labelled monoclonal antibodies, and isotopically-tagged polypeptide receptor-binding agents. Although primarily used for malignancies, therapeutic nuclear medicine is also applicable to the treatment of rheumatoid arthritis and possibly coronary artery re closure following angioplasty. The isotopes of choice for these applications are reactor-produced beta emitters such as Sm-153, Re-186, Re-188, Ho-166, Lu-177, and Rh-105. Although alpha emitters possess greater cell toxicity due to their high LET, the greater range of beta emitters and the typically inhomogeneous deposition of radiotherapy agents in lesions leads to greater beta `crossfire` and better overall results. The University of Missouri Research Reactor (MURR) has been in the forefront of research into means of preparing, handling and supplying these high-specific-activity isotopes in quantities appropriate not only for research, but also for patient trials in the US and around the world. Researchers at MURR in collaboration with others at the University of Missouri (MU) developed Sm-153 Quadramet{sup TM}, a drug recently approved in the US for palliation of bone tumor pain. In conjunction with researchers at the University of Missouri-Rolla, MURR also developed Y-90 TheraSphere{sup TM}, an agent for the treatment of liver cancer now approved in Canada. Considerable effort has been expended to develop techniques for irradiation, handling, and shipping isotopes

  17. Reactor-produced radionuclides at the University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Ketring, A.R.; Evans-Blumer, M.S.; Ehrhardt, G.J.

    1997-01-01

    Nuclear medicine has primarily been a diagnostic science for many years, but today is facing considerable challenges from other modalities in this area. However, these competing techniques (magnetic resonance imaging, ultrasound, and computer-assisted tomography) in general are not therapeutic. Although early nuclear medicine therapy was of limited efficacy, in recent years a revolution in radiotherapy has been developing base don more sophisticated targeting methods, including radioactive intra-arterial microspheres, chemically-guided bone agents, labelled monoclonal antibodies, and isotopically-tagged polypeptide receptor-binding agents. Although primarily used for malignancies, therapeutic nuclear medicine is also applicable to the treatment of rheumatoid arthritis and possibly coronary artery re closure following angioplasty. The isotopes of choice for these applications are reactor-produced beta emitters such as Sm-153, Re-186, Re-188, Ho-166, Lu-177, and Rh-105. Although alpha emitters possess greater cell toxicity due to their high LET, the greater range of beta emitters and the typically inhomogeneous deposition of radiotherapy agents in lesions leads to greater beta 'crossfire' and better overall results. The University of Missouri Research Reactor (MURR) has been in the forefront of research into means of preparing, handling and supplying these high-specific-activity isotopes in quantities appropriate not only for research, but also for patient trials in the US and around the world. Researchers at MURR in collaboration with others at the University of Missouri (MU) developed Sm-153 Quadramet TM , a drug recently approved in the US for palliation of bone tumor pain. In conjunction with researchers at the University of Missouri-Rolla, MURR also developed Y-90 TheraSphere TM , an agent for the treatment of liver cancer now approved in Canada. Considerable effort has been expended to develop techniques for irradiation, handling, and shipping isotopes

  18. University of Wisconsin, Nuclear Reactor Laboratory. Annual report, 1985-1986

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1986-01-01

    Operational activities for the reactor are described concerning nuclear engineering classes from the University of Wisconsin; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis; and changes in personnel, facility, and procedures. Results of surveillance tests are presented for operating statistics and fuel exposure; emergency shutdowns and inadvertent scrams; maintenance; radioactive waste disposal; radiation exposures; environmental surveys; and publications and presentations on work based on reactor use

  19. University of Akron: Training Speech-Language Pathology Specialists to Provide Quality Service to Children Who Are Deaf or Hard of Hearing--A Collaborative Preservice Program

    Science.gov (United States)

    Wray, Denise; Flexer, Carol

    2010-01-01

    A collaborative team of faculty from The University of Akron (UA) in Akron, Ohio, and Kent State University (KSU) in Kent, Ohio, were awarded a federal grant from the U.S. Department of Education to develop a specialty area in the graduate speech-language pathology (SLP) programs of UA and KSU that would train a total of 32 SLP students (trainees)…

  20. Power reactor services provided by the Penn State Radiation Science and Engineering Center

    International Nuclear Information System (INIS)

    Voth, M.H.; Jester, W.A.

    1993-01-01

    The power reactor industry emerged from extensive research and development performed at nonpower reactors (NPRs). As the industry matures, NPRs continue to support and enhance power reactor technology. With the closure of many government and private industry NPRS, there is an increasing call for the 33 universities with operating research reactors to provide the needed services. The Penn State Radiation Science and Engineering Center (RSEC) includes a 1-MW pool-type pulsing TRIGA reactor, a neutron beam laboratory with real-time neutron radiography equipment, hot cells with master-slave manipulators for remote handling of radioactive materials, a gamma-ray irradiation pool, a low-level radiation monitoring laboratory, and extensive equipment for radiation monitoring, dosimetry, and material properties determination. While equipment is heavily utilized in the instructional and academic research programs, significant time remains available for service work. Cost recovery for service work generates income for personnel, equipment maintenance, and facility improvements. With decreasing federal and state funding for educational programs, it is increasingly important that facilities be fully utilized to generate supplementary revenue. The following are examples of such work performed at the RSEC

  1. 2015 Ohio Remediation Report

    Science.gov (United States)

    Ohio Department of Higher Education, 2015

    2015-01-01

    In fulfillment of Ohio Revised Code 3333.041 (A) (1), the Chancellor of the Department of Higher Education has published a listing by school district of the number of the 2014 high school graduates who subsequently attended a state institution of higher education in academic year 2014-2015. The listing provides the percentage of each district's…

  2. 2014 Ohio Remediation Report

    Science.gov (United States)

    Ohio Board of Regents, 2014

    2014-01-01

    In fulfillment of Ohio Revised Code 3333.041 (A) (1) the Chancellor has published a listing by school district of the number of the 2013 high school graduates who attended a state institution of higher education in academic year 2013-2014 and the percentage of each district's graduates required by the institution to enroll in a remedial course in…

  3. Atlas of Ohio Aquatic Insects: Volume II, Plecoptera.

    Science.gov (United States)

    DeWalt, R Edward; Grubbs, Scott A; Armitage, Brian J; Baumann, Richard W; Clark, Shawn M; Bolton, Michael J

    2016-01-01

    We provide volume II of a distributional atlas of aquatic insects for the eastern USA state of Ohio. This treatment of stoneflies (Plecoptera) is companion to Armitage et al. (2011) on caddisflies (Trichoptera). We build on a recent analysis of Ohio stonefly diversity patterns based on large drainages (DeWalt et al. 2012), but add 3717 new records to the data set. We base most analyses on the United States Geological Survey Hierarchical Unit Code eight (HUC8) drainage scale. In addition to distributional maps for each species, we provide analyses of species richness versus HUC8 drainage area and the number of unique locations in a HUC8 drainage, species richness versus Ohio counties, analyze adult presence phenology throughout the year, and demonstrate stream size range affiliation for each species. This work is based on a total of 7797 specimen records gathered from 21 regional museums, agency data, personal collections, and from the literature Table 1. To our knowledge this is the largest stonefly data set available for a similarly sized geopolitical area anywhere in the world. These data are made available as a Darwin Core Archive supported by the Pensoft Integrated Publishing Toolkit (DeWalt et al. 2016b). All known published papers reporting stoneflies from Ohio are detailed in Suppl. material 1. We recovered 102 species from Ohio, including all nine Nearctic families Table 2​. Two species were removed from the DeWalt et al. (2012) list and two new state records added. Perlidae (32 spp.) was most speciose, compared to the low diversity Pteronarcyidae (2 spp.) and Peltoperlidae (1 sp.). The richest HUC8 drainages occurred in northeastern, south-central, and southern regions of the state where drainages were heavily forested, had the highest slopes, and were contained within or adjacent to the unglaciated Allegheny and Appalachian Plateaus. Species poor drainages occurred mainly in the northwestern region where Wisconsinan aged lake plains climaxed to an

  4. Cost analysis of the Ohio nursing home industry.

    OpenAIRE

    Caswell, R J; Cleverley, W O

    1983-01-01

    This study was part of a major review of long-term care policy in the state of Ohio. The authors analyzed 1532 cost reports filed by nursing homes in 1975-1976 with the Ohio Medical Assistance (Medicaid) program. The objective was to guide policy on size (economies of scale), ownership, certification status, and reimbursement. Economies of scale were not found important: skilled nursing facilities (SNFs) offered the only evidence of operation below optimal scale, and the savings attributable ...

  5. Interdisciplinary Program For In-Service Teachers; Working with Industry And University to Enhance Learning Experiences in the State of Ohio (Invited Paper

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2014-12-01

    Full Text Available Science Teaching for Ohio's New Economy (STONE is an interdisciplinary professional development program that inservice teachers grades K-12 that experience the integration of earth and physical science in an inquiry-based field. There are various field trips to various industrial settings that teach how geoscientist works in the aggregate industry. During the academic year there is a support system where the industry and the in-service teachers engage their students into real world industrial applications in the aggregate industry. This paper will discuss the utilization of high – tech instrumentation such as X-Ray Fluorescence and Scanning Electron Microscopy to teach real-world science applications of concern. Pre- and Post-test assessments as addressed by R.R. Hake have shown that these inquirybased professional development workshops that integrated academia with industry as a positive outcome for our students in Ohio.

  6. Systems for aiding operators at university-owned research reactors in Japan

    International Nuclear Information System (INIS)

    Nishihara, H.; Kimura, Y.; Shibata, T.

    1984-01-01

    University-owned research reactors are operated for various purposes, and small disturbances may arise from various experimental facilities. Also not uniform are the technical levels of operators who range from supervised-students to reactor physicists. Considerable efforts are therefore devoted to the preventive maintainance. With these boundary conditions imposed, systems for aiding operators are designed at these research reactor facilities. (author)

  7. Summary of the fourth conference on United States utility experience in reactor noise analysis

    International Nuclear Information System (INIS)

    Fry, D.N.

    1987-01-01

    The fourth informal conference on United States utility experience in reactor noise analysis and loose-part monitoring was held at the Northeast Utilities Service Company offices in Hartford, Connecticut, May 12-14, 1987. Host and general chairman for the meeting was J.V. Persio of Northeast Utilities. This conference provided a forum where utilities could share information on reactor noise analysis on an informal basis. There were about 60 attendees at the meeting representing 10 utilities, 3 reactor vendors, 8 consulting organizations, and 4 universities and research laboratories. Twenty-three papers were presented at the conference, dealing with various aspects of loose-part monitoring, neutron noise analysis, and standards activities

  8. Planning and implementation of Istanbul Technical University TRIGA research reactor program

    International Nuclear Information System (INIS)

    Aybers, N.; Yavuz, H.; Bayulken, A.

    1982-01-01

    The Istanbul Technical University TRIGA Research Reactor at the Institute for Nuclear Energy, which went critical on March 11, 1979 is basically a pulsing type TRIGA Mark - II reactor. Completion of the ITU-TRR contributed to broaden the role of the Institute for Nuclear Energy of the Technical University in Istanbul in the nuclear field by providing for the first time adequate on-campus experimental facilities for nuclear engineering studies to ITU students. The research program which is currently under planning at ITU-NEE encompasses: a) Neutron activation analysis studies by techniques and applications to chemistry, mining, materials research, archaeological and biomedical studies; b) applications of Radioisotopes; c) Radiography with reactor neutron beams; d) Radiation Pulsing

  9. Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    Science.gov (United States)

    DeWalt, R. Edward; Cao, Yong; Tweddale, Tari; Grubbs, Scott A.; Hinz, Leon; Pessino, Massimo; Robinson, Jason L.

    2012-01-01

    Abstract Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6) were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainages having richer assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp.) and Kentucky (108 spp.), two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection. PMID:22539876

  10. Ohio USA stoneflies (Insecta, Plecoptera: species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    Directory of Open Access Journals (Sweden)

    R. DeWalt

    2012-03-01

    Full Text Available Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6 were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainagesricher assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp. and Kentucky (108 spp., two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection.

  11. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  12. Status of Instructional Physical Education Programs in Ohio Senior High Schools.

    Science.gov (United States)

    Schraibman, Carl

    High school level instructional physical education programs in the state of Ohio are examined to determine the quality of their organizational structure and curricula offerings. Data collected from a 74.3 percent questionnaire response from 70 Ohio school systems describes the functional arrangement of the school programs based on the sex of the…

  13. Cold neutron PGAA facility developments at university research reactors in the USA

    International Nuclear Information System (INIS)

    Uenlue, K.; Rios-Martinez, C.

    2005-01-01

    The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by a helium cryorefrigerator via copper cold fingers to maintain the moderator below 30 K at full power reactor operation. Texas Cold Neutron Source (TCNS) also uses mesitylene moderator that is cooled by a cryorefrigerator via a neon thermosiphon. The operation of the TCNS is based on a helium cryorefrigerator, which liquefies neon gas in a 3-m long thermosiphon. The thermosiphon cools and maintains mesitylene moderator at about 30 K in a chamber. Neutrons streaming through the mesitylene chamber are moderated and thus reduce their energy to produce a cold neutron distribution. (author)

  14. 77 FR 52379 - Disaster Declaration #13239 and #13240; OHIO Disaster # H-00030

    Science.gov (United States)

    2012-08-29

    ... SMALL BUSINESS ADMINISTRATION Disaster Declaration 13239 and 13240; OHIO Disaster H-00030 AGENCY... declaration of a major disaster for Public Assistance Only for the State of OHIO (FEMA-4077- DR), dated 08/20..., Perry, Pickaway, Pike, Putnam, Shelby, Van Wert, Washington. The Interest Rates are: Percent For...

  15. The University of Missouri Research Reactor, its fuel and productivity

    International Nuclear Information System (INIS)

    Brugger, R.M.; Schlapper, G.A.; Alger, D.M.

    1993-01-01

    This paper describes the University of Missouri Research Reactor (MURR) and presents a summary of contributions to education, research, and service. These efforts have helped offset the impact on the U.S. economy of research from other countries. Special emphasis is placed on fuel design developments that have allowed MuRR to keep the cost megawatt day (MWD) of fuel essentially constant. Also noted is the fact that the United States has missed some research opportunities because of a hold-the-line attitude. The slipping position of U.S. research reactors is compared with the rest of the world. As will be further outlined in the text, the MURR cannot (with available technology) decrease its U-235 enrichment level and maintain present research capabilities and fuel cycle costs. Data is presented to show how MURR, if permitted to use advanced fuel technology, could reduce fuel fabrication costs and onsite U-235 inventory. In addition it is shown that MURR could increase its capabilities provided that arbitrary institutional limits are removed

  16. The University of Missouri Research Reactor, its fuel and productivity

    International Nuclear Information System (INIS)

    Brugger, Robert M.; Schlapper, Gerald A.; Alger, Don M.

    1993-01-01

    This paper describes the University of Missouri Research Reactor (MURR) and presents a summary of contributions to education, research, and service. These efforts have helped offset the impact on the U. S. economy of research from other countries. Special emphasis is placed on fuel design developments that have allowed MURR to keep the cost megawatt day (MWD) of fuel essentially constant. Also noted is the fact that the United States has missed some research opportunities because of a hold-the-line attitude. The slipping position of U.S. research reactors is compared with the rest of the world. As will be further outlined in the text, the MURR cannot (with available technology) decrease its U-235 enrichment level and maintain present research capabilities and fuel cycle costs. Data is presented to show how MURR if permitted to use advanced fuel technology, could reduce fuel fabrication costs and onsite U-235 inventory. In addition it is shown that MURR could increase its capabilities provided that arbitrary institutional limits are removed

  17. Educational use of research reactor (KUR) and critical assembly (KUCA) at Kyoto University

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon, Cheol Ho; Shiroya, Seiji

    2005-01-01

    At Kyoto University Research Reactor Institute, a research reactor of 5MW (KUR) and a critical assembly (KUCA) have been used for educational purpose to train undergraduate or graduate students. Using KUR, basic experiments for neutron applications have been carried out, and KUCA has been used for the education of nuclear engineering and technology. Especially, using KUCA, a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities, and more than 2200 students attended this course

  18. Limiting the impact of recent outage experience in a midsize university reactor environment

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1996-01-01

    The University of Florida Training Reactor (UFTR) is a light-water-cooled, graphite- and light-water-moderated, modified Argonaut-type reactor licensed to operate at steady-state power levels up to 100 kW. The UFTR continues to utilize high-enriched materials test reactor-type fuel in a piping circuit type of system versus the more familiar pool reactor design. Though somewhat limited for research and service, the UFTR is a valuable educational facility. Despite its relatively low power level, the two-slab core configuration provides a peak thermal flux near 2 x 10 12 n/cm 2 · s; in addition, other modifications and experimental adaptations have been implemented in the 36-yr history of the facility to enhance the potential of the facility for diverse types of unique educational usage. Its small physical size in a loop configuration makes it a good teaching tool, but it can also be associated with unique maintenance problems, as in this case. The mission of the UFTR is to serve regional needs for access to quality reactor usage in a variety of areas to support educational and training needs as well as research and service, including public information about nuclear energy. As the only nonpower reactor in the state of Florida in affiliation with an established and diverse nuclear and radiological engineering department, it has a strong role to play in education, training, research, and service, especially the former. As a result of its unique position, the facility has been quite successful in its mission. With so much educational usage scheduled, sometimes for classes arriving from 100 miles away, it is important to avoid unexpected outages as well as unexpectedly lengthy outages. Such planning usually is successful and has allowed the RFTR to build a clientele of more than four dozen regular educational users, although events in 1995 could have undetermined this effort

  19. Timber resources of Ohio

    Science.gov (United States)

    Neal P. Kingsley; Carl E. Mayer

    1970-01-01

    Under the authority of the McSweeney-McNary Forest Research Act of May 22, 1928, and subsequent amendments, the Forest Service, U. S. Department of Agriculture, conducts a series of continuing forest surveys of all states to provide up-to-date information about the forest resources of the Nation. A resurvey of the timber resources of Ohio was made in 1966 and 1967 by...

  20. Final report. U.S. Department of Energy University Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, John A

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  1. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Ohio. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  2. Educational utilization of the University of Missouri-Rolla Reactor Facility

    International Nuclear Information System (INIS)

    Freeman, D.W.; Bolon, A.E.

    1996-01-01

    The primary mission of the University of Missouri-Rolla (UMR) research reactor (UMRR) is to provide exceptional educational opportunities for UMR students and for students at regional college and precollege institutions. Our vision is to become the premier educational reactor in the nation. In order to realize this vision, the principles of self-assessment and continuous improvement are being implemented

  3. Strengthening the Fabric of Government: A Description of WOVEN (Women's Ohio Volunteer Employment Network).

    Science.gov (United States)

    Miller, Mary E.

    WOVEN (Women's Ohio Volunteer Employment Network), is directed at changing the low representation of women in decision making positions in public service. Women comprise more than a third of the work force in the State of Ohio; yet they have typically held the low level, low paying jobs. A 1973 status report on women in State government revealed…

  4. Ohio Schools Cautiously Rebuild: Uncertainty of State and Local Funds Affects Quality. Budget. Executive Summary

    Science.gov (United States)

    Patton, Wendy

    2015-01-01

    Policy Matters Ohio periodically surveys schools about fiscal conditions and operational strategies. The Ohio Association of School Business Officials provided a link to such a survey in their newsletter of December 2014 through February 2015. Fifty-three respondents, representing 8.6 percent of districts and including representatives from all…

  5. Feasibility of maintaining natural convection mode core cooling in research reactor power upgrades

    International Nuclear Information System (INIS)

    Ha, J.J.; Belhadj, M.; Aldemir, T.; Christensen, R.N.

    1987-01-01

    Two operational concerns for natural convection coooled research reactors using plate type fuels are: 1) pool top 16 N activity (PTNA), and 2) nucleate boiling in core channels. The feasibility assessment of a power upgrade while maintaining natural convection mode core cooling requires addressing these operational concerns. Previous studies have shown that: a) The conventional technique for reducing PTNA by plume dispersion may not be effective in a large power upgrade of research reactors with small pools. b) Currently used correlations to predict onset of nucleate boiling (ONB) in thin, rectangular core channels are not valid for low-velocity, upward flows such as encountered in natural convection cooling. The PTNA depends on the velocity distribution in the reactor pool. COMMIX-1A code is used to determine the three-dimensional velocity fields in The Ohio State University Research Reactor (OSURR) pool as a function of varying design conditions, following a power upgrade to 500 kW with LEU fuel. It is shown that a sufficiently deep stagnant water layer can be created below the pool top by properly choosing the disperser flow rate. The ONB heat flux is experimentally determined for channel gaps and upward flow velocities in the range 2mm-4mm and 3-16 cm/sec., respectively. Two alternatives to plume dispersion for reducing PTNA and a new correlation to determine the ONB heat flux in thin, rectangular channels under low-velocity, upward flow conditions are proposed. (Author)

  6. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  7. Advanced Reactor Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Giessing, D. F.; Griffith, J. D.; McGoff, D. J.; Rosen, Sol [U. S. Department of Energy, Texas (United States)

    1990-04-15

    In the United States, three technologies are employed for the new generation of advanced reactors. These technologies are Advanced Light Water Reactors (A LWRs) for the 1990s and beyond, the Modular High Temperature Gas Reactor (M HTGR) for commercial use after the turn of the century, and Liquid Metal Reactors (LWRs) to provide energy production and to convert reactor fission waste to a more manageable waste product. Each technology contributes to the energy solution. Light Water Reactors For The 1990s And Beyond--The U. S. Program The economic and national security of the United States requires a diversified energy supply base built primarily upon adequate, domestic resources that are relatively free from international pressures. Nuclear energy is a vital component of this supply and is essential to meet current and future national energy demands. It is a safe, economically continues to contribute to national energy stability, and strength. The Light Water Reactor (LWR) has been a major and successful contributor to the electrical generating needs of many nations throughout the world. It is being counted upon in the United States as a key to revitalizing nuclear energy option in the 1990s. In recent years, DOE joined with the industry to ensure the availability and future viability of the LWR option. This national program has the participation of the Nation's utility industry, the Electric Power Research Institute (EPRI), and several of the major reactor manufacturers and architect-engineers. Separate but coordinated parts of this program are managed by EPRI and DOE.

  8. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  9. Employment Discrimination Based on Sexual Orientation and Gender Identity in Ohio

    OpenAIRE

    Hasenbush, Amira

    2014-01-01

    Approximately 212,000 LGBT workers in Ohio are vulnerable to employment discrimination absent state or federal legal protections.  At least 13 localities in Ohio prohibit employment discrimination against LGBT people, yet 81 percent of the workforce remains unprotected by local ordinances.  A statewide non-discrimination law would result in 100 additional complaints being filed with the Ohio Civil Rights Commission each year.  The cost of enforcing the additional complaints would be negligibl...

  10. Misleading Measurements: How Ohio School Ratings Foster False Comparisons. Executive Summary

    Science.gov (United States)

    DePaoli, Jennifer

    2014-01-01

    Policy Matters Ohio looked at schools rated the highest over a two-year period in each of Ohio's eight largest urban districts. State, school, and district data were used to examine schools--district-run and charter--that were rated Excellent or higher for either the 2010-11 or the 2011-12 school year or both. The number of schools examined ranged…

  11. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  12. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  13. Utilization of research reactors in universities and their medical applications

    International Nuclear Information System (INIS)

    Kanda, Keiji.

    1983-01-01

    In Japan, five research reactors and a critical assembly are operated by the universities. They are opened to all university researchers, the system of which is financially supported by the Ministry of Education, Culture and Science of the Japanese government. Usually KUR is operated eight cycles per year. One cycle consists of the following four week operation: 1. Mainly for researchers from other universities; 2. Mainly for researchers in the institute; 3. Mainly for beam experiment; 4. Sort time experiment. In the weeks of 1 ∼ 3 the KUR is operated continously from Tuesday morning to Friday evening. The experiment include studies on physics, chemistry, biology, medicine, engineering etc. Recently the medical application of research reactors has become popular in Japan. The new technique of the boron neutron capture thereby has been successfully applied to brain tumors and will be to melanoma (skin cancer) in near future. (author)

  14. Argon-41 production and evolution at the Oregon State University TRIGA Reactor (OSTR)

    International Nuclear Information System (INIS)

    Anellis, L.G.; Johnson, A.G.; Higginbotham, J.F.

    1988-01-01

    In this study, argon-41 concentrations were measured at various locations within the reactor facility to assess the accuracy of models used to predict argon-41 evolution from the reactor tank, and to determine the relationship between argon gas evolution from the tank and subsequent argon-41 concentrations throughout the reactor room. In particular, argon-41 was measured directly above the reactor tank with the reactor tank lids closed, at other accessible locations on the reactor top with the tank lids both closed and open, and at several locations on the first floor of the reactor room. These measured concentrations were then compared to values calculated using a modified argon-41 production and evolution model for TRIGA reactor tanks and ventilation values applicable to the OSTR facility. The modified model was based in part on earlier TRIGA models for argon-41 production and release, but added features which improved the agreement between predicted and measured values. The approximate dose equivalent rate due to the presence of argon-41 in reactor room air was calculated for several different locations inside the OSTR facility. These dose rates were determined using the argon-41 concentration measured at each specific location, and were subsequently converted to a predicted quarterly dose equivalent for each location based on the reactor's operating history. The predicted quarterly dose equivalent values were then compared to quarterly doses measured by film badges deployed as dose-integrating area radiation monitors at the locations of interest. The results indicate that the modified production and evolution model is able to predict argon-41 concentrations to within a factor of ten when compared to the measured data. Quarterly dose equivalents calculated from the measured argon-41 concentrations and the reactor's operating history seemed consistent with results obtained from the integrating area radiation monitors. Given the argon-41 concentrations measured

  15. 78 FR 69337 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2

    Science.gov (United States)

    2013-11-19

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2011-0672; FRL-9902-02-Region 5] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2 Air Quality Rule Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: On June 24, 2011, Ohio...

  16. 78 FR 69299 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2

    Science.gov (United States)

    2013-11-19

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2011-0672; FRL-9902-03-Region 5] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2 Air Quality Rule Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: On June 24, 2011, Ohio...

  17. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  18. University of Florida Training Reactor: Annual progress report, September 1, 1986-August 31, 1987

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1987-11-01

    The University of Florida Training Reactor's overall utilization for the past reporting year (September 1986 through August 1987) has returned to the increased levels of quality usage characteristic of the two years prior to the last reporting year when the maintenance outage to repair sticking control blades reduced availability for the year to near 50%. Indeed, the 91.5% availability factor for this reporting year is the highest in the last five years and probably in the 27 year history of the facility. As a final statement on the effectiveness of the corrective maintenance last year, the overall availability factor has been over 94% since returning to normal operations. The UFTR continues to experience a high rate of utilization in a broad spectrum of areas with total utilization continuing near the highest levels recorded in the early 1970's. This increase has been supported by a variety of usages ranging from research and educational utilization by users within the University of Florida as well as other researchers and educators around the state of Florida through the support of the DOE Reactor Sharing Program and several externally supported usages. Significant usage has also been devoted to facility enhancement where a key ingredient for this usage has been a stable management staff. Uses, reactor operation, maintenance, technical specifications, radioactive releases, and research programs are described in this report

  19. Summary report of activities under visiting research program in Research Reactor Institute, Kyoto University, second half of 1989

    International Nuclear Information System (INIS)

    1990-07-01

    The Technical Report is published on occasion by summarizing in the form of prompt report the data required at the time of research and experiment, such as the results of the functional test on various experimental facilities, the test results for the articles made for trial, the state of radiation control and waste treatment, the reports of study meetings and so on, or the remarkable results and new methods obtained in research, the discussion on other papers and reports and others in the Research Reactor Institute, Kyoto University. In this report, the gists of 69 studies carried out by using the Research Reactor and 15 studies by using the Kyoto University Critical Assembly are collected. Adoption number, classification, title, the names of reporters and gist are given for each report. (K.I.)

  20. Plasma state. The universe's fire

    International Nuclear Information System (INIS)

    Lehner, Th.

    2004-01-01

    The plasma is the fourth state of matter, obtained at a very high temperature by the separation of the electrons from their nuclei. Plasma represents 99% of the visible mass of our present day universe and was the unique state of matter at its very beginning. Plasmas are present in the core of stars and in the interstellar environment. More closer to us, they are responsible of spectacular phenomena, like aurora borealis, lightning, comet queues etc.. This book makes a review of the different types of plasmas (electromagnetic, Earth's plasmas, spatial plasmas, solar plasmas, astrophysical plasmas). One chapter presents the thermonuclear fusion as future energy source. Another one treats of the chaos and turbulence inside plasmas. Some applications of plasmas are reviewed: MHD and ionic propulsion systems, MHD energy conversion and MHD generators, thermo-ionic converters, solid-state plasmas, particle accelerators, coherent radiation sources, 'Zeta' machines, X-ray lasers, isotopic separation, non-neutral plasmas and charged beams, free-electrons lasers, electrons and positrons plasmas, industrial applications (etching and cleaning, manufacturing of solar cells, flat screens, industrial reactors, waste treatment, cold plasma-assisted sterilization, effluents decontamination etc.). A last chapter makes an overview of the modern research in plasma physics. (J.S.)

  1. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  2. Final report on the University of Florida U.S. Department of Energy 1995--96 Reactor Sharing Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1996-11-01

    Grant support has been well used by the University of Florida as host institution to support various educational institutions in the use of the reactor and associated facilities as indicated in the proposal. These various educational institutions are located primarily within Florida. However, when the 600-mile distance from Pensacola to Miami is considered, it is obvious that this Grant provides access to reactor utilization for a broad geographical region and a diverse set of user institutions serving over twelve million inhabitants throughout the State of Florida and still others throughout the nation. All users and uses were carefully screened to assure the usage was for educational institutions eligible for participation in the Reactor Sharing Program; where research activities were involved, care was taken to assure the research activities were not funded by grants for contract funding from outside sources. In some cases external grant funding is limited or is used up, in which case the Reactor Sharing Grant and frequent cost sharing by the UFTR facility and the University of Florida provide the necessary support to complete a project or to provide more results to make a complete project even better. In some cases this latter usage has aided renewal of external funding. The role of the Reactor Sharing Program, though relatively small in dollars, has been the single most important occurrence in assuring the rebirth and continued high utilization of the UFTR in a time when many better equipped and better placed facilities have ceased operations. Through dedicated and effective advertising efforts, the UFTR has seen nearly every four-year college and university in Florida make substantive use of the facility under the Reactor Sharing Program with many now regular users. Some have even been able to support usage from outside grants where the Reactor Sharing Grant has served as seed money; still others have been assisted when external grants were depleted

  3. Count Data On Cancer Death In Ohio A Bayesian Analysis

    Directory of Open Access Journals (Sweden)

    Walaa Hamdi

    2015-08-01

    Full Text Available This paper considers statistical modeling of count data on cancer death in Ohio State. We obtained count data on male and female from a website of the Centers for Disease Control and Prevention and used Bayesian analyses to find suitable models which help us to do inferences and predictions for next year. To assist us in selecting appropriate models we use criteria such as the DIC. In this paper we analyze the data to spatial longitudinal so we can capture possible correlations. Using our analyses we make predictions of the numbers of people who will die with cancer in a future year in Ohio State.

  4. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  5. Use of university research reactors to teach control engineering

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1991-01-01

    University research reactors (URRs) have provided generations of students with the opportunity to receive instruction and do hands-on work in reactor dynamics, neutron scattering, health physics, and neutron activation analysis. Given that many URRs are currently converting to programmable control systems, the opportunity now exists to provide a similar learning experience to those studying systems control engineering. That possibility is examined here with emphasis on the need for the inclusion of experiment in control engineering curricula, the type of activities that could be performed, and safety considerations

  6. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  7. University of Missouri research reactor exhaust ventilation/laboratory fume hood upgrade

    International Nuclear Information System (INIS)

    Edwards, C.B. Jr.; McKibben, J.C.; McCracken, C.B.

    1989-01-01

    The University of Missouri research reactor (MURR) facility is located in Research Park, 1 mile south of the Columbia campus. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-and-graphite-reflected core, serviced by six radial beam tubes for research, and has sample irradiation facilities in both a flux trap and in the graphite region. The reactor operates at full power 150 h/week, 52 week/yr, making it one of the best operating schedules and the most extensively used of any university research reactor. This extensive utilization includes many programs, such as radioisotope applications, neutron activation analysis, etc., that depend heavily on fume hoods, glove boxes, and hot cells that put a tremendous demand on the exhaust system. The exhaust system is required to be operable whenever the reactor is operating and must have the capability of being operated from an emergency electrical generator on loss of site electrical power. The originally installed exhaust ventilation system was below needed capacity and, with increased program requirements and system age, the necessity to upgrade the system was paramount. The challenge was to complete the upgrade construction while continuing to operate the reactor and maintain all the other ongoing programs, rather than take the easy way of an extended shutdown. This paper discusses how MURR met this challenge and solved these problems, problems that are similarly experienced by almost all research reactors to some degree when major work is required on critical systems

  8. Utilizing Business, University, and Community Resources to Target Adolescent Prescription Drug Abuse

    Science.gov (United States)

    Wade-Mdivanian, R.; Anderson-Butcher, D.; Hale, K.; Kwiek, N.; Smock, J.; Radigan, D.; Lineberger, J.

    2012-01-01

    "Generation Rx" is a prescription drug abuse prevention strategy which includes a "toolkit" designed to be used with youth. Developed by Cardinal Health Foundation and the Ohio State University, it provides health care providers (especially pharmacists), parents, teachers, youth workers, and other community leaders with…

  9. Broad scope educational role of a midsize university reactor NAA laboratory

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    2000-01-01

    Broad scope educational activities at the Neutron Activation Analysis Laboratory (NAAL) associated with the 100 kW University of Florida Training Reactor (UFTR) have been implemented to serve a deserve and multidisciplinary academic clientele to meet a wide spectrum of educational needs for students at all academic levels. Educational usage of the complementary laboratory facilities is described and the importance of such academic experimental experience is emphasized for developing and maintaining a cadre of professionals in the analytical applications of nuclear energy. The synergistic operation of the NAAL and the reactor at the University of Florida to serve as a model worthy of emulation for other similar facilities is emphasized. (author)

  10. Update on the University of Missouri-Columbia Research Reactor Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    McKibben, J C; Rhyne, J J [University of Missouri-Columbia (United States)

    1992-07-01

    The University of Missouri-Columbia (MU) is in the process of upgrading the research and operational capabilities of the MU Research Reactor (MURR) and associated facilities. The plans include an expanded research building that will double the laboratory space, the addition of new research programs, instrumentation and equipment, a cold neutron source, and improved reactor systems. These enhancements, which are in various stages of completion, will greatly expand the present active multidisciplinary research programs at MURR.

  11. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  12. Ohio Department of Transportation Financial & Statistical Report : Fiscal Year 2007

    Science.gov (United States)

    2007-01-01

    On behalf of the dedicated men and women of the Ohio Department of Transportation, I share with : you this Financial and Statistical Report for State Fiscal Year 2007, documenting the state and : federal dollars invested by ODOT into preserving, main...

  13. Hybrid Reactor designs in the United States

    International Nuclear Information System (INIS)

    Wolkenhauer, W.C.

    1978-01-01

    This paper reviews the current, active, interrelated Hybrid Reactor development programs in the United States, and offers a probable future course of action for the technology. The Department of Energy (DOE) program primarily emphasizes development of Hybrid Reactors that are optimized for proliferation resistance. The Electric Power Research Institute (EPRI) program concentrates on avenues for Hybrid Reactor commercialization. The history of electrical generation technology has been one of steady movement toward higher power densities and higher quality fuels. An apparent advantage of the Hybrid Reactor option is that it follows this trend

  14. University of Virginia open-quotes virtualclose quotes reactor facility tours

    International Nuclear Information System (INIS)

    Krause, D.R.; Mulder, R.U.

    1995-01-01

    An electronic information and tour book has been constructed for the University of Virginia reactor (UVAR) facility. Utilizing the global Internet, the document resides on the University of Virginia World Wide Web (WWW or W) server within the UVAR Homepage at http://www.virginia. edu/∼reactor/. It is quickly accessible wherever an Internet connection exists. The UVAR Homepage files are accessed with the hypertext transfer protocol (http) prefix. The files are written in hypertext markup language (HTML), a very simple method of preparing ASCII text for W3 presentation. The HTML allows use of various hierarchies of headers, indentation, fonts, and the linking of words and/or pictures to other addresses-uniform resource locators. The linking of texts, pictures, sounds, and server addresses is known as hypermedia

  15. Experimental and theoretical comparison of fuel temperature and bulk coolant characteristics in the Oregon State TRIGA reactor during steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.ed [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G.; Reese, S.R. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2010-01-15

    In September of 2008 Oregon State University (OSU) completed its core conversion analysis as part of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Experimental bulk coolant temperatures were collected in various locations throughout the Oregon State TRIGA Reactor (OSTR) core in order to supplement the validity of the numerical thermal hydraulic results produced in RELAP5-3D Version 2.4.2. Axial bulk coolant temperature distributions were collected by acquiring discrete thermocouple measurements in individual subchannel locations during steady state operation at 1.0 MW{sub th}. The experimental axial temperature distribution collected was compared to one-channel, two-channel, and eight-channel RELAP5-3D models and found to match within 11.94%, 11.69%, and 8.78%, respectively, on average. Comparisons to similar studies were made based on a dimensional analysis of fluid body forces in the discrete core locations, indicating that the chosen approach produces conservative results for use in the OSTR safety analysis.

  16. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  17. Knowledge of folic acid and counseling practices among Ohio community pharmacists

    Directory of Open Access Journals (Sweden)

    Rodrigues CR

    2012-09-01

    Full Text Available Objective: To determine knowledge of folic acid use for neural tube defect (NTD prevention and counseling practices among community pharmacists registered in Ohio.Methods: A cross-sectional study was performed on a random sample (n=500 of community pharmacists registered with the Ohio Board of Pharmacy and practicing in Ohio. A survey previously used by researchers to assess folic acid knowledge and practices among samples of other healthcare provider groups in the United States was adapted with permission for this study. The final tool consisted of 28 questions evaluating the knowledge, counseling practices, and demographics of respondents. The cover letter did not reveal the emphasis on folic acid, and surveys were completed anonymously. The university institutional review board deemed the study exempt.Results: Of the 122 pharmacists who completed the survey, 116 (95.1% knew that folic acid prevents some birth defects. Twenty-eight (22.9% responded that they “always” or “usually” discuss multivitamins with women of childbearing potential, and 19 (15.6% responded that they “always” or “usually” discuss folic acid supplements. Some gaps in knowledge specific to folic acid were revealed. While 63.1% of pharmacists selected the recommended dose of folic acid intake for most women of childbearing potential, 13.1% could identify the dose recommended for women who have had a previous NTD-affected pregnancy. Respondents identified continuing education programs, pharmacy journals/magazines, and the Internet as preferred avenues to obtain additional information about folic acid and NTD.Conclusion: This study represents the first systematic evaluation of folic acid knowledge and counseling practices among a sample of pharmacists in the United States. As highly accessible healthcare professionals, community pharmacists can fulfill a vital public health role by counseling women of childbearing potential about folic acid intake. Educational

  18. Present status of operation and utilization of Kyoto University Reactor, KUR

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1988-01-01

    The Research Reactor Institute was established as an inter-university research institute in 1963. The main installation of the Institute is the KUR, a light water moderated, tank type reactor of 5,000 kW. In addition, a 46 MeV electron linear accelerator and a gamma ray irradiation facility with 10,000 Ci Co-60 are actively used for research. In 1974, Kyoto University Critical Assembly (KUCA) was constructed, and it has been used for research and education. The Reactor Utilization Center and the Fundamental Research Laboratory for Neutron Therapy were established in 1975 and 1976, respectively. Approximately 200 people work there, of them, some 80 do research and education, including 13 professors and 12 associate professors. All the experimental facilities of the Institute are available for the cooperative research projects of other universities and public research institutions in the fields of natural science and engineering, medical science, agriculture and forestry, fishery and stock-raising, environment science, cultural science and others. As a rule, the KUR is operated for about 70 hours from Tuesday morning to Friday evening every week. The annual examination by the government is carried out in spring. The total operation time was about 45,000 hours as of the end of 1987. The recent topics are reported. (Kako, I.)

  19. Service to the Electric Utility Industry by the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.; Simpson, P.A.; Cook, G.M.

    1993-01-01

    Since 1977, the staff of the University of Michigan's Ford Nuclear Reactor has been providing irradiation, testing, analytical, and training services to electric utilities and to suppliers of the nuclear electric utility industry. This paper discusses the reactor's irradiation facilities; reactor programs and utilization; materials testing programs; neutron activation analysis activities; and training programs conducted

  20. Participation in the United States Department of Energy Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.

  1. Participation in the United States Department of Energy Reactor Sharing Program

    International Nuclear Information System (INIS)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993

  2. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  3. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    Science.gov (United States)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  4. Status of the University of Missouri-Columbia Research Reactor upgrade

    International Nuclear Information System (INIS)

    McKibben, J.C.; Edwards, C.B. Jr.; Meyer, W.A. Jr.; Kim, S.S.

    1990-01-01

    The University of Missouri-Columbia (MU) Research Reactor Facility staff is in the process of upgrading the operational and research capabilities of the reactor and associated facilities. The upgrades include an extended life aluminide fuel element, a power increase, improved instrumentation and control equipment, a cold neutron source, a building addition, and improved research instrumentation and equipment. These upgrades will greatly enhance the capabilities of the facility and the research programs. This paper discusses the parts of the upgrade and current status of implementation. (author)

  5. Status of the University of Missouri-Columbia Research Reactor upgrade

    Energy Technology Data Exchange (ETDEWEB)

    McKibben, J C; Edwards, Jr, C B; Meyer, Jr, W A [MU Research Reactor, Columbia, MO (United States); Kim, S S [Idaho Nuclear Engineering Laboratory, Idaho Falls, ID (United States)

    1990-05-01

    The University of Missouri-Columbia (MU) Research Reactor Facility staff is in the process of upgrading the operational and research capabilities of the reactor and associated facilities. The upgrades include an extended life aluminide fuel element, a power increase, improved instrumentation and control equipment, a cold neutron source, a building addition, and improved research instrumentation and equipment. These upgrades will greatly enhance the capabilities of the facility and the research programs. This paper discusses the parts of the upgrade and current status of implementation. (author)

  6. Research on neutron radiography in Research Reactor Institute, Kyoto University and activities related to it

    International Nuclear Information System (INIS)

    Fujine, Shigenori; Yoneda, Kenji

    1994-01-01

    The research on neutron radiography in Research Reactor Institute, Kyoto University was begun in 1974 using the E-2 experimental hole which was designed for neutron irradiation. It was reconstructed for the excellent performance as neutron radiography facility by fixing aluminum plugs, a collimator and so on. The research activities thereafter are briefly described. In 1989, the cold neutron facility was installed in the graphite thermal neutron facility, and the experiment on cold neutron radiography became feasible. The reactor in Kyoto University is of the thermal output of 5 MW, and is put to the joint utilization by universities and research institutes in whole Japan. The experimental items carried out so far are enumerated. At present, the main subjects of research are the development of the standard for establishing image evaluation method, the analysis of gas-liquid two-phase flow, the construction of the data base for the literatures and images of neutron radiography, the application of cold neutron radiography, the development of the imaging method using fast neutrons and so on. The thermal neutron radiography and the cold neutron radiography facilities of Kyoto University research reactor are described. The research and activities at Kyoto University research reactor and the investigation of problems are reported. (K.I.) 56 refs

  7. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-01-01

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents 153 Sm EDTMP and 186 Re/ 188 Re HEDP, as well as in the use of 186 Re, 177 Lu, 166 Ho, and 105 Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, 90 Y-labeled glass microspheres for the treatment of liver tumors, a product ( 90 Y Therasphere trademark) which is currently an approved drug in Canada. MURR has also pioneered the development of 188 W/ 188 Re and 99 Mo/ 99m Tc gel generators, which make the use of low specific activity 188 W and 99 Mo practical for such isotope generators

  8. Development of a Neutron Long Counter Detector for (α, n) Cross Section Measurements at Ohio University

    Science.gov (United States)

    Brandenburg, Kristyn; Meisel, Zach; Brune, Carl R.; Massey, Thomas; Soltesz, Doug; Subedi, Shiv

    2017-01-01

    The origin of the elements from roughly zinc-to-tin (30 determined. The neutron-rich neutrino driven wind of core collapse supernova (CCSN) is a proposed site for the nucleosynthesis of these elements. However, a significant source of uncertainty exists in elemental abundance yields from astrophysics model calculations due to the uncertainty for (α , n) reaction rates, as most of the relevant cross sections have yet to be measured. We are developing a neutron long counter tailored to measure neutrons for (α , n) reaction measurements performed at The Ohio University Edwards Accelerator Laboratory. The detector design will be optimized using the Monte-Carlo N-Particle transport code (MCNP6). Details of the optimization process, as well as the present status of the detector design will be provided. The plans for first (α , n) cross section measurements will also be briefly discussed. This work was supported in part by the US Department of Energy under Grant Number DE-FG02-88ER40387.

  9. Annual progress report of the University of Florida Training Reactor, September 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Diaz, N.J.; Vernetson, W.G.

    1982-11-01

    The University of Florida Training Reactor's overall utilization for the past reporting year has decreased by about 50% compared to the previous year, approaching the low levels of utilization characteristic of the previous two reporting years ending in August 1979 and August 1980 respectively. The energy generation also continues to be far below average historical levels and represents a drop of nearly 50% from the improved level of the previous year. The UFTR continues to operate with an outstanding safety record and in full compliance with regulatory requirements. The reactor and associated facilities continue to maintain a high in-state visibility and strong industry relationship. It is hoped that more indirect industry training will be accomplished in the upcoming year

  10. Medicaid in Ohio: The Politics of Expansion, Reauthorization, and Reform.

    Science.gov (United States)

    Skinner, Daniel

    2015-12-01

    When, in 2012, the US Supreme Court held that Medicaid expansion sanctioned by the Affordable Care Act (ACA) was essentially optional for states, it ushered in a newly contentious state politics. States led by Republican governors and legislatures opposed to the ACA had to decide whether to accept extensive federal funding to expand Medicaid for citizens in their states who were earning up to 138 percent of the federal poverty level. This Report from the States focuses on Ohio, whose Republican governor successfully navigated the rancorous politics of Medicaid to expand the state's program in 2014. Working at odds with his own party and gaining praise from traditional political opponents for his leadership on the issue, John Kasich circumvented the state legislature, turning to the Controlling Board to bring about initial expansion. In the wake of Kasich's landslide reelection in 2014, the politics of expansion and reauthorization have given way to a pervasive discourse of "reform." In this next phase Kasich has endorsed policy positions (e.g., cost sharing, a focus on "personal responsibility") that reunite him with his party's more traditional view of Medicaid while continuing to emphasize the importance of expansion. Copyright © 2016 by Duke University Press.

  11. Radiation protection in a university TRIGA reactor

    International Nuclear Information System (INIS)

    Tschurlovits, M. . Author

    2004-01-01

    Radiation protection in a university institute operating a research reactor and other installations has different constraints as a larger facility. This is because the legal requirements apply in full, but the potential of exposure is low, and accesses has to be made available for students, but also for temporary workers. Some of the problems in practical radiation protection are addressed and solutions are discussed. In addition, experience with national radiation protection legislation recently to be issued is addressed and discussed. (author)

  12. Research on the reactor physics using the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    1986-10-01

    The Kyoto University Critical Assembly [KUCA] is a multi-core type critical assembly established in 1974, as a facility for the joint use study by researchers of all universities in Japan. Thereafter, many reactor physics experiments have been carried out using three cores (A-, B-, and C-cores) in the KUCA. In the A- and B-cores, solid moderator such as polyethylene or graphite is used, whereas light-water is utilized as moderator in the C-core. The A-core has been employed mainly in connection with the Cockcroft-Walton type accelerator installed in the KUCA, to measure (1) the subcriticality by the pulsed neutron technique for the critical safety research and (2) the neutron spectrum by the time-of-flight technique. Recently, a basic study on the tight lattice core has also launched using the A-core. The B-core has been employed for the research on the thorium fuel cycle ever since. The C-core has been employed (1) for the basic studies on the nuclear characteristics of light-water moderated high-flux research reactors, including coupled-cores, and (2) for a research related to reducing enrichment of uranium fuel used in research reactors. The C-core is being utilized in the reactor laboratory course experiment for students of ten universities in Japan. The data base of the KUCA critical experiments is generated so far on the basis of approximately 350 experimental reports accumulated in the KUCA. Besides, the assessed KUCA code system has been established through analyses on the various KUCA experiments. In addition to the KUCA itself, both of them are provided for the joint use study by researchers of all universities in Japan. (author)

  13. C-TEC: Ohio's First All-Green School

    Science.gov (United States)

    Krall, Angie

    2009-01-01

    In Ohio's Licking County, the Career and Technology Education Centers (C-TEC) is a leader in the green movement. This eco-friendly school incorporates environmental sustainability in all aspects of its programming and is the first Leadership in Energy and Environmental Design (LEED)-certified public building in the state. While eco-friendly…

  14. Venture Capital Initiative: Ohio's School Improvement Effort.

    Science.gov (United States)

    Yoo, Soonhwa; Loadman, William E.

    In 1994 the Ohio State Legislature established Venture Capital to support school restructuring. The Venture Capital school initiative is a concept borrowed from the business community in which the corporate entity provides risk capital to parts of the organization to stimulate creative ideas and to provide opportunities for local entities to try…

  15. AKR-1 nuclear training reactor of Dresden Technical University turns twenty-five

    International Nuclear Information System (INIS)

    Hansen, W.

    2003-01-01

    Twenty-five years ago, in the night of July 27 to 28, 1978, the AKR-1 nuclear training reactor of the Dresden Technical University went critical for the first time and was commissioned. On the occasion of this anniversary, a colloquy was arranged with representatives from science, politics and industry, at which the reactor's history, the excellent achievements in research and training with the reactor, and the status and perspectives of this research facility were described. The AKR-1 had been built within the framework of the Nuclear Development Program of the then German Democratic Republic (GDR). The Nuclear Power Scientific Division of the Dresden Technical University had been entrusted with the responsibility, among other things, to train university personnel for the GDR Nuclear Power Program. The review by an expert group in 1996 of this plant had resulted in a recommendation in favor of long-term plant operation. A nuclear licensing procedure to this effect was initiated, and the necessary technical backfitting measures were implemented. The AKR-1 plant now equally serves for the specialized training of students and for research. (orig.) [de

  16. 77 FR 5281 - State-of-the-Art Reactor Consequence Analyses Reports

    Science.gov (United States)

    2012-02-02

    ... NUCLEAR REGULATORY COMMISSION [Docket ID: NRC-2012-0022] State-of-the-Art Reactor Consequence... release of Draft NUREG-1935, ``State-of-the-Art Reactor Consequence Analyses (SOARCA) Report,'' for public... offsite radiological health consequences for potential severe reactor accidents for the Peach Bottom...

  17. Reactor kinetics - pulse and steady state

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  18. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  19. Ten years of TRIGA reactor research at the University of Texas

    International Nuclear Information System (INIS)

    O'Kelly, Sean

    2002-01-01

    The 1 MW TRIGA Research Reactor at the Nuclear Engineering Teaching Laboratory is the second TRIGA at the University of Texas at Austin (UT). A small (10 kW-1963, 250 kW-1968) TRIGA Mark I was housed in the basement of the Engineering Building until is was shutdown and decommissioned in 1989. The new TRIGA Mark II with a licensed power of 1.1 MW reached initial criticality in 1992. Prior to 1990, reactor research at UT usually consisted of projects requiring neutron activation analysis (NAA) but the step up to a much larger reactor with neutron beam capability required additional personnel to build the neutron research program. The TCNS is currently used to perform Prompt Gamma Activation Analysis to determine hydrogen and boron concentrations of various composite materials. The early 1990s was a very active period for neutron beam projects at the NETL. In addition to the TCNS, a real-time neutron radiography facility (NIF) and a high-resolution neutron depth profiling facility (NDP) were installed in two separate beam ports. The NDP facility was most recently used to investigate alpha damage on stainless steel in support of the U.S. Nuclear Weapons Stewardship programs. In 1999, a sapphire beam filter was installed in the NDP system to reduce the fast neutron flux at the sample location. A collaborative effort was started in 1997 between UT-Austin and the University of Texas at Arlington to build a reactor-based, low-energy positron beam (TIPS). The limited success in obtaining funding has placed the project on hold. The Nuclear and Radiation Engineering Program has grown rapidly and effectively doubled in size over the past 5 years but years of low nuclear research funding, an overall stagnation in the U.S. nuclear power industry and a persuasive public distrust of nuclear energy has caused a precipitous decline in many programs. Recently, the U.S. DOE has encouraged University Research Reactors (URR) in the U.S. to collaborate closely together by forming URR

  20. Lessons from Ebola: Sources of Outbreak Information and the Associated Impact on UC Irvine and Ohio University College Students.

    Science.gov (United States)

    Koralek, Thrissia; Runnerstrom, Miryha G; Brown, Brandon J; Uchegbu, Chukwuemeka; Basta, Tania B

    2016-08-25

    Objectives. We examined the role of outbreak information sources through four domains: knowledge, attitudes, beliefs, and stigma related to the 2014 Ebola virus disease (EVD) outbreak. Methods. We conducted an online survey of 797 undergraduates at the University of California, Irvine (UCI) and Ohio University (OU) during the peak of the outbreak. We calculated individual scores for domains and analyzed associations to demographic variables and news sources. Results. Knowledge of EVD was low and misinformation was prevalent. News media (34%) and social media (19%) were the most used sources of EVD information while official government websites (OGW) were among the least used (11%). Students who acquired information through OGW had higher knowledge, more positive attitudes towards those infected, a higher belief in the government, and were less likely to stigmatize Ebola victims. Conclusions. Information sources are likely to influence students' knowledge, attitudes, beliefs, and stigma relating to EVD. This study contains crucial insight for those tasked with risk communication to college students. Emphasis should be given to developing effective strategies to achieve a comprehensive knowledge of EVD and future public health threats.

  1. Losing Ohio's Future: Why College Graduates Flee the Buckeye State and What Might Be Done about It

    Science.gov (United States)

    Thomas B. Fordham Institute, 2009

    2009-01-01

    The Thomas B. Fordham Institute became interested in Ohio's human-talent issues via its work to improve public education. Fordham wanted answers to two related questions: what would it take to excite, attract, and retain more top college students to work in Ohio, and what else would it take to draw them into the field of education? To seek…

  2. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-12-31

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents {sup 153}Sm EDTMP and {sup 186}Re/{sup 188}Re HEDP, as well as in the use of {sup 186}Re, {sup 177}Lu, {sup 166}Ho, and {sup 105}Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, {sup 90}Y-labeled glass microspheres for the treatment of liver tumors, a product ({sup 90}Y Therasphere{trademark}) which is currently an approved drug in Canada. MURR has also pioneered the development of {sup 188}W/{sup 188}Re and {sup 99}Mo/{sup 99m}Tc gel generators, which make the use of low specific activity {sup 188}W and {sup 99}Mo practical for such isotope generators.

  3. Modern design and safety analysis of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Jordan, K.A.; Springfels, D.; Schubring, D.

    2015-01-01

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed

  4. Modern design and safety analysis of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kjordan@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Springfels, D., E-mail: dspringfels@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Schubring, D., E-mail: dlschubring@ufl.edu [University of Florida, 202 Nuclear Science Building, PO Box 118300, Gainesville, FL 32611-8300 (United States)

    2015-05-15

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed.

  5. Preliminary Findings on Rural Homelessness in Ohio.

    Science.gov (United States)

    First, Richard J.; And Others

    This report is designed to present preliminary findings from the first comprehensive study of rural homelessness in the United States. The study was conducted during the first 6 months of 1990, and data were collected from interviews with 921 homeless adults in 21 randomly selected rural counties in Ohio. The sample counties represent 26% of the…

  6. Evaluating the Impact of Performance Funding in Ohio and Tennessee

    Science.gov (United States)

    Hillman, Nicholas W.; Hicklin Fryar, Alisa; Crespín-Trujillo, Valerie

    2018-01-01

    Today, 35 states use performance-based funding models tying appropriations directly to educational outcomes. Financial incentives should induce colleges to improve performance, but there are several well-documented reasons why this is unlikely to occur. We examine how two of the most robust performance funding states--Tennessee and Ohio--responded…

  7. Business challenges in the universities. Panel Discussion

    International Nuclear Information System (INIS)

    Klein, Andrew; Lee, John C.; Peterson, Per; Simard, Ron; Gates, W. Gary

    2001-01-01

    Full text of publication follows: University nuclear science and engineering programs in the United States currently operate in a business climate that involves serious and dramatic change. The number of degree-granting nuclear engineering programs within the nation's universities has declined over the past two decades to approximately 25. More than two-thirds of the faculty in these programs are 45 yr or older. Recruiting and retaining the best faculty and students continue to be vital to the continued success and existence of these programs. Many universities are also experiencing difficulty in finding support for their research and training reactors. There are currently only 28 university research reactors remaining across the United States. Many of these reactors were initially established with 30- to 40-yr operating licenses and will require re-licensing in the next several years. Combined, the university nuclear engineering educational programs and the university research reactors form a fundamental and vital component in a broad spectrum of our national research and education infrastructure and are critical to many national priorities such as energy, health care, education, environment, and technology transfer. Speakers have been selected from various universities, the Nuclear Energy Institute, and industry to address problems related to workforce forecasting, student recruiting and retention, research reactor operation and financing, academic accreditation, and other current issues relevant to nuclear engineering education and research. (authors)

  8. Research Reactor Utilization at the University of Utah for Nuclear Education, Training and Services

    International Nuclear Information System (INIS)

    Jevremovic, T.; Choe, D.O.

    2013-01-01

    In the years of nuclear renaissance we all recognize a need for modernizing the approaches in fostering nuclear engineering and science knowledge, in strengthening disciplinary depth in students’ education for their preparation for workforce, and in helping them learn how to extend range of skills, develop habits of mind and subject matter knowledge. The education infrastructure at the University of Utah has been recently revised to incorporate the experiential learning using our research reactor as integral part of curriculum, helping therefore that all of our students build sufficient level of nuclear engineering literacy in order to be able to contribute productively to nuclear engineering work force or continue their education toward doctoral degrees. The University of Utah TRIGA Reactor built 35 years ago represents a university wide facility to promote research, education and training, as well as is used for various applications of nuclear engineering, radiation science and health physics. Our curriculum includes two consecutive classes for preparation of our students for research reactor operating license. Every year the US Nuclear Regulatory Commission’s representatives hold the final exam for our students. Our activities serve the academic community of the University of Utah, commercial and government entities, other universities and national laboratories as well. (author)

  9. Advocacy, Assessment and Accountability: Using Policy to Impact Practice in Ohio

    Science.gov (United States)

    Lorson, Kevin; Mitchell, Stephen

    2016-01-01

    Physical education teachers and programs are affected by increasing accountability demands. The purpose of this article is to explain Ohio's journey from advocacy for state physical education academic content standards to state-level policy that led to the development of state-wide assessments and data reporting on each school's report card. The…

  10. The challenges of biofuels from the perspective of small-scale producers in Ohio

    International Nuclear Information System (INIS)

    Morrone, Michele; Stuart, Ben J.; McHenry, Izaak; Buckley, Geoffrey L.

    2009-01-01

    Increased interest in renewable fuels in the United States, such as biodiesel and ethanol, is mainly the result of higher cost for traditional fuels after years of low prices. A growing concern over oil imports from politically unstable parts of the world has also led people to seriously consider alternatives to gasoline. Despite this attention, there are issues that challenge the widespread acceptance of biofuels, including the availability of raw materials and food security concerns. Ohio is one of the most productive agricultural states in the country, able to contribute significant amounts of corn and soybeans, the main feedstock for biofuels. Even though Ohio is rich in the raw materials needed for biofuel production, it is still an endeavor that mainly involves small businesses that face numerous challenges. Some of these challenges are national in scope, while others are localized. Interviews with small-scale biofuels producers in Ohio identify some of the major political, economic, and perceptual hurdles confronting this fledgling industry

  11. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  12. An Assessment of the Adequacy of Ohio School Funding: New Performance Standards and Alternative Measurements of Adequacy

    Science.gov (United States)

    Sweetland, Scott R.

    2015-01-01

    Reflecting upon "Rose v. Council," this research traced the development of adequate school funding in Ohio. "DeRolph v. State" centered the constitutional requirement for adequate education in Ohio. Thereafter, scholars estimated costs of adequate education and legislators adjusted those estimated costs. Plaintiffs and justices…

  13. Environmental Assessment for the National Museum of the United States Air Force Addition, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    2013-02-01

    AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Air Force 88th...Air Base Wing Wright-Patterson Air Force Base, Ohio 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES...visitors nationwide and from foreign countries. Softball and soccer fields are located adjacent to the Museum grounds and are operated by the 88 Air

  14. Hydraulic analysis, Mad River at State Highway 41, Springfield, Ohio

    Science.gov (United States)

    Mayo, Ronald I.

    1977-01-01

    A hydraulic analysis of the lad River in a reach at Springfield, Ohio was made to determine the effects of relocating State Highway 41 in 1S76. The main channel was cleaned by dredging in the vicinity cf the new highway bridge and at the Detroit, Toledo and Ironton Railway bridge upstream. The new highway was placed on a high fill with relief structures for flood plain drainage consisting of a 12-foot corrugated metal pipe culvert and a bridge opening to accommodate the Detroit, Toledo and Ironton Railway and a property access road. The effect of the new highway embankment on drainage from the flood plain was requested. Also requested was the effect that might be expected on the elevation of flood waters above the new highway embankment if the access road through the new highway embankment were raised.The study indicates that the improvement in the capacity of the main channel to carry water was such that, up to a discharge equivalent to a 25-year frequency flood, the water-surface elevation in the reach upstream from the Detroit, Toledo and Ironton Railway bridge would be about 0.6 foot lower than under conditions prior to the construction on State Highway 41. Diversion through the Mad River left bank levee break above the Detroit, Toledo and Ironton Railway bridge to the flood Flain would be decreased about one-half in terms of rate of discharge in cubic feet per second. The maximum difference in elevation cf the flood water between the upstream and downstream side of the new State Highway 41 embankment would be about 0.2 foot, with an additional 0.4 foot to be expected if the access road were raised 1.5 feet.

  15. Raising H2 and Fuel Cell Awareness in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Patrick R. [Ohio Fuel Cell Coalition, Elyria, OH (United States)

    2013-03-31

    The Ohio Fuel Cell Coalition was tasked with raising the awareness and understanding of Fuel Cells and the Hydrogen economy. This was done by increasing the understanding of hydrogen and fuel cell technologies among state and local governments using a target of more than 10% compared to 2004 baseline. We were also to target key populations by 20 percent compared to 2004 baseline. There are many barriers to an educated fuel cell population, including: a)Lack of Readily Available, Objective and Technical Accurate Information b)Mixed Messages c)Disconnect Between Hydrogen Information and Dissemination Networks d)Lack of Educated Trainers and Training Opportunities e)Regional Differences f)Difficulty of Measuring Success The approach we used for all the Community Leaders Forums were presentations by the Ohio Fuel Cell Coalition in conjunction with regional leaders. The presentations were followed by question and answers periods followed up by informal discussions on Fuel Cells and the Hydrogen Economy. This project held a total of 53 events with the following breakdown: From Aug 2009 through June 2010, the Ohio Fuel Cell Coalition held 19 community leaders forums and educated over 845 individuals, both from the State of Ohio and across the country: From July 2010 to June 2011 the OFCC held 23 community forum events and educated 915 individuals; From August 2011 to June 2012 there were 11 community forums educating 670 individuals. This report details each of those events, their date, location, purpose, and pertinent details to this report. In summary, as you see the Community Leader Forums have been very successful over the period of the grant with over 2,000 people being drawn to the forums. As always, we followed up the forums with a survey and the survey results were very positive in that the participants had a significant increase in knowledge and awareness of Fuel Cells and the Hydrogen Economy.

  16. Designs that make a difference: the Cardiac Universal Bed model.

    Science.gov (United States)

    Johnson, Jackie; Brown, Katherine Kay; Neal, Kelly

    2003-01-01

    Information contained in this article includes some of the findings from a joint research project conducted by Corazon Consulting and Ohio State University Medical Center on national trends in Cardiac Universal Bed (CUB) utilization. This article outlines current findings and "best practice" standards related to the benefits of developing care delivery models to differentiate an organization with a competitive advantage in the highly dynamic marketplace of cardiovascular care. (OSUMC, a Corazon client, is incorporating the CUB into their Ross Heart Hospital slated to open this spring.)

  17. An evaluation of the accuracy of modeled and computed streamflow time-series data for the Ohio River at Hannibal Lock and Dam and at a location upstream from Sardis, Ohio

    Science.gov (United States)

    Koltun, G.F.

    2015-01-01

    Between July 2013 and June 2014, the U.S. Geological Survey (USGS) made 10 streamflow measurements on the Ohio River about 1.5 miles (mi) downstream from the Hannibal Lock and Dam (near Hannibal, Ohio) and 11 streamflow measurements near the USGS Sardis gage (station number 03114306) located approximately 2.4 mi upstream from Sardis, Ohio. The measurement results were used to assess the accuracy of modeled or computed instantaneous streamflow time series created and supplied by the USGS, U.S. Army Corps of Engineers (USACE), and National Weather Service (NWS) for the Ohio River at Hannibal Lock and Dam and (or) at the USGS streamgage. Hydraulic or hydrologic models were used to create the modeled time series; index-velocity methods or gate-opening ratings coupled with hydropower operation data were used to create the computed time series. The time step of the various instantaneous streamflow time series ranged from 15 minutes to 24 hours (once-daily values at 12:00 Coordinated Universal Time [UTC]). The 15-minute time-series data, computed by the USGS for the Sardis gage, also were downsampled to 1-hour and 24-hour time steps to permit more direct comparisons with other streamflow time series.

  18. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  19. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  20. Symposium on Molecular Spectroscopy (38th) Held at Ohio State University, Columbus, Ohio on June 13-17 1983.

    Science.gov (United States)

    1983-01-01

    AMPLITUDE INTERNAL MOTION INTERACTIONS..15 min.(l:30) C. RICHARD UADE and YUHUA GUAN, Department of Physics, Texas Tech University, Lubbock, Texas...128 REI. (1.30) THEORY FOR VIBRATION-ROTATION-LARGE AMPLITUDE ITkTERNAL MOTION INTERACTIONS C. RICAARD qUADE AND YUHUA GUAN A theory for vibration...Massachusetts 02139. Address of Cross: 32 Chadwick St., Hilton Park, WESTERN AUSTRALIA 6163. 160 FBIO. II:06) THE CaO c z:z - a 3 .ii SYSTEM J.B_. NORM4AN, K.J

  1. 77 FR 21099 - Public Water System Supervision Program Approval for the State of Ohio

    Science.gov (United States)

    2012-04-09

    ... the National Primary Drinking Water Regulations, including the Administrative Penalty Authority (APA... the APA since October 1, 1999, with amendments effective on October 17, 2003. Ohio EPA's revised...

  2. Applied research and service activities at the University of Missouri Research Reactor Facility (MURR)

    International Nuclear Information System (INIS)

    Alger, D.M.

    1987-01-01

    The University Of Missouri operates MURR to provide an intense source of neutron and gamma radiation for research and applications by experimenters from its four campuses and by experimenters from other universities, government and industry. The 10 MW reactor, which has been operating an average of 155 hours per week for the past eight years, produces thermal neutron fluxes up to 6-7x10 14 n/cm 2 -s in the central flux trap and beamport source fluxes of up to 1.2x10 14 n/cm 2 -s. The mission of the reactor facility, to promote research, education and service, is the same as the overall mission of the university and therefore, applied research and service supported by industrial firms have been welcomed. The university recognized after a few years of reactor operation that in order to build utilization, it would be necessary to develop in-house research programs including people, equipment and activity so that potential users could more easily and quickly obtain the results needed. Nine research areas have been developed to create a broadly based program to support the level of activity needed to justify the cost of operating the facility. Applied research and service generate financial support for about one-half of the annual budget. The applied and service programs provide strong motivation for university/industry association in addition to the income generated. (author)

  3. A large economic liquid metal reactor for United States utilities

    International Nuclear Information System (INIS)

    Rodwell, E.

    1985-01-01

    The United States has demonstrated its ability to build and operate small and medium sized liquid metal reactors and continues to operate the Experimental Breeder Reactor II and the Fast Flux Test Facility to demonstrate long life fuel designs. Similar-sized liquid metal reactors in Europe have been followed by a step-up to the 1200 MWe capacity of the Superphenix plant. To permit the United States to make a similar step-up in capacity, a 1320 MWe liquid metal reactor plant has been designed with the main emphasis on minimizing the specific capital cost in order to be competitive with light water reactor plant and fossil plant alternatives. The design is based on a four parallel heat transport loops arrangement and complies with current regulatory requirements. The primary heat transport loops are now being integrated into the reactor vessel to achieve further reduction in the capital cost

  4. E3 Success Story - Working Together: E3 Ohio and the Ohio By-Product Synergy Network

    Science.gov (United States)

    The Mid-Ohio Regional Planning Commission (MORPC) received funding to support the integration of the national E3 sustainability initiative with the Ohio By-Product Synergy (BPS) Network to create an efficient and replicable model for reducing GHGs.

  5. Utilization of a university reactor for public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Reactor Research and Education Center

    2015-06-15

    AGN-201K is a university reactor in Kyung Hee University (KHU) mainly used for student education as training short course as well as academic course for senior-level. After the Fukushima accident, public concern on radiation hazard has been increased beyond rational level at a neighboring country. It was found that AGN-201K be the perfect tool for interaction with general public. It is very safe to operate with general participants because it is adapted to the very low power. However, radiation level is reasonably high to detect and shield for practice. KHU has a Regional Radiation Monitoring Post where environmental radiation level at Suwon city is continuously measured. In this facility, radiation level at soil, rain, and local agricultural products were measured and reported to the national monitoring headquarter. A new mission of reactor research and education center of KHU has been tried from last summer. Facilities were opened for high school students and teachers for their science camps during summer and winter. A special public acceptance program named as experience camp for understanding the nuclear power and radiation was held 6 times for the last one-year period. Even though number of attendee was limited and small, feedback from participants was hot and positive enough to make professors be ready to sacrifice their personal time.

  6. Utilization of a university reactor for public acceptance

    International Nuclear Information System (INIS)

    Kim, Myung Hyun

    2015-01-01

    AGN-201K is a university reactor in Kyung Hee University (KHU) mainly used for student education as training short course as well as academic course for senior-level. After the Fukushima accident, public concern on radiation hazard has been increased beyond rational level at a neighboring country. It was found that AGN-201K be the perfect tool for interaction with general public. It is very safe to operate with general participants because it is adapted to the very low power. However, radiation level is reasonably high to detect and shield for practice. KHU has a Regional Radiation Monitoring Post where environmental radiation level at Suwon city is continuously measured. In this facility, radiation level at soil, rain, and local agricultural products were measured and reported to the national monitoring headquarter. A new mission of reactor research and education center of KHU has been tried from last summer. Facilities were opened for high school students and teachers for their science camps during summer and winter. A special public acceptance program named as experience camp for understanding the nuclear power and radiation was held 6 times for the last one-year period. Even though number of attendee was limited and small, feedback from participants was hot and positive enough to make professors be ready to sacrifice their personal time.

  7. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Magrotti, G. [Laboratorio Energia Nucleare Applicata (L.E.N.A.), University of Pavia, Via Aselli 41, 27100 (Italy); Cammi, A.; Memoli, V. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Gadan, M. A. [Instrumentation and Control Department, National Atomic Energy Comission of Argentina, University of Pavia (Italy)

    2009-07-01

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  8. The reconstruction of the training reactor of the Budapest Technical University

    International Nuclear Information System (INIS)

    Viragh, E.

    1981-01-01

    The reconstruction of the training reactor between 1978 and 1981 did not hinder the education and training activities of the University. Dosimetric measurements during the test run revealed no additional hazard from the elevation of power from 10 to 100 kW. (author)

  9. The epidemiology of family meals among Ohio's adults.

    Science.gov (United States)

    Tumin, Rachel; Anderson, Sarah E

    2015-06-01

    The epidemiology of family meals among adults at a population level is poorly characterized and whether living with children impacts this health behaviour is uncertain. We determined the prevalence of family meals among US adults in a mid-western state whose families did and did not include minor children and described how it varied by sociodemographic characteristics. The cross-sectional 2012 Ohio Medicaid Assessment Survey is representative of Ohio adults and included questions on their sociodemographic characteristics and the frequency with which they eat family meals at home. Trained interviewers administered landline and cell phone surveys to adults sampled from Ohio's non-institutionalized population. We analysed data from 5766 adults living with minor children and 8291 adults not living alone or with children. The prevalence of family meals was similar for adults who did and did not live with minor children: 47 % (95 % CI 46, 49 %) of adults living with and 51 % (95 % CI 50, 53 %) of adults living without children reported eating family meals on most (six or seven) days of the week. Family meal frequency varied by race/ethnicity, marital and employment status in both groups. Non-Hispanic African-American adults, those who were not married and those who were employed ate family meals less often. Adults in Ohio frequently shared meals with their family and family meal frequency was not strongly related to living with children. Broadening the scope of future studies to include adults who are not parents could enhance our understanding of the potential health benefits of sharing meals.

  10. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona DCN:2051-SR-01-0

    International Nuclear Information System (INIS)

    Altic, Nick A.

    2011-01-01

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  11. Inspection report of unauthorized possession and use of unsealed americium-241 and subsequent confiscation, J.C. Haynes Company, Newark, Ohio

    International Nuclear Information System (INIS)

    1985-11-01

    This US Nuclear Regulatory Commission report documents the circumstances surrounding the March 26, 1985, confiscation and subsequent decontamination activities related to the use of unauthorized quantities of americium-241 at the John C. Haynes Company (licensee) of Newark, Ohio. It focuses on the period from early February to July 26, 1985. The incident started when NRC Region III recieved information that John C. Haynes possessed unauthorized quantities of americium-241 and was conducting unauthorized activities (diamond irradiation). By July 26, 1985, the decontamination activities at the licensee's laboratory were concluded. The licensee's actions with diamond irradiation resulted in contamination in restricted and unrestricted areas of the facility. The confiscation and decontamination activities required the combined efforts of NRC, Federal Bureau of Investigation, US Department of Energy, Oak Ridge Associated Universities, the State of Ohio, and the US Environmental Protection Agency. The report describes the factual information and significant findings associated with the confiscation and decontamination activities

  12. Communication Supports in Congregate Residential Care Settings in Ohio

    Science.gov (United States)

    Mitchell, Pamela R.

    2009-01-01

    Background: Communication skills are important to the pursuit of increased self-determination in individuals with disabilities. The aim of this investigation was to gather information about communication supports in state-run residential care facilities in Ohio, and to compare findings with a previous investigation on this topic examining such…

  13. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  14. Preventing Sudden Cardiac Death: Automated External Defibrillators in Ohio High Schools.

    Science.gov (United States)

    Lear, Aaron; Hoang, Minh-Ha; Zyzanski, Stephen J

    2015-10-01

    Ohio passed legislation in 2004 for optional public funding of automated external defibrillators (AEDs) in all Ohio high schools. To report occurrences of sudden cardiac arrest in which AEDs were used in Ohio high schools and to evaluate the adherence of Ohio high schools with AEDs to state law and published guidelines on AEDs and emergency action plans (EAPs) in schools. Cross-sectional survey. Web-based survey. A total of 264 of 827 schools that were members of the Ohio High School Athletic Association. We surveyed schools on AED use, AED maintenance, and EAPs. Twenty-five episodes of AED deployment at 22 schools over an 11-year period were reported; 8 (32%) involved students and 17 (68%) involved adults. The reported survival rate was 60% (n = 15). Most events (n = 20, 80%) in both students and adults occurred at or near athletic facilities. The annual use rate of AEDs was 0.7%. Fifty-three percent (n = 140) of schools reported having an EAP in place for episodes of cardiac arrest. Of the schools with EAPs, 57% (n = 80) reported having rehearsed them. Our data supported the placement of AEDs in high schools given the frequency of use for sudden cardiac arrest and the survival rate reported. They also suggested the need for increased awareness of recommendations for EAPs and the need to formulate and practice EAPs. School EAPs should emphasize planning for events in the vicinity of athletic facilities.

  15. Safety considerations of new critical assembly for the Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Umeda, Iwao; Matsuoka, Naomi; Harada, Yoshihiko; Miyamoto, Keiji; Kanazawa, Takashi

    1975-01-01

    The new critical assembly type of nuclear reactor having three cores for the first time in the world was completed successfully at the Research Reactor Institute of Kyoto University in autumn of 1974. It is called KUCA (Kyoto University Critical Assembly). Safety of the critical assembly was considered sufficiently in consequence of discussions between the researchers of the institute and the design group of our company, and then many bright ideas were created through the discussions. This paper is described the new safety design of main equipments - oil pressure type center core drive mechanism, removable water overflow mechanism, core division mechanism, control rod drive mechansim, protection instrumentation system and interlock key system - for the critical assembly. (author)

  16. Funding Ohio Community Colleges: An Analysis of the Performance Funding Model

    Science.gov (United States)

    Krueger, Cynthia A.

    2013-01-01

    This study examined Ohio's community college performance funding model that is based on seven student success metrics. A percentage of the regular state subsidy is withheld from institutions; funding is earned back based on the three-year average of success points achieved in comparison to other community colleges in the state. Analysis of…

  17. Microchannel Methanation Reactors Using Nanofabricated Catalysts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  18. Institutional Response to Ohio's Campus Safety Initiatives: A Post-Virginia Tech Analysis

    Science.gov (United States)

    Jackson, Natalie Jo

    2009-01-01

    The purpose of this study was to examine how institutions of higher education were responding to unprecedented state involvement in campus safety planning and policymaking in the aftermath of the Virginia Tech tragedy. Focused on Ohio, a state in which a state-level task force was convened and charged to promulgate campus safety recommendations…

  19. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  20. 78 FR 5476 - Ohio; Major Disaster and Related Determinations

    Science.gov (United States)

    2013-01-25

    ... flooding due to the remnants of Hurricane Sandy during the period October 29-30, 2012, is of sufficient... following areas of the State of Ohio have been designated as adversely affected by this major disaster... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  1. Low enrichment fuel conversion for Iowa State University. Final report

    International Nuclear Information System (INIS)

    Bullen, D.B.; Wendt, S.E.

    1996-01-01

    The UTR-10 research and teaching reactor at Iowa State University (ISU) has been converted from high-enriched fuel (HEU) to low- enriched fuel (LEU) under Grant No. DE-FG702-87ER75360 from the Department of Energy (DOE). The original contract period was August 1, 1987 to July 31, 1989. The contract was extended to February 28, 1991 without additional funding. Because of delays in receiving the LEU fuel and the requirement for disassembly of the HEU assemblies, the contract was renewed first through May 31, 1992, then through May 31, 1993 with additional funding, and then again through July 31, 1994 with no additional funding. In mid-August the BMI cask was delivered to Iowa State. Preparations are underway to ship the HEU fuel when NRC license amendments for the cask are approved

  2. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    International Nuclear Information System (INIS)

    Edwards, Robert M.

    2003-01-01

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs

  3. Major Refurbishment of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Joradn, Kelly; Berglund, Matthew; Shea, Brian

    2013-01-01

    The research reactor fleet is aging with few replacements being built. At the same time the technology for refurbishment of the older reactors has advanced well beyond that of currently installed equipment. The disparity between new and old technology results in an inability to find simple replacements for the older, highly integrated components. The lack of comprehensive guidance for digital equipment adds to the technical problems of installing individual replacement parts. Up to this point, no U. S. facilities have attempted a complete modernization effort because of the time commitment, financial burden, and licensing required for a total upgrade. The University of Florida Training Reactor is tackling this problem with a replacement of nearly all of the major facility sub-systems, including electrical distribution, reactor controls, nuclear instrumentation, security, building management, and environmental controls. This approach offers increased flexibility over the piece-by-piece replacement method by leveraging modern control systems based on global standards and capable of good data interchange with higher levels of redundancy. The UFTR reviewed numerous technologies to arrive at the final system architecture and this 'clean-slate' installation methodology. It is this concept of total system replacement and strict use of modular, open-standards technology that has allowed for a facility design that will be easy to install, maintain, and build upon over time

  4. Major Refurbishment of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joradn, Kelly; Berglund, Matthew; Shea, Brian [Univ., of Florida, Florida (United States)

    2013-07-01

    The research reactor fleet is aging with few replacements being built. At the same time the technology for refurbishment of the older reactors has advanced well beyond that of currently installed equipment. The disparity between new and old technology results in an inability to find simple replacements for the older, highly integrated components. The lack of comprehensive guidance for digital equipment adds to the technical problems of installing individual replacement parts. Up to this point, no U. S. facilities have attempted a complete modernization effort because of the time commitment, financial burden, and licensing required for a total upgrade. The University of Florida Training Reactor is tackling this problem with a replacement of nearly all of the major facility sub-systems, including electrical distribution, reactor controls, nuclear instrumentation, security, building management, and environmental controls. This approach offers increased flexibility over the piece-by-piece replacement method by leveraging modern control systems based on global standards and capable of good data interchange with higher levels of redundancy. The UFTR reviewed numerous technologies to arrive at the final system architecture and this 'clean-slate' installation methodology. It is this concept of total system replacement and strict use of modular, open-standards technology that has allowed for a facility design that will be easy to install, maintain, and build upon over time.

  5. Exploring Ohio's Private Education Sector. School Survey Series

    Science.gov (United States)

    Catt, Andrew D.

    2014-01-01

    Exploring Ohio's Private Education Sector is the second entry in the Friedman Foundation for Educational Choice's "School Survey Series." This report synthesizes information on Ohio's private schools collected by the U.S. Department of Education and the Ohio Department of Education (ODE). Two appendices provide supplementary tables and…

  6. Experience in operation and maintenance of the TRIGA Mark II reactor at the University of Pavia in the time period July 1974 - June 1976

    International Nuclear Information System (INIS)

    Cambieri, A.; Cingoli, F.; Genova, N.; Meloni, S.; Perlini, G.

    1976-01-01

    The operation of the 250 kW steady state/250 MW pulsed TRIGA Mark II Reactor of the University of Pavia over the past two years is presented and discussed. Reactor maintenance activity is presented as well. Data for reactor utilization and a summary of the health physics procedures are also given. Since the third European Conference of TRIGA Reactor Users in 1974, reactor operation took place smoothly without major troubles. Because of the core excess decrease due to reactor operation and consequent burn-up, ten new stainless steel clad fuel elements were bought from General Atomic. Reactor operation license expired at the end of 1975 and it is now under way the bureaucratic work to get its renewal. The aging of the electronic equipment raises minor problems and the predicted switching to a new solid state equipment started by changing the old electromechanical rod position indicators with new digital ones. The installation of the Euracos II facility (Enriched Uranium Converter Source), described at the last TRIGA Users Conference, began at the end of 1975 and it is still under way. The first operation of the facility will take place at reduced power so that the removal of the graphite blocks from thermal column was not accomplished. The installation of the facility is described and the procedures of its operation in connection with reactor operation are presented as well. (author)

  7. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  8. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  9. Reactor Physics Experiments by Korean Under-Graduate Students in Kyoto University Critical Assembly Program (KUGSiKUCA Program)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho; Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Shiroya, Seiji; Whang, Joo Ho; Kim, Myung Hyun

    2006-01-01

    The Reactor Laboratory Course for Korean Under-Graduate Students in Kyoto University Critical Assembly (KUGSiKUCA) program has been launched from 2003, as one of international collaboration programs of Kyoto University Research Reactor Institute (KURRI). This program was suggested by Department of Nuclear Engineering, College of Advanced Technology, Kyunghee University (KHU), and was adopted by Ministry of Science and Technology of Korean Government as one of among Nuclear Human Resources Education and Training Programs. On the basis of her suggestion for KURRI, memorandum for academic corporation and exchange between KHU and KURRI was concluded on July 2003. The program has been based on the background that it is extremely difficult for any single university in Korea to have her own research or training reactor. Up to this 2006, total number of 61 Korean under-graduate school students, who have majored in nuclear engineering of Kyunghee University, Hanyang University, Seoul National University, Korea Advanced Institute of Science and Technology, Chosun University and Cheju National University in all over the Korea, has taken part in this program. In all the period, two professors and one teaching assistant on the Korean side led the students and helped their successful experiments, reports and discussions. Due to their effort, the program has succeeded in giving an effective and unique course, taking advantage of their collaboration

  10. Handling of TRIGA spent fuel at the Medical University of Hanover and its return to the United States

    International Nuclear Information System (INIS)

    Hampel, Gabriele; Harke, Heinrich; Kelm, Wieland; Klaus, Uwe

    2008-01-01

    The Medical University of Hannover (MHH) was taking part in the US Department of Energy's (DOE) 'Research Reactor Spent Fuel Acceptance Program' to return its 76 spent TRIGA fuel elements to the United States in the middle of 1999. The fuel elements have been moved to the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. This paper describes the technical facilities for handling the fuel elements at the MHH and the various steps in removing the fuel elements from the reactor, transferring them to the transport cask and shipping them to the INEEL. (authors)

  11. University of Michigan workscope for 1991 DOE University program in robotics for advanced reactors

    International Nuclear Information System (INIS)

    Wehe, D.K.

    1990-01-01

    The University of Michigan (UM) is a member of a team of researchers, including the universities of Florida, Texas, and Tennessee, along with Oak Ridge National Laboratory, developing robotic for hazardous environments. The goal of this research is to develop the intelligent and capable robots which can perform useful functions in the new generation of nuclear reactors currently under development. By augmenting human capabilities through remote robotics, increased safety, functionality, and reliability can be achieved. In accordance with the established lines of research responsibilities, our primary efforts during 1991 will continue to focus on the following areas: radiation imaging; mobile robot navigation; three-dimensional vision capabilities for navigation; and machine-intelligence. This report discuss work that has been and will be done in these areas

  12. Small-angle scattering at a pulsed neutron source: comparison with a steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borso, C S; Carpenter, J M; Williamson, F S; Holmblad, G L; Mueller, M H; Faber, J Jr; Epperson, J E; Danyluk, S S [Argonne National Lab., IL (USA)

    1982-08-01

    A time-of-flight small-angle diffractometer employing seven tapered collimator elements and a two-dimensional gas proportional counter was successfully utilized to collect small-angle scattering data from a solution sample of the lipid salt cetylpyridinium chloride, C/sub 21/H/sub 38/N/sup +/.Cl/sup -/, at the Argonne National Laboratory prototype pulsed spallation neutron source, ZING-P'. Comparison of the small-angle scattering observed from the same compound at the University of Missouri Research Reactor corroborated the ZING-P' results. The results are used to compare the neutron flux available from the ZING-P' source relative to the well characterized University of Missouri source. Calculations based on experimentally determined parameters indicated the time-averaged rate of detected neutrons at the ZING-P' pulsed spallation source to have been at least 33% higher than the steady-state count rate from the same sample. Differences between time-of-flight techniques and conventional steady-state techniques are discussed.

  13. Support vector machines for nuclear reactor state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.

  14. Support vector machines for nuclear reactor state estimation

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Gross, K. C.

    2000-01-01

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm

  15. Reactor laboratory course for Korean under-graduate students in Kyoto University Critical Assembly (KUGSiKUCA)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho; Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Shiroya, Seiji; Whang, Joo Ho; Kim, Myung Hyun

    2005-01-01

    The Reactor Laboratory Course for Korean Under-Graduate Students has been carried out at Kyoto University Critical Assembly of Japan. This course has been launched from fiscal year 2003 and has been founded by Ministry of Science and Technology of Korean Government. Since then, the total number of 43 Korean under-graduate students, who have majored in nuclear engineering of 6 universities in all over the Korea, has been taken part in this course. The reactor physics experiments have been performed in this course, such as Approach to criticality, Control rod calibration, Measurement of neutron flux and power calibration, and Educational reactor operation. As technical tour of Japan, nuclear site tour has been taken during their stay in Japan, such as PWR, FBR, nuclear fuel company and some institutes

  16. Patterns and Possibilities: Exploring Religious Education in the Catholic Secondary School (Dayton, Ohio, 1995).

    Science.gov (United States)

    Heft, James; Groome, Thomas; Taymans, Mary Frances, Ed.; Lund, Lars

    Drawing on presentations and informal discussions from a gathering at the University of Dayton (Ohio) in 1995, this book examines Catholic secondary education and campus ministry. Following a foreword by Mary Frances Taymans, the booklet includes three essays: "Patterns and Possibilities" (James Heft); "Conversation as a Mode of…

  17. Development of strategic enterprise architecture design for the Ohio Department of Transportation.

    Science.gov (United States)

    2014-01-01

    In order for the Ohio Department of Transportation (ODOT) to successfully carry out its mission, it is essential to : appropriately incorporate and utilize technology. Information management systems are vital to maintaining the states : transporta...

  18. 77 FR 3712 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Regional Haze

    Science.gov (United States)

    2012-01-25

    ... participated in MRPO's inter-RPO consultations. MANE-VU, the RPO for the Northeastern states, facilitated... visibility in 2018 under three scenarios in this analysis. The first scenario reflected simple emissions... Midwest states and with states in other regions through inter-RPO processes. Ohio considered the factors...

  19. State and parameter estimation in biotechnical batch reactors

    NARCIS (Netherlands)

    Keesman, K.J.

    2000-01-01

    In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in

  20. A history of effluent releases from the Texas A and M University reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bates, E F; Neff, R D; Sandel, P S; Schoenbucher, B [Texas A and M University (United States)

    1974-07-01

    Since 1966 records of radioactive effluents releases from the Texas A and M University Research Reactor have been compiled. These data include particulate activity, noble gases, and liquid effluent releases. Particulate activity releases with half-lives greater than eight days were negligible and are not included in this presentation. Conversion from an MTR plate reactor to a TRIGA fueled reactor was completed in August 1968. Records of effluent releases of Argon-4l and liquids for the past, five years are summarized, in this presentation. These release data are compared to the current limits specified: in 10 CPR 20 and the limits appearing in proposed Appendix.

  1. Multi-University Southeast INIE Consortium

    International Nuclear Information System (INIS)

    Hawari, Ayman; Hertel, Nolan; Al-Sheikhly, Mohamed; Miller, Laurence; Bayoumi, Abdel-Moeze; Haghighat, Ali; Lewis, Kenneth

    2010-01-01

    The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy's (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation's premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: (a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, (b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs

  2. Status of University of Cincinnati reactor-site nuclear engineering graduate programs

    International Nuclear Information System (INIS)

    Anno, J.N.; Christenson, J.M.; Eckart, L.E.

    1993-01-01

    The University of Cincinnati (UC) nuclear engineering program faculty has now had 12 yr of experience in delivering reactor-site educational programs to nuclear power plant technical personnel. Currently, with the sponsorship of the Toledo-Edison Company (TED), we are conducting a multiyear on-site graduate program with more than 30 participants at the Davis-Besse nuclear power plant. The program enables TED employees with the proper academic background to earn a master of science (MS) degree in nuclear engineering (mechanical engineering option). This paper presents a brief history of tile evolution of UC reactor-site educational programs together with a description of the progress of the current program

  3. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  4. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  5. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  6. Development of a practical Monte Carlo based fuel management system for the Penn State University Breazeale Research Reactor (PSBR)

    International Nuclear Information System (INIS)

    Tippayakul, Chanatip; Ivanov, Kostadin; Frederick Sears, C.

    2008-01-01

    A practical fuel management system for the he Pennsylvania State University Breazeale Research Reactor (PSBR) based on the advanced Monte Carlo methodology was developed from the existing fuel management tool in this research. Several modeling improvements were implemented to the old system. The improved fuel management system can now utilize the burnup dependent cross section libraries generated specifically for PSBR fuel and it is also able to update the cross sections of these libraries by the Monte Carlo calculation automatically. Considerations were given to balance the computation time and the accuracy of the cross section update. Thus, certain types of a limited number of isotopes, which are considered 'important', are calculated and updated by the scheme. Moreover, the depletion algorithm of the existing fuel management tool was replaced from the predictor only to the predictor-corrector depletion scheme to account for burnup spectrum changes during the burnup step more accurately. An intermediate verification of the fuel management system was performed to assess the correctness of the newly implemented schemes against HELIOS. It was found that the agreement of both codes is good when the same energy released per fission (Q values) is used. Furthermore, to be able to model the reactor at various temperatures, the fuel management tool is able to utilize automatically the continuous cross sections generated at different temperatures. Other additional useful capabilities were also added to the fuel management tool to make it easy to use and be practical. As part of the development, a hybrid nodal diffusion/Monte Carlo calculation was devised to speed up the Monte Carlo calculation by providing more converged initial source distribution for the Monte Carlo calculation from the nodal diffusion calculation. Finally, the fuel management system was validated against the measured data using several actual PSBR core loadings. The agreement of the predicted core

  7. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  8. Formation of Structure in the Universe

    Science.gov (United States)

    Bahcall, John; Fisher, Karl; Miralda-Escude, Jordi; Strauss, Michael; Weinberg, David

    1997-01-01

    This grant supported research by the investigators through summer salary support for Strauss and Weinberg, support for graduate students at Princeton University and Ohio State University, and travel, visitor, and publication support for the investigators. The grant originally had a duration of 1 year, and it was extended (without additional funding) for an additional year. The impact of the grant was considerable given its relatively modest duration and funding level, in part because it provided 'seed' funding to get Strauss and Weinberg started at new institutions, and in part because it was combined with support from subsequent grants. Here we summarize progress in the three general areas described in the grant proposal: Lyman alpha absorbers and the intergalactic medium, galaxy formation; and large scale structure.

  9. Minority and female training programs at the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.

    1992-01-01

    Nuclear power industry operations staffs are composed predominantly of white males because most of the personnel come from the nuclear submarine and surface branches of the U.S. Navy. The purpose of the minority and female training programs sponsored by the Ford Nuclear Reactor at the University of Michigan is to provide a path for minorities and women to enter the nuclear industry as operators, technicians, and, in the long term, as graduate engineers. The training programs are aimed at high school students, preferably juniors. While the training is directed toward operation of a nuclear reactor, it is equally applicable to careers in most other technical fields. It is hoped that some of the participants will remain at the Ford Nuclear Reactor as reactor operators, enter college, and obtain college degrees, after which they will enter the nuclear industry as graduate engineers

  10. Progress of design studies on an LHD-type steady-state reactor

    International Nuclear Information System (INIS)

    Motojima, O.; Komori, A.; Sagara, A.

    2007-01-01

    Helical Heliotrons such as the Large Helical Device (LHD) and Stellarators (H and S systems) have a high potential to realize a current-less steady-state and stable magnetic fusion energy reactor as an alternative to the tokamak DEMO-reactor. H and S systems ideally have an intrinsic property of Q=infinite. Here it is very important to remember that the understanding of the physics of 3-D toroidal magnetic confinement system is naturally extended to tokamak systems. The physics is universal among these two types of systems and the technology is common. We present our recent results from LHD experiments and reactor studies of a next generation LHD-type DEMO Reactor called FFHR. (1) Development of 3-D superconducting (SC) coil technology Due to the successful results of the LHD construction from 1990 to 2007, and steady operation over 8 years from 1998 to 2007, more than 2,000 hrs/year at a high field of around 3 Tesla, we have a large enough data base to demonstrate that 3D coil technology has become the standard technology for a fusion energy reactor. LHD is the largest SC fusion device in the world, contributing to the development of the SC technology necessary for fusion research. The poloidal coils of LHD adopted a super critical forced flow cooling system and their dimensions are almost the same as the ITER toroidal coils. (2) Extended physics understanding of high beta, high T, high n τT , and steady state operation Recent LHD experiments have demonstrated the broad and advanced capabilities of LHD as a toroidal magnetic confinement device, which are highlighted by the achievements of 5% volume averaged beta, electron and ion temperatures of 10 keV, super high density of 10E15/cc and 1 hr discharges. We plan to increase the heating power up to 35 MW, and to use deuterium gas for confinement improvement. The n τT will be improved to the design nominal value of Q=0.3 within several years and ultimately would approach unity. The key issue for this is the

  11. Analysis of kyoto university reactor physics critical experiments using NCNSRC calculation methodology

    International Nuclear Information System (INIS)

    Amin, E.; Hathout, A.M.; Shouman, S.

    1997-01-01

    The kyoto university reactor physics experiments on the university critical assembly is used to benchmark validate the NCNSRC calculations methodology. This methodology has two lines, diffusion and Monte Carlo. The diffusion line includes the codes WIMSD4 for cell calculations and the two dimensional diffusion code DIXY2 for core calculations. The transport line uses the MULTIKENO-Code vax Version. Analysis is performed for the criticality, and the temperature coefficients of reactivity (TCR) for the light water moderated and reflected cores, of the different cores utilized in the experiments. The results of both Eigen value and TCR approximately reproduced the experimental and theoretical Kyoto results. However, some conclusions are drawn about the adequacy of the standard wimsd4 library. This paper is an extension of the NCNSRC efforts to assess and validate computer tools and methods for both Et-R R-1 and Et-MMpr-2 research reactors. 7 figs., 1 tab

  12. Main results of BN-600 reactor stress-strain state investigations

    International Nuclear Information System (INIS)

    Panov, V.A.

    1983-01-01

    The development of BN-600 fast reactor plant needed the solution of a series of complex engineering problems including ones for confirming integrity of the most vital structural components. The particular attention was given to the main vessel since reactor availability end safe operation of the plant as a whole depend on vessel strength end integrity. The present report deals with the main results of theoretical and experimental investigations of the stress-strain state of BN-600 reactor vessel carried out during design, start-up and initial bringing the reactor to power

  13. Report of research by common utilization in Research Reactor Institute, Kyoto University, in latter half of fiscal 1980

    International Nuclear Information System (INIS)

    1982-01-01

    In the technical report, the data required for research and experiment, such as the result of functional test of various experimental facilities, the test results of the products manufactured for trial, the state of radiation control and waste treatment, and the reports of study meetings, or the remarkable results and new methods obtained in research and the discussion on other papers and reports in the Research Reactor Institute, Kyoto University, are summarized as prompt report. The subject, reporters and synopsis of 69 papers are reported in this publication. (Kako, I.)

  14. Report of research by common utilization in Research Reactor Institute, Kyoto University, in first half of fiscal 1980

    International Nuclear Information System (INIS)

    1982-01-01

    In the technical report, the data required for research and experiment, such as the result of functional test of various experimental facilities, the test results of the products manufactured for trial, the state of radiation control and waste treatment, and the reports of study meetings, or the remarkable results and new methods obtained in research, and the discussion on other papers and reports in the Research Reactor Institute, Kyoto University, are summarized as prompt report. The subject, reporters and synopsis of 54 papers are reported in this publication. (Kako, I.)

  15. Transmutation research and fuel cycle (report on discussion at Research Reactor Institute, Kyoto University)

    International Nuclear Information System (INIS)

    Yamana, Hajimu

    1999-01-01

    A symposium was held on a topic of 'Transmutation Research' on Dec. 21 and 22, 1999 at Research Reactor Institute, Kyoto University. This meeting was held as a joint-meeting of KUR's specialist meeting and Tokyo University's activity supported by the Grant-in-Aid for Scientific Research of Ministry of Education, Sport and Culture of Japan. This paper describes the overview of the discussions of this joint-meeting, and interprets their significance. Major themes discussed are, needed discussions on the transmutation research, policy and concepts of the organizations doing transmutation researches, a view from university side, transmutation researches in the oversea countries, opinions from various standpoints of the nuclear fuel cycle, conclusive discussions. 'the meanings of the transmutation research should be discussed together with the geological disposal and fast reactor system', 'transmutation may be a cooperative option for the disposal, thus, they should not be in a independent relation', and Balance evaluation will be needed' are the examples of the conclusive remarks of this meeting. (author)

  16. Validation of NESTLE against static reactor benchmark problems

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1996-01-01

    The NESTLE advanced modal code was developed at North Carolina State University with support from Los Alamos National Laboratory and Idaho National Engineering Laboratory. It recently has been benchmarked successfully against measured data from pressurized water reactors (PWRs). However, NESTLE's geometric capabilities are very flexible, and it can be applied to a variety of other types of reactors. This study presents comparisons of NESTLE results with those from other codes for static benchmark problems for PWRs, boiling water reactors (BWRs), high-temperature gas-cooled reactors (HTGRs) and CANDU heavy- water reactors (HWRs)

  17. Validation of NESTLE against static reactor benchmark problems

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1996-01-01

    The NESTLE advanced nodal code was developed at North Carolina State University with support from Los Alamos National Laboratory and Idaho National Engineering Laboratory. It recently has been benchmarked successfully against measured data from pressurized water reactors (PWRs). However, NESTLE's geometric capabilities are very flexible, and it can be applied to a variety of other types of reactors. This study presents comparisons of NESTLE results with those from other codes for static benchmark problems for PWRs, boiling water reactors (BWRs), high-temperature gas-cooled reactors (HTGRs), and Canada deuterium uranium (CANDU) heavy-water reactors (HWRs)

  18. Annual report on the state of RB reactor components and equipment, december 1999

    International Nuclear Information System (INIS)

    Milosevic, M.

    1999-12-01

    According to the performed analysis, it is considered that the RB reactor can be operated safely until the existing control and safety systems could be maintained in satisfactory operable state. Failures of heavy water circulation system valves which may cause decreased availability but no accident. During 1998 the reactor lattice was changed 13 times, meaning that experiments were done with 13 configurations of the reactor core. Total reactor operation amounted to 84 Wh with 40 start-ups (attained criticality levels). This report contains 4 Annexes, detailed description of the state of reactor equipment in 1999, reactor operation nd utilization data, plan for regular annual maintenance and refurbishment of reactor equipment and plan for minimum needed resources for regular maintenance of the components and equipment in the forthcoming year

  19. Annual report on the state of RB reactor components and equipment, december 1998

    International Nuclear Information System (INIS)

    Milosevic, M.

    1998-12-01

    According to the performed analysis, it is considered that the RB reactor can be operated safely until the existing control and safety systems could be maintained in satisfactory operable state. Failures of heavy water circulation system valves which may cause decreased availability but no accident. During 1998 the reactor lattice was changed 7 times, meaning that experiments were done with 7 configurations of the reactor core. Total reactor operation amounted to 177.5 Wh with 40 start-ups (attained criticality levels). This report contains 4 Annexes, detailed description of the state of reactor equipment in 1998, reactor operation nd utilization data, plan for regular annual maintenance and refurbishment of reactor equipment and plan for minimum needed resources for regular maintenance of the components and equipment in the forthcoming year

  20. Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas

    Science.gov (United States)

    Central Ohio Turns Trash Into Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Central Ohio Turns Trash Into Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Central Ohio Turns

  1. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  2. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  3. University Reactor Matching Grants Program

    International Nuclear Information System (INIS)

    John Valentine; Farzad Rahnema; Said Abdel-Khalik

    2003-01-01

    During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given

  4. New control and safety rod unit for the training reactor of the Dresden Technical University

    International Nuclear Information System (INIS)

    Adam, E.; Schab, J.; Knorr, J.

    1983-01-01

    The extension of the experimental training of students at the training reactor AKR of the Dresden Technical University requires the reconstruction of the reactor with a new control and safety rod unit. The specific conditions at the AKR led to a new variant. Results of preliminary experiments, design and mode of operation of the first unit as well as hitherto gained operation experiences are presented. (author)

  5. Multi-University Southeast INIE Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

    2010-12-29

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering

  6. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Purdue University: Docket No. 50-182

    International Nuclear Information System (INIS)

    1988-04-01

    This Safety Evaluation Report for the application filed by Purdue University for a renewal of Operating License R-87 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned by Purdue University and is located on the campus in West Lafayette, Indiana. On the basis of its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the enviroment

  7. Return of TRIGA fuel from the Medical University of Hanover (MHH) to the United States

    International Nuclear Information System (INIS)

    Hampel, Gabriele; Klaus, Uwe; Schmidt, Thomas

    1999-01-01

    The Medical University of Hanover (MHH) returned its TRIGA fuel to the United States in the summer of 1999. This paper deals with the procedure for handling the fuel elements within and outside the reactor facility. It describes the dry loading technology, taking into account the special conditions relevant to the MHH. It also includes the time scale for both the various steps of the procedure and the entire process, as well as the main results of the radiological surveys. (author)

  8. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    International Nuclear Information System (INIS)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A.; Tripard, G.E.; Gavin, P.R.

    2000-01-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  9. LINKING STATE, UNIVERSITY AND BUSINESS IN NICARAGUA

    Directory of Open Access Journals (Sweden)

    Máximo Andrés Rodríguez Pérez

    2015-07-01

    Full Text Available In Nicaragua levels Linking state, university and business are low, Nicaraguan universities have initiated communication strategies with the state and the private sector. The idiosyncrasies of its citizens favor this link. The entailment policies formalize the communications and information networks. Universities have a key role in building models and organizations that provide alternatives to economic development. Linking the university with the environment, generating virtuous circles, where companies achieve greater competitiveness, the state, higher taxes and public stability, universities generate new knowledge. This article analyzes the strategies linking U-E- E that can be applied in Nicaragua, to strengthen and achieve positive developments in the country.

  10. Report of investigation on underground limestone mines in the Ohio region

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Mine located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio

  11. Current drive efficiency requirements for an attractive steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tonon, G

    1994-12-31

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.

  12. Current drive efficiency requirements for an attractive steady-state reactor

    International Nuclear Information System (INIS)

    Tonon, G.

    1994-01-01

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs

  13. A midsize reactor facility - A regional resource for research and education

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1991-01-01

    The mission of the University of Florida Training Reactor (UFTR) is to serve the regional needs of Florida and the Southeast for access to quality reactor usage. Well-advertised capabilities of the facility support diversified usages that include education, training, research, service, and public information programs to address the needs of a broad spectrum of users ranging from high school students and teachers, to university researchers, and even the occasional service user. Despite the midsize power of the facility, the UFTR's status as the only nonpower reactor within 350 miles in one of our largest states means that it is uniquely situated to contribute in these various areas in ways usually reserved for larger facilities. Nine state universities and a well-developed community college system in addition to private schools and a growing complement of progressive high schools assure a broad-based user community. The key to accomplishing mission objectives is to continue diversification and improvement of both the reactor and associated experimental capabilities to meet the needs of this user community

  14. Scottish Universities Research and Reactor Centre annual report 1987-1988

    International Nuclear Information System (INIS)

    Whitley, J.E.

    1988-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) provides facilities for research in isotopic, nuclear and earth sciences and collaborates with Scottish University departments on a wide range of research topics. One of its main areas of work is the Isotope Geology Unit. This has worked with the Nuclear Medicine Unit on the application of enriched stable isotope tracers in the biological and clinical sciences. The measurement of radioactive isomers is applied to quaternary geology, archaeology, nuclear medicine, health physics, oceanography, atomospheric sciences, environmental chemistry, nuclear waste disposal and mathematical modelling of the environment. There are also radiocarbon dating facilities. The facilities and the research undertaken at the Centre in the year 1987-1988, the Centre's twenty-fifth year are summarized in this report. (U.K.)

  15. Regional siting survey for thermal power plants in the state of Ohio

    International Nuclear Information System (INIS)

    Elkins, M.L.; DiNunno, J.J.

    1975-01-01

    The selection and evaluation of sites for power plants have become increasingly difficult in recent years as pressures from various societal segments have resulted in government restraints on selection and burning of fossil fuels, on methods of heat dissipation, on acquisition of transmission line rights-of-way, and on environmental impact in general. The key elements in successful application of power plant siting technology are the development of the proper balance among the basic siting considerations and the understanding that level of detail in a study varies in an inverse relationship with the siting area under examination. As the first step in the process of selection and eventual licensing of new thermal power plant sites for a utility in the State of Ohio, the entire state was screened to determine promising candidate regions large enough to offer several possible candidate sites for thermal power plants. Because of the size of the area under consideration and the advantages of developing sites with an ultimate capacity for more than one power plant, sites with an installed capacity of 1100 to 4400 MW(e) were considered for this study. As a result of the preliminary screening conducted in four distinct steps, three candidate regions showed the best overall promise for either nuclear or fossil-fueled power plant development. Tentative identification was made of candidate sites within these candidate regions, and follow-on studies conducted in an increasing level of detail are presently in progress to determine the candidate site(s) most promising for power plant siting. (U.S.)

  16. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    2003-01-01

    to provide special training for selected specialists from Czech and Slovak Nuclear Power Plants. Scientific research respects reactor parameters and requirements of the so-called clean reactor core (free from a major effect of the fission products). Research on VR-1 is mainly aimed at the preparation and testing of new educational methodologies, investigation of reactor lattice parameters, reactor dynamics study, research in the control equipment field, neutron detector calibration, etc. Information services and promotional activities in the nuclear power field are important parts of the reactor operation. Many visitors, mainly high school students, come to the reactor. The reactor staff prepares an attractive program including reactor operation. Every year, more than 1500 high school students come to visit the reactor, as do many foreigner visitors. The plan for the training reactor VR-1 for the next 10 years covers essential activities (less important activities describes the annual plan for each year) in five fields: education activities, research activities, public relation activities, international cooperation, and human resources, innovation and new equipment.Education activities: Keeping the current state in the field number of user schools, number of students and number of offered experimental exercises; Improving existing experimental exercises and establishing new according requests users from Universities and Nuclear Engineering companies, for example: study of neutron noise and it's application, study of thermal effects, study of digital control systems, study of transmutation technologies ADTT, study of neutron detectors. Research activities: Seeking research activities which can use advantages of 'clean' core without temperature, pressure, burn-up feedback etc.; Continuing in study of the digitally controlled nuclear research reactors; Continuing development of control equipment the VR-1 reactor; Continuing wide co-operation with Czech and Slovak

  17. Economic effects of smoke-free laws on rural and urban counties in Kentucky and Ohio.

    Science.gov (United States)

    Pyles, Mark K; Hahn, Ellen J

    2012-01-01

    Numerous empirical studies have examined the influence of smoke-free legislation on economic activity, with most finding a null effect. The influence could possibly differ in rural areas relative to urban areas due to differing rates of smoking prevalence and access to prevention and treatment programs. Furthermore, the discussion of the effectiveness of smoke-free laws has been extended to consider local ordinances relative to statewide laws. This study examines these issues using 21 local laws in Kentucky and the Ohio statewide smoke-free law. The number of employees, total wages paid, and number of reporting establishments in all hospitality and accommodation services in Kentucky and Ohio counties were documented, beginning the first quarter 2001 and ending the last quarter of 2009. A generalized estimating equation time-series design is used to estimate the impact of local and state smoke-free laws in Kentucky and Ohio rural and urban counties. There is no evidence that the economies in Kentucky counties were affected in any way from the implementation of local smoke-free laws. There was also no evidence that total employment or the number of establishments was influenced by the statewide law in Ohio, but wages increased following the implementation of the law. Furthermore, there is no evidence that either rural or urban counties experienced a loss of economic activity following smoke-free legislation. The study finds no evidence that local or state smoke-free legislation negatively influences local economies in either rural or urban communities.

  18. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  19. Human factors engineering evaluation of the UTR-10 Reactor

    International Nuclear Information System (INIS)

    Lahti, D.; Nilius, D.; Heithoff, D.; Roche, G.; Sage, S.

    1982-01-01

    This paper is a description of a student design team's review and evaluation of Iowa State University's University Test Reactor (UTR-10). The review was based on how well the control room of the UTR-10 measured up to selected portions of NUREG-0800, chapter 18, Human Factor Engineering/Standard Review Plan Development. The review was conducted by inspecting the reactor and interviewing reactor operators. The control room workspace, instrumentation controls and other equipment were evaluated from a human factors engineering point of view that takes into account both system demands and operator capabilities. Identification, assessment, and suggestion for control room design modifications that correct inadequate or unsuitable items was made

  20. US Department of Energy 1992--1993 Reactor Sharing Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1994-04-01

    The University of Florida Training Reactor serves as a host institution to support various educational institutions which are located primarily within the state of Florida. All users and uses were carefully screened to assure the usage was for educational institutions eligible for participation in the Reactor Sharing Program. Three tables are included that provide basic information about the 1992--1993 program and utilization of the reactor facilities by user institutions

  1. Gas-cooled reactor application for a university campus

    International Nuclear Information System (INIS)

    Colak, Ue.; Kadiroghlu, O.K.; Soekmen, C.N.; Schmitt, H.

    1991-01-01

    Large urban areas with unfavourable topographic and meteorological conditions suffer severe air pollution during the winter months. Use of low grade lignites, imported higher quality coal or imported fuel oil are the sources of air pollution in the form of sulphur dioxide, fly ash and soot. Large housing complexes or old and historical locations within the city are in need of pollution free centralized district heating systems. Natural gas imported from the Soviet Union is a solution for this problem. Lack of gas distribution network for high pressure gas within the city is the main bottle-neck for the heating systems utilizing natural gas. Concern of the safety of flammable high pressure gas circulating within the city is another drawback for the natural gas heating systems. Nuclear district heating is an environmentally viable option worth looking into it. Localized urban nuclear heating is an interesting solution for large urban areas with old and historical character. The results of a feasibility study on the HGR application for the Hacettepe University presented here, summarizes the concept of gas-cooled heating reactors specially designed for urban centers. The inherently safe characteristics of the pebble bed heating reactor makes localized urban nuclear heating a viable alternative to other heat sources. An economical analysis of various heat sources with equal power levels is done for the Beytepe campus of Hacettepe University in Ankara. Under special boundary conditions, the price for heat generation can be much lower for nuclear heating with GHR 20 than for hard coal or fuel oil. It is also possible that if the price escalation rate for natural gas exceeds 3%, then nuclear heating with GHR can be more competitive. It is concluded that the nuclear heating of Beytepe campus with a GHR 20 is feasible and economical. (author) 3 figs., 5 refs

  2. The NCSU [North Carolina State Univ.] freon PWR [pressurized water reactor] loop

    International Nuclear Information System (INIS)

    Caves, J.R.; Doster, J.M.; Miller, G.D.; Wehring, B.W.; Turinsky, P.J.

    1989-01-01

    The nuclear engineering department at North Carolina State University has designed and constructed an operating scale model of a pressurized water reactor (PWR) nuclear steam supply system (NSSS). This facility will be used for education, training, and research. The loop uses electric heaters to simulate the reactor core and Freon as the primary and secondary coolant. Viewing ports at various locations in the loop allow the students to visualize flow regimes in normal and off-normal operating conditions. The objective of the design effort was to scale the thermal-hydraulic characteristics of a two-loop Westinghouse NSSS. Provisions have been made for the simulation of various abnormal occurrences. The model is instrumented in much the same manner as the actual NSSS. Current research projects using the loop include the development of adaptive expert systems to monitor the performance of the facility, diagnose mechanical faults, and to make recommendations to operators for mitigation of accidents. This involves having thermal-hydraulics and core-physics simulators running faster than real time on a mini-supercomputer, with operating parameters updated by communication with the data acquisition and control computer. Further opportunities for research will be investigated as they arise

  3. Science and Service at a University Research Reactor

    International Nuclear Information System (INIS)

    Bode, Peter

    2013-01-01

    Experiences of the Laboratory for Instrumental Neutron Activation Analysis (INAA) of the Reactor Institute Delft at the Delft University of Technology are presented on basis of more than 30 years experience with INAA services to others. Recommendations are given to neutron activation analysis groups starting as a service provider, but also pitfalls are identified. The importance of fitness for intended purpose is emphasized, so that analysis protocols should be optimized to answer the customer’s basic question, rather than to yield the highest number of elements and best level of precision. The absence of automation and no return of revenues are identified as highest threats of becoming a successful and reliable partner for providing services. (author)

  4. Annual report on the state of RB reactor components and equipment, December 1997

    International Nuclear Information System (INIS)

    Milosevic, M.

    1997-12-01

    According to the performed analysis, it is considered that the RB reactor can be operated safely until the existing control and safety systems could be maintained in satisfactory operable state. Failures of heavy water circulation system valves which may cause decreased availability but no accident. During 1997 the reactor lattice was not changed due to application of the coupled fast-thermal core HERBE. Total reactor operation amounted to 69.5 Wh with 66 start-ups (attained criticality levels). This report contains 4 Annexes, detailed description of the state of reactor equipment, plan for forming new HERBE core, plan for regular annual maintenance of the reactor, and plan for minimum needed resources for regular maintenance of the components and equipment in the forthcoming year

  5. Physicochemical state of the spent fuel leaving the reactors

    International Nuclear Information System (INIS)

    Dehaut, Ph.

    2000-01-01

    This report focuses on the current knowledge, updated at the end of 1999, about the physicochemical state of the fuels leaving light water reactors, and particularly pressurized water reactors. Lessons are withdrawn from it making it possible to determine the points which require a necessary deepening of the data and coherence of interpretations. Lastly, evolution of the sailed fuel rod as well as the potential availability of gases and volatile fission products, during a secular storage or of a multi-millennium disposal, are the subject of an attempt at forecast. Accessible data in the scientific literature, or those acquired at the CEA, are particularly numerous. Their analysis and their synthesis are joined together to constitute a collection of references intended to the specialists in nuclear fuel and for all those which contribute to the reflexion on the storage or final disposal of the irradiated fuel. This memory is structured in ten chapters. The last chapter makes it possible to retain on some pages, the essential lessons of this study. Chapter I: Introduction; Chapter II: Characteristics of assemblies and fuels before irradiation; Chapter III: Transformations in reactor; Chapter IV: State of rods leaving the reactor; Chapter V: State of pellets; Chapter VI: Chemical and structural composition of the fuel; Chapter VII: Fuel fragmentation and density; Chapter VIII: Phenomena at the pellet periphery. Formation, characteristics and structure of the rim.Chemical interaction between pellet and cladding; Chapter IX: Location of fission gases and volatile fission products; Chapter X: Review, lessons and predictions. (authors)

  6. Student Enrollment Patterns and Achievement in Ohio's Online Charter Schools

    Science.gov (United States)

    Ahn, June; McEachin, Andrew

    2017-01-01

    We utilize state data of nearly 1.7 million students in Ohio to study a specific sector of online education: K-12 schools that deliver most, if not all, education online, lack a brick-and-mortar presence, and enroll students full-time. First, we explore e-school enrollment patterns and how these patterns vary by student subgroups and geography.…

  7. Safety evaluation report related to the renewal of the operating license for the University of New Mexico Research Reactor (Docket No. 50-252)

    International Nuclear Information System (INIS)

    1987-03-01

    This Safety Evaluation Report for the application filed by the University of New Mexico (UNM) for renewal of Operating License No. R-102 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the campus of the University of New Mexico in Albuquerque, New Mexico. The staff concludes that the reactor can continue to be operated by the University of New Mexico without endangering the health and safety of the public. 7 refs., 7 figs., 2 tabs

  8. UCN-VCN facility and experiments in Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Okumura, Kiyoshi; Utsuro, Masahiko

    1993-01-01

    An ultracold and very cold neutron facility was installed in Kyoto University Reactor (KUR). The facility consists of a very cold neutron (VCN) guide tube, a VCN bender, a supermirror neutron turbine and experimental equipments with ultracold neutrons (UCN). The properties of each equipments are presented. UCN is generated by a supermirror neutron turbine combined with the cold neutron source operated with liquid deuterium, and the UCN output spectrum was measured by the time-of-flight method. A gravity analyzer for high resolution spectroscopy and a neutron bottle for decay experiments are now developing as the UCN research in KUR. (author)

  9. Fast reactors in Russia: State of the art and trends of development

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Ashurko, Yu.M.; Zverev, K.V.; Oshkanov, N.N.; Korol'kov, A.S.; Filin, A.I.

    2002-01-01

    This status report contains the following: facts on nuclear power in Russia from 2001-2002; plans for further development of nuclear power; state of the art on operation of fast reactors in 2002, namely BN-600, experimental reactors BOR-60 and BR-10; construction of NPP BN-800; participation in activities on BN-350 reactor decommissioning; description of trends of design studies in the field of fast reactors and accelerator driven systems

  10. Urban and community forests of the North Central East region: Illinois, Indiana, Michigan, Ohio, Wisconsin

    Science.gov (United States)

    David J. Nowak; Eric J. Greenfield

    2010-01-01

    This report details how land cover and urbanization vary within the states of Illinois, Indiana, Michigan, Ohio, and Wisconsin by community (incorporated and census designated places), county subdivision, and county. Specifically this report provides critical urban and community forestry information for each state including human population characteristics and trends,...

  11. Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia

    International Nuclear Information System (INIS)

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2016-01-01

    Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.

  12. Proceedings of first SWCR-KURRI academic seminar on research reactors and related research topics

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Cong, Zhebao

    1986-01-01

    These are the proceedings of an academic seminar on research reactors and related research topics held at the Southwest Centre for Reactor Engineering Research and Design in Chengdu, Sichuan, People's Republic of China in September 24-26 in 1985. Included are the chairmen's addresses and 10 papers presented at the seminar in English. The titles of these papers are: (1) Nuclear Safety and Safeguards, (2) General Review of Thorium Research in Japanese Universities, (3) Comprehensive Utilization and Economic Analysis of the High Flux Engineering Test Reactor, (4) Present States of Applied Health Physics in Japan, (5) Neutron Radiography with Kyoto University Reactor, (6) Topics of Experimental Works with Kyoto University Reactor, (7) Integral Check of Nuclear Data for Reactor Structural Materials, (8) The Reactor Core, Physical Experiments and the Operation Safety Regulation of the Zero Energy Thermal Reactor for PWR Nuclear Power Plant, (9) HFETR Core Physical Parameters at Power, (10) Physical Consideration for Loads of Operated Ten Cycles in HFETR. (author)

  13. Ohio Department of Transportation : 2008-2009 Business Plan

    Science.gov (United States)

    2007-11-01

    On behalf of the new Administration of Governor Ted Strickland and the more than 6,000 hard working men and women of the Ohio Department of Transportation, I am pleased to submit the Ohio Department of Transportation 2008-2009 Business Plan. : This b...

  14. An international comparison of the Ohio department of aging-resident satisfaction survey: applicability in a U.S. and Canadian sample.

    Science.gov (United States)

    Cooke, Heather A; Yamashita, Takashi; Brown, J Scott; Straker, Jane K; Baiton Wilkinson, Susan

    2013-12-01

    The majority of resident satisfaction surveys available for use in assisted living settings have been developed in the United States; however, empirical assessment of their measurement properties remains limited and sporadic, as does knowledge regarding their applicability for use in settings outside of the United States. This study further examines the psychometric properties of the Ohio Department of Aging-Resident Satisfaction Survey (ODA-RSS) and explores its applicability within a sample of Canadian assisted living facilities. Data were collected from 9,739 residential care facility (RCF) residents in Ohio, United States and 938 assisted-living residents in British Columbia, Canada. Confirmatory factor analysis was used to assess the instrument's psychometric properties within the 2 samples. Although the ODA-RSS appears well suited for assessing resident satisfaction in Ohio RCFs, it is less so in British Columbia assisted living settings. Adequate reliability and validity were observed for all 8 measurable instrument domains in the Ohio sample, but only 4 (Care and Services, Employee Relations, Employee Responsiveness, and Communications) in the British Columbia sample. The ODA-RSS performs best in an environment that encompasses a wide range of RCF types. In settings where greater uniformity and standardization exist, more nuanced questions may be required to detect variation between facilities. It is not sufficient to assume that rigorous development and empirical testing of a tool ensures its applicability in states or countries other than that in which it was initially developed.

  15. Management of radioactive liquid and solid wastes at the Research Reactor Institute, Kyoto University, (3)

    International Nuclear Information System (INIS)

    Tsutsui, Tenson; Shimoura, K.; Koyama, A.

    1977-11-01

    In this report, the management of radioactive liquid and solid wastes at the Research Reactor Institute, Kyoto University during past 6 years, from April in 1971 to March in 1977 are reviewed. (auth.)

  16. State-space representation of the reactor dynamics equations

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1995-01-01

    This paper describes a novel formulation of the reactor space-independent kinetics equations. The intent is to present these equations in a form that is both compatible with modern control theory and mathematically rigorous. It is desired to write the kinetics equations in the standard state variable representation, x = Ax, where x is the state vector and A is the system matrix and, at the same time, avoid mathematical compromises such as the linearization of an equation about a particular operating point. The advantage to this proposed formulation is that it may allow the lateral transfer of existing control concepts, some that have been developed for other fields, to the operation of nuclear reactors. For example, sliding mode control has been developed to allow robots to function in a robust manner in the presence of changes in the system model. This is necessary because a robot is expected to be capable of picking up an object of unknown mass and moving that object along a specified trajectory. The variability of the object's mass introduces an uncertainty into the system model that is used to deduce the appropriate control action. Thus, the robot controller must be made robust against such variations. Sliding mode control is one means of accomplishing this. A reactor controller might benefit from the same concept if its objective were to cause the reactor power to move along a demanded trajectory despite the presence of some uncertainty in the net amount of reactivity that is present

  17. Tabular equation of state of lithium for laser-fusion reactor studies

    International Nuclear Information System (INIS)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-01

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations

  18. Tabular equation of state of lithium for laser-fusion reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-19

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations.

  19. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  20. Advance reactor and fuel-cycle systems--potentials and limitations for United States utilities

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Williams, R.F.

    1979-01-01

    This paper reviews the potential benefits and limitations of advance reactor and fuel-cycle systems for United States utilities. The results of the review of advanced technologies show that for the near and midterm, the only advance reactor and fuel-cycle system with significant potential for United States utilities is the current LWR, and evolutionary, not revolutionary, enhancements. For the long term, the liquid-metal breeder reactor continues to be the most promising advance nuclear option. The major factors leading to this conclusion are summarized

  1. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  2. Safety Evaluation Report related to the renewal of the operating license for the training and research reactor at the University of Michigan (Docket No. 50-2)

    International Nuclear Information System (INIS)

    1985-07-01

    This Safety Evaluation Report for the application filed by the University of Michigan (UM) for renewal of the Ford Nuclear Reactor (FNR) operating license number R-28 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the North Campus of the University of Michigan in Ann Arbor, Michigan. The staff concludes that the reactor can continue to be operated by the University of Michigan without endangering the health and safety of the public

  3. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  4. Magnetohydrodynamic stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-01-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))

  5. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  6. Production capabilities in US nuclear reactors for medical radioisotopes

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted

  7. Safety Evaluation Report related to the construction permit and operating license for the research reactor at the University of Texas (Docket No. 50-602)

    International Nuclear Information System (INIS)

    1985-05-01

    This Safety Evaluation Report for the application filed by the University of Texas for a construction permit and operating license to construct and operate a TRIGA research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Texas and is located at the university's Balcones Research Center, about 7 miles (11.6 km) north of the main campus in Austin, Texas. The staff concludes that the TRIGA reactor facility can be constructed and operated by the University of Texas without endangering the health and safety of the public

  8. The state of the PIK reactor construction

    International Nuclear Information System (INIS)

    Konoplev, K.A.

    1995-01-01

    Principle concepts of the PIK reactor project were stated late in the 60's but its construction was started in 1976. By the year 1986 the initial project was realised by approximately 70% but then, after Chernobyl accident the construction was essentially frozen to adjust the project to the revised nuclear safety regulations. The revised project was approved only in 1990 when the country was on the threshold of serious economic problems. The PIK reactor is a source of neutrons placed in the heavy water reflector. The fuel is uranium-235 (90% enrichment) of total weight 27 kg. Light water is used as moderator and coolant. Design parameters: thermal power is 100 W; thermal neutron flux in the reflector is 1.2x10 15 n/cm 2 s; in the central vertical beam tube is 5x10 15 n/cm 2 s; number of horizontal beam tubes is 10; diameter of beam tubes is 10 cm, with the possibility of replacement with beam tubes up to 25 cm in diameter. The reactor will be equipped with sources of hot, cold, and ultracold neutrons to obtain beams in different intervals of energy spectrum. The low temperature circuit will enable to irradiate samples at helium temperatures. The reactor has three series cooling circuits. Emergency core cooling systems in LOCA are double and in emergency power supply system is triple. The PIK reactor has no single common containment but four separate systems: for pipelines and units of the first circuit, for heavy water reflector, for operating hall, and for experimental beam tubes hall

  9. Causes of extended shutdown state of 'RA' research reactor in Vinca Institute

    International Nuclear Information System (INIS)

    Pesic, M.; Kolundzija, V.; Ljubenov, V.; Cupac, S.

    2001-01-01

    This paper describes the causes and reasons for extended shutdown state of RA research reactor in the 'Vinca' Institute of Nuclear Sciences. Technical and legal matters that led to decision to stop RA reactor operation in 1984 and further problems related to maintenance and preparation for continuation of operation are given. Influence of nuclear policy of Yugoslav government and the 'Vinca' Institute at prolongation of the reactor shutdown state, as consequence of changing of nuclear programme in the country and the world are discussed and underlined. An overview of the legislation in the field of nuclear safety and regulatory control of radiation sources and radioactive materials in Yugoslavia is presented. (author)

  10. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    Directory of Open Access Journals (Sweden)

    Noble Brooklyn

    2012-01-01

    Full Text Available Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron flux distributions of the entire reactor core and to compare it with the measured flux focusing at the irradiation ports. Integration of all these analysis provided the updated comprehensive neutron-gamma flux maps of the existing irradiation facilities of the University of Utah TRIGA reactor.

  11. Status of fast breeder reactor development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S

    1979-07-01

    This document was prepared by the Office of the Program Director for Nuclear Energy, U.S. Department of Energy (USDOE). It sets forth the status and current activities for the development of fast breeder technology in the United States. In April 1977 the United States announced a change in its nuclear energy policy. Concern about the potential for the proliferation of nuclear weapons capability emerged as a major issue in considering whether to proceed with the development, demonstration and eventual deployment of breeder reactor energy systems. Plutonium recycle and the commercialization of the fast breeder were deferred indefinitely. This led to a reorientation of the nuclear fuel cycle program which was previously directed toward the commercialization of fuel reprocessing and plutonium recycle to the investigation of a full range of alternative fuel cycle technologies. Two major system evaluation programs, the Nonproliferation Alternative Systems Assessment Program (NASAP), which is domestic, and the International Nuclear Fuel Cycle Evaluation (INFCE), which is international, are assessing the nonproliferation advantages and other characteristics of advanced reactor concepts and fuel cycles. These evaluations will allow a decision in 1981 on the future direction of the breeder program. In the interim, the technologies of two fast breeder reactor concepts are being developed: the Liquid Metal Fast Breeder Reactor (LMFBR) and the Gas Cooled Fast Reactor (CFR). The principal goals of the fast breeder program are: LMFBR - through a strong R and D program, consistent with US nonproliferation objectives and anticipated national electric energy requirements, maintain the capability to commit to a breeder option; investigate alternative fuels and fuel cycles that might offer nonproliferation advantages; GCFR - provide a viable alternative to the LMFBR that will be consistent with the developing U.S. nonproliferation policy; provide GCFR technology and other needed

  12. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    International Nuclear Information System (INIS)

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described

  13. Safety evaluation report related to the renewal of the operating license for the University of Virginia open-pool research reactor. Docket No. 50-062

    International Nuclear Information System (INIS)

    1982-09-01

    This Safety Evaluation Report for the application filed by the University of Virginia for a renewal of Operating Licence R-66 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned by the University of Virginia and is located on the campus in Charlottesville, Virginia. Based on its technical review, the staff concludes that the reactor facility can continue to be operated by the University without endangering the health and safety of the public or endangering the environment

  14. Selenium content of foods purchased or produced in Ohio.

    Science.gov (United States)

    Snook, J T; Kinsey, D; Palmquist, D L; DeLany, J P; Vivian, V M; Moxon, A L

    1987-06-01

    Approximately 450 samples of about 100 types of foods consumed by rural and urban Ohioans were analyzed for selenium. Meat, dairy products, eggs, and grain products produced in Ohio have considerably lower selenium content than corresponding products produced in high selenium areas, such as South Dakota. Retail Ohio foods with interregional distribution tended to be higher in selenium content than corresponding foods produced in Ohio. Best sources of selenium in Ohio foods commonly consumed were meat and pasta products. Poor sources of selenium were fruits, most vegetables, candies, sweeteners, and alcoholic and nonalcoholic beverages. Establishment of an accurate data base for selenium depends on knowledge of the interregional distribution of foods, the selenium content of foods at their production site, and the selenium content of foods with wide local distribution.

  15. Annual report of the research results with Rikkyo University's joint-use reactor etc. for fiscal 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The results of research works by universities with Rikkyo University's joint-use reactor and RCNST's (Research Center for Nuclear Science and Technology) instruments for fiscal 1974 are described. Comprising the areas of activation analysis (in such as earth science, biology and environmental science), hot atom chemistry, etc., the results are presented in individual summaries. (Mori, K.)

  16. Oklo natural reactor

    International Nuclear Information System (INIS)

    Fujii, Isao

    1985-01-01

    In 1954, Professor Kazuo, Kuroda of Arkansas University in USA published the possibility that spontaneously generated natural nuclear reactors existed in prehistoric age. In 1972, 18 years after that, Commissariat a l'Energie Atomique published that in the Oklo uranium deposit in Gabon, Africa, a natural nuclear reactor was found. This fact was immediately informed to the whole world, but in Japan, its details have not necessarily been well known. The chance of investigating into this fact and visiting the Oklo deposit by the favor of COMUF, the owner of the Oklo deposit, was given, therefore, the state of the natural reactors, which has been known so far, is reported. At present, 12 natural reactors have been found in the vicinity of the Oklo deposit. The natural reactors were generated spontaneously in uranium deposits about 1.7 billion years ago when the isotopic abundance of U-235 was 3 %, and the chain reaction started naturally. When the concentration of U-235 lowered, the reaction stopped naturally. The abnormality in the U-235 abundance in natural uranium was found, and the cause was pursued. The evidence of the existence of natural reactors was shown. (Kako, I.)

  17. Radiopharmaceuticals developed at the University of Missouri research reactor

    International Nuclear Information System (INIS)

    Ketring, A.R.; Ehrhardt, G.J.; Day, D.E.

    1997-01-01

    The University of Missouri Research Reactor (MURR) has put a great deal of effort in the last two decades into development of radiotherapeutic beta emitters as nuclear medicine radiotherapeutics for malignancies. This paper describes the development of two of these drugs, 153 Sm ethylenediaminetetra-methylene phosphonic acid (EDTMP) (Quadramet trademark) and 90 Y glass microspheres (TheraSphere trademark). Samarium-153 EDTMP is a palliative used to treat the pain of metastatic bone cancer without the side effects of narcotic pain killers. Yttrium-90 glass microspheres are delivered via hepatic artery catheter to embolize the capillaries of liver tumors and deliver a large radiation dose for symptom palliation and life prolonging purposes

  18. NCSU PULSTAR reactor instrumentation upgrade. Final technical report, September 6, 1990--March 19, 1993

    International Nuclear Information System (INIS)

    Bilyj, S.J.; Perez, P.B.

    1993-01-01

    The Nuclear Reactor Program at North Carolina State University initiated an upgrade program at the NCSU PULSTAR Reactor in 1990. Twenty-year-old instrumentation is currently undergoing replacement with solid-state and current technology equipment. The financial assistance from the United States Department of Energy has been the primary source of support. This report provides the status of the first two phases of the upgrade program

  19. Safety-evaluation report related to the renewal of the operating license for the Cornell University TRIGA Research Reactor. Docket No. 50-157

    International Nuclear Information System (INIS)

    1983-08-01

    This Safety Evaluation Report for the application filed by the Cornell University for a renewal of Operating License R-80 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Cornell University and is located on the Cornell campus in Ithaca, New York. The staff concludes that the TRIGA reactor facility can continue to be operated by Cornell without endangering the health and safety of the public

  20. Experimental study on the safety of Kyoto University Research Reactor at natural circulation cooling mode

    International Nuclear Information System (INIS)

    Zhang, Jian; Shen, Xiuzhong; Fujihara, Yasuyuki; Sano, Tadafumi; Yamamoto, Toshihiro; Nakajima, Ken

    2015-01-01

    Highlights: • The natural circulation cooling capacity of Kyoto University Research Reactor (KUR) was experimentally investigated. • The distributions of the outlet temperature of the fuel elements under natural circulation operations were measured. • The average temperature rise and the average natural circulation flow velocity in core were calculated. • The safety of KUR under all of the normal operations with natural circulation cooling mode has been analyzed. • The natural circulation flow after the reactor shutdown was confirmed. - Abstract: In this study, the natural circulation cooling capacity of Kyoto University Research Reactor (KUR) is experimentally investigated by measuring the inlet and outlet temperatures of the core under natural circulation operation at various thermal powers ranging from 10 kW to 100 kW and the shutdown state. In view of the uneven power distribution and the resultant inconsistent coolant outlet temperature in the core, eight measuring points located separately in the outlet of the fuel elements were chosen to investigate the distribution of the outlet temperature of the core. The natural circulation cooling capacity represented by the average natural circulation flow velocity in the core is calculated from the temperature difference between the outlet and inlet temperature of the core. The measured outlet temperature of the fuel elements shows a cross-sectional distribution agreeing with the distribution of the thermal output of the fuel elements in the core. Since the measured outlet temperatures decrease quickly in the flow direction in a small local region above the outlet of the core, the mixing of the hot water out of the core with the cold water around the core outlet is found to happen in the small region not more than 5 cm far from the core outlet. The natural circulation flow velocity in the core increases non-linearly with the thermal power. The safety of KUR has been analysed by conservatively estimating the

  1. 78 FR 16785 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Cleveland-Akron-Lorain and...

    Science.gov (United States)

    2013-03-19

    ... (2) the state can document that growth and control strategy assumptions for non-motor vehicle sources..., attainment, or maintenance year inventories, and (2) The state can document that growth and control strategy... conclusions of the SIP. Ohio has documented that growth and control strategy assumptions continue to be valid...

  2. Factors influencing smokeless tobacco use in rural Ohio Appalachia.

    Science.gov (United States)

    Nemeth, Julianna M; Liu, Sherry T; Klein, Elizabeth G; Ferketich, Amy K; Kwan, Mei-Po; Wewers, Mary Ellen

    2012-12-01

    The burden of smokeless tobacco (ST) use disproportionally impacts males in rural Ohio Appalachia. The purpose of this study was to describe the cultural factors contributing to this disparity and to articulate the way in which culture, through interpersonal factors (i.e. social norms and social networks) and community factors (i.e. marketing and availability), impacts ST initiation and use of ST among boys and men in Ohio Appalachia. Fifteen focus groups and 23 individual qualitative interviews were conducted with adult (n = 63) and adolescent (n = 53) residents in Ohio Appalachian counties to ascertain factors associated with ST use and the impact of ST marketing. Transcriptions were independently coded according to questions and themes. ST use appears to be a rite of passage in the development of masculine identity in Ohio Appalachian culture. Interpersonal factors had the greatest influence on initiation and continued use of ST. Ohio Appalachian boys either emulated current ST users or were actively encouraged to use ST through male family and peer networks. Users perceived their acceptance into the male social network as predicated on ST use. Community factors, including ST advertisement and access to ST, reinforced and normalized underlying cultural values. In addition to policy aimed at reducing tobacco marketing and access, interventions designed to reduce ST use in Ohio Appalachia should incorporate efforts to (1) shift the perception of cultural norms regarding ST use and (2) address male social networks as vehicles in ST initiation.

  3. A human reliability analysis of the University of New Mexico's AGN- 201M nuclear research reactor

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Heger, A.S.

    1992-01-01

    During 1990--1991, a probabilistic risk assessment was conducted on the University of New Mexico's AGN-201M nuclear research reactor to address the risk and consequence of a maximum hypothetical release accident. The assessment indicated a potential for consequential human error to precipitate Chis scenario. Subsequently, a human reliability analysis was performed to evaluate the significance of human interaction on the reactor's safety systems. This paper presents the results of that investigation

  4. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  5. STATE LEVEL MECHANISMS FOR LEARNING FROM WHISTLEBLOWING CASES AT INSTITUTIONS OF HIGHER EDUCATION IN THE UNITED STATES

    Directory of Open Access Journals (Sweden)

    Christopher R. Schmidt

    2016-06-01

    Full Text Available State level mechanisms for soliciting, validating, and learning from whistleblower claims of fraud, theft, or misconduct against public colleges and universities are explored in four US states: California, Massachusetts, Michigan, and Ohio. Sequential public information requests were used to understand the methods that were used in each state, the types of claims that each state experienced, and to understand their processes for learning from such claims. The types of claims, breadth of scope that the claims span, and disposition of the claims is used to characterize each state’s approach and compare and contrast results with other states in the sample. There was a wide variation in responses and approaches used in each state. Varying from no information solicited or maintained (Michigan to full histories that include case level detail (Ohio, excellent multi-year case tracking and reporting (California to the voluminous tracking of every property loss or damage in every institution (Massachusetts. An organic rubric is developed and used to compare and contrast the responses and service level provided by each of the states. Although anonymous whistleblower claims are essential to the governance and administration of higher education, state level mechanisms vary widely in their approaches to administering this process and ensuring better future outcomes. Establishing a standard based upon best practices would ensure that institutions are making the best use of all information available to them to improve their immunity from employee fraud and theft and misconduct.

  6. The 3D Elevation Program: summary for Ohio

    Science.gov (United States)

    Carswell, William J.

    2014-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Ohio, elevation data are critical for agriculture and precision farming, natural resources conservation, flood risk management, infrastructure and construction management, water supply and quality, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.

  7. A continuing success - The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Mustin, Tracy P.; Clapper, Maureen; Reilly, Jill E.

    2000-01-01

    The United States Department of Energy, in consultation with the Department of State, adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program, established under this policy, has completed 16 spent fuel shipments. 2,651 material test reactor (MTR) assemblies, one Slowpoke core containing less than 1 kilogram of U.S.-origin enriched uranium, 824 Training, Research, Isotope, General Atomic (TRIGA) rods, and 267 TRIGA pins from research reactors around the world have been shipped to the United States so far under this program. As the FRR SNF Acceptance Program progresses into the fifth year of implementation, a second U.S. cross country shipment has been completed, as well as a second overland truck shipment from Canada. Both the cross country shipment and the Canadian shipment were safely and successfully completed, increasing our knowledge and experience in these types of shipments. In addition, two other shipments were completed since last year's RERTR meeting. Other program activities since the last meeting included: taking pre-emptive steps to avoid license amendment pitfalls/showstoppers for spent fuel casks, publication of a revision to the Record of Decision allowing up to 16 casks per ocean going vessel, and the issuance of a cable to 16 of the 41 eligible countries reminding their governments and the reactor operators that the U.S.-origin uranium in their research reactors may be eligible for return to the United States under the Acceptance Program and urging them to begin discussions on shipping schedules. The FRR SNF program has also supported the Department's implementation of the competitive pricing policy for uranium and resumption of shipments of fresh uranium for fabrication into assemblies for research reactors. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues

  8. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  9. Effects of ice storm damage on hardwood survival and growth in Ohio

    Science.gov (United States)

    Richard M. Turcotte; Thomas R. Elliott; Mary Ann Fajvan; Yong-Lak Park; Daniel A. Snider; Patrick C. Tobin

    2012-01-01

    In 2003, an ice storm occurred across four Mid-Atlantic states. This study investigated the effects of the ice-storm damage on growth and mortality of five tree species (Acer rubrum, Acer saccharum, Quercus alba, Quercus prinus, and Quercus rubra) from three forest stands in the Wayne National Forest in Ohio. We remeasured the same...

  10. Elevated indoor radon levels and elevated incidence of lung cancer in Columbus and Franklin County, Ohio: Cause or coincidence?

    International Nuclear Information System (INIS)

    Grafton, H.E.; West, D.R.

    1992-01-01

    Columbus, and Franklin County, Ohio, have been identified as having elevated residential radon levels. Research by the Columbus Health Department, the Ohio Department of Health, and the US Environmental Protection Agency has shown that average screening measurements for the county range from 63% to 73% above 148 Bq m -3 , 23% to 27% above 370 Bq m -3 , and 1% above 1850 Bq m -3 , for both males and females, respectively. The observed cancer rate per 100,000 persons for the period 1979-1986 for the City of Columbus was 62.8 and for the State of Ohio, 49.3, for the bronchi, lungs, and trachea. The reliability of residential radon data, the effect of smoking, mobility of residents, and other confounding factors are referenced. We suggest that while current evidence is insufficient to demonstrate a causal or coincidental relationship between elevated radon levels and higher-than-average rates of lung cancer, the measurement data suggest that Franklin County, Ohio, is an appropriate site for such research

  11. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  12. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.

    Science.gov (United States)

    Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M

    2017-09-01

    Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright

  13. On-line computer control of a nuclear reactor using optimal control and state estimation methods

    International Nuclear Information System (INIS)

    Tye, C.

    1980-01-01

    This paper describes the experimental implementation of a nuclear reactor control system using combined optimal state feedback based on the Quadratic Regulator and state estimation using Kalman filtering techniques. The results obtained from the experiments indicate that a reactor control loop designed using this approach has improved stability margins, greater speed of response and noise filtering properties compared with a conventional reactor control loop. 11 refs

  14. Safety Evaluation Report related to renewal of the operating license for the CAVALIER Training Reactor at the University of Virginia (Docket No. 50-396)

    International Nuclear Information System (INIS)

    1985-05-01

    This Safety Evaluation Report for the application filed by the University of Virginia for a renewal of Operating License R-123 to continue to operate the CAVALIER (Cooperatively Assembled Virginia Low Intensity Educational Reactor) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Virginia and is located on the campus in Charlottesville, Virginia. Based on its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the environment

  15. Revitalization of reactor usage through reactor sharing

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1986-01-01

    The purpose of this work was to renew interest in using the University Florida Training Reactor (UFTR) for educational and training purposes outside the Nuclear Engineering Sciences (NES) and Environmental Engineering Sciences (EES) Departments at the University of Florida and for research by others outside the NES Department. The availability of the UFTR made possible through a US Department of Energy (DOE) Reactor Sharing Grant provided the mechanism to pursue generation of renewed interest at all levels both within the University of Florida and from other educational and corporate institutions

  16. Feasibility study of the university of Utah TRIGA reactor power upgrade - part II: Thermohydraulics and heat transfer study in respect to cooling system requirements and design

    Directory of Open Access Journals (Sweden)

    Babitz Philip

    2013-01-01

    Full Text Available The thermodynamic conditions of the University of Utah's TRIGA Reactor were simulated using SolidWorks Flow Simulation, Ansys, Fluent and PARET-ANL. The models are developed for the reactor's currently maximum operating power of 90 kW, and a few higher power levels to analyze thermohydraulics and heat transfer aspects in determining a design basis for higher power including the cost estimate. It was found that the natural convection current becomes much more pronounced at higher power levels with vortex shedding also occurring. A departure from nucleate boiling analysis showed that while nucleate boiling begins near 210 kW it remains in this state and does not approach the critical heat flux at powers up to 500 kW. Based on these studies, two upgrades are proposed for extended operation and possibly higher reactor power level. Together with the findings from Part I studies, we conclude that increase of the reactor power is highly feasible yet dependable on its purpose and associated investments.

  17. Seeds of Knowledge: The Evolution of the Louis Bromfield Sustainable Agriculture Library.

    Science.gov (United States)

    Miraglia, Laurie L.

    The Louis Bromfield Sustainable Agriculture Library is located in Lucas, Ohio, at Malabar Farm State Park. Established in 1992, the library is jointly maintained by the Ohio State University Sustainable Agriculture Program and the Ohio Department of Agriculture. The library's namesake, Louis Bromfield, was a Pulitzer Prize-winning author and noted…

  18. Bio-engineering for land stabilization : final report.

    Science.gov (United States)

    2010-06-01

    As part of the Ohio Department of Transportations (ODOTs) ongoing effort to solve engineering problems for the Ohio : transportation system through research, The Ohio State University has undertaken a study entitled Bioengineering for : Land...

  19. Critical fluctuations of the number of neutrons in a reactor

    International Nuclear Information System (INIS)

    Ryazanov, V.V.; Lakoza, E.L.; Sysoev, V.M.

    1995-01-01

    The nuclear chain reaction is the most important physical process in a reactor. The theory of nuclear chain reaction fluctuations (neutron noise), developed in and other studies, has given results that are important for reactor physics and reactor practice (correlation analysis of neutron noise for measurement of the physical characteristics and reactor monitoring, stability of the critical state, etc.). Here we propose to study these problems by applying the methods of continuous phase transitions and synergetics and using the analogy with chemical chain reactions and the general laws of critical phenomena. The optimal reactor operating conditions are critical. To predict how a critical reactor will behave it is necessary to reveal those features of the neutron laws that are universal in some way, i.e., do not depend on the details of the individual acts of neutron motion and transformation that occur in reactors of different types. The similarity between chemical and nuclear chain reactions was noted long ago. Consequently, a universal theory of continuous phase transition was developed for systems of diverse physical nature

  20. The Scholarly Communication Process within the University Research Corridor (Michigan State University, the University of Michigan, and Wayne State University): A Case Study in Cooperation

    Science.gov (United States)

    Utter, Timothy; Holley, Robert P.

    2009-01-01

    The growth of open access publishing, the development of institutional repositories, and the availability of millions of digitized monographs and journals are rapidly changing scholarly communication. This case study looks at the current and possible uses of these tools by Michigan's three largest universities: Michigan State University, the…

  1. Ohio Career Resource.

    Science.gov (United States)

    Ohio State Dept. of Education, Columbus. Div. of Career-Technical and Adult Education.

    This resource is designed to provide Ohio labor market information for use with advisory committees to stimulate and inform dialogue about the current evaluation and future planning of programs. It provides reports for 23 career fields in 6 career clusters. Each report highlights careers and occupations in the field and answers these questions:…

  2. 76 FR 70067 - Taxpayers and Ratepayers United, et al.; Environmental Impacts of Severe Reactor and Spent Fuel...

    Science.gov (United States)

    2011-11-10

    ..., Citizens Environment Alliance of Southwestern Ontario, Don't Waste Michigan, and the Green Party of Ohio... and safety and the environment posed by the operation of nuclear reactors and that the integration of..., November 10, 2011 / Proposed Rules#0;#0; [[Page 70067

  3. Aerial radiological survey of the United States Department of Energy's Battelle Nuclear Science Facility, West Jefferson, Ohio, date of survey: May 1977

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-05-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United States Department of Energy's Battelle Nuclear Science Facility located in West Jefferson, Ohio. Gamma ray data were collected over a 5.5 km 2 area centered on the facility by flying east-west lines spaced 61 m apart. Processed data indicated that on-site radioactivity was primarily due to radionuclides currently being processed due to the hot lab operations. Off-site data showed the radioactivity to be due to naturally occurring background radiation consistent with variations due to geologic base terrain and land use of similar areas

  4. Safety evaluation report related to the construction permit and operating license for the research reactor at the University of Texas (Docket No. 50-602)

    International Nuclear Information System (INIS)

    1992-01-01

    The Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to NUREG-1135, ''Safety Evaluation Report Related to the Construction Permit and Operating License for the Research Reactor at the University of Texas'' (SER) May 1985. The reactor facility is owned by The University of Texas at Austin (UT, the applicant) and is located at the University's Balcones Research Center in Austin, Texas. This supplement to the SER (SSER) describes the changes to the reactor facility design from the description in the SER. The SER and SSER together reflect the facility as built. The SSER also documents the reviews that the NRC has completed regarding the applicant's emergency plan, security plan, and technical specifications that were identified as open in the SER

  5. Factors Influencing Smokeless Tobacco Use in Rural Ohio Appalachia

    Science.gov (United States)

    Nemeth, Julianna M.; Liu, Sherry T.; Klein, Elizabeth G.; Ferketich, Amy K.; Kwan, Mei-Po; Wewers, Mary Ellen

    2015-01-01

    Background The burden of smokeless tobacco (ST) use disproportionally impacts males in rural Ohio Appalachia. The purpose of this study was to describe the cultural factors contributing to this disparity and to articulate the way in which culture, through interpersonal factors (i.e. social norms and social networks) and community factors (i.e. marketing and availability), impacts ST initiation and use of ST among boys and men in Ohio Appalachia. Methods Fifteen focus groups and twenty-three individual qualitative interviews were conducted with adult (n=63) and adolescent (n=53) residents in Ohio Appalachian counties to ascertain factors associated with ST use and the impact of ST marketing. Transcriptions were independently coded according to questions and themes. Results ST use appears to be a rite of passage in the development of masculine identity in Ohio Appalachian culture. Interpersonal factors had the greatest influence on initiation and continued use of ST. Ohio Appalachian boys either emulated current ST users or were actively encouraged to use ST through male family and peer networks. Users perceived their acceptance into the male social network as predicated on ST use. Community factors, including ST advertisement and access to ST, reinforced and normalized underlying cultural values. Conclusions In addition to policy aimed at reducing tobacco marketing and access, interventions designed to reduce ST use in Ohio Appalachia should incorporate efforts to 1) shift the perception of cultural norms regarding ST use and 2) address male social networks as vehicles in ST initiation. PMID:22427033

  6. Radiopharmaceuticals developed at the University of Missouri research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ketring, A.R.; Ehrhardt, G.J. [Univ. of Missouri, Columbia, MO (United States); Day, D.E. [Univ. of Missouri, Rolla, MO (United States)

    1997-12-01

    The University of Missouri Research Reactor (MURR) has put a great deal of effort in the last two decades into development of radiotherapeutic beta emitters as nuclear medicine radiotherapeutics for malignancies. This paper describes the development of two of these drugs, {sup 153}Sm ethylenediaminetetra-methylene phosphonic acid (EDTMP) (Quadramet{trademark}) and {sup 90}Y glass microspheres (TheraSphere{trademark}). Samarium-153 EDTMP is a palliative used to treat the pain of metastatic bone cancer without the side effects of narcotic pain killers. Yttrium-90 glass microspheres are delivered via hepatic artery catheter to embolize the capillaries of liver tumors and deliver a large radiation dose for symptom palliation and life prolonging purposes.

  7. Nuke-to-coal switch nixed in Texas, still alive in Ohio

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A feasibility study found it uneconomical to convert the South Texas Project from nuclear to coal, but the Zimmer plant in Ohio is continuing to pursue the conversion concept. The main issue in Ohio is the accounting treatment of the investment in the 800-MW single unit project that was cancelled in 1984. The owners hope that interested parties can agree on a package stipulating what portion of the costs of the existing plant will be disallowed from the rate base prior to state commission review. A favorable study shows that about 45% of the $1.7 billion investment is usable in a coal plant. Conversion will require an additional $1.7 billion to provide a 1300-MW coal-fired plant. Feasibility for the Zimmer plant is due to its 97% level of completion, while construction at the Texas plant is not as far along

  8. License renewal and power upgrade of the Cornell University TRIGA reactor

    International Nuclear Information System (INIS)

    Aderhold, Howard C.

    1984-01-01

    The Cornell Mark II TRIGA reactor has been a principal facility for instruction and research in nuclear science and engineering at Cornell, and it has been extensively used by other departments at Cornell and by nearby universities and industries. Initially the fuel was low hydride, 8.5w/o 19%-enriched, aluminum clad; in 1974 it was changed to high-hydride, stainless-steel-clad. The maximum power has been 100 kW, with pulses to $2, and operation has been on a one-shift demand basis. Annual energy generation of 50 MWH has been typical. Standard features include a 4-inch tangential port and our 6-inch radial ports, a thermal column with hohlraum and vertical access, a central thimble, a 'rabbit', and a set of dry irradiation tubes, replacing the 'Lazy Susan'. The license was renewed and amended in November 1983; the new limits are 500 kW and $3 pulses. Physical changes to the facility included addition of a water-to-water heat exchanger and of a diffuser at the water outlet ∼ 60 cm above the core. The flow rate is 300 liters per minute in the primary (reactor) side of the heat exchanger. The temperature of the chilled water entering the secondary of the exchanger is ∼ 12?C; its flow rate is adjusted by a servo-controlled by-pass valve to maintain the desired range of pool water temperature. Steps taken to go to higher power included rearrangement of fuel elements to increase excess reactivity, recalibration of control rods, and power vs ion chamber current calibrations at successively higher power by comparing the rate of rise of pool temperature with a known rate using electrical heating elements. Steady-state operation has been done up to 480 kW (nominal) but pulsing at the newly allowed higher levels has not been tested as yet

  9. Ohio CVISN business plan

    Science.gov (United States)

    1998-03-01

    Ohio has aggressively initiated and participated in a variety of ITS/CVO initiatives in recent years. The successes of these projects provide the impetus and enthusiasm to pursue higher forms of technology in addressing issues relating to CVO. This d...

  10. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances

    DEFF Research Database (Denmark)

    Luo, Gang; De Francisci, Davide; Kougias, Panagiotis

    2015-01-01

    that stochastic factors had a minor role in shaping the profile of the microbial community composition and activity in biogas reactors. On the contrary, temperature disturbance was found to play an important role in the microbial community composition as well as process performance for biogas reactors. Although...... three different temperature disturbances were applied to each biogas reactor, the increased methane yields (around 10% higher) and decreased volatile fatty acids (VFAs) concentrations at steady state were found in all three reactors after the temperature disturbances. After the temperature disturbance...... in shaping the profile of the microbial community composition and activity in biogas reactors. New steady-state microbial community profiles and reactor performances were observed in all the biogas reactors after the temperature disturbance....

  11. Nuclear Security Education Program at the Pennsylvania State University

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Jovanovic, Igor

    2015-01-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  12. Nuclear Security Education Program at the Pennsylvania State University

    Energy Technology Data Exchange (ETDEWEB)

    Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)

    2015-07-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  13. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-01-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  14. Resenha de KURTZ, Marcus J. Latin American State Building in Comparative: social foundations of institutional order. New York: Cambrigde University Press/Ohio University Press, 2013

    Directory of Open Access Journals (Sweden)

    Rogério Makino

    2014-12-01

    Full Text Available Resumo  Em seu livro, Kurtz tenta entender a atual diferença nas capacidades estatais de Argentina, Uruguai, Chile e Peru a partir de uma perspectiva institucionalista, sendo fortemente influenciada pela noção de dependência de trajetória. Dois momentos teriam sido cruciais nessa trajetória: as relações de trabalho (livre ou servil à época da independência administrativa e o timing da incorporação das massas ao processo eleitoral. Palavras-chave capacidade estatal, dependência da trajetória, América Latina  --- Abstract In his book, Kurtz analyzes the current diferences in the state capacity of Argentina, Uruguay, Chili and Peru from na institutionalist perspective under strong influence of the notion of path dependence. Two moments would have been crucial in their state-building: the labor relations (free or servile by the time of their administrative independence and the timing of universalization of vote. Key words state-building, path dependence, Latin American --- Resumen En su libro, Kurtz intenta entender la actual diferencia en las capacidades estatales de Argentina, Uruguay, Chile y Perú a partir de una perspectiva institucionalista, destacadamente influenciada por la noción de dependencia de la trayectoria. Dos momentos habrían sido cruciales en esa trayectoria: las relaciones de trabajo (libre o serviles a la época de la independencia administrativa y el timing de la incorporación de las masas al proceso electoral. Palabras-clave capacidad estatal, dependencia da trayectoria, América Latina ---

  15. Evaluation of neutron exposure conditions for the Buffalo Reactor

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Kellogg, L.S.; McElroy, W.N.; Baldwin, C.A.

    1984-04-01

    The light water test reactor at the Nuclear Science and Technology Facility of the State University of New York at Buffalo is currently being used to irradiate specimens in in-core positions for NRC-sponsored metallurgical tests. It is important that the neutron exposures for these Buffalo tests be consistent with those determined for related irradiations in the BSR and ORR reactor at ORNL. Therefore, HEDL National Reactor Dosimetry Center dosimetry procedures and ORNL calculational procedures were used for an evaluation of typical test conditions

  16. Necessity of research reactors

    International Nuclear Information System (INIS)

    Ito, Tetsuo

    2016-01-01

    Currently, only three educational research reactors at two universities exist in Japan: KUR, KUCA of Kyoto University and UTR-KINKI of Kinki University. UTR-KINKI is a light-water moderated, graphite reflected, heterogeneous enriched uranium thermal reactor, which began operation as a private university No. 1 reactor in 1961. It is a low power nuclear reactor for education and research with a maximum heat output of 1 W. Using this nuclear reactor, researches, practical training, experiments for training nuclear human resources, and nuclear knowledge dissemination activities are carried out. As of October 2016, research and practical training accompanied by operation are not carried out because it is stopped. The following five items can be cited as challenges faced by research reactors: (1) response to new regulatory standards and stagnation of research and education, (2) strengthening of nuclear material protection and nuclear fuel concentration reduction, (3) countermeasures against aging and next research reactor, (4) outflow and shortage of nuclear human resources, and (5) expansion of research reactor maintenance cost. This paper would like to make the following recommendations so that we can make contribution to the world in the field of nuclear power. (1) Communication between regulatory authorities and business operators regarding new regulatory standards compliance. (2) Response to various problems including spent fuel measures for long-term stable utilization of research reactors. (3) Personal exchanges among nuclear experts. (4) Expansion of nuclear related departments at universities to train nuclear human resources. (5) Training of world-class nuclear human resources, and succession and development of research and technologies. (A.O.)

  17. 77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Science.gov (United States)

    2012-05-30

    .... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...

  18. Status of liquid metal reactor development in the United States of America

    International Nuclear Information System (INIS)

    Griffith, J.D.; Horton, K.E.

    1991-01-01

    An existing network of government and industry research facilities and engineering test centers in the United States is currently providing test capabilities and the technical expertise required to conduct an aggressive advanced reactor development program. Subsequent to the directive to shut down the Fast Flux Test Facility in early 1990, a variety of activities were undertaken to provide support for continued operation. The United States has made substantial progress in achieving ALMR program objectives. The metal fuel cycle is designed to recycle and burn its own actiniums, and has the potential to be a very effective burner of actiniums generated in the LWRs. The current emphasis in the IFR Program is on the comprehensive development of the IFR (Integral Fast Reactor) technology, to be followed by a period of technology demonstration which would verify the economic feasibility of the concept. The United States has been active in international cooperative activities in the fast reactor sector since 1969. (author). 11 figs, 1 tab

  19. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  20. Safety Evaluation Report related to the renewal of the operating license for the training and research reactor at the University of Lowell (Docket No. 50-223)

    International Nuclear Information System (INIS)

    1985-11-01

    This Safety Evaluation Report for the application filed by the University of Lowell (UL) for renewal of operating license number R-125 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the North Campus of the University of Lowell in Lowell, Massachusetts. The staff concludes that the reactor can continue to be operated by the University of Lowell without endangering the health and safety of the public

  1. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  2. Neutronic calculations for the conversion of the University of Florida Training Reactor from HEU to LEU fuel

    International Nuclear Information System (INIS)

    Dugan, E.T.; Diaz, N.J.; Kniedler, G.S.

    1983-01-01

    The University of Florida Training Reactor (UFTR) is located on the University of Florida campus in Gainesville, Florida. The reactor is the Argonaut type, heterogeneous in design and currently fueled with 93% enriched, uranium-aluminum alloy MTR plate-type fuel. Investigations are being performed to examine te feasibility of replacing the highly-enriched fuel of the current UFTR with 4.8% enriched, cylindrical pin SPERT fuel. The SPERT fuel is stainless steel clad and contains uranium dioxide (UO 2 ) pellets. On a broad spectrum, training reactor conversion from high enrichment uranium (HEU) to low enrichment uranium (LEU) fueled facilities has been a continuing concern in the International Atomic Energy Agency (IAEA) and significant work has been done in this area by the Argonne RERTR Program. The International Atomic Energy Agency cites three reasons for reactor conversion to low-enriched uranium. The main reason is the desire to reduce the proliferation potential of research reactor fuels. The second is to increase the assurance of continued fuel availability in the face of probable restrictions on the supply of highly-enriched uranium. The third reason is the possible reduction in requirements for physical security measures during fabrication, transportation, storage and use. This same IAEA report points out that the three reasons stated for the conversion of the fuel of research reactors are interrelated and cannot be considered individually. The concerns of the Nuclear Engineering Sciences Department at the University of Florida relating to the HEU fuel of the UFTR coincide with those of the International Atomic Energy Agency. The primary reason for going to low-enriched pin-type fuel is the concern with proliferation provoked by the highly-enriched plate fuel which has led to tighter security of nuclear facilities such as the UFTR. A second reason for changing to the pin-type fuel is because of difficulties that are being encountered in the supply of the

  3. Neutronic calculations for the conversion of the University of Florida Training Reactor from HEU to LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, E T; Diaz, N J [Department of Nuclear Engineering Sciences, University of Florida, Gainesville, FL (United States); Kniedler, G S [Reactor Analysis Group, TVA, Chattanooga, TN (United States)

    1983-09-01

    The University of Florida Training Reactor (UFTR) is located on the University of Florida campus in Gainesville, Florida. The reactor is the Argonaut type, heterogeneous in design and currently fueled with 93% enriched, uranium-aluminum alloy MTR plate-type fuel. Investigations are being performed to examine te feasibility of replacing the highly-enriched fuel of the current UFTR with 4.8% enriched, cylindrical pin SPERT fuel. The SPERT fuel is stainless steel clad and contains uranium dioxide (UO{sub 2}) pellets. On a broad spectrum, training reactor conversion from high enrichment uranium (HEU) to low enrichment uranium (LEU) fueled facilities has been a continuing concern in the International Atomic Energy Agency (IAEA) and significant work has been done in this area by the Argonne RERTR Program. The International Atomic Energy Agency cites three reasons for reactor conversion to low-enriched uranium. The main reason is the desire to reduce the proliferation potential of research reactor fuels. The second is to increase the assurance of continued fuel availability in the face of probable restrictions on the supply of highly-enriched uranium. The third reason is the possible reduction in requirements for physical security measures during fabrication, transportation, storage and use. This same IAEA report points out that the three reasons stated for the conversion of the fuel of research reactors are interrelated and cannot be considered individually. The concerns of the Nuclear Engineering Sciences Department at the University of Florida relating to the HEU fuel of the UFTR coincide with those of the International Atomic Energy Agency. The primary reason for going to low-enriched pin-type fuel is the concern with proliferation provoked by the highly-enriched plate fuel which has led to tighter security of nuclear facilities such as the UFTR. A second reason for changing to the pin-type fuel is because of difficulties that are being encountered in the supply of

  4. Agreement Between Michigan State University and Lodge 141, Fraternal Order of Police, Michigan State University Division, July 1, 1974.

    Science.gov (United States)

    Michigan State Univ., East Lansing.

    This agreement, entered into July 1, 1974, is between the Board of Trustees of Michigan State University and Lodge 141 of the Fraternal Order of Police, Michigan State University Division. It is the intent and purpose of this agreement to assure sound and mutually beneficial working and economic relationships between the parties, to provide an…

  5. Study on reactor power transient characteristics (reactor training experiments). Control rod reactivity calibration by positive period method and other experiment

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Sunagawa, Takeyoshi

    2014-01-01

    In this paper, it is reported about some experiments that have been carried out in the reactor training that targets sophomore of the department of applied nuclear engineering, FUT. Reactor of Kinki University Atomic Energy Research Institute (UTR-KINKI) was used for reactor training. When each critical state was achieved at different reactor output respectively in reactor operating, it was confirmed that the control rod position at that time does not change. Further, control rod reactivity calibration experiments using positive Period method were carried out for shim safety rod and regulating rod, respectively. The results were obtained as reasonable values in comparison with the nominal value of the UTR-KINKI. The measurement of reactor power change after reactor scram was performed, and the presence of the delayed neutron precursor was confirmed by calculating the half-life. The spatial dose rate measurement experiment of neutrons and γ-rays in the reactor room in a reactor power 1W operating conditions were also performed. (author)

  6. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  7. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991–2012

    International Nuclear Information System (INIS)

    Herrick, Robert L.; Buckholz, Jeanette; Biro, Frank M.; Calafat, Antonia M.; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M.

    2017-01-01

    Background: Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Objectives: Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. Methods: We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. Results: In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40–60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000–2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Conclusions: Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209–666 km upstream, is likely the primary exposure source. GAC treatment of drinking

  8. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  9. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-01-27

    ...) emissions from reinforced plastic composites production operations to Ohio's State Implementation plan (SIP). This rule applies to any facility that has reinforced plastic composites production operations. This... new rule OAC 3745-21-25 ``Control of VOC Emissions from Reinforced Plastic Composites Production...

  10. Persuasion with Unintelligible Messages: A Cognitive Response Analysis.

    Science.gov (United States)

    Padgett, Vernon R.; Brock, Timothy C.

    Theories of persuasion have long assumed a process which includes comprehension of the message by the recipient. Several hundred undergraduates at Ohio State University and Marshall University (Ohio) participated in six experiments examining persuasion and the use of unintelligible messages. Subjects in individual cubicles of a university language…

  11. Ohio-Based NREL Subcontractor Wins Major Small Business Award

    Science.gov (United States)

    Ohio-Based NREL Subcontractor Wins Major Small Business Award For more information contact: e:mail alternative fuel vehicles has won a major award from the U.S. Small Business Administration (SBA). Automotive Testing Laboratories, Inc. (ATL) of East Liberty, Ohio was named the SBA's Midwest Regional Small Business

  12. Status of fusion reactor concept development in Japan

    International Nuclear Information System (INIS)

    Tsuji-Iio, Shunji

    1996-01-01

    Fusion power reactor studies in Japan based on magnetic confinement schemes are reviewed. As D-T fusion reactors, a steady-state tokamak reactor (SSTR) was proposed and extensively studied at the Japan Atomic Energy Research Institute (JAERI) and an inductively operated day-long tokamak reactor (IDLT) was proposed by a group at the University of Tokyo. The concept of a drastically easy maintenance (DREAM) tokamak reactor is being developed at JAERI. A high-field tokamak reactor with force-balanced coils as a volumetric neutron source is being studied by our group at Tokyo Institute of Technology. The conceptual design of a force-free helical reactor (FFHR) is under way at the National Institute for Fusion Science. A design study of a D- 3 He field-reversed configuration (FRC) fusion reactor called ARTEMIS was conducted by the FRC fusion working group of research committee of lunar base an lunar resources. (author)

  13. Optimization and control of a novel upflow anaerobic solid-state (UASS) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mumme, J.; Linke, B. [Leibniz Inst. for Agricultural Engineering, Potsdam (Germany); Tolle, R. [Humboldt Univ., Berlin (Germany). Dept. of Biosystems Technology

    2010-07-01

    Optimization and control strategies for a newly developed upflow anaerobic solid-state (UASS) reactor equipped with liquor recirculation were investigated. The UASS reactor converts solid biomass into biogas while the particulate organic matter (POM) ascends in the form of a solid-state bed (SSB) driven by the adherence of self-produced micro gas bubbles. Performance data and technical characteristics were obtained from a technical scale semi-automatic 400 L UASS reactor that operated for 117 days with maize silage under thermophilic conditions at 55 degrees C. The process liquor was continuously recirculated through separate methanogenic reactors in order to prevent an accumulation of volatile fatty acids. Emphasis was placed on determining the gas and metabolite production. The volatile solids (VS) loading rate was fixed at 5 g per litre per day. The methane production rate of the UASS reactor stabilized between 1.5 and 2.0 L per litre per day. The average volatile solids (VS) methane yield of the maize silage was 380 L per kg. The liquor exchange was found to play an important role in the performance and stability of the digestion process. Although low exchange rates can cause process failure by acidification, high exchange rates have the risk of clogging inside the SSB. It was concluded that the UASS reactor is a viable solution for the digestion of various organic matter.

  14. 78 FR 5840 - Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115

    Science.gov (United States)

    2013-01-28

    ... University of Illinois Advanced TRIGA Reactor, License No. R-115 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-115, for the University of Illinois... Operating License No. R-115 is terminated. The above referenced documents may be examined, and/or copied for...

  15. Requalification of SPERT [Special Power Excursion Reactor Test] pins for use in university reactors

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Domagala, R.F.; Dates, L.R.

    1986-12-01

    A series of nondestructive and destructive examinations have been performed on a representative sample of stainless steel-clad UO 2 fuel pins procured in the early-to-mid 1960s for the SPERT program. These examinations were undertaken in order to requalify the SPERT pins for use in converting university research reactors from the use of highly enriched uranium to the use of low-enriched uranium. The requalification program included visual and dimensional inspections of fuel pins and fuel pellets, radiographic inspections of welds, fill gas analyses, and chemical and spectrographic analyses of fuel and cladding materials. In general all attributes tested were within or very close to specified values, although some weld defects not covered by the original specifications were found. 1 ref., 4 figs., 11 tabs

  16. Mythology, Weltanschauung, symbolic universe and states of consciousness

    Directory of Open Access Journals (Sweden)

    Gert Malan

    2016-07-01

    Full Text Available This article investigates whether different religious (mythological worldviews can be described as alternative and altered states of consciousness (ASCs. Differences between conscious and unconscious motivations for behaviour are discussed before looking at ASCs, Weltanschauung and symbolic universes. Mythology can be described both as Weltanschauung and symbolic universe, functioning on all levels of consciousness. Different Weltanschauungen constitute alternative states of consciousness. Compared to secular worldviews, religious worldviews may be described as ASCs. Thanks to our globalised modern societies, the issue is even more complex, as alternate modernities lead to a symbolic multiverse, with individuals living in a social multiverse. Keyowrds: mythology; Weltanschauung; worldview; symbolic universe; states of consciousness; altered states of consciousness; alternative states of consciousness; symbolic multiverse; social multiverse

  17. Effects of Non-Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH

    Science.gov (United States)

    2018-01-16

    Adamovich, Jeffrey A. Sutton1 Department of Mechanical and Aerospace Engineering , Ohio State University Abstract In this paper, we... chemistry . Qualitative imaging of CH* chemiluminescence indicates that during plasma discharge, the luminous flame zone is shifted upstream towards...Sutton Department of Mechanical and Aerospace Engineering , Ohio State University 1. Introduction In recent years, considerable interest has

  18. (CSTR) and 1-plug flow reactor (PFR)

    African Journals Online (AJOL)

    Administrator

    2010-12-27

    Dec 27, 2010 ... 2Department of Chemical Engineering, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria. ... modeled as PFR and described by Michaelis. Menten equation. Designed equations derived from the two equations are used for the reactor sizing of ... Herbivores make a living on cellulose by possessing.

  19. Some considerations for assurance of reactor safety from experiences in research reactors

    International Nuclear Information System (INIS)

    Okamoto, Sunao; Nishihara, Hideaki; Shibata, Toshikazu

    1981-01-01

    For the purpose of assuring reactor safety and strengthening research in the related fields, a multi-disciplinary group was formed among university researchers, including social scientists, with a special allocation of the Grant-in-Aid from the Ministry of Education, Science and Culture. An excerpt from the first year's report (1979 -- 1980) is edited here, which contains an interpretation of Murphy's reliability engineering law, a scope of reactor diagnostic studies to be pursued at universities, and safety measures already implemented or suggested to be implemented in university research reactors. (author)

  20. Small power reactor projects in the United States of America and Canada. Information gathered as a result of invitations from Member States

    International Nuclear Information System (INIS)

    1962-01-01

    As part of its activities in connection with the development of nuclear power, and in response to the resolutions adopted by the General Conference, the Agency has been undertaking a continuing study of the technology and economics of small and medium sized power reactors, particularly with reference to the needs of the less-developed countries. This report summarizes the information gathered on the small power reactor projects in the United States of America and Canada, as a result of the opportunity afforded by these Member States to the Agency. It may be recalled that, at the third regular session of the General Conference, the United States Government offered to provide the Agency with relevant technical and economic data on several small power reactor projects of its Atomic Energy Commission. The Agency accepted the offer and since June 1960 it has sent one or two staff members at approximately six-monthly intervals to follow the development of nine power reactor projects in the United States which represent six different reactor systems. Last year, the Agency issued a report summarizing the information obtained through their visits and study of available published literature. The present document, which should be read in conjunction with that document, brings the information up to date and provides additional information on certain phases of the projects already discussed in the last report. Three more power reactor projects are also dealt with, namely the experimental gas-cooled reactor (EGCR), the high temperature gas-cooled reactor (HTGR) and the Hallam nuclear power facility (HNPF). Early in 1962, the Canadian Government expressed its willingness to make available to the Agency relevant information on the NPD and CANDU projects. The coverage of the NPD reactor is based upon the published information supplied by AECL of Canada and the visit by one of the staff members to the NPD site. The Agency wishes to acknowledge with thanks the co-operation extended

  1. Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Subagjo

    2014-07-01

    Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.

  2. COOLOD, Steady-State Thermal Hydraulics of Research Reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-01-01

    1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow

  3. Intergrated study of the Devonian-age black shales in eastern Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

    1982-09-01

    This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

  4. Modelling dynamic processes in a nuclear reactor by state change modal method

    Science.gov (United States)

    Avvakumov, A. V.; Strizhov, V. F.; Vabishchevich, P. N.; Vasilev, A. O.

    2017-12-01

    Modelling of dynamic processes in nuclear reactors is carried out, mainly, using the multigroup neutron diffusion approximation. The basic model includes a multidimensional set of coupled parabolic equations and ordinary differential equations. Dynamic processes are modelled by a successive change of the reactor states. It is considered that the transition from one state to another occurs promptly. In the modal method the approximate solution is represented as eigenfunction expansion. The numerical-analytical method is based on the use of dominant time-eigenvalues of a group diffusion model taking into account delayed neutrons.

  5. Roundwood markets and utilization in West Virginia and Ohio

    Science.gov (United States)

    Shawn T. Grushecky; Jan Wiedenbeck; Ben. Spong

    2011-01-01

    West Virginia and Ohio have similar forest resources and extensive forest-based economies. Roundwood is harvested throughout this central Appalachian region and supports a diverse primary and secondary forest products sector. The objective of this research was to investigate the utilization of the forest resource harvested in West Virginia and Ohio. Utilization and...

  6. The State of Sustainability Reporting in Universities

    Science.gov (United States)

    Lozano, Rodrigo

    2011-01-01

    Purpose: The purpose of this paper is to review and assess the state of sustainability reporting in universities. Design/methodology/approach: Analysis of the performance level of 12 universities sustainability reports using the Graphical Assessment of Sustainability in Universities tool. Findings: The results show that sustainability reporting in…

  7. Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results

    Energy Technology Data Exchange (ETDEWEB)

    Battelle

    1998-10-01

    In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

  8. Reuleaux models at St. Petersburg State University

    Science.gov (United States)

    Kuteeva, G. A.; Sinilshchikova, G. A.; Trifonenko, B. V.

    2018-05-01

    Franz Reuleaux (1829 - 1905) is a famous mechanical engineer, a Professor of the Berlin Royal Technical Academy. He became widely known as an engineer-scientist, a Professor and industrial consultant, education reformer and leader of the technical elite of Germany. He directed the design and manufacture of over 300 models of simple mechanisms. They were sold to many famous universities for pedagogical and scientific purposes. Today, the most complete set is at Cornell University, College of Engineering. In this article we discuss the history, the modern state and our using the Reuleaux models that survived at St. Petersburg State University for educational purposes. We present description of certain models and our electronic resource with these models. We provide the information of similar electronic resources from other universities.

  9. Investigations of the reactivity temperature coefficient of the Dresden Technical University training and research reactor

    International Nuclear Information System (INIS)

    Adam, E.; Knorr, J.

    1982-01-01

    Approximate formulas are derived for determining the temperature coefficient of reactivity of the training and research reactor (AKR) of the Dresden Technical University. Values calculated on the basis of these approximations show good agreement with experimentally obtained results, thus confirming the applicability of the formulas to simple systems

  10. Faculty Handbook -- 1974-1976. Montana State University, Bozeman.

    Science.gov (United States)

    Montana State Univ., Bozeman.

    The Montana State University's 1974 faculty handbook outlines the history and scope of the university within the Montana state higher education system. The document details the administrative organization; the faculty organization and operation; personnel policies including appointments, tenure, rank and titles, faculty review, promotions,…

  11. URI Program Final Report FY 2001 Grant for the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    2004-01-01

    The purpose of the URI program is to upgrade and improve university nuclear research and training reactors and to contribute to strengthening the academic community's nuclear engineering infrastructure. It should be noted that the proposed UFTR facility instrumentation and equipment can generally be subdivided into three categories: (1) to improve reactor operations, (2) to improve existing facility/NAA Laboratory operations, and (3) to expand facility capability. All of these items were selected recognizing the objectives of the University Reactor Instrumentation Program to respond to the widespread needs in the academic reactor community for modernization and improvement of research and training reactor facilities, especially at large and diverse institutions such as the University of Florida. These needs have been particularly pressing at the UFTR which is the only such research and training reactor in the State of Florida which is undergoing rapid growth in a variety of technical areas. As indicated in Table 2, the first item is a security system control panel with associated wiring and detectors. The existing system is over 30 years old and has been the subject of repeated maintenance over the past 5 years. Some of its detection devices are no longer replaceable from stock. Modifications made many years ago make troubleshooting some parts of the system such as the backup battery charging subsystem essentially impossible, further increasing maintenance frequency to replace batteries. Currently, various parts of the system cable trays remain open for maintenance access further degrading facility appearance. In light of relicensing plans, this item is also a key consideration for housekeeping appearance considerations. The cost of a replacement ADEMCO Vista 20 security system including turnkey installation by a certified vendor was to be $2,206. Replacement of this system was expected to save up to 5 days of maintenance per year, decrease security alarm response

  12. 40 CFR Appendix A to Subpart IIIi... - States With Approved State Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in...

    Science.gov (United States)

    2010-07-01

    ... allocation of CAIR NOX Ozone Season allowances to such units under § 97.388(b): Indiana Michigan North Carolina Ohio South Carolina Tennessee 2. The following States have State Implementation Plan revisions... Ozone Season allowances to such units under § 97.388(c): Indiana Michigan North Carolina Ohio South...

  13. STATE INVESTMENT IN SCIENCE AND SCIENTIFIC PRODUCTIVITY OF UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Domagoj Karacic

    2016-06-01

    Full Text Available State investment in service activities of the public sector, as well as the financial returns analyzed from the aspect of service effectiveness and utilization of public goods, can be considered as one of the most significant dilemmas, especially in the field of education. When analyzing state investments, through investment in education and development of the university, we can conclude that state investments in scientific productivity of universities fall into one of the main future frameworks of measurability of universities efficiency. This criterion cannot be taken as the most important since universities are fundamentally divided into teaching and research activities. However, the concept of determination of the productivity of universities, from the aspect of the scientific activities of the teaching staff, has an increasingly important role due to the specified global criteria and conditions for career advancement of the teaching staff and positioning of the university in the education market. This paper intends to give the overview of the current situation of universities in Croatia, as well as the trends that would point out state role in financing of universities and indicate coherent criteria regarding the financing of scientific productivity of teaching stuff.

  14. Energy Drink Use Among Ohio Appalachian Smokers.

    Science.gov (United States)

    Davison, Genevieve; Shoben, Abigail; Pasch, Keryn E; Klein, Elizabeth G

    2016-10-01

    Caffeine-containing energy drinks have emerged as a public health concern due to their association with caffeine toxicity and alcohol use. Despite the fact that previous research has linked caffeine use in the form of coffee drinking to smoking, there is little research examining the association between energy drinks and smoking. The present study examines demographic and behavioral factors associated with energy drink use among a sample of rural Ohio Appalachian smokers. It was hypothesized that male gender, young age (21-30 years.) and alcohol use would be associated with energy drink use. A sample of adult smokers (n = 298) from Ohio Appalachian counties were interviewed regarding demographic and behavioral factors. Logistic regression analysis was used to assess the association between these factors and energy drink use. Seventy percent of Ohio Appalachian smokers studied had ever used an energy drink and 40 % had used an energy drink in the past month. Young age, male gender, and single marital status were associated with higher odds of ever having used an energy drink. Young age, and binge drinking were associated with higher odds of past 30-day use while abstinence from drinking was associated with lower odds of past 30-day use. Ohio Appalachian adult smokers had higher rates of energy drink use compared to previous estimates of ever or past month use found in other studies. The combined use of caffeine, nicotine, and alcohol warrants attention due to potential for health risk.

  15. Innovations and Enhancements for a Consortium of Big-10 University Research and Training Reactors. Final Report

    International Nuclear Information System (INIS)

    Brenizer, Jack

    2011-01-01

    The Consortium of Big-10 University Research and Training Reactors was by design a strategic partnership of seven leading institutions. We received the support of both our industry and DOE laboratory partners. Investments in reactor, laboratory and program infrastructure, allowed us to lead the national effort to expand and improve the education of engineers in nuclear science and engineering, to provide outreach and education to pre-college educators and students and to become a key resource of ideas and trained personnel for our U.S. industrial and DOE laboratory collaborators.

  16. Arsenic in drinking water and adverse birth outcomes in Ohio.

    Science.gov (United States)

    Almberg, Kirsten S; Turyk, Mary E; Jones, Rachael M; Rankin, Kristin; Freels, Sally; Graber, Judith M; Stayner, Leslie T

    2017-08-01

    Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Safety evaluation report related to the renewal of the operating license for the research reactor at the University of Florida. Docket No. 50-83

    International Nuclear Information System (INIS)

    1982-05-01

    This Safety Evaluation Report for the application filed by the University of Florida (UF) for a renewal of Operating License R-56 to continue to operate its Argonaut-type research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Florida and is located on the UF campus in Gainesville, Alachua County, Florida. The staff concludes that the reactor facility can continue to be operated by UF without endangering the health and safety of the public

  18. Communication Apprehension in the Classroom: A Study of Nontraditional Graduate Students at Ohio University

    Science.gov (United States)

    Love, Jill Annette

    2013-01-01

    A common practice in colleges and universities throughout the United States is to make verbal communication and class participation a requirement for academic success. However, for some students this type of verbal communication in the classroom can produce physical and emotional anxiety that can profoundly affect their ability to succeed in the…

  19. Safety Evaluation Report related to the renewal of the operating license for the TRIGA training and research reactor at the University of Arizona (Docket No. 50-113)

    International Nuclear Information System (INIS)

    1990-05-01

    This Safety Evaluation Report for the application filed by the University of Arizona for the renewal of Operating License R-52 to continue operating its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the University of Arizona campus in Tucson, Arizona. The staff concludes that the reactor can continue to be operated by the University of Arizona without endangering the health and safety of the public. 20 refs., 8 figs., 5 tabs

  20. Constitutional Law--State Action--Hiring and Promotion Practices of Private University Receiving Public Funds Held State Action--Braden v. University of Pittsburgh.

    Science.gov (United States)

    New York University Law Review, 1977

    1977-01-01

    In Braden vs University of Pittsburgh, a female professor filed suit against the University alleging sex discrimination in employment practices. The professor alleged that the school, which received state funds, was, in effect, a state actor and subject to constitutional restraints. This case and two relevant state action cases are discussed. (JMD)

  1. A GIS-based assessment of coal-based hydrogen infrastructure deployment in the state of Ohio

    International Nuclear Information System (INIS)

    Johnson, Nils; Yang, Christopher; Ogden, Joan

    2008-01-01

    Hydrogen infrastructure costs will vary by region as geographic characteristics and feedstocks differ. This paper proposes a method for optimizing regional hydrogen infrastructure deployment by combining detailed spatial data in a geographic information system (GIS) with a technoeconomic model of hydrogen infrastructure components. The method is applied to a case study in Ohio in which coal-based hydrogen infrastructure with carbon capture and storage (CCS) is modeled for two distribution modes at several steady-state hydrogen vehicle market penetration levels. The paper identifies the optimal infrastructure design at each market penetration as well as the costs, CO 2 emissions, and energy use associated with each infrastructure pathway. The results indicate that aggregating infrastructure at the regional-scale yields lower levelized costs of hydrogen than at the city-level at a given market penetration level, and centralized production with pipeline distribution is the favored pathway even at low market penetration. Based upon the hydrogen infrastructure designs evaluated in this paper, coal-based hydrogen production with CCS can significantly reduce transportation-related CO 2 emissions at a relatively low infrastructure cost and levelized fuel cost. (author)

  2. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  3. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Vinod Shanker Dubey1 Ritu Bhalla2 Rajesh Luthra3. Neurobiotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA; Plant Microbes Interaction Lab, Department of Biological Sciences, National University of Singapore, Singapore 117604; CSIR Complex, Dr K S Krishnan Marg, Pusa ...

  4. Participation in the United States Department of Energy Reactor Sharing Program. Annual report, August 31, 1991--August 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.

  5. Moving into the 21st century - The United States' Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Reilly, Jill E.

    1999-01-01

    Since 1996, when the United States Department of Energy and the Department of State jointly adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, twelve shipments totaling 2,985 MTR and TRIGA spent nuclear fuel assemblies from research reactors around the world have been accepted into the United States. These shipments have contained approximately 1.7 metric tons of HEU and 0.6 metric tons of LEU. Foreign research reactor operators played a significant role in this success. A new milestone in the acceptance program occurred during the summer of 1999 with the arrival of TRIGA spent nuclear fuel from Europe through the Charleston Naval Weapons Station via the Savannah River Site to the Idaho National Engineering and Environmental Laboratory. This shipment consisted of five casks of TRIGA spent nuclear fuel from research reactors in Germany, Italy, Slovenia, and Romania. These casks were transported by truck approximately 2,400 miles across the United States (one cask packaged in an ISO container per truck). Drawing upon lessons learned in previous shipments, significant technical, legal, and political challenges were addressed to complete this cross-country shipment. Other program activities since the last RERTR meeting have included: formulation of a methodology to determine the quantity of spent nuclear fuel in a damaged condition that may be transported in a particular cask (containment analysis for transportation casks); publication of clarification of the fee policy; and continued planning for the outyears of the acceptance policy including review of reactors and eligible material quantities. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues to demonstrate success due to the continuing commitment between the United States and the research reactor community to make this program work. We strongly encourage all eligible research reactors to decide as soon as possible to

  6. International topical meeting on research reactor fuel management (RRFM) - United States foreign research reactor (FRR) spent nuclear fuel (SNF) acceptance program: 2010 update

    International Nuclear Information System (INIS)

    Messick, C.E.; Taylor, J.L.; Niehus, M.T.; Landers, C.

    2010-01-01

    The Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, adopted by the United States Department of Energy (DOE), in consultation with the Department of State (DOS) in May 1996, scheduled to expire May 12, 2016, to return research reactor fuel until May 12, 2019 to the U.S. is in its fourteenth year. This paper provides a brief update on the program, part of the National Nuclear Security Administration (NNSA), and discusses program initiatives and future activities. The goal of the program continues to be recovery of U.S.-origin nuclear materials, which could otherwise be used in weapons, while assisting other countries to enjoy the benefits of nuclear technology. The NNSA is seeking feedback from research reactor operators to help us understand ways to include eligible research reactors who have not yet participated in the program. (author)

  7. Training courses at VR-1 reactor

    International Nuclear Information System (INIS)

    Sklenka, L.; Kropik, M.

    2006-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilization - i.e. extensive educational program. The educational program is intended for the training of university students and selected nuclear power plant personnel. The training courses provide them experience in reactor and neutron physics, dosimetry, nuclear safety and operation of nuclear facilities. At present, the training course participants can go through more than 20 standard experimental exercises; particular exercises for special training can be prepared. Approximately 200 university students become familiar with the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. The VR-1 reactor takes also part in Eugene Wigner Course on Reactor Physics Experiments in the framework of European Nuclear Educational Network (ENEN) association. Recently, training courses for Bulgarian research reactor specialists supported by IAEA were carried out. An attractive program including demonstration of reactor operation is prepared also for high school students. Every year, more than 1500 high school students come to visit the reactor, as do many foreigner visitors. (author)

  8. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  9. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  10. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  11. History of the research reactor institute of Kyoto University in view of nuclear science information data base (KURRIP)

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Takayuki; Mizuma, Mitsuo (Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.); Kimura, Itsuro

    1994-02-01

    Since the Research Reactor Institute of Kyoto University was established as an inter-university research institute in 1963, a large number of cooperative research projects have been achieved by visiting scientists and its own staff in various research fields, making use of facilities centered around the Kyoto University Reactor, as well as the other experimental facilities. Ten years ago, the construction of the 'KURRIP' data base was initiated to grasp the whole aspect of the research activities at the Institute, in commemoration of its 20th anniversary. At the present time, KURRIP contains the information on 5,910 papers published for 29 years from 1963 to 1991. As this academic year is the 30th anniversary of the Institute, the history of its research activities was reviewed again using this data base. All of the publications were classified by authors's affiliations, kinds of papers, publishers, fields of studies, and research facilities used, and their historical variations are checked and discussed. (author).

  12. Decommissioning of research reactors: Evolution, state of the art, open issues

    International Nuclear Information System (INIS)

    2006-01-01

    Many research reactors throughout the world date from the original nuclear research programmes in Member States. Consequently, dozens of old research reactors are candidates for near term decommissioning in parallel with progressive ageing and technical and economic obsolescence. Many of them are located in countries/institutions that, although familiar with the operation and management of their reactors, do not necessarily have adequate expertise and technologies for planning and implementing state of the art decommissioning projects. It is felt that IAEA reports may contribute to the awareness of technologies and know-how already tested successfully elsewhere. This report addresses a subject area that was dealt with earlier by two IAEA publications, namely, Planning and Management for the Decommissioning of Research Reactors and Other Small Nuclear Facilities (Technical Reports Series No. 351) and Decommissioning Techniques for Research Reactors (Technical Reports Series No. 373). This publication updates those reports in view of the technological progress, experience gained and the progressive ageing of research reactors, many of which have already reached the permanent shutdown stage and should be decommissioned soon. It is intended to contribute to the systematic coverage of the entire range of activities that have been addressed by the IAEA's decommissioning work in past years. The perspective of the report is historical, in that relevant issues are identified as solved, pending, or emerging. Much of the information provided in this report will also be of use for the decommissioning of nuclear power plants and other nuclear facilities. A Technical Committee Meeting on this subject was held in Vienna from 17 to 21 May 2004, at which the participants reviewed a draft report written by consultants from Canada, Germany, Israel, the Russian Federation and the United Kingdom

  13. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Manipulator and materials handling systems for reactor decommissioning -Cooperation between the university and the plant operator

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, F. W.; Haferkamp, H.

    1995-01-01

    Nuclear reactor dismantling requires suitable handling systems for tools and disassembled components, as well as qualified and reliable disassembly and cutting techniques. From the angle of radiation protection, remote-controlled handling techniques and underwater techniques are the methods of choice, the latter particularly in continuation of plant operating conditions, and this all the more the more disassembly work proceeds towards the reactor core. With the experience accumulated for 20 years now by the Institut fuer Werkstoffkunde (materials science) of Hannover University by basic research and application-oriented development work in the field of thermal cutting technology, especially plasma arc cutting techniques, as well as development work in the field of remote-controlled materials handling systems, the institute is the cut-out partner for disassembly tasks in reactor decommissioning. (Orig./DG) [de

  15. Communicating the Value of Cartoon Art across University Classrooms: Experiences from the Ohio State University Billy Ireland Cartoon Library and Museum

    Science.gov (United States)

    McGurk, Caitlin

    2016-01-01

    This article is an exploration of the varying applications of comics and cartoon art as primary resources and pedagogical tools within the university setting. Following some background information on cartoon art forms including early American newspaper comics, nineteenth century humor serials, political cartoons and manga, the article explores how…

  16. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  17. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jaluvka, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States); Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States); McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States); Peters, N. J. [Univ. of Missouri, Columbia, MO (United States)

    2017-02-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members in the Research and Test Reactor Department at the Argonne National Laboratory (ANL) and the MURR Facility. MURR LEU conversion is part of an overall effort to develop and qualify high-density fuel within the U.S. High Performance Research Reactor Conversion (USHPRR) program conducted by the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization (M3).

  18. Methodology for development of health physics procedures at research reactors in agreement states

    International Nuclear Information System (INIS)

    Woodard, R.C.; Bauer, T.L.; Wehring, B.W.

    1991-01-01

    The University of Texas at Austin is awaiting final license approval to operate a new 1 MW TRIGA reactor for teaching and research. All reactor and laboratory operations, experiments, and monitoring are carried out under health physics procedures that address to ensure consideration of all applicable documents as references in order to comply with the regulations and accepted good practices. This paper examines the development of one procedure Radioactive Material Control by use of the method. The process is examined as a tool to apply to any health physics procedure development. Further discussion focuses on the regulatory anomalies observed during development of the procedure and presents the arguments for the authors resolution of these issues. The design of the reactor facility is also detailed to allow for understanding of the problems encountered during procedural development

  19. DOE/NE University Program in robotics for advanced reactors research

    International Nuclear Information System (INIS)

    Trivedi, M.M.

    1990-01-01

    The document presents the bimonthly progress reports published during 1990 regarding the US Department of Energy/NE-sponsored research at the University of Tennessee Knoxville under the DOE Robitics for Advanced Reactors Research Grant. Significant accomplishments are noted in the following areas: development of edge-segment based stereo matching algorithm; vision system integration in the CESAR laboratory; evaluation of algorithms for surface characterization from range data; comparative study of data fusion techniques; development of architectural framework, software, and graphics environment for sensor-based robots; algorithms for acquiring tactile images from planer surfaces; investigations in geometric model-based robotic manipulation; investigations of non-deterministic approaches to sensor fusion; and evaluation of sensor calibration techniques. (MB)

  20. Safety-evaluation report related to renewal of the operating license for the Texas A and M University Research Reactor. Docket No. 50-128, License R-83

    International Nuclear Information System (INIS)

    1983-03-01

    This Safety Evaluation Report for the application filed by the Texas A and M University (Texas A and M) for a renewal of operating license number R-83 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Texas Engineering and Experiment Station of the Texas A and M University and is located on the campus in College Station, Brazos County, Texas. The staff concludes that the TRIGA reactor facility can continue to be operated by Texas A and M University without endangering the health and safety of the public

  1. Progress of the United States foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, D.G.; Clapper, M.; Thrower, A.W.

    2002-01-01

    The United States Department of Energy (DOE), in consultation with the Department of State (DOS), adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program has completed 23 shipments. Almost 5000 spent fuel assemblies from eligible research reactors throughout the world have been accepted into the United States under this program. Over the past year, another cross-country shipment of fuel was accomplished, as well as two additional shipments in the fourth quarter of calendar year 2001. These shipments attracted considerable safeguards oversight since they occurred post September 11. Recent guidance from the Nuclear Regulatory Commission (NRC) pertaining to security and safeguards issues deals directly with the transport of nuclear material. Since the Acceptance Program has consistently applied above regulatory safety enhancements in transport of spent nuclear fuel, this guidance did not adversely effect the Program. As the Program draws closer to its termination date, an increased number of requests for program extension are received. Currently, there are no plans to extend the policy beyond its current expiration date; therefore, eligible reactor operators interested in participating in this program are strongly encouraged to evaluate their inventory and plan for future shipments as soon as possible. (author)

  2. Current status and future program for nuclear power education in the State University of Skopje

    International Nuclear Information System (INIS)

    Causevski, A.

    2004-01-01

    Nuclear Education in the State University 'Ss. Cyril and Methodius' in Skopje, Macedonia is takes place in few Departments and Faculties. The Nuclear Power and Nuclear Reactors for electricity generation are the fields studied in the Department of Electric Power Systems and Power Plants in the Faculty of Electrical Engineering, Skopje. The paper gives the overview of the current status of nuclear education on the Faculty of Electrical Engineering, as well as the future perspectives and programs for improving. In the current module of Power Engineering, the Nuclear Power is studied in two subjects: Basics of Nuclear Energy, and the second one is Nuclear Power Reactors and Nuclear Power Plants. The new concept of studying will include the new module of 'Power Engineering and Energy Management' with 4 subjects, and some of them are modified, transformed or innovated from the old ones, and the others are totally new courses. In the paper also will include some steps that should be done in order to achieve the targets for new improved nuclear education in the field of nuclear power. (author)

  3. Annual monitoring and surveillance report for Piqua Nuclear Power Facility, Piqua, Ohio

    International Nuclear Information System (INIS)

    Mosho, G.D.

    1991-12-01

    This report discusses the decommissioned Piqua Nuclear Power Facility which is located in Piqua, Ohio near the Greater Miami River. The Facility was built by the US Atomic Energy Commission (now U. S. Department of Energy) and was operated from 1963 to 1966. The reactor was retired prior to 1970 and the facility was leased to the city of Piqua for use as offices and equipment storage. In December 1991, a radiological survey was done of the facility to document its radiological condition. The data show that all radiological parameters measured were essentially the same as that found in the natural environment. The only exception was that low levels of radioactive contamination were detected in one drain on the 56.5 ft elevation, but the radiation exposure rate in that area was also typical of natural background

  4. Spent fuel working group report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities

    International Nuclear Information System (INIS)

    1993-11-01

    Each Site Team, consisting of M ampersand O contractor and Operations Office personnel, performed data collection and identified ES ampersand H concerns relative to RINM storage by preparing responses to the detailed question set for each storage facility at the site. These responses formed the basis for the Site Team reports. These reports are contained in this volume and are from the following facilities: Hanford Site, Idaho National Engineering Laboratory Site, Savannah River Site, Oak Ridge Site, West Valley Demonstration Project Site, Los Alamos National Laboratory, Brookhaven National Laboratory, Sandia National Laboratories, General Atomics, San Diego, Babcock ampersand Wilcox, Lynchburg Technical Center, Argonne National Laboratory - East, Naval Reactors Facilities, Rocky Flats Critical Mass Laboratory, EG ampersand G Mound Applied Technologies, Ohio, Lawrence Berkeley Laboratory, and Battelle Columbus Laboratory. This volume also contains information received from the sites that were not visited. These sites include the Naval Reactor Facility at the INEL, EG ampersand G Mound Applied Technologies, The Catholic University of America, Rocky Flats Site, Lawrence Livermore National Laboratory, Stanford Linear Accelerator Laboratory, Energy Technology Engineering Center, and Lawrence Berkeley Laboratory. Information received through the Chicago Operations Office for University Reactors, Massachusetts Institute of Technology, and Battelle Columbus Laboratory is also included. Materials contained in this volume consist of information, data and site documents. They are unedited

  5. Safety Evaluation Report related to the renewal of the operating license for the research reactor at the University of Kansas (Docket No. 50-148)

    International Nuclear Information System (INIS)

    1984-05-01

    This Safety Evaluation Report for the application filed by the University of Kansas (KU) for a renewal of Operating License R-78 to continue to operate the KU 250-kW open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Kansas and is located on the KU campus in Lawrence, Douglas County, Kansas. The staff concludes that the reactor facility can continue to be operated by KU without endangering the health and safety of the public. 17 references, 11 figures, 4 tables

  6. Reactor Sharing Program

    International Nuclear Information System (INIS)

    Tehan, Terry

    2002-01-01

    Support utilization of the RINSC reactor for student and faculty instructions and research. The Department of Energy award has provided financial assistance during the period 9/29/1995 to 5/31/2001 to support the utilization of the Rhode Island Nuclear Science Center (RINSC) reactor for student and faculty instruction and research by non-reactor owning educational institutions within approximately 300 miles of Narragansett, Rhode Island. Through the reactor sharing program, the RINSC (including the reactor and analytical laboratories) provided reactor services and laboratory space that were not available to the other universities and colleges in the region. As an example of services provided to the users: Counting equipment, laboratory space, pneumatic and in-pool irradiations, demonstrations of sample counting and analysis, reactor tours and lectures. Funding from the Reactor Sharing Program has provided the RINSC to expand student tours and demonstration programs that emphasized our long history of providing these types of services to the universities and colleges in the area. The funding have also helped defray the cost of the technical assistance that the staff has routinely provided to schools, individuals and researchers who have called on the RINSC for resolution of problems relating to nuclear science. The reactor has been featured in a Public Broadcasting System documentary on Pollution in the Arctic and how a University of Rhode Island Professor used Neutron Activation Analysis conducted at the RINSC to discover the sources of the ''Arctic Haze''. The RINSC was also featured by local television on Earth Day for its role in environmental monitoring

  7. Status of fast breeder reactor development in the United States of America

    International Nuclear Information System (INIS)

    Horton, K.E.

    1983-01-01

    The goal of the United States Liquid Metal Fast Breeder Reactor (LMFBR) program is to develop the technology to the point that the private sector can deploy a safe, economic breeder reactor. The LMFBR will provide virtually inexhaustible supplies of electrical energy for the long term and will provide additional confidence to LWR nuclear deployment in the near term. The LMFBR program consists of a streamlined research and development effort focussing on those actions needed to enable private sector financing of industrial deployment including plant demonstration and technology efforts in reactor fuels, components, materials, physics, and safety

  8. Effects of loading reactivity at dynamic state on wave of neutrons in burst reactor

    International Nuclear Information System (INIS)

    Gao Hui; Liu Xiaobo; Fan Xiaoqiang

    2013-01-01

    Based on the point reactor model, the program for simulating the burst of reactors, including delay neutron, thermal feedback and reactivity of rod, was developed. The program proves to be suitable to burst reactor by experimental data. The program can describe the process of neutron-intensity change in burst reactors. With the program, the parameters of burst (wave of burst, power of peak and reactivity of reactor) under the condition of dynamic reactivity can be calculated. The calculated result demonstrates that the later the burst is initiated, the greater its power of peak and yield are and that the maximum yield coordinates with the yield under static state. (authors)

  9. Portsmouth annual environmental report for 2003, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2004-11-30

    The Portsmouth & Gaseous Diffusion Plant (PORTS) is located on a 5.8-square-mile site in a rural area of Pike County, Ohio. U.S. Department of Energy (DOE) activities at PORTS include environmental restoration, waste 'management, and long-term'stewardship of nonleased facilities: Production facilities for the separation of uranium isotopes are leased to the United States Enrichment Corporation (USEC), but most activities associated with the uranium enrichment process ceased in 2001. USEC activities are not covered by this document, with the exception of some environmental compliance information provided in Chap. 2 and radiological and non-radiological environmental monitoring program information discussed in Chaps. 4 and 5.

  10. Jobs: Ohio's Future. Creating a High Performance Workforce for Ohio. A Comprehensive Workforce Development Strategy Developed by the Governor's Human Resources Advisory Council. Revised.

    Science.gov (United States)

    Ohio State Bureau of Employment Services, Columbus.

    For a competitive advantage, Ohio must be sensitive to three national trends that will reshape its work force: the growing gap between the skill requirements of jobs and workers' capabilities, the slow growth of the labor force, and demands of a global economy. The future competitiveness of Ohio's economy will depend on its capacity to support the…

  11. Present status and future prospect of research reactors

    International Nuclear Information System (INIS)

    Takemi, Hirokatsu

    1996-01-01

    The present status of research reactors more than MW class reactor in JAERI and the Kyoto University and the small reactors in the Musashi Institute of Technology, the Rikkyo University, the Tokyo University, the Kinki University and other countries are explained in the paper. The present status of researches are reported by the topics in each field. The future researches of the beam reactor and the irradiation reactor are reviewed. On various kinds of use of research reactor and demands of neutron field of a high order, new type research reactors under investigation are explained. Recently, the reactors are used in many fields such as the basic science: the basic physics, the material science, the nuclear physics, and the nuclear chemistry and the applied science; the earth and environmental science, the biology and the medical science. (S.Y.)

  12. Home-made refurbishment of the instrumentation and control system of the TRIGA reactor of the University of Pavia

    International Nuclear Information System (INIS)

    Borio di Tigliole, A.; Cagnazzo, M.; Magrotti, G.; Manera, S.; Salvini, A.; Musitelli, G.; Nardo, R.

    2008-01-01

    The Instrumentation and Control (I and C) System of the TRIGA reactor of the University of Pavia was dated and, in order to grant a safe and continuous reactor operation for the future, it became necessary to substitute or to upgrade the system. Since the substitution of the I and C system with a new-made one was very difficult to be performed due to long authorization procedures, an home-made refurbishment was planned. Using commercial components of high quality, almost a complete substitution, channel-by-channel, of the I and C system was realized without changing the operating and safety logics. The system includes: - the Reactor Linear Power Channel and Chart Recorder; - the Reactor Percent Power Safety Channel; - the High Voltage and Low Voltage Power Supply; - the Automatic Reactor Power Control; - the Fuel Elements and Cooling-Water Temperatures Measuring Channels; - the Water Conductivity Measuring Channel. The refurbished I and C system shows a very good operational behavior and reliability and will assure a continuous operation of the reactor for the future

  13. Preparation of mandatory documentation before the start up of the RA-0 'zero power' nuclear reactor at Cordoba National University

    International Nuclear Information System (INIS)

    Martin, H.R.; Keil, W.M.; Pezzi, N.

    1991-01-01

    Before the start up of the RA-0 'zero power' nuclear reactor installed at Cordoba National University, it was necessary to send to the Regulatory Authority the mandatory documentation which is required in the licensing process. With the previous papers existing for the operation in the first years of the '70, a work program for the future operational training personnel was elaborated. Based on the Authority's applicable rules and the recommendations and with particular criteria originated in the working university conditions, the SAFETY report of RA-0 nuclear reactor was prepared. This paper describes the principal contents, items and documents involved in the safety report. (Author) [es

  14. Symmetric-bounce quantum state of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Page, Don N., E-mail: don@phys.ualberta.ca [Theoretical Physics Institute, Department of Physics, University of Alberta, Room 238 CEB, 11322 – 89 Avenue, Edmonton, Alberta T6G 2G7 (Canada)

    2009-09-01

    A proposal is made for the quantum state of the universe that has an initial state that is macroscopically time symmetric about a homogeneous, isotropic bounce of extremal volume and that at that bounce is microscopically in the ground state for inhomogeneous and/or anisotropic perturbation modes. The coarse-grained entropy is minimum at the bounce and then grows during inflation as the modes become excited away from the bounce and interact (assuming the presence of an inflaton, and in the part of the quantum state in which the inflaton is initially large enough to drive inflation). The part of this pure quantum state that dominates for observations is well approximated by quantum processes occurring within a Lorentzian expanding macroscopic universe. Because this part of the quantum state has no negative Euclidean action, one can avoid the early-time Boltzmann brains and Boltzmann solar systems that appear to dominate observations in the Hartle-Hawking no-boundary wavefunction.

  15. Symmetric-bounce quantum state of the universe

    International Nuclear Information System (INIS)

    Page, Don N.

    2009-01-01

    A proposal is made for the quantum state of the universe that has an initial state that is macroscopically time symmetric about a homogeneous, isotropic bounce of extremal volume and that at that bounce is microscopically in the ground state for inhomogeneous and/or anisotropic perturbation modes. The coarse-grained entropy is minimum at the bounce and then grows during inflation as the modes become excited away from the bounce and interact (assuming the presence of an inflaton, and in the part of the quantum state in which the inflaton is initially large enough to drive inflation). The part of this pure quantum state that dominates for observations is well approximated by quantum processes occurring within a Lorentzian expanding macroscopic universe. Because this part of the quantum state has no negative Euclidean action, one can avoid the early-time Boltzmann brains and Boltzmann solar systems that appear to dominate observations in the Hartle-Hawking no-boundary wavefunction

  16. Status of fast breeder reactor development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Horton, K [U.S. Department of Energy, Washington, DC (United States)

    1981-05-01

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  17. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    Horton, K.

    1981-01-01

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  18. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y

    2007-05-15

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs.

  19. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    International Nuclear Information System (INIS)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y.

    2007-05-01

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs

  20. Dynamics Days Arizonia 1993. A Workshop held at Tempe, Arizona on 5-9 January 1993

    Science.gov (United States)

    1993-01-09

    SALBRI @UNAMVMI.BITNET E-mail: pinzon@smile.ucdavis.edu ROBERT OGDEN VIN PIZZICONI SOUTHWEST TEXAS STATE UNIV. ASU DEPT. COMPUTER SCI. SWTSU CHEMICAL, BIO...SHERARD MEXICO CITY, D.F. 04000 OHIO UNIVERSITY MEXICO DEPARTMENT OF PHYSICS E-mail: SALBRI @UNAMVM1.BITNET OHIO UNIVERSITY ATHENS, OH 45701 KEVIN