WorldWideScience

Sample records for ogle-2007-blg-368lb cold neptunes

  1. Neptune

    CERN Document Server

    Roza, Greg

    2017-01-01

    This accessible and engaging book teaches young readers the fundamentals of Neptune, one of the most intriguing planets in our solar system. They will learn about Neptune's physical features, it's super storms that can reach 1,500 miles per hour, its ring system, the Voyager missions, and its status as one of the gas giants. Since the book includes images directly from NASA and with those taken by the Voyager missions themselves, readers can feel like they're really there, traveling to the planet and observing its physical features close up.

  2. Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk

    CERN Document Server

    Street, R A; Novati, S Calchi; Hundertmark, M P G; Zhu, W; Gould, A; Yee, J; Tsapras, Y; Bennett, D P; Project, The RoboNet; Jorgensen, U G; Dominik, M; Andersen, M I; Bachelet, E; Bozza, V; Bramich, D M; Burgdorf, M J; Cassan, A; Ciceri, S; D'Ago, G; Dong, Subo; Evans, D F; Gu, Sheng-hong; Harkonnen, H; Hinse, T C; Horne, Keith; Jaimes, R Figuera; Kains, N; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Menzies, J; Mao, S; Peixinho, N; Popovas, A; Rabus, M; Rahvar, S; Ranc, C; Rasmussen, R Tronsgaard; Scarpetta, G; Schmidt, R; Skottfelt, J; Snodgrass, C; Southworth, J; Steele, I A; Surdej, J; Unda-Sanzana, E; Verma, P; von Essen, C; Wambsganss, J; Wang, Yi-Bo; Wertz, O; Project, The OGLE; Poleski, R; Pawlak, M; Szymanski, M K; Skowron, J; Mroz, P; Kozlowski, S; Wyrzykowski, L; Pietrukowicz, P; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Bryden, G; Carey, S; Gaudi, B S; Henderson, C; Pogge, R W; Shvartzvald, Y; Abe, F; Asakura, Y; Bhattacharya, A; Bond, I A; Donachie, M; Freeman, M; Fukui, A; Hirao, Y; Inayama, K; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Nishioka, T; Ohnishi, K; Oyokawa, H; Rattenbury, N; Saito, To; Sharan, A; Sullivan, D J; Sumi, T; Suzuki, D; P.,; Tristram, J; Wakiyama, Y; Yonehara, A; Choi, J -Y; Park, H; Jung, Y K; Shin, I -G

    2015-01-01

    We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge.

  3. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  4. The First Cold Neptune Analog Exoplanet: MOA-2013-BLG-605Lb

    CERN Document Server

    Sumi, T; Bennett, D P; Gould, A; Poleski, R; Bond, I A; Rattenbury, N; Pogge, R W; Bensby, T; Beaulieu, J P; Marquette, J B; Batista, V; Brillant, S; Abe, F; Bhattacharya, A; Donachie, M; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Saito, To; Sharan, A; Sullivan, D J; Suzuki, D; P.,; Tristram, J; Yonehara, A; Szymanski, M K; Ulaczyk, K; Kozlowski, S; Wyrzykowski, L; Kubiak, M; Pietrukowicz, P; Pietrzynski, G; Soszynski, I

    2015-01-01

    We present the discovery of the first Neptune analog exoplanet, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at $9\\sim 14$ times the expected position of the snow-line, $a_{\\rm snow}$, which is similar to Neptune's separation of $ 11\\,a_{\\rm snow}$ from the Sun. The planet/host-star mass ratio is $q=(3.6\\pm0.7)\\times 10^{-4}$ and the projected separation normalized by the Einstein radius is $s=2.39\\pm0.05$. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy". The three models have (i) a Neptune-mass planet with a mass of $M_{\\rm p}=21_{-7}^{+6} M_{\\rm earth}$ orbiting a low-mass M-dwarf with a mass of $M_{\\rm h}=0.19_{-0.06}^{+0.05} M_\\odot$, (ii) a mini-Neptune with $M_{\\rm p}= 7.9_{-1.2}^{+1.8} M_{\\rm earth}$ orbiting a brown dwarf host with $M_{\\rm h}=0.068_{-0.011}^{+0.019} M_\\odot$ and (iii) a super-Earth with $M_{\\rm p}= ...

  5. The NEPTUNE Network

    DEFF Research Database (Denmark)

    Blanke, M.; Nielsen, Jens Frederik Dalsgaard; Degre, T.

    . For the support to the objectives of NEPTUNE the association is developing the NEPTUNE Information Network. A pilot demonstration on the basis of the world wide web technique on Internet has been established. Two NEPTUNE server, on the premises of ISL in Bremen and NTUA in Athens, can be adressed via the URL......=http://www.isl.uni-bremen.de/NEPTUNE/ and URL=http://www.maritime.deslab.naval.ntua.gr/neptune/framelayout.html The pilot will be enlarged concerning the number of NEPTUNE servers as well as regarding the scope of information provided by the various servers. The implementation and operating of such an European Waterborne Information Network...

  6. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  7. Neptune's ring system.

    Science.gov (United States)

    Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.

    The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.

  8. The contrivance of Neptune

    CERN Document Server

    Krajnovic, Davor

    2016-01-01

    Celebrating 170th anniversary of the discovery of Neptune, I review the story of the discovery that startled the world. The story is an interplay of scientific triumph and human weakness and an example of how science works in a socio-political context.

  9. Neptune: Minor Satellites

    Science.gov (United States)

    Murdin, P.

    2003-04-01

    All but one of Neptune's minor satellites orbit within or just outside its ringsystem; the exception is the distant object Nereid. Some of them are betterdescribed as `mid-sized' rather than `minor', but are included under thisheading as little is known of them. The inner four, with approximatediameters, are Naiad (60 km), Thalassa (80 km), Despina (150 km) and Galatea(160 km). The first three lie...

  10. Galileo's Observations of Neptune

    Science.gov (United States)

    Standish, E. M.

    2001-11-01

    In 1979, Stillman Drake and Charles Kowal found that the astronomer Galileo actually observed the planet Neptune in the years 1612 and 1613. Galileo's observing notebooks still exist and are preserved in the National Central Library in Florence, Italy. In them, one can see the discovery of the four large moons of Jupiter, and one can follow the subsequent work of Galileo as he improved his telescopes, charted the nightly positions of the satellites, and refined his ability to predict their future configurations. One sees his observing innovations and improving accuracies which seem to reach a crescendo just at the time of his observations of Neptune. Further scrutiny of Galileo's notebooks has revealed other intriguing observations. One is a probable fourth observation of Neptune which has a direct bearing upon present-day ephemerides. There are also observations of two other objects which, to this day, despite some effort, remain unidentified - possibly asteroids, comets, novae, or supernovae. More than of just historical interest, Galileo's work still has important implications for present-day astronomy. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  11. Neptune´s Trojans

    Directory of Open Access Journals (Sweden)

    Tabaré Gallardo

    2001-01-01

    Full Text Available A numerical exploration of the dynamical evolution of hypothetical bodies located at 1:1 resonance with Neptune is performed. We roughly estimate a time-scale of some 100 Myrs for the destruction of the librations, so we cannot expect to find primordial Neptune´s trojans. Temporary satellite capture s were also observed.

  12. BLEACHING NEPTUNE BALLS

    Directory of Open Access Journals (Sweden)

    BONET Maria Angeles

    2014-05-01

    Full Text Available Posidonia Oceanic is a seaweed from Mediterranean Sea and it is more concentrated at the Balerian SEA. This implies the Valencian Community also. It forms vaste underwater meadows in the sea and are part of the Mediterranean ecosystem. It is a sea-grass specie with fruits and flowers. Leaves are ribbon-like and they grow in winter and at the end of summer some of them are separated and arrive to some sea line. Fuit is separated and can floate, it is known as “the olive of the sea” mainly in Italy, or as the Neptune Balls. As it can be used in different fields, it is is being studied in order ro have the precitice tests. Some authors have reported the manufacturing of fully bio-based comites with a gluten matrix by hot-press molding. And it has been considered as an effective insulator for building industry or even though to determine the presence of mercure in the Mediterranean sea some years ago. As many applications can be designed from that fibers, it has been considered to be bleached in order to used them in fashionable products. Consequently, its original brown color is not the most suitable one and it should be bleached as many other cellulosic fibers. The aim of this paper is to bleache neptune balls however, the inner fibers were not accessible at all and it implied not to bleach the inner fibers in the neptune ball. Further studiesd will consider bleaching the individualized fibers.

  13. Blackbody Radiation from Isolated Neptunes

    CERN Document Server

    Ginzburg, Sivan; Loeb, Abraham

    2016-01-01

    Recent analyses of the orbits of some Kuiper Belt objects hypothesize the presence of an undiscovered Neptune-size planet at a very large separation from the Sun. The energy budget of Neptunes on such distant orbits is dominated by the internal heat released by their cooling rather than solar irradiation (making them effectively "isolated"). The blackbody radiation that these planets emit as they cool may provide the means for their detection. Here we use an analytical toy model to study the cooling and radiation of isolated Neptunes. This model can translate a detection (or a null detection) to a constraint on the size and composition of the hypothesized "Planet Nine". Specifically, the thick gas atmosphere of Neptune-like planets serves as an insulating blanket which slows down their cooling. Therefore, a measurement of the blackbody temperature, $T_{\\rm eff}\\sim 50\\textrm{K}$, at which a Neptune emits can be used to estimate the mass of its atmosphere, $M_{\\rm atm}$. Explicitly, we find the relation $T_{\\r...

  14. Blackbody Radiation from Isolated Neptunes

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em; Loeb, Abraham

    2016-05-01

    Recent analyses of the orbits of some Kuiper belt objects hypothesize the presence of an undiscovered Neptune-size planet at a very large separation from the Sun. The energy budget of Neptunes on such distant orbits is dominated by the internal heat released by their cooling rather than solar irradiation (making them effectively “isolated”). The blackbody radiation that these planets emit as they cool may provide the means for their detection. Here, we use an analytical toy model to study the cooling and radiation of isolated Neptunes. This model can translate a detection (or a null detection) to a constraint on the size and composition of the hypothesized “Planet Nine.” Specifically, the thick gas atmosphere of Neptune-like planets serves as an insulating blanket that slows down their cooling. Therefore, a measurement of the blackbody temperature, {T}{{eff}}˜ 50 {{K}}, at which a Neptune emits, can be used to estimate the mass of its atmosphere, {M}{{atm}}. Explicitly, we find the relation {T}{{eff}}\\propto {M}{{atm}}1/12. Despite this weak relation, a measurement of the flux at the Wien tail can constrain the atmospheric mass, at least to within a factor of a few, and provide useful limits to possible formation scenarios of these planets. Finally, we constrain the size and composition of Planet Nine by combining our model with the null results of recent all-sky surveys.

  15. Comprehensive Analysis of Neptune's Features

    Science.gov (United States)

    Karkoschka, Erich

    2007-07-01

    Hubble took an amazing data set of Neptune in nine GO programs between 1994 and 2006, consisting of 408 WFPC2 exposures with several filters present in each program. The PIs of these programs, Hammel, Sromovsky, and Rages, published a variety of results about Neptune's atmosphere based on each program. However, the typical size of the grants for each program did not allow all scientific questions of these rich data sets to be addressed.I propose to analyze these 400 images to create a consistent data set spanning 12 years, and I will make even the intermediate results available, such as 400 consistently calibrated images. The combined data set will then be able to address more far reaching questions than could be done by single data sets. Whereas previous studies focused on only a few center-to-limb measurements for a limited selection of latitudes and wavelengths, I will investigate the whole data set and analyze 16,000 center-to-limb curves. I will use the principal component analysis and various statistical tests to find the hidden variations on Neptune. I created software for a similar project on Hubble's Saturn images. I am ready to adapt and apply it to Hubble's Neptune images.The huge number of variable features on Neptune contain an ideal probe about atmospheric dynamics. Previous investigations have only scratched pieces of the surface of this treasure. It is time for a comprehensive study of the whole data to discover fundamenatal insights about atmospheric dynamics.

  16. The First Neptune Analog or Super-Earth with a Neptune-Like Orbit: MOA-2013-BLG-605Lb

    Science.gov (United States)

    Sumi, T.; Bennett, D. P.; Udalski, A.; Gould, A.; Poleski, R.; Bond, I. A.; Skowron, J.; Rattenbury, N.; Pogge, R. W.; Bensby, T.

    2016-01-01

    We present the discovery of the first Neptune analog exoplanet or super-Earth with a Neptune-like orbit, MOA- 2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9 approximately 14 times the expected position of the snow line, a(sub snow), which is similar to Neptune's separation of 11 a(sub snow) from the Sun. The planet/host-star mass ratio is q = (3.6 +/- 0.7) × 10(exp -4) and the projected separation normalized by the Einstein radius is s = 2.39 +/- 0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy." The three models have (i) a Neptune-mass planet with a mass of M(sub p) = 21(+6/-7)(M) orbiting a low-mass M-dwarf with a mass of M(sub h) = 0.19(+0.05/-0.06 (solar mass)), (ii) a mini-Neptune with M(sub p) = 7.9(+1.8/-1.5)(M)) orbiting a brown dwarf host with M(sub h) = 0.068(+0.019/-0.011(solar mass)), and (iii) a super-Earth with M(sub p) = 3.2(+0.5/-0.3(M)) orbiting a low-mass brown dwarf host with M(sub h) = 0.025(+0.005/-0.004)(solar mass)), which is slightly favored. The 3D planet-host separations are 4.6(+4.7/-1.2)au, 2.1(+1.0/-0.2)au, and 0.94(+0.67/-0.02)au, which are 8.9(+10.5/-1.4)m 12(+7/-1), or 14(+11/-1) times larger than a(sub snow) for these models, respectively. Keck adaptive optics observations confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbits are common. Therefore processes similar to the one that formed Neptune in our own solar system or cold super-Earths may be common in other solar systems.

  17. NEPTUNE Canada Community Science Experiments

    Science.gov (United States)

    Juniper, S.; Bornhold, B.; Barnes, C.; Phibbs, P.; Pirenne, B.

    2006-05-01

    In 2007 NEPTUNE Canada will install the first stage of a regional cabled observatory (RCO) in the northeast Pacific Ocean. Stage 2 of the RCO is being developed by the US-based ORION Project Office, through the National Science Foundation's Ocean Observatory Initiative (OOI). For Stage 1, a 800km fiber-optic cable will loop out from a shore station on Vancouver Island to the Juan de Fuca volcanic spreading ridge. Two seafloor nodes are planned, one to support studies of tectonic and hydrothermal activity on the Endeavour Segment of the Juan de Fuca Ridge, and the other for investigation of a broad range of processes in Barkley Canyon, on the continental slope of Vancouver Island. Each node will provide power and Ethernet communications to instruments that comprise multi-disciplinary community science experiments. These experiments were developed through a 2-year series of workshops and a final competition. Data from all instruments will be available on-line, through the NEPTUNE data management and archive system. Investigations at the Endeavour node will focus on links between seismic activity and hydrothermal emissions and their resulting impact on hydrothermal vent organisms and regional oceanic circulation and geochemical fluxes. This area provides a number of technical challenges, including the laying of the backbone cable over a volcanic terrain, and the placement of instruments and extension cables in areas of abundant high-temperature venting. Planned instruments include broad-band seismometers, acoustic Doppler current meters, video and digital still cameras and chemical sensors. Experiments at the Barkley Canyon site will emphasis the effects of water currents passing through the canyon, and seismic activity. Combined biological and physical oceanographic instruments will monitor the interaction between sediment transport along the axis of the canyon and the bioturbation activity of the fauna. A combined physical/biological experiment in the water column

  18. The Moons of Uranus, Neptune and Pluto.

    Science.gov (United States)

    Brown, Robert Hamilton; Cruikshank, Dale P.

    1985-01-01

    In preparation for the Voyager flybys in 1989, the pace of ground-based investigations of the moons of Uranus, Neptune, and Pluto has quickened considerably. Information derived from these investigations is presented. (JN)

  19. Ohmic Dissipation in Mini-Neptunes

    Science.gov (United States)

    Pu, Bonan; Valencia, Diana

    2017-09-01

    In the presence of a magnetic field and weakly ionizing winds, ohmic dissipation is expected to take place in the envelopes of Jovian and lower-mass planets alike. While the process has been investigated on the former, there have been no studies done on mini-Neptunes so far. From structure and thermal evolution models, we determine that the required energy deposition for halting the contraction of mini-Neptunes increases with planetary mass and envelope fraction. Scaled to the insolation power, the ohmic heating needed is small: ∼ {10}-5 orders of magnitude lower than for exo-Jupiters ∼ {10}-2. Conversely, from solving the magnetic induction equation, we find that ohmic energy is dissipated more readily for lower-mass planets and those with larger envelope fractions. Combining these two trends, we find that ohmic dissipation in hot mini-Neptunes is strong enough to inflate their radii (∼ {10}15 W for {T}{eq}=1400 {{K}}). The implication is that the radii of hot mini-Neptunes may be attributed in part to ohmic heating. Thus, there is a trade-off between ohmic dissipation and H/He content for hot mini-Neptunes, adding a new degeneracy for the interpretation of the composition of such planets. In addition, ohmic dissipation would make mini-Neptunes more vulnerable to atmospheric evaporation.

  20. History of Neptune's Ring Arcs

    Science.gov (United States)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.

    1997-07-01

    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  1. Neptune migration model with one extra planet

    CERN Document Server

    Yeh, Lun-Wen; 10.1016/j.icarus.2009.06.008

    2009-01-01

    We explore conventional Neptune migration model with one additional planet of mass at 0.1-2.0 Me. This planet inhabited in the 3:2 mean motion resonance with Neptune during planet migration epoch, and then escaped from the Kuiper belt when Jovian planets parked near the present orbits. Adding this extra planet and assuming the primordial disk truncated at about 45 AU in the conventional Neptune migration model, it is able to explain the complex structure of the observed Kuiper belt better than the usual Neptune migration model did in several respects. However, numerical experiments imply that this model is a low-probability event. In addition to the low probability, two features produced by this model may be inconsistent with the observations. They are small number of low-inclination particles in the classical belt, and the production of a remnant population with near-circular and low-inclination orbit within a = 50-52 AU. According to our present study, including one extra planet in the conventional Neptune ...

  2. Neptune's Orbital Migration Was Grainy, Not Smooth

    CERN Document Server

    Nesvorny, David

    2016-01-01

    The Kuiper belt is a population of icy bodies beyond the orbit of Neptune. The complex orbital structure of the Kuiper belt, including several categories of objects inside and outside of resonances with Neptune, emerged as a result of Neptune's migration into an outer planetesimal disk. An outstanding problem with the existing migration models is that they invariably predict excessively large resonant populations, while observations show that the non-resonant orbits are in fact common (e.g., the main belt population is 2-4 times larger than Plutinos in the 3:2 resonance). Here we show that this problem can resolved if it is assumed that Neptune's migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. The grainy migration acts to destabilize resonant bodies with large libration amplitudes, a fraction of which ends up on stable non-resonant orbits. Thus, the non-resonant--to--resonant ratio obtained with the grainy migration is higher, up to ~10 times higher for the ...

  3. Seasonal Stratospheric Chemistry on Uranus and Neptune

    Science.gov (United States)

    Moses, Julianne I.; Greathouse, Thomas K.; Orton, Glenn S.; Hue, Vincent; Poppe, Andrew R.; Luszcz-Cook, Statia H.; Moullet, Arielle

    2016-10-01

    We use a time-variable photochemical model to study the change in stratospheric constituent abundances as a function of altitude, latitude, and season on Uranus and Neptune. In the absence of meridional transport, the results for Neptune are similar to those predicted for Saturn: seasonal variations in the abundances of observable hydrocarbons such as C2H2, C2H4, C2H6, C3H4, C3H8, and C4H2 are large in the upper stratosphere but become increasingly damped with depth due to increased dynamical and chemical time scales. We also find that latitude gradients in hydrocarbon abundances would be maintained on Neptune in the absence of atmospheric circulation. On Uranus, however, the more stagnant, poorly mixed stratosphere leads to a lower-altitude homopause, with methane being photolyzed relatively deep in the stratosphere, at which point both diffusion and chemical time constants have become longer than a Uranian year. Seasonal variations in stratospheric constituents on Uranus are therefore muted, despite the planet's large obliquity. We compare our model results to global-average observations from Spitzer and to spatially-resolved infrared observations from the ground. The model-data comparisons have implications with respect to the importance and strength of meridional transport, the origin of stratospheric oxygen-bearing species, and the dust and cometary influx rates on Uranus and Neptune.

  4. Where exactly are the arcs of Neptune?

    Science.gov (United States)

    Horanyi, Mihaly; Porco, Carolyn C.

    1993-12-01

    A largely neglected secular perturbation that changes the effective mean motion is noted to occur on the osculating longitude at epoch, due to periodic close encounters between arc particles of Neptune and Galatea. This perturbation is here examined both analytically and numerically. It is shown that the confinement mechanism, based on single-satellite shepherding by Galatea, remains in force at the new position of the arc-confining resonances.

  5. Survey of Kozai dynamics beyond Neptune

    Science.gov (United States)

    Gallardo, Tabaré; Hugo, Gastón; Pais, Pablo

    2012-08-01

    We study the Kozai dynamics affecting the orbital evolution of trans-neptunian objects being captured or not in MMR with Neptune. We provide energy level maps of the type (ω, q) describing the possible orbital paths from Neptune up to semimajor axis of hundreds of AU. The dynamics for non-resonant TNOs with perihelion distances, q, outside Neptune's orbit, aN, is quite different from the dynamics of TNOs with q < aN, already studied in previous works. While for the last case there are stable equilibrium points at ω = 0°, 90°,180° and 270° in a wide range of orbital inclinations, for the former case it appears a family of stable equilibrium points only at a specific value of the orbital inclination, i ˜ 62°, that we call critical inclination. We show this family of equilibrium points is generated by a mechanism analogue to which drives the dynamics of an artificial satellite perturbed by an oblate planet. The planetary system also generates an oscillation in the longitude of the perihelion of the TNOs with i ˜ 46°, being Eris a paradigmatic case. We discuss how the resonant condition with Neptune modify the energy level curves and the location of equilibrium points. The asymmetric librations of resonances of the type 1:N generate a distortion in the energy level curves and in the resulting location of the equilibrium points in the phase space (ω, q). We study the effect on the Kozai dynamics due to the diffusion process in a that occurs in the Scattered Disk. We show that a minimum orbital inclination is required to allow substantial variations in perihelion distances once the object is captured in MMR and that minimum inclination is greater for greater semimajor axis.

  6. The JPL Neptune Radiation Model (NMOD)

    Science.gov (United States)

    Garrett, Henry; Evans, Robin

    2017-01-01

    The objective of this study is the development of a comprehensive radiation model of the Neptunian environment for JPL mission planning. The ultimate goal is to provide a description of the high-energy electron and proton environments and the magnetic field at Neptune that can be used for engineering design. The JPL Neptune Radiation Model (NMOD) models the high-energy electrons and protons between 0.025 MeV and 5 MeV based on the California Institute of Technology's Cosmic Ray Subsystem and the Applied Physics Laboratory's Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Neptunian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Neptunian-centered magnetic "B-L" coordinates. Two types of magnetic field models have been developed for Neptune: 1) simple "offset, tilted dipoles" (OTD), and 2) a complex, multi-pole expansion model ("O8"). A review of the existing data on Neptune and a search of the NASA Planetary Data System (PDS) were completed to obtain the most current descriptions of the Neptunian high-energy particle environment. These data were fit in terms of the O8 B-L coordinates to develop the electron and proton flux models. The flux predictions of the new model were used to estimate the total ionizing dose (TID) rate along the Neptunian equator, meridional flux contours for the electrons and protons, and for flux and dose comparisons with the other radiation belts in the Solar System.

  7. Survey of Kozai Dynamics Beyond Neptune

    CERN Document Server

    Gallardo, Tabare; Pais, Pablo

    2012-01-01

    We study the Kozai dynamics affecting the orbital evolution of transneptunian objects being captured or not in MMR with Neptune. We provide energy level maps of the type ({\\omega},q) describing the possible orbital paths from Neptune up to semimajor axis of hundreds of AU. The dynamics for non resonant TNOs with perihelion distances, q, outside Neptune's orbit, a_N, is quite different from the dynamics of TNOs with q < a_N, already studied in previous works. While for the last case there are stable equilibrium points at {\\omega} = 0\\circ, 90\\circ, 180\\circ and 270\\circ in a wide range of orbital inclinations, for the former case it appears a family of stable equilibrium points only at a specific value of the orbital inclination, i \\sim 62\\circ, that we call critical inclination. We show this family of equilibrium points is generated by a mechanism analogue to which drives the dynamics of an artificial satellite perturbed by an oblate planet. The planetary system also generates an oscillation in the longitu...

  8. Global MHD simulations of Neptune's magnetosphere

    Science.gov (United States)

    Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.

    2016-08-01

    A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.

  9. Neptune's non-thermal radio emissions - Phenomenology and source locations

    Science.gov (United States)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  10. Neptune trojan formation during planetary instability and migration

    Science.gov (United States)

    Gomes, R.; Nesvorný, D.

    2016-08-01

    Aims: We investigate the process of Neptune trojan capture and permanence in resonance up to the present time based on a planetary instability migration model. Methods: We do a numerical simulation of the migration of the giant planets in a planetesimal disk. Several planetesimals became trapped in coorbital resonance with Neptune, but no trojan survived to the end of the integration at 4.5 Gy. We increased the statistics by running synthetic integrations with cloned particles from the original integration and keeping the same migration rates of the planets. Results: For the synthetic integrations, Neptune trojans survived to the end of the simulations. The total mass that corresponds to these surviving trojans is about 1.6 × 10-4 Earth mass and the distributions of eccentricities, inclinations, and libration amplitudes are respectively 0.007-0.173, 4.9°-32.9°, and 6.9°-64.3°. In a specific run where Neptune to Uranus mean motion ratio reached 1.963 and decreased to its present value (1.961), many more trojans escaped the coorbital resonance with Neptune and in the end there was an equivalent mass of 5 × 10-5 Earth mass of Neptune trojans. Conclusions: The simulations yielded Neptune trojans that match the orbital distribution of real Neptune trojans quite well. Since planetary migration in an instability model shows the possibility that in the past Neptune was a little farther from the Sun than it is today, it is reasonable to consider this possibility to explain the relatively low mass of Neptune trojans.

  11. Helium Atmospheres on Warm Neptune- and Sub-Neptune-Sized Exoplanets and Applications to GJ 436 b

    CERN Document Server

    Hu, Renyu; Yung, Yuk L

    2015-01-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury's are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed -- from a primordial hydrogen-helium atmosphere -- via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436 b, a warm Neptune-sized exoplanet, while also consistent with ...

  12. Are the Arcs of Neptune Really Stable?

    Science.gov (United States)

    Hanninen, J.; Porco, C.

    1994-12-01

    The Voyager mission discovered a system of rings and ring arcs around Neptune. It was later found that the arcs appear to be azimuthally and radially confined by resonant interactions with the nearby satellite, Galatea, yielding a maximum spread in ring particle semimajor axes of 0.6 km and a spread in forced eccentricities large enough to explain the arc's 15 km radial widths (Porco, 1991, Science 253, 995). We have modified an N-body simulation method (e.g. Hanninen and Salo, 1992, Icarus 97, 228) to include Neptune's second and fourth gravitational harmonics in order to be able to study the effects of collisions and self-gravity on the stability of the ring arcs. We have tested the simulation method and verified the shepherding mechanism in the collisionless and non-self-gravitational case. Preliminary simulation results with collisions over (1)/(2) a libration period indicate that collisions among putative 10-m sized source bodies within the arcs are indeed capable of arc disruption. However, whether or not collisions occur over this time scale depends, among other factors, on the number density of such bodies. We will explore the effects on arc stability of varying simulation parameters, such as the sizes and number density of the source bodies and the coefficient of restitution. Also, we will examine the effect of Galatea's previously neglected nearby vertical resonance on arc particle orbits.

  13. Neptune as a Mirror for the Sun

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    How would the Kepler mission see a star like the Sun? We now know the answer to this question due to a creative approach: a new study has used the Kepler K2 mission to detect signals from the Sun reflected off of the surface of Neptune.Asteroseismology uses different oscillation modes of a star to probe its internal structure and properties. [Tosaka]Information in OscillationsKeplers most glamorous work is in discovering new planets around other stars. To successfully do this, however, the spacecraft is also quietly doing a lot of very useful work in the background, characterizing the many stars in our vicinity that planets might be found around.One of the ways Kepler gets information about these stars is from oscillations of the stars intensities. In asteroseismology, we look at oscillatory modes that are caused by convection-driven pressure changes on the inside of the star. All stars with near-surface convection oscillate like this including the Sun and by measuring the oscillations in intensity of these stars, we can make inferences about the stars properties.A Planetary MirrorWe do this by first understanding our Suns oscillations especially well (made easier by the fact that its nearby!). Then we use asteroseimic scaling relations determined empirically that relate characteristics like mass and radius of other stars to those of the Sun, based on the relation between the stars oscillation properties to the Suns.The trouble is, those oscillation properties are difficult to measure, and different instruments often measure different values. For this reason, wed like to measure the Suns oscillations with the same instrument we use to measure other stars oscillations: Kepler.Top panel: Kepler K2 49-day light curve of Neptune. Bottom panel: power density spectrum as a function of frequency (grey). Neptunes rotation frequencies and harmonics appear toward the left side (blue); the excess power due to the solar modes is visible toward the bottom right. The green curve

  14. Sizes and Shapes of Neptune's Inner Satellites

    Science.gov (United States)

    Karkoschka, E.

    2002-09-01

    I measured resolved images of the inner Neptunian satellites by Voyager 2. The best-fitting tri-axial radii are 48x30x26 km for Naiad, 54x50x26 km for Thalassa, 90x74x64 km for Despina, 102x92x72 km for Galatea, and 108x102x84 km for Larissa. These sizes are within uncertainty limits by Thomas and Veverka (1991) who provided a shape for Larissa (104x89 km), radii with assumed spherical shapes for Despina (74 km) and Galatea (79 km) and estimated radii based on assumed albedos for Naiad (29 km) and Thalassa (40 km). The uncertainties of the new radii are smaller. Estimates of volumes and masses of Naiad and Galatea need to be increased by some 50 percent, which is interesting since Galatea's gravity is considered to cause the unique arcs of Neptune's Adams ring. The moderately elongated shapes of the medium-sized satellites Despina and Galatea, and the strongly elongated shapes of the small satellites Naiad and Thalassa are typical for bodies of their size, although the shape of Thalassa is almost oblate (like a lens) while the shapes of other, strongly elongated satellites such as Naiad are closer to prolate (like a cigar). While previous uncertainties allowed the same reflectivity for the inner six Neptunian satellites, this is no longer true. There is a trend of albedos increasing with distance from Neptune, similar to the trend observed for the Uranian satellites. By estimating phase curves, I predict brighter albedos for inner six Neptunian satellites (0.07-0.10) than for the inner 10 Uranian satellites (0.05-0.07), opposite to previous estimates, which could be tested using recent images by the Hubble Space Telescope and ground-based observatories. The measured shapes of the inner Neptunian satellites cause orbital light curves, even if their surfaces lack spatial albedo variations. Indeed, photometry by Thomas and Veverka (1991) reveals amplitudes and phases of the light curves consistent with those inferred from the measured shapes, although most data are

  15. Collisional Simulations of Neptune's Ring Arcs

    Science.gov (United States)

    Hänninen, J.; Porco, C.

    1997-03-01

    The currently accepted model for Neptune arc confinement relies on the radial and azimuthal confining perturbations due to the nearby satellite, Galatea. This model calls for arc particle orbits exhibiting a negative eccentricity gradient and crossing at quadrature, a configuration that paradoxically leads to collisions energetic enough to disrupt arc confinement. We confirm with numerical collisional N-body simulations that the confinement mechanism relying on a 42:43 corotation-inclination resonance and a 42:43 outer Lindblad resonance with Galatea is indeed capable of confining a large population of 10-m-size and bigger particles over short time scales. Moreover, we find that an 84:86 outer vertical resonance, also due to Galatea, falling within 20 m of the arcs' radial position, effectively reduces the collision frequency and relative collisional velocities and consequently stabilizes the arcs over long time scales against the disruptive effects of collisions.

  16. Stability of Neptune's ring arcs in question

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn; Becklin, E. E.

    1999-08-01

    Although all four of the gas-giant planets in the Solar System have ring systems, only Neptune exhibits `ring arcs'-stable clumps of dust that are discontinuous from each other. Two basic mechanisms for confining the dust to these arcs have been proposed. The firstrelies on orbital resonances with two shepherding satellites, while the second invokes a single satellite (later suggested to be Galatea) to produce the observed ring arc structures. Here we report observations of the ring arcs and Galatea, which show that there isa mismatch between the locations of the arcs and the site of Galatea's co-rotation inclined resonance. This result calls into question Galatea's sole role in confining the arcs.

  17. An explanation for Neptune's ring arcs

    Science.gov (United States)

    Porco, Carolyn C.

    1991-08-01

    The Voyager mission revealed a complex system of rings and ring arcs around Neptune and uncovered six new satellites, four of which occupy orbits well inside the ring region. Analysis of Voyager data shows that a radial distortion with an amplitude of approximately 30 kilometers is traveling through the ring arcs, a perturbation attributable to the nearby satellite Galatea. Moreover, the arcs appear to be azimuthally confined by a resonant interaction with the same satellite, yielding a maximum spread in ring particle semimajor axes of 0.6 kilometer and a spread in forced eccentricities large enough to explain the arc's 15-kilometer radial widths. Additional ring arcs discovered in the course of this study give further support to this model.

  18. Another Explanation for Neptune's Ring Arcs

    Science.gov (United States)

    Namouni, F.; Porco, C.

    2001-11-01

    Recent HST and Earth-based observations (Dumas et al 1999, Nature 400, 733; Sicardy et al 1999, Nature 400, 731) indicate that Neptune's ring arcs are not located at the corotation resonance with Galatea thought to be responsible for the azimuthal confinement of the arc system (Porco, 1991 Science 253, 995). Although small (5x 10-3od-1), the new observed mean motion offset puts the arcs near the resonance separatrix where the particles' semimajor axes would experience chaotic motion leading to the azimuthal spreading of the arcs within months, thereby calling into question their very existence. We have found a new resonant structure, dependent on the arcs having a small fraction of the mass of Galatea, in which Galatea's 43:42 eccentric corotation resonance, located (in the massless case) ~ 3 km inside the arcs' orbit, is made coincident with the arcs' semimajor axis. The arcs are primarily confined by this resonance, which is stronger ( e Galatea) than the inclined corotation resonance ( I2 Galatea) invoked in the Porco model. Moreover, the coupling of all the resonances in the arcs' neighborhood (eccentric corotation, inclined corotation and Lindblad resonances) modifies the interaction potential, creating smaller structures at the arcs' location. Consequently, this new confinement mechanism can simultaneously explain the arcs' confinement, the general spacing of the arcs, the Fraternité arc length of ~ 10o, and smaller-scale features seen in the arc system. Finally, the possibility of non-massless arcs supports an earlier suggestion by Porco et al (1991, in Neptune and Triton, the University of Arizona Series) that the rapid expected radial migration of the arc system, due to Galatea's secular torques, can be slowed down if the arcs have substantial mass.

  19. Tracking Neptune's Footprints with High-Perihelion Resonant TNOs

    Science.gov (United States)

    Kaib, Nathan A.; Sheppard, Scott S.

    2016-10-01

    Recent surveys (Sheppard et al. 2016) have significantly increased the known number of high-perihelion trans-Neptunian objects located near mean motion resonances with Neptune. Many of these objects likely had their pericenters raised during Kozai cycling while they were trapped in resonance with Neptune. We numerically model the production of these objects under a variety of Neptune migration scenarios. We find that the modern semimajor axis distribution of this population is dependent on Neptune's early migration. If the total migration time is ~300 Myrs or longer, a significant fraction of high-perihelion objects will be located slightly closer to the Sun than the modern resonance locations. Meanwhile, if Neptune reaches its modern location within ~100 Myrs or less, nearly all high-perihelion objects will still be located at the resonance locations. This effect is strongest for resonances between the 7:3 and 4:1 MMR locations, which are located between ~53 and ~76 AU. For resonances further than the 4:1 (~76 AU), the dependence on Neptune's migration is not present because the timescales required for resonance capture and perihelion-lifting are very long. This distant resonant population represents a more recently generated set of orbits under any plausible migration scenario.

  20. Trio of Neptunes and their Belt

    Science.gov (United States)

    2006-05-01

    Using the ultra-precise HARPS spectrograph on ESO's 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost planet is most probably rocky, while the outermost is the first known Neptune-mass planet to reside in the habitable zone. This unique system is likely further enriched by an asteroid belt. ESO PR Photo 18a/06 ESO PR Photo 18a/06 Planetary System Around HD 69830 (Artist's Impression) "For the first time, we have discovered a planetary system composed of several Neptune-mass planets", said Christophe Lovis, from the Geneva Observatory and lead-author of the paper presenting the results [1]. During more than two years, the astronomers carefully studied HD 69830, a rather inconspicuous nearby star slightly less massive than the Sun. Located 41 light-years away towards the constellation of Puppis (the Stern), it is, with a visual magnitude of 5.95, just visible with the unaided eye. The astronomers' precise radial-velocity measurements [2] allowed them to discover the presence of three tiny companions orbiting their parent star in 8.67, 31.6 and 197 days. "Only ESO's HARPS instrument installed at the La Silla Observatory, Chile, made it possible to uncover these planets", said Michel Mayor, also from Geneva Observatory, and HARPS Principal Investigator. "Without any doubt, it is presently the world's most precise planet-hunting machine" [3]. ESO PR Photo 18d/06 ESO PR Photo 18d/06 Phase Folded Measurements of HD 69830 The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That's the speed of a person walking briskly. Such tiny signals could not have been distinguished from 'simple noise' by most of today's available spectrographs. The newly found planets have minimum masses between 10 and 18 times the mass of the Earth. Extensive theoretical simulations favour an essentially rocky composition for the inner planet, and

  1. Preliminary investigations on 3D PIC simulation of DPHC structure using NEPTUNE3D code

    Science.gov (United States)

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Wang, Qiang

    2016-10-01

    Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) structure was chosen to perform a series of fully 3D PIC simulations using NEPTUNE3D codes, massive data ( 200GB) could be acquired and solved in less than 5 hours. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated by comparisons between output magnetic field profiles with or without electron emission. PIC simulation results showed three stages of current transforming process with election emission in DPHC structure, the maximum ( 20%) current loss was 437kA at 15ns, while only 0.46% 0.48% was lost when driving current reached its peak. DPHC structure proved valuable functions during energy transform process in PTS facility, and NEPTUNE3D provided tools to explore this sophisticated physics. Project supported by the National Natural Science Foundation of China, Grant No. 11571293, 11505172.

  2. A NEPtune/Triton Vision Mission Using Nuclear Electric Propulsion

    Science.gov (United States)

    Bienstock, B.; Atkinson, D. H.; Baines, K.; Mahaffy, P.; Atreya, S.; Stern, A.; Steffes, P.; Wright, M.; Ball Collaboration; Boeing Collaboration

    2005-08-01

    The giant planets of the outer solar system divide into two distinct classes: the ``Gas Giants" Jupiter and Saturn, and the ``Ice Giants" Uranus and Neptune. While the Gas Giants primarily comprise hydrogen and helium, the Ice Giants appear fundamentally different, containing significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Comparisons of the internal structure and overall composition of the Gas and Ice Giants will yield valuable insights into the processes that formed our solar system and possibly extrasolar systems. By 2012 detailed studies of the chemical and physical properties of Jupiter and Saturn will have been completed by the Pioneer, Voyager, Galileo, Cassini, and Juno missions. A Neptune Orbiter with Probes mission would deliver the corresponding key data for an Ice Giant. Such a mission to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars has been studied. Power and propulsion would be provided using nuclear electric propulsion (NEP) technologies. This ambitious mission requires a number of technical issues be investigated and resolved, including: (1) developing a reasonable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for Triton, small icy satellite, and ring science, (2) giant-planet atmospheric probe thermal protection system (TPS) design, (3) deep probe design including pressure vessel, seals, windows, penetrations and inlets, (4) deep probe telecommunications through Neptune's dense and absorbing atmosphere, 5) Triton lander design to conduct extended surface science, and (6) defining an appropriate suite of science instruments for the Orbiter, Probes and Landers to explore the depths of the Neptune atmosphere, magnetic field, Triton, and the icy satellites utilizing the ample mass and power

  3. The Confinement of Neptune's Ring Arcs

    Science.gov (United States)

    Porco, C.; Namouni, F.

    2002-09-01

    The stability of the narrow ring arcs of Neptune has been a puzzle since their discovery. First detected in 1984 from the Earth in stellar occultations and imaged by the Voyager spacecraft in 1989, the 5 arcs spanning approximately 40 deg in longitude are apparently confined against the rapid azimuthal and radial spreading that results from energy dissipation in inter-particle collisions. Voyager data were used to argue in favor of an arc confinement model (Goldreich et al. AJ 1986; Porco, Science 1991) that relies on both the vertical and mean angular motions of the nearby Neptunian moon, Galatea, to produce a pair of Lindblad (LR) and corotation inclination (CIR) resonances capable of trapping ring particles into a sequence of arcs. However, HST and Earth-based observations taken in 1998 (Dumas et al. Nature 1999; Sicardy et al. Nature 1999) indicate a revised arc mean angular motion which displaces the arcs away from the CIR, leaving their stability once again unexplained. In this presentation, we will discuss the workings of a hitherto neglected resonance which relies on Galatea's orbital eccentricity and which, together with the LR, is likely responsible for the angular confinement of the arcs. The action of this resonance, which operates through the precession of Galatea's eccentric orbit forced by the arcs' inertia, will allow a determination of the arcs' mass from future measurements of Galatea's eccentricity. We acknowledge the financial support of NASA's Planetary Geology and Geophysics Program and the Southwest Research Institute's Internal Research Grant program.

  4. Three Temperate Neptunes Orbiting Nearby Stars

    CERN Document Server

    Fulton, Benjamin J; Weiss, Lauren M; Sinukoff, Evan; Petigura, Erik A; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W; Henry, Gregory W; Grunblatt, Samuel K; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S; Kane, Stephen R; Wittrock, Justin; Horch, Elliott P; Ciardi, David R; Howell, Steve B; Wright, Jason T; Ford, Eric B

    2016-01-01

    We present the discovery of three modestly-irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of $15.4 \\pm 2.4$ M$_{\\oplus}$, a semi-major axis of 0.55 AU, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 ($\\rho$ CrB). The new planet orbiting HD 164922 has a minimum mass of $12.9 \\pm 1.6$ M$_{\\oplus}$ and orbits interior to the previously known Jovian mass planet orbiting at 2.1 AU. HD 164922 c has a semi-major axis of 0.34 AU and an equilibrium temperature of 418 K. HD 143761 c orbits with a semi-major axis of 0.44 AU, has a minimum mass of $25 \\pm 2$ M$_{\\oplus}$, and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photom...

  5. Towards a theory for Neptune's arc rings

    Science.gov (United States)

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-01-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.

  6. A Neptune Vision Mission using Nuclear Electric Propulsion

    Science.gov (United States)

    Atkinson, D. H.; Bienstock, B.; Baines, K. H.; Mahaffey, P.; Steffes, P.; Atreya, S.; Stern, A.; Wright, M.; Boeing; Ball Aerospace

    2004-11-01

    The giant planets of the outer solar system divide into two distinct classes: the ``gas giants" Jupiter and Saturn, primarily comprising hydrogen and helium; and the ``ice giants" Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, extrasolar systems. By 2012, Pioneer, Voyager, Galileo, Cassini, and possibly a New Frontiers Jupiter mission will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune mission would deliver the corresponding key data for an ice giant planet. A Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars is being examined. Additional targets include Neptune's enigmatic ring system, Triton, Nereid, and the other icy satellites of Neptune. Power and propulsion would be provided using nuclear electric technologies. Such an ambitious mission requires a number of technical issues be investigated and resolved, including: (1) giant-planet atmospheric probe thermal protection system (TPS) design, (2) descent probe design including seals, windows, penetrations and inlets, and pressure vessel, (3) probe telecommunications through the dense and absorbing Neptunian atmosphere, (4) developing a realizable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for detailed measurements of Triton and the other icy satellites as well as ring science, (5) and, within NEP mass and power constraints, defining an appropriate suite of science instruments to explore the depths of the Neptune atmosphere, magnetic field, Triton, and

  7. Evolutionary Models of Super-Earths and Mini-Neptunes Incorporating Cooling and Mass Loss

    CERN Document Server

    Howe, Alex R

    2015-01-01

    We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with hydrogen-helium envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and initial envelope mass fraction are the most important factors determining planetary evolution, particular radius evolution. Initial mass also becomes important below a "turnoff mass," which varies with orbital distance, with mass-radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass los...

  8. Two-Phase Flow Simulations for PTS Investigation by Means of Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Fabio Moretti

    2008-11-01

    Full Text Available Two-dimensional axisymmetric simulations of pressurized thermal shock (PTS phenomena through Neptune_CFD module are presented aiming at two-phase models validation against experimental data. Because of PTS complexity, only some thermal-hydraulic aspects were considered. Two different flow configurations were studied, occurring when emergency core cooling (ECC water is injected in an uncovered cold leg of a pressurized water reactor (PWR—a plunging water jet entering a free surface, and a stratified steam-water flow. Some standard and new implemented models were tested: modified turbulent k-ε models with turbulence production induced by interfacial friction, models for the drag coefficient, and interfacial heat transfer models. Quite good agreement with experimental data was achieved with best performing models for both test cases, even if a further improvement in phase change modelling would be suitable for nuclear technology applications.

  9. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  10. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  11. Charged particle acceleration by induction electric field in Neptune magnetotail

    Science.gov (United States)

    Vasko, I. Y.; Malova, H. V.; Artemyev, A. V.; Zelenyi, L. M.

    2012-12-01

    The precession of the Neptune magnetic dipole leads to strong dynamics of the magnetosphere and results in continuous transformation from the “Earth-like” configuration to the “pole-on” one and vice versa. In the present work we use simple model of the Neptune magnetotail to investigate the influence of magnetotail topology transformation on particle acceleration and transport through the tail. Energy spectra are obtained for protons penetrating from the solar wind and heavier ions N+ from the Neptune ionosphere. We have found that protons and heavier ions are accelerated up to ∼330 keV and ∼150 keV, respectively. More particles are accelerated and leave the tail during transformations from the “pole-on” configuration to the “Earth-like” one than during inverse transformations. We have shown that the dusk-dawn convection field is responsible for particle leaving through the dawn flank. We briefly compare our results with Voyager-2 observations.

  12. A Comprehensive Survey of Neptune's Small Moons and Faint Rings

    Science.gov (United States)

    Showalter, Mark

    2009-07-01

    We will use a subarray of the WFC3/UVIS to study the inner rings, arcs and moons of Neptune with a sensitivity that exceeds that achieved by any previous observations, including Voyager 2 during its 1989 flyby. Our study will reveal any inner moons down to V magnitude 25, corresponding to a radius 20 km {assuming 9% albedo}, to address a peculiar, apparent truncation in the size distribution of inner moons and to look for the "shepherds" and source bodies for Neptune's dusty rings. {For comparison, the radius of Neptune's smallest known regular moon, Naiad, is 33 km.} Monitoring of the arcs at fine resolution and sensitivity will reveal their ongoing evolution more clearly and will enable us to assess the role of Galatea, whose resonant perturbations are widely believed to confine the arcs. Our study will also reveal any broad, faint rings with optical depth 10^-6, comparable to those now known to encircle all of the other giant planets.

  13. Uranus, Neptune, Pluto, and the outer solar system

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Unlike all the planets closer to the Sun, known since antiquity, the farthest reaches are the discoveries of the modern world. Uranus was discovered in 1781, Neptune in 1846, Pluto in 1930, the Kuiper belt group of objects in 1992, and though the Oort cloud has been theorized since 1950, its first member was found in 2004. The discovery of the outer planets made such an impression on the minds of mankind that they were immortalized in the names of the newly discovered elements: uranium, neptunium, and plutonium, an astonishingly deadly constituent of atomic bombs. Uranus, Neptune, Pluto, and t

  14. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  15. Towards a Theory for the Origin of Neptune Trojans

    CERN Document Server

    Chiang, E I

    2005-01-01

    The newly discovered class of Neptune Trojans promises to test theories of planet formation by coagulation. Neptune Trojans resembling the prototypical object 2001 QR322 (``QR'')--whose radius of ~100 km is comparable to that of the largest Jupiter Trojan--may outnumber their Jovian counterparts by a factor of ~20. We develop and test three theories for the origin of large Neptune Trojans: pull-down capture, direct collisional emplacement, and in situ accretion. These theories are staged after Neptune's orbit anneals: after dynamical friction eliminates any large orbital eccentricity and after the planet ceases to migrate. We discover that seeding the 1:1 resonance with debris from planetesimal collisions and having the seed particles accrete in situ naturally reproduces the inferred number of QR-sized Trojans. We analyze accretion in the Trojan sub-disk by applying the two-groups method, accounting for kinematics specific to the resonance. A Trojan sub-disk comprising decimeter-sized seed particles and havin...

  16. Bulk composition of the transiting hot Neptune around GJ 436

    CERN Document Server

    Figueira, P; Mordasini, C; Alibert, Y; Georgy, C; Benz, W; 10.1051/0004-6361:20078951

    2009-01-01

    The hot Neptune orbiting around GJ 436 is a unique example of an intermediate mass planet. Its close-in orbit suggests that the planet has undergone migration and its study is fundamental to understanding planet formation and evolution. As it transits its parent star, it is the only Neptune-mass extrasolar planet of known mass and radius, being slightly larger and more massive than Neptune (M=22.6 M_Earth, R=4.19R_Earth). In this regime, several bulk compositions are possible: from an Earth-like core with a thick hydrogen envelope to a water-rich planet with a thin hydrogen envelope comprising a Neptune-like structure. We combine planet-structure modeling with an advanced planet-formation model to assess the likelihood of the different possible bulk compositions of GJ 436 b. We find that both an envelope-free water planet ("Ocean planet") as well as a diminute version of a gaseous giant planet are excluded. Consisting of a rocky core with a thick hydrogen/helium envelope, a "dry" composition produces not only...

  17. First results of Herschel/PACS observations of Neptune

    CERN Document Server

    Lellouch, E; Feuchtgruber, H; Vandenbussche, B; de Graauw, T; Moreno, R; Jarchow, C; Cavalié, T; Orton, G; Banaszkiewicz, M; Blecka, M I; Bockelée-Morvan, D; Crovisier, J; Encrenaz, T; Fulton, T; Küppers, M; Lara, L M; Lis, D C; Medvedev, A S; Rengel, M; Sagawa, H; Swinyard, B; Szutowicz, S; Bensch, F; Bergin, E; Billebaud, F; Biver, N; Blake, G A; Blommaert, J A D L; Cernicharo, J; Courtin, R; Davis, G R; Decin, L; Encrenaz, P; Gonzalez, A; Jehin, E; Kidger, M; Naylor, D; Portyankina, G; Schieder, R; Sidher, S; Thomas, N; de Val--Borro, M; Verdugo, E; Waelkens, C; Walker, H; Aarts, H; Comito, C; Kawamura, J H; Maestrini, A; Peacocke, T; Teipen, R; Tils, T; Wildeman, K

    2010-01-01

    We report on the initial analysis of a Herschel/PACS full range spectrum of Neptune, covering the 51-220 micrometer range with a mean resolving power of ~ 3000, and complemented by a dedicated observation of CH4 at 120 micrometers. Numerous spectral features due to HD (R(0) and R(1)), H2O, CH4, and CO are present, but so far no new species have been found. Our results indicate that (i) Neptune's mean thermal profile is warmer by ~ 3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5+/-1) X 10**-5, confirming the enrichment of Neptune in deuterium over the protosolar value (~ 2.1 X 10**-5); (iii) the CH4 mixing ratio in the mid stratosphere is (1.5+/-0.2) X 10**-3, and CH4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH4 stratospheric injection from Neptune's warm south polar region; (iv) the H2O stratospheric column is (2.1+/-0.5) X 10**14 cm-2 but its vertical distribution is still to be determin...

  18. First results of Herschel-PACS observations of Neptune

    NARCIS (Netherlands)

    Lellouch, E.; Hartogh, P.; Feuchtgruber, H.; Vandenbussche, B.; de Graauw, Th.; Moreno, R.; Jarchow, C.; Cavalie, T.; Orton, G.; Banaszkiewicz, M.; Blecka, M. I.; Bockelee-Morvan, D.; Crovisier, J.; Encrenaz, T.; Fulton, T.; Kueppers, M.; Lara, L. M.; Lis, D. C.; Medvedev, A. S.; Rengel, M.; Sagawa, H.; Swinyard, B.; Szutowicz, S.; Bensch, F.; Bergin, E.; Billebaud, F.; Biver, N.; Blake, G. A.; Blommaert, J. A. D. L.; Cernicharo, J.; Courtin, R.; Davis, G. R.; Decin, L.; Encrenaz, P.; Gonzalez, A.; Jehin, E.; Kidger, M.; Naylor, D.; Portyankina, G.; Schieder, R.; Sidher, S.; Thomas, N.; de Val-Borro, M.; Verdugo, E.; Waelkens, C.; Aarts, H.; Comito, C.; Kawamura, J. H.; Maestrini, A.; Peacocke, T.; Teipen, R.; Tils, T.; Wildeman, K.; Walker, H.; Blake, G.A.

    2010-01-01

    We report on the initial analysis of a Herschel-PACS full range spectrum of Neptune, covering the 51-220 mu m range with a mean resolving power of similar to 3000, and complemented by a dedicated observation of CH(4) at 120 mu m. Numerous spectral features due to HD (R(0) and R(1)), H(2)O, CH(4), an

  19. First results of Herschel-PACS observations of Neptune

    NARCIS (Netherlands)

    Lellouch, E.; Hartogh, P.; Feuchtgruber, H.; Vandenbussche, B.; de Graauw, Th.; Moreno, R.; Jarchow, C.; Cavalie, T.; Orton, G.; Banaszkiewicz, M.; Blecka, M. I.; Bockelee-Morvan, D.; Crovisier, J.; Encrenaz, T.; Fulton, T.; Kueppers, M.; Lara, L. M.; Lis, D. C.; Medvedev, A. S.; Rengel, M.; Sagawa, H.; Swinyard, B.; Szutowicz, S.; Bensch, F.; Bergin, E.; Billebaud, F.; Biver, N.; Blake, G. A.; Blommaert, J. A. D. L.; Cernicharo, J.; Courtin, R.; Davis, G. R.; Decin, L.; Encrenaz, P.; Gonzalez, A.; Jehin, E.; Kidger, M.; Naylor, D.; Portyankina, G.; Schieder, R.; Sidher, S.; Thomas, N.; de Val-Borro, M.; Verdugo, E.; Waelkens, C.; Aarts, H.; Comito, C.; Kawamura, J. H.; Maestrini, A.; Peacocke, T.; Teipen, R.; Tils, T.; Wildeman, K.; Walker, H.; Blake, G.A.

    2010-01-01

    We report on the initial analysis of a Herschel-PACS full range spectrum of Neptune, covering the 51-220 mu m range with a mean resolving power of similar to 3000, and complemented by a dedicated observation of CH(4) at 120 mu m. Numerous spectral features due to HD (R(0) and R(1)), H(2)O, CH(4),

  20. Cold Urticaria

    Science.gov (United States)

    Diseases and Conditions Cold urticaria By Mayo Clinic Staff Cold urticaria (ur-tih-KAR-e-uh) is a skin reaction to cold. Skin that has ... in contact with cold develops reddish, itchy welts (hives). The severity of cold urticaria symptoms varies widely. ...

  1. Optical parameters of the nonisothermal Uranus's and Neptune's atmospheres

    CERN Document Server

    Kostogryz, N M

    2006-01-01

    A method of the calculation of optical parameters of the nonisothermal giant planet atmospheres was developed using detailed intensity data of Raman scattering. We have used the model of Morozhenko (A.V. Morozhenko, 1997) as a baseline. In such a way, using observational data of Uranus and Neptune (E.Karkoschka, 1994), the spectral values of ratio of optical depth components: aerosol and gas components \\tau a/ \\tau R, absorbing and scattering components \\tau a/ \\tau R, and also single scattering albedo of aerosol component corrected for Raman scattering \\omega were obtained (where \\tau a, \\tau R are aerosol and gas components, and \\tau ? is absorbing components of effective optical depths of the formation of diffusely reflected irradiation). The averaged value of ratio \\tau a/ \\tau R is 0.96 but it slowly decreases in the spectral range of 350-450nm for Uranus and \\tau a/ \\tau R is 1.35 for Neptune.

  2. Deep atmospheric probe missions to Uranus and Neptune

    Science.gov (United States)

    Swenson, Byron L.; Wercinski, Paul F.; Reynolds, Ray T.; Mascy, Alfred C.

    1990-01-01

    The impressive results of the Voyager 2 flybys of Uranus (January 1986) and Neptune (August 1989) revealed many surprises and produced a new set of scientific questions regarding the formation and evolution of the planets, their atmospheres, the rings that surround them, and their satellite systems. A new set of intensive exploration missions to these outer planets is currently being examined by NASA and the scientific community. These missions, like Galileo to Jupiter and Cassini to Saturn, are to provide longer-term high-resolution orbital observations together with in situ atmospheric measurements. This paper will examine the feasibility of using deep atmospheric probes in connection with orbital missions to Uranus and Neptune to obtain the desired scientific measurements down to atmospheric pressure levels of at least 200 bars. The key design parameters of the atmospheric mission and system are defined, examined in some detail, and feasible options are suggested for further study.

  3. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    Science.gov (United States)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  4. Formation and Structure of Low Density Exo-Neptunes

    CERN Document Server

    Rogers, Leslie A; Lissauer, Jack J; Seager, Sara

    2011-01-01

    Kepler has found hundreds of Neptune-size (2-6 R_Earth) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. Using theoretical models of planet formation, evolution and structure, we explore the range of minimum plausible masses for low-density exo-Neptunes. We focus on highly irradiated planets with T_eq>=500K. We consider two separate formation pathways for low-mass planets with voluminous atmospheres of light gases: core nucleated accretion and outgassing of hydrogen from dissociated ices. We show that Neptune-size planets at T_eq=500K with masses as small as a few times that of Earth can plausibly be formed core nucleated accretion coupled with subsequent inward migration. We also derive a limiting low-density mass-radius relation for rocky planets with outgassed hydrogen envelopes but no surface water. Rocky planets with outgassed hydrogen envelopes typically have computed radii well below 3 R_Earth. For...

  5. An Overabundance of Low-density Neptune-like Planets

    CERN Document Server

    Cubillos, Patricio; Juvan, Ines; Fossati, Luca; Johnstone, Colin P; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G

    2016-01-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to $M_{\\rm p}0.1\\,M_{\\oplus}{\\rm Gyr}^{-1}$), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass--radius dis...

  6. An overabundance of low-density Neptune-like planets

    Science.gov (United States)

    Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G.

    2017-04-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to Mp Values of Λ ≲ 20 suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates (Lhy) of these planets with tailored atmospheric hydrodynamic models. We compare Lhy to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15 per cent of the sample) exhibit extremely high mass-loss rates (Lhy > 0.1 M⌖ Gyr-1), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass-radius distribution of exoplanets for example.

  7. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    CERN Document Server

    Stauffer, J R; Gizis, J E; Rebull, L M; Carey, S J; Krick, J; Ingalls, J G; Lowrance, P; Glaccum, W; Kirkpatrick, J D; Simon, A A; Wong, M H

    2016-01-01

    We have used the Spitzer Space Telescope in February 2016 to obtain high cadence, high signal-to-noise, 17-hour duration light curves of Neptune at 3.6 and 4.5 $\\mu$m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 $\\mu$m and 0.6 mag at 4.5 $\\mu$m. We have also extracted sparsely sampled 18-hour light curves of Neptune at W1 (3.4 $\\mu$m) and W2 (4.6 $\\mu$m) from the WISE/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude $\\sim$0.02 mag) or at 845 nm with the Hubble Space Telescope in 2015 and at 763 nm in 2016 (amplitude $\\sim$ 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in N...

  8. Common Cold

    Science.gov (United States)

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In the course of a year, people ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest ...

  9. The effect of orbital damping during planet migration on the Inclination and Eccentricity Distributions of Neptune Trojans

    OpenAIRE

    Chen, Yuan-Yuan; Ma, Yuehua; Zheng, Jiaqing

    2016-01-01

    We explore planetary migration scenarios for formation of high inclination Neptune Trojans (NTs) and how they are affected by the planetary migration of Neptune and Uranus. If Neptune and Uranus's eccentricity and inclination were damped during planetary migration, then their eccentricities and inclinations were higher prior and during migration than their current values. Using test particle integrations we study the stability of primordial NTs, objects that were initially Trojans with Neptun...

  10. Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b

    CERN Document Server

    Moses, Julianne I; Visscher, Channon; Richardson, Molly R; Nettelmann, Nadine; Fortney, Jonathan J; Stevenson, Kevin B; Madhusudhan, Nikku

    2013-01-01

    Neptune-sized extrasolar planets that orbit relatively close to their host stars -- often called "hot Neptunes" -- are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000x solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H2-dominated atmospheres to more Venus-like, CO2-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H2O, CO, CO2, and even O2-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a...

  11. Time-series Analysis of Broadband Photometry of Neptune from K2

    DEFF Research Database (Denmark)

    Rowe, Jason F.; Gaulme, Patrick; Lissauer, Jack J.

    2017-01-01

    We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain v...

  12. The formation of Uranus and Neptune on the CO iceline

    Science.gov (United States)

    Ali Dib, Mohamad; Mousis, Olivier; Petit, Jean-Marc; Lunine, Jonathan I.

    2014-11-01

    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties observed in no other planets. Here we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide iceline. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus and Neptune's building blocks with the cometary value. Finally, Our scenario generalizes a well known hypothesis that Jupiter formed on an iceline (water snowline) for the two ice giants, and might be a first step towards generalizing this mechanism for other giant planets. [1] Ali-Dib, M.; Mousis, O.; Petit, J.-M.; Lunine, J. I. The Astrophysical Journal (2014a, in press). arXiv:1407.2568[2] Ali-Dib, M.; Mousis, O.; Petit, J.-M.; Lunine, J. I. The Astrophysical Journal, Volume 785, Issue 2, article id. 125, 7 pp. (2014b).

  13. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    Science.gov (United States)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ˜0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ˜0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

  14. Ongoing Dynamics and Evolution of Neptune's Ring-Moon System

    Science.gov (United States)

    Showalter, Mark R.; de Pater, Imke; Lissauer, Jack J.; French, Robert S.

    2017-06-01

    We report results derived from observations of the Neptune system using the Hubble Space Telescope (HST) during August 2016. These observations entail repeated, extremely long exposures through the broadest available filter on the WFC3/UVIS instrument to reveal details of Neptune's faint rings and small, inner moons. The work complements similar observations performed by HST in 2004-2005 and 2009. A principal goal was the recovery of the small moon S/2004 N 1 (henceforth N14), which was first reported in 2009. New images show the moon clearly and make it possible to obtain accurate orbital elements for the first time. A complete analysis of all data 2004-2016 reveals that the mean motion n = 378.90616 +/- 0.00003 degrees per day, corresponding to a semimajor axis a = 105,283 km. Eccentricity and inclination are quite small, with e < 0.001 and i < 0.1 degrees. (This result accounts for the local Laplace Plane tilt of ~ 0.4 degrees). N14 has a physical radius R = 13-15 km, assuming its albedo is 0.09 +/- 0.01, which is the range of Neptune's other inner moons. It orbits interior to the much larger moon Proteus (a = 117,647 km; R = 210 km). Tides are believed to have caused Proteus to spiral outward significantly since its origin, and we find that N14 orbits within the radial zone likely crossed by Proteus. We suggest that N14 may have originated as debris ejected from an impact into Proteus; Proteus subsequently continued to evolve outward but the debris accreted into N14 and remains at its original point of origin. Naiad, the innermost of Neptune's moons, is now orbiting ~ 120 degrees ahead of its published orbital elements. This represents only a 1-sigma correction from its mean motion as derived from Voyager data, but it indicates that later, purported detections of Naiad with the Keck telescope were almost certainly misidentifications. The arcs in the Adams ring show that trends reported previously have continued: the two leading arcs are no longer visible

  15. VLT/NACO observations of Neptune's ring arcs

    Science.gov (United States)

    Renner, S.; Sicardy, B.; Souami, D.; Dumas, C.

    2011-10-01

    We present NACO adaptative optics observations of Neptune's ring arcs at 2.2 μm (K band), taken with the VLT-Yepun telescope in August 2007. We give improved mean motion values for the arcs and Galatea, thus confirming the mismatch between the arcs' position and the location of the 42:43 corotation inclination resonance. We compare the photometry of the arcs with previous observations. We finally use the data to constrain the masses and positions of the coorbital satellites which could confine the arcs, while allowing a slow evolution of the system.

  16. The Physical Structure and Chemical Composition of Neptune's Atmosphere from Combined Herschel and Spitzer Spectral Observations

    Science.gov (United States)

    Orton, Glenn S.; Moreno, R.; Lellouch, E.; Fletcher, L. N.; Hartogh, P.; Feuchtgruber, H.; Jarchow, C.; Cavalie, T.; Lara, L.; Rengel, M.; Gonzalez, A.; Line, M.; Herschel HssO Key Project Team

    2010-10-01

    We report the analysis of thermal-infrared observations of Neptune's disk by experiments on the Spitzer and Herschel Space Telescopes. The Spitzer data were obtained by the IRS instrument at wavelengths between 5.2 and 21.5 microns at a spectral resolving power, R 70, and at wavelengths between 10 and 21.5 microns at R 600. The Herschel observations were made by the PACS instrument's integral field spectrometer between 51 and 220 microns at R 3000, within the framework of the Key Project, ``Water and Related Chemistry in the Solar System''. Our analysis is set in the context of lower-resolution spectra obtained by the ISO LWS and SWS spectrometers covering wavelengths between 28 and 185 microns and the Akari IRC spectrometer covering wavelengths between 5.8 and 13.3 microns at R 40, together with spatially resolved ground-based studies of thermal emission. Our results indicate that that global-mean tropospheric temperatures are lower than those derived from the Voyager radio-occultation experiment, and consistent with the ISO results. Preliminary results (Lellouch et al. 2010 Astron. & Astrophys. In press) indicate that the D/H ratio is 4.5±1.0 x 10-5, consistent with enrichment of deuterium over the protosolar value, and the stratospheric column of H2O is 2.1±0.5 x 1014 cm-2. The peak CH4 abundance in the stratosphere is orders of magnitude larger than if it were cold-trapped below the mean 54-Kelvin tropopause minimum temperature - but consistent with injection from Neptune's warmer south polar region. Good fits to a variety of other stratospheric emission features are obtained: CO, CH3, CO2, C2H2, C2H4, C2H6, C3H8, C4H2. It is also possible to obtain a better fit to a spectral region dominated by C2H6 emission by adding 50-100 ppt of C6H6.

  17. Study and application of the resonant secular dynamics beyond Neptune

    CERN Document Server

    Saillenfest, Melaine; Tommei, Giacomo; Valsecchi, Giovanni B

    2016-01-01

    We use a secular representation to describe the long-term dynamics of transneptunian objects in mean-motion resonance with Neptune. The model applied is thoroughly described in Saillenfest et al. (2016). The parameter space is systematically explored, showing that the secular trajectories depend little on the resonance order. High-amplitude oscillations of the perihelion distance are reported and localised in the space of the orbital parameters. In particular, we show that a large perihelion distance is not a sufficient criterion to declare that an object is detached from the planets. Such a mechanism, though, is found unable to explain the orbits of Sedna or 2012VP113, which are insufficiently inclined (considering their high perihelion distance) to be possibly driven by such a resonant dynamics. The secular representation highlights the existence of a high-perihelion accumulation zone due to resonances of type 1:k with Neptune. That region is found to be located roughly at semi-major axes in [100;300] AU, p...

  18. A resonant chain of four transiting, sub-Neptune planets

    Science.gov (United States)

    Mills, Sean M.; Fabrycky, Daniel C.; Migaszewski, Cezary; Ford, Eric B.; Petigura, Erik; Isaacson, Howard

    2016-05-01

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  19. An extrasolar planetary system with three Neptune-mass planets.

    Science.gov (United States)

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  20. Dynamics of Neptune's Trojans: II. Eccentric orbits and observed ones

    CERN Document Server

    Zhou, Li-Yong; Sun, Yi-Sui

    2010-01-01

    In a previous paper, we have presented a global view of the stability of Neptune Trojan (NT hereafter) on inclined orbit. We discuss in this paper the dependence of stability of NT orbits on the eccentricity. High-resolution dynamical maps are constructed using the results of extensive numerical integrations of orbits initialized on the fine grids of initial semimajor axis (a0) versus eccentricity (e0). The extensions of regions of stable orbits on the (a0, e0) plane at different inclinations are shown. The maximum eccentricities of stable orbits in three most stable regions at low (0, 12deg.), medium (22,36deg.) and high (51, 59deg.) inclination, are found to be 0.10, 0.12 and 0.04, respectively. The fine structures in the dynamical maps are described. Via the frequency analysis method, the mechanisms that portray the dynamical maps are revealed. The secondary resonances, concerning the frequency of the librating resonant angle and the frequency of the quasi 2:1 mean motion resonance between Neptune and Uran...

  1. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  2. The effect of orbital damping during planet migration on the Inclination and Eccentricity Distributions of Neptune Trojans

    CERN Document Server

    Chen, Yuan-Yuan; Zheng, Jiaqing

    2016-01-01

    We explore planetary migration scenarios for formation of high inclination Neptune Trojans (NTs) and how they are affected by the planetary migration of Neptune and Uranus. If Neptune and Uranus's eccentricity and inclination were damped during planetary migration, then their eccentricities and inclinations were higher prior and during migration than their current values. Using test particle integrations we study the stability of primordial NTs, objects that were initially Trojans with Neptune prior to migration. We also study Trans-Neptunian objects captured into resonance with Neptune and becoming NTs during planet migration. We find that most primordial NTs were unstable and lost if eccentricity and inclination damping took place during planetary migration. With damping, secular resonances with Neptune can increase a low eccentricity and inclination population of Trans-Neptunian objects increasing the probability that they are captured into 1:1 resonance with Neptune, becoming high inclination NTs. We sugg...

  3. COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Moses, J. I. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Line, M. R. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Visscher, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Richardson, M. R. [Rice University, Houston, TX 77005-1892 (United States); Nettelmann, N.; Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Barman, T. S. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Stevenson, K. B. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Madhusudhan, N., E-mail: jmoses@spacescience.org [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States)

    2013-11-01

    Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.

  4. Cold Sores

    Science.gov (United States)

    ... Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores Canker Sore or Cold Sore? Mouth Sores: Caused By Student Stress? games Home | InfoBites | Find a Dentist | Your Family's Oral Health | Newsroom | RSS About AGD | Contact AGD | Site Map | ...

  5. Deliverable 4.1 Homogeneous LCA methodology agreed by NEPTUNE and INNOWATECH

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky; Wenzel, Henrik

    2007-01-01

    In order to do a life cycle assessment (LCA) of a waste water treatment technique, a system to handle the mapped inventory data and a life cycle impact assessment (LCIA) method/model is needed. Besides NEPTUNE, another EU-funded project has the same methodology need namely INNOWATECH (contract No...... between the two projects and eventually normalise the final output. A coordination/working group with representatives from INNOWATECH (WP4) and NEPTUNE (WP4) has been set up. It consists of the following representatives from the two projects: NEPTUNE: Henrik Fred Larsen (DTU/IPU), Michael Hauschild (DTU...

  6. The confinement of Neptune's ring arcs by the moon Galatea

    Science.gov (United States)

    Namouni, Fathi; Porco, Carolyn

    2002-05-01

    Neptune has five narrow ring arcs, spanning about 40 degrees in longitude, which are apparently confined against the rapid azimuthal and radial spreading that normally results from inter-particle collisions. A gravitational resonance based on the vertical motion of the nearby neptunian moon Galatea was proposed to explain the trapping of the ring particles into a sequence of arcs. But recent observations have indicated that the arcs are away from the resonance, leaving their stability again unexplained. Here we report that a resonance based on Galatea's eccentricity is responsible for the angular confinement of the arcs. The mass of the arcs affects the precession of Galatea's eccentric orbit, which will enable a mass estimate from future observations of Galatea's eccentricity.

  7. Recovering Neptune 170 Years After its Initial Discovery

    Science.gov (United States)

    Myles, Justin

    2017-01-01

    Recent work by Trujillo and Shephard (2014) and Batygin and Brown (2016) has shown an as-yet unexplained clustering of the periapse vectors of the most distant Kuiper Belt objects. This unusual clustering has motivated the search for an unseen perturbing planet that is responsible for maintaining the alignment. As a proof of concept of a technique for locating unseen solar system planets, we use dynamical N-body integrations to simulate the orbital dynamics of distant Kuiper Belt objects, with the aim of determining the orbital parameters of Neptune (which, for the sake of exercise, we assume is, as-yet, undiscovered). In this poster, we determine the accuracy with which the perturbing planet’s orbital elements and sky location can be determined, and we show how the lessons learned can improve the search strategy for potentially undiscovered trans-Neptunian planets.

  8. Five New Transits of the Super-Neptune HD 149026

    CERN Document Server

    Winn, Joshua N; Torres, Guillermo; Holman, Matthew J

    2007-01-01

    We present new photometry of HD 149026 spanning five transits of its "super-Neptune" planet. In combination with previous data, we improve upon the determination of the planet-to-star radius ratio: R_p/R_star = 0.0491^{+0.0018}_{-0.0005}. We find the planetary radius to be 0.71 +/- 0.05 R_Jup, in accordance with previous theoretical models invoking a high metal abundance for the planet. The limiting error is the uncertainty in the stellar radius. Although we find agreement among four different ways of estimating the stellar radius, the uncertainty remains at 7%. We also present a refined transit ephemeris and a constraint on the orbital eccentricity and argument of pericenter, e cos(omega) = -0.0014 +/- 0.0012, based on the measured interval between primary and secondary transits.

  9. Validation of NEPTUNE-CFD on ULPU-V experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, Mathieu, E-mail: mathieu.jamet@edf.fr; Lavieville, Jerome; Atkhen, Kresna; Mechitoua, Namane

    2015-11-15

    In-vessel retention (IVR) of molten corium through external cooling of the reactor pressure vessel is one possible means of severe accident mitigation for a class of nuclear power plants. The aim is to successfully terminate the progression of a core melt within the reactor vessel. The probability of success depends on the efficacy of the cooling strategy; hence one of the key aspects of an IVR demonstration relates to the heat removal capability through the vessel wall by convection and boiling in the external water flow. This is only possible if the in-vessel thermal loading is lower than the local critical heat flux expected along the outer wall of the vessel, which is in turn highly dependent on the flow characteristics between the vessel and the insulator. The NEPTUNE-CFD multiphase flow solver is used to obtain a better understanding at local scale of the thermal hydraulics involved in this situation. The validation of the NEPTUNE-CFD code on the ULPU-V facility experiments carried out at the University of California Santa Barbara is presented as a first attempt of using CFD codes at EDF to address such an issue. Two types of computation are performed. On the one hand, a steady state algorithm is used to compute natural circulation flow rates and differential pressures and, on the other, a transient algorithm computation reveals the oscillatory nature of the pressure data recorded in the ULPU facility. Several dominant frequencies are highlighted. In both cases, the CFD simulations reproduce reasonably well the experimental data for these quantities.

  10. Suggestive correlations between the brightness of Neptune, solar variability, and Earth's temperature

    Science.gov (United States)

    Hammel, H. B.; Lockwood, G. W.

    2007-04-01

    Long-term photometric measurements of Neptune show variations of brightness over half a century. Seasonal change in Neptune's atmosphere may partially explain a general rise in the long-term light curve, but cannot explain its detailed variations. This leads us to consider the possibility of solar-driven changes, i.e., changes incurred by innate solar variability perhaps coupled with changing seasonal insolation. Although correlations between Neptune's brightness and Earth's temperature anomaly-and between Neptune and two models of solar variability-are visually compelling, at this time they are not statistically significant due to the limited degrees of freedom of the various time series. Nevertheless, the striking similarity of the temporal patterns of variation should not be ignored simply because of low formal statistical significance. If changing brightnesses and temperatures of two different planets are correlated, then some planetary climate changes may be due to variations in the solar system environment.

  11. Tracking Neptune's Migration History through High-Perihelion Resonant Trans-Neptunian Objects

    CERN Document Server

    Kaib, Nathan A

    2016-01-01

    Recently, Sheppard et al. (2016) presented the discovery of 7 new trans-Neptunian objects with perihelia beyond 40 AU with moderate eccentricities and semimajor axes over 50 AU. Like the handful of previously known bodies on similar orbits, these objects' semimajor axes are just beyond the Kuiper belt edge and clustered around mean motion resonances (MMRs) with Neptune. The objects likely obtained their observed orbits while trapped in a MMR, where the Kozai-Lidov mechanism can raise their perihelia. This mechanism generates a high-perihelion population and also weakens Neptune's dynamical influence over these objects. Here we numerically model the production of this population under a variety of different migration scenarios for Neptune, varying both migration speed and migration smoothness. We find that high-perihelion objects near Neptunian MMRs constrain the nature of Neptune's migration. In particular, the population near the 3:1 MMR (near 62 AU) is especially useful due to its large population and short...

  12. The Pan-STARRS 1 Discoveries of five new Neptune Trojans

    CERN Document Server

    Lin, Hsing Wen; Holman, Matthew J; Ip, Wing-Huen; Payne, M J; Lacerda, P; Fraser, W C; Gerdes, D W; Bieryla, A; Sie, Z -F; Chen, W -P; Burgett, W S; Denneau, L; Jedicke, R; Kaiser, N; Magnier, E A; Tonry, J L; Wainscoat, R J; Waters, C

    2016-01-01

    In this work we report the detection of seven Neptune Trojans (NTs) in the Pan-STARRS 1 (PS1) survey. Five of these are new discoveries, consisting of four L4 Trojans and one L5 Trojan. Our orbital simulations show that the L5 Trojan stably librates for only several million years. This suggests that the L5 Trojan must be of recent capture origin. On the other hand, all four new L4 Trojans stably occupy the 1:1 resonance with Neptune for more than 1 Gyr. They can, therefore, be of primordial origin. Our survey simulation results show that the inclination width of the Neptune Trojan population should be between $7^{\\circ}$ and $27^{\\circ}$ at $>$ 95% confidence, and most likely $\\sim 11^{\\circ}$. In this paper, we describe the PS1 survey, the Outer Solar System pipeline, the confirming observations, and the orbital/physical properties of the new Neptune Trojans.

  13. Time-Series Analysis of Broadband Photometry of Neptune from K2

    DEFF Research Database (Denmark)

    Rowe, Jason F.; Gaulme, Patrick; Lissauer, Jack J.

    2017-01-01

    We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain...... and the K2 spacecraft, and solar variability with convection-driven solar p modes present....

  14. Use of Nuclear Electric Power and Propulsion for a Neptune Mission

    Science.gov (United States)

    Bienstock, B.; Atkinson, D.; Baines, K.; Mahaffy, P.; Atreya, S.; Stern, A.; Steffes, P.; Wright, M.

    2005-12-01

    Over one year ago, our response to a NASA Research Announcement (NRA) for Space Science Vision Missions resulted in the award of a NASA Vision Mission contract to study a Neptune Orbiter with Probes mission using nuclear electric propulsion (NEP). Our national team of engineers and scientists from aerospace, academia, NASA centers and the Southwest Research Institute has developed a mission concept that satisfies the goals of our scientists. Our poster describes the science and highlights the numerous engineering challenges that must be resolved in order to accomplish our ambitious mission. The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, primarily comprising hydrogen and helium; and the ice giants Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, by extension, extrasolar systems. Recognizing the tremendous spacecraft resources made available by nuclear electric power, our science team specified that Neptune's fascinating moon, Triton, be included as another target for in situ science. Although our overall plan is a Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to a depth of 100 bars, the science goals and objectives pertain to any detailed study of the Neptune system. For our mission, power and propulsion would be provided using nuclear electric technologies. Such a grand mission requires that a number of technical issues be investigated and resolved, including: (1) developing a realizable mission design that allows proper targeting and timing of the entry probes while

  15. The outward radial offset of neptune ring arcs

    Science.gov (United States)

    Tsui, K. H.

    2003-08-01

    It is consensus that the Neptune ring arcs are confined by the 42/43 Lindblad-corotation orbit-orbit resonant interactions with Galatea. Nevertheless, recent observations have indicated that the radial position of the arcs is off the expected resonance location by 1/3 Km outwards. Such radial offset, although very small, is unaccountable by fine tuning the restricted three-body model. In an attempt to resolve this issue, we use a restricted four-body model where the center of mass is anchored by the central body Neptune S and the primary body Triton X. Two minor bodies Galatea G and ring arc s interact with each other while orbiting under the combined XS field. In order to identify the disturbing potential, the equations of motion of s are manipulated to arrive at the energy equation in a frame centered at S with a fixed reference axis. Due to the orbital motions of X and G, the force field acting on s is non-conservative with velocity and time dependences. This non-conservative field is represented in the energy equation in two ways. First, it appears as the energy exchange terms of s with X and G on the right side of the equation. Second, it appears in the potential function on the left side of the equation in a velocity dependent term, which could be removed by going to the SX rotating frame. Rearranging the non-conservative term in the potential function and the sX energy exchange terms gives an angular momentum term of s acted on by a time derivative. This regrouped term can be expressed in terms of the usual disturbing potential V itself multiplied by a coefficient q and becomes conservative. Consequently, the disturbing potential of s read Vs = (1+q)V, and by the same token, we have VG = (1+q)V. The (1+q) factor in Vs represents the effect of the anchoring Triton X on the sG interaction. As a matter of fact, this factor can also be recovered in the restricted three-body system, but has been overlooked so far. With Vs and VG, the resonance relations are

  16. Explaining the 11-year periodicity in Neptune's atmosphere with Voyager 2 data

    Science.gov (United States)

    Aplin, Karen; Harrison, R. Giles

    2017-04-01

    Long-duration observations of Neptune's brightness at two visible wavelengths, made since the 1970s by Lockwood and co-workers [e.g. 1], give a disk-averaged estimate of variations in the planet's clouds and atmospheric aerosol. Brightness variations have previously been associated with the 11-year solar cycle [1], through two solar-modulated mechanisms, firstly, ultraviolet-related colour changes [2], or galactic cosmic ray (GCR)-related nucleation effects on atmospheric particle formation. Over 40 years of brightness data (1972-2014) are used here to show, with physically realistic modelling, that ultraviolet and GCR are likely to be modulating Neptune's atmosphere in combination rather than as alternatives. Existence of the cosmic ray mechanism is further supported by the response of Neptune's atmosphere to an intermittent 1.5- to 1.9-year periodicity during the mid-1980s. This occurred in GCR and, critically for its use in mechanism discrimination, not the solar ultraviolet. This periodicity was detected both at Earth, and in GCR measured by Voyager 2, which was close to Neptune at that time. The similar coincident variability in Neptune's brightness suggests nucleation onto GCR ions. Both GCR and ultraviolet particle modulation mechanisms are expected to occur more rapidly than the subsequent atmospheric transport processes.[2] [1] Lockwood, G. W. & Thompson, D. T. Photometric variability of Neptune, 1972-2000. Icarus 156, 37-51 (2002). [2] Aplin, K. L. & Harrison, R. G. Determining solar effects in Neptune's atmosphere. Nat. Commun. 7:11976 doi: 10.1038/ncomms11976 (2016)

  17. Magnetic fields of Uranus and Neptune: Metallic fluid hydrogen

    Science.gov (United States)

    Nellis, W. J.

    2017-01-01

    Based on a substantial database measured over several decades for representative planetary fluids at representative dynamic pressures and temperatures up to 200 GPa and a few 1000 K, the complex magnetic fields of Uranus and Neptune (U/N) are (i) made primarily by degenerate metallic fluid H (MFH) at or near crossovers from H-He envelopes to "Ice" cores at 100 GPa (Mbar) pressures and 90% the radii of U/N; (ii) electrical conductivity of MFH is a factor of 100 larger than conductivity of "Ices" thought previously to make the magnetic fields of U/N; (iii) because those magnetic fields are made close to outer surfaces, non-dipolar magnetic fields can be expected as observed; (iv) the "Ice" cores are a heterogeneous fluid mixture of nebular Ice and Rock that accreted, sank below the H-He envelopes into the cores in which nebular materials decomposed at high pressures and temperatures and re-reacted to form new chemical species; (v) those magnetic fields are probably non-axisymmetric because rotational motions of U/N are weakly coupled to convective motions that make their magnetic fields by dynamos. For U/N "polar wander" is probably a better descriptor for variations of magnetic field over time than "polar reversal" as for Earth. Ironically, there probably is little "Ice" in the Ice Giants.

  18. The Neptune-Sized Circumbinary Planet Kepler-38b

    CERN Document Server

    Orosz, Jerome A; Carter, Joshua A; Brugamyer, Erik; Buchhave, Lars A; Cochran, William D; Endl, Michael; Ford, Eric B; MacQueen, Phillip; Short, Donald R; Torres, Guillermo; Windmiller, Gur; Agol, Eric; Barclay, Thomas; Caldwell, Douglas A; Clarke, Bruce D; Doyle, Laurance R; Fabrycky, Daniel C; Geary, John C; Haghighipour, Nader; Holman, Matthew J; Ibrahim, Khadeejah A; Jenkins, Jon M; Kinemuchi, Karen; Li, Jie; Lissauer, Jack J; Prsa, Andrej; Ragozzine, Darin; Shporer, Avi; Still, Martin; Wade, Richard A

    2012-01-01

    We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A = 1.757 +/- 0.034 solar radii) paired with a low-mass star (M_B = 0.249 +/- 0.010 solar masses and R_B = 0.2724 +/- 0.0053 solar radii) in a mildly eccentric (e=0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1 through 11), from which a planetary period of 105.595 +/- 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 +/- 0.11 Earth radii, or 1.12 +/- 0.03 Neptune radii. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 Earth masse...

  19. Sizes, shapes, and albedos of the inner satellites of Neptune

    Science.gov (United States)

    Karkoschka, Erich

    2003-04-01

    Based on 87 resolved Voyager images of the five innermost satellites of Neptune, their shapes were measured and fit by tri-axial ellipsoids with the semi-axes of 48 × 30 × 26 km for Naiad, 54 × 50 × 26 km for Thalassa, 90 × 74 × 64 km for Despina, 102 × 92 × 72 km for Galatea, and 108 × 102 × 84 km for Larissa. Thomas and Veverka published a similar shape for Larissa (104 × 89 km, J. Geophys. Res. 96, 19261-19268, 1991). The other satellites had no published shapes. Using Voyager photometry of the six inner satellites by the same authors and the revised sizes, including the published size of Proteus, the reflectivity within this inner system was found to vary by about 30%. Geometric albedos in the visible are estimated between 0.07 for Naiad and 0.10 for Proteus. The rotational lightcurves of these satellites seem to be due to satellite shapes.

  20. High Energy Gain IFEL at UCLA Neptune Laboratory

    CERN Document Server

    Musumeci, Pietro; Clayton, Chris; Doyuran, Adnan; England, Robert J; Joshi, Chandrashekhar; Pellegrini, Claudio; Ralph, Joseph; Rosenzweig, James E; Sung, Chieh; Tochitsky, Sergei Ya; Tolmachev, Sergey; Travish, Gil; Varfolomeev, A; Varfolomeev, Alexander; Yarovoi, Timofey V; Yoder, Rodney

    2005-01-01

    We report the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected in an undulator strongly tapered in period and field amplitude. The IFEL driver is a CO2 10.6 mkm laser with power larger than 400 GW. The Rayleigh range of the laser, ~ 1.8 cm, is much shorter than the undulator length so that the interaction is diffraction dominated. A few per cent of the injected particles are trapped in a stable accelerating bucket. Electrons with energies up to 35 MeV are measured by a magnetic spectrometer. Simulations, in good agreement with the experimental data, show that most of the energy gain occurs in the first half of the undulator at a gradient of 70 MeV/m and that the structure in the measured energy spectrum arises because of higher harmonic IFEL interaction in the second half of the undulator.

  1. The Secular and Rotational Brightness Variations of Neptune

    CERN Document Server

    Schmude, Richard W; Fox, Jim; Krobusek, Bruce A; Pavlov, Hristo; Mallama, Anthony

    2016-01-01

    Neptune has brightened by more than 10% during the past several decades. We report on the analysis of published Johnson-Cousins B and V magnitudes dating back to 1954 along with new U, B, V, R, Rc, I and Ic photometry that we recorded during the past 24 years. Characteristic magnitudes, colors and albedos in all seven band-passes are derived from the ensemble of data. Additionally, 25 spectra spanning 26 hours of observation on 5 nights are analyzed. The spectrophotometry demonstrates that planetary flux and albedo is inversely related to the equivalent widths of methane bands. We attribute the changes in band strength, flux and albedo to the high altitude clouds which rotate across the planet's visible disk. Bright clouds increase albedo and flux while reducing methane absorption. Synthetic V magnitudes derived from the spectroscopy also agree closely with the photometric quantities, which cross-validates the two techniques. The spectroscopic and photometric results are discussed within the framework of the ...

  2. Spatially-Resolved Millimeter-Wavelength Maps of Neptune

    CERN Document Server

    Luszcz-Cook, S H; Wright, M

    2013-01-01

    We present maps of Neptune in and near the CO (2-1) rotation line at 230.538 GHz. These data, taken with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) represent the first published spatially-resolved maps in the millimeter. At large (~5 GHz) offsets from the CO line center, the majority of the emission originates from depths of 1.1-4.7 bar. We observe a latitudinal gradient in the brightness temperature at these frequencies, increasing by 2-3 K from 40 degrees N to the south pole. This corresponds to a decrease in the gas opacity of about 30% near the south pole at altitudes below 1 bar, or a decrease of order a factor of 50 in the gas opacity at pressures greater than 4 bar. We look at three potential causes of the observed gradient: variations in the tropospheric methane abundance, variations in the H2S abundance, and deviations from equilibrium in the ortho/para ratio of hydrogen. At smaller offsets (0-213 MHz) from the center of the CO line, lower atmospheric pressures are probed, w...

  3. 2008 LC18: a potentially unstable Neptune Trojan

    CERN Document Server

    Horner, J; Bannister, M T; Francis, P

    2012-01-01

    The recent discovery of the first Neptune Trojan at the planet's trailing (L5) Lagrange point, 2008 LC18, offers an opportunity to confirm the formation mechanism of a member of this important tracer population for the Solar system's dynamical history. We tested the stability of 2008 LC18's orbit through a detailed dynamical study, using test particles spread across the \\pm3{\\sigma} range of orbital uncertainties in a, e, i and {\\Omega}. This showed that the wide uncertainties of the published orbit span regions of both extreme dynamical instability, with lifetimes 1 Gyr lifetimes). The stability of 2008 LC18's clones is greatly dependent on their semi-major axis and only weakly correlated with their eccentricity. Test particles on orbits with an initial semi-major axis less than 29.91 AU have dynamical half-lives shorter than 100 Myr; in contrast, particles with an initial semi-major axis greater than 29.91 AU exhibit such strong dynamical stability that almost all are retained over the 1 Gyr of our simulat...

  4. Common cold

    Science.gov (United States)

    ... have a low fever or no fever. Young children often run a fever around 100 to 102°F (37.7 to 38.8°C). Depending on which virus caused your cold, you may also have: Cough Decreased appetite Headache Muscle aches Postnasal drip Sore throat

  5. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  6. Near-infrared photometry and astrometry of Neptune's inner satellites and ring-arcs

    Science.gov (United States)

    Dumas, C.; Terrile, R. J.; Smith, B. A.; Schneider, G.; Becklin, E. E.

    2000-10-01

    Until recently, the system of Neptune's inner satellites and ring-arcs had only been observed in direct imaging from the Voyager 2 spacecraft, limiting our knowledge of this system to visible wavelengths data. Nearly ten years after the Voyager fly-by, HST/NICMOS observed the close vicinity of Neptune at 1.87μ m, a wavelength that corresponds to a strong methane absorption in the atmosphere of Neptune and allows the attenuation of the scattered light produced by the planet. We derived the near-infrared geometric albedo of the ring-arcs and small moons Proteus, Larissa, Galatea and Despina, and compared their orbital positions with the predictions from the 1989 Voyager observations. The surfaces of the inner satellites of Neptune appear to be coated with dark, neutral material, with albedoes ranging from 0.077 (Proteus) to 0.033 (Despina) and their orbital position was found to be within the prediction errors of the Voyager measurements. The material located inside the ring-arcs of Neptune also displays a low-neutral reflectance (p{1.87 μm } ~ 0.055) and the HST/NICMOS measurement of the mean orbital motion of the ring-arcs shows that their confinement cannot be entirely explained by resonances produced by the nearby satellite Galatea (Nature, 400, 733-735). This work was performed at the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration, and is supported by NASA grant NAG5-3042.

  7. Neptune's Dynamic Atmosphere from Kepler K2 Observations: Implications for Brown Dwarf Light Curve Analyses

    CERN Document Server

    Simon, Amy A; Gaulme, Patrick; Hammel, Heidi B; Casewell, Sarah L; Fortney, Jonathan J; Gizis, John E; Lissauer, Jack J; Morales-Juberias, Raul; Orton, Glenn S; Wong, Michael H; Marley, Mark S

    2015-01-01

    Observations of Neptune with the Kepler Space Telescope yield a 49-day light curve with 98% coverage at a 1-minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-meter telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired 9 months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long time scales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extras...

  8. Microlens OGLE-2005-BLG-169 Implies Cool Neptune-Like Planets are Common

    CERN Document Server

    Gould, A; Anderson, J; Bennett, D P; Bode, M F; Bond, I A; Botzler, C S; Bramich, D M; Burgdorf, M J; Christie, G W; De Poy, D L; Dong, S; Gaudi, B S; Han, C; Horne, K; Kubiak, M; Mao, S; McCormick, J; Paczynski, B; Park, B G; Pietrzynski, G; Pogge, R W; Poindexter, S; Rattenbury, N J; Snodgrass, C; Soszynski, I; Stanek, K Z; Steele, I A; Swaving, S C; Szewczyk, O; Szymanski, M K; Udalski, A; Ulaczyk, K; Wyrzykowski, L; Yock, P C M; Zhou, A Y

    2006-01-01

    We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely high-magnification (A~800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5 M_sun implying a planet mass of ~13 M_earth and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass-ratio planets with projected separations of 0.6 to 1.6 Einstein radii, corresponding to 1.6--4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass-ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f=0.37^{+0.30}_{-0.21} over ju...

  9. NEPTUNE Canada Regional Cabled Ocean Observatory: Installed and Online!

    Science.gov (United States)

    Barnes, C. R.; Best, M.; Bornhold, B.; Johnson, F.; Phibbs, P.; Pirenne, B.

    2009-12-01

    Through summer 2009, NEPTUNE Canada installed a regional cabled ocean observatory across the northern Juan de Fuca Plate, north-eastern Pacific. This provides continuous power and high bandwidth to collect integrated data on physical, chemical, geological, and biological gradients at temporal resolutions relevant to the dynamics of the earth-ocean system. As the data is freely and openly available through the Internet, this advance opens the ocean to the world. Building this $100M facility required integration of hardware, software, and people networks. Hardware includes: 800km powered fibre-optic backbone cable (installed 2007); development of Nodes and Junction Boxes; acquisition, development of Instruments including mobile platforms a) 400m Vertical Profiler (NGK Ocean) for accessing full upper slope water column, b) a Crawler (Jacobs University, Bremen) to investigate exposed hydrates. In parallel, software and hardware systems are acquiring, archiving, and delivering continuous real-time data. A web environment to combine this data access with analysis and visualization, collaborative tools, interoperability, and instrument control is in place and expanding. A network of scientists, engineers and technicians are contributing to the process in every phase. The currently installed experiments were planned through workshops and international proposal competitions. At inshore Folger Passage (Barkley Sound, west Vancouver Island), understanding controls on biological productivity will evaluate the effects of marine processes on invertebrates, fish and marine mammals. Experiments around Barkley Canyon will quantify changes in biological and chemical activity associated with nutrients and cross-shelf sediment transport at shelf/slope break and through the canyon. Along the mid-continental slope, exposed and shallowly buried hydrates allow monitoring of changes in their distribution, structure, and venting, and relationships to earthquakes, slope failures and plate

  10. Three New Moons Found around Neptune%海王星附近发现3颗新卫星

    Institute of Scientific and Technical Information of China (English)

    张强

    2003-01-01

    @@ Astronomers have found three previously unknown moons around Neptune, bringing the total for the distant giant planet to 11, the Harvard-Smithsonian Center for Astrophysics reported. These moons are the first to be discovered around Neptune since the NASA Voyager Ⅱ flyby in 1989, and the first discovered with a ground-based telescope since 1949,the center said in a statement.

  11. Morphology of Neptune Node Sites, Barkley Canyon, Cascadia Margin

    Science.gov (United States)

    Lundsten, E. M.; Anderson, K.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Riedel, M.

    2014-12-01

    High-resolution multibeam bathymetry and chirp seismic reflection profiles collected with MBARI's mapping autonomous underwater vehicle reveal the fine-scale morphology and shallow seafloor structure of the flanks and floor of Barkley Canyon on the Cascadia continental margin off British Columbia. The surveys characterize the environment surrounding three nodes on the Neptune Canada cabled observatory located within the canyon. The canyon floor between 960 and 1020 m water depth lacks channeling and contains ≥ 24 m of acoustically uniform sediment fill, which is ponded between the canyon's steep sidewalls. The fill overlies a strong reflector that outlines an earlier, now buried, canyon floor channel system. Debris flow tongues contain meter scale blocks sticking-up through the fill. Apparently the present geomorphology surrounding the Canyon Axis node in 985 m is attributable to local debris flows, rather than organized down canyon processes. In the survey area the canyon sidewalls extend ~300 m up and in places the slope of the canyons sides exceed 40°. Both the Hydrate node in 870 m water depths and the Mid-Canyon node at 890 m are located on a headland that forms intermediate depth terraces on the canyon's western flank. While the seafloor immediately surrounding the Mid-canyon node is smooth, the Hydrate node is marked by 10 circular mounds up to 2 m high and 10 m in diameter, presumable associated with hydrate formation. Although wedges of sediment drape occur in places on the canyon sides, the chirp profiles show no detectible sediment drape at either node site and suggest these nodes are situated on older, presumably pre-Quaternary strata. The lack of reflectors in the chirp profiles indicates most of the canyon's sidewalls are largely sediment-bare. Lineations in the bathymetry mark the exposed edges of truncated beds. Rough, apparently fresh textures, within slide scarps show the importance of erosion on the development of the canyon flanks.

  12. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  13. VizieR Online Data Catalog: Broadband photometry of Neptune from K2 (Rowe+, 2017)

    Science.gov (United States)

    Rowe, J. F.; Gaulme, P.; Lissauer, J. J.; Marley, M. S.; Simon, A. A.; Hammel, H. B.; Silva Aguirre, V.; Barclay, T.; Benomar, O.; Boumier, P.; Caldwell, D. A.; Casewell, S. L.; Chaplin, W. J.; Colon, K. D.; Corsaro, E.; Davies, G. R.; Fortney, J. J.; Garcia, R. A.; Gizis, J. E.; Haas, M. R.; Mosser, B.; Schmider, F.-X.

    2017-08-01

    The K2 C3 field provided the first opportunity to observe the planet Neptune for up to 80 days with short-cadence (1 minute) sampling (the C3 campaign had an actual duration of 69.2 days, limited by on-board data storage). We were awarded sufficient pixel allocation from Guest Observer Programs GO3060 (PI: Rowe) and GO3057 (PI: Gaulme) to continuously monitor Neptune for 49 days. Short-cadence target pixel files were obtained from Mikulski Archive for Space Telescopes (MAST). The Neptune short-cadence subraster was spread across 161 FITS files. Each file contained 1 column of time-series pixel data. Each target pixel file contains observations starting on 2014 November 15 and finishing on 2015 January 18. (1 data file).

  14. Accurate measurement of neodymium isotopic composition using Neptune MC-ICP-MS

    Institute of Scientific and Technical Information of China (English)

    Yueheng YANG; Hongfu ZHANG; Liewen XIE; Fuyuan WU

    2008-01-01

    This paper reports the measurement of the Neodymium isotopic composition by Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) over the last two years. Although there is concomitant Cerium in the chemical separation process, this has no significant influence on the Neodymium analysis. As for the sample containing small amounts of Samarium (Sm/Nd<0.04), direct calibration for isobaric interference and mass discrimina-tion by the exponential law can be obtained by assuming that Samarium mass discrimination is the same as that of Neodymium. Geological samples after traditional chemi-cal separation were measured by Neptune MC-ICP-MS and Thermal Ionization Mass Spectrometry (TIMS) respectively. The results show that Neptune MC-ICP-MS can measure Neodymium isotopic composition as precisely the TIMS does and is even more effective and less time-consuming than the TIMS Method.

  15. Development of the Neptune Deepwater Port: The Importance of Key Stakeholder Involvement and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Marc

    2010-09-15

    In 2005, a subsidiary of GDF SUEZ began developing the Neptune LNG Deepwater Port off the coast of Massachusetts. The project met with minimal opposition and maintained a very aggressive timeline. The reasons? Productive involvement with key stakeholders and well-defined benefits. This paper outlines the systematic approach to stakeholder outreach and mitigation planning that Neptune LNG LLC took to garner project acceptance. Details of the pre-planning phase, the stakeholder outreach phase, and the project mitigation phase are all discussed. The result was a major energy project that took less than 3.5 years to permit and 1.5 years to build.

  16. Liquid methane at extreme temperature and pressure: Implications for models of Uranus and Neptune

    CERN Document Server

    Richters, Dorothee

    2012-01-01

    We present large scale electronic structure based molecular dynamics simulations of liquid methane at planetary conditions. In particular, we address the controversy of whether or not the interior of Uranus and Neptune consists of diamond. In our simulations we find no evidence for the formation of diamond, but rather sp2-bonded polymeric carbon. Furthermore, we predict that at high tem- perature hydrogen may exist in its monoatomic and metallic state. The implications of our finding for the planetary models of Uranus and Neptune are in detail discussed.

  17. 33 CFR 165.T01-0542 - Safety Zones: Neptune Deepwater Port, Atlantic Ocean, Boston, MA.

    Science.gov (United States)

    2010-07-01

    ... Port, Atlantic Ocean, Boston, MA. 165.T01-0542 Section 165.T01-0542 Navigation and Navigable Waters... Guard District § 165.T01-0542 Safety Zones: Neptune Deepwater Port, Atlantic Ocean, Boston, MA. (a) Location. The following areas are safety zones: All navigable waters of the United States within a...

  18. The Intrinsic Neptune Trojan Orbit Distribution: Implications for the Primordial Disk and Planet Migration

    CERN Document Server

    Parker, Alex H

    2014-01-01

    The present-day orbit distribution of the Neptune Trojans is a powerful probe of the dynamical environment of the outer solar system during the late stages of planet migration. In this work, I conservatively debias the inclination, eccentricity, and libration amplitude distributions of the Neptune Trojans by reducing a priori unknown discovery and follow-up survey properties to nuisance parameters and using a likelihood-free Bayesian rejection sampler for parameter estimation. Using this survey-agnostic approach, I confirm that the Neptune Trojans are a dynamically excited population: at $>$95% confidence, the Neptune Trojans' inclination width must be $\\sigma_i > 11^\\circ$. For comparison and motivation purposes, I also model the Jupiter Trojan orbit distributions in the same basis and produce new estimates of their parameters (Jupiter Trojan $\\sigma_i=14.4^\\circ \\pm 0.5^\\circ$, $\\sigma_{L11} = 11.8^\\circ \\pm 0.5^\\circ$, and $\\sigma_e = 0.061\\pm 0.002$). The debiased inclination, libration amplitude, and ecc...

  19. Confirmation of transiting Neptunes from HATNet and HATSouth using Keck/HIRES and Subaru/HDS

    Science.gov (United States)

    Bakos, Gaspar; Hartman, Joel D.; Bayliss, Daniel; Jordan, Andres; Sato, Bun'ei

    2014-02-01

    Wide-field photometric observations by the HATNet and HATSouth projects have identified ~ 1700 candidate transiting exoplanets (TEPs) around moderately bright stars (V ⪉ 14), leading to the publication of 49 TEPs, with many more confirmed planets undergoing analysis. Among the objects that we have identified are nine promising candidate transiting Neptunes. Only a handful of well- characterized Neptunes are known, and fewer still are known around bright stars, so it is imperative to confirm and characterize these candidates. Here we are proposing for 2 nights each on Keck/HIRES and Subaru/HDS (4 nights altogether) to confirm 6 of these candidate Neptunes. These are around moderately bright stars (V ≲ 13) and most have prior follow-up observations, including moderately high- precision RVs which place upper limits on the RV semiamplitudes ruling out hot Jupiters. If confirmed, these planets would represent a substantial increase in the number of well characterized Neptune-size planets with masses and radii measured to better than ~ 20% precision, and orbiting stars bright enough to permit further follow-up. We note that the HATSouth project is an equal collaboration between researchers in the US, Chile and Australia. For the Subaru/HDS component of this proposal, we request that the time allocation be split evenly between the NOAO, Chilean and Australian Gemini TACs.

  20. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  1. Validation of NEPTUNE-CFD Two-Phase Flow Models Using Experimental Data

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNEC-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too.

  2. Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images.

    Science.gov (United States)

    Barisoni, Laura; Troost, Jonathan P; Nast, Cynthia; Bagnasco, Serena; Avila-Casado, Carmen; Hodgin, Jeffrey; Palmer, Matthew; Rosenberg, Avi; Gasim, Adil; Liensziewski, Chrysta; Merlino, Lino; Chien, Hui-Ping; Chang, Anthony; Meehan, Shane M; Gaut, Joseph; Song, Peter; Holzman, Lawrence; Gibson, Debbie; Kretzler, Matthias; Gillespie, Brenda W; Hewitt, Stephen M

    2016-07-01

    The multicenter Nephrotic Syndrome Study Network (NEPTUNE) digital pathology scoring system employs a novel and comprehensive methodology to document pathologic features from whole-slide images, immunofluorescence and ultrastructural digital images. To estimate inter- and intra-reader concordance of this descriptor-based approach, data from 12 pathologists (eight NEPTUNE and four non-NEPTUNE) with experience from training to 30 years were collected. A descriptor reference manual was generated and a webinar-based protocol for consensus/cross-training implemented. Intra-reader concordance for 51 glomerular descriptors was evaluated on jpeg images by seven NEPTUNE pathologists scoring 131 glomeruli three times (Tests I, II, and III), each test following a consensus webinar review. Inter-reader concordance of glomerular descriptors was evaluated in 315 glomeruli by all pathologists; interstitial fibrosis and tubular atrophy (244 cases, whole-slide images) and four ultrastructural podocyte descriptors (178 cases, jpeg images) were evaluated once by six and five pathologists, respectively. Cohen's kappa for inter-reader concordance for 48/51 glomerular descriptors with sufficient observations was moderate (0.40transformation. NEPTUNE digital pathology scoring system enables novel morphologic profiling of renal structures. For all histologic and ultrastructural descriptors tested with sufficient observations, moderate-to-excellent concordance was seen for 31/54 (57%). Descriptors not sufficiently represented will require further testing. This study proffers the NEPTUNE digital pathology scoring system as a model for standardization of renal biopsy interpretation extendable outside the NEPTUNE consortium, enabling international collaborations.

  3. Keck Adaptive Optics Observations of Neptune's Ring and Satellite Keck Adaptive Optics Observations of Neptune's Ring and Satellite System

    Science.gov (United States)

    de Pater, I.; Gibbard, S.; Martin, S.; Marchis, F.; Roe, H. G.; Macintosh, B.

    2003-05-01

    We observed Neptune, its satellites and ring system on UT 27 and 28 July 2002, with NIRC2 on the 10-m Keck II telescope at 2.2 micron. The total field of view was 10". Each image was integrated for 1 minute; on the first day we had a total of 18 frames, and 33 images on the second day, each spread out over a time interval of 1-2 hours. The complete Adams and Le Verrier rings are visible on each day, after combining all images. In the regions away from the ring arcs, we find that the Le Verrier ring is brighter (up to 20-40%) than the Adams ring. The ring arcs are readily apparent in combinations of the data that take into account Keplerian motion. The ring arc positions are in close agreement with Nicholson et al's (1995) result, as in HST/NICMOS images (Dumas et al. 2002). The Egalite ring has broadened even more since observed with HST/NICMOS in 1998, and is clearly the brightest ring arc. Liberte has decreased in intensity since Voyager and NICMOS. Courage was extremely faint in our images. The satellites Proteus, Larissa, Galatea and Despina are easily seen on individual frames. Thalassa is detected after properly shifting/rotating and adding several frames. This is the first time since the Voyager flybys that Thalassa is detected. Preliminary astrometric measurements suggest the satellites Larissa and Galathea, relative to Proteus, to be off from their nominal (JPL Horizons) positions by 0.3", and Despina by 0.1". Recent results indicate that Proteus is offset by 0.1" compared to Triton (Martins et al. 2003). Preliminary I/F values are 0.06 for Proteus, 0.045 for Larissa and Galatea, and 0.03 for Despina and Thalassa. These observations were supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783

  4. NEPTUNE-Canada%加拿大"海王星"海底观测网

    Institute of Scientific and Technical Information of China (English)

    李建如; 许惠平

    2011-01-01

    加拿大"海王星"海底观测网(NEPTUNE-Canada)是世界首个深海海底大型联网观测站,位于东太平洋的胡安·德·夫卡板块最北部.它以板块构造运动、海底下的流体、海洋生物与气候、深海生态系统为科学目标,通过海底光缆连接安装在海底的仪器设备,进行实时、连续的观测,并通过光电缆将观测信息传回陆地实验室.此外,NEPTUNE-Canada还具有崭新的管理运行形式和开放的数据管理模式,非常值得我国开展海底观测网建设时加以借鉴.%NEPTUNE-Canada ( North-East Pacific Time-series Undersea Networked Experiments) is the world's first regional-scale cabled ocean observatory on the northern Juan de Fuca tectonic plate in the north-east Pacific, and offers unprecedented opportunities for all researchers involved in the ocean and earth sciences. Major research themes of NEPTUNE-Canada are focused on earthquakes and plate tectonics, fluid flow in the seabed, marine processes and climate change, and deep-sea ecosystems. NEPTUNE-Canada is characterized by abundant power, high bandwidth communications and hundreds of sensors. This network connects directly Internet and delivers underwater data and imagery in real or near real time via high-speed optical fiber optic communications.

  5. Cuckoo in the Nest: The Fate of the Original Moons of Neptune

    Science.gov (United States)

    Cuk, Matija; Hamilton, Douglas P.

    2016-10-01

    Neptune's moon Triton is the largest captured satellite in the solar system, as indicated by its inclined retrograde orbit. The most likely mechanism for its capture is binary disruption, which ejected its former binary companion and placed Triton on a large, eccentric orbit around Neptune (Agnor and Hamilton 2006). While the tides would in principle circularize Triton's orbit (Goldreich et al. 1989), Triton's early orbit would have evolved much faster through interactions with preexisting moons of Neptune (Cuk and Gladman 2005). Assuming that the pre-existing moons of Neptune were similar to those of Uranus, analytical estimates are unclear on which outcome is most likely during moon-moon scattering. Cuk and Gladman (2005) suggested that collisions among the regular moons happen first, while Nogueira et al. (2011) find that collisions between Triton and an old moon, or an ejection should happen first. Here we use the general purpose (T+U) symplectic integrator to explore this short-lived epoch of orbit crossing in the Neptunian system. Our preliminary results indicate that Triton might have collided with one of the preexisting moons of Neptune before the regular satellites could have been destroyed in mutual collisions. Goldreich et al. (1989) claimed that a collision with a moon larger than Miranda would destroy Triton and therefore could be ruled out. However, using modern collisional disruption estimated from Stewart and Leinhardt (2012), we find that Triton could have accreted a 1000-km moon at relevant velocities without being disrupted. The product of this merger would have a much tighter orbit as the accreted moon would not have been retrograde like Triton. At the meeting we will present a more detailed exploration of possible post-capture configurations, and report quantitative probabilities for different outcomes of this exciting and violent episode of Triton's history.

  6. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... A Week of Healthy Breakfasts Shyness Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  7. Cold confusion

    Energy Technology Data Exchange (ETDEWEB)

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  8. Formation of Isothermal Disks around Protoplanets. I. Introductory Three-Dimensional Global Simulations for Sub-Neptune-Mass Protoplanets

    CERN Document Server

    Wang, Hsiang-Hsu; Shang, Hsien; Gu, Pin-Gao

    2014-01-01

    The regular satellites found around Neptune ($\\approx 17~M_{\\Earth}$) and Uranus ($\\approx 14.5~M_{\\Earth}$) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets ($< 17~M_{\\Earth}$). These disks have been shown to be cool, optically thin, quiescent, with low surface density and low viscosity. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for ...

  9. TRIDENT: Taking Remote and In-situ Data to Explore Neptune and Triton

    Science.gov (United States)

    Hosseini, Sona; Ries, P.; Fernandes, P.; Malaska, M.; Scully, J.; Clegg, R.; Patthoff, A.; Alibay, F.; Leonard, J.; Uckert, K.; Day, M.; Hutchins, M.; Fougere, N.; Craig, P.; McGranaghan, R.; Girazian, Z.; Mitchell, K.; Budney, C.

    2013-10-01

    The 2013-2022 Planetary Science Decadal Survey identified a detailed investigation of Solar System evolution as a priority for future NASA missions. Measuring the atmospheric composition and physical and chemical characteristics of the Neptune-Triton (N-T) system would provide answers about their history and evolution, thus yielding information about the makeup and dynamics of the early Solar System, as well as the later evolution of the Solar System. In addition, as Neptune-sized exoplanets are the most common type discovered, studying Neptune would provide insight into the structure and dynamics of extrasolar planetary systems. We present a conceptual design for a $1.4bn flyby mission to the N-T system (TRIDENT), consistent with these goals as the result of the 2013 NASA-JPL Planetary Science Summer School Session II. In this report, we present our initial orbiter designs and our final change to a flyby mission due to propulsion mass limitations. The results of this study show a second flyby of N-T provides significant new information about the system relative to the Voyager 2 flyby and to later Earth-based observations. TRIDENT consists of a 13 year cruise to the N-T system with an Earth-Earth-Jupiter-Neptune trajectory, a Triton flyby with a closest approach of less than 1000 km, a Neptune flyby of 30,000 km, and the release of a NASA-donated Neptune atmospheric probe. The probe is one of our key science drivers, which will measure in-situ isotope ratios and noble gas abundances of Neptune’s atmosphere that are critical constraints on Solar System formation. Our spacecraft also carries a versatile remote sensing package consisting of a narrow angle camera, magnetometer, plasma spectrometer, UV spectrometer, NIR spectrometer, and a doppler imager, which will provide unprecedented high-resolution, regional-to-global datasets for the target bodies. TRIDENT’s remote sensing suite would provide information on the dynamics, structure, and composition of Neptune

  10. Tsunami Research and Monitoring Enabled through Ocean Network Canada's NEPTUNE Cabled Observatory

    Science.gov (United States)

    Heesemann, M.; Insua, T. L.; Mihaly, S. F.; Thomson, R.; Rabinovich, A.; Fine, I.; Scherwath, M.; Moran, K.

    2014-12-01

    Ocean Networks Canada (ONC; http://www.oceannetworks.ca/) operates the multidisciplinary NEPTUNE and VENUS cabled ocean observatories off the west coast of Canada and an increasing number of miniature ocean observatories, such as in the Canadian Arctic. All data collected by these observatories are archived and publicly available through ONC's Oceans 2.0 data portal. Much of the data are related to marine geohazards, such as earthquakes, submarine landslides, and tsunamis and are delivered in real-time to various agencies, including early warning centers. The NEPTUNE and VENUS cabled observatories consist of over 850 km of cable deployed inshore and offshore off Vancouver Island and covers the coastal zones, the northern part of the Cascadia subduction zone, Cascadia Basin, and the Endeavour Segment of the Juan de Fuca Ridge. Geological evidence suggests that there is a 25-40% probability of a magnitude 8 or greater megathrust earthquake along the Cascadia subduction zone in the next 50 years and that the most recent great earthquake (estimated magnitude ~9.0) that occurred in 1700 caused widespread tsunami damage. However, most of the tsunamis that arrive in the area originate from distant sources around the Pacific. Over the last 100 years, numerous major tsunamis have occurred in the Pacific Ocean, killing many tens of thousands of people. The NEPTUNE observatory includes high-precision bottom pressure recorders (BPRs) at each major nodes and a tsunami meter consisting of three BPRs arranged on a ~20 km radius circle around the flat Cascadia Basin site. On September 30, 2009, just days after the first NEPTUNE instruments were installed, the first tsunami waves of 2.5-6.0 cm amplitude generated by the Mw 8.1 Samoa earthquake were recorded by six BPRs. The Samoan tsunami was followed by several other events recorded by the network, including the 2010 Chilean tsunami, the 2011 Tōhoku-Oki earthquake and tsunami, and the 2012 Haida Gwaii tsunami. These open

  11. OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    OpenAIRE

    Christophe, Bruno; Spilker, Linda J.; Anderson, John D.; André, Nicolas; Asmar, Sami W.; Aurnou, Jonathan; Banfield, Don; Barucci, Antonella; Bertolami, Orfeu; Bingham, Robert; Brown, Patrick; Cecconi, Baptiste; Courty, Jean-Michel; Dittus, Hansjörg; Fletcher, Leigh N.

    2011-01-01

    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere a...

  12. Cold energy

    Science.gov (United States)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  13. Cold energy

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, John P., E-mail: jpw@castinganalysis.com [Casting Analysis Corp., PO Box 52, Weyers Cave, VA 24486 (United States)

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  14. Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

    CERN Document Server

    Fletcher, Leigh N; Orton, Glenn S; Hammel, Heidi B; Sitko, Michael L; Irwin, Patrick G J

    2013-01-01

    Imaging and spectroscopy of Neptune's thermal infrared emission is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $\\pm$5 K at 1 mbar and $\\pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are e...

  15. The Sun among stars. IV - Albedos of Uranus and Neptune and the solar color

    Science.gov (United States)

    Hardorp, J.

    1981-01-01

    Geometric albedos in 48 adjacent 50 A bands from 3250 to 5600 A have been derived from observations of Uranus and Neptune. The solar analog found in earlier papers (Hardorp 1978, 1980) was chosen for these reductions, so these albedos are more reliable systematically than earlier ones and allow a choice among the scattering models of Savage et al. (1980). Green methane bands are stronger on Neptune. Strong solar absorption lines are found to be partially filled in by Raman-scattering. Neglect of this effect caused Croft et al. (1972) to find a solar color that is too blue. It probably also affected the classification of G-type stars in the Michigan Spectral Catalogue as well as Garrison's (1979) interpretation of IUE observations.

  16. Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields

    CERN Document Server

    Gerdes, D W; Bernstein, G M; Sako, M; Adams, F; Goldstein, D; Kessler, R; Abbott, T; Abdalla, F B; Allam, S; Benoit-Lévy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Dietrich, J P; Doel, P; Eifler, T F; Neto, A Fausti; Flaugher, B; Frieman, J; Gaztanaga, E; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Maia, M A G; March, M; Martini, P; Miller, C J; Miquel, R; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sanchez, E; Santiago, B; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarlé, G; Thaler, J; Walker, A R; Wester, W; Zhang, Y

    2015-01-01

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO$_{441}$ and 2014 QP$_{441}$ were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter-American Observatory. Both are in high-inclination orbits (18.8$^{\\circ}$ and 19.4$^{\\circ}$ respectively). With an eccentricity of 0.104, 2014 QO$_{441}$ has the most eccentric orbit of the eleven known stable Neptune Trojans. Here we describe the search procedure and investigate the objects' long-term dynamical stability and physical properties.

  17. Forming Jupiter, Saturn, Uranus and Neptune in Few Million Years by Core Accretion

    CERN Document Server

    Benvenuto, Omar G; Brunini, Adrian

    2009-01-01

    Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the solar system's giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks' lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial solar system orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30-100 meter sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.

  18. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    Science.gov (United States)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  19. Evolutionary Analysis of Gaseous Sub-Neptune-Mass Planets with MESA

    CERN Document Server

    Chen, Howard

    2016-01-01

    Sub-Neptune-sized exoplanets represent one of the most common types of planets in the Milky Way, yet many of their properties are unknown. Here, we present a prescription to adapt the capabilities of the stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) to model sub-Neptune mass planets with H/He envelopes. With the addition of routines treating the planet core luminosity, heavy element enrichment, atmospheric boundary condition, and mass loss due to hydrodynamic winds, the evolutionary pathways of planets with diverse starting conditions are more accurately constrained. Using these dynamical models, we construct mass-composition relationships of planets from 1 to 400 $M_{\\oplus}$ and investigate how mass-loss impacts their composition and evolution history. We demonstrate that planet radii are typically insensitive to the evolution pathway that brought the planet to its instantaneous mass, composition and age, with variations from hysteresis. We find that planet envelope mass l...

  20. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    Science.gov (United States)

    Wakeford, Hannah R.; Sing, David K.; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric; Tremblin, Pascal; Skalid Amundsen, David; Lewis, Nikole K.; Mandell, Avi; Fortney, Jonathan J.; Knutson, Heather; Benneke, Björn; Evans, Tom M.

    2017-01-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b’s atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  1. First Infrared Imaging of the Neptune Ring Arcs: HST/Nicmos Results

    Science.gov (United States)

    Terrile, R. J.; Dumas, C.; Smith, B. A.; Rieke, M.; Schneider, G.; Thompson, R.; Becklin, E.; Koerner, D.

    1998-09-01

    Neptune's ring arcs have not been imaged since the Voyager 2 flyby in 1989 (Smith et al. 1989, Science 246, 1422-1449). We used the HST and its near-infrared camera NICMOS to obtain the first detection at infrared wavelengths of the Neptune system of ring arcs. The faint inner satellites Proteus and Larissa were also detected. Scattered light coming from the giant planet was reduced considerably during the observations by positioning Neptune partially outside of the field of view of the camera. In addition to this, we used a filter whose bandpass is centered at 1.87mu m. This wavelength corresponds to a strong absorption by methane in Neptune's atmosphere. Two different values for the mean motion of the ring arcs (Nicholson et al. 1995, Icarus 113, 295-330) fit the ground-based and Voyager data sets. Initial results from this partially competed program indicate that the smaller value of 820.1118 deg/day for the arc motion is a better match to the data than the previously adopted value of 820.1194 deg/day. If this result is confirmed, it will call into question the close match between the semi-major axis of the arcs and the location of the 42:43 corotation resonance with Galatea (Porco 1991, Science 253, 995-1001). From the measurements made at visible wavelengths with Voyager (Thomas and Veverka 1991, JGR Supp. 96, 19253-19259) and at 1.87mu m with HST/Nicmos -- and assuming negligeable changes in the ring arcs color since 1989 -- we will be able to determine the visible/infrared color-index for the arcs and the two faint satellites detected and compare it to other primitive bodies of the outer solar system.

  2. Lessons learned from the NEPTUNE power system and other deep-sea adventures

    Science.gov (United States)

    Kirkham, Harold

    2005-01-01

    The development of underwater science systems presents some challenging technical issues. It seems that the best efforts of the engineers and scientists involved are sometimes inadequate, and projects that once seemed straightforward end up being late, or overbudget, or cancelled. This paper will review some of the lessons that may be learned from the examples of three science projects in the deep ocean: the DUMAND neutrino detector, the H20 observatory, and the power system part of the NEPTUNE regional cabled observatory.

  3. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    Science.gov (United States)

    Wakeford, Hannah; Sing, David; Deming, Drake; Kataria, Tiffany; Lopez, Eric

    2016-10-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b's atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  4. Trailing (L5) Neptune Trojans: 2004 KV18 and 2008 LC18

    Institute of Scientific and Technical Information of China (English)

    Pu Guan; Li-Yong Zhou; Jian Li

    2012-01-01

    The population of Neptune Trojans is believed to be bigger than that of Jupiter Trojans and that of asteroids in the main belt,although only eight members of this distant asteroid swarm have been observed up to now.Six leading Neptune Trojans around the Lagrange point L4 discovered earlier have been studied in detail,but two trailing ones found recently around the L5 point,2004 KV18 and 2008 LC18,have not yet been investigated.We report our investigations on the dynamical behaviors of these two new Neptune Trojans.Our calculations show that the asteroid 2004 KV18 is a temporary Neptune Trojan.Most probably,it was captured into the trailing Trojan cloud no earlier than 2.03 × 105 yr ago,and it will not maintain this position later than 1.65 × 105 yr in the future.Based on the statistics from our orbital simulations,we argue that this object is more like a scattered Kuiper belt object.By contrast,the orbit of 2008 LC18 is much more stable.Among the clone orbits spreading within the orbital uncertainties,a considerable portion of clones may survive on the L5 tadpole orbits for 4 Gyr.The strong dependence of the stability on the semimajor axis and resonant angle suggests that further observations are badly required to constrain the orbit in the stable region.We also discuss the implications of the existence and dynamics of these two trailing Trojans over the history of the solar system.

  5. The Formation of Uranus & Neptune: Challenges and Implications For Intermediate-Mass Exoplanets

    CERN Document Server

    Helled, Ravit

    2014-01-01

    In this paper we investigate the formation of Uranus and Neptune, according to the core-nucleated accretion model, considering formation locations ranging from 12 to 30 AU from the Sun, and with various disk solid-surface densities and core accretion rates. It is shown that in order to form Uranus-like and Neptune-like planets in terms of final mass and solid-to-gas ratio, very specific conditions are required. We also show that when recently proposed high solid accretion rates are assumed, along with solid surface densities about 10 times those in the minimum-mass solar nebula, the challenge in forming Uranus and Neptune at large radial distances is no longer the formation timescale, but is rather finding agreement with the final mass and composition of these planets. In fact, these conditions are more likely to lead to gas-giant planets. Scattering of planetesimals by the forming planetary core is found to be an important effect at the larger distances. Our study emphasizes how (even slightly) different con...

  6. HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star

    CERN Document Server

    Bakos, G Á; Bayliss, D; Hartman, J D; Zhou, G; Brahm, R; Mancini, L; deVal-Borro, M; Bhatti, W; Jordán, A; Rabus, M; Espinoza, N; Csubry, Z; Howard, A W; Fulton, B J; Buchhave, L A; Ciceri, S; Henning, T; Schmidt, B; Isaacson, H; Noyes, R W; Marcy, G W; Suc, V; Howe, A R; Burrows, A S; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120+/-0.012 M_Jup, a radius of 0.563+0.046-0.034 R_Jup, and an orbital period of 3.1853 days. The host star is a moderately bright (V = 13.340+/-0.010 mag, K_S = 10.976+/-0.026 mag) K dwarf star with a mass of 0.849+/-0.027 M_Sun, a radius of 0.815+0.049-0.035 R_Sun, and a metallicity of [Fe/H]= +0.250+/-0.080. The star is photometrically quiet to within the precision of the HATSouth measurements, has low RV jitter, and shows no evidence for chromospheric activity in its spectrum. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18+/-4% (rock-iron core and H2-He envelope), or 9+/-4% (ice core and H2-He envelope), i.e.it has a composition broadly similar to that of Uranus and Neptune, and ve...

  7. Transcending Voyager: A Deeper Look at Neptune's Ring-Moon System

    Science.gov (United States)

    Showalter, Mark

    2004-07-01

    We will use the High Resolution Channel {HRC} of ACS to study the inner rings, arcs and moons of Neptune with a sensitivity that exceeds that achieved by Voyager 2 during its 1989 flyby. Our study will reveal any moons down to V magnitude 25.5, to address a peculiar truncation in the size distribution of inner moons and to look for the "shepherds" and source bodies for Neptune's dusty rings. {For comparison, Neptune's smallest known moon is Naiad, at magnitude 23.9}. Recent ground-based studies show that the mysterious arcs in the Adams Ring continue to shift and change, and may be fading away entirely. We will obtain the visual-band data uniquely necessary to determine whether the arcs are fading. Long-term monitoring of the arcs at high resolution and sensitivity will reveal their gradual changes more clearly and enable us to assess the role of Galatea, whose resonances are widely believed to confine the arcs.

  8. The measured compositions of Uranus and Neptune from their formation on the CO ice line

    Energy Technology Data Exchange (ETDEWEB)

    Ali-Dib, Mohamad; Mousis, Olivier; Petit, Jean-Marc [Institut UTINAM, CNRS/INSU, Université de Franche-Comté, UMR 6213, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Lunine, Jonathan I., E-mail: mdib@obs-besancon.fr [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States)

    2014-09-20

    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might have had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties that were observed in no other planets. Here, we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide ice line. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water-rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus's and Neptune's building blocks with the cometary value. Finally, our scenario generalizes a well known hypothesis that Jupiter formed on an ice line (water snow line) for the two ice giants, and might be a first step toward generalizing this mechanism for other giant planets.

  9. How you could use the NEPTUNE technology in the modelling process

    Science.gov (United States)

    Canals, Agusti; Cassaing, Yannick; Jammes, Antoine; Pomies, Laurent; Roblet, Etienne

    2002-07-01

    The European Community now plays a very active role in giving concrete expression to the new developments taking place in modelling languages and in UML (Unified Modelling Language) in particular. These developments often make use of norms and specifications mainly carried out by the OMG (Object Management Group). The main objective of the European NEPTUNE project led by CS (Nice Environment with a Process and Tools Using Norms and Example) is to develop both a method and tools (complementary to the existing software development tools) supporting the use of the UML notation. This method has emerged from considerable experience gained in the industrial environment. It will apply to a variety of application fields, including software engineering, business process and knowledge management. The newly developed tools will enable UML models to be statically checked for their coherence and consistency. They will also enable professional documentation resulting from the transformation of models. The method and tools developed in this way make easier the application of the UML standard as well as they promote its use in a large number of business fields so that the UML standard might be further improved with the aim to participate effectively in the work of the OMG. This paper will present the NEPTUNE method and tools. Then, lessons learned from this project will be reported, outlining the benefits and drawbacks of this technology as experienced by the development team. A conclusion will offer suggestions for future improvements and provide an overview of the next actions related to NEPTUNE deployment.

  10. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  11. Cold Stress and the Cold Pressor Test

    Science.gov (United States)

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  12. Cold and Cough Medicines

    Science.gov (United States)

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  13. Cold-induced metabolism

    NARCIS (Netherlands)

    van Marken Lichtenbelt, W.D.; Daanen, A.M.

    2003-01-01

    Cold-induced metabolism. van Marken Lichtenbelt WD, Daanen HA. Department of Human Biology, Maastricht University, Maastricht, The Netherlands. PURPOSE OF REVIEW: Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesi

  14. Cold nuclear fusion

    National Research Council Canada - National Science Library

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    ...... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion...

  15. VizieR Online Data Catalog: Spitzer and WISE light curves of Neptune (Stauffer+, 2016)

    Science.gov (United States)

    Stauffer, J.; Marley, M. S.; Gizis, J. E.; Rebull, L.; Carey, S. J.; Krick, J.; Ingalls, J. G.; Lowrance, P.; Glaccum, W.; Kirkpatrick, J. D.; Simon, A. A.; Wong, M. H.

    2017-02-01

    Neptune was observed between UT 2016 February 21-23 in both of the 3.6μm (IRAC-1) and 4.5μm (IRAC-2) channels of the Infrared Array Camera (IRAC) on Spitzer. The measurements were part of Director's Discretionary Time Program 12125 (PI: Stauffer). The Astronomical Observation Requests (AORs) were made in IRAC's staring mode, where for each channel, the spacecraft is maneuvered so that the target is placed on the well-calibrated peak-up pixel and back-to-back frames taken for the total time of the AOR with no dithering. For each channel, the total duration of the AOR was set to cover a complete rotation of Neptune, or about 17.2hr. In channel 1 (3.6μm), frames with times of 100s were used (corresponding to 96.8s exposure times), resulting in 622 images (see table1); in channel 2 (4.5μm), a frametime of 30s was used (corresponding to 26.8s exposure times), resulting in 2018 images (see table2). The image files were dark-subtracted, linearized, flat-fielded, and calibrated using the S19.2 version of the IRAC pipeline. We had requested that the channel 2 observations be made immediately following the channel 1 observations, but a time-critical exoplanet transit observation was inserted between the two Neptune AORs, resulting in the channel 2 light curve beginning about 2.3 days after the start of the channel 1 observation. Flux densities were measured with aperture photometry on the Spitzer Basic Calibrated Data images. We converted aperture fluxes to magnitudes using the in-band flux densities of Vega: 278Jy (3.6μm) and 180Jy (4.5μm). The light curve data of Neptune measured with Spitzer/IRAC are provided in Tables 1 and 2. These are the first continuous Neptune light curves covering a full rotation at mid-IR wavelengths. WISE was launched on 2009 December 14 to survey the sky in four broad wavelength bands referred to as W1 (3.4μm), W2 (4.6μm), W3 (12μm), and W4 (22μm). Neptune has been observed at six different epochs in the currently available WISE and

  16. Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    Science.gov (United States)

    Luszcz-Cook, S. H.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H. B.

    2016-09-01

    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m W.M. Keck II telescope, from 26 July 2009. These data have a spatial resolution of 0.035/pixel and spectral resolution of R ∼3800 in the H (1.47-1.80 μm) and K (1.97-2.38 μm) broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark - that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ∼4 bar in these near-infrared dark regions. We construct a set of high signal-to-noise spectra spanning a range of viewing geometries to constrain the vertical structure of Neptune's aerosols in a cloud-free latitude band from 2-12°N. We find that Neptune's cloud opacity at these wavelengths is dominated by a compact, optically thick cloud layer with a base near 3 bar. Using the pyDISORT algorithm for the radiative transfer and assuming a Henyey-Greenstein phase function, we observe this cloud to be composed of low albedo (single scattering albedo = 0.45-0.01+0.01), forward scattering (asymmetry parameter g = 0.50-0.02+0.02) particles, with an assumed characteristic size of ∼1μm. Above this cloud, we require an aerosol layer of smaller (∼0.1μm) particles forming a vertically extended haze, which reaches from the upper troposphere (0.59-0.03+0.04 bar) into the stratosphere. The particles in this haze are brighter (single scattering albedo = 0.91-0.05+0.06) and more isotropically scattering (asymmetry parameter g = 0.24-0.03+0.02) than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20°N to 87°S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4) profile, and find that our retrievals

  17. The Exoplanet Mass-Ratio Function From the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass

    Science.gov (United States)

    Suzuki, D.; Bennett, D. P.; Sumi, T.; Bond, I. A.; Rogers, L. A.; Abe, F.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Freeman, M.; hide

    2016-01-01

    We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. We determine the survey sensitivity as a function of planet star mass ratio, q, and projected planet star separation, s, in Einstein radius units. We find that the mass-ratio function is not a single power law, but has a change in slope at q approx.10(exp -4), corresponding to approx. 20 Stellar Mass for the median host-star mass of approx. 0.6 M. We find significant planetary signals in 23 of the 1474 alert events that are well-characterized by the MOA-II survey data alone. Data from other groups are used only to characterize planetary signals that have been identified in the MOA data alone. The distribution of mass ratios and separations of the planets found in our sample are well fit by a broken power-law model. We also combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets. The unbroken power-law model is disfavored with a p-value of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken power-law model. These results imply that cold Neptunes are likely to be the most common type of planets beyond the snow line.

  18. A giant cloud of hydrogen escaping the warm Neptune-mass planet GJ 436b

    Science.gov (United States)

    Ehrenreich, David

    2015-12-01

    Exoplanets in extreme irradiation environments, close to their parent stars, could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss has been observed during the past 12 years for hot gas giants, as large (~10%) ultraviolet absorption signals during transits. Meanwhile, no confident detection have been obtained for lower-mass planets, which are most likely to be significantly affected by atmospheric escape. In fact, hot rocky planets observed by Corot and Kepler might have lost all of their atmosphere, having begun as Neptune-like. The signature of this loss could be observed in the ultraviolet, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical. I will report on new Hubble observations of the Neptune-mass exoplanet GJ 436b, around which an extended atmosphere has been tentatively detected in 2014. The new data reveal that GJ 436b has huge transit depths of 56.3±3.5% in the hydrogen Lyman-alpha line, far beyond the 0.69% optical transit depth, and even far beyond mass loss signatures observed at the same wavelength from more irradiated gas giants. We infer from this repeated observations that the planet is surrounded and trailed by a large exospheric cloud of hydrogen, shaped as a giant comet, much bigger than the star. We estimate a mass-loss rate, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past. This 16-sigma detection opens exciting perspectives for the atmospheric characterization of low-mass and moderately-irradiated exoplanets, a large number of which will be detected by forthcoming transit surveys.

  19. Astrometry and Near-Infrared Photometry of Neptune's Inner Satellites and Ring Arcs

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn

    2002-03-01

    We report 1.87 μm photometry and astrometry of the inner satellites (Proteus, Larissa, Galatea, and Despina) and ring arcs of Neptune, obtained with the Hubble Space Telescope and its near-infrared camera NICMOS. From comparison with the Voyager data obtained at visible wavelengths, the small bodies orbiting within the ring region of Neptune have a near-infrared albedo consistently low, but higher than at visible wavelengths for most of the satellites, ranging from p1.87μm=0.058 (Despina) to p1.87μm=0.094 (Proteus). The ring arcs display a reddish spectral response similar to the satellites' in the 0.5-1.9 μm wavelength range. If we consider an earlier photometric measurement of Proteus obtained at K band, the satellite's albedo shows a depression at 2.2 μm that could be the first spectral evidence for the presence of CH or CN bearing material on its surface. Although astrometry of the inner moons of Neptune yields positions consistent with the predictions derived from Voyager images, the long time base between the Voyager and NICMOS observations allows us to refine our knowledge of their mean motions and semimajor axes, and to decrease the errors associated with these measurements. In addition, we confirm a mismatch between the mean semimajor axis of the ring arcs and the location of the 42:43 corotation inclined resonance due to Galatea. This result calls into question the ability of this resonance to confine the arcs azimuthally.

  20. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)

    2017-02-15

    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.

  1. HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star

    Science.gov (United States)

    Bakos, G. Á.; Penev, K.; Bayliss, D.; Hartman, J. D.; Zhou, G.; Brahm, R.; Mancini, L.; de Val-Borro, M.; Bhatti, W.; Jordán, A.; Rabus, M.; Espinoza, N.; Csubry, Z.; Howard, A. W.; Fulton, B. J.; Buchhave, L. A.; Ciceri, S.; Henning, T.; Schmidt, B.; Isaacson, H.; Noyes, R. W.; Marcy, G. W.; Suc, V.; Howe, A. R.; Burrows, A. S.; Lázár, J.; Papp, I.; Sári, P.

    2015-11-01

    We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120 ± 0.012 {M}{{J}}, a radius of {0.563}-0.034+0.046 {R}{{J}}, and an orbital period of 3.1853 days. The host star is a moderately bright (V=13.340\\+/- 0.010 mag, {K}S=10.976\\+/- 0.026 mag) K dwarf star with a mass of 0.849 ± 0.027 {M}⊙ , a radius of {0.815}-0.035+0.049 {R}⊙ , and a metallicity of [{Fe}/{{H}}] =+0.250\\+/- 0.080. The star is photometrically quiet to within the precision of the HATSouth measurements, has low RV jitter, and shows no evidence for chromospheric activity in its spectrum. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18 ± 4% (rock-iron core and H2-He envelope), or 9 ± 4% (ice core and H2-He envelope), i.e., it has a composition broadly similar to that of Uranus and Neptune, and very different from that of Saturn, which has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with accurately (Mauna Kea, the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  2. Superionic to superionic phase change in water: consequences for the interiors of Uranus and Neptune

    CERN Document Server

    Wilson, Hugh F; Militzer, Burkhard

    2012-01-01

    Using density functional molecular dynamics free energy calculations, we show that the body-centered-cubic phase of superionic ice previously believed to be the only phase is in fact thermodynamically unstable compared to a novel phase with oxygen positions in fcc lattice sites. The novel phase has a lower proton mobility than the bc phase and may exhibit a higher melting temperature. We predict a transition between the two phases at a pressure of 1 +/- 0.5 Mbar, with potential consequences for the interiors of ice giants such as Uranus and Neptune.

  3. Images of Neptune's ring arcs obtained by a ground-based telescope

    Science.gov (United States)

    Sicardy, B.; Roddier, F.; Roddier, C.; Perozzi, E.; Graves, J. E.; Guyon, O.; Northcott, M. J.

    1999-08-01

    Neptune has a collection of incomplete narrow rings, known as ring arcs, which should in isolation be destroyed by differential motion in a matter of months. Yet since first discovered by stellar occultations in 1984, they appear to have persisted, perhaps through a gravitational resonance effect involving the satellite Galatea. Here we report ground-based observations of the ring arcs, obtained using an adaptive optics system. Our data, and those obtained using the Hubble Space Telescope (reported in a companion paper), indicate that the ring arcs are near, but not within the resonance with Galatea, in contrast to what is predicted by some models.

  4. The configuration of Fraternite Egalite2 Egalite1 in the Neptune ring arcs system

    Science.gov (United States)

    Tsui, K. H.

    2007-01-01

    By considering the finite mass of Fraternite, although small, it is shown that there are two time-averaged stationary points in its neighborhood due to the reaction of the test body to the fields of Neptune, Galatea, and Fraternite. These two locations measuring 11.7∘ and 13.8∘ from the center of Fraternite could correspond to the locations of Egalite 2 and Egalite 1. This model accounts for the 10∘ span of Fraternite and estimates its mass at mf=6.4×1016kg. The eccentricities of Egalite 2 and Egalite 1 are believed to be about e=5×10-4.

  5. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    Science.gov (United States)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  6. The atmospheric structure and dynamical properties of Neptune derived from ground-based and IUE spectrophotometry

    Science.gov (United States)

    Baines, Kevin H.; Smith, Wm. Hayden

    1990-01-01

    A wide range of recent full-disk spectral observations is used to constrain the atmospheric structure and dynamical properties of Neptune; analytical determinations are made of the abundances of such spectrally active gas species as the deep-atmosphere CH4 molar fraction and the mean ortho/para hydrogen ratio in the visible atmosphere, as well as stratospheric and tropospheric aerosol properties. Compared to Uranus, the greater abundance and shorter lifetimes of Neptunian particulates in the stratospheric region irradiated by the solar UV flux indicate that such radiation is the darkening agent of stratospheric aerosols on both planets.

  7. Tidal interaction: A possible explanation for geysers and other fluid phenomena in the Neptune-Triton system

    Science.gov (United States)

    Kelly, W. D.; Wood, C. L.

    1993-01-01

    Discovery of geyser-like plumes on the surface of Triton was a highlight of Voyager 2's passage through the Neptune planetary system. Remarkable as these observations were, they were not entirely without precedent. Considering the confirmed predictions for the 1979 Voyager Jovian passage, it was logical to consider other solar system bodies beside Io where tidal effects could be a significant factor in surface processes. It was our intuition that the Neptune-Triton gravitational bond acting at high inclination to the Neptune equator and the fact that Neptune was a fluid body was significant oblateness would produce tidal and mechanical forces that could be transformed into thermal energy vented on Triton's surface. Prior to the Voyager flyby, others have noted that capture and evolution of Triton's orbit from extreme eccentricity to near circular state today would have resulted in significant tidal heating, but these analysts disregard current day forces. Our calculations indicate that the time varying forces between Neptune-Triton fall midway between those exerted in the Earth-Moon and Jupiter-Io systems, and considering the low level of other energy inputs, this source of internal energy should not be ignored when seeking an explanation for surface activity. In each planet-satellite case, residual or steady-state eccentricity causes time-varying stresses on internal satellite strata. In the case of Jupiter the residual eccentricity is due largely to Galilean satellite interactions, particularly Io-Europa, but in the case of Neptune-Triton, it is the effect of Triton's inclined orbit about an oblate primary.

  8. OSSOS. IV. Discovery of a Dwarf Planet Candidate in the 9:2 Resonance with Neptune

    Science.gov (United States)

    Bannister, Michele T.; Alexandersen, Mike; Benecchi, Susan D.; Chen, Ying-Tung; Delsanti, Audrey; Fraser, Wesley C.; Gladman, Brett J.; Granvik, Mikael; Grundy, Will M.; Guilbert-Lepoutre, Aurélie; Gwyn, Stephen D. J.; Ip, Wing-Huen; Jakubik, Marian; Jones, R. Lynne; Kaib, Nathan; Kavelaars, J. J.; Lacerda, Pedro; Lawler, Samantha; Lehner, Matthew J.; Lin, Hsing Wen; Lykawka, Patryk Sofia; Marsset, Michael; Murray-Clay, Ruth; Noll, Keith S.; Parker, Alex; Petit, Jean-Marc; Pike, Rosemary E.; Rousselot, Philippe; Schwamb, Megan E.; Shankman, Cory; Veres, Peter; Vernazza, Pierre; Volk, Kathryn; Wang, Shiang-Yu; Weryk, Robert

    2016-12-01

    We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e = 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g-r=0.59+/- 0.11 and absolute magnitude {H}r=3.6+/- 0.1; for an assumed albedo of p V = 12%, the object has a diameter of ∼670 km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9:2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identified in this resonance. On hundred-megayear timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9:2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population.

  9. EPIC212521166 b: a Neptune-mass planet with Earth-like density

    CERN Document Server

    Osborn, H P; Barros, S C C; Armstrong, D J; Santos, N C; Hojjatpanah, S; Demangeon, O; Adibekyan, V; Almenara, J M; Barrado, D; Bayliss, D; Boisse, I; Bouchy, F; Brown, D J A; Deleuil, M; Mena, E Delgado; Hébrard, G; Kirk, J; King, G W; Lam, K W F; Lillo-Box, J; Louden, T M; Lovis, C; Marmier, M; McCormac, J; Pollacco, D; Sousa, S G; Udry, S; Walker, S R

    2016-01-01

    We report the discovery of the exoplanet EPIC212521166 b from K2 photometry orbiting on a 13.8637d period around an old, metal-poor K3 dwarf star. A joint analysis of K2 photometry and high-precision RVs from HARPS reveals it to have a radius of 2.6$\\pm 0.1 R_{\\oplus}$ and a mass of 18.3$\\pm 2.8 M_{\\oplus}$, making it the most massive planet with a sub-Neptune radius (i.e. mini-Neptune) yet found. When accounting for compression, the resulting Earth-like density is best fit by a $0.2M_{\\oplus}$ hydrogen atmosphere over an $18M_{\\oplus}$ Earth-like core, although the planet could also have significant water content. At 0.1AU, even taking into account the old stellar age of $8 \\pm 3$ Gyr, the planet is unlikely to have been significantly affected by EUV evaporation or tides. However the planet likely disc-migrated to its current position making the lack of a thick H$_2$ atmosphere puzzling. With a V-band magnitude of 11.9 it is particularly amenable to follow-up observations, making EPIC-1166 b a rare and extre...

  10. Formation and Dynamical Evolution of the Neptune Trojans - the Influence of the Initial Solar System Architecture

    CERN Document Server

    Lykawka, P S; Jones, B W; Mukai, T

    2010-01-01

    In this work, we investigate the dynamical stability of pre-formed Neptune Trojans under the gravitational influence of the four giant planets in compact planetary architectures, over 10 Myr. In our modelling, the initial orbital locations of Uranus and Neptune (aN) were varied to produce systems in which those planets moved on non-resonant orbits, or in which they lay in their mutual 1:2, 2:3 and 3:4 mean-motion resonances (MMRs). In total, 420 simulations were carried out, examining 42 different architectures, with a total of 840000 particles across all runs. In the non-resonant cases, the Trojans suffered only moderate levels of dynamical erosion, with the most compact systems (those with aN less than or equal 18 AU) losing around 50% of their Trojans by the end of the integrations. In the 2:3 and 3:4 MMR scenarios, however, dynamical erosion was much higher with depletion rates typically greater than 66% and total depletion in the most compact systems. The 1:2 resonant scenarios featured disruption on lev...

  11. The Formation of Uranus and Neptune in Solid-Rich Feeding Zones: Connecting Chemistry and Dynamics

    CERN Document Server

    Dodson-Robinson, Sarah E

    2009-01-01

    The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-Saturnian solar nebula are so long that core growth can take > 15 Myr, and (2) the onset of runaway gas accretion that begins when cores reach 10 Earth masses necessitates a sudden gas accretion cutoff just as the ice giant cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (2009) using the initial semimajor axis distribution of the Nice model (Gomes et al. 2005; Morbidelli et al. 2005; Tsiganis et al. 2005), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5....

  12. The measured compositions of Uranus and Neptune from their formation on the CO iceline

    CERN Document Server

    Ali-Dib, M; Petit, J -M; Lunine, J I

    2014-01-01

    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties observed in no other planets. Here we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide iceline. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus and Neptu...

  13. How to Distinguish between Cloudy Mini-Neptunes and Water/Volatile-Dominated Super-Earths

    CERN Document Server

    Benneke, Björn

    2013-01-01

    One of the most profound questions about the newly discovered class of low-density super-Earths is whether these exoplanets are predominately H2-dominated mini-Neptunes or volatile-rich worlds with gas envelopes dominated by H2O, CO2, CO, CH4, or N2. Transit observations of the super-Earth GJ 1214b rule out a cloud-free H2-dominated atmosphere, but are not able to determine whether the lack of deep spectral features is due to high-altitude clouds or the presence of a high mean molecular mass atmosphere. Here, we demonstrate that one can unambiguously distinguish between cloudy mini-Neptunes and volatile-dominated worlds based on the differences in the wing steepness and relative depths of water absorption features in moderate-resolution NIR transmission spectra (R~100). In a numerical retrieval study, we show for GJ 1214b that an unambiguous distinction between a cloudy H2-dominated atmosphere and cloud-free H2 atmosphere will be possible if the uncertainties in the spectral transit depth measurements can be ...

  14. Migration then assembly: Formation of Neptune mass planets inside 1~AU

    CERN Document Server

    Hansen, Brad M S

    2011-01-01

    We demonstrate that the observed distribution of 'Hot Neptune'/'Super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration. This is achieved only if the amount of mass in rocky material is 50--100 M_{\\oplus} interior to 1 AU, so significant radial migration of material is likely still required, but it must occur earlier than the final assembly stages. The model not only reproduces the general distribution of mass versus period, but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenari...

  15. Kepler-223: A Resonant Chain of Four Transiting, Sub-Neptune Planets

    Science.gov (United States)

    Mills, Sean; Fabrycky, Daniel C.; Migaszewski, Cezary; Ford, Eric B.; Petigura, Erik; Isaacson, Howard T.

    2016-05-01

    Surveys have revealed an abundance of multi-planet systems containing super-Earths and Neptunes in few-day to few-month orbits. Orbital periods of pairs of planets in the same system occasionally lie near, but generally not exactly on, ratios of small integers (resonances), allowing for the detection of the planets perturbing each other. There is debate whether in situ assembly or significant inward migration is the dominant mechanism of their formation. Simulations suggest migration creates tightly-packed, resonant systems, often in chains of resonance. Of the hundreds of multi-planet systems of sub-Neptunes, there is weak statistical enhancement near resonances, but no individual system has been identified that requires migration. Here we describe dynamical modeling of the system Kepler-223, which has a series of resonances among its four planets. We observe transit timing variations (TTVs), model them as resonant angle librations, and compute long-term stability, combining these analyses to constrain dynamical parameters and planetary masses. The detailed architecture of Kepler-223 is too finely tuned for formation by scattering, whereas numerical simulations demonstrate its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by many mechanisms contributing to the observed period distribution. Planetesimal interactions in particular are thought to be responsible for establishing thecurrent orbits of the four giant planets in our own Solar System by disrupting a theoretical initial resonant chain like that actually observed in Kepler-223.

  16. HATS-8b: A Low-Density Transiting Super-Neptune

    CERN Document Server

    Bayliss, D; Bakos, G Á; Penev, K; Zhou, G; Brahm, R; Rabus, M; Jordán, A; Mancini, L; de Val-Borro, M; Bhatti, W; Espinoza, N; Csubry, Z; Howard, A W; Fulton, B J; Buchhave, L A; Henning, T; Schmidt, B; Ciceri, S; Noyes, R W; Isaacson, H; Marcy, G W; Suc, V; Lázár, J; Papp, I; Sári, P

    2015-01-01

    HATS-8b is a low density transiting super-Neptune discovered as part of the HATSouth project. The planet orbits its solar-like G dwarf host (V=14.03 $\\pm$ 0.10 and T$_{eff}$ =5679 $\\pm$ 50 K) with a period of 3.5839 d. HATS-8b is the third lowest mass transiting exoplanet to be discovered from a wide-field ground based search, and with a mass of 0.138 $\\pm$ 0.019 M$_J$ it is approximately half-way between the masses of Neptune and Saturn. However HATS-8b has a radius of 0.873 (+0.123,-0.075) R$_J$, resulting in a bulk density of just 0.259 $\\pm$ 0.091 g.cm$^{-3}$. The metallicity of the host star is super-Solar ([Fe/H]=0.210 $\\pm$ 0.080), arguing against the idea that low density exoplanets form from metal-poor environments. The low density and large radius of HATS-8b results in an atmospheric scale height of almost 1000 km, and in addition to this there is an excellent reference star of near equal magnitude at just 19 arcsecond separation on the sky. These factors make HATS-8b an exciting target for future a...

  17. A Neptune-sized Exoplanet Consistent with a Pure Rock Composition

    CERN Document Server

    Espinoza, Néstor; Jordán, Andrés; Jenkins, James S; Rojas, Felipe; Jofré, Paula; Mädler, Thomas; Rabus, Markus; Chanamé, Julio; Pantoja, Blake; Soto, Maritza G

    2016-01-01

    We report the discovery of BD+20594b, a Neptune-sized exoplanet consistent with a pure rock composition, made using photometry from Campaign 4 of the two-wheeled Kepler (K2) mission. The host star is a bright ($V=11.04$, $K_s = 9.37$), slightly metal poor ([Fe/H]$=-0.15\\pm 0.05$ dex) solar analogue located at $152.1^{+9.7}_{-7.4}$ pc from Earth, for which we find a radius of $R_*=0.928^{+0.055}_{-0.040}R_\\odot$ and a mass of $M_* = 0.961^{+0.032}_{-0.029}M_\\odot$. A joint analysis of the K2 photometry and HARPS radial velocities reveal that the planet is in a $\\approx 42$ day orbit around its host star, has a radius of $2.23^{+0.14}_{-0.11}R_\\oplus$, and a mass of $16.3^{+6.0}_{-6.1}M_\\oplus$. The data at hand are most consistent with a pure rock composition with a low volatile content, potentially making it a rare exception among Neptune-sized exoplanets discovered so far.

  18. The Self-Gravity Model of the Longitudinal Span of the Neptune Arc Fraternité

    Directory of Open Access Journals (Sweden)

    Tsui K. H.,

    2013-07-01

    Full Text Available According to recent work, the Neptune Adams ring main arc Fraternite is regarded as captured by the corotation elliptic resonance (CER potential of Galatea. The minor arcs Egalite (2,1, Libert ´ e, and Courage are located at positions where the time ´ averaged forces, due to the 42-43 corotation-Lindblad resonances under the central field of Neptune, vanish. With adequately chosen Fraternite mass and Galatea eccentricity, ´ this model gives minor arc locations compatible to observed positions, and allows a dynamic transport of materials among arcs. To complement this model, the effect of self-gravity of Fraternite, with a distributed mass, is evaluated together with the CER ´ potential to account for its 10o longitudinal span. Although self-gravity is the collective action of all the particles in the arc, each individual particle will see the self-potential with a central maximum as an external potential generated by other particles.

  19. The photon tagger NEPTUN at S-DALINAC. Current status and research program

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Diego; Arnold, Michaela; Aumann, Thomas; Baumann, Martin; Beckstein, Michael; Blecher, Alexander; Cvejin, Nebojsa; Hug, Florian; Lehr, Christopher; Pietralla, Norbert; Scheit, Heiko; Symochko, Dmytro; Walz, Christopher; Wessels, Tim [Institut fuer Kernphysik, Darmstadt (Germany)

    2015-07-01

    The low energy photon tagger NEPTUN at the S-DALINAC delivers a quasi-monoenergetic photon beam between about 1MeV and 20MeV with a resolution of approximately 25keV. Tagged photons provide the possibility to measure the full dipole strength of nuclei in the energy range below and above the neutron threshold. The highly efficient LaBr{sub 3}:Ce based spectrometer GALATEA will be used to detect not only the direct decays to the ground state, but also cascading decays can be measured with suitable efficiency. To measure (γ, n)- and (γ, nγ)-reactions the setup will be extended by neutron detectors based on liquid scintillators. The data will be combined with experiments at Duke University, GSI and RIKEN to obtain a complete picture of dipole strength function evolution in Sn isotopes. This talk covers the link between the different experiments and focus on the setup and status of the NEPTUN commissioning program. If available, data from the first runs with Sn will be shown.

  20. A Possible Tilted Orbit of the Super-Neptune HAT-P-11b

    CERN Document Server

    Hirano, Teruyuki; Shporer, Avi; Sato, Bun'ei; Aoki, Wako; Tamura, Motohide

    2010-01-01

    We report the detection of the Rossiter-McLaughlin effect for the eccentric, super-Neptune exoplanet HAT-P-11b, based on radial velocity measurements taken with HDS mounted on the Subaru 8.2m telescope, and simultaneous photometry with the FTN 2.0m telescope, both located in Hawai'i. The observed radial velocities during a planetary transit of HAT-P-11b show a persistent blue-shift, suggesting a spin-orbit misalignment in the system. The best-fit value for the projected spin-orbit misalignment angle is $\\lambda= 103_{-19}^{+23}$ deg. Our result supports the notion that eccentric exoplanetary systems are likely to have significant spin-orbit misalignment (e.g., HD 80606, WASP-8, WASP-14, WASP-17, and XO-3). This fact suggests that not only hot-Jupiters but also super-Neptunes like HAT-P-11b had once experienced dynamical processes such as planet-planet scattering or the Kozai migration.

  1. Accurate and Approximate Calculations of Raman Scattering in the Atmosphere of Neptune

    CERN Document Server

    Sromovsky, Lawrence

    2015-01-01

    Raman scattering by H$_2$ in Neptune's atmosphere has significant effects on its reflectivity for $\\lambda <$ 0.5 $\\mu$m, producing baseline decreases of $\\sim$ 20% in a clear atmosphere and $\\sim$ 10% in a hazy atmosphere. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH$_4$ bands is mainly Raman scattered is not valid for current estimates of the CH$_4$vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by $\\sim$6% in the 0.22-0.26 $\\mu$m range and by $\\sim$13% in the 0.35-0.45 $\\mu$m range. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, ...

  2. 2001 QR$_{322}$ - an update on Neptune's first unstable Trojan companion

    CERN Document Server

    Horner, Jonathan

    2016-01-01

    The Neptune Trojans are the most recent addition to the panoply of Solar system small body populations. The orbit of the first discovered member, 2001 QR$_{322}$, was investigated shortly after its discovery, based on early observations of the object, and it was found to be dynamically stable on timescales comparable to the age of the Solar system. As further observations were obtained of the object over the following years, the best-fit solution for its orbit changed. We therefore carried out a new study of 2001 QR$_{322}$'s orbit in 2010, finding that it lay on the boundary between dynamically stable and unstable regions in Neptune's Trojan cloud, and concluding that further observations were needed to determine the true stability of the object's orbit. Here we follow up on that earlier work, and present the preliminary results of a dynamical study using an updated fit to 2001 QR$_{322}$'s orbit. Despite the improved precision with which the orbit of 2001 QR$_{322}$ is known, we find that the best-fit solut...

  3. Follow-up Observations of the Neptune Mass Transiting Extrasolar Planet Hat-P-11b

    CERN Document Server

    Dittman, Jason A; Green, Elizabeth M; Scuderi, Louis J; Males, Jared R

    2009-01-01

    We have confirmed the existence of the transiting super Neptune extrasolar planet HAT-P-11b. On May 1, 2009 UT the transit of Hat-P-11b was detected at the University of Arizona's 1.55m Kuiper Telescope with 1.7 millimag rms accuracy. We find a central transit time of Tc = 2454952.92534+/-0.00060 BJD; this transit occurred 80+/-73 seconds sooner than previous measurements (71 orbits in the past) would have predicted. Hence, our transit timing rules out large deviations from the ephemeris of Bakos et al. (2009). We measure a slightly larger planetary radius of Rp=0.452+/-0.020 R_Jup (5.07+/-0.22 R_earth) compared to Bakos and co-workers' value of 0.422+/-0.014 R_Jup (4.73+/-0.16 R_earth). Our values confirm that Hat-P-11b is very similar to GJ 436b (the only other known transiting super Neptune) in radius and other bulk properties.

  4. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn

    CERN Document Server

    Izidoro, Andre; Raymond, Sean N; Hersant, Franck; Pierens, Arnaud

    2015-01-01

    Reproducing Uranus and Neptune remains a challenge for simulations of solar system formation. The ice giants' peculiar obliquities suggest that they both suffered giant collisions during their formation. Thus, there must have been an epoch of accretion dominated by collisions among large planetary embryos in the primordial outer solar system. We test this idea using N-body numerical simulations including the effects of a gaseous protoplanetary disk. One strong constraint is that the masses of the ice giants are very similar -- the Neptune/Uranus mass ratio is $\\sim1.18$. We show that similar-size ice giants do indeed form by collisions between planetary embryos beyond Saturn. The fraction of successful simulations varies depending on the initial number of planetary embryos in the system, their individual and total masses. Similar-sized ice giants are consistently reproduced in simulations starting with 5-10 planetary embryos with initial masses of $\\sim$3-6 ${\\rm M_\\oplus}$. We conclude that accretion from a ...

  5. OSSOS. IV. Discovery of a Dwarf Planet Candidate in the 9:2 Resonance with Neptune

    Science.gov (United States)

    Bannister, Michele T.; Alexandersen, Mike; Benecchi, Susan; Chen, Ying-Tung; Delsanti, Audrey; Fraser, Wesley C.; Gladman, Brett; Granvik, Mikael; Grundy, Will M.; Guilbert-Lepoutre, Aurelie; hide

    2016-01-01

    We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g - r 0.59 +/- 0.11 and absolute magnitude Hr 3.6 +/- 0.1; for an assumed albedo of pV 12, the object has a diameter of approximately 670 km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9:2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identied in this resonance. On hundred-megayear timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9:2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population.

  6. OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    CERN Document Server

    Christophe, Bruno; Anderson, John D; André, Nicolas; Asmar, Sami W; Aurnou, Jonathan; Banfield, Don; Barucci, Antonella; Bertolami, Orfeu; Bingham, Robert; Brown, Patrick; Cecconi, Baptiste; Courty, Jean-Michel; Dittus, Hansjörg; Fletcher, Leigh N; Foulon, Bernard; Francisco, Frederico; Gil, Paulo J S; Glassmeier, Karl-Heinz; Grundy, Will; Hansen, Candice; Helbert, Jörn; Helled, Ravit; Hussmann, Hauke; Lamine, Brahim; Lämmerzahl, Claus; Lamy, Laurent; Lenoir, Benjamin; Levy, Agnès; Orton, Glenn; Páramos, Jorge; Poncy, Joël; Postberg, Frank; Progrebenko, Sergei V; Reh, Kim R; Reynaud, Serge; Robert, Clélia; Samain, Etienne; Saur, Joachim; Sayanagi, Kunio M; Schmitz, Nicole; Selig, Hanns; Sohl, Frank; Spilker, Thomas R; Srama, Ralf; Stephan, Katrin; Touboul, Pierre; Wolf, Peter

    2011-01-01

    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, it will result in a striking advance in the study of the farthest planet of the Solar System. Furthermore, OSS will provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. It will consolidate the hypothesis of the origin of Triton as a KBO captured by Neptune, and improve our knowledge on the formation of the Solar system. The probe will embark inst...

  7. Formation of isothermal disks around protoplanets. I. Introductory three-dimensional global simulations for sub-Neptune-mass protoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Hsu; Shang, Hsien; Gu, Pin-Gao [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bu, Defu, E-mail: hhwang@asiaa.sinica.edu.tw [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatories, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-07-20

    The regular satellites found around Neptune (≈17 M{sub ⊕}) and Uranus (≈14.5 M{sub ⊕}) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets (<17 M{sub ⊕}). These disks have been shown to be cool, optically thin, and quiescent, with low surface densities and low viscosities. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.

  8. Detection of HD in the atmospheres of Uranus and Neptune : a new determination of the D/H ratio

    NARCIS (Netherlands)

    Feuchtgruber, H; Lellouch, E; Bezard, B; Encrenaz, T; de Graauw, T; Davis, GR

    1999-01-01

    Observations with the Short Wavelength Spectrometer (SWS) onboard the Infrared Space Observatory (ISO) have led to the first unambiguous detection of HD in the atmospheres of Uranus and Neptune, from its R(2) rotational line at 37.7 mu m Using S(0) and S(1) quadrupolar lines of H(2) at 28.2 and 17.0

  9. Detection of HD in the atmospheres of Uranus and Neptune : a new determination of the D/H ratio

    NARCIS (Netherlands)

    Feuchtgruber, H; Lellouch, E; Bezard, B; Encrenaz, T; de Graauw, T; Davis, GR

    1999-01-01

    Observations with the Short Wavelength Spectrometer (SWS) onboard the Infrared Space Observatory (ISO) have led to the first unambiguous detection of HD in the atmospheres of Uranus and Neptune, from its R(2) rotational line at 37.7 mu m Using S(0) and S(1) quadrupolar lines of H(2) at 28.2 and 17.0

  10. Detection of HD in the atmospheres of Uranus and Neptune : a new determination of the D/H ratio

    NARCIS (Netherlands)

    Feuchtgruber, H; Lellouch, E; Bezard, B; Encrenaz, T; de Graauw, T; Davis, GR

    Observations with the Short Wavelength Spectrometer (SWS) onboard the Infrared Space Observatory (ISO) have led to the first unambiguous detection of HD in the atmospheres of Uranus and Neptune, from its R(2) rotational line at 37.7 mu m Using S(0) and S(1) quadrupolar lines of H(2) at 28.2 and 17.0

  11. HAT-P-26b: A Low-density Neptune-mass Planet Transiting a K Star

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Kipping, D. M.; Torres, G.; Kovács, G.; Noyes, R. W.; Latham, D. W.; Howard, A. W.; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Isaacson, H.; Quinn, S. N.; Buchhave, L. A.; Béky, B.; Sasselov, D. D.; Stefanik, R. P.; Esquerdo, G. A.; Everett, M.; Perumpilly, G.; Lázár, J.; Papp, I.; Sári, P.

    2011-02-01

    We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V = 11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 ± 0.000015 days, transit epoch Tc = 2455304.65122 ± 0.00035 (BJD; Barycentric Julian dates throughout the paper are calculated from Coordinated Universal Time (UTC)), and transit duration 0.1023 ± 0.0010 days. The host star has a mass of 0.82 ± 0.03 M sun, radius of 0.79+0.10 -0.04 R sun, effective temperature 5079 ± 88 K, and metallicity [Fe/H] = -0.04 ± 0.08. The planetary companion has a mass of 0.059 ± 0.007 M J, and radius of 0.565+0.072 -0.032 R J yielding a mean density of 0.40 ± 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 M ⊕ heavy element core that comprises gsim50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NASA (N018Hr and N167Hr).

  12. Observations of Uranus and Neptune in Spanish Telescopes: Calar Alto/PlanetCam, WHT/Ingrid y GTC/Osiris

    Science.gov (United States)

    Hueso, R.; Sánchez-Lavega, A.; Ordonez-Etxeberria, I.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.

    2017-03-01

    The astronomical observation of the atmospheres of Uranus and Neptune poses unique challenges. Both planets are relatively dimm objects (visual magnitude of +5.3 and +7.7) and have small angular sizes (3.7” and 2.4” at opposition). Both worlds have atmospheres that are very dynamic, specially Neptune. These atmospheres are dominated by intense zonal winds that reach 450 m/s and where seasonal evolution changes the band patterns present in these planets. Thanks to the atmospheric methane gas, when observing Uranus and Neptune in near infrared wavelengths their upper clouds become well contrasted and bright and observations at different methane absorption bands allow to sample the atmosphere at different vertical layers. Both worlds are subject to the development of bright cloud patterns, some times of convective origin and whose activity can extend over weeks to several months or years. In the last few years we have surveyed the atmospheric activity of Uranus and Neptune with instruments able to improve the spatial resolution of the images beyond the limits impose by the atmospheric seeing. We use the Lucky Imaging technique (fast observation of several short-exposure frames combined with automatic selection of best frames and coregistration for stacking). We present image observations of Uranus and Neptune obtained with the instruments: OSIRIS at Grantecan as well as the AstraLux and PlanetCam UPV/EHU cameras on the 2.2m telescope at Calar Alto observatory. These observations are compared with other observations acquired by amateur astronomers able to obtain resolve cloud features in Uranus and Neptune. We compare these observations with images acquired with Adaptive Optics instruments at the William Herschel with the NAOMI+Ingrid instruments and Keck II and with Hubble Space Telescope images. We show the importance of surveying the atmospheric activity of these planets with a variety of telescopes. Two science cases are presented: The study of convective

  13. NEPTUNE:并行三维全电磁粒子模拟软件%NEPTUNE:A 3-D Fully Electromagnetic Particle Parallel Software

    Institute of Scientific and Technical Information of China (English)

    陈军; 董烨; 杨温渊; 董志伟

    2009-01-01

    为求解具有复杂几何的高功率微波电磁场问题,本文研制了一个三维全电磁粒子并行软件NEPTUNE.本文介绍了该并行软件的基本结构和采用的一些并行算法.目前,该软件已经成功模拟了多种高功率源器件,并可扩展到数千台处理器核上运行.%We developed a three-dimensional fully electromagnetic particle parallel software based on the parallel adaptive structure mesh application infrastructure, ,to solve the electromagnetic problem in the high power microwave devices with complex geometry. This paper presents the basic numerical method and parallel algorithm used in the parallel program. A typical device with complex geometry is simulated by the parallel program on thousands of processors, and the results show the good scalability. Currently it has been simulated many high power microwave devices successfully.

  14. BIGOT - NEPTUNE

    Science.gov (United States)

    1944-05-14

    2·rii 5 j"n inrrl 9 mchmr asi\\ raa :::: CLECNCAM rrce rrC) : r\\lnh PIB tUWloNfb-aCY SrrPj x nn, Xnrug cUt c c Yr* W Zc’CS;ii...8217.s rf ist l-lo1 aS tlis e 5th Lio;l.t Div. In suia:er 1941 zit, as reor-a ,:s z CS . . PZ DPiz in AFRICA ; entered TUIISI.I; e-rly 1943. It lras

  15. Multispectral imaging observations of Neptune's cloud structure with Gemini-North

    Science.gov (United States)

    Irwin, P. G. J.; Teanby, N. A.; Davis, G. R.; Fletcher, L. N.; Orton, G. S.; Tice, D.; Hurley, J.; Calcutt, S. B.

    2011-11-01

    Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477-1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15-0.25″. The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune's atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ˜2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20-40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator. A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ˜0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ˜0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus' atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ˜ 0.6-0.7 (i.e. reasonably strongly forward scattering). Numerous bright clouds are seen near Neptune's south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (˜2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not

  16. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    Science.gov (United States)

    Dorn, Caroline; Venturini, Julia; Khan, Amir; Heng, Kevin; Alibert, Yann; Helled, Ravit; Rivoldini, Attilio; Benz, Willy

    2017-01-01

    Aims: We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. Methods: We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmospheric models that are tailored for modeling thick and thin atmospheres, respectively. Results: First, we validate our method against Neptune. Second, we apply it to synthetic exoplanets of fixed mass and determine the effect on interior structure and composition when (1) radius; (2) atmospheric model; (3) data uncertainties; (4) semi-major axes; (5) atmospheric composition (i.e., a priori assumption of enriched envelopes versus pure H/He envelopes); and (6) prior distributions are varied. Conclusions: Our main conclusions are: (1) given available data, the range of possible interior structures is large; quantification of the degeneracy of possible interiors is therefore indispensable for meaningful planet characterization. (2) Our method predicts models that agree with independent estimates of Neptune's interior. (3) Increasing the precision in mass and radius leads to much improved constraints on ice mass fraction, size of rocky interior, but

  17. Vertical Wind Shear in Neptune's Atmosphere Explained with a Modified Thermal Wind Equation

    Science.gov (United States)

    Tollefson, Joshua; de Pater, Imke; Marcus, Philip; Luszcz-Cook, Statia H.; Sromovsky, Lawrence A.; Fry, Patrick M.; Fletcher, Leigh N.; Wong, Michael H.

    2016-10-01

    We present observations of Neptune taken in H-(1.4-1.8 μm) and K'-(2.0-2.4 μm) bands on the nights of July 3, 2013 and August 20, 2014 from the 10-m W.M. Keck II Telescope using NIRC2 coupled to the Adaptive Optics (AO) system. We track the positions of about 100 bright atmospheric features over a 4-5 hour window on each night to derive zonal velocities and wind profiles.Our results deviate from the smooth Voyager zonal wind profile from Sromovsky et al. (1993), often by 100-200 m/s, and often by 3-10 times their estimated uncertainties. Besides what appears to be a random dispersion, there is also a systematic deviation that is wavelength dependent. The H-band profile is best described with a 73-106 m/s shift towards the east for a retrograde flow from the Voyager profile at the equator. The K'-band profile is consistent with Voyager on both nights. Comparing K'/H intensity versus latitude and zonal velocity variation suggests equatorial H-band features are, on average, deeper and have greater eastward velocities than K'-band features. Assuming the average variations in the zonal wind profiles result from wind shear over 3-5 scale heights, we predict vertical wind shears between -1.0 and -2.2 m/(s x km) at the equator.The standard thermal wind equation and meridional thermal profile for Neptune given by Voyager/IRIS spectra predict wind shear of the wrong sign relative to the observations. We consider two effects that reconcile this inconsistency. First, we calculate the meridional temperature gradients at pressures outside the Voyager/IRIS sensitivity window required to match our predicted wind shears. Second, we generalize to a thermal wind equation that considers global methane variations and re-derive the temperature structure needed to match the observed wind shear. If methane is uniformly distributed or weakly-varying, the equator must be 2-15 K cooler than the mid latitudes below 1 bar. If methane is strongly-varying, the equator can be 2-3 K warmer than

  18. Forming the Cold Classical Kuiper Belt in a light Disk

    CERN Document Server

    Shannon, Andrew; Lithwick, Yoram

    2015-01-01

    Large Kuiper Belt Objects are conventionally thought to have formed out of a massive planetesimal belt that is a few thousand times its current mass. Such a picture, however, is incompatible with multiple lines of evidence. Here, we present a new model for the conglomeration of Cold Classical Kuiper belt objects, out of a solid belt only a few times its current mass, or a few percent of the solid density in a Minimum Mass Solar Nebula. This is made possible by depositing most of the primordial mass in grains of size centimetre or smaller. These grains collide frequently and maintain a dynamically cold belt out of which large bodies grow efficiently: an order-unity fraction of the solid mass can be converted into large bodies, in contrast to the ~0.1% efficiency in conventional models. Such a light belt may represent the true outer edge of the Solar system, and it may have effectively halted the outward migration of Neptune. In addition to the high efficiency, our model can also produce a mass spectrum that pe...

  19. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  20. Cold Sores (HSV-1)

    Science.gov (United States)

    ... A Week of Healthy Breakfasts Shyness Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) A A A What's in this article? ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't ...

  1. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  2. Cold fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  3. Cold-Weather Sports

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports A A A What's in this article? ... Equipment Ahh, winter! Shorter days. Frigid temperatures. Foul weather. What better time to be outdoors? Winter sports ...

  4. Coping with Colds

    Science.gov (United States)

    ... have heard that chicken soup can cure a cold. There's no real proof of this, but sick people have been swearing by it for more than 800 years. When Should I Go to the Doctor? Teens who catch colds usually don't get very sick or need ...

  5. How Cold is Cold Dark Matter?

    CERN Document Server

    Armendariz-Picon, Cristian

    2013-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models, however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter. The latter imply that its velocity dispersion extrapolated to the present has to be smaller than 56 m/s. Cold dark matter has t...

  6. First Atmosphere Characterization of the Benchmark Exo-Neptune WASP-107b

    Science.gov (United States)

    Kreidberg, Laura; Stevenson, Kevin; Line, Michael; Morley, Caroline; Irwin, Jonathan

    2017-04-01

    WASP-107b is a newly discovered transiting planet that is the highest signal-to-noise target for transmission spectroscopy discovered in the last decade, thanks to its low surface gravity and small, bright host star. It is also a strong candidate for emission spectroscopy. The planet is in the intriguing transition region between ice and gas giants, with a mass comparable to Neptune and a radius similar to Jupiter, and thus provides an excellent test case for planet formation theories. We propose reconnaissance transit and eclipse observations to preview the planet's atmospheric metallicity, climate, and aerosol properties. This program will guide the design of future JWST observing proposals, as well as cement Spitzer's legacy as a pioneer in the observation of extrasolar planets.

  7. The formation of Uranus and Neptune in solid-rich feeding zones: Connecting chemistry and dynamics

    Science.gov (United States)

    Dodson-Robinson, Sarah E.; Bodenheimer, Peter

    2010-05-01

    The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ˜10 M⊕ necessitates a sudden gas accretion cutoff just as Uranus and Neptune's cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff. Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass

  8. MOA-2010-BLG-328Lb: a sub-Neptune orbiting very late M dwarf ?

    CERN Document Server

    Furusawa, K; Sumi, T; Bennett, D P; Bond, I A; Gould, A; Jorgensen, U G; Snodgrass, C; Prester, D Dominis; Albrow, M D; Abe, F; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Harris, P; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Suzuki, D; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Szymanski, M K; Soszynski, I; Kubiak, M; Poleski, R; Ulaczyk, K; Pietrzynski, G; Wyrzykowski, L; Choi, J Y; Christie, G W; DePoy, D L; Dong, S; Drummond, J; Gaudi, B S; Han, C; Hung, L -W; Jung, Y -K; Lee, C -U; McCormick, J; Moorhouse, D; Natusch, T; Nola, M; Ofek, E; Park, B G; Park, H; Pogge, R W; Shin, I -G; Skowron, J; Thornley, G; Yee, J C; Alsubai, K A; Bozza, V; Browne, P; Burgdorf, M J; Novati, S Calchi; Dodds, P; Dominik, M; Finet, F; Gerner, T; Hardis, S; Harpsoe, K; Hinse, T C; Hundertmark, M; Kains, N; Kerins, E; Liebig, C; Mancini, L; Mathiasen, M; Penny, M T; Proft, S; Rahvar, S; Ricci, D; Scarpetta, G; Schafer, S; Schonebeck, F; Southworth, J; Surdej, J; Wambsganss, J; Street, R A; Bramich, D M; Steele, I A; Tsapras, Y; Horne, K; Donatowicz, J; Sahu, K C; Bachelet, E; Batista, V; Beatty, T G; Beaulieu, J -P; Bennett, C S; Black, C; Bowens-Rubin, R; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A A; Corrales, E; Coutures, C; Dieters, S; Fouque, P; Greenhill, J; Henderson, C B; Kubas, D; Marquette, J -B; Martin, R; Menzies, J W; Shappee, B; Williams, A; Wouters, D; van Saders, J; Zellem, R; Zub, M

    2013-01-01

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the host's a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.

  9. Water Vapour Absorption in the Clear Atmosphere of an exo-Neptune

    CERN Document Server

    Fraine, Jonathan; Benneke, Björn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-01-01

    Transmission spectroscopy to date has detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain high mean molecular weights, opaque clouds, or scattering hazes in their atmospheres, obscuring our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of HAT-P-11b (~4 Earth radii) from the optical to the infrared. We detected water vapour absorption at 1.4 micrometre wavelength. The amplitude of the water absorption (approximately 250 parts-per- million) indicates that the planetary atmosphere is predominantly clear down to ~1 mbar, and sufficiently hydrogen-rich to exhibit a large scale height. The spectrum is indicative of a planetary atmosphere with an upper limit of ~700 times the abundance of...

  10. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-04-30

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03

  11. A generalized bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    CERN Document Server

    Dorn, C; Khan, A; Heng, K; Alibert, Y; Helled, R; Rivoldini, A; Benz, W

    2016-01-01

    We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmosp...

  12. Ground-based photometry of the 21-day Neptune HD 106315c

    Science.gov (United States)

    Lendl, M.; Ehrenreich, D.; Turner, O. D.; Bayliss, D.; Blanco-Cuaresma, S.; Giles, H.; Bouchy, F.; Marmier, M.; Udry, S.

    2017-07-01

    Space-based transit surveys such as K2 and the Transiting Exoplanets Survey Satellite (TESS) allow the detection of small transiting planets with orbital periods greater than 10 days. Few of these warm Neptunes are currently known around stars bright enough to allow for detailed follow-up observations dedicated to their atmospheric characterization. The 21-day period and 3.95 R⊕ planet HD 106315c has been discovered by K2 based on the observation of two of its transits. We observed HD 106315 using the 1.2 m Euler telescope equipped with the EulerCam camera on two occasions to confirm the transit using broadband photometry and refine the planetary period. Based on two observed transits of HD 106315c, we detect its 1 mmag transit and obtain a precise measurement of the planetary ephemerides, which are critical for planning further follow-up observations. We used the attained precision together with the predicted yield from the TESS mission to evaluate the potential for ground-based confirmation of Neptune-sized planets found by TESS. We find that one-meter class telescopes on the ground equipped with precise photometers could substantially contribute to the follow-up of 162 TESS candidates orbiting stars with magnitudes of V ≤ 14. Of these candidates, 74 planets orbit stars with V ≤ 12 and 12 planets orbit V ≤ 10, which makes them high-priority objects for atmospheric characterization with high-end instrumentation. The photometric time series data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/L5

  13. 2011 HM{sub 102}: DISCOVERY OF A HIGH-INCLINATION L5 NEPTUNE TROJAN IN THE SEARCH FOR A POST-PLUTO NEW HORIZONS TARGET

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Alex H.; Holman, Matthew J.; McLeod, Brian A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buie, Marc W.; Borncamp, David M.; Spencer, John R.; Stern, S. Alan [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Osip, David J. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Gwyn, Stephen D. J.; Fabbro, Sebastian; Kavelaars, J. J. [Canadian Astronomy Data Centre, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Benecchi, Susan D.; Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Binzel, Richard P.; DeMeo, Francesca E. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fuentes, Cesar I.; Trilling, David E. [Department of Physics and Astronomy, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011 (United States); Gay, Pamela L. [Center for Science, Technology, Engineering and Mathematics (STEM) Research, Education, and Outreach, Southern Illinois University, 1220 Lincoln Dr, Carbondale, IL 62901 (United States); Petit, Jean-Marc [CNRS, UTINAM, Universite de Franche Comte, Route de Gray, F-25030 Besancon Cedex, (France); Tholen, David J., E-mail: aparker@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); and others

    2013-04-15

    We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM{sub 102}, has the highest inclination (29. Degree-Sign 4) of any known member of this population. It is intrinsically brighter than any single L5 Jupiter Trojan at H{sub V} {approx} 8.18. We have determined its gri colors (a first for any L5 Neptune Trojan), which we find to be similar to the moderately red colors of the L4 Neptune Trojans, suggesting similar surface properties for members of both Trojan clouds. We also present colors derived from archival data for two L4 Neptune Trojans (2006 RJ{sub 103} and 2007 VL{sub 305}), better refining the overall color distribution of the population. In this document we describe the discovery circumstances, our physical characterization of 2011 HM{sub 102}, and this object's implications for the Neptune Trojan population overall. Finally, we discuss the prospects for detecting 2011 HM{sub 102} from the New Horizons spacecraft during its close approach in mid- to late-2013.

  14. 2011 HM102: Discovery of a High-Inclination L5 Neptune Trojan in the Search for a post-Pluto New Horizons Target

    CERN Document Server

    Parker, Alex H; Osip, David J; Gwyn, Stephen D J; Holman, Matthew J; Borncamp, David M; Spencer, John R; Benecchi, Susan D; Binzel, Richard P; DeMeo, Francesca E; Fabbro, Sebastian; Fuentes, Cesar I; Gay, Pamela L; Kavelaars, J J; McLeod, Brian A; Petit, Jean-Marc; Sheppard, Scott S; Stern, S Alan; Tholen, David J; Trilling, David E; Ragozzine, Darin A; Wasserman, Lawrence H; Hunters, the Ice

    2012-01-01

    We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate Trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM102, has the highest inclination (29.4 degrees) of any known member of this population. It is intrinsically brighter than any single L5 Jupiter Trojan at H_V ~ 8.18. We have determined its gri colors (a first for any L5 Neptune Trojan), which we find to be similar to the moderately red colors of the L4 Neptune Trojans, indicating similar surface properties for members of both Trojan clouds. We also present colors derived from archival data for two L4 Neptune Trojans (2006 RJ103 and 2007 VL305), better refining the overall color distribution of the population. In this document we describe the discovery circumstances, our physical characterization of 2011 HM102, and this object's implications for the Neptune Trojan population overall. Finally, we discuss the prospec...

  15. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  16. Cold-induced metabolism

    NARCIS (Netherlands)

    Lichtenbelt, W. van Marken; Daanen, H.A.M.

    2003-01-01

    Purpose of review Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesis by sympathetic, norepinephrine-induced mitochondrial heat production in brown adipose tissue is a well known component of this metabolic

  17. The cold reading technique.

    Science.gov (United States)

    Dutton, D L

    1988-04-15

    For many people, belief in the paranormal derives from personal experience of face-to-face interviews with astrologers, palm readers, aura and Tarot readers, and spirit mediums. These encounters typically involve cold reading, a process in which a reader makes calculated guesses about a client's background and problems and, depending on the reaction, elaborates a reading which seems to the client so uniquely appropriate that it carries with it the illusion of having been produced by paranormal means. The cold reading process is shown to depend initially on the Barnum effect, the tendency for people to embrace generalized personality descriptions as idiosyncratically their own. Psychological research into the Barnum effect is critically reviewed, and uses of the effect by a professional magician are described. This is followed by detailed analysis of the cold reading performances of a spirit medium. Future research should investigate the degree to which cold readers may have convinced themselves that they actually possess psychic or paranormal abilities.

  18. A Cold Alarm

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since the end of 2009, north China has been repeatedly struck by arctic-like blasts of cold weather. As temperatures have plummeted to historic lows, they have inflicted considerable suffering as well.

  19. A Cold Alarm

    Institute of Scientific and Technical Information of China (English)

    ZHOU JIANXIONG

    2010-01-01

    @@ Since the end of 2009, north China has been repeatedly struck by arctic-like blasts of cold weather. As temperatures have plummeted to historic lows, they have inflicted considerable suffering as well.

  20. The low energy photon tagger NEPTUN: Toward a detailed study of the Pygmy dipole resonance with real photons

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Diego; Aumann, T.; Bauer, C.; Baumann, M.; Beckstein, M.; Beller, J.; Blecher, A.; Cvejin, N.; Duchene, M.; Hug, F.; Kahlbow, J.; Knoerzer, M.; Kreis, K.; Kremer, C.; Ries, P.; Romig, C.; Scheit, H.; Schnorrenberger, L.; Symochko, D.; Walz, C. [Institut fuer Kernphysik, Darmstadt (Germany); Lefol, R. [University of Saskatchewan, Saskatoon (Canada); Loeher, B. [ExtreMe Matter Institute EMMI and Research Division, Frankfurt (Germany); Institute for Advanced Studies FIAS, Frankfurt (Germany)

    2014-07-01

    The low energy photon tagger NEPTUN at the S-DALINAC delivers a quasi-monoenergetic photon beam between about 4 MeV and 20 MeV with a resolution of approximately 25 keV. Tagged photons provide the possibility to measure the dipole strength of nuclei in the energy range below and above the neutron threshold. The highly efficient LaBr{sub 3} based spectrometer GALATEA will be used to detect not only the direct decays to the ground state, but also cascading decays can be measured with suitable efficiency. We will measure (γ,n)- and (γ,nγ)-reactions with neutron detectors based on plastic scintillators. This talk provides an overview about setup and goals of the NEPTUN experiment as well as the current state of the commissioning phase. Planned optimizations of the setup, based on the results of a test beam time in June 2013, are also presented.

  1. DYNAMICAL HEATING INDUCED BY DWARF PLANETS ON COLD KUIPER BELT–LIKE DEBRIS DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264 Ciudad Universitaria, México (Mexico); Reyes-Ruiz, M., E-mail: mmunoz@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada, México (Mexico)

    2015-10-01

    With the use of long-term numerical simulations, we study the evolution and orbital behavior of cometary nuclei in cold Kuiper belt–like debris disks under the gravitational influence of dwarf planets (DPs); we carry out these simulations with and without the presence of a Neptune-like giant planet. This exploratory study shows that in the absence of a giant planet, 10 DPs are enough to induce strong radial and vertical heating on the orbits of belt particles. On the other hand, the presence of a giant planet close to the debris disk, acts as a stability agent reducing the radial and vertical heating. With enough DPs, even in the presence of a Neptune-like giant planet some radial heating remains; this heating grows steadily, re-filling resonances otherwise empty of cometary nuclei. Specifically for the solar system, this secular process seems to be able to provide material that, through resonant chaotic diffusion, increase the rate of new comets spiraling into the inner planetary system, but only if more than the ∼10 known DP sized objects exist in the trans-Neptunian region.

  2. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b.

    Science.gov (United States)

    Ehrenreich, David; Bourrier, Vincent; Wheatley, Peter J; des Etangs, Alain Lecavelier; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-06-25

    Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 10(8)-10(9) grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

  3. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    Science.gov (United States)

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  4. Mass-Radius Relations and Core-Envelope Decompositions of Super-Earths and Sub-Neptunes

    CERN Document Server

    Howe, Alex R; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 Earth radii, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are "sub-Neptunes" likely to have significant hydrogen-helium envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, hydrogen-helium envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both "Earth-like" rock-iron cores and pure ice cores, and find that the nece...

  5. Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs

    CERN Document Server

    Luger, Rodrigo; Lopez, Eric; Fortney, Jonathan; Jackson, Brian; Meadows, Victoria

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with $\\sim 1 M_\\oplus$ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  6. Cameras on the NEPTUNE Canada seafloor observatory: Towards monitoring hydrothermal vent ecosystem dynamics

    Science.gov (United States)

    Robert, K.; Matabos, M.; Sarrazin, J.; Sarradin, P.; Lee, R. W.; Juniper, K.

    2010-12-01

    Hydrothermal vent environments are among the most dynamic benthic habitats in the ocean. The relative roles of physical and biological factors in shaping vent community structure remain unclear. Undersea cabled observatories offer the power and bandwidth required for high-resolution, time-series study of the dynamics of vent communities and the physico-chemical forces that influence them. The NEPTUNE Canada cabled instrument array at the Endeavour hydrothermal vents provides a unique laboratory for researchers to conduct long-term, integrated studies of hydrothermal vent ecosystem dynamics in relation to environmental variability. Beginning in September-October 2010, NEPTUNE Canada (NC) will be deploying a multi-disciplinary suite of instruments on the Endeavour Segment of the Juan de Fuca Ridge. Two camera and sensor systems will be used to study ecosystem dynamics in relation to hydrothermal discharge. These studies will make use of new experimental protocols for time-series observations that we have been developing since 2008 at other observatory sites connected to the VENUS and NC networks. These protocols include sampling design, camera calibration (i.e. structure, position, light, settings) and image analysis methodologies (see communication by Aron et al.). The camera systems to be deployed in the Main Endeavour vent field include a Sidus high definition video camera (2010) and the TEMPO-mini system (2011), designed by IFREMER (France). Real-time data from three sensors (O2, dissolved Fe, temperature) integrated with the TEMPO-mini system will enhance interpretation of imagery. For the first year of observations, a suite of internally recording temperature probes will be strategically placed in the field of view of the Sidus camera. These installations aim at monitoring variations in vent community structure and dynamics (species composition and abundances, interactions within and among species) in response to changes in environmental conditions at different

  7. The dynamics of Neptune Trojans - II. Eccentric orbits and observed objects

    Science.gov (United States)

    Zhou, Li-Yong; Dvorak, Rudolf; Sun, Yi-Sui

    2011-01-01

    In a previous paper, we presented a global view of the stability of Neptune Trojans (NTs hereafter) on inclined orbits. As the continuation of the investigation, we discuss in this paper the dependence of the stability of NT orbits on the eccentricity. For this task, high-resolution dynamical maps are constructed using the results of extensive numerical integrations of orbits initialized on fine grids of initial semimajor axis (a0) versus eccentricity (e0). The extensions of regions of stable orbits on the (a0, e0) plane at different inclinations are shown. The maximum eccentricities of stable orbits in the three most stable regions at low (0°, 12°), medium (22°, 36°) and high (51°, 59°) inclination are found to be 0.10, 0.12 and 0.04, respectively. The fine structures in the dynamical maps are described. Via the frequency-analysis method, the mechanisms that portray the dynamical maps are revealed. The secondary resonances, at the frequency of the librating resonant angle λ-λ8 and the frequency of the quasi 2:1 mean-motion resonance (MMR hereafter) between Neptune and Uranus, are found to be deeply involved in the motion of NTs. Secular resonances are detected and they also contribute significantly to the triggering of chaos in the motion. In particular, the effects of the secular resonance ν8, ν18 are clarified. We also investigate the orbital stabilities of six observed NTs by checking the orbits of hundreds of clones generated within the observing error bars. We conclude that four of them are deeply inside the stable region, with 2001 QR322 and 2005 TO74 being the exceptions. 2001 QR322 is in the close vicinity of the most significant secondary resonance. 2005 TO74 is located close to the boundary separating stable orbits from unstable ones, and it may be influenced by a secular resonance. This article was published online on 2010 October 25. Some errors were subsequently identified. This notice is included in the online and print versions to indicate

  8. Line-by-line analysis of Neptune's near-IR spectrum observed with Gemini/NIFS and VLT/CRIRES

    Science.gov (United States)

    Irwin, P. G. J.; Lellouch, E.; de Bergh, C.; Courtin, R.; Bézard, B.; Fletcher, L. N.; Orton, G. S.; Teanby, N. A.; Calcutt, S. B.; Tice, D.; Hurley, J.; Davis, G. R.

    2014-01-01

    New line data describing the absorption of CH4 and CH3D from 1.26 to 1.71 μm (WKMC-80K, Campargue, A., Wang, L., Mondelain, D., Kassi, S., Bézard, B., Lellouch, E., Coustenis, A., de Bergh, C., Hirtzig, M., Drossart, P. [2012]. Icarus 219, 110-128) have been applied to the analysis of Gemini-N/NIFS observations of Neptune made in 2009 and VLT/CRIRES observations made in 2010. The new line data are found to greatly improve the fit to the observed spectra and present a considerable advance over previous methane datasets. The improved fits lead to an empirically derived wavelength-dependent correction to the scattering properties of the main observable cloud deck at 2-3 bars that is very similar to the correction determined for Uranus' lower cloud using the same line dataset by Irwin et al. (Irwin, P.G.J., de Bergh, C., Courtin, R., Bézard, B., Teanby, N.A., Davis, G.R., Fletcher, L.N., Orton, G.S., Calcutt, S.B., Tice, D., Hurley, J. [2012]. Icarus 220, 369-382). By varying the abundance of CH3D in our simulations, analysis of the Gemini/NIFS observations leads to a new determination of the CH3D/CH4 ratio for Neptune of 3.0-0.9+1.0×10-4, which is smaller than previous determinations, but is identical (to within error) with the CH3D/CH4 ratio of 2.9-0.5+0.9×10-4 derived by a similar analysis of Gemini/NIFS observations of Uranus made in the same year. Thus it appears that the atmospheres of Uranus and Neptune have an almost identical D/H ratio, which suggests that the icy planetisimals forming these planets came from the same source reservoir, or a reservoir that was well-mixed at the locations of ice giant formation, assuming complete mixing between the atmosphere and interior of both these planets. VLT/CRIRES observations of Neptune have also been analysed with the WKMC-80K methane line database, yielding very good fits, with little evidence for missing absorption features. The CRIRES spectra indicate that the mole fraction of CO at the 2-3 bar level must be

  9. Cold asymmetrical fermion superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  10. Cold nuclear fusion

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available In normal temperature condition, the nuclear force constraint inertial guidance method, realize the combination of deuterium and tritium, helium and lithium... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion". According to the similarity of the nuclear force constraint inertial guidance system, the different velocity and energy of the ion beam mixing control, developed ion speed dc transformer, it is cold nuclear fusion collide, issue of motivation and the nuclear power plant start-up fusion and power transfer system of the important equipment, so the merger to apply for a patent

  11. A study of chemical systems using signal flow graph theory: application to Neptune

    Science.gov (United States)

    Dobrijevic, M.; Parisot, J. P.; Dutour, I.

    1995-02-01

    Photochemistry of giant planets and their satellites is characterized by numerous reactions involving many chemical species. In the present paper, chemical systems are modeled by signal flow graphs. Such a technique evaluates the transmission of any input into the system (solar flux, electrons…) and gives access to the identification of the most important mechanisms in the chemical system. For a given chemical system, we first evaluate rate coefficients. Then, in order to obtain concentrations of each compound, we integrate the set of continuity equations by Gear's method. Gear's method is chosen rather than another classical method because it is recommended for a system of stiff equations due to the existence of greatly differing time constants. Finally, the technique of signal flow graphs is used. This method is applied to the production of hydrocarbons in the atmospheres of giant planets. In particular, the production of C 2H 6 in the atmosphere of Neptune from the photodissociation of CH 4 is investigated. Different paths of dissociation of CH 4 are possible from L α radiations. A chemical system containing 14 species and 30 reactions including these different paths of dissociation is integrated. The main mechanism of production of C 2H 6 is identified and evaluated for each model of dissociation. The importance of various reaction paths as a function of time is discussed.

  12. Transit infrared spectroscopy of the hot neptune around GJ 436 with the Hubble Space Telescope

    CERN Document Server

    Pont, F; Knutson, H; Holman, M; Charbonneau, D

    2008-01-01

    The nearby transiting system GJ 436b offers a unique opportunity to probe the structure and atmosphere of an extra-solar "hot Neptune". In this Letter, we present the main results of observations covering two transit events with the NICMOS camera on the Hubble Space Telescope. The data consist in high-cadence time series of grism spectra covering the 1.1-1.9 micron spectral range. We find Rpl=4.04 +- 0.10 R_earth and R_*= 0.446 +- 0.011 R_sun for the planet and star radius, confirming and improving earlier measurements with ground-based photometry and a Spitzer lightcurve at 8 microns, as opposed to a much higher value obtained with the Fine Guidance Sensor on the Hubble Space Telescope. We measure no departure from strict periodicity in the transits to the level of ~7 seconds. This strongly disfavours the proposed explanation of the orbital eccentricity of GJ 436b in terms of the perturbation by another close-by planet. We measure a flat transmission spectrum at the level of a few parts per 10'000 in flux, w...

  13. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir, Diana [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States); Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Pearson, Kyle A. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001 (United States); Crossfield, Ian J. M.; Barman, Travis [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Eastman, Jason [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Biddle, Lauren I., E-mail: diana@oddjob.uchicago.edu [Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2015-12-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes.

  14. Formation of close in Super-Earths \\& Mini-Neptunes: Required Disk Masses \\& Their Implications

    CERN Document Server

    Schlichting, Hilke E

    2014-01-01

    Recent observations by the {\\it Kepler} space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury, around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here we calculate the required disk masses for {\\it in situ} formation of the {\\it Kepler} planets. We find that, if close-in planets formed as {\\it isolation masses}, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is $2 v_{esc}/\\Omega$, where $v_{esc}$ is the escape velocity of the planet and $\\Omega$ the Keplerian frequency and use it to calculate the required disk masses for {\\it in situ} formation with giant impacts. Even with giant...

  15. The Formation of Super-Earths and Mini-Neptunes with Giant Impacts

    CERN Document Server

    Inamdar, Niraj K

    2014-01-01

    The majority of discovered exoplanetary systems harbor a new class of planets, bodies typically several times more massive than Earth but orbiting their host stars well inside the orbit of Mercury. The origin of these close-in super-Earths and mini-Neptunes is a major unanswered question in planet formation. Unlike Earth, whose atmosphere contains $<10^{-6}$ of its total mass, a large fraction of close-in planets have significant gaseous envelopes, containing 1% to 10% or more of their total mass. It has been proposed that these close-in planets formed in situ either by delivery of $50-100M_{\\oplus}$ of rocky material to inner regions of the protoplanetary disc or in a disc enhanced relative to the MMSN. In both cases, final assembly of the planets occurs by giant impacts (GIs). Here we test the viability of these scenarios. We show that atmospheres accreted by isolation masses are small (typically $10^{-3}-10^{-2}$ the core mass) and that atmospheric mass loss during GIs is significant, resulting in typic...

  16. Long term dynamics beyond Neptune: secular models to study the regular motions

    CERN Document Server

    Saillenfest, Melaine; Tommei, Giacomo; Valsecchi, Giovanni B

    2016-01-01

    Two semi-analytical one-degree-of-freedom secular models are presented for the motion of small bodies beyond Neptune. A special attention is given to trajectories entirely exterior to the planetary orbits. The first one is the well-known non-resonant model of Kozai (1962) adapted to the transneptunian region. Contrary to previous papers, the dynamics is fully characterized with respect to the fixed parameters. A maximum perihelion excursion possible of 16.4 AU is determined. The second model handles the occurrence of a mean-motion resonance with one of the planets. In that case, the one-degree-of-freedom integrable approximation is obtained by postulating the adiabatic invariance, and is much more general and accurate than previous secular models found in the literature. It brings out in a plain way the possibility of perihelion oscillations with a very high amplitude. Such a model could thus be used in future studies to deeper explore that kind of motion. For complex resonant orbits (especially of type 1:k),...

  17. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b.

    Science.gov (United States)

    Knutson, Heather A; Benneke, Björn; Deming, Drake; Homeier, Derek

    2014-01-02

    GJ 436b is a warm--approximately 800 kelvin--exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10(5) times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet's atmosphere is significantly enhanced in elements heavier than hydrogen and helium. Here we report observations of GJ 436b's atmosphere obtained during transit. The data indicate that the planet's transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ. The measured spectrum is consistent with either a layer of high cloud located at a pressure level of approximately one millibar or with a relatively hydrogen-poor (three per cent hydrogen and helium mass fraction) atmospheric composition.

  18. Bulk Composition of GJ 1214b and other sub-Neptune exoplanets

    CERN Document Server

    Valencia, Diana; Parmentier, Vivien; Freedman, Richard S

    2013-01-01

    GJ1214b stands out among the detected low-mass exoplanets, because it is, so far, the only one amenable to transmission spectroscopy. Up to date there is no consensus about the composition of its envelope although most studies suggest a high molecular weight atmosphere. In particular, it is unclear if hydrogen and helium are present or if the atmosphere is water dominated. Here, we present results on the composition of the envelope obtained by using an internal structure and evolutionary model to fit the mass and radius data. By examining all possible mixtures of water and H/He, with the corresponding opacities, we find that the bulk amount of H/He of GJ1214b is at most 7% by mass. In general, we find the radius of warm sub-Neptunes to be most sensitive to the amount of H/He. We note that all (Kepler-11b,c,d,f, Kepler-18b, Kepler-20b, 55Cnc-e, Kepler-36c and Kepler-68b) but one (Kepler-11e) of the discovered low-mass planets so far have less than 10% H/He. In fact, Kepler-11e has 10-25% bulk H/He. Conversely,...

  19. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    Science.gov (United States)

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  20. Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b

    Science.gov (United States)

    Awiphan, S.; Kerins, E.; Pichadee, S.; Komonjinda, S.; Dhillon, V. S.; Rujopakarn, W.; Poshyachinda, S.; Marsh, T. R.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.

    2016-12-01

    GJ3470b is a hot Neptune exoplanet orbiting an M dwarf and the first sub-Jovian planet to exhibit Rayleigh scattering. We present transit timing variation (TTV) and transmission spectroscopy analyses of multiwavelength optical photometry from 2.4-m and 0.5-m telescopes at the Thai National Observatory, and the 0.6-m PROMPT-8 telescope in Chile. Our TTV analysis allows us to place an upper mass limit for a second planet in the system. The presence of a hot Jupiter with a period of less than 10 d or a planet with an orbital period between 2.5 and 4.0 d are excluded. Combined optical and near-infrared transmission spectroscopy favour an H/He-dominated haze (mean molecular weight 1.08 ± 0.20) with high particle abundance at high altitude. We also argue that previous near-infrared data favour the presence of methane in the atmosphere of GJ3470b.

  1. Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b

    CERN Document Server

    Awiphan, S; Pichadee, S; Komonjinda, S; Dhillon, V S; Rujopakarn, W; Poshyachinda, S; Marsh, T R; Reichart, D E; Ivarsen, K M; Haislip, J B

    2016-01-01

    GJ3470b is a hot Neptune exoplanet orbiting an M dwarf and the first sub-Jovian planet to exhibit Rayleigh scattering. We present transit timing variation (TTV) and transmission spectroscopy analyses of multi-wavelength optical photometry from 2.4-m and 0.5-m telescopes at the Thai National Observatory, and the 0.6-m PROMPT-8 telescope in Chile. Our TTV analysis allows us to place an upper mass limit for a second planet in the system. The presence of a hot Jupiter with a period of less than 10 days or a planet with an orbital period between 2.5 and 4.0 days are excluded. Combined optical and near-infrared transmission spectroscopy favour a H/He dominated haze (mean molecular weight 1.18$\\pm$0.22) with high particle abundance at high altitude. We also argue that previous near-infrared data favour the presence of methane in the atmosphere of GJ3470b.

  2. MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

    CERN Document Server

    Skowron, J; Poleski, R; Kozłowski, S; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Abe, F; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Yonehara, A; Dominik, M; Jørgensen, U G; Bozza, V; Harpsøe, K; Hundertmark, M; Skottfelt, J

    2015-01-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the ...

  3. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  4. Photometric Follow-up Observations of the Transiting Neptune-Mass Planet GJ 436b

    CERN Document Server

    Shporer, Avi; Winn, Joshua N; Holman, Matthew J; Latham, David W; Pont, Frederic; Esquerdo, Gilbert A

    2008-01-01

    This paper presents multi-band photometric follow-up observations of the Neptune-mass transiting planet GJ 436b, consisting of 5 new ground-based transit light curves obtained in May 2007. Together with one already published light curve we have at hand a total of 6 light curves, spanning 29 days. The analysis of the data yields an orbital period P = 2.64386+-0.00003 days, mid-transit time T_c [HJD] =2454235.8355+-0.0001, planet mass M_p = 23.1+-0.9 M_{\\earth} = 0.073+-0.003 M_{Jup}, planet radius R_p = 4.2+-0.2 R_{\\earth} = 0.37+-0.01 R_{Jup} and stellar radius R_s = 0.45+-0.02 R_{\\sun}. Our typical precision for the mid transit timing for each transit is about 30 seconds. We searched the data for a possible signature of a second planet in the system through transit timing variations (TTV) and variation of the impact parameter. The analysis could not rule out a small, of the order of a minute, TTV and a long-term modulation of the impact parameter, of the order of +0.2 year^{-1}.

  5. Rayleigh Scattering in the Atmosphere of the Warm Exo-Neptune GJ 3470b

    CERN Document Server

    Dragomir, Diana; Pearson, Kyle A; Crossfield, Ian J M; Eastman, Jason; Barman, Travis; Biddle, Lauren I

    2015-01-01

    GJ 3470b is a warm Neptune-size planet transiting a M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g', Sloan i', Harris B and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering i...

  6. Establishing Long-term Observations of Gas Hydrate Systems: Results from Ocean Networks Canada's NEPTUNE Observatory

    Science.gov (United States)

    Scherwath, M.; Riedel, M.; Roemer, M.; Heesemann, M.; Chun, J. H.; Moran, K.; Spence, G.; Thomsen, L.

    2016-12-01

    The key for a scientific understanding of natural environments and the determination of baselines is the long-term monitoring of environmental factors. For seafloor environments including gas hydrate systems, cabled ocean observatories are important platforms for the remote acquisition of a comprehensive suite of datasets. This is particularly critical for those datasets that are difficult to acquire with autonomous, battery-powered systems, such as cameras or high-bandwidth sonar because cable connections provide continuous power and communication from shore to the seafloor. Ocean Networks Canada is operating the NEPTUNE cabled undersea observatory in the Northeast Pacific with two nodes at gas hydrate sites, Barkley Canyon and Clayoquot Slope. With up to seven years of continuous data from these locations we are now beginning to understand the dynamics of the natural systems and are able to classify the variations within the gas hydrate system. For example, the long-term monitoring of gas vent activity has allowed us to classify phases of low, intermittent and high activity that seem to reoccur periodically. Or, by recording the speeds of bacterial mat growth or detecting periods of increased productivity of flora and fauna at hydrates sites we can start to classify benthic activity and relate that to outside environmental parameters. This will eventually allow us to do enhanced environmental monitoring, establish baselines, and potentially detect anthropogenic variations or events for example during gas hydrate production.

  7. Feasibility Study of a Laser Beat-Wave Seeded THz FEL at the Neptune Laboratory

    CERN Document Server

    Reiche, Sven; Pellegrini, Claudio; Rosenzweig, James E; Shvets, Gennady; Tochitsky, Sergei Ya

    2005-01-01

    Free-Electron Laser in the THz range can be used to generate high output power radiation or to modulate the electron beam longitudinally on the radiation wavelength scale. Microbunching on the scale of 1-5 THz is of particular importance for potential phase-locking of a modulated electron beam to a laser-driven plasma accelerating structure. However the lack of a seeding source for the FEL at this spectral range limits operation to a SASE FEL only, which denies a subpicosecond synchronization of the current modulation or radiation with an external laser source. One possibility to overcome this problem is to seed the FEL with two external laser beams, which difference (beat-wave) frequency is matched to the resonant FEL frequency in the THz range. In this presentation we study feasibility of an experiment on laser beat-wave injection in the THz FEL considered at the UCLA Neptune Laboratory, where both a high brightness photoinjector and a two-wavelength, TW-class CO2 laser system exist. By incorporating the en...

  8. Ocean and Seafloor Dynamics From the Ocean Networks Canada VENUS and NEPTUNE Observatories

    Science.gov (United States)

    Scherwath, M.; Heesemann, M.; Dewey, R. K.; Hoeberechts, M.; Mihaly, S. F.

    2013-12-01

    Cabled observatories allow the acquisition of long-term high-resolution time series that enable the detection of short-lived or rare events, allow the interaction with experiments in reaction to such events, as well as generate well-established base-line parameters over a long period of time. Ocean Networks Canada (ONC) has been operating the coastal observatory VENUS with continuous data streaming since 2006 and the regional ocean observatory NEPTUNE Canada since 2009. We present data from the major sites and show how dynamic the system can be. For example, the two gas hydrate nodes at Barkley Canyon and Clayoquot Slope show changes over various time ranges that are important to include in the analysis of gas hydrate dynamics and stability, including environmental changes and microbial activity. Standard conductivity, temperature and bottom pressure data are correlated with sonar and video data to show the inter- and intra-disciplinary aspects of ocean sciences and the need for continuous ocean presence. With a planned operating life span of 25 years Ocean Networks Canada aims to offer the ocean community a unique but necessary high quality data set and hopes to establish a new standard for ocean based sciences, together with new emerging ocean observatories enabling sciences in a way that has not been possible before.

  9. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b

    CERN Document Server

    Knutson, Heather A; Deming, Drake; Homeier, Derek

    2014-01-01

    GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a methane-to-CO ratio that is 100,000 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet's atmosphere is significantly enhanced in elements heavier than H and He. In this study we present complementary observations of GJ 436b's atmosphere obtained during transit. Our observations indicate that the planet's transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48 sigma. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relativ...

  10. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Jørgensen, U. G. [Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Prester, D. Dominis [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P.; Harris, P. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Fukui, A., E-mail: furusawa@stelab.nagoya-u.ac.jp, E-mail: liweih@astro.ucla.edu, E-mail: tim.natusch@aut.ac.nz, E-mail: rzellem@lpl.arizona.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; MiNDSTEp Consortium; RoboNet Collaboration; PLANET Collaboration; and others

    2013-12-20

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M {sub h} = 0.11 ± 0.01 M {sub ☉} and M {sub p} = 9.2 ± 2.2 M {sub ⊕}, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D {sub L} = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.

  11. The 5:1 Neptune Resonance as Probed by CFEPS: Dynamics and Population

    CERN Document Server

    Pike, R E; Petit, J M; Gladman, B J; Alexandersen, M; Volk, K; Shankman, C J

    2015-01-01

    The Canada-France Ecliptic Plane Survey discovered four trans-Neptunian objects with semi-major axes near the 5:1 resonance, revealing a large and previously undetected intrinsic population. Three of these objects are currently resonant with Neptune, and the fourth is consistent with being an object that escaped the resonance at some point in the past. The non-resonant object may be representative of a detached population that is stable at slightly lower semi-major axes than the 5:1 resonance. We generated clones of these objects by resampling the astrometric uncertainty and examined their behavior over a 4.5 Gyr numerical simulation. The majority of the clones of the three resonant objects (>90%) spend a total of 10^7 years in resonance during their 4.5 Gyr integrations; most clones experience multiple periods of resonance capture. Our dynamical integrations reveal an exchange between the 5:1 resonance, the scattering objects, and other large semi-major axis resonances, especially the 4:1, 6:1, and 7:1. The ...

  12. Methane in the atmosphere of the transiting hot Neptune GJ436b?

    CERN Document Server

    Beaulieu, J -P; Kipping, D M; Ribas, I; Barber, R J; Cho, J Y-K; Polichtchouk, I; Tennyson, J; Yurchenko, S N; Griffith, C A; Batista, V; Waldmann, I; Miller, S; Carey, S; Mousis, O; Fossey, S J; Aylward, A

    2010-01-01

    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and microns obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects of the instrument, we fitted the light curves - including limb darkening effects - using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based V, I, H and K_s observations available in the literature, the range 0.5-10 microns can be covered. The temperature distribution of the planet was estimated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Transmission spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such planetary atmosphere, namely water vapour, methane, ammonia, carbon monoxide and dioxide, and hydrogen sulphide. In particular, a new, ab-initio calculated, linelist for ho...

  13. Cold regions isotope applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids. (TFD)

  14. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  15. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  16. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  17. Finger cold induced vasodilation

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2007-01-01

    There are indications that subjects with a reduced finger CIVD response are more prone to get local cold injuries, but more epidemiological research is needed to establish a firm relationship. Although it was observed that an early CIVD onset was associated with initially superior manual performance

  18. Teaching "In Cold Blood."

    Science.gov (United States)

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one…

  19. Cold Weather Pet Safety

    Science.gov (United States)

    ... they can be knocked over, potentially starting a fire. Check your furnace before the cold weather sets in to make ... avoided because of the risk of burns or fire. Heated pet mats should also be used ... to burrow, get them back inside quickly because they are showing signs of ...

  20. Cold-induced metabolism

    NARCIS (Netherlands)

    Lichtenbelt, W. van Marken; Daanen, H.A.M.

    2003-01-01

    Purpose of review Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesis by sympathetic, norepinephrine-induced mitochondrial heat production in brown adipose tissue is a well known component of this metabolic respon

  1. Chilling Out With Colds

    Science.gov (United States)

    ... some feel-better tips if you get a cold: Bring on the heat. Hot drinks soothe coughs and sore throats while also clearing mucus. So eat (or drink) your chicken soup! Get steamed up. A steamy shower helps stuffy or irritated noses. Or run a ...

  2. Out in the cold.

    Science.gov (United States)

    Bates, Jane

    2016-05-04

    Every now and then, you say something to a patient and wonder whether you should have kept quiet. On this occasion, a female patient and I were indulging in a moment of shared empathy over an annoying symptom we both experience - permanently cold feet.

  3. Cold War Propaganda.

    Science.gov (United States)

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  4. Recent Cold War Studies

    Science.gov (United States)

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  5. Massively parallel code named NEPTUNE for 3D fully electromagnetic and PIC simulations%3维全电磁粒子模拟大规模并行程序NEPTUNE

    Institute of Scientific and Technical Information of China (English)

    董烨; 董志伟; 周海京; 陈虹; 莫则尧; 陈军; 杨温渊; 赵强; 夏芳; 肖丽; 马彦; 廖丽; 孙会芳

    2011-01-01

    介绍了自主编制的3维全电磁粒子模拟大规模并行程序NEPTUNE的基本情况.该程序具备对多种典型高功率微波源器件的3维模拟能力,可以在数百乃至上千个CPU上稳定运行.该程序使用时域有限差分(FDTD)方法更新计算电磁场,采用Buneman-Boris算法更新粒子运动状态,运用质点网格法(PIC)处理粒子与电磁场的耦合关系,最后利用Boris方法求解泊松方程对电场散度进行修正,以确保计算精度.该程序初步具备复杂几何结构建模能力,可以对典型高功率微波器件中常见的一些复杂结构,如任意边界形状的轴对称几何体、正交投影面几何体,慢波结构、耦合孔洞、金属线和曲面薄膜等进行几何建模.该程序将理想导体边界、外加波边界、粒子发射与吸收边界及完全匹配层边界等物理边界应用于几何边界上,实现了数值计算的封闭求解.最后以算例的形式,介绍了使用NEPTUNE程序对磁绝缘线振荡器、相对论返波管、虚阴极振荡器及相对论速调管等典型高功率微波源器件进行的模拟计算情况,验证了模拟计算结果的可靠性,同时给出了并行效率的分布情况.%A massively parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell(PIC) simulations is introduced , which can run on the Linux system with hundreds or even thousands of CPUs. NEPTUNE is capable of three-dimensional simulation of various typical high power microwave( HPM) devices. In NEPTUNE code, electromagnetic fields are updated by using finite-difference time-domain (FDTD) method to solve Maxwell equations and particles are moved by using Buneman-Boris method to solve the relativistic Newton-Lorentz equation. The electromagnetic fields and particles are coupled by using linear weighing interpolation PIC method, and the electric field components are corrected by using Boris method to solve the Poisson e-quation in order to ensure charge

  6. The Evaluation of Neptune Pad in Hemostasis of Femoral Artery Puncture Point after Interventional Therapy for 25 Patients Aged Over 80 with Cancer%25例超高龄癌症患者股动脉穿刺点Neptune Pad止血贴应用评价

    Institute of Scientific and Technical Information of China (English)

    刘建文; 张同庆; 张怡; 赵丹; 孟娥; 贾晨星; 梁仲侨

    2013-01-01

      目的探讨80岁以上超高龄癌症患者经股动脉穿刺介入治疗后应用Neptune Pad止血贴的疗效及安全性。方法25例(共52次)超高龄癌症患者的股动脉穿刺点应用Neptune Pad止血贴辅助止血。结果52次经股动脉穿刺动脉灌注化疗和/或栓塞后,均无穿刺处并发症发生。结论 Neptune Pad止血贴对超高龄患者的股动脉穿刺止血效果肯定、安全可靠。%  Objective To investigate the safety and efficacy of the Neptune Pad in hemostasis of femoral artery puncture point after interventional therapy. Methods The application of Neptune Pad was 52 times in hemostasis of femoral artery puncture point after interventional therapy for 25 patients aged over 80 with cancer. Results There were no puncture complications in 52 times femoral artery puncture after interventional therapy. Conclusion The application of Neptune Pad for patients aged over 80 with femoral artery puncture haemostatic are effectively and safety.

  7. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  8. Trainability of cold induced vasodilation

    NARCIS (Netherlands)

    Daanen, H.A.M.; Raymann, R.J.E.M.; Stoop, M.

    2007-01-01

    Peripheral cold injuries are often reported in mountaineers. Not only low ambient temperatures, but also the hypobaric circumstances are known to be major environmental risk factors. When the fingers are exposed to extreme cold for several minutes, cold induced vasodilation (CIVD) occurs, that is

  9. Trainability of cold induced vasodilation

    NARCIS (Netherlands)

    Daanen, H.A.M.; Raymann, R.J.E.M.; Stoop, M.

    2007-01-01

    Peripheral cold injuries are often reported in mountaineers. Not only low ambient temperatures, but also the hypobaric circumstances are known to be major environmental risk factors. When the fingers are exposed to extreme cold for several minutes, cold induced vasodilation (CIVD) occurs, that is re

  10. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  11. Discovery and Validation of a High-Density sub-Neptune from the K2 Mission

    Science.gov (United States)

    Espinoza, Néstor; Brahm, Rafael; Jordán, Andrés; Jenkins, James S.; Rojas, Felipe; Jofré, Paula; Mädler, Thomas; Rabus, Markus; Chanamé, Julio; Pantoja, Blake; Soto, Maritza G.; Morzinski, Katie M.; Males, Jared R.; Ward-Duong, Kimberly; Close, Laird M.

    2016-10-01

    We report the discovery of K2-56b, a high-density sub-Neptune exoplanet, made using photometry from Campaign 4 of the two-wheeled Kepler (K2) mission, ground-based radial velocity (RV) follow-up from HARPS and high-resolution lucky and adaptive optics imaging obtained using AstraLux and MagAO, respectively. The host star is a bright (V = 11.04, K s = 9.37), slightly metal-poor ([Fe/H] = ‑0.15 ± 0.05 dex) solar analogue located at {152.1}-7.4+9.7 pc from Earth, for which we find a radius of {R}* ={0.928}-0.040+0.055{R}ȯ and a mass of {M}* ={0.961}-0.029+0.032{M}ȯ . A joint analysis of the K2 photometry and HARPS RVs reveal that the planet is in a ≈42 day orbit around its host star, has a radius of {2.23}-0.11+0.14{R}\\oplus , and a mass of {16.3}-6.1+6.0{M}\\oplus . Although the data at hand put the planet in the region of the mass–radius diagram where we could expect planets with a pure rock (i.e., magnesium silicate) composition using two-layer models (i.e., between rock/iron and rock/ice compositions), we discuss more realistic three-layer composition models which can explain the high density of the discovered exoplanet. The fact that the planet lies in the boundary between “possibly rocky” and “non-rocky” exoplanets makes it an interesting planet for future RV follow-up.

  12. On the confinement of Neptune's ring arcs by co-orbital moonlets

    Science.gov (United States)

    Sicardy, B.; Renner, S.

    2003-05-01

    Recent HST and Earth-based observations (Dumas, C. et al., Nature, 400, 733, 1999; Sicardy, B. et al., Nature 400, 731, 1999) indicate that Neptune's ring arcs are near but not within the 42:43 corotation resonance with Galatea, thought to be responsible for the azimuthal confinement of the arc system (Porco, C.C., Science, 253, 995, 1991). Consequently a new resonance structure based only on Galatea's eccentricity has been proposed to explain the arcs' stability : if the arcs have a sufficient fraction of the mass of Galatea, then the 42:43 eccentric corotation resonance with this moon, located in the massless case 3 km inside the arcs' orbit, can match the current arcs' semimajor axis (Namouni, F. and Porco, C.C., Nature, 417, 47, 2002). The ring mass they determined corresponds to a parent ˜ 10-km-radius satellite with a density similar to that of Galatea. Because Voyager data exclude undetected satellites of radius larger than ˜ 6 km, the mass required for the arcs' confinement is probably not contained in a single body. Here we present an alternative solution fully compatible with the latest observations in which small co-orbital satellites confine the observed dusty ring material. These hypothetical co-orbital bodies would be in a stable stationary configuration. There is an infinity of solutions for such stationary configurations, depending on the satellite masses (Renner, S. and Sicardy, B., CeMDA, submitted), which reproduce all the features of the arc system. We have tested numerically the stability of the system over centuries, in a purely gravitational case but also under the effects of collisions and PR drag. We show how Adam's ring material can evolve towards stable stationary configurations of several co-orbital satellites through the Galatea's secular torques.

  13. CATHARE-3: A new system code for thermal-hydraulics in the context of the NEPTUNE project

    Energy Technology Data Exchange (ETDEWEB)

    Emonot, P., E-mail: philippe.emonot@cea.fr [CEA DEN/DER/SSTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Souyri, A., E-mail: annick.souyri@edf.fr [EDF R and D/MFEE, 6 Quai Watier, 78401 Chatou Cedex (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA-NP, Tour Areva, 92084 Paris La Defense Cedex (France); Barre, F., E-mail: francois.barre@irsn.fr [IRSN DPAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France)

    2011-11-15

    After a thorough analysis of the industrial needs and of the limitations of current simulation tools, EDF and CEA (Commissariat a l'Energie Atomique) launched the NEPTUNE Project in 2001 (see) with the support of AREVA-NP and IRSN. The NEPTUNE activities include software development, research in physical modeling and numerical methods, development of advanced instrumentation techniques and new experimental programs. Four different simulation scales were addressed including DNS (Direct Numerical Simulation), CFD in open medium (Computational Fluid Dynamics), component (subchannel-type analysis) and system (reactor modeling) scales. In 2006 CEA, EDF, AREVA-NP and IRSN defined the strategy for the system scale of NEPTUNE and the CATHARE-3 development was launched. The main objectives are: Bullet advanced physical modeling of two-phases flows, mainly by using multi-field and turbulence models, Bullet improved 3D modeling by the use of fine and non conforming structured meshes, Bullet generalized coupling capabilities with other thermal-hydraulic scales and with other disciplines (core physics, structural mechanics, Horizontal-Ellipsis), Bullet extension of the applicability to new Gen IV reactors (Sodium Cooled Fast Breeder Reactors, Gas Cooled Reactors, Supercritical Light Water Reactors), Bullet a true object-oriented code architecture. At the same time CATHARE-3 is in continuity with the CATHARE-2 code which is the current industrial version of CATHARE and internationally used for nuclear power plant safety analysis, in simulators and in coupled simulation tools. The road map of these two codes will allow a smooth transition from CATHARE-2 to CATHARE-3 for all users. This paper gives an overview of the choices made for the development of CATHARE-3 including new physical models, validation strategy and experimental programs, numerical improvements, enhanced coupling capability and software architecture evolution. The current status of the project as well as the

  14. Discovery of the distant cool sub-Neptune mass planet OGLE 2005-BLG-390Lb by microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, J P; Bennett, D P; Fouque, P; Williams, A; Dominik, M; Jorgensen, U G; Kubas, D; Cassan, A; Coutures, C; Greenhill, J; Hill, K; Menzies, J; Sackett, P D; Albrow, M; Brillant, S; Caldwell, J R; Calitz, J J; Cook, K H; Corrales, E; Desort, M; Dieters, S; Dominis, D; Donatowicz, J; Hoffman, M; Kane, S; Marquette, J B; Martin, R; Meintjes, P; Pollard, K; Sahu, K; Vinter, C; Wambsganss, J; Woller, K; Horne, K; Steele, I; Bramich, D M; Burgdorf, M; Snodgrass, C; Bode, M; Udalski, A; Szymanski, M K; Kubiak, M; Wieckowski, T; Pietrzynski, G; Soszynski, I; Szewczyk, O; Wyrzykowski, L; Paczynski, B; Abe, F; Bond, I A; Britton, T R; Gilmore, A C; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A V; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okada, C; Ohnishi, K; Rattenbury, N J; Sako, T; Sato, S; Sasaki, M; Sekiguchi, T; Sullivan, D J; Tristram, P J; Yock, P M; Yoskioka, T

    2005-11-07

    The favoured theoretical explanation for planetary systems formation is the core-accretion model in which solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars, the most common stars of our Galaxy, this model favours the formation of Earth- to Neptune-mass planets in a few million years with orbital sizes of 1 to 10 AU, which is consistent with the small number of detections of giant planets with M-dwarf host stars. More than 170 extrasolar planets have been discovered so far with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not previously been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5{sub -2.7}{sup +5.5} Earthmass planetary companion at a separation of 2.6{sub -0.6}{sup +1.5}AU from a 0.22{sub -0.11}{sup +0.21} M{sub e} M-dwarf star, which is the lens star for gravitational microlensing event OGLE 2005-BLG-390. This is the lowest mass ever reported for an extrasolar planet orbiting a main sequence star, although the error bars overlap those for the mass of GJ876d. Our detection suggests that such cool, sub-Neptune mass planets may be common than gas giant planets, as predicted by the core accretion theory.

  15. Modeling of Multisize Bubbly Flow and Application to the Simulation of Boiling Flows with the Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Christophe Morel

    2009-01-01

    Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.

  16. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  17. "Miniature Cold War?"

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Fu: Relations between America and Russia are one of the most important bilateral ties that could affect the trend of world situation.What's the matter with U. S. -Russia ties? What's wrong with their bilateral relations? People tend to ask these days. Some observers on both sides suggest that post 9/11 honeymoon has turned sour when joint effort against challenges from nontraditional security issues failed to remove original bilateral contradictions over traditional security concerns.Japanese Jiji News Agency saw "a miniature Cold War" evolving and the British Guardian even bluntly pronounced "a new Cold War" on January 3, asserting that disintegration of the former Soviet Union did not terminate bilateral contention, which has only been performed on an international stage more complicated than ever before, with covert scheming against each other replacing overt, direct confrontation. How about starting our discussion with those comments?

  18. Engine Cold Start

    Science.gov (United States)

    2015-09-01

    14. ABSTRACT These fuels were used for testing a GEP 6.5L turbocharged V-8 diesel engine operation in a cold box. This engine architecture is... engines . The U.S. military currently uses petroleum-based jet fuels in diesel engine -powered ground vehicles and is studying the use of alternative jet...to identify a window, or range, of cetane number which would be acceptable to ensure the reliable operation of diesel engine -powered military ground

  19. Electronic Equipment Cold Plates

    Science.gov (United States)

    1976-04-01

    equations for such a flow regiae. For laainar flow and Moderate teaperature differwwe« between the well «nd coolant, a aodifled Sieder -Tate...con- figuration. The heat-transfer coefficients, therefore, were determined by using both the Sieder -Tate and McAdams equations and the coaputed...values used In the analytical predictions. As with th* previous cold Plates, the Sieder -Tate equation gave too low of values for the heat- transfer

  20. The CMS COLD BOX

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    The CMS detector is built around a large solenoid magnet. This takes the form of a cylindrical coil of superconducting cable that generates a field of 3.8 Tesla: about 100,000 times the magnetic field of the Earth. To run, this superconducting magnet needs to be cooled down to very low temperature with liquid helium. Providing this is the job of a compressor station and the so-called “cold box”.

  1. The Exoplanet Mass-ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass

    Science.gov (United States)

    Suzuki, D.; Bennett, D. P.; Sumi, T.; Bond, I. A.; Rogers, L. A.; Abe, F.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Onishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yonehara, A.; MOA Collaboration

    2016-12-01

    We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. We determine the survey sensitivity as a function of planet-star mass ratio, q, and projected planet-star separation, s, in Einstein radius units. We find that the mass-ratio function is not a single power law, but has a change in slope at q ˜ 10-4, corresponding to ˜20 M ⊕ for the median host-star mass of ˜0.6 {M}⊙ . We find significant planetary signals in 23 of the 1474 alert events that are well-characterized by the MOA-II survey data alone. Data from other groups are used only to characterize planetary signals that have been identified in the MOA data alone. The distribution of mass ratios and separations of the planets found in our sample are well fit by a broken power-law model of the form {{dN}}{pl}/{(d{log}qd{log}s)=A(q/{q}{br})}n{s}m {{dex}}-2 for q > q br and {{dN}}{pl}/{(d{log}qd{log}s)=A(q/{q}{br})}p{s}m {{dex}}-2 for q < q br, where q br is the mass ratio of the break. We also combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets. This combined analysis yields A={0.61}-0.16+0.21, n = -0.93 ± 0.13, m={0.49}-0.49+0.47, and p={0.6}-0.4+0.5 for q br ≡ 1.7 × 10-4. The unbroken power-law model is disfavored with a p-value of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken power-law model. These results imply that cold Neptunes are likely to be the most common type of planets beyond the snow line.

  2. HAT-P-11b: A Super-Neptune Planet Transiting a Bright K Star in the Kepler Field

    CERN Document Server

    Bakos, G Á; Pál, A; Hartman, J; Kovács, Géza; Noyes, R W; Latham, D W; Sasselov, D D; Sipőcz, B; Esquerdo, G A; Fischer, D A; Johnson, J A; Marcy, G W; Butler, R P; Isaacson, H; Howard, A; Vogt, S; Kovács, Gábor; Fernández, J; Moór, A; Stefanik, R P; Lázár, J; Papp, I; Sári, P

    2009-01-01

    We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP), and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V=9.59) and metal rich ([Fe=H] = +0.31 +/- 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 +/- 0.0000071 days and produces a transit signal with depth of 4.2 mmag; the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial-velocity data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 Mearth, 3.8 Rearth) both in mass Mp = 0.081 +/- 0.009 MJup (25.8 +/- 2.9 Mearth) and radius Rp = 0.422 +/- 0.014 RJup (4.73 +/- 0.16 Rearth). HAT-P-11b orbits in an eccentric orbit with e = 0.198 +/- 0.046 and omega = 355.2 +/- 17.3 deg, causing a reflex motion of its parent star with amplitude 11.6 +/- 1.2 m/s, a challen...

  3. Photochemistry in Terrestrial Exoplanet Atmospheres III: Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    CERN Document Server

    Hu, Renyu

    2014-01-01

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO2 rather than CH4 or CO in a H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons (C2H2 and C2H4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1...

  4. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    CERN Document Server

    Ehrenreich, David; Wheatley, Peter J; Etangs, Alain Lecavelier des; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-01-01

    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is su...

  5. The effect of Lyman $\\alpha$ radiation on mini-Neptune atmospheres around M stars: application to GJ 436b

    CERN Document Server

    Miguel, Yamila; Linsky, Jeffrey L; Rugheimer, Sarah

    2014-01-01

    Mini-Neptunes orbiting M stars are a growing population of known exoplanets. Some of them are located very close to their host star, receiving large amounts of UV radiation. Many M stars emit strong chromospheric emission in the H I Lyman $\\alpha$ line (Ly$\\alpha$) at 1215.67 \\AA, the brightest far-UV emission line. We show that the effect of incoming Ly$\\alpha$ flux can significantly change the photochemistry of mini-Neptunes' atmospheres. We use GJ 436b as an example, considering different metallicities for its atmospheric composition. For solar composition, H$_2$O-mixing ratios show the largest change because of Ly$\\alpha$ radiation. H$_2$O absorbs most of this radiation, thereby shielding CH$_4$, whose dissociation is driven mainly by radiation at other far-UV wavelengths ($\\sim1300$ \\AA). H$_2$O photolysis also affects other species in the atmosphere, including H, H$_2$, CO$_2$, CO, OH and O. For an atmosphere with high metallicity, H$_2$O- and CO$_2$-mixing ratios show the biggest change, thereby shield...

  6. Neptune's ring arcs: VLT/NACO near-infrared observations and a model to explain their stability

    Science.gov (United States)

    Renner, S.; Sicardy, B.; Souami, D.; Carry, B.; Dumas, C.

    2014-03-01

    Context. Neptune's incomplete ring arcs have been stable since their discovery in 1984 although these structures should be destroyed in a few months through differential Keplerian motion. Regular imaging data are needed to address the question of the arc stability. Aims: We present the first NACO observations of Neptune's ring arcs taken at 2.2 μm (Ks band) with the Very Large Telescope in August 2007, and propose a model for the arc stability based on co-orbital motion. Methods: The images were aligned using the ephemerides of the satellites Proteus and Triton and were suitably co-added to enhance ring or satellite signals. Resonance theory and N-body simulations were used to model the arcs' confinement. Results: We derive accurate mean motion values for the arcs and Galatea and confirm the mismatch between the arcs' position and the location of the 42:43 corotation inclination resonance. We propose a new confinement mechanism where small co-orbital satellites in equilibrium trap ring arc material. We constrain the masses and locations of these hypothetical co-orbital bodies. Collected at the European Southern Observatory, Paranal, Chile - 079.C-0682.

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  8. Stimulated Radiative Molecular Association in the Early Solar System: Orbital Radii of Satellites of Uranus, Jupiter, Neptune, and Saturn

    CERN Document Server

    Lombardi, James C

    2015-01-01

    The present investigation relates the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model is developed involving stimulated radiative molecular association (SRMA) reactions among the photons and atoms in the protosatellite disks of the planets. In this model thermal energy is extracted from each disk due to a resonance at radii where there is a match between the temperature in the disk and a photon energy. Matter accumulates at these radii, and satellites and rings are ultimately formed. Orbital radii of satellites of Uranus, Jupiter, and Neptune are related to photon energies ($E_{PM}$ values) in the spectrum of molecular hydrogen. Orbital radii of satellites of Saturn are related to photon energies ($E_{PA}$ values) in the spectrum of atomic hydrogen. The first hint that such relationships exist is found in the linearity of the graphs of orbital radii of uranian satellites vs. or...

  9. Lyman-$\\alpha$ Transit Spectroscopy and the Neutral Hydrogen Tail of the Hot Neptune GJ436b

    CERN Document Server

    Kulow, Jennifer R; Linsky, Jeffery; Loyd, R O Parke

    2014-01-01

    To date, more than 750 planets have been discovered orbiting stars other than the Sun. Two sub-classes of these exoplanets, "hot Jupiters" and their less massive counterparts "hot Neptunes," provide a unique opportunity to study the extended atmospheres of planets outside of our solar system. We describe here the first far-ultraviolet transit study of a hot Neptune, specifically GJ436b, for which we use HST/STIS Lyman-$\\alpha$ spectra to measure stellar flux as a function of time, observing variations due to absorption from the planetary atmosphere during transit. This analysis permits us to derive information about atmospheric extent, mass-loss rate from the planet, and interactions between the star and planet. We observe an evolution of the Lyman-$\\alpha$ lightcurve with a transit depth of GJ436b from $8.8\\pm4.5\\%$ near mid-transit, to $22.9\\pm3.9\\%$ $\\sim2$ hours after the nominal geometric egress of the planet. Using data from the time-tag mode and considering astrophysical noise from stellar variability,...

  10. An extreme planetary system around HD219828. One long-period super Jupiter to a hot-neptune host star

    CERN Document Server

    Santos, N C; Faria, J P; Rey, J; Correia, A C M; Laskar, J; Udry, S; Adibekyan, V; Bouchy, F; Delgado-Mena, E; Melo, C; Dumusque, X; Hébrard, G; Lovis, C; Mayor, M; Montalto, M; Mortier, A; Pepe, F; Figueira, P; Sahlmann, J; Ségransan, D; Sousa, S G

    2016-01-01

    With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. We present a full investigation of the HD219828 system, a bright metal-rich star for which a hot neptune has previously been detected. We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD219828. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. We announce the discovery of a long period (P=13.1years) massive (msini=15.1MJup) companion (HD219828c) in a very eccentric orbit (e=0.81). The same data confirms the existence of a hot-neptune, HD219828b, with a minimum mass of 21 MEarth and a period of 3.83days. The dynamical analysis shows that the system is stable. The HD219828 system is extreme and unique in several aspects. First, among all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like H...

  11. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    Science.gov (United States)

    David, Trevor J.

    2016-10-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals - the building blocks of planets - are produced within the first million years of a star's life. A prominent question is: how early can one find fully formed planets like those frequently detected on short orbital periods around mature stars? Some theories suggest the in situ formation of planets close to their host stars is unlikely and the existence of such planets is evidence for large scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report on a newly-born, transiting planet orbiting its star every 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times Jupiter (at 99.7 per cent confidence), with a true mass likely to be within a factor of several of Neptune's. The 5-10 million year old star has a tenuous dust disk extending outwards from about 2 times the Earth-Sun separation, in addition to the large planet located at less than one-twentieth the Earth-Sun separation.

  12. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    Science.gov (United States)

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  13. Laboratory measurements of the microwave properties of H2S under simulated Jovian conditions with an application to Neptune

    Science.gov (United States)

    Deboer, David R.; Steffes, Paul G.

    1994-01-01

    H2S opacity may significantly affect the brightness temperatures of Uranus and Neptune due to possible depletion of ammonia in the tropospheres of those planets (de Pater et al. 1991). Though the rotational line centers of H2S are in the millimeter wavelengths region, significant absorption is also present at centimeter wavelengths due to pressure broadening of the lines. Accordingly, the properties of H2S under Jovian conditions have been measured in order to constrain further the constituents' abundances on these planets. These absorptivity measurements show values that are significantly greater than values predicted by the Van Vleck-Weisskopf models traditionally used at centimeter wavelengths. In order to better model the opacity due to H2S under Jovian conditions a Ben-Reuven lineshape formalism has therefore been developed and is presented. This formalism provides a possible constraint on the relative abundances of H2S and NH3 on Neptune based on Voyager 2 radio occultation results (Lindal 1992).

  14. Monitoring Endeavour vent field deep-sea ecosystem dynamics through NEPTUNE Canada seafloor observatory

    Science.gov (United States)

    Matabos, M.; NC Endeavour Science Team

    2010-12-01

    Mid-ocean ridges are dynamic systems where the complex linkages between geological, biological, chemical, and physical processes are not yet well understood. Indeed, the poor accessibility to the marine environment has greatly limited our understanding of deep-sea ecosystems. Undersea cabled observatories offer the power and bandwidth required to conduct long-term and high-resolution time-series observations of the seafloor. Investigations of mid-ocean ridge hydrothermal ecosystem require interdisciplinary studies to better understand the dynamics of vent communities and the physico-chemical forces that influence them. NEPTUNE Canada (NC) regional observatory is located in the Northeast Pacific, off Vancouver Island (BC, Canada), and spans ecological environments from the beach to the abyss. In September-October 2010, NC will be instrumenting its 5th node, including deployment of a multi-disciplinary suite of instruments in two vent fields on the Endeavour Segment of the Juan de Fuca Ridge. These include a digital camera, an imaging sonar for vent plumes and flow characteristics (i.e. COVIS), temperature resistivity probes, a water sampler and seismometers. In 2011, the TEMPO-mini, a new custom-designed camera and sensor package created by IFREMER for real-time monitoring of hydrothermal faunal assemblages and their ecosystems (Sarrazin et al. 2007), and a microbial incubator, will added to the network in the Main Endeavour and Mothra vent fields. This multidisciplinary approach will involve a scientific community from different institutions and countries. Significant experience aids in this installation. For example, video systems connected to VENUS and NC have led to the development of new experimental protocols for time-series observations using seafloor cameras, including sampling design, camera calibration and image analysis methodologies (see communication by Aron et al. and Robert et al.). Similarly, autonomous deployment of many of the planned instruments

  15. Paroxysmal cold hemoglobinuria.

    Science.gov (United States)

    Shanbhag, Satish; Spivak, Jerry

    2015-06-01

    Paroxysmal cold hemoglobinuria is a rare cause of autoimmune hemolytic anemia predominantly seen as an acute form in young children after viral illnesses and in a chronic form in some hematological malignancies and tertiary syphilis. It is a complement mediated intravascular hemolytic anemia associated with a biphasic antibody against the P antigen on red cells. The antibody attaches to red cells at colder temperatures and causes red cell lysis when blood recirculates to warmer parts of the body. Treatment is mainly supportive and with red cell transfusion, but immunosuppressive therapy may be effective in severe cases.

  16. Exception in Cold War

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ In the Cold War, India mainly focused its Southeast Asia Strategy on preserving the regional peace and stability, fearing that changes in Southeast Asia would impact India. Generally speaking, India would like to see a relatively strong, stable and independent Southeast Asia, which would guarantee the stability of its east wing. However, fettered by its limited power, its non-alignment policy and its special relation with Soviet Union, India's policy toward Southeast Asia remained relatively passive and its relation with Southeast Asia was, to some extent, trapped in a historical "intermission."

  17. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data

    CERN Document Server

    Nettelmann, N; Fortney, J J; Redmer, R

    2012-01-01

    Since the Voyager fly-bys of Uranus and Neptune, improved gravity field data have been derived from long-term observations of the planets' satellite motions, and modified shape and solid-body rotation periods were suggested. A faster rotation period (-40 min) for Uranus and a slower rotation period (+1h20) of Neptune compared to the Voyager data were found to minimize the dynamical heights and wind speeds. We apply the improved gravity data, the modified shape and rotation data, and the physical LM-R equation of state to compute adiabatic three-layer structure models, where rocks are confined to the core, and homogeneous thermal evolution models of Uranus and Neptune. We present the full range of structure models for both the Voyager and the modified shape and rotation data. In contrast to previous studies based solely on the Voyager data or on empirical EOS, we find that Uranus and Neptune may differ to an observationally significant level in their atmospheric heavy element mass fraction Z1 and nondimensiona...

  18. Dynamical formation of detached trans-Neptunian objects close to the 2:5 and 1:3 mean motion resonances with Neptune

    CERN Document Server

    Brasil, P I O; Soares, J S

    2014-01-01

    Through a semi-analytic approach of the Kozai resonance inside an MMR, we show phase diagrams (e,{\\omega}) that suggest the possibility of a scattered particle, after being captured in an MMR with Neptune, to become a detached object. We ran several numerical integrations with thousands of particles perturbed by the four major planets, and there are cases with and without Neptune's residual migration. These were developed to check the semi-analytic approach and to better understand the dynamical mechanisms that produce the detached objects close to an MMR. The numerical simulations with and without a residual migration for Neptune stress the importance of a particular resonance mode, which we name the hibernating mode, on the formation of fossilized detached objects close to MMRs. When considering Neptune's residual migration we are able to show the formation of detached orbits. These objects are fossilized and cannot be trapped in the MMRs again. We find a ratio of the number of fossilized objects with moder...

  19. Cold nuclear matter

    CERN Document Server

    Dorso, C O; Nichols, J I; López, J A

    2012-01-01

    We study the behavior of cold nuclear matter near saturation density (\\rho 0) and very low temperature using classical molecular dynamics. We used three different (classical) nuclear interaction models that yield `medium' or `stiff' compressibilities. For high densities and for every model the ground state is a classical crystalline solid, but each one with a different structure. At subsaturation densities, we found that for every model the transition from uniform (crystal) to non-uniform matter occurs at \\rho ~ 0.12 fm^(-3) = 0.75 \\rho 0. Surprisingly, at the non-uniform phase, the three models produce `pasta-like' structures as those allegedly present in neutron star matter but without the long-range Coulomb interaction and with different length scales.

  20. Cold dark matter resuscitated?

    CERN Document Server

    White, M; Silk, J; Davis, M; White, Martin; Scott, Douglas; Silk, Joe; Davis, Marc

    1995-01-01

    The Cold Dark Matter (CDM) model has an elegant simplicitly which makes it very predictive, but when its parameters are fixed at their `canonical' values its predictions are in conflict with observational data. There is, however, much leeway in the initial conditions within the CDM framework. We advocate a re-examination of the CDM model, taking into account modest variation of parameters from their canonical values. We find that CDM models with n=0.8--0.9 and h=0.45--0.50 can fit the available data. Our ``best fit'' CDM model has n=0.9, h=0.45 and C_2^{T}/C_2^{S}=0.7. We discuss the current state of observations which could definitely rule out this model.

  1. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    Science.gov (United States)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean

  2. Water Column Sampling Capabilities of the NEPTUNE Canada Regional Cabled Observatory

    Science.gov (United States)

    Mihaly, S. F.; Neptune Canada Science

    2010-12-01

    The NEPTUNE Canada Regional Observatory affords a wide range of opportunities to conduct adaptive and high-temporal resolution water column property studies. Intensive sites are located in a shallow near-shore environment (Folger Passage), a shelf-slope-break region (Barkley Upper Slope) and a deep offshore mid-ocean spreading centre (Endeavour Ridge). The Folger Passage site has instrument platforms at 100 m and 23 m which are located near the mouth of Barkley Sound on the west coast of Vancouver Island. Instruments include upward-looking surface-wave resolving Acoustic Doppler Current Profilers (ADCPs), multi-frequency echo-sounders to measure backscatter from zooplankton and bottom pressure recorders to assess long-wave variability (e.g. tsunami, shelf waves, tidal). The near-bottom water column is sampled for salinity, temperature, oxygen, chlorophyll, turbidity, photosynthetically active light and, in addition, there are fine scale measurements of the velocity structure of the bottom-boundary layer. Water column measurements at the 400 metre deep Barkley Upper Slope site are facilitated by a world leading Vertical Profiling System (VPS). This winch operated system will profile a suite of instruments through the water column at up to 4 cycles per day. Optical measurements consist of a pair of hyperspectral radiometers to characterise downwelling irradiation and upwelling radiance, backscatter fluorescence for chlorophyll, and an optode to determine oxygen levels. A pumped CTD will provide salinity, temperature, depth as well as plumbing for a nitrate sensor, a coloured dissolved organic matter sensor and a pCO2 sensor. Acoustic instruments on the profiler consist of a 400 kHz ADCP, 200 kHz echosounder and a broad band hydrophone. With these instruments we expect to be able to explore the covariation of physical and chemical parameters with impact at a range of trophic levels, up to and including marine mammals. At the base of the VPS there is a long range ADCP

  3. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in w

  4. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in w

  5. The status of cold fusion

    Science.gov (United States)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  6. Cold Crystal Reflector Filter Concept

    CERN Document Server

    Muhrer, G

    2014-01-01

    In this paper the theoretical concept of a cold crystal reflector filter will be presented. The aim of this concept is to balance the shortcoming of the traditional cold polycrystalline reflector filter, which lies in the significant reduction of the neutron flux right above (in energy space) or right below (wavelength space) the first Bragg edge.

  7. 海王星特洛伊小天体动力学%Orbital dynamics of Neptune Trojans

    Institute of Scientific and Technical Information of China (English)

    周礼勇; 管璞; 孙义燧

    2014-01-01

    Trojan asteroids share the same orbit with a planet,comprising together with the Sun and the planet an equilateral triangle in space.On the orbit of Jupiter,two clouds of thousands of asteroids named Greek Camp and Trojan Camp,by 60 degrees ahead and behind Jupiter respectively,have been well-known since as early as 1906.Trojan asteroids of Neptune however,was found quite late in the year of 2003.Nevertheless,evidences indicate that the Neptune's Trojan cloud is larger at least by one order of magnitude than the Jupiter Trojan cloud and the main asteroid belt,both in total number and in total mass,making itself the second largest reservoir of small bodies in the Solar system,only after the Kuiper belt.Meanwhile,the distinct orbits of Neptune Trojans that have been already observed,and the fact that they are a kind of connection between spaces within and beyond Neptune orbit,mean that they can serve as a touchstone of theories about the origin and evolution of the Solar system.We briefly present in this review the observations,the investigations on their orbital dynamics and the research on their origin.%特洛伊小天体与行星同享一个轨道,并与太阳、行星在空间构成等边三角形,最早为人们所知的特洛伊小天体是位于木星轨道上并位于木星前(后)方60°的两群小天体.而海王星特洛伊小天体则是近20年来太阳系内最重要的发现之一.观测证据表明海王星特洛伊小天体的总数量和总质量远超过木星特洛伊小天体和主带小行星,是太阳系内仅次于柯伊伯带的第二大小天体集群.它们一方面具有独特的轨道特征,另一方面又联系着海王星轨道内、外的空间,自然而然地成为检验太阳系起源与演化的试金石.我们简要介绍了对海王星特洛伊小天体的观测结果、对它们的轨道动力学和起源研究的进展.

  8. FORMATION OF CLOSE IN SUPER-EARTHS AND MINI-NEPTUNES: REQUIRED DISK MASSES AND THEIR IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hilke E., E-mail: hilke@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2014-11-01

    Recent observations by the Kepler space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here, we calculate the required disk masses for in situ formation of the Kepler planets. We find that if close-in planets formed as isolation masses, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2v {sub esc}/Ω, where v {sub esc} is the escape velocity of the planet and Ω is the Keplerian frequency, and we use it to calculate the required disk masses for in situ formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes of less than 0.1 AU of 10{sup 3}-10{sup 5} g cm{sup –2}, implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below but not far from the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that the migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.

  9. Tracking Ocean Gravity Waves in Real-time: Highlights of Bottom Pressure Data Recorded on Ocean Networks Canada's NEPTUNE observatory

    Science.gov (United States)

    Heesemann, Martin; Mihaly, Steve; Gemmrich, Johannes; Davis, Earl; Thomson, Richard; Dewey, Richard

    2016-04-01

    Ocean Networks Canada operates two cabled ocean observatories off Vancouver Island on Canada's west coast. The regional NEPTUNE observatory spans the entire Juan de Fuca tectonic plate from the coast across the subduction zone to the hydrothermally active Endeavour Segment of the Juan de Fuca Ridge Segment while the VENUS observatory focuses on coastal processes. Both observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex earth processes. High-precision bottom pressure recorders (BPR) deployed on the NEPTUNE observatory are capable of detecting a wide range of phenomena related to sea level variations. The observatory BPRs provide observations of nano-resolution (with respect to full scale of the instrument) pressure variations which correspond to sub-millimeter scale surface water displacements in several kilometers of water. Detected signals include tides, tsunamis, infragravity waves, swell, wave-induced microseisms, storm surge, and seismic signals. Spectral analysis reveals many of these phenomena with periods ranging from a few seconds to many hours. Dispersion patterns from distant swells are prominent in the swell and microseism bands. By comparing the difference of arrival times between longer period waves, which arrive first, and shorter period waves we can estimate the distance the swells travelled since they were generated. Using this information, swell can be tracked back to specific storms across the Pacific. The presentation will high-light some examples of the mentioned phenomena in the continuous time-series that in some instances are more than seven years long.

  10. Cough and Cold Medicine Abuse (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cough and Cold Medicine Abuse KidsHealth > For Parents > Cough ... cough and cold medicine. Why Do Kids Abuse Cough and Cold Remedies? Before the U.S. Food and ...

  11. Cold-Weather Sports and Your Family

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  12. Understanding Colds: Anatomy of the Nose

    Science.gov (United States)

    ... at least one-half of colds. (5) Cold viruses can only multiply when they are inside of living cells. When on an environmental surface, cold viruses cannot multiply. However, they are still infectious if ...

  13. Cold plasma decontamination of foods.

    Science.gov (United States)

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.

  14. Friendly units for coldness

    CERN Document Server

    Fraundorf, P

    2006-01-01

    Measures of temperature that center around human experience get lots of use. Of course thermal physics insights of the last century have shown that reciprocal temperature (1/kT) has applications that temperature addresses less well. In addition to taking on negative absolute values under population inversion (e.g. of magnetic spins), bits and bytes turn 1/kT into an informatic measure of the thermal ambient for developing correlations within any complex system. We show here that, in the human-friendly units of bytes and food Calories, water freezes when 1/kT ~200 ZB/Cal or kT ~5 Cal/YB. Casting familiar benchmarks into these terms shows that habitable human space requires coldness values (part of the time, at least) between 0 and 40 ZB/Cal with respect body temperature ~100 degrees F, a range in kT of ~1 Cal/YB. Insight into these physical quantities underlying thermal equilibration may prove useful for budding scientists, as well as the general public, in years ahead.

  15. Zitterbewegung in Cold Atoms

    Science.gov (United States)

    Penteado, Poliana; Egues, J. Carlos

    2013-03-01

    In condensed matter systems, the coupling between spatial and spin degrees of freedom through the spin-orbit (SO) interaction offers the possibility of manipulating the electron spin via its orbital motion. The proposal by Datta and Das of a `spin transistor' for example, highlights the use of the SO interaction to control the electron spin via electrical means. Recently, arrangements of crossed lasers and magnetic fields have been used to trap and cool atoms in optical lattices and also to create light-induced gauge potentials, which mimic the SO interactions in real solids. In this work, we investigate the Zitterbewegung in cold atoms by starting from the effective SO Hamiltonian derived in Ref.. Cross-dressed atoms as effective spins can provide a proper setting in which to observe this effect, as the relevant parameter range of SO strengths may be more easily attainable in this context. We find a variety of peculiar Zitterbewegung orbits in real and pseudo-spin spaces, e.g., cycloids and ellipses - all of which obtained with realistic parameters. This work is supported by FAPESP, CAPES and CNPq.

  16. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  17. PANDA: Cold three axes spectrometer

    Directory of Open Access Journals (Sweden)

    Astrid Schneidewind

    2015-08-01

    Full Text Available The cold three axes spectrometer PANDA, operated by JCNS, Forschungszentrum Jülich, offers high neutron flux over a large dynamic range keeping the instrumental background comparably low.

  18. Flu and Colds: In Depth

    Science.gov (United States)

    ... studies have evaluated the use of American ginseng (Panax quinquefolius) to prevent colds. A 2011 evaluation of ... E561. Seida JK, Durec T, Kuhle S. North American (Panax quinquefolius) and Asian ginseng (Panax ginseng) preparations for ...

  19. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  20. The Dynamics of Centaurs in the Vicinity of the 2:1 Mean Motion Resonance of Neptune and Uranus Trojan Region

    CERN Document Server

    Wood, Jeremy

    2015-01-01

    In this work we present the results of a suite of dynamical simulations following the orbital evolution of 8,022 hypothetical Centaur objects. These Centaurs begin our integrations on orbits in the vicinity of the 2:1 mean motion resonance with Neptune, and we follow their dynamical evolution for a period of 3 Myr under the gravitational influence of a motionless Sun and the four Jovian planets. The great majority of the test particles studied rapidly escaped from the vicinity of the 2:1 mean motion resonance of Neptune and diffused throughout the Solar System. The average libration time of Centaurs in the vicinity of 2:1 mean motion resonance of Neptune was found to be just 27 kyr. Although two particles did remain near the resonance for more than 1 Myr. Upon leaving the vicinity of the 2:1 resonance, the majority of test particles evolved by a process of random walk in semi-major axis, due to repeated close encounters with the giant planets.

  1. Predictions for the Period Dependence of the Transition Between Rocky Super-Earths and Gaseous Sub-Neptunes and Implications for $\\eta_{\\mathrm{\\oplus}}$

    CERN Document Server

    Lopez, Eric D

    2016-01-01

    One of the most significant advances by NASA's Kepler Mission was the discovery of an abundant new population of highly irradiated planets with sizes between that of the Earth and Neptune, unlike anything found in the Solar System. Subsequent analysis showed that at ~1.5 $R_{\\mathrm{\\oplus}}$ there is a transition from a population of predominantly rocky super-Earths to non-rocky sub-Neptunes, which must have substantial volatile envelopes to explain their low densities. Determining the origin of these highly irradiated rocky planets will be critical to our understanding of low-mass planet formation and the frequency of potentially habitable Earth-like planets. These short-period rocky super-Earths could simply be the stripped cores of sub-Neptunes, which have lost their envelopes due to atmospheric photo-evaporation or other processes, or they might instead be a separate population of inherently rocky planets, which never had significant envelopes. We suggest an observational path forward to distinguish betw...

  2. EPIC 211391664b: A 32-M$_\\oplus$ Neptune-sized planet in a 10-day orbit transiting an F8 star

    CERN Document Server

    Barragán, Oscar; Gandolfi, Davide; Fridlund, Malcolm; Endl, Michael; Deeg, Hans J; Cagigal, Manuel P; Lanza, Antonino F; Moroni, Pier G Prada; Smith, Alexis; Korth, Judith; Bedell, Megan; Cabrera, Juan; Cochran, William D; Cusano, Felice; Csizmadia, Szilard; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike W; Hatzes, Artie P; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike

    2016-01-01

    We report the discovery of EPIC 211391664b, a transiting Neptune-sized planet monitored by the K2 mission during its campaign 5. We combine the K2 time-series data with ground-based photometric and spectroscopic follow-up observations to confirm the planetary nature of the object and derive its mass, radius, and orbital parameters. EPIC 211391664 b is a warm Neptune-like planet in a 10-day orbit around a V=12.2~mag F-type star with $M_\\star$=$ 1.074\\pm0.042 M_{\\odot} $, $R_\\star$=$ 1.311 ^{+ 0.083}_{ - 0.048} R_{\\odot}$, and age of $5.2_{-1.0}^{+1.2}$~Gyr. We derive a planetary mass and radius of $M_\\mathrm{p}$=$ 32.2 \\pm 8.1 M_{\\oplus}$ and $R_\\mathrm{p}$=$4.3^{+0.3}_{-0.2} R_{\\oplus}$. EPIC 211391664b joins the relatively small group of Neptune-sized planets whose mass and radius have been derived with a precision better than 3-$\\sigma$. We estimate that the planet will be engulfed by EPIC 211391664 in $\\sim$3~Gyr, due to the evolution of the host star towards the red giant branch.

  3. Garlic for the common cold.

    Science.gov (United States)

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-11-11

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions There is insufficient clinical trial evidence

  4. Identifying the upper atmosphere structure of the inflated hot sub-Neptune CoRoT-24b

    Science.gov (United States)

    Juvan, Ines; Lammer, Helmut; Erkaev, Nikolai V.; Fossati, Luca; Cubillos, Patricio E.; Guenther, Eike; Odert, Petra; Kislyakova, Kristina G.; Lendl, Monika

    2016-04-01

    The CoRoT satellite mission discovered two Neptune-type planets, CoRoT-24b and CoRoT-24c, with observed transit radii of ≈3.7REarth and ≈4.9REarth and masses of ≤5.7MEarth and ≈28MEarth, respectively. From the deduced low mean densities it can be expected that their planetary cores are most likely surrounded by H2 dominated envelopes. While having very similar radii, the outer planet CoRoT-24c is at least 4.9 times more massive than its neighbour, indicating that their atmospheres can be fundamentally different. Therefore, we have investigated the upper atmosphere structure and escape rates of these two planets. We applied a hydrodynamic upper atmosphere model including heating by absorption of stellar extreme ultraviolet and X-ray (XUV) radiation, under the assumption that the observed transit radius RT is produced by Rayleigh scattering and H2-H2 collision absorption in a pure hydrogen atmosphere. This corresponds to a pressure level near 1 bar. We find an unsustainably high hydrodynamic escape rate of 1.6 × 1011 g/s for the atmosphere of CoRoT-24b. If real, such high atmospheric escape would lead to substantial mass loss from the planetary atmosphere, shrinking it to ≈2.2REarth within ≈4 Myr, which is inconsistent with the old age of the system. The solution to this discrepancy is that the observed transit radius RT must be 30-60% larger than the actual planetary radius at the 1 bar pressure level. We suggest that the observed transit radius RT is produced by absorption through scattering processes due to high altitude clouds or hazes. The Kepler satellite has discovered similar close-in low-density Neptune-type planets. We propose that it is very likely that the observed transit radii for the vast majority of these planets also differ from their actual planetary radii at the 1 bar pressure level. This would introduce a systematic bias in the measured radii and has dramatic implications in the determination of the mass-radius relation and for planet

  5. Finger and toe temperature response to cold water and cold air exposure

    NARCIS (Netherlands)

    Struijs, N.R. van der; Es, E.M. van; Raymann, R.J.E.M.; Daanen, H.A.M.

    2008-01-01

    Introduction: Subjects with a weak cold-induced vasodilatation response (CIVD) to experimental cold-water immersion of the fingers in a laboratory setting have been shown to have a higher risk for local cold injuries when exposed to cold in real life. Most of the cold injuries in real life, however,

  6. Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt

    CERN Document Server

    Tanner, Angelle; von Braun, Kaspar; Kane, Stephen; Brewer, John M; Farrington, Chris; van Belle, Gerard T; Beichman, Charles A; Fischer, Debra; Brummelaar, Theo A ten; McAlister, Harold A; Schaefer, Gail

    2014-01-01

    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this star leads to a physical radius of R$_*$ = 0.9058$\\pm$0.0190 R\\sun and luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones produces an age of 10.6+/-4 Gyr and mass of 0.863$\\pm$0.043 M\\sun. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03), effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic locati...

  7. The HARPS search for southern extra-solar planets XL. Searching for Neptunes around metal-poor stars

    CERN Document Server

    Faria, J P; Figueira, P; Mortier, A; Dumusque, X; Boisse, I; Curto, G Lo; Lovis, C; Mayor, M; Melo, C; Pepe, F; Queloz, D; Santerne, A; Ségransan, D; Sousa, S G; Sozzetti, A; Udry, S

    2016-01-01

    Stellar metallicity -- as a probe of the metallicity of proto-planetary disks -- is an important ingredient for giant planet formation, likely through its effect on the timescales in which rocky/icy planet cores can form. Giant planets have been found to be more frequent around metal-rich stars, in agreement with predictions based on the core-accretion theory. In the metal-poor regime, however, the frequency of planets, especially low-mass planets, and how it depends on metallicity are still largely unknown. As part of a planet search programme focused on metal-poor stars, we study the targets from this survey that were observed with HARPS on more than 75 nights. The main goals are to assess the presence of low-mass planets and provide a first estimate of the frequency of Neptunes and super-Earths around metal-poor stars. We perform a systematic search for planetary companions, both by analysing the periodograms of the radial-velocities and by comparing, in a statistically-meaningful way, models with an incre...

  8. Combining Kepler and HARPS Occurrence Rates to Infer the Period-Mass-Radius Distribution of Super-Earths/Sub-Neptunes

    CERN Document Server

    Wolfgang, A

    2011-01-01

    The ongoing High Accuracy Radial velocity Planet Search (HARPS) has found that 30-50% of GK dwarfs in the solar neighborhood host planets with sub-Neptune masses in orbits of P < 50 days. At first glance, this overall occurrence rate seems inconsistent with the planet frequency measured during Q0-Q2 of the Kepler Mission, whose 1,235 detected planetary candidates imply that ~ 15% of main sequence dwarfs harbor short-period planets with R_pl < 4 R_Earth. A rigorous comparison between the two surveys is difficult, however, as they observe different stellar populations and measure different planetary properties. Here we report the results of a Monte Carlo study that can account for this discrepancy via plausible distributions of planetary compositions. We find that a population concurrently consisting of (1) dense silicate-iron planets and (2) low-density gas-dominated worlds provides a natural fit to the current data. In this scenario, the fraction of dense planets decreases with increasing mass, from f_r...

  9. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    CERN Document Server

    David, Trevor J; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-01-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals - the building blocks of planets - are produced within the first million years of a star's life. A prominent question is: how early can one find fully formed planets like those frequently detected on short orbital periods around mature stars? Some theories suggest the in situ formation of planets close to their host stars is unlikely and the existence of such planets is evidence for large scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report on a newly-born, transiting planet orbiting its star every 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times Jupiter (at 99.7 per cent confidence), with a true mass likely to be with...

  10. Clouds in the Forecast? A Joint Spitzer and HST Investigation of Clouds and Hazes for Two Exo-Neptunes

    Science.gov (United States)

    Kreidberg, Laura; Morley, Caroline; Line, Michael; Stevenson, Kevin; Dragomir, Diana

    2016-08-01

    Recent observations of transiting planets have revealed that clouds and hazes are common in exoplanet atmospheres. Little is known, however, about how the clouds/hazes form, what their composition is, and how their properties vary with planet parameters. We propose to characterize the atmospheres of two exo-Neptunes, GJ 436b and GJ 3470b, both of which show evidence for clouds or hazes in their near-infrared spectra. We will measure precise 3.6 and 4.5 micron transit depths for these planets, to compare with existing high-precision data at shorter wavelengths. We will also obtain a UV spectrum for GJ 3470 with HST/COS to enable accurate models of the planet's photochemistry. These observations will enable us to distinguish at high confidence between a range of physically realistic models for the atmospheric chemistry, including methanogenic photochemical hazes and equilibrium salt/sulfide clouds. The measurements will enable comparative planetology with the handful of other small, cool worlds currently accessible to observation, and serve as a first assessment of the prevalence, origin, and composition of clouds and haze in metal-enriched atmospheres below 1000 K. Our findings will guide the design of future observations of increasingly Earth-like worlds with JWST.

  11. FROM DOCUMENTATION IMAGES TO RESTAURATION SUPPORT TOOLS: A PATH FOLLOWING THE NEPTUNE FOUNTAIN IN BOLOGNA DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    F. I. Apollonio

    2017-05-01

    Full Text Available The sixteenth-century Fountain of Neptune is one of Bologna’s most renowned landmarks. During the recent restoration activities of the monumental sculpture group, consisting in precious marbles and highly refined bronzes with water jets, a photographic campaign has been carried out exclusively for documentation purposes of the current state of preservation of the complex. Nevertheless, the highquality imagery was used for a different use, namely to create a 3D digital model accurate in shape and color by means of automated photogrammetric techniques and a robust customized pipeline. This 3D model was used as basic tool to support many and different activities of the restoration site. The paper describes the 3D model construction technique used and the most important applications in which it was used as support tool for restoration: (i reliable documentation of the actual state; (ii surface cleaning analysis; (iii new water system and jets; (iv new lighting design simulation; (v support for preliminary analysis and projectual studies related to hardly accessible areas; (vi structural analysis; (vii base for filling gaps or missing elements through 3D printing; (viii high-quality visualization and rendering and (ix support for data modelling and semantic-based diagrams.

  12. Production of Terahertz Seed Radiation for FEL/IFEL Microbunchers for Second Generation Plasma Beatwave Experiments at Neptune

    CERN Document Server

    Ralph, Joseph; Rosenzweig, James E; Sung, Chieh; Tochitsky, Sergei Ya

    2005-01-01

    To achieve phase locked injection of short electron bunches in a plasma beatwave accelerator, the Neptune Laboratory will utilize microbunching in an FEL or IFEL system. These systems require terahertz (THz) seed radiation on the order of 10 kW for the FEL and 10 MW for the IFEL bunchers. We report results of experiments on THz generation using nonlinear frequency mixing of CO2 laser lines in GaAs. A two-wavelength laser beam was split and sent onto a 2.5 cm long GaAs crystal cut for noncollinear phase matching. Low power measurements achieved ~1 W of 340 ?m radiation using 200 ns CO2 pump pulses with wavelengths 10.3?m and 10.6?m. We also demonstrated tunability of difference frequency radiation, producing 240?m by mixing two different CO2 laser lines. By going to shorter laser pulses and higher intensities, we were able to increase the conversion efficiency while decreasing the surface damage threshold. Using 200ps pulses we produced ~2 MW of 340 ?m radiation. Future studies in this area will focus on devel...

  13. Transmission Spectra of Transiting Planet Atmospheres: Simulations of the Hot Neptune GJ 436b and Prospects for JWST

    CERN Document Server

    Shabram, Megan; Greene, Thomas P; Freedman, Richard S

    2010-01-01

    We explore the transmission spectrum of the Neptune-class exoplanet GJ 436b, including the possibility that its atmospheric opacity is dominated by a variety of non- equilibrium chemical products. We also validate our transmission spectrum code by performing tests for model atmospheres that use purely analytic Rayleigh scattering and water vapor opacities, following work by Lecavelier des Etangs et al. For GJ 436b, the relative coolness of the planet's atmosphere, along with its implied high metallicity, may make it dissimilar in character compared to "hot Jupiters." Some recent observational and modeling efforts suggest low relative abundances of H2O and CH4 present in GJ 436b's atmosphere, compared to calculations from equilibrium chemistry. We include these characteristics in our models and examine the effects of absorption from methane-derived higher order hydrocarbons. Significant absorption from HCN and C2H2 are found throughout the infrared, while C2H4 and C2H6 are less easily seen. We perform detailed...

  14. From Documentation Images to Restauration Support Tools: a Path Following the Neptune Fountain in Bologna Design Process

    Science.gov (United States)

    Apollonio, F. I.; Ballabeni, M.; Bertacchi, S.; Fallavollita, F.; Foschi, R.; Gaiani, M.

    2017-05-01

    The sixteenth-century Fountain of Neptune is one of Bologna's most renowned landmarks. During the recent restoration activities of the monumental sculpture group, consisting in precious marbles and highly refined bronzes with water jets, a photographic campaign has been carried out exclusively for documentation purposes of the current state of preservation of the complex. Nevertheless, the highquality imagery was used for a different use, namely to create a 3D digital model accurate in shape and color by means of automated photogrammetric techniques and a robust customized pipeline. This 3D model was used as basic tool to support many and different activities of the restoration site. The paper describes the 3D model construction technique used and the most important applications in which it was used as support tool for restoration: (i) reliable documentation of the actual state; (ii) surface cleaning analysis; (iii) new water system and jets; (iv) new lighting design simulation; (v) support for preliminary analysis and projectual studies related to hardly accessible areas; (vi) structural analysis; (vii) base for filling gaps or missing elements through 3D printing; (viii) high-quality visualization and rendering and (ix) support for data modelling and semantic-based diagrams.

  15. Laser spectroscopy of cold molecules

    CERN Document Server

    Borri, Simone

    2016-01-01

    This paper reviews the recent results in high-resolution spectroscopy on cold molecules. Laser spectroscopy of cold molecules addresses issues of symmetry violation, like in the search for the electric dipole moment of the electron and the studies on energy differences in enantiomers of chiral species; tries to improve the precision to which fundamental physical constants are known and tests for their possible variation in time and space; tests quantum electrodynamics, and searches for a fifth force. Further, we briefly review the recent technological progresses in the fields of cold molecules and mid-infrared lasers, which are the tools that mainly set the limits for the resolution that is currently attainable in the measurements.

  16. COLD-SAT dynamic model

    Science.gov (United States)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  17. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  18. Cold Tolerance of Plants Used for Cold-Regions Revegetation

    Science.gov (United States)

    1990-10-01

    from tempted to transfer the rye cold-tolerance genome to increased concentrations of solutes in cells and extra- wheat in hybrids. While the gene...Journal, 76: 516-517. Tryon, E.H. and R.P. True (1952) Blister shake of Yelenosky, G. (1988) Capacity of citrus flowers to yellow poplar. Bulletin of the

  19. Avionics Box Cold Plate Damage Prevention

    Science.gov (United States)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  20. A Chemical and Dynamical Link Between Red Centaur Objects and the Cold Classical Kuiper Belt

    Science.gov (United States)

    Tegler, Stephen C.; Romanishin, William; Consolmagno, Guy

    2015-11-01

    We present new B-V, V-R, and B-R colors for 32 Centaurs objects using the 4.3-meter Discovery Channel Telescope (DCT) near Happy Jack, AZ and the 1.8-meter Vatican Advanced Technology Telescope on Mt. Graham, AZ. Combining these new colors with our previously reported colors, we now have optical broad-band colors for 58 Centaur objects.Application of the non-parametric Dip Test to our previous sample of only 26 objects showed Centaurs split into gray and red groups at the 99.5% confidence level, and application of the Wilcoxon Rank Sum Test to the same sample showed that red Centaurs have a higher median albedo than gray Centaurs at the 99% confidence level (Tegler et al., 2008, Solar System Beyond Neptune, U Arizona Press, pp. 105-114).Here we report application of the Wilcoxon Rank Sum Test to our sample of 58 Centaurs. We confirm red Centaurs have a higher median albedo than gray Centaurs at the 99.7% level. In addition, we find that red Centaurs have a lower median inclination angle than gray Centaurs at the 99.5% confidence level. Because of their red colors and lower inclination angles, we suggest red Centaurs originate in the cold classical Kuiper belt. We thank the NASA Solar System Observations Program for its support.

  1. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2003-01-01

    the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...

  2. Images of the Cold War.

    Science.gov (United States)

    Chomsky, Noam

    1989-01-01

    The conventional U.S. picture traces the Cold War to Soviet violation of wartime agreements, while the U.S.S.R. defends its actions as responses to American violations and foreign adventurism. An understanding of how ideology is shaped by national self-interest will help students see beyond propaganda and myth in interpreting past and current…

  3. Encyclopedia of the Cold War

    NARCIS (Netherlands)

    van Dijk, R.

    2008-01-01

    Between 1945 and 1991, tension between the USA, its allies, and a group of nations led by the USSR, dominated world politics. This period was called the Cold War - a conflict that stopped short to a full-blown war. Benefiting from the recent research of newly open archives, the Encyclopedia of the C

  4. Encyclopedia of the Cold War

    NARCIS (Netherlands)

    van Dijk, R.

    2008-01-01

    Between 1945 and 1991, tension between the USA, its allies, and a group of nations led by the USSR, dominated world politics. This period was called the Cold War - a conflict that stopped short to a full-blown war. Benefiting from the recent research of newly open archives, the Encyclopedia of the

  5. Vaccines for the common cold.

    Science.gov (United States)

    Simancas-Racines, Daniel; Franco, Juan Va; Guerra, Claudia V; Felix, Maria L; Hidalgo, Ricardo; Martinez-Zapata, Maria José

    2017-05-18

    The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat, and fever (usually Register of Controlled Trials (CENTRAL) (September 2016), MEDLINE (1948 to September 2016), Embase (1974 to September 2016), CINAHL (1981 to September 2016), and LILACS (1982 to September 2016). We also searched three trials registers for ongoing studies and four websites for additional trials (February 2017). We included no language or date restrictions. Randomised controlled trials (RCTs) of any virus vaccines compared with placebo to prevent the common cold in healthy people. Two review authors independently evaluated methodological quality and extracted trial data. We resolved disagreements by discussion or by consulting a third review author. We found no additional RCTs for inclusion in this update. This review includes one RCT dating from the 1960s with an overall high risk of bias. The RCT included 2307 healthy participants, all of whom were included in analyses. This trial compared the effect of an adenovirus vaccine against placebo. No statistically significant difference in common cold incidence was found: there were 13 (1.14%) events in 1139 participants in the vaccines group and 14 (1.19%) events in 1168 participants in the placebo group (risk ratio 0.95, 95% confidence interval 0.45 to 2.02; P = 0.90). No adverse events related to the live vaccine were reported. The quality of the evidence was low due to limitations in methodological quality and a wide 95% confidence interval. This Cochrane Review was based on one study with low-quality evidence. We found no conclusive results to support the use of vaccines for preventing the common cold in healthy people compared with placebo. We identified a need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Any future trials on medical treatments for preventing the

  6. Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003-2007

    Science.gov (United States)

    Fletcher, Leigh N.; de Pater, Imke; Orton, Glenn S.; Hammel, Heidi B.; Sitko, Michael L.; Irwin, Patrick G. J.

    2014-03-01

    Imaging and spectroscopy of Neptune’s thermal infrared emission from Keck/LWS (2003), Gemini-N/MICHELLE (2005); VLT/VISIR (2006) and Gemini-S/TReCS (2007) is used to assess seasonal changes in Neptune’s zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236°) and southern summer solstice (2005, Ls=270°). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is <±5 K at 1 mbar and <±3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two (from 500 to 1200 ppb at 1 mbar). The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation, although the underlying cause of the variable ethane emission remains unidentified. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane), with no large seasonal hemispheric asymmetries evident at solstice. At low and mid-latitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 μm mapping of tropospheric temperatures and para-hydrogen disequilibrium (a tracer for vertical motions) suggests a symmetric meridional circulation with cold air rising at mid

  7. Common cold - how to treat at home

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000466.htm Common cold - how to treat at home To use ... this page, please enable JavaScript. Colds are very common. A visit to your health care provider's office ...

  8. The cold equation of state of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Greeff, Carl W [Los Alamos National Laboratory; Rudin, Sven P [Los Alamos National Laboratory; Corckett, Scott D [Los Alamos National Laboratory; Wills, John M [Los Alamos National Laboratory

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  9. SCIENCES IN COLD AND ARID REGIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aims and Scope Sciences in Cold and Arid Regions, an international Engiish-language journal, is devoted to publishing the latest research achievements on the process and the pattern of Earth surface system in cold and arid regions. Researches in cold regions 1) emphasize particularly on the cold-region-characterized physical, chemical and biological processes and their interactions, and on the response of Cryosphere to Global change and Human activities as well as its effect to environment and the acclimatizable

  10. STELLAR PARAMETERS FOR HD 69830, A NEARBY STAR WITH THREE NEPTUNE MASS PLANETS AND AN ASTEROID BELT

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Angelle [Mississippi State University, Department of Physics and Astronomy, Hilbun Hall, Starkville, MS 39762 (United States); Boyajian, Tabetha S.; Brewer, John M.; Fischer, Debra [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Von Braun, Kaspar; Van Belle, Gerard T. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Kane, Stephen [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Farrington, Chris; Brummelaar, Theo A. ten; McAlister, Harold A.; Schaefer, Gail [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Beichman, Charles A. [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States)

    2015-02-20

    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674 ± 0.014 mas for the limb-darkened angular diameter of this star leads to a physical radius of R {sub *} = 0.9058 ± 0.0190 R {sub ☉} and luminosity of L {sub *} = 0.622 ± 0.014 L {sub ☉} when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel diagram along with stellar evolution isochrones produces an age of 10.6 ± 4 Gyr and mass of 0.863 ± 0.043 M {sub ☉}. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H] = –0.04 ± 0.03), effective temperature (5385 ± 44 K), and surface gravity (log g = 4.49 ± 0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5 ± 3 Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95 ± 0.19 AU, which is outside the orbit of all three planets and its asteroid belt.

  11. Common Cold in Babies: Symptoms and Causes

    Science.gov (United States)

    Common cold in babies Symptoms and causes By Mayo Clinic Staff The first indication of the common cold in a baby is often: A congested ... or green Other signs and symptoms of a common cold in a baby may include: Fever Sneezing ...

  12. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... National Park Service Meeting of the Cold War Advisory Committee for the Cold War Theme Study AGENCY... with the Federal Advisory Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will conduct a teleconference meeting on August 3, 2012. Members of the...

  13. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  14. Ultra-cold molecule production.

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-12-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

  15. Pseudoneutropenia from cold agglutinin leucoagglutination

    Directory of Open Access Journals (Sweden)

    Momin M

    2015-01-01

    Full Text Available Pseudoneutropenia or low leucocyte count secondary to leucoagglutination is caused by ethylene diamine tetra acetic acid (EDTA or cold agglutinins and is seen in benign and malignant disorders. We report a 34-year-old lady who was admitted with fever, vomiting, respiratory distress and productive cough. Complete blood count (CBC at initial presentation revealed low haemoglobin (11.6 g/dL, total leucocyte count (TLC (5900/mm3 with 50% polymorphs. Peripheral blood smear showed leucocytes in clusters. Another sample was asked for in citrate anticoagulant which showed a TLC of 5900/mm3 with 50% polymorphs and evidence of auto agglutination. Another collected in a prewarmed ethylene diamine tetra acetic acid (EDTA tube, CBC showed a TLC of 9800/mm3 with 39% neutrophils suggestive of pseudoneutropenia due to cold agglutinins.

  16. Cold dark matter heats up.

    Science.gov (United States)

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  17. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    Raj K Gupta

    2001-08-01

    The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold fission, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean field (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.

  18. Acclimatization to cold in humans

    Science.gov (United States)

    Kaciuba-Uscilko, Hanna; Greenleaf, John E.

    1989-01-01

    This review focuses on the responses and mechanisms of both natural and artificial acclimatization to a cold environment in mammals, with specific reference to human beings. The purpose is to provide basic information for designers of thermal protection systems for astronauts during intra- and extravehicular activities. Hibernation, heat production, heat loss, vascular responses, body insulation, shivering thermogenesis, water immersion, exercise responses, and clinical symptoms and hypothermia in the elderly are discussed.

  19. Superheated rubber for cold storage

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberg, Frank; Heuwers, Benjamin; Tiller, Joerg Christian [Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund, D-44221 Dortmund (Germany)

    2011-04-26

    Highly stretched rubber cools down upon relaxation. A natural rubber material that stores high elongations up to 1000% strain upon strain-induced crystallization at room temperature is reported. The strain recovered and, with this, the stored ''cold'' is released only by a thermal or athermal trigger. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Micro-Kelvin cold molecules.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2009-10-01

    We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

  1. Cold Ion Escape from Mars

    Science.gov (United States)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  2. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV).

    Science.gov (United States)

    Doya, Carolina; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C; Juniper, S Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner

  3. The HARPS search for southern extra-solar planets. XXXIX. HD175607 b, the most metal-poor G dwarf with an orbiting sub-Neptune

    CERN Document Server

    Mortier, A; Santos, N C; Rajpaul, V; Figueira, P; Boisse, I; Cameron, A Collier; Dumusque, X; Curto, G Lo; Lovis, C; Mayor, M; Melo, C; Pepe, F; Queloz, D; Santerne, A; Ségransan, D; Sousa, S G; Sozzetti, A; Udry, S

    2016-01-01

    Context. The presence of a small-mass planet (M$_p<$0.1\\,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A large, dedicated survey of metal-poor stars with the HARPS spectrograph has thus been carried out to search for Neptunes and super-Earths. Aims. In this paper, we present the analysis of \\object{HD175607}, an old G6 star with metallicity [Fe/H] = -0.62. We gathered 119 radial velocity measurements in 110 nights over a time span of more than nine years. Methods. The radial velocities were analysed using Lomb-Scargle periodograms, a genetic algorithm, a Markov chain Monte Carlo analysis, and a Gaussian processes analysis. The spectra were also used to derive stellar properties. Several activity indicators were analysed to study the effect of stellar activity on the radial velocities. Results. We find evidence for the presence of a small Neptune-mass planet (M$_{p}\\s...

  4. K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities

    Science.gov (United States)

    Sinukoff, Evan; Howard, Andrew W.; Petigura, Erik A.; Fulton, Benjamin J.; Crossfield, Ian J. M.; Isaacson, Howard; Gonzales, Erica; Crepp, Justin R.; Brewer, John M.; Hirsch, Lea; Weiss, Lauren M.; Ciardi, David R.; Schlieder, Joshua E.; Benneke, Bjoern; Christiansen, Jessie L.; Dressing, Courtney D.; Hansen, Brad M. S.; Knutson, Heather A.; Kosiarek, Molly; Livingston, John H.; Greene, Thomas P.; Rogers, Leslie A.; Lépine, Sébastien

    2017-06-01

    We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized ({2.49}-0.24+0.34 {R}\\oplus ) planet (K2-66b) with a mass of 21.3+/- 3.6 {M}\\oplus . Because the star is evolving up the subgiant branch, K2-66b receives a high level of irradiation, roughly twice the main-sequence value. K2-66b may reside within the so-called “photoevaporation desert,” a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.

  5. A search for stellar occultations by Uranus, Neptune, Pluto, and their satellites: 1990-1999. Final Report, 1 Jan. 1989 - 31 Dec. 1990

    Energy Technology Data Exchange (ETDEWEB)

    Mink, D.J.

    1991-03-01

    A search for occultations of stars by Uranus, Neptune, and Pluto between 1990 and 1999 was carried out by combining ephemeris information and star positions using very accurate occultation modeling software. Stars from both the Space Telescope Guide Catalog and photographic plates taken by Arnold Klemola at Lick Observatory were compared with planet positions from the JPL DE-130 ephemeris, with local modifications for Pluto and Charon. Some 666 possible occultations by the Uranian ring, 143 possible occultations by Neptune, and 40 possible occultations by Pluto and/or Charon were found among stars with visual magnitudes as faint as 16. Before the star positions could be obtained, the occultation prediction software was used to aid many observers in observing the occultation of 28 Sagitarii by Saturn in July 1989. As a test on other outer solar system objects, 17 possible occultations were found in a search of the Guide Star Catalog for occultations by 2060 Chiron, and interesting object between Saturn and Uranus which shows both cometary and asteroidal properties.

  6. Characterization of the Kepler-101 planetary system with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companion

    CERN Document Server

    Bonomo, A S; Lovis, C; Malavolta, L; Rice, K; Buchhave, L A; Sasselov, D; Cameron, A C; Latham, D W; Molinari, E; Pepe, F; Udry, S; Affer, L; Charbonneau, D; Cosentino, R; Dressing, C D; Dumusque, X; Figueira, P; Fiorenzano, A F M; Gettel, S; Harutyunyan, A; Haywood, R D; Horne, K; Lopez-Morales, M; Mayor, M; Micela, G; Motalebi, F; Nascimbeni, V; Phillips, D F; Piotto, G; Pollacco, D; Queloz, D; Ségransan, D; Szentgyorgyi, A; Watson, C

    2014-01-01

    We report on the characterization of the Kepler-101 planetary system, thanks to a combined DE-MCMC analysis of Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated by Rowe et al. (2014) and is composed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolved and metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass $M_{\\rm p}=51.1_{-4.7}^{+5.1}~M_{\\oplus}$, radius $R_{\\rm p}=5.77_{-0.79}^{+0.85}~R_{\\oplus}$, and density $\\rho_{\\rm p}=1.45_{-0.48}^{+0.83} \\rm g\\;cm^{-3}$, Kepler-101b is the first fully-characterized super-Neptune, and its density suggests that heavy elements make up a significant fraction of its interior; more than $60\\%$ of its total mass. Kepler-101c has a radius of $1.25_{-0.17}^{+0.19}~R_{\\oplus}$, which implies the absence of any H/He envelope, but its mass could not be determined due to the relative faintness of the parent star for highly precis...

  7. The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH4/CO ratio

    CERN Document Server

    Venot, Olivia; Selsis, Franck; Tessenyi, Marcell; Iro, Nicolas

    2013-01-01

    Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully understood, as for instance in the case of the CH4/CO abundance ratio, which is often inferred different from what has been predicted by chemical models. Recently, the warm Neptune GJ3470b has been discovered and because of its close distance from us and high transit depth, it is a very promising candidate for follow up characterisation of its atmosphere. We study the atmospheric composition of GJ3470b in order to compare with the current observations of this planet, to prepare the future ones, but also as a typical case study to understand the chemical composition of warm (sub-)Neptunes. The metallicity of such atmospheres is totally uncertain, and vary probably to values up to 100x solar. We explore the space of unknown parameters to predict the range of possible atmospheric compositions. Wi...

  8. An exploration for deep-sea fish sounds off Vancouver Island from the NEPTUNE Canada ocean observing system

    Science.gov (United States)

    Wall, Carrie C.; Rountree, Rodney A.; Pomerleau, Corinne; Juanes, Francis

    2014-01-01

    Our understanding of the significance of sound production to the ecology of deep-sea fish communities has improved little since anatomical surveys in the 1950s first suggested that sound production is widespread among slope-water fishes. The recent implementation of cabled ocean observatory networks around the world that include passive acoustic recording instruments provides scientists an opportunity to search for evidence of deep-sea fish sounds. We examined deep-sea acoustic recordings made at the NEPTUNE Canada Barkley Canyon Axis Pod (985 m) located off the west coast of Vancouver Island in the Northeast Pacific between June 2010 and May 2011 to determine the presence of fish sounds. A subset of over 300 5-min files was examined by selecting one day each month and analyzing one file for each hour over the 24 h day. Despite the frequent occurrence of marine mammal sounds, no examples of fish sounds were identified. However, we report examples of isolated unknown sounds that might be produced by fish, invertebrates, or more likely marine mammals. This finding is in direct contrast to recent smaller studies in the Atlantic where potential fish sounds appear to be more common. A review of the literature indicates 32 species found off British Columbia that potentially produce sound could occur in depths greater than 700 m but of these only Anoplopoma fimbria and Coryphaenoides spp. have been previously reported at the site. The lack of fish sounds observed here may be directly related to the low diversity and abundance of fishes present at the Barkley Canyon site. Other contributing factors include possible masking of low amplitude biological signals by self-generated noise from the platform instrumentation and ship noise. We suggest that examination of data both from noise-reduced ocean observatories around the world and from dedicated instrument surveys designed to search for deep-sea fish sounds to provide a larger-scale, more conclusive investigation into the

  9. Biodiversity and cold adaptive mechanisms of psychrophiles

    Directory of Open Access Journals (Sweden)

    Yuhua Xin

    2013-07-01

    Full Text Available Cold-adapted bacteria and archaea are widely distributed in cold environments on Earth, such as permafrost, cold soils and deserts, glaciers, lakes, sea ice in the Arctic, Antarctic and high mountains, as well as the deep sea, ice caves and the atmospheric stratosphere etc. Cold-adapted organisms inhabiting these environments exhibit rich diversity. Studies on the biogeography of psychrophiles will enable us to understand their biodiversity, distribution and origins. Due to long-term living in cold regions, cold-adapted bacteria and archeae have developed specific physiological mechanisms of adaptation to cold environments. These mechanisms include: regulating the fluidity of the cytoplasmic membrane through adjusting the composition of membrane lipids; achieving low-temperature protection through compatibility solute, antifreeze proteins, ice-binding proteins, ice-nucleation proteins and anti-nucleating proteins; production of heat-shock and coldshock proteins, cold acclimation protein and DEAD-box RNA helicase at low temperatures; production of cold-active enzymes; increasing energy generation and conservation. With the rapid development of sequencing technology, various omics-based approaches have been used to reveal cold-adaptive mechanisms of psychrophiles at the genomic level.

  10. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  11. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  12. The Herschel Cold Debris Disks

    CERN Document Server

    Gaspar, Andras

    2013-01-01

    The Herschel "DUst around NEarby Stars (DUNES)" survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.

  13. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  14. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  15. Diagnosis and management of cold urticaria.

    Science.gov (United States)

    Singleton, Reid; Halverstam, Caroline P

    2016-01-01

    Cold urticaria is a physical urticaria characterized by a localized or systemic eruption of papules upon exposure of the skin to cold air, liquids, and/or objects. In some cases, angioedema and anaphylaxis also may occur. The symptoms of cold urticaria can have a negative impact on patients' quality of life. Second-generation H1 antihistamines are the first line of treatment in cold urticaria; however, patients who are unresponsive to initial treatment with H1 antihistamines may require further management options. Avoidance of cold exposure is the most effective prophylactic measure. In mild to moderate cases, the primary goal of therapy is to improve the patient's quality of life. In more severe cases, treatment measures to protect the patient's airway, breathing, and circulation may be necessary. We report the case of a 23-year-old man with cold urticaria who was refractory to initial therapy with H1 antihistamines. A review of the literature also is provided.

  16. Jupiter-like planets as dynamical barriers to inward-migrating super-Earths: a new understanding of the origin of Uranus and Neptune and predictions for extrasolar planetary systems

    Science.gov (United States)

    Morbidelli, Alessandro; Izidoro Da Costa, Andre'; Raymond, Sean

    2014-11-01

    Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. These ``hot super-Earths'' (or ``mini-Neptunes''), or their building blocks, might have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. The Solar System is statistically unusual in its lack of hot super-Earths. Here, we use a suite of dynamical simulations to show that gas-giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter's early formation may have prevented Uranus and Neptune (and perhaps Saturn's core) from becoming hot super-Earths. It may actually have been crucial to the very formation of Uranus and Neptune. In fact, the large spin obliquities of these two planets argue that they experienced a stage of giant impacts from multi-Earth mass planetary embryos. We show that the dynamical barrier offered by Jupiter favors the mutual accretion of multiple migrating planetary embryos, favoring the formation of a few massive objects like Uranus and Neptune. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  17. Cognitive Egocentrism Differentiates Warm and Cold People

    OpenAIRE

    Ryan L. Boyd; Bresin, Konrad; Ode, Scott; Robinson, Michael D.

    2013-01-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in ...

  18. The North Atlantic Cold Bias

    Science.gov (United States)

    Greatbatch, Richard; Drews, Annika; Ding, Hui; Latif, Mojib; Park, Wonsun

    2016-04-01

    The North Atlantic cold bias, associated with a too zonal path of the North Atlantic Current and a missing "northwest corner", is a common problem in coupled climate and forecast models. The bias affects the North Atlantic and European climate mean state, variability and predictability. We investigate the use of a flow field correction to adjust the path of the North Atlantic Current as well as additional corrections to the surface heat and freshwater fluxes. Results using the Kiel Climate Model show that the flow field correction allows a northward flow into the northwest corner, largely eliminating the bias below the surface layer. A surface cold bias remains but can be eliminated by additionally correcting the surface freshwater flux, without adjusting the surface heat flux seen by the ocean model. A model version in which only the surface fluxes of heat and freshwater are corrected continues to exhibit the incorrect path of the North Atlantic Current and a strong subsurface bias. Removing the bias impacts the multi-decadal time scale variability in the model and leads to a better representation of the SST pattern associated with the Atlantic Multidecadal Variability than the uncorrected model.

  19. Prediction of cold flow properties of Biodiesel

    Directory of Open Access Journals (Sweden)

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  20. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  1. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  2. Cold panniculitis: delayed onset in an adult.

    Science.gov (United States)

    Lipke, Michelle M; Cutlan, Jonathan E; Smith, Ann C

    2015-01-01

    The panniculitides are a complex dermatologic entity for both dermatologists and dermatopathologists. Panniculitis is an inflammation of the subcutaneous adipose tissue and can be associated with systemic diseases. We present a case of cold panniculitis, a form of traumatic panniculitis, in a 37-year-old woman that was caused by a cold therapy unit. Our patient did not develop lesions until 10 days following initiation of therapy, which is a unique presentation of cold panniculitis, as lesions usually develop 1 to 3 days after cold exposure.

  3. IMPROVED, FAVORABLE FOR ENVIRONMENT POLYURETHANE COLD-BOX-PROCESS (COLD BOX «HUTTENES-ALBERTUS» .

    Directory of Open Access Journals (Sweden)

    A. Sergini

    2005-01-01

    Full Text Available The results of the laboratory and industrial investigations, the purpose of which is improvement of the classical Cold-box-process, i.e. the process of the slugs hardening in cold boxes, are presented.

  4. An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2009-03-01

    Full Text Available Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs, even for the same electron beam energy. The aims of this study were to simulate the NEPTUN 10PC linac electron beams and to calculate the photon contamination dose due to bremsstrahlung radiation in these beams using a Monte Carlo method. Materials and methods: A NEPTUN 10PC linac was simulated in its electron mode using the BEAMnrc code. This linac can provide three electron beam energies of 6, 8 and 10 MeV. Detailed information required for the simulation, including the geometry and materials of various components of the linac treatment head, was provided by the vender. For all simulations, the cut-off energies for electron and photon transport were set at ECUT=0.521 MeV and PCUT=0.010 MeV, respectively. The KS statistical test was used for validation of the simulated models. Then, relevant bremsstrahlung radiation doses for the three electron beam energies of the linac were calculated for the reference field using the Monte Carlo method.   Results: The KS test showed a good agreement between the calculated values (resulting from the simulations and the measured ones. The results showed that the amount of contaminated photon dose due to bremsstrahlung radiation from various components of the simulated linac at the surface of the phantom was between 0.2%-0.5% of the maximum dose for the three electron beam energies. Conclusion:  Considering the good agreement between the measured and simulated data, it can be concluded that the simulation method as well as the calculated bremsstrahlung doses have been made at a good level of accuracy and precision

  5. Cold-induced vasodilatation in cold-intolerant rats after nerve injury

    NARCIS (Netherlands)

    Smits, E.S.; Duraku, L.S.; Niehof, S.P.; Daanen, H.A.M.; Hovius, S.E.R.; Selles, R.W.; Walbeehm, E.T.

    2013-01-01

    Summary Purpose: Cold-induced vasodilatation (CIVD) is a cyclic regulation of blood flow during prolonged cooling of protruding body parts. It is generally considered to be a protective mechanism against local cold injuries and cold intolerance after peripheral nerve injury. The aim of this study

  6. Cold Injury and Perniosis (Chilblain

    Directory of Open Access Journals (Sweden)

    Tuba Tulay Koca

    2015-12-01

    Full Text Available Perniosis (chilblain is inflammatory cutaneous lesions located on acral surfaces (fingers, toes, nose, aurikula which present in association with cold exposure. They can appear as an idiopathic (primary dermatosis or with an underlying autoimmune disease (secondary. The primary or idiopathic form is not associated with an underlying disease and is clinically indistinguishable from the secondary form. The secondary form is associated with an underlying condition such as connective tissue disease, monoclonal gammopathy, cryoglobulinemia, or chronic myelomonocytic leukemia. Histopathology cannot accurately help distinguish the primary from secondary forms of chilblains. This review aims to raise the awareness of perniosis to avoid excessive investigation and anxiety and to help patients with only appropriate simple advice and treatment. [Archives Medical Review Journal 2015; 24(4.000: 463-471

  7. Cold and Slow Molecular Beam

    CERN Document Server

    Lu, Hsin-I; Wright, Matthew J; Patterson, Dave; Doyle, John M

    2011-01-01

    Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. One modestly boosted beam has a forward velocity of vf = 65 m/s, a narrow velocity spread, and a flux of 10^9 molecules per pulse. The other has the slowest forward velocity of vf = 40 m/s, a longitudinal temperature of 3.6 K, and a flux of 5x10^8 molecules per pulse.

  8. Compensating for cold war cancers.

    Science.gov (United States)

    Parascandola, Mark J

    2002-07-01

    Although the Cold War has ended, thousands of workers involved in nuclear weapons production are still living with the adverse health effects of working with radioactive materials, beryllium, and silica. After a series of court battles, the U.S. government passed the Energy Employees Occupational Illness Act in October 2000 to financially assist workers whose health has been compromised by these occupational exposures. Now work is underway to set out guidelines for determining which workers will be compensated. The National Institute for Occupational Safety and Health has been assigned the task of developing a model that can scientifically make these determinations, a heavy task considering the controversies that lie in estimating low-level radiation risks and the inadequate worker exposure records kept at many of the plants.

  9. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a con-siderable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  10. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a considerable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focussed on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy perform-ance of windows in a simple...

  11. A Lonely Heart Could Worsen a Cold

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_164381.html A Lonely Heart Could Worsen a Cold People who feel isolated tend to have ... 30, 2017 THURSDAY, March 30, 2017 (HealthDay News) -- A cold is never fun, but it's even more ...

  12. Cold head maintenance with minimal service interruption

    Science.gov (United States)

    Radovinsky, A. L.; Michael, P. C.; Zhukovsky, A.; Forton, E.; Paradis, Y.; Nuttens, V.; Minervini, J. V.

    2015-12-01

    Turn-key superconducting magnet systems are increasingly conduction-cooled by cryogenerators. Gifford-McMahon systems are reliable and cost effective, but require annual maintenance. A usual method of servicing is replacing the cold head of the cryocooler. It requires a complicated design with a vacuum chamber separate from the main vacuum of the cryostat, as well as detachable thermal contacts, which add to the thermal resistance of the cooling heat path and reduce the reliability of the system. We present a rapid warm-up scheme to bring the cold head body, which remains rigidly affixed to the cold mass, to room temperature, while the cold mass remains at cryogenic temperature. Electric heaters thermally attached to the cold head stations are used to warm them up, which permits conventional cold head maintenance with no danger of contaminating the inside of the cold head body. This scheme increases the efficiency of the cooling system, facilitates annual maintenance of the cold head and returning the magnet to operation in a short time.

  13. Mapping Anomalous Democracies During the Cold War

    DEFF Research Database (Denmark)

    Seeberg, Michael

    2014-01-01

    During the Cold War, a number of countries established stable democracies despite low levels of modernization and a relative lack of democratic neighbour countries—factors otherwise consistently related to the endurance of democracy. Meanwhile, the Cold War superpowers often supported autocracies...

  14. Axon Reflexes in cold-exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.; O'Neill, H.J.

    2000-01-01

    Prolonged immersion of fingers in cold water induces Cold-Induced Vasodilatation (CIVD). Although evidence is available that Arterio-Venous Anastomoses (AVAs) play an important role, the mechanism underlying CIVD remains unsolved. The main hypotheses are a paralysis of the AVAs due to an impaired

  15. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in

  16. Axon Reflexes in cold-exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.; O'Neill, H.J.

    2000-01-01

    Prolonged immersion of fingers in cold water induces Cold-Induced Vasodilatation (CIVD). Although evidence is available that Arterio-Venous Anastomoses (AVAs) play an important role, the mechanism underlying CIVD remains unsolved. The main hypotheses are a paralysis of the AVAs due to an impaired ne

  17. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  18. Cold plasma processing to improve food safety

    Science.gov (United States)

    Cold plasma is an antimicrobial process being developed for application as a food processing technology. This novel intervention is the subject of an expanding research effort by groups around the world. A variety of devices can be used to generate cold plasma and apply it to the food commodity bein...

  19. The NASA-UC Eta-Earth Program: III. A Super-Earth orbiting HD 97658 and a Neptune-mass planet orbiting Gl 785

    CERN Document Server

    Howard, Andrew W; Marcy, Geoffrey W; Fischer, Debra A; Wright, Jason T; Henry, Gregory W; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai E

    2010-01-01

    We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and Gl 785. These planets were detected by Keplerian modelling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass Msini = 8.2 +/- 1.2 M_Earth, orbital period P = 9.494 +/- 0.005 d, and an orbit that is consistent with circular. Gl 785 b is a Neptune-mass planet with Msini = 21.6 +/- 2.0 M_Earth, P = 74.39 +/- 0.12 d, and orbital eccentricity 0.30 +/- 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.

  20. The HARPS search for southern extra-solar planets. XVII. Super-Earth and Neptune-mass planets in multiple planet systems HD47186 and HD181433

    CERN Document Server

    Bouchy, F; Lovis, C; Udry, S; Benz, W; Bertaux, J-L; Delfosse, X; Mordasini, C; Pepe, F; Queloz, D; Ségransan, D

    2008-01-01

    This paper reports on the detection of two new multiple planet systems around solar-like stars HD47186 and HD181433. The first system includes a hot Neptune of 22.78 M_Earth at 4.08-days period and a Saturn of 0.35 M_Jup at 3.7-years period. The second system includes a Super-Earth of 7.5 M_Earth at 9.4-days period, a 0.64 M$_Jup at 2.6-years period as well as a third companion of 0.54 M_Jup with a period of about 6 years. These detections increase to 20 the number of close-in low-mass exoplanets (below 0.1 M_Jup) and strengthen the fact that 80% of these planets are in a multiple planetary systems.

  1. Écrire dans la variante de l’autre : le cas de Sous les vents de Neptune de Fred Vargas

    Directory of Open Access Journals (Sweden)

    Nadine Vincent

    2014-04-01

    Full Text Available Pour tout auteur, choisir d’écrire dans une langue ou dans la variante d’une langue qui n’est pas la sienne représente un défi de taille. Nous nous intéresserons au roman Sous les vents de Neptune, de l’écrivaine française Fred Vargas, qui a situé une partie de son intrigue au Québec, sans maîtriser la notion de variation linguistique. En analysant les réactions des lecteurs européens et québécois, de même que les caractéristiques de la langue québécoise de Vargas, nous aborderons la question de l’impérialisme linguistique et de son anachronisme au xxie siècle.

  2. CoRoT LRa02_E2_0121: Neptune-size planet candidate turns into a hierarchical triple system with a giant primary

    CERN Document Server

    Tal-Or, L; Mazeh, T; Bouchy, F; Moutou, C; Alonso, R; Gandolfi, D; Aigrain, S; Auvergne, M; Barge, P; Bonomo, A S; Borde, P; Deeg, H; Ferraz-Mello, S; Deleuil, M; Dvorak, R; Erikson, A; Fridlund, M; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Jorda, L; Lammer, H; Leger, A; Llebaria, A; Ollivier, M; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Tsodikovich, Y; Wuchterl, G

    2011-01-01

    This paper presents the case of CoRoT LRa02_E2_0121, which was initially classified as a Neptune-size transiting-planet candidate on a relatively wide orbit of 36.3 days. Follow-up observations were performed with UVES, Sandiford, SOPHIE and HARPS. These observations revealed a faint companion in the spectra. To find the true nature of the system we derived the radial velocities of the faint companion using TODMOR - a two-dimensional correlation technique, applied to the SOPHIE spectra. Modeling the lightcurve with EBAS we discovered a secondary eclipse with a depth of ~0.07%, indicating a diluted eclipsing binary. Combined MCMC modeling of the lightcurve and the radial velocities suggested that CoRoT LRa02_E2_0121 is a hierarchical triple system with an evolved G-type primary and an A-type:F-type grazing eclipsing binary. Such triple systems are difficult to discover.

  3. History in the Cold War and the Cold War in the Present

    OpenAIRE

    Aunesluoma, Juhano; Kettunen, Pauli

    2008-01-01

    Introduction to the book: This book is on the Cold War and the politics of history. It is a multidimensional subject. On one hand, it concerns the different roles of history in the confrontations called the Cold War. The topic includes, on the other hand, the many-faceted presence of Cold War experiences, interpretations and conclusions in post-Cold-War politics. The very concept of the Cold War should be seen as a historical interpretation that has varied and changed over time. The way in wh...

  4. Social science in the Cold War.

    Science.gov (United States)

    Engerman, David C

    2010-06-01

    This essay examines ways in which American social science in the late twentieth century was--and was not--a creature of the Cold War. It identifies important work by historians that calls into question the assumption that all social science during the Cold War amounts to "Cold War social science." These historians attribute significant agency to social scientists, showing how they were enmeshed in both long-running disciplinary discussions and new institutional environments. Key trends in this scholarship include a broadening historical perspective to see social scientists in the Cold War as responding to the ideas of their scholarly predecessors; identifying the institutional legacies of World War II; and examining in close detail the products of extramural--especially governmental--funding. The result is a view of social science in the Cold War in which national security concerns are relevant, but with varied and often unexpected impacts on intellectual life.

  5. Biotechnology of cold-active proteases.

    Science.gov (United States)

    Joshi, Swati; Satyanarayana, Tulasi

    2013-05-03

    The bulk of Earth's biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth's surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.

  6. Cognitive Egocentrism Differentiates Warm and Cold People.

    Science.gov (United States)

    Boyd, Ryan L; Bresin, Konrad; Ode, Scott; Robinson, Michael D

    2013-02-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning.

  7. Cold Resistant Properties of High Modulus Polyurethane

    Institute of Scientific and Technical Information of China (English)

    LI Minghua; XIA Ru; ZHANG Yuchuan; HUANG Zhifang; YAO Heping; HUANG Wanli; WANG Yifeng; HUI Jianqiang; WU Chunyu

    2009-01-01

    Six kinds of polyurethane(PU)elastomers were prepared based on different poly-esters,polyethers and chain extenders.The structure,mechanical properties and cold resistant proper-ties of PU were systematically investigated by FTIR,XRD,DMTA,universal testing machine and flex ductility machine.The results show that T_g of soft segment is the main factor of the cold resistant properties of polyurethane elastomer.Compared with the same relative molecular mass of the polyester and the polyether,the polyether flexibility is better,the glass transition temperature(T_g)is lower and the cold resistant properties is remarkable,for example the cold resistant properties of PU based on poly(tetramethylene glycol),1,4-BG and MDI achieves the fifth level.The physics performances of polyurethane elastomers,such as breakdown strength,Young's modulus and the cold resistant prop-erties,are all superior.

  8. Computer model for analyzing sodium cold traps

    Energy Technology Data Exchange (ETDEWEB)

    McPheeters, C C; Raue, D J

    1983-05-01

    A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions. The calculated pressure drop as a function of impurity mass content determines the capacity of the cold trap. The accuracy of the model was checked by comparing calculated mass distributions with experimentally determined mass distributions from literature publications and with results from our own cold trap experiments. The comparisons were excellent in all cases. A parametric study was performed to determine which design variables are most important in maximizing cold trap capacity.

  9. Improving cold chain systems: Challenges and solutions.

    Science.gov (United States)

    Ashok, Ashvin; Brison, Michael; LeTallec, Yann

    2017-04-19

    While a number of new vaccines have been rolled out across the developing world (with more vaccines in the pipeline), cold chain systems are struggling to efficiently support national immunization programs in ensuring the availability of safe and potent vaccines. This article reflects on the Clinton Health Access Initiative, Inc. (CHAI) experience working since 2010 with national immunization programs and partners to improve vaccines cold chains in 10 countries-Ethiopia, Nigeria, Kenya, Malawi, Tanzania, Uganda, Cameroon, Mozambique, Lesotho and India - to identify the root causes and solutions for three common issues limiting cold chain performance. Key recommendations include: Collectively, the solutions detailed in this article chart a path to substantially improving the performance of the cold chain. Combined with an enabling global and in-country environment, it is possible to eliminate cold chain issues as a substantial barrier to effective and full immunization coverage over the next few years. Copyright © 2017. Published by Elsevier Ltd.

  10. Biotechnology of Cold-Active Proteases

    Directory of Open Access Journals (Sweden)

    Tulasi Satyanarayana

    2013-05-01

    Full Text Available The bulk of Earth’s biosphere is cold (<5 °C and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.

  11. 3维全电磁粒子软件NEPTUNE中的并行计算方法%Parallelization methods in 3D fully electromagnetic code NEPTUNE

    Institute of Scientific and Technical Information of China (English)

    陈军; 莫则尧; 董烨; 杨温渊; 董志伟

    2011-01-01

    NEPTUNE is a three-dimensional fully parallel electromagnetic code to solve electromagnetic problem in high power microwaveC HPM) devices with complex geometry. This paper introduces the following three parallelization methods used in the code. For massively computation, the "block-patch" two level parallel domain decomposition strategy is provided to scale the computation size to thousands of processor cores. Based on the geometry information, the mesh is reconfigured using the adaptive technology to get rid of invalid grid cells, and thus the storage amount and parallel execution time decrease sharply. On the basis of traditional Boris' successive over relaxation (SOR) iteration method, a parallel Poisson solver on irregular domains is provided with red and black ordering technology and geometry constraints. With the above methods, NEPTUNE can get 51. 8% parallel efficiency on 1 024 cores when simulating MILO devices.%介绍了NEPTUNE软件采用的一些并行计算方法:采用“块-网格片”二层并行区域分解方法,使计算规模能够扩展到上千个处理器核.基于复杂几何特征采用自适应技术并行生成结构网格,在原有规则区域的基础上剔除无效网格,大幅降低了存储量和并行执行时间.在经典的Boris和SOR迭代方法基础上,采用红黑排序和几何约束,提出了非规则区域上的Poisson方程并行求解方法.采用这些方法后,当使用NEP-TUNE软件模拟MILO器件时,可在1024个处理器核上获得51.8%的并行效率.

  12. The impact of cold spells on mortality and effect modification by cold spell characteristics

    Science.gov (United States)

    Wang, Lijun; Liu, Tao; Hu, Mengjue; Zeng, Weilin; Zhang, Yonghui; Rutherford, Shannon; Lin, Hualiang; Xiao, Jianpeng; Yin, Peng; Liu, Jiangmei; Chu, Cordia; Tong, Shilu; Ma, Wenjun; Zhou, Maigeng

    2016-12-01

    In China, the health impact of cold weather has received little attention, which limits our understanding of the health impacts of climate change. We collected daily mortality and meteorological data in 66 communities across China from 2006 to 2011. Within each community, we estimated the effect of cold spell exposure on mortality using a Distributed Lag Nonlinear Model (DLNM). We also examined the modification effect of cold spell characteristics (intensity, duration, and timing) and individual-specific factors (causes of death, age, gender and education). Meta-analysis method was finally used to estimate the overall effects. The overall cumulative excess risk (CER) of non-accidental mortality during cold spell days was 28.2% (95% CI: 21.4%, 35.3%) compared with non-cold spell days. There was a significant increase in mortality when the cold spell duration and intensity increased or occurred earlier in the season. Cold spell effects and effect modification by cold spell characteristics were more pronounced in south China. The elderly, people with low education level and those with respiratory diseases were generally more vulnerable to cold spells. Cold spells statistically significantly increase mortality risk in China, with greater effects in southern China. This effect is modified by cold spell characteristics and individual-level factors.

  13. Clinical verification of Neptune 3D-RTPS-A treatment planning system compared to Prowess TPS%两种放射治疗计划系统的对比验证研究

    Institute of Scientific and Technical Information of China (English)

    徐永祥; 李祥; 勇孙凯

    2011-01-01

    目的 对比Prowess治疗计划系统(TPS)以检验Neptune 3D-RTPS-A放射治疗计划系统在临床应用过程中的准确性和安全性.方法 选取2009年9月至2010年5月在Prowess TPS行三维放疗计划设计并顺利完成适形放疗的30例肿瘤病例,将Prowess TPS中勾画的外轮廓、危及器官、靶区导入到Neptune TPS,并在Neptune TPS中设置和Prowess TPS相同的治疗计划参数,对比2种TPS计算的结果数据.结果 使用Neptune 3D-RTPS-A三维治疗计划系统能够顺利完成所选30例肿瘤病例的放射治疗计划设计.与Prowess TPS比较,源皮距SSD差异<0.5%;机器跳数(MU)差异<0.5%;等中心剂量差异<2%;30%、50%、70%、80%、90%5条等剂量线包绕面积差异<3%,等中心平面上的等剂量线位置平均偏差0.43 mm;30例患者PTV的V90差异<2%,危及器官V30差异<3%.结论 Neptune 3D-RTPS-A三维治疗计划系统具备临床应用的准确性和安全性.%Objective To investigate the safety and validity of Neptune 3D-RTPS-A treatment planning system compared to Prowess TPS.Methods A total of 30 clinical tumor cases with radiotherapy planning on Prowess TPS from September 2009 to May 2010 were used.The contours, organs at risk and target volumes in Prowess TPS were transported into Neptune TPS, the same parameters setted in the two treatment planning systems.The results of comparison of the two TPS were calculated.Results All cases of clinical treatment planning were completed successfully by Neptune TPS, and the various functions of the design were achieved for fitting tumor conformal radiation therapy.The key parameters on radiation treatment were compared.The results are as follows:the differences of source skin distance ( SSD ) <0.5% , differences of Monitor Unites <0.5%, the differences of dose at isocenter <2%, the differences of five isodose lines surrounding area < 3%, and the mean difference of distances of five isodose lines was 0.43 mm, the differences of the

  14. The use of cold plasma generators in medicine

    National Research Council Canada - National Science Library

    Kolomiiets R.O; Nikitchuk T.M; Hrek O.V

    2017-01-01

    Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use...

  15. Some Chinese folk prescriptions for wind-cold type common cold.

    Science.gov (United States)

    Hai-Long, Zhai; Shimin, Chen; Yalan, Lu

    2015-07-01

    Although self-limiting, the common cold (gǎn mào) is highly prevalent. There are no effective antivirals to cure the common cold and few effective measures to prevent it, However, for thousands years, Chinese people have treated the common cold with natural herbs, According to the traditional Chinese medicine (TCM) theory ( zhōng yī lǐ lùn), the common cold is considered as an exterior syndrome, which can be further divided into the wind-cold type ( fēng hán xíng), the wind-heat type ( fēng rè xíng), and the summer heat dampness type ( shǔ rè xíng). Since the most common type of common cold caught in winter and spring is the wind-cold type, the article introduced some Chinese folk prescriptions for the wind-cold type common cold with normal and weak physique, respectively. For thousands of years, Chinese folk prescriptions for the common cold, as complementary and alternative medicine (CAM; bǔ chōng yǔ tì dài yī xué), have been proven to be effective, convenient, cheap, and most importantly, safe. The Chinese folk prescriptions ( zhōng guó mín jiān chǔ fāng) for the wind-cold type common cold are quite suitable for general practitioners or patients with the wind-cold type common cold, to treat the disease. Of course, their pharmacological features and mechanisms of action need to be further studied.

  16. Protection of feet in cold exposure.

    Science.gov (United States)

    Kuklane, Kalev

    2009-07-01

    The paper summarizes the research on cold protection of feet. There exist several conflicting requirements for the choice of the best suited footwear for cold exposure. These conflicts are related to various environmental factors, protection needs and user comfort issues. In order to reduce such conflicts and simplify the choice of proper footwear the paper suggests dividing the cold into specific ranges that are related to properties and state of water and its possibility to penetrate into, evaporate from or condensate in footwear. The thermo-physiological background and reactions in foot are briefly explained, and main problems and risks related to cold injuries, mechanical injuries and slipping discussed. Footwear thermal insulation is the most important factor for protection against cold. The issues related to measuring the insulation and the practical use of measured values are described, but also the effect of socks, and footwear size. Other means for reducing heat losses, such as PCM and electrical heating are touched. The most important variable that affects footwear thermal insulation and foot comfort is moisture in footwear. In combination with motion they may reduce insulation and thus protection against cold by 45%. The paper includes recommendations for better foot comfort in cold.

  17. Acute Cold / Restraint Stress in Castrated Rats

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2008-09-01

    Full Text Available Objective: The present study aimed to determine whether castration altered osmotically stimulated vasopressin (VP release and urinary volume and what is the role of endocrine-stress axis in this process.Materials and methods: Totally 108 mice were studied in two main groups of castrated (n=78 and control (n=30. Each group was extracted by acute cold stress (4◦C for 2h/day, restraint stress (by syringes 60cc 2h/day and cold/restraint stress. The castrated group was treated in sub groups of testosterone, control (sesame oil as vehicle of testosterone. Propranolol as blocker of sympathetic nervous system was given to both groups of castrated mice and main control.Results: Our results showed that, there is interactions between testosterone and sympathetic nervous system on vasopressin, because urine volume was decreased only in testoctomized mice with cold/restraint and cold stress (P<0.001; propranolol as the antagonist of sympathetic nervous system could block and increase urine volume in castrated mice. This increased volume of urine was due to acute cold stress, not restraint stress (p<0.001. The role of testosterone, noradrenalin (NA and Vasopressin (VP in the acute cold stress is confirmed, because testosterone could return the effect of decreased urine volume in control group (P<0.001. Conclusion: Considering the effect of cold/restraint stress on urinary volume in castrated mice shows that there is interaction between sex hormone (testosterone, vasopressin and adrenergic systems.

  18. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  19. Surpassing the Cold War Mentality

    Institute of Scientific and Technical Information of China (English)

    Yang Mingjie

    2006-01-01

    @@ Five years have passed since September 11. What has been the influence of these events on international relations? What has changed in the world since then? The majority of scholars hold that the September 11 terrorist attacks were essentially a key event, a "turning point" in the international strategy transformation after the Cold War.Yet some others believe that the September 11 terrorist attacks cannot have had so profound an impact on international relations. For example, in America's Foreign Policy, most articles commemorating the fifth anniversary of September 11 fall into the second category. These articles suggest that, five years after September 11, security issues have not slowed down the pace of globalization; potential strategic competition among the big powers has not been weakened due to their cooperation in counter-terrorism and international terrorist organizations, represented by Al Qaeda, still exist. Meanwhile, many proturning-point scholars think that, after September 11, terrorism has become the main threat to international security and that the strategic focuses of major powers have also undergone a big adjustment, valuing cooperation over competition. There is even a saying that "the central content of international relations is to meet challenges from the non-state actors represented by terrorism."

  20. Ergonomics of heat and cold.

    Science.gov (United States)

    Kamon, E

    1975-01-01

    The biophysical, physiological and some of the psychological aspects of work under unfavorable man-made ambient conditions are presented in light of the need to prevent excessive strain. Work is treated in two ways: 1) in terms of the muscles O2 demand as a fraction of maximal aerobic capacity; and 2) in terms of metabolic heat source. Since maximal aerobic capacity depends on factors such as physical fitness, age and sex, these factors require consideration in estimating strain due to work. The absolute metabolic heat (M) produced during work is needed in the consideration of the total heat balance. Radiation (r), convection (C), and, under some circumstances, evaporation (Eev) are the main avenues of heat exchange between man and his immediate environment. Eev is primarily a function of the ambient potential for evaporation (Emax). Since the relation of the sum M+R+C to Emax determines heat balance when man in under a heat load, evaluation of the avenues of heat exchange, the sources of heat load, and the stressing effect of all these on the physiological responses are treated in some detail. Psychrometrically defined limits of exposure are also discussed. Subjective sensation and mental performance are discussed in light of their correlation with physiological responses to heat. Cold is treated mainly from the point of view of safety and protective clothing.

  1. Neutron interferometry with cold stage

    Science.gov (United States)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  2. Microbiological interactions with cold plasma.

    Science.gov (United States)

    Bourke, P; Ziuzina, D; Han, L; Cullen, P J; Gilmore, B F

    2017-08-01

    There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad-spectrum antibiotics and health-related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio-active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food- and healthcare-associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action. © 2017 The Society for Applied Microbiology.

  3. A Miniature Cold-Atom Frequency Standard

    CERN Document Server

    Shah, Vishal; Stoner, Rick; Vuletic, Vladan; Lutwak, Robert

    2011-01-01

    Atomic sensors employing cold-atom technology enable unprecedented accuracy and resolution for next generation atomic clocks, magnetometers, gravimeters, and gyroscopes. To date, however, the size and complexity of cold atom systems have prevented their deployment in practical applications outside of large research laboratories. Here we demonstrate a low power, palm-top, and fully integrated cold atom system that functions as an atomic clock with a stability of 2 parts in 10^11 at 1s. This work demonstrates the feasibility of developing compact, robust, and portable devices based on laser cooled atoms.

  4. A magnetic guide for cold atoms

    CERN Document Server

    Richmond, J A; Cantwell, B P; Opat, G I

    1998-01-01

    We propose a novel method for guiding cold, neutral atoms using static magnetic fields. A theoretical study of the magnetic field produced by a tube consisting of two identical, interwound solenoids carrying equal but opposite currents is presented. This field is almost zero throughout the centre of the tube, but it increases with exponential rapidity as one approaches the walls formed by the current carrying wires. Hence, cold atoms passing through the tube may be reflected by magnetic mirror effects near the walls. Applying this technique to a free-falling cloud of magneto-optically cooled caesium atoms we hope to construct atomic guides to facilitate the manipulation of cold atomic beams.

  5. CMB Cold Spot from Inflationary Feature Scattering

    CERN Document Server

    Wang, Yi

    2015-01-01

    We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from {\\it WMAP} and {\\it Planck} maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at $\\ell \\sim 20$.

  6. International cooperation in cold forging technology

    DEFF Research Database (Denmark)

    Bay, Niels; Lange, K

    1992-01-01

    of the ICFG are personally elected by the Plenary as experts within the field, often representing national groups within cold forging. The main work within the ICFG is carried out in its subgroups which are established by the Plenary to collect, compile and evaluate data and eventually also produce data......International cooperation in the field of cold forging technology started in 1961 by formation of the OECD Group of Experts on Metal Forming. In 1967 this group was transformed into the International Cold Forging Group, ICFG, an independent body which has now been operative for 25 years. Members...

  7. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  8. Cold-induced changes in amphibian oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angelier, N.; Moreau, N.A.; N' Da, E.A.; Lautredou, N.F. (Centre de Biologie Cellulaire, Ivry-sur-Seine (France))

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  9. A comprehensive overview of the Cold Spot

    CERN Document Server

    Vielva, P

    2010-01-01

    The report of a significant deviation of the CMB temperature anisotropies distribution from Gaussianity (soon after the public release of the WMAP data in 2003) has become one of the most solid WMAP anomalies. This detection grounds on an excess of the kurtosis of the Spherical Mexican Hat Wavelet coefficients at scales of around 10 degrees. At these scales, a prominent feature --located in the southern Galactic hemisphere-- was highlighted from the rest of the SMHW coefficients: the Cold Spot. This article presents a comprehensive overview related to the study of the Cold Spot, paying attention to the non-Gaussianity detection methods, the morphological characteristics of the Cold Spot, and the possible sources studied in the literature to explain its nature. Special emphasis is made on the Cold Spot compatibility with a cosmic texture, commenting on future tests that would help to give support or discard this hypothesis.

  10. Cold quark matter in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

    2013-03-25

    We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

  11. Wire and Cable Cold Bending Test

    Science.gov (United States)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  12. Improvements in Cold-Plate Fabrication

    Science.gov (United States)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  13. Photosynthetic microorganisms in cold environments

    Science.gov (United States)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    and their physiological processes are inactive. If hydrated, they are physiologically active even at subzero temperatures (Kappen et al., 1996). Although living in cold environments, the growth optimum temperature of typical phycobiont Trebouxia (Chlorophyta) sp. is above 15 ° C, so these algae are considered to be rather psychrotolerant. Acknowledgement The work was supported from projects GA AS CR Nos. KJB 601630808 and KJ KJB600050708, CAREX and long-term institutional research plan of the Institute of Botany AS CR AV0Z600050516 and the Masaryk University. Prof. Martin Backor (Safarik University in Kosice) is kindly ac-knowledged for providing the strains Trebouxia erici and T. glomerata (Backor). References Elster, J. , Benson, E.E. Life in the polar terrestrial environment with a focus on algae and cyanobacteria, in Fuller, B.J., Lane, N. , Benson, E.E. (Eds), Life in the Frozen State. CRC Press, pp. 111-150, 2004. Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. , Hestmark, G. Cold resistance and metabolic activity of lichens below 0 ° C. Adv. Space Res. 18, 119-128, 1996. Kviderova, J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. accepted, 2010. Nedbalova, L., Kocianova, M. , Lukavsky, J. Ecology of snow algae in the Giant Mountains and their relation to cryoseston in Europe. Opera Corcontica 45, 59-68, 2008.

  14. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs.

  15. Toxicity evaluation and hazard review Cold Smoke

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.; Stocum, W.E.

    1993-12-01

    Cold Smoke is a dense white smoke produced by the reaction of titanium tetrachloride and aqueous ammonia aerosols. Early studies on the toxicity of this nonpyrotechnically generated smoke indicated that the smoke itself is essentially non-toxic (i.e. exhibits to systemic toxicity or organ damage due to exposure) under normal deployment conditions. The purpose of this evaluation was to review and summarize the recent literature data available on the toxicity of Cold Smoke, its chemical constituents, and its starting materials.

  16. Mathematical modeling of rewarming after cold therapy.

    Science.gov (United States)

    Avet, L M

    1978-07-01

    Statistical methods are presented for fitting mathematical models to skin temperature data. Three types of regression curves, namely, linear regression (Y = A + BX), second-degree regression (Y = A + BX + CX2), and asymptotic regression (Y = alpha + betapx), are discussed as possible models for the rewarming process following cold therapy. The data for fitting the curves consists of back surface temperature (degrees C) corresponding to various times after cold pack treatment (19 degrees C, administered for 20 minutes) was terminated.

  17. Migration and Trans-boundary:An Interactive study of Neptune Belief around South China Sea%迁徙与跨界:环南中国海海神信仰交互性研究

    Institute of Scientific and Technical Information of China (English)

    单百灵

    2014-01-01

    While the academic studies that are related to the issues around South China Sea have gradually cov-ered a few professional fields in recent years,the overall studies of the folk beliefs around South China Sea are still very few. The Neptune belief is an important form of folk beliefs. The worship in Neptune that is born out of the trans-boundary functions as an important force to unite the Chinese immigrants around South China Sea and agglomerate the recognition among the Chinese communities. The studies of cultural ideology about the Neptune belief around South China Sea,with the regional groups as a unit,display the integrity,diversity,and geograph-ic and temporal interaction in terms of the Neptune belief.%近年来与环南中国海问题相关的学术研究逐渐覆盖诸多专业领域,但针对环南地区民间信仰的整体研究仍然较少。海神信仰是民间信仰的重要形式,跨境而生的海神崇拜是整合环南华人移民与凝聚华人社群认同的重要力量。针对环南海神信仰文化形态的研究以区域族群为单位,呈现出海神信仰整体性和多样性、地域与时空交互的状况。

  18. Fracture Behavior of Cold Sprayed 304 Stainless Steel Coating During Cold Rolling

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-ming; ZHANG Jun-bao; HAN Wei; ZHAO Jie

    2012-01-01

    The fracture behavior of cold sprayed 304 stainless steel coating in cold rolling process was studied. The 304 stainless steel coatings were deposited on low carbon steel substrate by cold gas dynamic spray (CGDS) and then cold rolled, respectively. The fracture morphology of the coatings was observed and analyzed, and the crack distri- butions along the longitudinal rolling direction of the coatings were also investigated and discussed. The results showed that the cohesive strength of the cold sprayed 304 stainless steel coating was too low to be cold rolled. Mi crocracks were formed in the as-sprayed coatings and ran perpendicularly to the rolling direction. The spacing dis- tance between these cracks decreased with the increase of the cold rolling reduction. In addition, it was also found that the initial crack generated at the surface of the coating and propagated from the surface to the interface along the weakly bonded particles. A theoretical analysis was developed for the coating fracture. It gave a critical minimum cohesive bonding strength of the coating for non-breaking in cold rolling process. The crack propagation manner of the cold rolled coatings was also discussed.

  19. Genetic AVP deficiency abolishes cold-induced diuresis but does not attenuate cold-induced hypertension.

    Science.gov (United States)

    Sun, Zhongjie

    2006-06-01

    Chronic cold exposure causes hypertension and diuresis. The aim of this study was to determine whether vasopressin (AVP) plays a role in cold-induced hypertension and diuresis. Two groups of Long-Evans (LE) and two groups of homozygous AVP-deficient Brattleboro (VD) rats were used. Blood pressure (BP) was not different among the four groups during a 2-wk control period at room temperature (25 degrees C, warm). After the control period, one LE group and one VD group were exposed to cold (5 degrees C); the remaining groups were kept at room temperature. BP and body weight were measured weekly during exposure to cold. Food intake, water intake, urine output, and urine osmolality were measured during weeks 1, 3, and 5 of cold exposure. At the end of week 5, all animals were killed and blood was collected for measurement of plasma AVP. Kidneys were removed for measurement of renal medulla V2 receptor mRNA and aquaporin-2 (AQP-2) protein expression. BP of LE and VD rats increased significantly by week 2 of cold exposure and reached a high level by week 5. BP elevations developed at approximately the same rate and to the same degree in LE and VD rats. AVP deficiency significantly increased urine output and solute-free water clearance and decreased urine osmolality. Chronic cold exposure increased urine output and solute-free water clearance and decreased urine osmolality in LE rats, indicating that cold exposure caused diuresis in LE rats. Cold exposure failed to affect these parameters in VD rats, suggesting that the AVP system is responsible for cold-induced diuresis. Cold exposure did not alter plasma AVP in LE rats. Renal medulla V2 receptor mRNA and AQP-2 protein expression levels were decreased significantly in the cold-exposed LE rats, suggesting that cold exposure inhibited renal V2 receptors and AVP-inducible AQP-2 water channels. We conclude that 1) AVP may not be involved in the pathogenesis of cold-induced hypertension, 2) the AVP system plays a critical role

  20. Identification of Cold Tolerance of Rice Germplasm Resource at Germinating Stage in Cold Region

    Institute of Scientific and Technical Information of China (English)

    LIU Hualong; SUN Shiche; WANG Jingguo; ZOU Detang

    2008-01-01

    Total 75 rice varieties (lines) in Heilongiiang Province (or cold region) as germplasm resources were identified for cold tolerance at germinating stage by controlling temperature in artificial incubator. The results showed that the shooting seed rate at the germinating stage could be used as the evaluation index of cold tolerance. The cold tolerance was recorded on 1-9 scale and could be identified by the criteria of five indexes such as highly tolerant (HT), tolerant (T), moderately tolerant (MT), susceptible (S), highly susceptible (HS).

  1. TRPA1 contributes to cold hypersensitivity.

    Science.gov (United States)

    del Camino, Donato; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B; Earley, Taryn J; Cook, Colby A; Petrus, Matt J; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J; Costigan, Michael; Hayward, Neil J; Chong, Jayhong A; Fanger, Christopher M; Woolf, Clifford J; Patapoutian, Ardem; Moran, Magdalene M

    2010-11-10

    TRPA1 is a nonselective cation channel expressed by nociceptors. Although it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions in which reactive oxygen species and proinflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1(-/-) mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide] reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain.

  2. Continuous cold therapy in total knee arthroplasty.

    Science.gov (United States)

    Leutz, D W; Harris, H

    1995-01-01

    This article describes a retrospective study that assessed 52 consecutive patients who underwent total knee arthroplasty (TKA) between January 1, 1992 and September 15, 1992. Thirty-three patients underwent TKA and received cold therapy pads placed over a thin dressing in the operating room. Nineteen patients underwent TKA using an identical operative and postoperative procedure, but did not receive continuous cold therapy. Continuous cold therapy consisted of two sterile plastic pads connnected by rubber hoses containing cool water from an electric main unit that maintained a constant temperature of 42 degrees F for the immediate postoperative period. Cold therapy pads were used an average of 3 days and removed with the first dressing change. Patients who had continuous cold therapy averaged a 200 cc decrease in postoperative blood loss. There was no significant difference in the amount of narcotic use, transfusion requirements, or hospital stay between the two groups. Postoperative swelling and range of motion were not consistently recorded. Twenty-eight other variables also examined not significant. Based on these results, we cannot recommend continuous cold therapy or justify the extra expense for all patients who undergo TKA.

  3. Time variability of Neptune's horizontal and vertical cloud structure revealed by VLT/SINFONI and Gemini/NIFS from 2009 to 2013

    Science.gov (United States)

    Irwin, P. G. J.; Fletcher, L. N.; Tice, D.; Owen, S. J.; Orton, G. S.; Teanby, N. A.; Davis, G. R.

    2016-06-01

    New observations of Neptune's clouds in the near infrared were acquired in October 2013 with SINFONI on ESO's Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning a 64 × 64 pixel image with 2048 wavelengths. Image cubes in the J-band (1.09-1.41 μm) and H-band (1.43-1.87 μm) were obtained at spatial resolutions of 0.1″and 0.025″per pixel, while SINFONI's adaptive optics provided an effective resolution of approximately 0.1″. Image cubes were obtained at the start and end of three successive nights to monitor the temporal development of discrete clouds both at short timescales (i.e. during a single night) as well as over the longer period of the three-day observing run. These observations were compared with similar H-band observations obtained in September 2009 with the NIFS Integral Field Unit spectrometer on the Gemini-North telescope in Hawaii, previously reported by Irwin et al. (2011) [Icarus, 216, 141-158], and previously unreported Gemini/NIFS observations at lower spatial resolution made in 2011. We find both similarities and differences between these observations, spaced over four years. The same overall cloud structure is seen with high, bright clouds visible at mid-latitudes (30-40°N,S), with slightly lower clouds observed at lower latitudes, together with small discrete clouds seen circling the pole at a latitude of approximately 60°S. However, while discrete clouds were visible at this latitude at both the main cloud deck level (at 2-3 bar) and in the upper troposphere (100-500 mb) in 2009, no distinct deep (2-3 bar), discrete circumpolar clouds were visible in 2013, although some deep clouds were seen at the southern edge of the main cloud belt at 30-40°S, which have not been observed before. The nature of the deep sub-polar discrete clouds observed in 2009 is intriguing. While it is possible that in 2013 these deeper clouds were masked by faster moving, overlying features, we consider that it is

  4. 多接收器电感耦合等离子质谱精确测定钕同位素组成%Accurate Measurement of Neodymium Isotopic Composition Using Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    杨岳衡; 张宏福; 谢烈文; 吴福元

    2007-01-01

    报道了本实验室近两年来Neptune MC-ICP-MS测试Nd同位素的结果.测试结果显示样品化学分离中伴随的大量铈对钕同位素组成测定没有影响;而分离后残余少量钐,在一定范围内(钐/钕<0.04)可以直接扣除,获得准确的Nd同位素组成.Neptune MC-ICP-MS和热电离质谱(TIMS)平行测定实际地质样品表明,Neptune MC-ICP-MS可以精确测定Nd同位素组成,与经典的TIMS技术相比,MC-ICP-MS可以获得与TIMS相媲美的数据精度,而且分析时间缩短,效率明显提高.

  5. Agility following the application of cold therapy.

    Science.gov (United States)

    Evans, T A; Ingersoll, C; Knight, K L; Worrell, T

    1995-09-01

    Cold application is commonly used before strenuous exercise due to its hypalgesic effects. Some have questioned this procedure because of reports that cold may reduce isokinetic torque. However, there have been no investigations of actual physical performance following cold application. The purpose of this study was to determine if a 20-minute ice immersion treatment to the foot and ankle affected the performance of three agility tests: the carioca maneuver, the cocontraction test, and the shuttle run. Twenty-four male athletic subjects were tested during two different treatment sessions following an orientation session. Subjects were tested following a 20-minute 1 degrees C ice immersion treatment to the dominant foot and ankle and 20 minutes of rest. Following each treatment, subjects performed three trials of each agility test, with 30 seconds rest between each trial, and 1 minute between each different agility test. The order in which each subject performed the agility tests was determined by a balanced Latin square. A MANOVA with repeated measures was used to determine if there was an overall significant difference in the agility times recorded between the cold and control treatments and if the order of the treatment sessions affected the scores. Although the mean agility time scores were slightly slower following the cold treatment, cooling the foot and ankle caused no difference in agility times. Also, there was no difference resulting from the treatment orders. We felt that the slightly slower scores may have been a result of tissue stiffness and/or subject's apprehension immediately following the cold treatment. Cold application to the foot and ankle can be used before strenuous exercise without altering agility.

  6. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  7. Water and Electrolyte Exchange during Exposure to Cold, Altitude and Combined Cold and Altitude

    Science.gov (United States)

    1981-04-28

    adrenergic receptors may play a dominant role in acclimation to cold in the laboratory rat . Since an increase in the rate of secretion of thyroid hormones...stimulation that accompanies cold acclimation in the laboratory rat . Studies from this laboratory have shown that reduction in thyroid activity reduces

  8. Cold War Paradigms and the Post-Cold War High School History Curriculum.

    Science.gov (United States)

    McAninch, Stuart A.

    1995-01-01

    Discusses how Cold War ideological models provide a way to examine the U.S. role in world affairs. Discusses and compares on the writings of Paul Gagnon and Noam Chomsky on this topic. Concludes that students should stand outside both models to develop a meaningful perspective on the U.S. role during the Cold War. (CFR)

  9. Cold War Paradigms and the Post-Cold War High School History Curriculum.

    Science.gov (United States)

    McAninch, Stuart A.

    1995-01-01

    Discusses how Cold War ideological models provide a way to examine the U.S. role in world affairs. Discusses and compares on the writings of Paul Gagnon and Noam Chomsky on this topic. Concludes that students should stand outside both models to develop a meaningful perspective on the U.S. role during the Cold War. (CFR)

  10. The cold driver: Cold stress while driving results in dangerous behavior.

    Science.gov (United States)

    Morris, Drew M; Pilcher, June J

    2016-10-01

    Cool vehicle cabin temperatures can induce short-term non-hypothermic cold stress. The current study created a cold condition to examine the impact of cold stress on driving behavior. Forty-four participants drove a high-fidelity driving simulator during a thermal neutral or local torso cooled condition. Participants performed additional tasks to assess attention, psychomotor vigilance, and manual dexterity. Skin temperature was significantly lower in the cold condition while internal temperature was unaffected. Participants who had higher subjective ratings of cold followed lead vehicles closer and started to brake later. Participants in the cold condition followed the lead car 22% (0.82s) closer and started braking 20% (2.35s) later when approaching a stop sign during the car-following task. No change in attention, psychomotor vigilance, or dexterity was observed. The current results suggest that cold environmental conditions can contribute to dangerous driving behaviors. Measures of cold perception were also shown to predict changes in driving behavior.

  11. Cutaneous microvascular response during local cold exposure - the effect of female sex hormones and cold perception.

    Science.gov (United States)

    Cankar, Ksenija; Music, Mark; Finderle, Zare

    2016-11-01

    It is generally known that differences exist between males and females with regard to sensitivity to cold. Similar differences even among females in different hormonal balance might influence microvascular response during cold provocation testing. The aim of the present study was to measure sex hormone levels, cold and cold pain perception thresholds and compare them to cutaneous laser-Doppler flux response during local cooling in both the follicular and luteal phases of the menstrual cycle. In the luteal phase a more pronounced decrease in laser-Doppler flux was observed compared to follicular phase during local cooling at 15°C (significant difference by Dunnett's test, psex hormone levels is related to the cold-provocation temperature.

  12. Cold months in a warming climate

    Science.gov (United States)

    Räisänen, Jouni; Ylhäisi, Jussi S.

    2011-11-01

    The frequency of cold months in the 21st century is studied using the CMIP3 ensemble of climate model simulations, using month-, location- and model-specific threshold temperatures derived from the simulated 20th century climate. Unsurprisingly, cold months are projected to become less common, but not non-existent, under continued global warming. As a multi-model mean over the global land area excluding Antarctica and under the SRES A1B scenario, 14% of the months during the years 2011-2050 are simulated to be colder than the 20th century median for the same month, 1.3% colder than the 10th percentile, and 0.1% record cold. The geographic and seasonal variations in the frequency of cold months are strongly modulated by variations in the magnitude of interannual variability. Thus, for example, cold months are most infrequently simulated over the tropical oceans where the variability is smallest, not over the Arctic where the warming is largest.

  13. Cold-atom Inertial Sensor without Deadtime

    CERN Document Server

    Fang, Bess; Savoie, Denis; Venon, Bertrand; Alzar, Carlos L Garrido; Geiger, Remi; Landragin, Arnaud

    2016-01-01

    We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are consequences of the sequential operation which is intrinsic to cold-atom atom interferometers. Both phenomena have deleterious effects on the performance of these sensors. We show that our continuous operation improves the short-term sensitivity of atom interferometers, by demonstrating a record rotation sensitivity of $100$ nrad.s$^{-1}/\\sqrt{\\rm Hz}$ in a cold-atom gyroscope of $11$ cm$^2$ Sagnac area. We also demonstrate a rotation stability of $1$ nrad.s$^{-1}$ after $10^4$ s of integration, improving previous results by an order of magnitude. We expect that the continuous operation will allow cold-atom inertial sensors with long interrogation time to reach their full sensitivity, determined by the quantum noise limit.

  14. Gender, the Cold War, and Ingeborg Bachmann

    Directory of Open Access Journals (Sweden)

    Sara Lennox

    2007-01-01

    Full Text Available This essay uses the methodology of materialist feminism to situate Ingeborg Bachmann's life and writing in their Cold War context. After outlining the ways in which U.S. Cold War policy affected Austrian cultural life in the nineteen-fifties, I show that Bachmann's own activities during the period of U.S. occupation were steeped in that Cold War atmosphere. I also argue that the Cold War reconfiguration of gender relations left their imprint on Bachmann's writing. Comparing the narrative techniques of the unpublished short story "Sterben für Berlin" (1961 and Bachmann's Büchner Prize Speech "Ein Ort für Zufälle" (1964, I maintain that both texts address the Cold War's impact on Central European subjectivity and that Bachmann's subsequent writing oscillates between those two narrative approaches. Particularly the middle, dream chapter of the novel Malina uses the expressionist or surrealist strategies of "Ein Ort für Zufälle" to present history only via the scars left on the psyche, what Bachmann called "die Geschichte im Ich." Subsequent to the novel Malina , the figure Malina assumes the narrative standpoint of "Sterben für Berlin" to tell the apparently realist stories of the "Todesarten" cycle, whose characters remain unaware of the social forces of which they are victims.

  15. Cold plasma inactivation of chronic wound bacteria.

    Science.gov (United States)

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.

  16. Two cold-season derechoes in Europe

    Science.gov (United States)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  17. Characterising Cold Weather for the UK mainland

    Science.gov (United States)

    Fradley, Kate; Dacre, Helen; Ambaum, Maarten

    2016-04-01

    Excess Winter Mortality is a peak in the population's mortality rate during winter months and is correlated with low outdoor temperatures. Excess Winter Mortality has adverse impacts, including increased demand on health services. The management of resources for such increased demands maybe improved through incorporation of weather forecasting information to advanced warnings. For the UK, prolonged cold periods are associated with easterly advection, and high pressure systems. Characterisation of the synoptic conditions associated with cold periods is important to understand forecast performance. Principal Component Analysis has been used with mean sea level pressure from 35 years of ERA interim reanalysis to capture synoptic variability on a continuous scale. Cold events in the North and South of the UK mainland have been identified as having different synoptic variability using this method. Furthermore extending the Principal Component Analysis to investigate the skill of forecasts has identified systematic under prediction of some cold weather synoptic conditions. Ensemble forecasts are used to quantify the uncertainty associated with these cold weather synoptic conditions. This information maybe be used to improve the value of existing weather warnings.

  18. What asteroseismology can do for exoplanets: Kepler-410A b is a Small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    CERN Document Server

    Van Eylen, Vincent; Aguirre, Victor Silva; Arentoft, Torben; Kjeldsen, Hans; Albrecht, Simon; Chaplin, William J; Isaacson, Howard; Pedersen, May G; Jessen-Hansen, Jens; Tingley, Brandon W; Christensen-Dalsgaard, Joergen; Aerts, Conny; Campante, Tiago L; Bryson, Stephen T

    2013-01-01

    We confirm the Kepler planet candidate Kepler-410b (KOI-42b) as a Neptune sized exoplanet on a 17.8 day, eccentric orbit around the bright (Kp = 9.4) star Kepler-410A. This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. Via asteroseismology we determine the following stellar and planetary parameters with high precision; M$_\\star = 1.214 \\pm 0.033$ M$_\\odot$, R$_\\star = 1.352 \\pm 0.010$ R$_\\odot$, Age = $2.76 \\pm 0.54$ Gyr, planetary radius ($2.838 \\pm 0.054$ R$_\\oplus$), and orbital eccentricity ($0.17^...

  19. Properties of the short period CoRoT-planet population II: The impact of loss processes on planet masses from Neptunes to Jupiters

    CERN Document Server

    Lammer, H; Wuchterl, G; Lichtenegger, H I M; Khodachenko, M L; Kulikov, Y N; Micela, G; Lammer, Helmut; Kulikov, Yu. N.

    2007-01-01

    The orbital distance at which close-in exoplanets maintain their initial mass is investigated by modelling the maximum expected thermal and nonthermal mass loss rates over several Gyr. Depending on an exosphere formation time and the evolution of the stellar X-ray and EUV flux we expect that thermal evaporation at orbital distances less than 0.05 AU may be an efficient loss process for hydrogen-rich exoplanets with masses less than 0.25 MJup. Our results indicate that nonthermal mass loss induced by Coronal Mass Ejections of the host star can significantly erode weakly magnetized short periodic gas giants. The observed exoplanets Gliese 876d at 0.0208 AU with a mass of about 0.033 MJup and 55 Cnc e at 0.045 AU with a mass of about 0.038 MJup could be strongly eroded gas giants, while HD69830b, at 0.078 AU, HD160691d at 0.09 AU and HD69830c at 0.18 AU belonged most likely since their origin to the Neptune-mass domain. The consequences for the planetary population predicted in paper I (Wuchterl et al. 2006) for...

  20. Spitzer Observations of GJ3470b: a Very Low-density Neptune-size Planet Orbiting a Metal-rich M dwarf

    CERN Document Server

    Demory, Brice-Olivier; Neves, Vasco; Rogers, Leslie; Gillon, Michael; Horch, Elliott; Sullivan, Peter; Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Santos, Nuno; Seager, Sara; Smalley, Barry; Udry, Stephane

    2013-01-01

    We present Spitzer/IRAC 4.5-micron transit photometry of GJ3470b, a Neptune-size planet orbiting a M1.5 dwarf star with a 3.3-day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M_star = 0.539+0.047-0.043 M_sun and a radius of R_star = 0.568+0.037-0.031 R_sun. We determine the host star of GJ3470b to be metal-rich, with a metallicity of [Fe/H] = +0.20 +/- 0.10 and an effective temperature of Teff = 3600 +/- 100 K. The revised stellar parameters yield a planetary radius R_pl = 4.83+0.22-0.21 R_Earth that is 13 percent larger than the value previously reported in the literature. We find a planetary mass M_pl = 13.9+1.5-1.4 M_Earth that translates to a very low planetary density, rho_pl = 0.72+0.13-0.12 gcm-3, whic...

  1. Identifying the `true' radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling

    Science.gov (United States)

    Lammer, H.; Erkaev, N. V.; Fossati, L.; Juvan, I.; Odert, P.; Cubillos, P. E.; Guenther, E.; Kislyakova, K. G.; Johnstone, C. P.; Lüftinger, T.; Güdel, M.

    2016-09-01

    For the hot exoplanets CoRoT-24b and CoRoT-24c, observations have provided transit radii RT of 3.7 ± 0.4R⊕ and 4.9 ± 0.5R⊕, and masses of ≤5.7M⊕ and 28 ± 11M⊕, respectively. We study their upper atmosphere structure and escape applying an hydrodynamic model. Assuming RT ≈ RPL, where RPL is the planetary radius at the pressure of 100 mbar, we obtained for CoRoT-24b unrealistically high thermally driven hydrodynamic escape rates. This is due to the planet's high temperature and low gravity, independent of the stellar EUV flux. Such high escape rates could last only for high altitude hazes/clouds possibly extinct the light at RT. Our analysis constraints also the planet's mass to be 5-5.7M⊕. For CoRoT-24c, RPL and RT lie too close together to be distinguished in the same way. Similar differences between RPL and RT may be present also for other hot, low-density sub-Neptunes.

  2. The HARPS search for southern extra-solar planets: XIV. Gl 176b, a super-Earth rather than a Neptune, and at a different period

    CERN Document Server

    Forveille, T; Delfosse, X; Gillon, M; Udry, S; Bouchy, F; Lovis, C; Mayor, M; Pepe, F; Perrier, C; Queloz, D; Santos, N; Bertaux, J -L

    2008-01-01

    A 10.24 days Neptune-mass planet was recently announced to orbit the nearby M2 dwarf Gl 176, based on 28 radial velocities measured with the HRS spectrograph on the Hobby-Heberly Telescope (HET). We obtained 57 radial velocities of Gl 176 with the ESO 3.6m telescope and the HARPS spectrograph, which is known for its sub-m/s stability. The median photon-noise standard error of our measurements is 1.1 m/s, significantly lower than the 4.7 m/s of the HET velocities, and the 4 years period over which they were obtained has much overlap with the epochs of the HET measurements. The HARPS measurements show no evidence for a signal at the period of the putative HET planet, suggesting that its detection was spurious. We do find, on the other hand, strong evidence for a lower mass 8.4 Mearth planet, in a quasi-circular orbit and at the different period of 8.78 days. The host star has moderate magnetic activity and rotates on a 39-days period, which we confirm through modulation of both contemporaneous photometry and ch...

  3. Numerical Study of the Steady-State Subchannel Test-Case with NEPTUNE_CFD for the OECD/NRC NUPEC PSBT Benchmark

    Directory of Open Access Journals (Sweden)

    C. Baudry

    2012-01-01

    Full Text Available The multifield computational fluid dynamics (CFD code NEPTUNE_CFD is applied to carry out a numerical study of the steady-state subchannel test-case of the OECD/NRC NUPEC PWR subchannel and bundle tests (PSBTs international benchmark, focusing on the simulation of a subset of five selected experimental runs of the centered subchannel configuration. First, using a standard choice for the physical models and a constant, predetermined bubble diameter, the calculated void fraction is compared to experimental data. Besides, the mesh sensitivity of the calculated void fraction is investigated by performing simulations of three grid levels, and the propagation of the experimental uncertainties on the input parameters of the simulations is also studied. Last, calculation results with devoted models for the bubble-size distribution are analyzed. Their impact is visible on the subcooled run, giving void fraction closer to experiments than those obtained with a fixed bubble-size. Void-fraction distribution with bubble-size models is also shown to come closer to experiment for another run with a higher equilibrium quality.

  4. How Thermal Evolution and Mass Loss Sculpt Populations of Super-Earths and Sub-Neptunes: Application to the Kepler-11 System and Beyond

    CERN Document Server

    Lopez, Eric D; Miller, Neil K

    2012-01-01

    We use models of thermal evolution and XUV-driven mass loss to explore the composition and history of low-mass low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that a H/He atmosphere on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is unlikely. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He atmospheres to XUV-driven mass loss. Importantly, we find that this flux-density threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass loss prescription. Treating the planets' co...

  5. An Overview of the Undersea Network Engineering from NEPTUNE Canada%加拿大“海王星”海底观测网络系统

    Institute of Scientific and Technical Information of China (English)

    李彦; Kate Moran; Beno(i)t Pirenne

    2013-01-01

    海底观测科学正朝着多元、立体、实时、长期、持续的趋势发展.加拿大“海王星”海底观测网(NEPTUNE Canada)是世界上第一个区域性海底电缆观测网络,位于加拿大西海岸20万km2的胡安·德富卡板块的北部,拥有全长800 km的主干网,5个海底观测站,自2009年12月业务运行以来为海洋学界的科学家们源源不断地提供着各种宝贵数据.首先对该系统工程的建设规模等基本构架进行简要介绍,然后从科学与机遇、关键技术、安全措施、业务运行与管理等方面阐述了该网络工程在设计、建造和运行整个过程中的几个主要关键问题,希望以此为我国海底观测工程的建设提供参考.

  6. Zodiacal Exoplanets in Time (ZEIT) III: A Neptune-sized planet orbiting a pre-main-sequence star in the Upper Scorpius OB Association

    CERN Document Server

    Mann, Andrew W; Rizzuto, Aaron C; Irwin, Jonathan; Feiden, Gregory A; Gaidos, Eric; Mace, Gregory N; Kraus, Adam L; James, David J; Ansdell, Megan; Charbonneau, David; Covey, Kevin R; Ireland, Michael J; Jaffe, Daniel T; Johnson, Marshall C; Kidder, Benjamin; Vanderburg, Andrew

    2016-01-01

    We confirm and characterize a close-in ($P_\\rm{orb}$ = 5.425 days), super-Neptune sized ($5.04^{+0.34}_{-0.37}$ Earth radii) planet transiting EPIC 205117205 (2MASS J16101473-1919095), a late-type (M3) pre-main sequence ($\\simeq$11 Myr-old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet's properties and constrain the average stellar density. We determine EPIC 205117205's bolometric flux and effective temperature from moderate resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise (6-7%) radius and mass for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscop...

  7. A first assessment of the NEPTUNE{sub C}FD code: Instabilities in a stratified flow comparison between the VOF method and a two-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Yann [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium)], E-mail: yann.bartosiewicz@uclouvain.be; Lavieville, Jerome [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium); Seynhaeve, Jean-Marie [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium)], E-mail: jm.seynhaeve@uclouvain.be

    2008-04-15

    This paper presents some results concerning a first benchmark for the new European research code for thermal hydraulics computations: NEPTUNE{sub C}FD. This benchmark relies on the Thorpe experiment to model the occurrence of instabilities in a stratified two-phase flow. The first part of this work is to create a numerical trial case with the VOF approach. The results, in terms of time of onset of the instability, critical wave-number or wave phase speed, are rather good compared to linear inviscid theory and experimental data. Additional numerical tests showed the effect of the surface tension and density ratio on the growing dynamics of the instability and the structure of the waves. In the second part, a code to code (VOF/multi-field) comparison is performed for a case with zero surface tension. The results showed some discrepancies in terms of wave amplitudes, growing rates and a time shifting in the global dynamics. Afterward, two surface tension formulations are proposed in the multi-field approach. Both formulations provided similar results. The time for onset of the instability, the most amplified wave-number and its amplitude were in rather good agreement with the linear analysis and VOF results. However, the time-shifted dynamics was still observed.

  8. On the dynamics of multiple systems of hot super-Earths and Neptunes: Tidal circularization, resonance and the HD 40307 system

    CERN Document Server

    Papaloizou, John C B

    2010-01-01

    [Abridged] We consider the dynamics of a system of hot super-Earths or Neptunes such as HD 40307. We show that, as tidal interaction with the central star leads to small eccentricities, the planets in this system could be undergoing resonant coupling even though the period ratios depart significantly from very precise commensurability. In a three planet system, this is indicated by the fact that resonant angles librate or are associated with long term changes to the orbital elements. We propose that the planets in HD 40307 were in a strict Laplace resonance while they migrated through the disc. After entering the disc inner cavity, tidal interaction would cause the period ratios to increase from two but with the inner pair deviating less than the outer pair, counter to what occurs in HD 40307. However, the relationship between these pairs that occurs in HD 40307 might be produced if the resonance is impulsively modified by an event like a close encounter shortly after the planetary system decouples from the d...

  9. From Dense Hot Jupiter to Low Density Neptune: The Discovery of WASP-127b, WASP-136b and WASP-138b

    CERN Document Server

    Lam, K W F; Brown, D J A; Anderson, D R; Delrez, L; Gillon, M; Hébrard, G; Lendl, M; Mancini, L; Southworth, J; Smalley, B; Triaud, A H M; Turner, O D; Hay, K L; Armstrong, D J; Barros, S C C; Bonomo, A S; Bouchy, F; Boumis, P; Cameron, A Collier; Doyle, A P; Hellier, C; Henning, T; Jehin, E; King, G; Kirk, J; Louden, T; Maxted, P F L; McCormac, J J; Osborn, H P; Palle, E; Pepe, F; Pollacco, D; Prieto-Arranz, J; Queloz, D; Rey, J; Ségransan, D; Udry, S; Walker, S; West, R G; Wheatley, P J

    2016-01-01

    We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered by the WASP project. It orbits a bright host star (V = 10.16) of spectral type G5 with a period of 4.17 days.WASP-127b is a low density planet which has an extended atmosphere with a scale height of 2500+/-400 km, making it an ideal candidate for transmission spectroscopy. WASP-136b and WASP-138b are both hot Jupiters with mass and radii of 1.51 Mj and 1.38 Rj, and 1.22 Mj and 1.09 Rj, respectively. WASP-136b is in a 5.22-day orbit around an F9 subgiant star with a mass of 1.41 Msun and a radius of 2.21 Rsun. The discovery of WASP-136b could help constraint the characteristics of the giant planet population around evolved stars. WASP-138b orbits an F7 star with a period of 3.63 days. Its radius agrees with theoretical values from standard models, suggesting the presence of a heavy element core with a mass of 1...

  10. Setting parameters in the cold chain

    Directory of Open Access Journals (Sweden)

    Victoria Rodríguez

    2011-12-01

    Full Text Available Breaks in the cold chain are important economic losses in food and pharmaceutical companies. Many of the failures in the cold chain are due to improper adjustment of equipment parameters such as setting the parameters for theoretical conditions, without a corresponding check in normal operation. The companies that transport refrigeratedproducts must be able to adjust the parameters of the equipment in an easy and quick to adapt their functioning to changing environmental conditions. This article presents the results of a study carried out with a food distribution company. The main objective of the study is to verify the effectiveness of Six Sigma as a methodological toolto adjust the equipment in the cold chain. The second objective is more speciÞ c and is to study the impact of: reducing the volume of storage in the truck, the initial temperature of the storage areain the truck and the frequency of defrost in the transport of refrigerated products.

  11. Finishing of the cold mass assembly

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 1 Technicians are putting in order the instrumentation wires. The prototype magnets were equipped with numerous sensors to monitor key parameters during the performance tests at cold conditions. Photo 2 The cold mass assembly is resting on special supports in order to allow the finishing operations. Technicians are putting in order the instrumentation wires. The prototype magnets were equipped with numerous sensors to monitor key parameters during the performance tests at cold conditions. Photo 3 View of the lyre-side end of the active part assembly. The extremity of the shrinking cylinder has been bevelled in view of welding the end cover. Photo 4 General view of the finishing station showing the special supporting structures (blue and yellow structures) needed for the geometric measurements and for the alignment operations. One can also see the light building surrounding the finishing station, which purpose is to isolate the laser measuring machines from disturbances. Photo 5 The extremity of the shri...

  12. Mechanisms for convection triggering by cold pools

    CERN Document Server

    Torri, Giuseppe; Tian, Yang

    2015-01-01

    Cold pools are fundamental ingredients of deep convection. They contribute to organizing the sub-cloud layer and are considered key elements in triggering convective cells. It was long known that this could happen mechanically, through lifting by the cold pools' fronts. More recently, it has been suggested that convection could also be triggered thermodynamically, by accumulation of moisture around the edges of cold pools. A method based on Lagrangian tracking is here proposed to disentangle the signatures of both forcings and quantify their importance in a given environment. Results from a simulation of radiative-convective equilibrium over the ocean show that parcels reach their level of free convection through a combination of both forcings, each being dominant at different stages of the ascent. Mechanical forcing is an important player in lifting parcels from the surface, whereas thermodynamic forcing reduces the inhibition encountered by parcels before they reach their level of free convection.

  13. Normal modes of confined cold ionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Dubin, D.H. [Univ. of California, San Diego, CA (United States)

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  14. COLD-PCR: Applications and Advantages.

    Science.gov (United States)

    Zuo, Zhuang; Jabbar, Kausar J

    2016-01-01

    Co-amplification at lower denaturation temperature-based polymerase chain reaction (COLD-PCR) is a single-step amplification method that results in the enhancement of both known and unknown minority alleles during PCR, irrespective of mutation type and position. This method is based on exploitation of the critical temperature, Tc, at which mutation-containing DNA is preferentially melted over wild type. COLD-PCR can be a good strategy for mutation detection in specimens with high nonneoplastic cell content, small specimens in which neoplastic cells are difficult to micro-dissect and therefore enrich, and whenever a mutation is suspected to be present but is undetectable using conventional PCR and sequencing methods. We describe in this chapter our COLD-PCR-based pyrosequencing method for KRAS mutation detection in various clinical samples using DNA extracted from either fresh or fixed paraffin-embedded tissue specimens.

  15. Shocks and cold fronts in galaxy clusters

    CERN Document Server

    Markevitch, M L; Markevitch, Maxim; Vikhlinin, Alexey

    2007-01-01

    The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z < 0.05, the Chandra's 1" angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated "cold fronts," or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in "relaxed" clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasm...

  16. Yugoslav dissidents and the cold war

    Directory of Open Access Journals (Sweden)

    Bogdanović Mira

    2009-01-01

    Full Text Available During the cold war, Eastern Europe dissidents played a high-profile role as an instrument of anti-communist ideological subversion. In contrast, Yugoslav dissidents were relegated to a marginal status due to the extraordinary position of Yugoslavia between two opposing blocs. The expected explosive impact on the Soviet satellites of Yugoslavia's defection from the Soviet orbit in 1948, also turned Tito into an internationally famous dissident. After Tito turned his back on the Soviet Union, Yugoslav dissidents were practically of no interest to Western policy makers. They did not wish to antagonize Tito, because he was much more useful than a handful of dissidents who potentially could interfere with his role in the cold war game. The paper focuses on the functions of dissidents in the cold war rather than their self-image, their noble and sincere motives notwithstanding.

  17. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  18. Cold fission as heavy ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.

    1987-11-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.

  19. The quality of cold smoked salmon

    DEFF Research Database (Denmark)

    Løje, Hanne

    2007-01-01

    The objective of this Ph. D. thesis was to study the liquid holding capacity/liquid loss of raw and smoked salmonids as affected by raw material and chill storage of the cold smoked product. The liquid holding capacity is an important quality parameter for cold smoked salmon. This study has shown...... the water fraction remained at a constant level. The decrease in the liquid holding capacity during chill storage of the smoked product was related to changes in the water distribution. Three water pools were found in raw and smoked salmon samples. An exchange of water from pool II to pool I was seen during...... that the liquid holding capacity in raw and cold smoked salmon is influenced by several factors. The size of the fish affected the liquid holding capacity as large fish had lower liquid holding capacity than smaller fish. The salt content influenced the liquid holding capacity in smoked fish as it was found...

  20. [Technical problems associated with the cold chain].

    Science.gov (United States)

    Gac, A

    2001-01-01

    After having covered the current status of the cold chain in France, the author highlights the economic impact of refrigerated storage and processing involving refrigeration. Lose reduction is such that the return on investments is estimated as being roughly 3 years. In years to come, progress will be achieved in the field of plant design. Some information on design trends is provided. Operators in general, and carriers in particular, are faced with an increasingly complex regulatory framework leading to a competition imbalance. The current cold chain developmental trend is characterized by complex computer management of logistics: the flow of goods is modulated in order to meet the production to the distribution needs as cost effectively as possible. This logistic strategy enables management of downstream to upstream interfaces involving various operators. Finally, the author indicates the main causes of non-compliance with the cold chain, generally at retail and consumer levels.

  1. A novel behavioral assay for measuring cold sensation in mice.

    Directory of Open Access Journals (Sweden)

    Daniel S Brenner

    Full Text Available Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  2. [Cold-induced urticaria and angioedema. Classification, diagnosis and therapy].

    Science.gov (United States)

    Krause, K; Degener, F; Altrichter, S; Ardelean, E; Kalogeromitros, D; Magerl, M; Metz, M; Siebenhaar, F; Weller, K; Maurer, M

    2010-09-01

    The onset of wheals and/or angioedema following the exposure to cold may be associated with a number of different diseases. Most frequently this occurs in cold contact urticaria, a type of physical urticaria, which is characterized by a positive cold stimulation test. The clinical symptoms are based on cold-dependent mast cell activation with subsequent release of proinflammatory mediators. In cases of negative or atypical reaction to cold stimulation testing rare acquired atypical or familiar cold urticaria forms may be suspected. Strict avoidance of cold should be recommended as far as possible. As the underlying causes of cold contact urticaria are widely unknown, the symptomatic use of non-sedating antihistamines is the treatment of first choice. The very rare familiar cold auto-inflammatory syndrome (FCAS) is based on CIAS1/NLRP3 mutations and may be treated effectively by neutralization of pathogenic interleukin 1beta.

  3. Cold-induced thermoregulation and biological aging.

    Science.gov (United States)

    Florez-Duquet, M; McDonald, R B

    1998-04-01

    Aging is associated with diminished cold-induced thermoregulation (CIT). The mechanisms accounting for this phenomenon have yet to be clearly elucidated but most likely reflect a combination of increased heat loss and decreased metabolic heat production. The inability of the aged subject to reduce heat loss during cold exposure is associated with diminished reactive tone of the cutaneous vasculature and, to a lesser degree, alterations in the insulative properties of body fat. Cold-induced metabolic heat production via skeletal muscle shivering thermogenesis and brown adipose tissue nonshivering thermogenesis appears to decline with age. Few investigations have directly linked diminished skeletal muscle shivering thermogenesis with the age-related reduction in cold-induced thermoregulatory capacity. Rather, age-related declines in skeletal muscle mass and metabolic activity are cited as evidence for decreased heat production via shivering. Reduced mass, GDP binding to brown fat mitochondria, and uncoupling protein (UCP) levels are cited as evidence for attenuated brown adipose tissue cold-induced nonshivering thermogenic capacity during aging. The age-related reduction in brown fat nonshivering thermogenic capacity most likely reflects altered cellular signal transduction rather than changes in neural and hormonal signaling. The discussion in this review focuses on how alterations in CIT during the life span may offer insight into possible mechanisms of biological aging. Although the preponderance of evidence presented here demonstrates that CIT declines with chronological time, the mechanism reflecting this attenuated function remains to be elucidated. The inability to draw definitive conclusions regarding biological aging and CIT reflects the lack of a clear definition of aging. It is unlikely that the mechanisms accounting for the decline in cold-induced thermoregulation during aging will be determined until biological aging is more precisely defined.

  4. Stationary Light Pulses in Cold Atomic Media

    CERN Document Server

    Liao, Wen-Te; Peters, Thorsten; Chou, Hung-Chih; Wang, Jian-Siung; Kuan, Pei-Chen; Yu, Ite A

    2008-01-01

    Stationary light pulses (SLPs), i.e., light pulses without motion, are formed via the retrieval of stored probe pulses with two counter-propagating coupling fields. We show that there exist non-negligible hybrid Raman excitations in media of cold atoms that prohibit the SLP formation. We experimentally demonstrate a method to suppress these Raman excitations and realize SLPs in laser-cooled atoms. Our work opens the way to SLP studies in cold as well as in stationary atoms and provides a new avenue to low-light-level nonlinear optics.

  5. Cold fusion reactors and new modern physics

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the cause of science and technology progress of mankind to contribute

  6. Application of Heat Pipes in Cold Region

    Science.gov (United States)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  7. Energy Wastage Estimation of a Cold Storage

    Directory of Open Access Journals (Sweden)

    Dr. N. Mukhopadhyay

    2015-12-01

    Full Text Available Energy consumption of a cold storage was measured for different storage temperatures. Suction temperature and pressure temperature of the compressor and working time of the compressor were determined to reach evaporator setup temperatures. An axial fan located back of the evaporator was used to distribute the cooled air into the cold store. An electrical heater was used to defrost. The compressor suction temperature of ammonia vapour variedbetween273K–271Kand 305K–308K respectively. Compressor suction pressure(p1=3.5 Kg/cm 2 and discharge pressure (p2=10.5Kg/cm 2

  8. Cold Flow Properties of Fatty Esters

    Directory of Open Access Journals (Sweden)

    Andrea Kleinová

    2007-09-01

    Full Text Available The article is devoted to the study of cold fl ow properties of neat esters of branched chain alcohols with fatty acids and blends of these esters with fossil diesel fuel. According to the determined CFPP values, the influence of alcohol branching on the fuel filterability is negligible and was detected only in the case of 2-ethyl hexanol. Fossil fuel blending with fatty esters up to 10 % vol. does not substantially change the cold flow properties of fossil fuel. DSC cooling scan parameters should be employed to predict CFPP of blended diesel fuel.

  9. Imaging Cold Molecules on a Chip

    CERN Document Server

    Marx, S; Abel, M J; Zehentbauer, T; Meijer, G; Santambrogio, G

    2013-01-01

    We present the integrated imaging of cold molecules in a microchip environment. The on-chip de- tection is based on REMPI, which is quantum-state-selective and generally applicable. We demon- strate and characterize time-resolved spatial imaging and subsequently use it to analyze the effect of a phase-space manipulation sequence aimed at compressing the velocity distribution of a molec- ular ensemble with a view to future high-resolution spectroscopic studies. The realization of such on-chip measurements adds the final fundamental component to the molecule chip, offering a new and promising route for investigating cold molecules.

  10. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.

    Science.gov (United States)

    Cui, Feng; Wang, Hongsheng; Zhang, Hanying; Kang, Le

    2014-10-01

    Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments.

  11. ENSO's far reaching connection to Indian cold waves.

    Science.gov (United States)

    Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio

    2016-11-23

    During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.

  12. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  13. Arctic Cold Weather Medicine and Accidental Hypothermia

    Science.gov (United States)

    1990-03-01

    ZIP Code) Tb . ADDRESS (City. State, and ZIP Code) Panama City, Ft 32407-5001 8a. NDJE OF FUNDING/SPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENT...patient not being that cold. h. Abdomen/ Urogenital . With the intense shivering and increased muscle tone of mild hypothermia, it is very difficult to

  14. Could spectator electrons legalize cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, L. (Jadavpur Univ., Calcutta (India). Dept. of Physics)

    1990-12-01

    In this paper the possibility of spectator electrons driving cold d-d fusion in condensed matter to an observation threshold is considered, along with the consequences on the branching ratio of the exit channels. The intrinsic dominance of the t-p channel due to the increased phase space is demonstrated.

  15. Educational Exchange as a Cold War Weapon

    DEFF Research Database (Denmark)

    Rasmussen, Anders Bo

    2014-01-01

    American President Harry S. Truman called the Cold War a "struggle for the minds of men," and assigned journalists an important role in the conflict. This study finds that the U.S. Depeartment of State, via the American Embassy in Copenhagen, consciously attempted to shape Danish journalits' view...

  16. A Steampunk History of the Cold War

    National Research Council Canada - National Science Library

    JEFFREY LEWIS

    2013-01-01

    ... embarking on a massive arms buildup. His model implies an alternate history of the Cold War that could not be stranger if it were steampunk. Sechser and Fuhrmann, for example, wonder about Kroenig's data set, which suggests U.S. nuclear superiority enabled the United States to ferry 545 Belgian paratroopers into Congo over Soviet objections in 1964. I, too...

  17. Flange Curling in Cold Formed Profiles

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Ramonas, Gediminas

    2012-01-01

    The non-linear flange curling phenomenon in cold formed profiles is the tendency of slender flanges to deform towards the neutral axis for increasing flexural curvature. Based on Braziers work, Winter proposed a simple engineering formula for determination of the local flange deformation towards...

  18. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  19. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  20. Confronting Common Folklore: Catching a Cold

    Science.gov (United States)

    Keeley, Page

    2012-01-01

    Almost every child has experienced the sniffly, stuffy, and achy congestion of the common cold. In addition, many have encountered the "old wives tales" that forge a link between personal actions and coming down with this common respiratory infection. Much of this health folklore has been passed down from generation to generation (e.g., getting a…