WorldWideScience

Sample records for off-resonant raman transitions

  1. Coherent control through near-resonant Raman transitions

    International Nuclear Information System (INIS)

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-01-01

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li 2 by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li 2 . The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet

  2. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    International Nuclear Information System (INIS)

    Vudyasetu, Praveen K.; Howell, John C.; Camacho, Ryan M.

    2010-01-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  3. Negative refraction using Raman transitions and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, D. E.; Yavuz, D. D. [Department of Physics, 1150 University Avenue, University of Wisconsin at Madison, Madison, Wisconsin 53706 (United States)

    2011-11-15

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  4. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  5. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  6. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  7. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  8. Polarized and resonant Raman spectroscopy on single InAs nanowires

    Science.gov (United States)

    Möller, M.; de Lima, M. M., Jr.; Cantarero, A.; Dacal, L. C. O.; Madureira, J. R.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-08-01

    We report polarized Raman scattering and resonant Raman scattering studies on single InAs nanowires. Polarized Raman experiments show that the highest scattering intensity is obtained when both the incident and analyzed light polarizations are perpendicular to the nanowire axis. InAs wurtzite optical modes are observed. The obtained wurtzite modes are consistent with the selection rules and also with the results of calculations using an extended rigid-ion model. Additional resonant Raman scattering experiments reveal a redshifted E1 transition for InAs nanowires compared to the bulk zinc-blende InAs transition due to the dominance of the wurtzite phase in the nanowires. Ab initio calculations of the electronic band structure for wurtzite and zinc-blende InAs phases corroborate the observed values for the E1 transitions.

  9. Transition from the radiationless resonant Raman scattering to the normal Auger decay in a charge transfer system

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2006-01-01

    The transition from the radiationless resonant Raman scattering to the normal Auger decay in resonant Auger-electron spectroscopy (RAES) spectra of charge transfer (CT) systems is discussed by treating the relaxation and the core-hole decay of the excited core-hole state on the same footing by a many-body theory. When the resonantly excited electron remains at the excited atomic site during the core-hole decay, the RAES spectrum shows the characteristic feature of the resonant Auger-Raman effect, whereas when the excited electron has been transferred from the atomic site before the core-hole decays, the RAES spectrum shows the normal Auger decay. The present theory supports the interpretation of the variation with photon energy of the intensity ratio of the latter spectrum to the former one in the RAES spectrum by the Ar 2p → 4s resonance of Ar atoms adsorbed on Ru(0 0 1) surface reported by Keller et al. [C. Keller, M. Stichler, G. Comelli, F. Esch, S. Lizzit, D. Menzel, W. Wurth, Phys. Rev. B 57 (1998) 11951]. The transition from the radiationless resonant Raman scattering to the normal Auger decay in the RAES spectrum of CuO reported by Finazzi et al. [M. Finazzi, G. Ghiringhell, O. Tjernberg, Ph. Ohresser, N.B. Brookes, Phys. Rev. B 61 (2000) 4629] is discussed in terms of the relaxation of the resonantly excited core-hole state to the core-electron ionized main-line state by the hole-particle excitations. The merging of the resonant Raman-Auger-electron kinetic energy into the normal one about 2 eV above the absorption maximum in Cu 2 O reported by Finazzi et al. [M. Finazzi, G. Ghiringhell, O. Tjernberg, Ph. Ohresser, N.B. Brookes, Phys. Rev. B 61 (2000) 4629] is explained in terms of the change in the characteristics of the screening electron in the two-hole final state. The Ti L 23 -M 23 V RAES spectra of TiO 2 and TiO 2-x are also analyzed

  10. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  11. Resonant Raman spectroscopy of PAH-Os self-assembled multilayers

    International Nuclear Information System (INIS)

    Tognalli, N.; Fainstein, A.; Bonazzola, C.; Calvo, E.

    2004-01-01

    We present a resonant Raman scattering study of (PAH-Os/PVS) n and (PAH-Os/GOx) m self-assembled multilayers (n=1-11 and m=1-3). These Os polymer multilayers can be used in electrodes as efficient molecular wires for biomolecular recognition. The Raman intensity dependence on the number of self-assembly cycles provides information on the deposition process. The spectra are identical to that observed for PAH-Os in aqueous solution, indicating that the PAH-Os metal complex structure is conserved in the multilayers. We observe at ∼500 nm incoming and outgoing Raman resonances of osmium and bipyridine vibrational modes. These resonances are associated to the metal-to-ligand charge transfer (MLCT) transition. We study the evolution of these Raman modes as a function of the Os oxidation state during in situ electrochemistry. During the oxidation process, Os(II)→Os(III), the Raman resonance related to the MLCT disappears and the bipyridine related modes harden by ∼10 cm-1. These results are correlated with optical transmission measurements which show the disappearance of the visible region absorption when the Os complex is oxidized. We also find partial quenching of the Raman mode intensity after in situ voltamperometric cycles which demonstrates the existence of photo-electro-chemical processes

  12. Resonant stimulation of Raman scattering from single-crystal thiophene/phenylene co-oligomers

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Marutani, Yusuke; Matsuoka, Naoki; Hiramatsu, Toru; Ishizumi, Atsushi; Sasaki, Fumio; Hotta, Shu

    2013-01-01

    Amplified Raman scattering was observed from single crystals of thiophene/phenylene co-oligomers (TPCOs). Under ns-pulsed excitation, the TPCO crystals exhibited amplified spontaneous emission (ASE) at resonant absorption wavelengths. With increasing excitation wavelength to the 0-0 absorption edge, the stimulated resonant Raman peaks appeared both in the 0-1 and 0-2 ASE band regions. When the excitation wavelength coincided with the 0-1 ASE band energy, the Raman peaks selectively appeared in the 0-2 ASE band. Such unusual enhancement of the 0-2 Raman scattering was ascribed to resonant stimulation via vibronic coupling with electronic transitions in the uniaxially oriented TPCO molecules

  13. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  14. Resonance electronic Raman scattering in rare earth crystals

    International Nuclear Information System (INIS)

    Williams, G.M.

    1988-01-01

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce 3+ (4f 1 ) in single crystals of LuPO 4 and Er 3+ (4f 11 ) in single crystals of ErPO 4 . 134 refs., 92 figs., 33 tabs

  15. Intricate Resonant Raman Response in Anisotropic ReS2.

    Science.gov (United States)

    McCreary, Amber; Simpson, Jeffrey R; Wang, Yuanxi; Rhodes, Daniel; Fujisawa, Kazunori; Balicas, Luis; Dubey, Madan; Crespi, Vincent H; Terrones, Mauricio; Hight Walker, Angela R

    2017-10-11

    The strong in-plane anisotropy of rhenium disulfide (ReS 2 ) offers an additional physical parameter that can be tuned for advanced applications such as logic circuits, thin-film polarizers, and polarization-sensitive photodetectors. ReS 2 also presents advantages for optoelectronics, as it is both a direct-gap semiconductor for few-layer thicknesses (unlike MoS 2 or WS 2 ) and stable in air (unlike black phosphorus). Raman spectroscopy is one of the most powerful characterization techniques to nondestructively and sensitively probe the fundamental photophysics of a 2D material. Here, we perform a thorough study of the resonant Raman response of the 18 first-order phonons in ReS 2 at various layer thicknesses and crystal orientations. Remarkably, we discover that, as opposed to a general increase in intensity of all of the Raman modes at excitonic transitions, each of the 18 modes behave differently relative to each other as a function of laser excitation, layer thickness, and orientation in a manner that highlights the importance of electron-phonon coupling in ReS 2 . In addition, we correct an unrecognized error in the calculation of the optical interference enhancement of the Raman signal of transition metal dichalcogenides on SiO 2 /Si substrates that has propagated through various reports. For ReS 2 , this correction is critical to properly assessing the resonant Raman behavior. We also implemented a perturbation approach to calculate frequency-dependent Raman intensities based on first-principles and demonstrate that, despite the neglect of excitonic effects, useful trends in the Raman intensities of monolayer and bulk ReS 2 at different laser energies can be accurately captured. Finally, the phonon dispersion calculated from first-principles is used to address the possible origins of unexplained peaks observed in the Raman spectra, such as infrared-active modes, defects, and second-order processes.

  16. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III

    International Nuclear Information System (INIS)

    Shore, B.W.; Sacks, R.; Karr, T.

    1987-01-01

    This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator

  17. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  18. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  19. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  20. Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline

    International Nuclear Information System (INIS)

    Jiang, Li-lin; Liu, Wei-long; Song, Yun-fei; He, Xing; Wang, Yang; Wang, Chang; Wu, Hong-lin; Yang, Fang; Yang, Yan-qiang

    2014-01-01

    Highlights: • Mechanism of PIET reaction process for the Rh101 + /DEA system is investigated. • The significant geometrical changes of the charge–transfer complex are explained. • Forward Electron transfer from DEA to Rh101 +∗ occurs with lifetime of 425–560 fs. • Backward electron transfer occurs with a time constant of 46.16–51.40 ps. • Intramolecular vibrational relaxation occurs with lifetime of 2.77–5.39 ps. - Abstract: The ultrafast photoinduced intermolecular electron transfer (PIET) reaction of Rhodamine 101 (Rh101 + ) in N,N-diethylaniline (DEA) was investigated using off-resonance Raman, femtosecond time-resolved multiplex transient grating (TG) and transient absorption (TA) spectroscopies. The Raman spectra indicate that the C=C stretching vibration of the chromophore aromatic ring is more sensitive to ET compared with the C-C stretching mode. The ultrafast photoinduced intermolecular forward ET (FET) from DEA to Rh101 +∗ occurs on a time scale of τ FET = 425–560 fs. The backward ET (BET) occurs in the inverted region with a time constant of τ BET = 46.16–51.40 ps. The intramolecular vibrational relaxation (IVR) process occurs on the excited state potential energy surface with the time constant of τ IVR = 2.77–5.39 ps

  1. Preventing Raman Lasing in High-Q WGM Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  2. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.

    Science.gov (United States)

    Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert

    2018-02-01

    This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stimulated resonance Raman spectroscopy: An alternative to laser-rf double resonance for ion spectroscopy

    International Nuclear Information System (INIS)

    Young, L.; Dinneen, T.; Mansour, N.B.

    1988-01-01

    Stimulated resonance Raman spectroscopy is presented as an alternative to laser-rf double resonance for obtaining high-precision measurements in ion beams. By use of a single-phase modulated laser beam to derive the two required fields, the laser--ion-beam alignment is significantly simplified. In addition, this method is especially useful in the low-frequency regime where the laser-rf double-resonance method encounters difficulties due to modifications of the ion-beam velocity distribution. These modifications, which result from interaction with the traveling rf wave used to induce magnetic dipole transitions, are observed and quantitatively modeled

  4. Resonance effects in Raman scattering of quantum dots formed by the Langmuir-Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A G; Sveshnikova, L L; Duda, T A [Institute of Semiconductor Physics, Lavrentjev av.13, 630090, Novosibirsk (Russian Federation); Surovtsev, N V; Adichtchev, S V [Institute of Automation and Electrometry, Koptyug av.1, 630090, Novosibirsk (Russian Federation); Azhniuk, Yu M [Institute of Electron Physics, Universytetska Str. 21, 88017, Uzhhorod (Ukraine); Himcinschi, C [Institut fuer Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596, Freiberg (Germany); Kehr, M; Zahn, D R T, E-mail: milekhin@thermo.isp.nsc.r [Semiconductor Physics, Chemnitz University of Technology, Chemnitz (Germany)

    2010-09-01

    The enhancement of Raman scattering by optical phonon modes in quantum dots was achieved in resonant and surface-enhanced Raman scattering experiments by approaching the laser energy to the energy of either the interband transitions or the localized surface plasmons in silver nanoclusters deposited onto the nanostructures. Resonant Raman scattering by TO, LO, and SO phonons as well as their overtones was observed for PbS, ZnS, and ZnO quantum dots while enhancement for LO and SO modes in CdS quantum dots with a factor of about 700 was measured in surface enhanced Raman scattering experiments. Multiple phonon Raman scattering observed up to 5th and 7th order for CdS and ZnO, respectively, confirms the high crystalline quality of the grown QDs.

  5. Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Li-lin [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical and Electronic Engineering, Hezhou University, Hezhou 542800 (China); Liu, Wei-long; Song, Yun-fei; He, Xing; Wang, Yang; Wang, Chang; Wu, Hong-lin [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Yang, Fang [National Key Laboratory of Science and Technology on Tunable Laser, Department of Optoelectronics Information Science Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang, Yan-qiang, E-mail: yqyang@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China)

    2014-01-31

    Highlights: • Mechanism of PIET reaction process for the Rh101{sup +}/DEA system is investigated. • The significant geometrical changes of the charge–transfer complex are explained. • Forward Electron transfer from DEA to Rh101{sup +∗} occurs with lifetime of 425–560 fs. • Backward electron transfer occurs with a time constant of 46.16–51.40 ps. • Intramolecular vibrational relaxation occurs with lifetime of 2.77–5.39 ps. - Abstract: The ultrafast photoinduced intermolecular electron transfer (PIET) reaction of Rhodamine 101 (Rh101{sup +}) in N,N-diethylaniline (DEA) was investigated using off-resonance Raman, femtosecond time-resolved multiplex transient grating (TG) and transient absorption (TA) spectroscopies. The Raman spectra indicate that the C=C stretching vibration of the chromophore aromatic ring is more sensitive to ET compared with the C-C stretching mode. The ultrafast photoinduced intermolecular forward ET (FET) from DEA to Rh101{sup +∗} occurs on a time scale of τ{sub FET} = 425–560 fs. The backward ET (BET) occurs in the inverted region with a time constant of τ{sub BET} = 46.16–51.40 ps. The intramolecular vibrational relaxation (IVR) process occurs on the excited state potential energy surface with the time constant of τ{sub IVR} = 2.77–5.39 ps.

  6. Resonant A1 phonon and four-magnon Raman scattering in hexagonal HoMnO3 thin film

    International Nuclear Information System (INIS)

    Chen Xiangbai; Thi Minh Hien, Nguyen; Yang, In-Sang; Lee, D; Jang, S-Y; Noh, T W

    2010-01-01

    We present the results of resonant Raman scattering of the A 1 phonon at 680 cm -1 and of the four-magnon at 760 cm -1 in hexagonal HoMnO 3 thin film. We find that the A 1 phonon at 680 cm -1 shows a strong resonance effect near the on-site Mn d-d transition at ∼1.7 eV. Our Raman results show that the four-magnon scattering can be selectively excited with red lasers of 647 nm (1.92 eV) and 671 nm (1.85 eV), but are not detectable with green lasers of 532 nm (2.33 eV), indicating that the four-magnon scattering in hexagonal HoMnO 3 has an extremely strong resonance effect also near the on-site Mn d-d transition at ∼1.7 eV. Furthermore, through the analyses of our study of the resonant four-magnon Raman scattering and earlier studies of the resonant two-magnon Raman scattering, we propose a simple general model for all resonant magnon scattering. Our simple general model predicts a simple method for the investigation of the spin-flipping/spin-wave in magnetic materials, which would have significant impacts on the applications of spintronic devices.

  7. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  8. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  9. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  10. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  11. Raman scattering of light off a superconductor

    International Nuclear Information System (INIS)

    Cuden, C.B.

    1976-01-01

    Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11

  12. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  13. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  14. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  15. Off-resonant transitions in the collective dynamics of multi-level atomic ensembles

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Mølmer, Klaus

    2013-01-01

    We study the contributions of off-resonant transitions to the dynamics of a system of N multi-level atoms sharing one excitation and interacting with the quantized vector electromagnetic field. The rotating wave approximation significantly simplifies the derivation of the equations of motion...... describing the collective atomic dynamics, but it leads to an incorrect expression for the dispersive part of the atom–atom interaction terms. For the case of two-level atoms and a scalar electromagnetic field, it turns out that the atom–atom interaction can be recovered correctly if integrals over...... the photon mode frequencies are extended to incorporate negative values. We explicitly derive the atom–atom interaction for multi-level atoms, coupled to the full vector electromagnetic field, and we recover also in this general case the validity of the results obtained by the extension to negative...

  16. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  17. Triplet State Resonance Raman Spectrum of all-trans-diphenylbutadiene

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Grossman, W.E.L.; Killough, P.M

    1984-01-01

    The resonance Raman spectrum of all-trans-diphenylbutadiene (DPB) in its ground state and the resonance Raman spectrum (RRS) of DPB in its short-lived electronically excited triplet state are reported. Transient spectra were obtained by a pump-probe technique using two pulsed lasers...

  18. Resonance Raman spectra of phthalocyanine monolayers on different supports. A normal mode analysis of zinc phthalocyanine by means of the MNDO method

    NARCIS (Netherlands)

    Palys, Barbara J.; van den Ham, Dirk M.W.; van den Ham, D.M.W.; Briels, Willem J.; Feil, D.; Feil, Dirk

    1995-01-01

    Resonance Raman spectra of monolayers of transition metal phthalocyanines reveal specific interaction with the support. To elucidate its mechanism, Raman spectra of zinc phthalocyanine monolayers were studied. The analysis was based largely on the results of MNDO calculations. Calculated wavenumbers

  19. Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines

    International Nuclear Information System (INIS)

    Gotoshia, Sergo V; Gotoshia, Lamara V

    2008-01-01

    Natural minerals α-HgS from various mines have been studied by laser Raman spectroscopy and resonance Raman spectroscopy. The crystals differ from each other in the content of selenium impurity, included in samples from some mines. Based on the Raman spectra and the factor-group analysis the classification of the first order phonons and then the comparison of the results with the results from other works were carried out. The Raman spectra analysis of minerals from various mines show the selenium impurity gap vibration at 203 cm -1 and 226 cm -1 frequencies, respectively. On the basis of statistical measurements of the Raman spectra one can conclude that impurity frequencies of α-HgS may be generally used for the identification of the mine. Resonance Raman scattering for pure minerals has been studied by a dye laser. Phonon resonance in the indirect semiconductor α-HgS is found to be far more intense than the indirect resonance detected until now in various semiconductors in the proximity of the first indirect band E g , for instance, in GaP. In our opinion, this may be conditioned by cinnabar band structure peculiarities. Low resonance has also been fixed in 'dirty' minerals at the spectral band frequency of 203 cm -1 characterizing gap vibration of isomorphic impurity Se in cinnabar

  20. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  1. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  2. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  3. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  4. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  5. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  6. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  7. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  8. UV Resonance Raman Elucidation of the Terminal and Internal Peptide Bond Conformations of Crystalline and Solution Oligoglycines.

    Science.gov (United States)

    Bykov, Sergei V; Asher, Sanford A

    2010-11-30

    Spectroscopic investigations of macromolecules generally attempt to interpret the measured spectra in terms of the summed contributions of the different molecular fragments. This is the basis of the local mode approximation in vibrational spectroscopy. In the case of resonance Raman spectroscopy independent contributions of molecular fragments require both a local mode-like behavior and the uncoupled electronic transitions. Here we show that the deep UV resonance Raman spectra of aqueous solution phase oligoglycines show independent peptide bond molecular fragment contributions indicating that peptide bonds electronic transitions and vibrational modes are uncoupled. We utilize this result to separately determine the conformational distributions of the internal and penultimate peptide bonds of oligoglycines. Our data indicate that in aqueous solution the oligoglycine terminal residues populate conformations similar to those found in crystals (3(1)-helices and β-strands), but with a broader distribution, while the internal peptide bond conformations are centered around the 3(1)-helix Ramachandran angles.

  9. Elucidation of reactive wavepackets by two-dimensional resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhenkun; Molesky, Brian P.; Cheshire, Thomas P.; Moran, Andrew M., E-mail: ammoran@email.unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-09-28

    Traditional second-order kinetic theories fail to describe sub-picosecond photochemical reactions when solvation and vibrational dephasing undermine the assumption of equilibrium initial conditions. Four-wave mixing spectroscopies may reveal insights into such non-equilibrium processes but are limited by the single “population time” available in these types of experiments. Here, we use two-dimensional resonance Raman (2DRR) spectroscopy to expose correlations between coherent nuclear motions of the reactant and product in the photodissociation reaction of triiodide. It is shown that the transition of a nuclear wavepacket from the reactant (triiodide) to product (diiodide) states gives rise to a unique pattern of 2DRR resonances. Peaks associated with this coherent reaction mechanism are readily assigned, because they are isolated in particular quadrants of the 2DRR spectrum. A theoretical model in which the chemical reaction is treated as a vibronic coherence transfer transition from triiodide to diiodide reproduces the patterns of 2DRR resonances detected in experiments. These signal components reveal correlation between the nonequilibrium geometry of triiodide and the vibrational coherence frequency of diiodide. The 2DRR signatures of coherent reaction mechanisms established in this work may generalize to studies of ultrafast energy and charge transfer processes.

  10. Nitric oxide concentration measurements in atmospheric pressure flames using electronic-resonance-enhanced coherent anti-Stokes Raman scattering

    Science.gov (United States)

    Chai, N.; Kulatilaka, W. D.; Naik, S. V.; Laurendeau, N. M.; Lucht, R. P.; Kuehner, J. P.; Roy, S.; Katta, V. R.; Gord, J. R.

    2007-06-01

    We report the application of electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) for measurements of nitric oxide concentration ([NO]) in three different atmospheric pressure flames. Visible pump (532 nm) and Stokes (591 nm) beams are used to probe the Q-branch of the Raman transition. A significant resonance enhancement is obtained by tuning an ultraviolet probe beam (236 nm) into resonance with specific rotational transitions in the (v’=0, v”=1) vibrational band of the A2Σ+-X2Π electronic system of NO. ERE-CARS spectra are recorded at various heights within a hydrogen-air flame producing relatively low concentrations of NO over a Hencken burner. Good agreement is obtained between NO ERE-CARS measurements and the results of flame computations using UNICORN, a two-dimensional flame code. Excellent agreement between measured and calculated NO spectra is also obtained when using a modified version of the Sandia CARSFT code for heavily sooting acetylene-air flames (φ=0.8 to φ=1.6) on the same Hencken burner. Finally, NO concentration profiles are measured using ERE-CARS in a laminar, counter-flow, non-premixed hydrogen-air flame. Spectral scans are recorded by probing the Q1 (9.5), Q1 (13.5) and Q1 (17.5) Raman transitions. The measured shape of the [NO] profile is in good agreement with that predicted using the OPPDIF code, even without correcting for collisional effects. These comparisons between [NO] measurements and predictions establish the utility of ERE-CARS for detection of NO in flames with large temperature and concentration gradients as well as in sooting environments.

  11. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    Science.gov (United States)

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  12. Photon induced resonant Raman scattering in CdS

    International Nuclear Information System (INIS)

    Muzart, J.; Lluesma, E.G.; Arguello, C.A.; Leite, R.C.C.

    1975-01-01

    A novel aspect of resonant Raman scattering is observed in CdS by means of the ratio of Stokes to anti-Stokes intensities. With increasing temperature, as the forbidden band energy approaches a value that is twice the incident photon energy, (from a Nd-Yag-laser) a large enhancement of the above ratio is observed for both the LO and the 2LO phonon Raman intensities. The results indicate a resonance with the scattered photon. Resonance is only observed for high incident photon intensities. A possible explanation for the above observations is that flooding of the crystal with photons of energy hν induces states of energy hν displaced from the electronic bands by mixing of electronic and photon states

  13. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  15. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  16. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    Science.gov (United States)

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  17. Schwinger–Keldysh canonical formalism for electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuehua, E-mail: suyh@ytu.edu.cn

    2016-03-01

    Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

  18. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  19. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    International Nuclear Information System (INIS)

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 x 10 4 . Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl 4 was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC's in other environments

  20. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  1. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  2. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    International Nuclear Information System (INIS)

    Gonchukov, S; Sukhinina, A; Bakhmutov, D; Biryukova, T; Tsvetkov, M; Bagratashvily, V

    2013-01-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm −1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva. (letter)

  3. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.; Atanassov, A.; Abrashev, M.; Goranova, E.

    2005-01-01

    Resonant Raman scattering by ion beam synthesized in silicon matrix Mg 2 Si phase is studied. The samples are prepared with the implantation of 24 Mg + ions with dose 4x10 17 cm -2 and with two different energies 40 and 60 keV into (100)Si substrates. The far infrared spectra are used as criteria for the formation of the Mg 2 Si phase. The Raman spectra are excited with different lines of Ar + laser, with energies of the lines lying in the interval from 2.40 to 2.75 eV. The resonant scattering can be investigated using these laser lines, as far as according to the Mg 2 Si band structure, there are direct gaps with energies in the same region. The energy dependences of the scattered intensities in the case of the scattering by the allowed F 2g and the forbidden LO-type modes are experimentally obtained and theoretically interpreted. On the base of the investigation energies of the interband transitions in the Mg 2 Si are determined. It is found also that the resonant Raman scattering appears to be a powerful tool for characterization of a material with inclusions in it. In the particular case it is concluded that the Mg 2 Si phase is present in the form of a surface layer in the sample, prepared with implantation energy 40 keV and as low-dimensional precipitates, embedded in the silicon matrix, in the sample, prepared with the higher implantation energy

  4. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    Science.gov (United States)

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  5. X-ray resonant Raman scattering cross sections of Mn, Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Valentinuzzi, MarIa Cecilia; Perez, Carlos

    2006-01-01

    X-ray fluorescence spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. It constitutes an important contribution to the background of the fluorescent line. The resonant Raman scattering must be taken into account in the determination of low concentration contaminants, especially when the elements have proximate atomic numbers. The values of the mass attenuation coefficients experimentally obtained when materials are analysed with monochromatic x-ray beams under resonant conditions differ from the theoretical values (between 5% and 10%). This difference is due, in part, to the resonant Raman scattering. Monochromatic synchrotron radiation was used to study the Raman effect on pure samples of Mn, Fe, Cu and Zn. Energy scans were carried out in different ranges of energy near the absorption edge of the target element. As the Raman peak has a non-symmetric shape, theoretical models for the differential cross section, convoluted with the instrument function, were used to determine the RRS cross section as a function of the incident energy

  6. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  7. Asymmetric resonance Raman excitation profiles and violation of the Condon approximation in single-wall carbon nanotubes

    Science.gov (United States)

    Doorn, Stephen; Duque, Juan; Telg, Hagen; Chen, Hang; Swan, Anna; Haroz, Erik; Kono, Junichiro; Tu, Xiaomin; Zheng, Ming

    2012-02-01

    DNA wrapping-based ion exchange chromatography and density gradient ultracentrifugation provide nanotube samples highly enriched in single chiralities. We present resonance Raman excitation profiles for the G-band of several single chirality semiconducting and metallic species. The expected incoming and outgoing resonance peaks are observed in the profiles, but contrary to long-held assumptions, the outgoing resonance is always significantly weaker than the ingoing resonance peak. This strong asymmetry in the profiles arises from a violation of the Condon approximation [1]. Results will be discussed in the context of theoretical models that suggest significant coordinate dependence in the transition dipole (non-Condon effects). The generality of the behavior across semiconducting and metallic types, nanotube family, phonon mode, and Eii will be demonstrated. [4pt] [1] J. Duque et. al., ACS Nano, 5, 5233 (2011).

  8. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  9. Resonant x-ray Raman scattering from atoms and molecules

    International Nuclear Information System (INIS)

    Cowan, P.L.

    1992-01-01

    Inelastic x-ray scattering and elastic x-ray scattering are fundamentally related processes. When the x-ray photon energy is near the ionization threshold for an inner shell, the inelastic channel is dominated by resonant x-ray Raman scattering. Studies of this emission not only illuminate the resonant scattering process in general, they also point to new opportunities for spectral studies of electronic structure using x-rays. Atoms in the form of a free gas provide an ideal target for testing the current theoretical understanding of resonant x-ray Raman scattering. In addition, x-ray scattering from molecular gases demonstrates the effect of bonding symmetry on the polarization and angular distribution of the scattered x-rays. Comparisons of experimental data with theory demonstrate both the successes and limitations of simple, single-electron interpretations of the scattering process

  10. Stand-off detection of chemicals by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu, Ming; Ray, Mark; Hang Fung, K.; Ruckman, Mark W.; Harder, David; Sedlacek, Arthur J. III

    2000-01-01

    Experimental results are reported on a mobile, stand-alone, solar-blind ultraviolet (UV) Raman lidar system for the stand-off detection and identification of liquid and solid targets at ranges of hundreds of meters. The lidar is a coaxial system capable of performing range-resolved measurements of gases and aerosols, as well as solids and liquids. The transmitter is a flash lamp pumped 30 Hz Nd:YAG laser with quadrupled output at 266 nm. The receiver subsystem is comprised of a 40 cm Cassegrain telescope, a holographic UV edge filter for suppressing the elastic channel, a 0.46 m Czerny-Turner spectrometer, and a time gated intensified charge-coupled device (CCD) detector. The rejection of elastic light scattering by the edge filter is better than one part in 10 5 , while the transmittance 500 cm-1 to the red of the laser line is greater than 50%. Raman data are shown for selected solids, neat liquids, and mixtures down to the level of 1% volume ratio. On the basis of the strength of the Raman returns, a stand-off detection limit of ∼500 g/m2 for liquid spills of common solvents at the range of one half of a kilometer is possible. (c) 2000 Society for Applied Spectroscopy

  11. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  12. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  13. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  14. Significant Contributions of the Albrecht's A Term to Nonresonant Raman Scattering Processes.

    Science.gov (United States)

    Gong, Zu-Yong; Tian, Guangjun; Duan, Sai; Luo, Yi

    2015-11-10

    The Raman intensity can be well described by the famous Albrecht's Raman theory that consists of A and B terms. It is well-known that the contribution from Albrecht's A term can be neglected without any loss of accuracy for far-off resonant Raman scattering processes. However, as demonstrated in this study, we have found that this widely accepted long-standing assumption fails drastically for totally symmetric vibration modes of molecules in general off-resonant Raman scattering. Perturbed first-principles calculations for water molecule show that strong constructive interference between the A and B terms occurs for the Raman intensity of the symmetric O-H stretching mode, which can account for ∼40% of the total intensity. Meanwhile, a minor destructive interference is found for the angle bending mode. The state-to-state mapping between Albrecht's theory and perturbation theory allows us to verify the accuracy of the widely employed perturbation method for the dynamic/resonant Raman intensities. The model calculations rationalized from water molecule with the bending mode show that the perturbation method is a good approximation only when the absolute energy difference between the first excited state and the incident light is more than five times greater than the vibrational energy in the ground state.

  15. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  16. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.

    1997-01-01

    ,3,5-hexatriene have been studied. The radical cations were generated radiolytically in a glassy Freon matrix and investigated by optical absorption and resonance Raman spectroscopy. Ab initio and density functional molecular-orbital calculations have been carried out to predict equilibrium structures...... and to assist assignment of the resonance Raman spectra. A new and improved scaled quantum mechanical force field for the butadiene radical cation was also determined. The presence of more than one rotamer was observed in all the polyene radical cations we investigated. (C) 1997 Elsevier Science B.V....

  17. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  18. Double-wall carbon nanotubes doped with different Br2 doping levels: a resonance Raman study.

    Science.gov (United States)

    do Nascimento, Gustavo M; Hou, Taige; Kim, Yoong Ahm; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Akuzawa, Noboru; Dresselhaus, Mildred S

    2008-12-01

    This report focuses on the effects of different Br2 doping levels on the radial breathing modes of "double-wall carbon nanotube (DWNT) buckypaper". The resonance Raman profile of the Br2 bands are shown for different DWNT configurations with different Br2 doping levels. Near the maximum intensity of the resonance Raman profile, mainly the Br2 molecules adsorbed on the DWNT surface contribute strongly to the observed omega(Br-Br) Raman signal.

  19. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  20. Red-excitation resonance Raman analysis of the nu(Fe=O) mode of ferryl-oxo hemoproteins.

    Science.gov (United States)

    Ikemura, Kenichiro; Mukai, Masahiro; Shimada, Hideo; Tsukihara, Tomitake; Yamaguchi, Satoru; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Ogura, Takashi

    2008-11-05

    The Raman excitation profile of the nuFe O mode of horseradish peroxidase compound II exhibits a maximum at 580 nm. This maximum is located within an absorption band with a shoulder assignable to an oxygen-to-iron charge transfer band on the longer wavelength side of the alpha-band. Resonance Raman bands of the nuFe O mode of various ferryl-oxo type hemoproteins measured at 590 nm excitation indicate that many hemoproteins in the ferryl-oxo state have an oxygen-to-iron charge transfer band in the visible region. Since this red-excited resonance Raman technique causes much less photochemical damage in the proteins relative to blue-excited resonance Raman spectroscopy, it produces a higher signal-to-noise ratio and thus represents a powerful tool for investigations of ferryl-oxo intermediates of hemoproteins.

  1. Observation of vector and tensor light shifts in 87Rb using near-resonant, stimulated Raman spectroscopy

    Science.gov (United States)

    Hu, Qing-Qing; Freier, Christian; Sun, Yuan; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2018-01-01

    We present the derivation of the frequency-dependent scalar, vector, and tensor dynamical polarizabilities for the two hyperfine levels of the 87Rb atom 5 s ground state. Based on the characterization of the dynamical polarizabilities, we analyze and measure the differential vector and tensor light shift between the 5 s ground-state sublevels with near-resonant, stimulated Raman transitions. These results clarify that the tensor polarizabilities for the ground states of alkali atoms are absent when the light field is far detuned from the atomic resonance and the total electronic angular momentum J is a good quantum number. In the near-resonant case, the light shifts are nontrivial and the determination of the frequency-dependent vector and tensor dynamic polarizabilities will help to achieve higher fidelities for applications of neutral atoms in quantum information and precision measurements.

  2. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  3. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  4. Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Vadivel Masilamani

    2017-01-01

    Full Text Available Scattering (Rayleigh and Raman and fluorescence are two common light signals that frequently occur together, confusing the researchers and graduate students experimenting in molecular spectroscopy laboratories. This report is a brief study presenting a clear discrimination between the two signals mentioned, employing a common spectrofluorometer such as the PerkinElmer LS 55. Even better, the resonance Raman signal of a molecule (e.g., acetone can be obtained elegantly using the same instrument.

  5. Explanation of the quantum phenomenon of off-resonant cavity-mode emission

    Science.gov (United States)

    Echeverri-Arteaga, Santiago; Vinck-Posada, Herbert; Gómez, Edgar A.

    2018-04-01

    We theoretically investigate the unexpected occurrence of an extra emission peak that has been experimentally observed in off-resonant studies of cavity QED systems. Our results within the Markovian master equation approach successfully explain why the central peak arises, and how it reveals that the system is suffering a dynamical phase transition induced by the phonon-mediated coupling. Our findings are in qualitative agreement with previous reported experimental results, and the fundamental physics behind this quantum phenomenon is understood.

  6. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  7. The use of lasers as sources for Raman spectrometry, resonance Raman spectrometry, and light scattering

    International Nuclear Information System (INIS)

    Capitini, R.; Ceccaldi, M.; Leicknam, J.P.; Plus, R.

    1975-01-01

    The activity of the laboratory is principally centred on the determination of molecular structures and the study of molecular interactions in solution by infrared and Raman spectrometry. With the development of work on relatively large molecules, particularly biological molecules, it became necessary to complete information on the molecular weight and on the intra and intermolecular geometry and interactions of these bodies. In order to obtain these informations Rayleigh scattering and resonance Raman spectrometry were used. The advantages of using vibrational spectrometry, particularly Raman, in conjunction with the diffusion of light for these structural and molecular interaction studies is emphasized. It is shown that these two techniques could not have developed as they have done in the last few years without the use of lasers as light source [fr

  8. Fast Resonance Raman Spectroscopy of a Free Radical

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn; Hansen, K. B.

    1975-01-01

    The resonance Raman spectrum of a 10−3 molar solution of the stable diphenyl-pikryl-hydrazyl radical in benzene was obtained using a single laser pulse of 10 mJ energy and 600 ns duration from a flashlamp pumped tunable dye laser. Spectra were recorded using an image intensifier coupled to a TV...

  9. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    International Nuclear Information System (INIS)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-01-01

    Resonance Raman and electronic absorption spectra are reported for the S 0 and T 1 states of the carotenoids β-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C 50 )-β-carotene, β-apo-8'-carotenal, and ethyl β-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S 0 and T 1 , regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S 0 and T 1 reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T 1 states of carotenoids and in the S 1 states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S 1 lifetime (of the 1 B/sub u/ and/or the 1 A/sub g/* states) of β-carotene in benzene is less than 1 ps

  10. Ultraviolet resonance Raman spectroscopy for the detection of cocaine in oral fluid

    Science.gov (United States)

    D'Elia, Valentina; Montalvo, Gemma; Ruiz, Carmen García; Ermolenkov, Vladimir V.; Ahmed, Yasmine; Lednev, Igor K.

    2018-01-01

    Detecting and quantifying cocaine in oral fluid is of significant importance for practical forensics. Up to date, mainly destructive methods or biochemical tests have been used, while spectroscopic methods were only applied to pretreated samples. In this work, the possibility of using resonance Raman spectroscopy to detect cocaine in oral fluid without pretreating samples was tested. It was found that ultraviolet resonance Raman spectroscopy with 239-nm excitation allows for the detection of cocaine in oral fluid at 10 μg/mL level. Further method development will be needed for reaching the practically useful levels of cocaine detection.

  11. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  12. Identification of resonant x-ray Raman scattering using SR- and conventional TXRF

    International Nuclear Information System (INIS)

    Zhu, Q.; Burrow, B.; Baur, K.; Brennan, S.; Pianetta, P.

    2000-01-01

    Analyzing and control the surface contamination are important steps in the processing of integrated circuits. The need for using non-destructive analysis techniques either as laboratory or in-line inspection tools has increased dramatically in the past. Total reflection x-ray fluorescence (TXRF) spectroscopy is one of the best choices to fill such needs. Earlier works have established the phenomenon of resonant x-ray Raman scattering with excitation energy very close to the Si-K absorption edge (1.74 keV). In this work, similar phenomena are identified in W-silicide and GaAs substrate with the excitation of W-Lβ 9.67 keV) line, a choice of x-ray source for almost all the conventional TXRF systems nowadays. The observation of the resonant Raman peak is clearly the result of close proximity of W-L and As-K absorption edges to the excitation energy. Synchrotron TXRF measurements are performed by tuning the excitation energy. The resonant Raman peak shifts accordingly with the excitation energy, along with the drastic change of its intensity below and above the absorption edge of W-L or As-K in the respective samples. The current analysis provides new perspective for analyzing W- and As-containing samples, which suggests Raman background correction in conventional TXRF with W-Lβ excitation. (author)

  13. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    Science.gov (United States)

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  14. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  15. Raman spectra of ruthenium and tantalum trimers in argon matrices

    Science.gov (United States)

    Fang, Li; Shen, Xiaole; Chen, Xiaoyu; Lombardi, John R.

    2000-12-01

    The resonance Raman spectra of ruthenium trimers (Ru 3) in argon matrices have been obtained. Three resonance Raman transitions were observed between 570 and 590 nm. Two of them (303.4 and 603.7 cm -1) are assigned to the totally symmetric vibrational progression, giving k e=1.86 mdyne/ Å. The line at 581.5 cm-1 is assigned as the origin of a low-lying electronic state. We also report on the observation of a resonance Raman spectrum of tantalum trimers (Ta 3). Observed lines include 251.2 and 501.9 cm-1 which we assign to the fundamental and the first overtone of the symmetric stretch in Ta 3. This gives k e=2.25 mdyne/ Å.

  16. Transit time for resonant tunneling

    International Nuclear Information System (INIS)

    Garcia Calderon, G.; Rubio, A.

    1990-09-01

    This work considers properties of the partial widths in one dimensional elastic resonant tunneling in order to propose a transit-time τ tr = (h/2π)/Γ n T res ) where Γ n is the elastic width and T res the transmission coefficient at resonance energy. This time is interpreted as an average over the resonance energy width. It is shown that the tunneling current density integrated across a sharp resonance is inversely proportional to τ tr . This transit time may be much larger than the values predicted by other definitions. (author). 20 refs

  17. Resonance Raman spectroscopy of amicyanin, a blue copper protein from Paracoccus denitrificans

    International Nuclear Information System (INIS)

    Sharma, K.D.; Loehr, T.M.; Sanders-Loehr, J.; Husain, M.; Davidson, V.L.

    1988-01-01

    The copper binding site of amicyanin from Paracoccus denitrificans has been examined by resonance Raman spectroscopy. The pattern of vibrational modes is clearly similar to those of the blue copper proteins azurin and plastocyanin. Intense resonance-enhanced peaks are observed at 377, 392, and 430 cm-1 as well as weaker overtones and combination bands in the high frequency region. Most of the peaks below 500 cm-1 shift 0.5-1.5 cm-1 to lower energy when the protein is exposed to D 2 O. Based on the pattern of conserved amino acids, the axial type EPR spectrum, and the resonance Raman spectrum, it is proposed that the copper binding site in amicyanin contains a Cu(II) ion in a distorted trigonal planar geometry with one cysteine and two histidine ligands and an axial methionine ligand at a considerably longer distance. Furthermore, the presence of multiple intense Raman peaks in the 400 cm-1 region which are sensitive to deuterium substitution leads to the conclusion that the Cu-S stretch is coupled with internal ligand vibrational modes and that the sulfur of the cysteine ligand is likely to be hydrogen-bonded to the polypeptide backbone

  18. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  19. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  20. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    Science.gov (United States)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  1. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Thomsen, Kirsten; Lønstrup, Micael

    2018-01-01

    Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice....... We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1(symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1and 1602 and 1638 cm-1(vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount...

  2. Resonance Raman investigation of the radical cation of 1,3,5-hexatriene

    DEFF Research Database (Denmark)

    Keszhelyi, T.; Wilbrandt, R.; Cave, R.J.

    1994-01-01

    The resonance Raman spectrum of the 1,3,5-hexatriene radical cation generated by gamma-irradiation in a Freon glass is reported. The spectrum is excited at 395 nm in resonance with the second absorption band. Identical spectra are obtained from ionized (E)- and (Z)-1,3,5-hexatriene. The presence...

  3. Transitivity and partial screening off

    NARCIS (Netherlands)

    Peijnenburg, Jeanne; Atkinson, David

    2013-01-01

    The notion of probabilistic support is beset by well-known problems. In this paper we add a new one to the list: the problem of transitivity. Tomoji Shogenji has shown that positive probabilistic support, or confirmation, is transitive under the condition of screening off. However, under that same

  4. UV-visible and resonance Raman spectroscopy of halogen molecules in clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Janda, K.C.; Kerenskaya, G.; Goldsheleger, I.U.; Apkarian, V.A.; Fleischer, E.B. [California Univ., Irvine, CA (United States). Dept. of Chemistry

    2008-07-01

    Resonance Raman spectroscopy was used to study halogen clathrate hydrate solids. In particular, this paper presented an ultraviolet-visible spectra for a polycrystalline sample of chlorine clathrate hydrate and two single crystal samples of bromine clathrate hydrate. UV-visible spectroscopy was used to study the interactions between the halogen guest molecule and the host water lattice. The spectrum for chlorine hydrate had a strong temperature dependence, while the spectra for bromine clathrate hydrate single crystals had a stable cubic type 2 structure as well as a tetragonal structure. A metastable cubic type 1 structure was also observed. Resonance Raman spectroscopy showed how the molecules fit into the host cages. 25 refs., 2 tabs., 7 figs.

  5. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    Science.gov (United States)

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  6. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria.

    Science.gov (United States)

    Jarvis, Roger M; Goodacre, Royston

    2004-03-19

    The ability to identify pathogenic organisms rapidly provides significant benefits to clinicians; in particular, with respect to best prescription practices and tracking of recurrent infections. Conventional bioassays require 3-5 days before identification of an organism can be made, thus compromising the effectiveness with which patients can be treated for bacterial infections. We analysed 20 clinical isolates of urinary tract infections (UTI) by ultra-violet resonance Raman (UVRR) spectroscopy, utilising 244 nm excitation delivering approximately 0.1 mW laser power at the sample, with typical spectral collection times of 120 s. UVRR results in resonance-enhanced Raman signals for certain chromophoric segments of macromolecules, intensifying those selected bands above what would otherwise be observed for a normal Raman experiment. Utilising the whole-organism 'fingerprints' obtained by UVRR we were able to discriminate successfully between UTI pathogens using chemometric cluster analyses. This work demonstrates significant improvements in the speed with which spectra can be obtained by Raman spectroscopic techniques for the discrimination of clinical bacterial samples.

  7. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  8. Resonance Raman study on distorted symmetry of porphyrin in ...

    Indian Academy of Sciences (India)

    The resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), ... Nickel ocatethyl porphyrin, Ni(OEP), plays a central role in studies of the molec- ..... [8] T Kitagawa and Y Ozaki, Structure and bonding (Springer-Verlag, Berlin, ... [10] R S Czernuszewicz, K A Macar, Li Xiao-Yuan, J R Kincaid and T G Spiro, J. Am.

  9. Improved efficiency of stimulated Raman adiabatic passage in photoassociation of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Mackie, Matt; Suominen, Kalle-Antti; Haerkoenen, Kari; Collin, Anssi; Javanainen, Juha

    2004-01-01

    We theoretically examine Raman photoassociation of a Bose-Einstein condensate, revisiting stimulated Raman adiabatic passage (STIRAP). Due to collisional mean-field shifts, efficient molecular conversion requires strong coupling and low density, either of which can bring about rogue photodissociation to noncondensate modes. We demonstrate explicitly that rogue transitions are negligible for low excited-state fractions and photodissociation that is slower than the STIRAP time scale. Moreover, we derive a reduced-parameter model of collisions, and thereby find that a gain in the molecular conversion efficiency can be obtained by adjusting the atom-atom scattering length with off-resonant magnetoassociation. This gain saturates when the atom-atom scattering length is tuned to a specific fraction of either the molecule-molecule or atom-molecule scattering length. We conclude that a fully optimized STIRAP scheme may offer the best chance for achieving coherent conversion from an atomic to a molecular condensate with photoassociation

  10. Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy

    NARCIS (Netherlands)

    Efremov, E.V.; Ariese, F.; Mank, A.J.G.; Gooijer, C.

    2006-01-01

    Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally

  11. Shake-off processes at the electron transitions in atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Parilis, Eh.S.

    1982-01-01

    Elementary processes in multielectron atoms - radiative and Auger transitions, photoionization and ionization by an electron impact etc. are usually followed by the relaxation of electron shells. The conditions under which such multielectron problem could be solved in the shake-off approximation are considered. The shake-off processes occurring. as a result of the electron transitions are described from the general point of view. The common characteristics and peculiar features of this type of excitation in comparison with the electron shake-off under nuclear transformations are pointed out. Several electron shake-off processes are considered, namely: radiative Auger effect, the transition ''two electrons-one photon'', dipole ionization, spectral line broadening, post collision interaction, Auger decay stimulated by collision with fast electrons, three-electron Auger transitions: double and half Auger effect. Their classification is given according to the type of the electron transition causing the shake-off process. The experimental data are presented and the methods of theoretical description are reviewed. Other similar effects, which could follow the transitions in electron shells are pointed out. The deduction of shake-off approximation is presented, and it is pointed out that this approach is analogous to the distorted waves approximation in the theory of scattering. It was shown that in atoms the shake-off approximation is a very effective method, which allows to obtain the probability of different electronic effects

  12. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Boosting the Amount of Molecular Information Through Polarized Resolved Resonance Raman Scattering

    DEFF Research Database (Denmark)

    Hassing, Søren

    2017-01-01

    and near-infrared absorption spectroscopy, i.e. only the spectral distribution is analysed. The goal of the present chapter is to demonstrate that the amount of molecular information (also for solutions and powders) can be increased considerably by analysing also the polarization of the Raman and resonance...... Ramanscattered light. The goal is achieved through: (1) a discussion of the basic properties of Raman scattering with special focus on polarization and polarization dispersion. The discussion includes the rotational invariants of Raman tensors, the non-commuting generator approach to molecular symmetry as a tool...... for construction of state and Raman tensors for single molecules and dimers and higher aggregates and thereby predict the polarization; (2) a discussion of two illustrative case studies: Case study 1: Aggregation of haemoglobin in red blood cells (RBC); and Case study 2: In vitro polarization resolved RRS study...

  14. Ultraviolet resonance Raman studies of N-methylacetamide

    International Nuclear Information System (INIS)

    Mayne, L.C.; Ziegler, L.D.; Hudson, B.

    1985-01-01

    Resonance Raman spectra of the simple peptide model compound N-methylacetamide have been obtained with 218- and 200-nm laser radiation. A large enhancement of the amide II vibration is observed relative to that of Raman spectra obtained with visible radiation. Replacement of the amide hydrogen by deuterium results in a spectrum with most of its intensity in the amide II' mode. Excitation of this deuterated species with 200-nm radiation results in intensity in the overtones of this modes, a feature characteristic of resonance enhanced spectra. Isotopic substitution of the amide carbon and nitrogen by 13 C and 15 N results in a spectral shift to lower frequency by nearly the amount expected for a normal mode consisting primarily of the motion of the amide C and N atoms. These results, taken together, demonstrate that the geometry change of N-methylacetamide upon electronic excitation to the π-π/sup */ state is dominated by a change in the C-N bond length. Studies of mixtures of the deuterio and protio forms show that a significant normal mode rotation occurs on isotopic substitution such that the amide II' of the deuterio form becomes approximately equally distributed between the amide II and III vibrations of the protio form. The amide I and I' vibrations are very diffuse in aqueous solutions at the dilutions used. These bands become sharp in acetonitrile. This behavior is interpreted in terms of a range of frequencies for this vibration due to a distribution of hydrogen-bonded species. 23 references, 5 figures

  15. Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.

    Science.gov (United States)

    Earnest, Thomas Nixon

    Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes

  16. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    Science.gov (United States)

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.

    Science.gov (United States)

    Hirschmann, Thomas Ch; Araujo, Paulo T; Muramatsu, Hiroyuki; Zhang, Xu; Nielsch, Kornelius; Kim, Yoong Ahm; Dresselhaus, Mildred S

    2013-03-26

    The optical characterization of bundled and individual triple-walled carbon nanotubes was studied for the first time in detail by using resonant Raman spectroscopy. In our approach, the outer tube of a triple-walled carbon nanotube system protects the two inner tubes (or equivalently the inner double-walled carbon nanotube) from external environment interactions making them a partially isolated system. Following the spectral changes and line-widths of the radial breathing modes and G-band by performing laser energy dependent Raman spectroscopy, it is possible to extract important information as regards to the electronic and vibrational properties, tube diameters, wall-to-wall distances, radial breathing mode, and G-band resonance evolutions as well as high-curvature intertube interactions in isolated double- and triple-walled carbon nanotube systems.

  18. Empirical Equation Based Chirality (n, m Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Directory of Open Access Journals (Sweden)

    Md Shamsul Arefin

    2012-12-01

    Full Text Available This work presents a technique for the chirality (n, m assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n, m with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot.

  19. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Science.gov (United States)

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  20. Shifted excitation resonance Raman difference spectroscopy using a microsystem light source at 488 nm

    Science.gov (United States)

    Maiwald, M.; Sowoidnich, K.; Schmidt, H.; Sumpf, B.; Erbert, G.; Kronfeldt, H.-D.

    2010-04-01

    Experimental results in shifted excitation resonance Raman difference spectroscopy (SERRDS) at 488 nm will be presented. A novel compact diode laser system was used as excitation light source. The device is based on a distributed feedback (DFB) diode laser as a pump light source and a nonlinear frequency doubling using a periodically poled lithium niobate (PPLN) waveguide crystal. All elements including micro-optics are fixed on a micro-optical bench with a footprint of 25 mm × 5 mm. An easy temperature management of the DFB laser and the crystal was used for wavelength tuning. The second harmonic generation (SHG) provides an additional suppression of the spontaneous emission. Raman spectra of polystyrene demonstrate that no laser bandpass filter is needed for the Raman experiments. Resonance-Raman spectra of the restricted food colorant Tartrazine (FD&C Yellow 5, E 102) in distilled water excited at 488 nm demonstrate the suitability of this light source for SERRDS. A limit of detection (LOD) of 0.4 μmol.l-1 of E102 enables SERRDS at 488 nm for trace detection in e.g. food safety control as an appropriate contactless spectroscopic technique.

  1. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  2. Dicke-model simulation via cavity-assisted Raman transitions

    Science.gov (United States)

    Zhang, Zhiqiang; Lee, Chern Hui; Kumar, Ravi; Arnold, K. J.; Masson, Stuart J.; Grimsmo, A. L.; Parkins, A. S.; Barrett, M. D.

    2018-04-01

    The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behavior of atoms coupled to a single electromagnetic mode. Here, we demonstrate a Dicke-model simulation via cavity-assisted Raman transitions in a configuration using counterpropagating laser beams. The observations indicate that motional effects should be included to fully account for the results. These results are contrary to experiments using single-beam and copropagating configurations. We give a theoretical description that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular, a model is given that highlights the influence of Doppler broadening on the observed phase-transition thresholds.

  3. Raman and 11B nuclear magnetic resonance spectroscopic studies of alkaline-earth lanthanoborate glasses

    International Nuclear Information System (INIS)

    Brow, R.K.; Tallant, D.R.; Turner, G.L.

    1996-01-01

    Glasses from the RO·La 2 O 3 ·B 2 O 3 (R = Mg, Ca, and Ba) systems have been examined. Glass formation is centered along the metaborate tie line, from La(BO 2 ) 3 to R(BO 2 ) 2 . Glasses generally have transition temperatures >600 C and expansion coefficients between 60 x 10 -7 /C and 100 x 10 -7 /C. Raman and solid-state nuclear magnetic resonance spectroscopies reveal changes in the metaborate network that depend on both the [R]:[La] ratio and the type of alkaline-earth ion. The fraction of tetrahedral sites is generally reduced in alkaline-earth-rich glasses, with magnesium glasses possessing the lowest concentration of B[4]. Raman spectra indicate that, with increasing [R]:[La] ratio, the preferred metaborate anion changes from a double-chain structure associated with crystalline La(BO 2 ) 3 to the single-chain and ring metaborate anions found in crystalline R(BO 2 ) 2 phases. In addition, disproportionation of the metaborate anions leads to the formation of a variety of other species, including pyroborates with terminal oxygens and more-polymerized species, such as diborates, with tetrahedral borons. Such structural changes are related to the ease of glass formation and some of the glass properties

  4. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers

    International Nuclear Information System (INIS)

    Yano, Taka-aki; Yoshida, Keisuke; Hayashi, Tomohiro; Hara, Masahiko; Hayamizu, Yuhei; Ohuchi, Fumio

    2015-01-01

    We report spatially resolved vibrational analysis of mechanically exfoliated single-crystalline α-MoO 3 nanolayers. Raman scattering from α-MoO 3 was enhanced predominantly at the outside edges of the nanolayers. The enhanced Raman scattering at the edges was attributed primarily to the enhanced resonant Raman effect caused by a high density of oxygen vacancies localized at the edges. The localized vacancy sites corresponded to a non-stoichiometric phase of MoO 3 , which would provide reactive sites with high catalytic activity. (paper)

  5. Multiphonon resonant Raman scattering in the semimagnetic semiconductor Cd1-xMnxTe: Froehlich and deformation potential exciton-phonon interaction

    International Nuclear Information System (INIS)

    Riera, R; Rosas, R; Marin, J L; Bergues, J M; Campoy, G

    2003-01-01

    A theory describing multiphonon resonant Raman scattering (MPRRS) processes in wide-gap diluted magnetic semiconductors is presented, with Cd 1-x Mn x Te as an example. The incident radiation frequency ω l is taken above the fundamental absorption region. The photoexcited electron and hole make real transitions through the LO phonon, when one considers Froehlich (F) and deformation potential (DP) interactions. The strong exchange interaction, typical of these materials, leads to a large spin splitting of the exciton states in the magnetic field. Neglecting Landau quantization, this Zeeman splitting gives rise to the formation of eight bands (two conduction and six valence ones) and ten different exciton states according to the polarization of the incident light. Explicit expressions for the MPRRS intensity of second and third order, the indirect creation and annihilation probabilities, the exciton lifetime, and the probabilities of transition between different exciton states and different types of exciton as a function of ω l and the external magnetic field are presented. The selection rules for all hot exciton transitions via exciton-photon interaction and F and DP exciton-phonon interactions are investigated. The exciton energies, as a function of B, the Mn concentration x, and the temperature T, are compared to a theoretical expression. Graphics for creation and annihilation probabilities, lifetime, and Raman intensity of second and third order are discussed

  6. Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes.

    Science.gov (United States)

    Zedler, Linda; Guthmuller, Julien; Rabelo de Moraes, Inês; Kupfer, Stephan; Krieck, Sven; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin

    2014-05-25

    The sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(ii) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.

  7. KLL resonant Auger transitions in metallic Cu and Ni

    International Nuclear Information System (INIS)

    Koever, L.; Berenyi, Z.; Cserny, I.

    2004-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metals contain important information on the effects of the solid environment on deep core Auger transitions. Following the changes in the spectra when fine tuning the exciting photon energy across the K-shell ionization threshold with high energy resolution is informative concerning the possible resonant processes, expected to indicate the single-step nature of threshold Auger emission. The satellite structures in these spectra are strongly related to the unoccupied local electronic states above the Fermi level, as well as to the excitation, relaxation and screening processes associated with core hole ionization. In spite of the fundamental significance of the phenomena mentioned above, even non resonant high energy resolution studies of KLL Auger spectra of 3d transition metals (using laboratory X-ray sources) are very scarce due to the demanding experimental conditions requested. A very efficient tool for studying these phenomena is the Tunable High Energy XPS developed at HASYLAB which provides unique conditions, photon x and energy resolution for deep core Auger spectroscopy. Using the THE-XPS instrument at the BW2 beamline the high energy resolution (ΔE = 0.2 eV) KL 2,3 L 2,3 Auger spectra of polycrystalline Cu and Ni foils were measured with the Scienta SES-200 hemispherical analyzer. In the high energy range Cu 2p photo-electron peaks appearing in the Cu KLL Auger spectra due to the excitation by internal Cu K X-rays and trusted value for the Cu 2p3/2 binding energy were used for energy calibration. The exciting photon energy range was tuned up to about 50 eV above the K absorption edge and for the resonant energy region to 5 eV (Cu KLL) and 4 eV (Ni KLL) below threshold ensuring a photon beam with an energy width of about 1.1 eV. The evolution of the satellite structure as a function of excitation energy above threshold indicates di rent behaviour for particular satellites, making

  8. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M., E-mail: ammoran@email.unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that “forbidden” steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in

  9. Low-Cost Resonant Cavity Raman Gas Probe for Multi-Gas Detection

    Science.gov (United States)

    Thorstensen, J.; Haugholt, K. H.; Ferber, A.; Bakke, K. A. H.; Tschudi, J.

    2014-12-01

    Raman based gas sensing can be attractive in several industrial applications, due to its multi-gas sensing capabilities and its ability to detect O_2 and N_2. In this article, we have built a Raman gas probe, based on low-cost components, which has shown an estimated detection limit of 0.5 % for 30 second measurements of N_2 and O_2. While this detection limit is higher than that of commercially available equipment, our estimated component cost is approximately one tenth of the price of commercially available equipment. The use of a resonant Fabry-Pérot cavity increases the scattered signal, and hence the sensitivity, by a factor of 50. The cavity is kept in resonance using a piezo-actuated mirror and a photodiode in a feedback loop. The system described in this article was made with minimum-cost components to demonstrate the low-cost principle. However, it is possible to decrease the detection limit using a higher-powered (but still low-cost) laser and improving the collection optics. By applying these improvements, the detection limit and estimated measurement precision will be sufficient for e.g. the monitoring of input gases in combustion processes, such as e.g. (bio-)gas power plants. In these processes, knowledge about gas compositions with 0.1 % (absolute) precision can help regulate and optimize process conditions. The system has the potential to provide a low-cost, industrial Raman sensor that is optimized for specific gas-detection applications.

  10. Double resonance Raman effects in InN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Domenech-Amador, N.; Cusco, R.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n., Barcelona, Catalonia (Spain); Calarco, R. [Institute of Bio- and Nanosystems, Research Center Juelich GmbH, Juelich (Germany); Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2012-04-15

    We study the excitation wavelength dependence of the Raman spectra of InN nanowires. The E{sub 1}(LO) phonon mode, which is detected in backscattering configuration because of light entering through lateral faces, exhibits an upward frequency shift that can be explained by Martin's double resonance. The E{sub 1} (LO)/E{sub 2}{sup h} intensity ratio increases with the excitation wavelength more rapidly than the A{sub 1}(LO)/E{sub 2}{sup h} ratio measured in InN thin films. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Characterization and discrimination of human breast cancer and normal breast tissues using resonance Raman spectroscopy

    Science.gov (United States)

    Wu, Binlin; Smith, Jason; Zhang, Lin; Gao, Xin; Alfano, Robert R.

    2018-02-01

    Worldwide breast cancer incidence has increased by more than twenty percent in the past decade. It is also known that in that time, mortality due to the affliction has increased by fourteen percent. Using optical-based diagnostic techniques, such as Raman spectroscopy, has been explored in order to increase diagnostic accuracy in a more objective way along with significantly decreasing diagnostic wait-times. In this study, Raman spectroscopy with 532-nm excitation was used in order to incite resonance effects to enhance Stokes Raman scattering from unique biomolecular vibrational modes. Seventy-two Raman spectra (41 cancerous, 31 normal) were collected from nine breast tissue samples by performing a ten-spectra average using a 500-ms acquisition time at each acquisition location. The raw spectral data was subsequently prepared for analysis with background correction and normalization. The spectral data in the Raman Shift range of 750- 2000 cm-1 was used for analysis since the detector has highest sensitivity around in this range. The matrix decomposition technique nonnegative matrix factorization (NMF) was then performed on this processed data. The resulting leave-oneout cross-validation using two selective feature components resulted in sensitivity, specificity and accuracy of 92.6%, 100% and 96.0% respectively. The performance of NMF was also compared to that using principal component analysis (PCA), and NMF was shown be to be superior to PCA in this study. This study shows that coupling the resonance Raman spectroscopy technique with subsequent NMF decomposition method shows potential for high characterization accuracy in breast cancer detection.

  12. Time-resolved resonance raman spectrum of all-trans-diphenylbutadiene in the lowest excited singlet state

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Langkilde, F.W.

    1984-01-01

    The resonance Raman spectrwn of all-trans-diphenylbutadiene in its lowest excited S1 state excited in resonance with the S1 → Sn absorption band at 650 nm in non-polar solvents is reported. Three vibrational bands at 1572, 1481 and 1165 cm−1 are observed. A possible assignment of the the 1481 cm−...

  13. Ultraviolet-resonance femtosecond stimulated Raman study of the initial events in photoreceptor chromophore

    Directory of Open Access Journals (Sweden)

    Tahara T.

    2013-03-01

    Full Text Available Newly-developed ultraviolet-resonance femtosecond stimulated-Raman spectroscopy was utilized to study the initial structural evolution of photoactive yellow protein chromophore in solution. The obtained spectra changed drastically within 1 ps, demonstrating rapid in-plane deformations of the chromophore.

  14. Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A.G. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Himcinschi, C. [TU Bergakademie Freiberg, Institut fuer Theoretische Physik, Freiberg (Germany); Zenkevich, E.I. [Belarussian National Technical University, Minsk (Belarus); Zahn, D.R.T. [Chemnitz University of Technology, Semiconductor Physics, Chemnitz (Germany)

    2012-05-15

    Resonant Raman scattering by optical phonon modes as well as their overtones was investigated in ZnS and ZnO quantum dots grown by the Langmuir-Blodgett technique. The in situ formation of ZnS/ZnO core/shell quantum dots was monitored by Raman spectroscopy during laser illumination. (orig.)

  15. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  16. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    International Nuclear Information System (INIS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-01-01

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated

  17. Ramsey spectroscopy by direct use of resonant light on isotope atoms for single-photon detuning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hoon; Choi, Mi Hyun; Moon, Ye Lin; Kim, Seung Jin; Kim, Jung Bog [Korea National University of Education, Cheongwon (Korea, Republic of)

    2014-03-15

    We demonstrate Ramsey spectroscopy with cold {sup 87}Rb atoms via a two-photon Raman process. One laser beam has a cross-over resonant frequency on the {sup 85}Rb transition and the other beam has a 6.8 GHz shifted frequency. These two laser beams fulfill the two-photon Raman resonance condition, which involves a single-photon detuning of -2.6 GHz. By implementing these two lasers on cold {sup 87}Rb atoms, we demonstrate Ramsey spectroscopy with an interrogation time of the intermediate state by using π/2 Raman pulses. In our laser system, we can change the single-photon detuning to 1.2, 4.2 or -5.6 GHz by changing the {sup 85}Rb transition line used as a locking signal and an injected sideband. The laser system that directly uses resonant light on isotope atoms will be described in this paper.

  18. Suppression of error in qubit rotations due to Bloch-Siegert oscillation via the use of off-resonant Raman excitation

    International Nuclear Information System (INIS)

    Pradhan, Prabhakar; Cardoso, George C; Shahriar, M S

    2009-01-01

    The rotation of a quantum bit (qubit) is an important step in quantum computation. The rotation is generally performed using a Rabi oscillation. In a direct two-level qubit system, if the Rabi frequency is comparable to its resonance frequency, the rotating wave approximation is not valid, and the Rabi oscillation is accompanied by the so-called Bloch-Siegert oscillation (BSO) that occurs at twice the frequency of the driving field. One implication of the BSO is that for a given interaction time and Rabi frequency, the degree of rotation experienced by the qubit depends explicitly on the initial phase of the driving field. If this effect is not controlled, it leads to an apparent fluctuation in the rotation of the qubit. Here we show that when an off-resonant lambda system is used to realize a two-level qubit, the BSO is inherently negligible, thus eliminating this source of potential error.

  19. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

    Science.gov (United States)

    Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J

    1988-10-15

    Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.

  20. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

    Science.gov (United States)

    Kajimoto, Kousuke; Kikukawa, Takashi; Nakashima, Hiroki; Yamaryo, Haruki; Saito, Yuta; Fujisawa, Tomotsumi; Demura, Makoto; Unno, Masashi

    2017-05-04

    Sodium-ion-pump rhodopsin (NaR) is a microbial rhodopsin that transports Na + during its photocycle. Here we explore the photocycle mechanism of NaR from Indibacter alkaliphilus with transient absorption and transient resonance Raman spectroscopy. The transient absorption data indicate that the photocycle of NaR is K (545 nm) → L (490 nm)/M (420 nm) → O 1 (590 nm) → O 2 (560 nm) → NaR, where the L and M are formed as equilibrium states. The presence of K, L, M, and O intermediates was confirmed by the resonance Raman spectra with 442 and 532 nm excitation. The main component of the transient resonance Raman spectra was due to L which contains a 13-cis retinal protonated Schiff base. The presence of an enhanced hydrogen out-of-plane band as well as its sensitivity to the H/D exchange indicate that the retinal chromophore is distorted near the Schiff base region in L. Moreover, the retinal Schiff base of the L state forms a hydrogen bond that is stronger than that of the dark state. These observations are consistent with a Na + pumping mechanism that involves a proton transfer from the retinal Schiff base to a key aspartate residue (Asp116 in Krokinobacter eikastus rhodopsin 2) in the L/M states.

  1. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  2. Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering

    OpenAIRE

    Yanli Liu; Xifeng Yang; Dunjun Chen; Hai Lu; Rong Zhang; Youdou Zheng

    2015-01-01

    The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV) near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO) phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with th...

  3. Laser-induced gratings in the gas phase excited via Raman-active transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D N [General Physics Inst., Russian Academy of Sciences, Moscow (Russian Federation); Bombach, R; Hemmerling, B; Hubschmid, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We report on a new time resolved coherent Raman technique that is based on the generation of thermal gratings following a population change among molecular levels induced by stimulated Raman pumping. This is achieved by spatially and temporally overlapping intensity interference patterns generated independently by two lasers. When this technique is used in carbon dioxide, employing transitions which belong to the Q-branches of the {nu}{sub 1}/2{nu}{sub 2} Fermi dyad, it is possible to investigate molecular energy transfer processes. (author) 2 figs., 10 refs.

  4. Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2015-01-01

    Full Text Available The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with the theoretical calculation result, taking lattice mismatch and thermal mismatch into account together. This good agreement indicates that the UV near-resonant Raman scattering can be a direct and effective method to characterize the stress state in thin AlGaN barrier layer of AlGaN/GaN HEMT heterostructures.

  5. Detection of Molecular Chirality by Induced Resonance Raman Optical Activity in Europium Complexes

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, Shigeki; Bouř, Petr

    2012-01-01

    Roč. 51, č. 44 (2012), s. 11058-11061 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Institutional support: RVO:61388963 Keywords : europium * complexes * raman optical activity * resonance Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.734, year: 2012

  6. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    Science.gov (United States)

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-07

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy.

  7. On the Increasing Fragility of Human Teeth with Age: ADeep-Ultraviolet Resonance Raman Study

    Energy Technology Data Exchange (ETDEWEB)

    Ager III, J.W.; Nalla, R.K.; Balooch, G.; Kim, G.; Pugach, M.; Habelitz, S.; Marshall, G.W.; Kinney, J.H.; Ritchie, R.O.

    2006-07-14

    Ultraviolet resonance Raman spectroscopy (UVRRS) using 244nm excitation was used to investigate the impact of aging on humandentin. The intensity of a spectroscopic feature from the peptide bondsin the collagen increases with tissue age, similar to a finding reportedpreviously for human cortical bone.

  8. The Raman and SERS spectra of indigo and indigo-Ag2 complex: DFT calculation and comparison with experiment.

    Science.gov (United States)

    Ricci, Marilena; Lofrumento, Cristiana; Becucci, Maurizio; Castellucci, Emilio M

    2018-01-05

    Using time-dependent density functional theory in conjunction with B3LYP functional and LANL2DZ/6-31+g(d,p) basis sets, static and pre-resonance Raman spectra of the indigo-Ag 2 complex have been calculated. Structure optimization, excitation energies and pre-resonance Raman spectra of the indigo molecule have been obtained at the same level of theory. The available experimental Raman spectra at 1064, 785 and 514nm and the SERS spectra at 785 and 514nm have been well reproduced by the calculation. Experimental SERS spectra are confronted with the calculated pre-resonance Raman spectra obtained for the indigo-Ag 2 complex. The Raman activities calculated under the infinite lifetime approximation show a strong dependence upon the proximity to the energy and the oscillator strength of the excitation electronic transition. The comparison of the integrated EFs for indigo and indigo-Ag 2 calculated Raman spectra, gave some hints as to the enhancement mechanisms acting for the different excitation wavelengths. Whereas for excitation at a wavelength corresponding to 785nm, the enhancement mechanism for the Raman spectrum of the metal complex seems the chemical one, the strong increment (ten times) of the integrated EF of the Raman spectra of the complex in the case of 514nm excitation, suggests the onset of other enhancement mechanisms. Assuming that intra-cluster transitions with high oscillator strength can be thought of as to mimic surface plasmons excitations, we suggest the onset of the electromagnetic mechanisms (EM) as the origin of the Raman spectrum enhancement. Nevertheless, other enhancement effects cannot be ruled out, as a new molecular transition gains strength in the proximity of the excitation wavelength, as a consequence of the symmetry lowering of the molecule in the complex. A large variation across vibrational modes, by a factor of at least 10 4 , was found for the EFs. This large variation in the EFs can indicate that B-term Herzberg-Teller scattering

  9. Unraveling the Raman Enhancement Mechanism on 1T'-Phase ReS2 Nanosheets.

    Science.gov (United States)

    Miao, Peng; Qin, Jing-Kai; Shen, Yunfeng; Su, Huimin; Dai, Junfeng; Song, Bo; Du, Yunchen; Sun, Mengtao; Zhang, Wei; Wang, Hsing-Lin; Xu, Cheng-Yan; Xu, Ping

    2018-04-01

    2D transition metal dichalcogenides materials are explored as potential surface-enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T') rhenium disulfide (ReS 2 ) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al 2 O 3 dielectric layer unambiguously reveal that Raman enhancement on ReS 2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS 2 nanosheets. On monolayer ReS 2 film, a strong resonance-enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10 -9 m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer-number-dependent feature and excitation-energy-related resonance effect, ReS 2 is a promising Raman enhancement platform for sensing applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design and performance of an ultraviolet resonance Raman spectrometer for proteins and nucleic acids.

    Science.gov (United States)

    Russell, M P; Vohník, S; Thomas, G J

    1995-04-01

    We describe an ultraviolet resonance Raman (UVRR) spectrometer appropriate for structural studies of biological macromolecules and their assemblies. Instrument design includes the following features: a continuous wave, intracavity doubled, ultraviolet laser source for excitation of the Raman spectrum; a rotating cell (or jet source) for presentation of the sample to the laser beam; a Cassegrain optic with f/1.0 aperture for collection of the Raman scattering; a quartz prism dispersing element for rejection of stray light and Rayleigh scattering; a 0.75-m single grating monochromator for dispersion of the Raman scattering; and a liquid-nitrogen-cooled, charge-coupled device for detection of the Raman photons. The performance of this instrument, assessed on the basis of the observed signal-to-noise ratios, the apparent resolution of closely spaced spectral bands, and the wide spectrometer bandpass of 2200 cm-1, is believed superior to previously described UVRR spectrometers of similar design. Performance characteristics of the instrument are demonstrated in UVRR spectra obtained from standard solvents, p-ethylphenol, which serves as a model for the tyrosine side chain, the DNA nucleotide deoxyguanosine-5'-monophosphate, and the human tumor necrosis factor binding protein, which is considered representative of soluble globular proteins.

  11. Resonant two-magnon Raman scattering in parent compounds of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Frenkel, D.M.

    1995-01-01

    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-T c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ω i both for ω i much-lt U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its dominators (i.e., a triple resonanc). We study this diagram in detail and show taht the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles

  12. An application of coherence resonances in molecular transition identification

    International Nuclear Information System (INIS)

    Alekseev, V.A.; Salomaa, R.

    1978-01-01

    In Λ-type three level configurations having long lived lower levels extremely sharp two photon resonances occur. We want to draw attention to the use of these resonances for distinguishing the hyperfine splitting of lower and upper set of levels of molecular transitions. A new feature in the theoretical model is that the saturator and probe beams are coupled to both transitions rendering possible the appearance of interference between the resonances. (author)

  13. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  14. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    Science.gov (United States)

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  15. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  16. Arsenic speciation by X-ray spectroscopy using resonant Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.J.; Leani, J.J. [Universidad Nacional de Cordoba, Cba (Argentina); Perez, C.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The toxicity of arsenic species is widely known. A realistic evaluation of the risk posed by As depends on accurate determination of As speciation, because its toxicity and mobility varies with oxidation state and chemical environment. The most toxic species are inorganic As (III) and As (V) called respectively arsenite or trivalent arsenic, and arsenate or pentavalent arsenic. Recently, x-ray Resonant Raman Scattering spectroscopy has been successfully employed to determine the oxidation state of metals. In this work we use RRS spectroscopy to perform arsenic speciation. The measurements were carried out in XRF station of the D09B-XRF beamline at the Brazilian synchrotron facility (LNLS, Campinas). Mineral samples of As in different oxidation states (As(III) and AS(V)), and two biological forms of arsenic (monomethylarsonic acid (MMA(V) and dimethylarsinic acid DMA(V)) were analysed. The samples were diluted, deposited on silicon wafers and allowed to dry. The amount of liquid deposited on the reflector before evaporation was 20 microliters for all the specimens. These samples were irradiated with monochromatic photons of 11816 eV, i.e., below the K-edge of arsenic in order to inspect the Raman emissions. The measuring lifetime was 3600 sec for each sample. Spectra were analysed with specific programs for spectrum analysis using non-conventional functions for data fitting, i.e., modified Voight functions (for Compton peaks), Gaussian functions for fluorescent and for low intensity peaks (such as escape peaks and other contributions), and polynomial functions for the background. Raman peaks were fitted using specific functions. In this work we have shown that resonant Raman scattering spectroscopy can be used to analyse arsenic species. The method is very simple and reliable. The most important feature of this method relies in the possibility of using the same spectrometer of XRF analysis or TXRF analysis. In this way, practically in the same experiment

  17. One phonon resonant Raman scattering in free-standing quantum wires

    International Nuclear Information System (INIS)

    Zhao, Xiang-Fu; Liu, Cui-Hong

    2007-01-01

    The scattering intensity (SI) of a free-standing cylindrical semiconductor quantum wire for an electron resonant Raman scattering (ERRS) process associated with bulk longitudinal optical (LO) phonon modes and surface optical (SO) phonon modes is calculated separately for T=0 K. The Frohlich interaction is considered to illustrate the theory for GaAs and CdS systems. Electron states are confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Numerical results and a discussion are also presented for various radii of the cylindrical

  18. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  19. Mixture analysis with laser raman spctroscopy

    International Nuclear Information System (INIS)

    Kim, M.S.; Bark, G.M.

    1981-01-01

    Trace amount of methyl orange was determined in colored medium by resonance Raman spectrometry. Without major modification of a commercial laser Raman spectrometer, the resonance Raman active molecule could be determined satisfactorily in 10sup(-5)M range when the background fluorescence was more than 20 times stronger than the signal. Use of fluorescence quenching agent was found helpful to improve the Raman signal. Suggestions for the improvement of analytical method is presented. (Author)

  20. Resonance Raman imaging as a tool to assess the atmospheric pollution level: carotenoids in Lecanoraceae lichens as bioindicators.

    Science.gov (United States)

    Ibarrondo, I; Prieto-Taboada, N; Martínez-Arkarazo, I; Madariaga, J M

    2016-04-01

    Raman spectroscopy differentiation of carotenoids has traditionally been based on the ν 1 position (C = C stretching vibrations in the polyene chain) in the 1500-1600 cm(-1) range, using a 785 nm excitation laser. However, when the number of conjugated double bonds is similar, as in the cases of zeaxanthin and β-carotene, this distinction is still ambiguous due to the closeness of the Raman bands. This work shows the Raman results, obtained in resonance conditions using a 514 mm laser, on Lecanora campestris and Lecanora atra species, which can be used to differentiate and consequently characterize carotenoids. The presence of the carotenoid found in Lecanoraceae lichens has been demonstrated to depend on the atmospheric pollution level of the environment they inhabit. Astaxanthin, a superb antioxidant, appears as the principal xanthophyll in highly polluted sites, usually together with the UV screening pigment scytonemin; zeaxanthin is the major carotenoid in medium polluted environments, while β-carotene is the major carotenoid in cleaner environments. Based on these observations, an indirect classification of the stress suffered in a given environment can be assessed by simply analysing the carotenoid content in the Lecanoraceae lichens by using resonance Raman imaging.

  1. Measurement of the Wigner function via atomic beam deflection in the Raman-Nath regime

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2006-12-28

    A method for the reconstruction of photon statistics and even the Wigner function of a quantized cavity field state is proposed. The method is based on the measurement of momentum distribution of two-level atoms in the Raman-Nath regime. Both the cases of resonant and off-resonant atom-field interaction are considered. The Wigner function is reconstructed by displacing the photon statistics of the cavity field. This reconstruction method is straightforward and does not need much mathematical manipulation of experimental data.

  2. Resonance Raman spectroscopy in the picosecond time scale: the carboxyhemoglobin photointermediate

    International Nuclear Information System (INIS)

    Terner, J.; Spiro, T.G.; Nagumo, M.; Nicol, M.F.; El-Sayed, M.A.

    1980-01-01

    A picosecond resonance Raman detection technique is described. The technique is described as specifically applied to the analysis of carboxyhemoglobin (COHb). Irradiaton of COHb with a tightly focused laser produced three distinct bands between 1540 and 1620cm -1 that are distinct from bands of COHb or deoxyHb, and the bands are attributed to an intermediate in the photolysis of COHb which develops within 30ps of the excitation. Computer subtraction of the COHb spectrum yielded a spectrum of the photointermediate

  3. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  4. Off-line tests of superconducting resonators of the JAERI tandem booster

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Ishii, Tetsuro; Takeuchi, Suehiro

    1993-01-01

    The JAERI tandem booster linac, which consists of 46 superconducting quarter wave resonators, is under construction. Off-line tests for resonators were performed. Accelerating field levels of 7MV/m were obtained at an rf input of 4W with most resonators. A maximum field level of 12.7MV/m was obtained. The Q-value was degraded when resonators were cooled down slowly around a temperature of 120K. We investigated this phenomenon by changing the cooling rate. (author)

  5. On- and off-resonance radiation-atom-coupling matrix elements involving extended atomic wave functions

    Science.gov (United States)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2014-01-01

    In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).

  6. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  7. Frequency-asymmetric gain profile in a seeded Raman amplifier

    International Nuclear Information System (INIS)

    Repasky, K.S.; Carlsten, J.L.

    1996-01-01

    This paper examines the effect of index guiding on Raman gain. The slowly varying Maxwell wave equation including both the real and imaginary parts of the Raman susceptibility for a seeded Raman amplifier is explored. Using a Gauss-Laguerre mode expansion for the Stokes field, the output Stokes energy is numerically studied as a function of gain and detuning from the Raman resonance. The calculations indicate that the real part of the Raman susceptibility causes the Raman medium to act as a lens when the Stokes seed is detuned from the Raman resonance. This focusing effect leads to higher peak Stokes energy when the Stokes seed is tuned to the blue side of the Raman resonance. Specifically for Raman scattering in H 2 with a pump laser at 532 nm and an input seed near 683 nm, the peak Stokes energy can shift by as much as 300 MHz from the Raman resonance. An experiment which confirms these predictions is also presented. copyright 1996 The American Physical Society

  8. Resonant and off-resonant transients in electromagnetically induced transparency: Turn-on and turn-off dynamics

    International Nuclear Information System (INIS)

    Greentree, Andrew D.; Smith, T.B.; Echaniz, S.R. de; Durrant, A. V.; Marangos, J.P.; Segal, D.M.; Vaccaro, J.A.

    2002-01-01

    This paper presents a wide-ranging theoretical and experimental study of nonadiabatic transient phenomena in a Λ electromagnetically induced transparency system when a strong coupling field is rapidly switched on or off. The theoretical treatment uses a Laplace transform approach to solve the time-dependent density matrix equation. The experiments are carried out in a 87 Rb magneto-optical trap. The results show transient probe gain in parameter regions not previously studied, and provide insight into the transition dynamics between bare and dressed states

  9. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  10. THE DISCOVERY OF RAMAN SCATTERING IN H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Nicholls, David C.; Sutherland, Ralph S.; Kewley, Lisa J.; Groves, Brent A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-06-10

    We report here on the discovery of faint extended wings of H α observed out to an apparent velocity of ∼7600 km s{sup −1} in the Orion Nebula (M42) and in five H ii regions in the Large and the Small Magellanic Clouds. We show that these wings are caused by Raman scattering of both the O i and Si ii resonance lines and stellar continuum UV photons with H i followed by radiative decay to the H i n = 2 level. The broad wings also seen in H β and in H γ result from Raman scattering of the UV continuum in the H i n = 4 and n = 5 levels, respectively. The Raman scattering fluorescence is correlated with the intensity of the narrow permitted lines of O i and Si ii. In the case of Si ii, this is explained by radiative pumping of the same 1023.7 Å resonance line involved in the Raman scattering by the Ly β radiation field. The subsequent radiative cascade produces enhanced Si ii λλ 5978.9, 6347.1, and 6371.4 Å permitted transitions. Finally, we show that in O i, radiative pumping of the 1025.76 Å resonance line by the Lyman series radiation field is also the cause of the enhancement in the permitted lines of this species lying near H α in wavelength, but here the process is a little more complex. We argue that all these processes are active in the zone of the H ii region near the ionization front.

  11. Fabrication of metallic nanostructures of sub-20 nm with an optimized process of E-beam lithography and lift-off

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Wang, Xianbin; Chen, Longqing; Yang, Yang; Chew, Basil; Syed, Ahad A.; Wong, Ka Chun; Zhang, Xixiang

    2012-01-01

    A process consisting of e-beam lithography and lift-off was optimized to fabricate metallic nanostructures. This optimized process successfully produced gold and aluminum nanostructures with features size less than 20 nm. These structures range from simple parallel lines to complex photonic structures. Optical properties of gold split ring resonators (SRRs) were characterized with Raman spectroscopy. Surface-Enhanced Raman Scattering (SERS) on SRRs was observed with 4-mercaptopyridine (4-MPy) as molecular probe and greatly enhanced Raman scattering was observed. Copyright © 2012 American Scientific Publishers.

  12. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  13. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  14. Raman study of AlPO.sub.4./sub. (berlinite) at the ŕ-á transition

    Czech Academy of Sciences Publication Activity Database

    Gregora, Ivan; Magneron, N.; Simon, P.; Luspin, Y.; Raimboux, N.; Philippot, E.

    2003-01-01

    Roč. 15, - (2003), s. 4487-4501 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z1010914 Keywords : berlinite * ŕ-á transition * Raman scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.757, year: 2003

  15. Spin transitions in La{sub 0.7} Ba{sub 0.3}CoO{sub 3} thin films revealed by combining Raman spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Othmen, Zied; Oueslati, Meherzi [Unité Nanomatériaux et Photonique, Faculty of Sciences of Tunis, Tunis El-Manar University, 2092 Tunis (Tunisia); Copie, Olivier; Gemeiner, Pascale; Dkhil, Brahim [Laboratoire Structures, Propriétés et Modélisation des Solides, Centrale Supélec, CNRS-UMR 8580, Université Paris-Saclay (France); Daoudi, Kais [Unité Nanomatériaux et Photonique, Faculty of Sciences of Tunis, Tunis El-Manar University, 2092 Tunis (Tunisia); Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates); Boudard, Michel [Univ. Grenoble Alpes, LMGP, F-38000 Grenoble (France)

    2016-07-07

    In cobaltite, the spin states transitions of Co{sup 3+/4+} ions govern the magnetic and electronic conduction properties. These transitions are strain-sensitive and can be varied using external parameters, including temperature, hydrostatic pressure, or chemical stresses through ionic substitutions. In this work, using temperature dependent Raman spectroscopy and X-ray diffraction, the epitaxial strain effects on both structural and vibrational properties of La{sub 0.7} Ba{sub 0.3} CoO{sub 3} (LBCO) cobaltite thin films are investigated. All Raman active phonon modes as well as the structure are found to be strongly affected. Both Raman modes and lattice parameter evolutions show temperature changes correlated with magnetic and electronic transitions properties. Combining Raman spectroscopy and X-ray diffraction appears as a powerful approach to probe the spin transition in thin film cobaltite. Our results provide insight into strong spin-charge-phonon coupling in LBCO thin film. This coupling manifests as vibrational transition with temperature in the Raman spectra near the ferromagnetic spin ordered transition at 220 K.

  16. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy.

    Science.gov (United States)

    Chen, Qingmin; Xie, Yunfei; Xi, Jinzhong; Guo, Yahui; Qian, He; Cheng, Yuliang; Chen, Yi; Yao, Weirong

    2018-03-15

    In this study, electron spin resonance (ESR) and Raman spectroscopy were applied to characterize lipid oxidation of beef during repeated freeze-thaw (RFT). Besides the conventional indexes including peroxide values (PV), thiobarbituric acid-reactive substances (TBARS) and acid values (AV) were evaluated, the radical and molecular structure changes were also measured by ESR and Raman spectroscopy. The results showed that PV, TBARS and AV were increased (PRaman intensity of ν(CC) stretching region (1655cm -1 ) was decreased during RFT. Furthermore, lower Raman intensity ratio of I 1655 /I 1442 , I 1655 /I 1745 that determine total unsaturation was also observed. Significant correlations (pRaman spectroscopy. Our result has proved that ESR and Raman spectroscopy showed great potential in characterizing lipid oxidation process of beef during RFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. On transition from Alfvén resonance to forced magnetic reconnection

    International Nuclear Information System (INIS)

    Luan, Q.; Wang, X.

    2014-01-01

    We revisit the transition from Alfvén resonance to forced magnetic reconnection with a focus on the property of their singularities. As the driven frequency tends to zero, the logarithmic singularity of Alfvén resonance shifts to the power-law singularity of forced reconnection, due to merging of the two resonance layers. The transition criterion depends on either kinetic effects or dissipations that resolve the singularity. As an example, a small but finite resistivity η is introduced to investigate the transition process. The transition threshold is then obtained as the driven frequency reaches a level of ∼O((η/k) 1/3 )

  18. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  19. Solvation dynamics through Raman spectroscopy: hydration of Br2 and Br3(-), and solvation of Br2 in liquid bromine.

    Science.gov (United States)

    Branigan, Edward T; Halberstadt, N; Apkarian, V A

    2011-05-07

    Raman spectroscopy of bromine in the liquid phase and in water illustrates uncommon principles and yields insights regarding hydration. In liquid Br(2), resonant excitation over the B((3)Π(0u)(+)) ← X((1)Σ(g)(+)) valence transition at 532 nm produces a weak resonant Raman (RR) progression accompanied by a five-fold stronger non-resonant (NR) scattering. The latter is assigned to pre-resonance with the C-state, which in turn must be strongly mixed with inter-molecular charge transfer states. Despite the electronic resonance, RR of Br(2) in water is quenched. At 532 nm, the homogeneously broadened fundamental is observed, as in the NR case at 785 nm. The implications of the quenching of RR scattering are analyzed in a simple, semi-quantitative model, to conclude that the inertial evolution of the Raman packet in aqueous Br(2) occurs along multiple equivalent water-Br(2) coordinates. In distinct contrast with hydrophilic hydration in small clusters and hydrophobic hydration in clathrates, it is concluded that the hydration shell of bromine in water consists of dynamically equivalent fluxional water molecules. At 405 nm, the RR progression of Br(3)(-) is observed, accompanied by difference transitions between the breathing of the hydration shell and the symmetric stretch of the ion. The RR scattering process in this case can be regarded as the coherent photo-induced electron transfer to the solvent and its radiative back-transfer.

  20. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  1. Resonant quantum transitions in trapped antihydrogen atoms

    CERN Document Server

    Amole, C; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom’s stature lies in its simplicity and in the accuracy with which its spectrum can be measured1 and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and—by comparison with measurements on its antimatter counterpart, antihydrogen—the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state2, 3 of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave...

  2. Raman Chandrasekar

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Raman Chandrasekar. Articles written in Resonance – Journal of Science Education. Volume 13 Issue 5 May 2008 pp 430-439 General Article. How Children Learn to Use Language - An Overview of R. Narasimhan's Ideas on Child Language Acquisition.

  3. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  4. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses.

    Science.gov (United States)

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-05-19

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO(2))(1 - x)(ZnO)(x) (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T(g) has been determined for each glass, showing a monotonous decrease of T(g) with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T(d) very close to the respective T(g) values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T(g) in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T(g) and confirms the correlation between the BP and the MRO of glasses.

  5. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses

    International Nuclear Information System (INIS)

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-01-01

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO 2 ) 1-x (ZnO) x (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T g has been determined for each glass, showing a monotonous decrease of T g with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T d very close to the respective T g values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T g in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T g and confirms the correlation between the BP and the MRO of glasses.

  6. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    International Nuclear Information System (INIS)

    Brose, K.; Zouni, A.; Müh, F.; Mroginski, M.A.; Maultzsch, J.

    2013-01-01

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A g in the C 2h group is assigned to the β-Car modes ν 66 and ν 67 . Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue

  7. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brose, K., E-mail: katharina.brose@gmx.net [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Zouni, A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Müh, F. [Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz (Austria); Mroginski, M.A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Maultzsch, J. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2013-06-03

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A{sub g} in the C{sub 2h} group is assigned to the β-Car modes ν{sub 66} and ν{sub 67}. Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue.

  8. γ transitions from 30P and 32S nuclei resonance levels

    International Nuclear Information System (INIS)

    Kostin, V.Ya.; Kopanets, E.G.; Koval', A.A.

    1977-01-01

    The probability distributions of dipole and quadrupole electromagnetic transitions from resonance excitation-energy range from 6.2 to 8.3 MeV and from 9.2 to 12.0 MeV respectively, were obtained. An analysis of the distributions shows that isovector dipole electic and magnetic transitions are comparable in magnitude with transitions between bound states. Isoscalar dipole transitions are stronger by an order of magnitude than transitions between bound states. This may be attributed to the increase in isospin mixing in the resonance range of excitation of atomic nuclei. Quadrupole electrical transitions have strengths comparable with those of transitions between bound states. For magnetic quadrupole transitions, a strong increase in transition probabilities compared with transitions between bound states is noted. The isospin selection rules for γ transitions in self-conjugate nuclei are discussed

  9. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  10. Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available respectively from Raman spectroscopy study. These particle sizes are known be affected by substrate temperature during the deposition. Electron spin resonance (ESR) results demonstrated a strange antiferromagnetic to paramagnetic transition at a room...

  11. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  12. Raman scattering study of the ferroelectric phase transition in BaT i2O5

    Science.gov (United States)

    Tsukada, Shinya; Fujii, Yasuhiro; Yoneda, Yasuhiro; Moriwake, Hiroki; Konishi, Ayako; Akishige, Yukikuni

    2018-02-01

    Uniaxial ferroelectric BaT i2O5 with a Curie temperature TC of 743 K was investigated to clarify its paraelectric-ferroelectric phase-transition behavior. The mechanism is discussed on the basis of the structure from short to long ranges determined by synchrotron x-ray diffraction and the lattice dynamics probed by Raman spectroscopy. BaT i2O5 is regarded as a homogeneous system, and the lattice dynamics can be interpreted by the selection rules and tensor properties of the homogeneous structure. Angle-resolved polarized Raman spectroscopy clearly shows that an A -mode-type overdamped phonon plays the key role in the phase transition. Using a combination of experimental results and first-principles calculations, we explain the phase transition as follows: In one of three Ti O6 octahedral units, Ti vibrates along the b axis opposite an oxygen octahedral unit with large damping in the paraelectric phase, whereas this vibration is frozen in the ferroelectric phase, leading to a change in the space group from nonpolar C 2 /m to polar C 2 .

  13. Towards measuring the off-resonant thermal noise of a pendulum mirror

    CERN Document Server

    Leonhardt, V; Kloevekorn, P; Willke, B; Lück, H B; Danzmann, K

    2002-01-01

    Thermal noise is one of the dominant noise sources in interferometric length measurements and can limit the sensitivity of gravitational wave detectors. Our goal is to analyse the off-resonant thermal noise of a high Q pendulum. Therefore we interferometrically detect the length changes of a 2.3 cm long optical resonator, which for good seismic isolation consists of two multiple stage pendulums. We are able to lock the length of this optical resonator to a frequency-stabilized laser beam and as a result get the spectral density of the differential mirror movement.

  14. Disorder-induced transitions in resonantly driven Floquet topological insulators

    Science.gov (United States)

    Titum, Paraj; Lindner, Netanel H.; Refael, Gil

    2017-08-01

    We investigate the effects of disorder in Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are induced by resonantly driving a transition between the valence and conduction bands. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a mobility gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator. Interestingly, the effects of disorder are not necessarily adverse: we show that in the same quantum well, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet topological Anderson insulator (FTAI). We identify the conditions on the driving field necessary for observing such a transition.

  15. Barium Nitrate Raman Laser Development for Remote Sensing of Ozone

    Science.gov (United States)

    McCray, Christopher L.; Chyba, Thomas H.

    1997-01-01

    In order to understand the impact of anthropogenic emissions upon the earth's environment, scientists require remote sensing techniques which are capable of providing range-resolved measurements of clouds, aerosols, and the concentrations of several chemical constituents of the atmosphere. The differential absorption lidar (DIAL) technique is a very promising method to measure concentration profiles of chemical species such as ozone and water vapor as well as detect the presence of aerosols and clouds. If a suitable DIAL system could be deployed in space, it would provide a global data set of tremendous value. Such systems, however, need to be compact, reliable, and very efficient. In order to measure atmospheric gases with the DIAL technique, the laser transmitter must generate suitable on-line and off-line wavelength pulse pairs. The on-line pulse is resonant with an absorption feature of the species of interest. The off-line pulse is tuned so that it encounters significantly less absorption. The relative backscattered power for the two pulses enables the range-resolved concentration to be computed. Preliminary experiments at NASA LaRC suggested that the solid state Raman shifting material, Ba(NO3)2, could be utilized to produce these pulse pairs. A Raman oscillator pumped at 532 nm by a frequency-doubled Nd:YAG laser can create first Stokes laser output at 563 nm and second Stokes output at 599 nm. With frequency doublers, UV output at 281 nm and 299 nm can be subsequently obtained. This all-solid state system has the potential to be very efficient, compact, and reliable. Raman shifting in Ba(NO3)2, has previously been performed in both the visible and the infrared. The first Raman oscillator in the visible region was investigated in 1986 with the configurations of plane-plane and unstable telescopic resonators. However, most of the recent research has focused on the development of infrared sources for eye-safe lidar applications.

  16. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  17. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  18. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  19. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wang, Xianbin

    2013-01-01

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  20. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    Science.gov (United States)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  1. Characteristics of laser irradiated Hg sub 0 ,835 Cd sub 0 ,165 Te analysed by resonant Raman spectroscopy

    International Nuclear Information System (INIS)

    Scepanovic, M.; Jevtic, M.

    1998-01-01

    The characteristics of Hg sub 0 ,835 Cd sub 0 ,165 Te sample irradiated by a nanosecond Nd: YAG laser pulse are investigated using a resonant Raman spectroscopy. The pulse energy density of 100 mJ/cm sup 2 is close to the energy threshold of material melting under the irradiated conditions. The presented Raman spectra of the unirradiated and irradiated sample parts point out that the laser irradiation induced a little concentration change in the surface sample layers without the essential structural changes (author)

  2. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering

    Directory of Open Access Journals (Sweden)

    M. Alpers

    2004-01-01

    Full Text Available For the first time, three different temperature lidar methods are combined to obtain time-resolved complete temperature profiles with high altitude resolution over an altitude range from the planetary boundary layer up to the lower thermosphere (about 1–105 km. The Leibniz-Institute of Atmospheric Physics (IAP at Kühlungsborn, Germany (54° N, 12° E operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges: (1 Probing the spectral Doppler broadening of the potassium D1 resonance lines with a tunable narrow-band laser allows atmospheric temperature profiles to be determined at metal layer altitudes (80–105 km. (2 Between about 20 and 90 km, temperatures were calculated from Rayleigh backscattering by air molecules, where the upper start values for the calculation algorithm were taken from the potassium lidar results. Correction methods have been applied to account for, e.g. Rayleigh extinction or Mie scattering of aerosols below about 32 km. (3 At altitudes below about 25 km, backscattering in the Rotational Raman lines is strong enough to obtain temperatures by measuring the temperature dependent spectral shape of the Rotational Raman spectrum. This method works well down to about 1 km. The instrumental configurations of the IAP lidars were optimized for a 3–6 km overlap of the temperature profiles at the method transition altitudes. We present two night-long measurements with clear wave structures propagating from the lower stratosphere up to the lower thermosphere.

  3. Coupling ultracold atoms to a superconducting coplanar waveguide resonator

    OpenAIRE

    Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.

    2017-01-01

    We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...

  4. Nucleon Resonance Transition Form factors

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mokeev, Viktor I. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Aznauryan, Inna G. [Yerevan Physics Inst. (YerPhI) (Armenia)

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  5. Investigation of resonant Raman scattering in type II GaAs/AlAs superlattices

    International Nuclear Information System (INIS)

    Choi, H.

    2001-01-01

    As a consequence of the band alignment in GaAs/AIAs superlattices (SLs) and the indirect nature of bulk AIAs, quantum confinement can be used to engineer a Type II system. This produces an electron population in the AIAs longitudinal (X z ) or transverse (X xy ) zone-edge states, which is separated in both direct and reciprocal space from the hole population in the GaAs zone-centre (Γ) states. This thesis is an investigation of the electronic and vibrational structure of Type II GaAs/AIAs SLs using theoretical models and spectroscopic techniques, with special emphasis on Type II resonant Raman (RR) scattering. The majority of this thesis concerns short-period GaAs/AIAs SLs with X z as the lowest conduction band state. A model of the SL electronic band structure is presented, including the effects of interband Γ-X z mixing and the X-point camel's back structure. Interband mixing makes Γ-X z radiative transitions observable in photoluminescence (PL) and RR experiments. Phonon-assisted transitions from the X z state are also observed in PL experiments. Several of the participating phonon modes are unambiguously identified, in good agreement with recent reports. This thesis presents the first detailed experimental and theoretical study of Type II RR scattering from the incoming channel of the X z -related Type II bandgap. The X z - related Type II incoming RR spectra in the GaAs optic phonon region are compared with the Γ-related Type I outgoing RR spectra within several theoretical models. Thereby, the mechanisms of the Type II RR scattering, the origins of the RR lineshape and the polarisation dependence, are fully explained, clarifying the spectral features observed in the GaAs zone-centre optic phonon region. The Type II resonance also allows the observation of zone boundary (X-point) phonons from intervalley (IV) scattering. A model of the IV electron-phonon interaction involving X conduction band electrons and zone boundary phonons in Type II SLs is presented

  6. Dicke phase transition with multiple superradiant states in quantum chaotic resonators

    KAUST Repository

    Liu, C.; Di, Falco, A.; Fratalocchi, Andrea

    2014-01-01

    We experimentally investigate the Dicke phase transition in chaotic optical resonators realized with two-dimensional photonics crystals. This setup circumvents the constraints of the system originally investigated by Dicke and allows a detailed study of the various properties of the superradiant transition. Our experimental results, analytical prediction, and numerical modeling based on random-matrix theory demonstrate that the probability density P? of the resonance widths provides a new criterion to test the occurrence of the Dicke transition.

  7. Dicke phase transition with multiple superradiant states in quantum chaotic resonators

    KAUST Repository

    Liu, C.

    2014-06-12

    We experimentally investigate the Dicke phase transition in chaotic optical resonators realized with two-dimensional photonics crystals. This setup circumvents the constraints of the system originally investigated by Dicke and allows a detailed study of the various properties of the superradiant transition. Our experimental results, analytical prediction, and numerical modeling based on random-matrix theory demonstrate that the probability density P? of the resonance widths provides a new criterion to test the occurrence of the Dicke transition.

  8. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Resonant X-ray Raman scattering for Al, Si and their oxides

    International Nuclear Information System (INIS)

    Szlachetko, J.; Berset, M.; Dousse, J.-Cl.; Fennane, K.; Szlachetko, M.; Barrett, R.; Hoszowska, J.; Kubala-Kukus, A.; Pajek, M.

    2005-01-01

    High-resolution measurements of the resonant X-ray Raman scattering (RRS) of Al and Si and their oxides were performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, using a von Hamos Bragg-type curved crystal spectrometer. To probe the influence of chemical effects on the RRS X-ray spectra, Al 2 O 3 and SiO 2 samples were also investigated. The X-ray RRS spectra were measured at different photon beam energies tuned below the K-absorption edge. The measured spectra are compared to results of RRS calculations based on the second-order perturbation theory within the Kramers-Heisenberg approach

  10. Transition to turbulence via spatiotemporal intermittency in stimulated Raman backscattering

    International Nuclear Information System (INIS)

    Skoric, M.M.; Jovanovic, M.S.; Rajkovic, M.R.

    1996-01-01

    The spatiotemporal evolution of stimulated Raman backscattering in a bounded, uniform, weakly dissipative plasma is studied. The nonlinear model of a three-wave interaction involves a quadratic coupling of slowly varying complex amplitudes of the laser pump, the backscattered and the electron plasma wave. The corresponding set of coupled partial differential equations with nonlinear phase detuning that is taken into account is solved numerically in space time with fixed nonzero source boundary conditions. The study of the above open, convective, weakly confined system reveals a quasiperiodic transition to spatiotemporal chaos via spatiotemporal intermittency. In the analysis of transitions a dual scheme borrowed from fields of nonlinear dynamics and statistical physics is applied. An introduction of a nonlinear three-wave interaction to a growing family of paradigmatic equations which exhibit a route to turbulence via spatiotemporal intermittency is outlined in this work. copyright 1996 The American Physical Society

  11. Raman-scattering observation of the rutile-to-CaCl2 phase transition in RuO2

    International Nuclear Information System (INIS)

    Rosenblum, S.S.; Weber, W.H.; Chamberland, B.L.

    1997-01-01

    Using a diamond-anvil cell, we have probed the pressure-induced rutile-to-CaCl 2 ferroelastic phase transition in RuO 2 with Raman spectroscopy. The transition is marked by a splitting of the degenerate E g mode of the rutile phase into two nondegenerate components and by an abrupt change in the Grueneisen parameters for all the phonons. The behavior of this splitting shows good agreement with Landau close-quote s theory for a second-order phase transition, application of which yields a transition pressure of 11.8±0.3 GPa. copyright 1997 The American Physical Society

  12. Quantum logic gates using Stark-shifted Raman transitions in a cavity

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement

  13. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Venkata Ananth [CaSTL Center, Department of Chemistry, University of California, Irvine, California 92697 (United States); Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu [Department of Electrical Engineering and Computer Science, 142 Engineering Tower, University of California, Irvine, California 92697 (United States); Nowak, Derek [Molecular Vista, Inc., 6840 Via Del Oro, San Jose, California 95119 (United States)

    2016-06-06

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  14. Resonance Raman spectroscopy of xanthophylls in pigment mutant thylakoid membranes of pea.

    Science.gov (United States)

    Andreeva, Atanaska; Stoitchkova, Katerina; Busheva, Mira; Apostolova, Emilia; Várkonyi, Zsuzsanna; Garab, Gyözö

    Low-temperature resonance Raman spectroscopy was used to study the changes in the molecular structure and configuration of the major xanthophylls in thylakoid membranes isolated from mutants of pea with modified pigment content and altered structural organization of their pigment-protein complexes. The Raman spectra contained four known groups of bands, nu(1)-nu(4), which could be assigned to originate mainly from the long wavelength absorbing lutein and neoxanthin upon 514.5 nm and at 488 nm excitations, respectively. The overall configuration of these bound xanthophyll molecules in the mutants appeared to be similar to the wild type, and the configuration in the wild type was almost identical with that in the isolated main chlorophyll a/b light harvesting protein complex of photosystem II (LHCII). Significant differences were found mainly in the region of nu(4) (around 960 cm(-1)), which suggest that the macroorganization of PS II-LHCII supercomplexes and/or of the LHCII-only domains are modified in the mutants compared to the wild type. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  15. Competition between font face="Symbol">Lfont>- and V-type transitions in interference stabilization of Rydberg atoms.

    Science.gov (United States)

    Fedorov, M; Poluektov, N

    1998-01-19

    The problem of Interference Stabilization of Rydberg atoms is considered. Two kinds of Raman-type transitions can be responsible for the effect: L-type transitions via the continuum and V-type transitions via lower resonant atomic levels. The main distinctions between L- and V- stabilization are described. The conditions under which each of these two effects can exist are found and discussed.

  16. Resonant Raman scattering in Nd2O3 and the electronic structure of Sr2RuO4 studied by synchrotron radiation excitation

    International Nuclear Information System (INIS)

    Ederer, D. L.

    1998-01-01

    This paper is intended to illustrate two points. The first being the extensive growth of resonant Raman soft x-ray scattering due to the emergence of third-generation x-ray sources. With these sources, the ubiquitous presence of Raman scattering near the 3d and 4d ionization thresholds has been used to elucidate the excitation process in a number of rare earth and transition metal compounds. Such scattering can produce dramatic changes in the emission spectrum, as we show in our example of inelastic scattering at the 3d threshold of Nd 2 O 3 . Photon-in photon-out soft x-ray spectroscopy is adding a new dimension to soft x-ray spectroscopy by providing many opportunities for exciting research, especially at third-generation synchrotrons light sources. Second, it is very effective to use theory and experiment to characterize the electronic properties of materials. In particular we confirmed in-plane oxygen-ruthenium bonding in Sr 2 RuO 4 , this first copperless perovskite superconductor, by analyses using calculations, soft x-ray emission spectroscopy (SXE) and photoelectron spectroscopy (PES). Measurements of this type illustrate the importance of combining SXE and PES measurements with theoretical calculations

  17. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  18. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  19. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  20. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koc University, RumelifeneriYolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg (Germany); Acar, Selcuk; Kokal, Ilkin [Pavezyum Kimya Sanayi Dış Ticaret LTD. ŞTI., Tuzla, Istanbul (Turkey); Häßler, Wolfgang [Leibniz Institute for Solid State and Materials Research Dresden (IFW), P.O. Box 270116, 01171 Dresden (Germany)

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  1. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  2. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  3. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  4. Off-resonance suppression for multispectral MR imaging near metallic implants.

    Science.gov (United States)

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Metal artifact reduction in MRI within clinically feasible scan-times without through-plane aliasing. Existing metal artifact reduction techniques include view angle tilting (VAT), which resolves in-plane distortions, and multispectral imaging (MSI) techniques, such as slice encoding for metal artifact correction (SEMAC) and multi-acquisition with variable resonances image combination (MAVRIC), that further reduce image distortions, but significantly increase scan-time. Scan-time depends on anatomy size and anticipated total spectral content of the signal. Signals outside the anticipated spatial region may cause through-plane back-folding. Off-resonance suppression (ORS), using different gradient amplitudes for excitation and refocusing, is proposed to provide well-defined spatial-spectral selectivity in MSI to allow scan-time reduction and flexibility of scan-orientation. Comparisons of MSI techniques with and without ORS were made in phantom and volunteer experiments. Off-resonance suppressed SEMAC (ORS-SEMAC) and outer-region suppressed MAVRIC (ORS-MAVRIC) required limited through-plane phase encoding steps compared with original MSI. Whereas SEMAC (scan time: 5'46") and MAVRIC (4'12") suffered from through-plane aliasing, ORS-SEMAC and ORS-MAVRIC allowed alias-free imaging in the same scan-times. ORS can be used in MSI to limit the selected spatial-spectral region and contribute to metal artifact reduction in clinically feasible scan-times while avoiding slice aliasing. © 2014 Wiley Periodicals, Inc.

  5. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  6. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Nguyen, Phuong Tuyet

    2016-01-01

    Abstract: The working efficiency of dye-sensitized solar cells (DSCs) depends on the long-term stability of the dye itself and on the microscopic structure of the dye-semiconductor interface. Previous experimental studies of DSCs based on ruthenium dye with bipyridine ligands (N719) adsorbed...... to the TiO2substrate applied FTIR,un-polarized Raman (RS) and un-polarized resonance Raman (RRS) spectroscopy. In the un-polarized RRS studies of N719/TiO2 – DSCs the discussion of the adsorption of N719 was based on the rather weak carbonyl or carboxyl group stretching vibrations and on minor spectral...

  7. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin

    International Nuclear Information System (INIS)

    Pande, C.; Deng, H.; Rath, P.; Callender, R.H.; Schwemer, J.

    1987-01-01

    The authors present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 0 C in both H 2 O and D 2 O. The C=N stretching mode at 1660 cm -1 in H 2 O shifts to 1631 cm -1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 0 C with 406.7-nm excitation, to enhance scattering from rhodopsin (λ/sub max/ 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C=N stretch at 1664 cm -1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at ∼ 1660 cm -1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction

  8. High Resolution AFM and Single-Cell Resonance Raman Spectroscopy of Geobacter sulfurreducens Biofilms Early in Growth

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Nikolai, E-mail: nikolai.lebedev@nrl.navy.mil; Strycharz-Glaven, Sarah M.; Tender, Leonard M., E-mail: nikolai.lebedev@nrl.navy.mil [Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC (United States)

    2014-08-21

    Atomic force microscopy and confocal resonance Raman microscopy (CRRM) of single-cells were used to study the transition of anode-grown Geobacter sulfurreducens biofilms from lag phase (initial period of low current) to exponential phase (subsequent period of rapidly increasing current). Results reveal that lag phase biofilms consist of lone cells and tightly packed single-cell thick clusters crisscrossed with extracellular linear structures that appears to be comprised of nodules approximately 20 nm in diameter aligned end to end. By early exponential phase, cell clusters expand laterally and a second layer of closely packed cells begins to form on top of the first. Abundance of c-type cytochromes (c-Cyt) is threefold greater in two-cell thick regions than in one-cell thick regions. The results indicate that early biofilm growth involves two transformations. The first is from lone cells to two-dimensionally associated cells during lag phase when current remains low. This is accompanied by formation of extracellular linear structures. The second is from two- to three-dimensionally associated cells during early exponential phase when current begins to increase rapidly. This is accompanied by a dramatic increase in c-Cyt abundance.

  9. High Resolution AFM and Single-Cell Resonance Raman Spectroscopy of Geobacter sulfurreducens Biofilms Early in Growth

    International Nuclear Information System (INIS)

    Lebedev, Nikolai; Strycharz-Glaven, Sarah M.; Tender, Leonard M.

    2014-01-01

    Atomic force microscopy and confocal resonance Raman microscopy (CRRM) of single-cells were used to study the transition of anode-grown Geobacter sulfurreducens biofilms from lag phase (initial period of low current) to exponential phase (subsequent period of rapidly increasing current). Results reveal that lag phase biofilms consist of lone cells and tightly packed single-cell thick clusters crisscrossed with extracellular linear structures that appears to be comprised of nodules approximately 20 nm in diameter aligned end to end. By early exponential phase, cell clusters expand laterally and a second layer of closely packed cells begins to form on top of the first. Abundance of c-type cytochromes (c-Cyt) is threefold greater in two-cell thick regions than in one-cell thick regions. The results indicate that early biofilm growth involves two transformations. The first is from lone cells to two-dimensionally associated cells during lag phase when current remains low. This is accompanied by formation of extracellular linear structures. The second is from two- to three-dimensionally associated cells during early exponential phase when current begins to increase rapidly. This is accompanied by a dramatic increase in c-Cyt abundance.

  10. Mechanism of Exciplex Formation Between Cu-Porphyrin and Calf-thymus DNA as Revealed by Saturation Resonance Raman Spectroscopy

    NARCIS (Netherlands)

    Shvedko, A.G.; Kruglik, S.; Kruglik, S.G.; Ermolenkov, V.V.; Turpin, P.Y.; Greve, Jan; Otto, Cornelis

    1999-01-01

    The excited-state complex (exciplex) formation that results from the photoinduced interaction of water-soluble cationic copper(II) 5,10,15,20-tetrakis[4-(N-methylpyridyl)]porphyrin [Cu(TMpy-P4)] with calf-thymus DNA has been studied in detail by resonance Raman (RR) spectroscopy using both ~10 ns

  11. Measurements of line overlap for resonant spoiling of x-ray lasing transitions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Elliott, S.R.; MacGowan, B.J.; Nilsen, J.

    1994-06-01

    High-precision measurements are presented of candidate line pairs for resonant spoiling of x-ray lasing transitions in the nickel-like W 46+ , the neon-like Fe 16+ , and the neon-like La 47+ x-ray lasers. Our measurements were carried out with high-resolution crystal spectrometers, and a typical precision of 20--50 ppM was achieved. While most resonances appear insufficient for effective photo-spoiling, two resonance pairs are identified that provide a good overlap. These are the 4p 1/2 → 3d 3/2 transition in nickel-like W 46+ with the 2p 3/2 → 1s 1/2 transition in hydrogenic Al 12+ , and the 3s 1/2 → 2p 3/2 transition in neon-like La 47+ with the 1 1 S 0 -2 1 P 1 line in heliumlike Ti 20+

  12. Elastic and Raman scattering of photons from the giant dipole resonance

    International Nuclear Information System (INIS)

    Bar-Noy, T.

    1978-12-01

    In the present work we investigated nuclear Raman and elastic scattering of photons from the Giant Dipole Resonance (GDR) of medium and heavy nuclei. The photons beams were obtained from thermal neutron capture on V, Fe, Ni, Cu and Cr discs, utilizing the IRR-2 reactor. Nine targets, 159 Tb, 165 Ho, 175 Lu, 181 Ta, 197 Au, 209 Bi, 232 Th, 237 Np, and 238 U, representing all spherical and deformed nuclei in the region of medium and heavy nuclei, were used. As preliminary works, we discovered and investigated the 11.4 MeV γ-line, measured the attenuation coefficients at 9 and 11.4 MeV, performed a numerical calculation of Delbrueck amplitudes and modified the Simple Rotator Model (SRM). The absolute scattering cross-sections were measured for each scatterer at 4-8 different energies, and angular distributions in the range 90 deg to 140 deg were carried out at 9 MeV and 11.4 MeV. The experimental results were compared with theoretical predictions of the modified SRM and the Dynamic Collective Model (DCM). The results proved that the modified SRM describes appropriately the scattering from the GDR, including elastic and Raman absolute cross-sections and their angular distributions. (author)

  13. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  14. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    International Nuclear Information System (INIS)

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-01-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm -1 reveals an E 1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  15. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    Science.gov (United States)

    Möller, M.; Dacal, L. C. O.; de Lima, M. M.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.; Cantarero, A.

    2011-12-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm-1 reveals an E1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  16. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  17. Evidence of dithionite contribution to the low-frequency resonance Raman spectrum of reduced and mixed-valence cytochrome c oxidase.

    Science.gov (United States)

    Centeno, J A

    1992-02-01

    The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.

  18. Raman spectroscopy and dielectric Studies of multiple phase transitions in ZnO:Ni

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Scott, J. F.; Katiyar, R. S.

    2008-03-01

    We present Raman and dielectric data on Ni-doped ZnO (Zn1-xNixO) ceramics as a function of Ni concentration (x =0.03, 0.06, and 0.10) and temperature. A mode (around 130cm-1) is identified as TA(M) [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] and appears due to an antiferromagnetic phase transition at low temperatures (100K) via the spin-orbit mechanism [P. Moch and C. Dugautier, Phys. Lett. A 43, 169 (1973)]. A strong dielectric anomaly occurs at around 430-460K, depending on Ni concentration, and is due to extrinsic electret effects (Ni ionic conduction) and not to a ferroelectric phase transition.

  19. Electromagnetic transitions between giant resonances within a continuum-RPA approach

    NARCIS (Netherlands)

    Rodin, VA; Dieperink, AEL

    2002-01-01

    A general continuum-RPA approach is developed to describe electromagnetic transitions between giant resonances. Using a diagrammatic representation for the three-point Green's function, an expression for the transition amplitude is derived which allows one to incorporate effects of mixing of single

  20. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.

    Science.gov (United States)

    Smith, S O; Lugtenburg, J; Mathies, R A

    1985-01-01

    The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an

  1. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  2. Intermolecular interaction of photoexcited Cu(/TMpy-P4) with water studied by transient resonance Raman and picosecond absorption spectroscopies

    NARCIS (Netherlands)

    Kruglik, S.; Kruglik, Sergei G.; Ermolenkov, Vladimir V.; Shvedko, Alexander G.; Orlovich, Valentine A.; Galievsky, Victor A.; Chirvony, Vladimir S.; Otto, Cornelis; Turpin, Pierre-Yves

    1997-01-01

    photoinduced complex between Cu(TMpy-P4) and water molecules, reversibly axially coordinated to the central metal, was observed in picosecond transient absorption and nanosecond resonance Raman experiments. This complex is rapidly created (τ1 = 15 ± 5 ps) in the excited triplet (π, π*) state of

  3. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai A.; Fisch, Nathaniel J.

    2011-01-01

    Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

  4. Photolytic interruptions of the bacteriorhodopsin photocycle examined by time-resolved resonance raman spectroscopy.

    Science.gov (United States)

    Grieger, I; Atkinson, G H

    1985-09-24

    An investigation of the photolytic conditions used to initiate and spectroscopically monitor the bacteriorhodopsin (BR) photocycle utilizing time-resolved resonance Raman (TR3) spectroscopy has revealed and characterized two photoinduced reactions that interrupt the thermal pathway. One reaction involves the photolytic interconversion of M-412 and M', and the other involves the direct photolytic conversion of the BR-570/K-590 photostationary mixture either to M-412 and M' or to M-like intermediates within 10 ns. The photolytic threshold conditions describing both reactions have been quantitatively measured and are discussed in terms of experimental parameters.

  5. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    International Nuclear Information System (INIS)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs

  6. Line broadening in multiphoton processes with a resonant intermediate transition

    International Nuclear Information System (INIS)

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  7. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  8. Flat punch adhesion: transition from fracture-based to strength-limited pull-off

    International Nuclear Information System (INIS)

    Jiang, Yijie; Turner, Kevin T; Grierson, David S

    2014-01-01

    The adhesion of a cylindrical flat punch to a surface due to interatomic forces is a well-known problem that is important in many applications, including indentation experiments and the adhesion of fibrillar structures. Traditionally, the pull-off force has been related to the work of adhesion and punch geometry via the Kendall solution that uses a Griffith energy balance to assess crack propagation and pull-off. More recently, it has been shown that under certain conditions, notably at small punch diameters, the contact can behave in a ‘strength-limited’ fashion in which the interface separates uniformly rather than via crack propagation. Here, a Maugis-Dugdale-type analysis of power-law-shaped bodies in contact is used to examine the change in behaviour from the fracture-based Kendall solution to strength-limited pull-off for cylindrical flat punches. The transition from fracture-based to strength-limited behaviour is described in terms of a non-dimensional parameter that is similar to previous quantities used to describe the transition and is a function of the punch size, the elasticity of the contact, and the adhesion properties. The results of this relatively simple analysis compare favourably with results from more complex computational simulations. In addition, the results are used to develop a function that quantifies the transition between the Kendall solution and the strength-limited solution in order to facilitate interpretation of adhesion measurements in the transition regime between the two limits. Finally, the power-law analysis is used to assess the sensitivity of the transition to the exact shape of the punch. (paper)

  9. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition

    International Nuclear Information System (INIS)

    Andrikopoulos, K S; Yannopoulos, S N; Voyiatzis, G A; Kolobov, A V; Ribes, M; Tominaga, J

    2006-01-01

    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe (a-GeTe) films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous to crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed which is compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for

  10. Off-fault heterogeneities promote supershear transition of dynamic mode II cracks

    Science.gov (United States)

    Albertini, Gabriele; Kammer, David S.

    2017-08-01

    The transition from sub-Rayleigh to supershear propagation of mode II cracks is a fundamental problem of fracture mechanics. It has extensively been studied in homogeneous uniform setups. When the applied shear load exceeds a critical value, transition occurs through the Burridge-Andrews mechanism at a well-defined crack length. However, velocity structures in geophysical conditions can be complex and affect the transition. Damage induced by previous earthquakes causes low-velocity zones surrounding mature faults and inclusions with contrasting material properties can be present at seismogenic depth. We relax the assumption of homogeneous media and investigate dynamic shear fracture in heterogeneous media using two-dimensional finite element simulations and a linear slip-weakening law. We analyze the role of heterogeneities in the elastic media, while keeping the frictional interface properties uniform. We show that supershear transition is possible due to the sole presence of favorable off-fault heterogeneities. Subcritical shear loads, for which propagation would remain permanently sub-Rayleigh in an equivalent homogeneous setup, will transition to supershear as a result of reflected waves. P wave reflected as S waves, followed by further reflections, affect the amplitude of the shear stress peak in front of the propagating crack, leading to supershear transition. A wave reflection model allows to uniquely describe the effect of off-fault inclusions on the shear stress peak. A competing mechanism of modified released potential energy affects transition and becomes predominant with decreasing distance between fault and inclusions. For inclusions at far distances, the wave reflection is the predominant mechanism.

  11. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  12. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  13. Giant monopole resonance in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Garg, U.; Bogucki, P.; Bronson, J.D.; Lui, Y.; Youngblood, D.H.

    1984-01-01

    Small-angle inelastic α-scattering measurements have been made at E/sub α/ = 129 MeV on /sup 144,148/Sm and /sup 142,146,150/Nd to investigate the giant monopole resonance in transitional and deformed nuclei. The experimental data reveal a mixing of L = 0 and L = 2 modes in 148 Sm resulting in almost identical angular distributions for the two components of the giant resonance peaks in the angular range 2 0 --6 0 . A ''splitting'' of the giant monopole resonance is observed in 150 Nd; the extent of this splitting is smaller than that reported for 154 Sm. Comparison is made with the predictions of various theoretical models

  14. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  15. Structure and reactivity of thiazolium azo dyes: UV-visible, resonance Raman, NMR, and computational studies of the reaction mechanism in alkaline solution.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Moore, John N

    2013-03-07

    UV-visible absorption, resonance Raman, and (1)H NMR spectroscopy, allied with density functional theory (DFT) calculations, have been used to study the structure, bonding, and alkaline hydrolysis mechanism of the cationic thiazloium azo dye, 2-[2-[4-(diethylamino)phenyl]diazenyl]-3-methyl-thiazolium (1a), along with a series of six related dyes with different 4-dialkylamino groups and/or other phenyl ring substituents (2a-c, 3a-c) and the related isothiazolium azo dye, 5-[2-[4-(dimethylamino)phenyl]diazenyl]-2-methyl-isothiazolium (4). These diazahemicyanine dyes are calculated to have a similar low-energy structure that is cis, trans at the (iso)thiazolium-azo group, and for which the calculated Raman spectra provide a good match with the experimental data; the calculations on these structures are used to assign and discuss the transitions giving rise to the experimental spectra, and to consider the bonding and its variation between the dyes. UV-visible, Raman, and NMR spectra recorded from minutes to several weeks after raising the pH of an aqueous solution of 1a to ca. 11.5 show that the dominant initial step in the reaction is loss of diethylamine to produce a quinonimine (ca. hours), with subsequent reactions occurring on longer time scales (ca. days to weeks); kinetic analyses give a rate constant of 2.6 × 10(-2) dm(3) mol(-1) s(-1) for reaction of 1a with OH(-). UV-visible spectra recorded on raising the pH of the other dyes in solution show similar changes that are attributed to the same general reaction mechanism, but with different rate constants for which the dependence on structure is discussed.

  16. Frequency Comb Driven Raman Transitions in the THz Range: High Precision Isotope Shift Measurements in Ca+

    DEFF Research Database (Denmark)

    Meyer, Steffen

    2017-01-01

    and frequency resolved optical gating (FROG) are used, and the two frequency comb systems used for the experiments are thoroughly characterized, a Coherent Mira Ti:sapph oscillator and a MenloSystems fiber based frequency comb system. The potential of frequency comb driven Raman transitions is shown...... transition frequencies typically are on the order of a few THz. High precision measurements on these ions have many intriguing applications, for example the test of time-variations of fundamental constants, ultracold chemistry on the quantum level, and quantum information and computing, to name just a few...

  17. Raman study of molecular motions in relation to phase transitions in [Ni(NH3)6](NO3)2

    International Nuclear Information System (INIS)

    Janik, J.M.; Pick, R.M.; Le Postollec, M.

    1987-01-01

    A Raman band at 710 cm -1 has been used for the study of the NO 3 - ions reorientation and of the phase transitions in [Ni(NH 3 ) 6 ](NO 3 ) 2 . The strong temperature dependence of the width of this band in phase 1 gives evidence for the NO 3 - reorientations in this phase. The reorientations stop in phase 2. The same band was used for studying the phase 2/phase 3 transition. The large thermal hysteresis of this transition has ben confirmed. 16 refs., 4 figs. (author)

  18. Raman spectra of ordinary and deuterated liquid ammonias; Spectres Raman des ammoniacs ordinaire et deuteries liquides

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Leicknam, J P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, direction des materiaux et des combustibles nucleaires, departement de physico-chimie, service des isotopes stables, service de spectrometrie de masse

    1968-12-01

    The three deuterated ammonia molecules, as well as ordinary ammonia, have been examined in the liquid state by Raman spectroscopy using a high-pressure cell described elsewhere. This work thus completes the infrared spectrometry studies. We have examined the NH and ND valency absorption regions. The polarization measurements and isotope effect considerations make it possible to confirm most of the attributions recently proposed for interpreting the infrared spectra of the four isotopic molecules: the apparent disagreement between the NH{sub 3} and ND{sub 3} spectra obtained in this region by infrared and Raman spectroscopy is discussed: by the first technique the number of bands in the spectra corresponds well to the theoretically expected number, and the relative intensities conform more or less to expectations; the Raman spectra however have a strong supplementary band in the same region, produced by a Fermi resonance; it is possible to explain, from theoretical considerations, why this resonance appears so easily in the Raman spectrum, whereas it is detected in the infrared only by a very detailed analysis of the effects of solvents on the ammonia. (authors) [French] Les trois ammoniacs deuteries, ainsi que l'ammoniac ordinaire, sont examines a l'etat liquide par spectrometrie Raman, a l'aide d'une cuve haute pression decrite par ailleurs. Ce travail complete donc les etudes effectuees par spectrometrie infra-rouge. Nous avons examine les regions d'absorption de valence NH et ND. Les mesures de polarisation et des considerations sur les effets isotopiques permettent de confirmer la plupart des attributions proposees recemment pour interpreter les spectres infra-rouges des quatre molecules isotopiques: on discute egalement l'apparent desaccord entre les spectres de NH{sub 3} et de ND{sub 3} obtenus dans cette region par infra-rouge et Raman: par la premiere technique le nombre de bandes relevees sur les spectres correspond bien au nombre theoriquement attendu et

  19. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  20. Enhanced detection of explosives by turn-on resonance Raman upon host-guest complexation in solution and the solid state

    DEFF Research Database (Denmark)

    Witlicki, Edward H.; Bähring, Steffen; Johnsen, Carsten

    2017-01-01

    complexation occur via a mechanism of resonance between the 785 nm laser line and the strongly absorbing charge-transfer chromophore arising from the complex between electron-donating TTF-C[4]P and electron-accepting nitroaromatic explosives. The addition of chloride forms the Cl-·TTF-C[4]P complex resetting......The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte...

  1. Measurements of vitamin B12 in human blood serum using resonance Raman spectroscopy

    Science.gov (United States)

    Tsiminis, G.; Schartner, E. P.; Brooks, J. L.; Hutchinson, M. R.

    2016-12-01

    Vitamin B12 (cobalamin and its derivatives) deficiency has been identified as a potential modifiable risk factor for dementia and Alzheimer's disease. Chronic deficiency of vitamin B12 has been significantly associated with an increased risk of cognitive decline. An effective and efficient method for measuring vitamin B12 concentration in human blood would enable ongoing tracking and assessment of this potential modifiable risk factor. In this work we present an optical sensor based on resonance Raman spectroscopy for rapid measurements of vitamin B12 in human blood serum. The measurement takes less than a minute and requires minimum preparation (centrifuging) of the collected blood samples.

  2. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-10-15

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects. (orig.)

  3. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  4. Pressure-Raman study of resonant TO(Γ)-two-phonon decay processes in ZnS: Comparison of three isotope compositions

    International Nuclear Information System (INIS)

    Tallman, R.E.; Weinstein, B.A.; Serrano, J.; Lauck, R.; Cardona, M.; Cantarero, A.; Garro, N.; Ritter, T.M.

    2004-01-01

    Pressure-Raman studies (to 15 GPa, at 300 K and 16 K) are reported on 64 Zn 34 S, 68 Zn 32 S, and natural ZnS to compare the effects of resonant 3-phonon mixing on the TO(Γ) phonons for the different isotope compositions. Under pressure the TO(Γ) Raman profiles exhibit several distinct features, and a sharp Lorentzian TO(Γ) peak eventually emerges at a threshold pressure P Th that differs for each isotope composition. These effects are due to resonant mixing of the TO(Γ) phonon with TA+LA combination modes. Calculations based on a bond-charge model and perturbation theory reproduce the observed pressure variations in the shape and the width of the TO(Γ) peaks. It is shown that these changes relate to singularities in the TA+LA density of states. Mass scaling of the TO(Γ) and TA+LA modes explains the isotope effect on P Th , and leads to the estimate γ LA(W) ∝1.2. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Two-magnon Raman scattering in a spin density wave antiferromagnet

    OpenAIRE

    Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin

    1996-01-01

    We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...

  6. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  7. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  8. Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quench resonance Raman spectroscopy.

    Science.gov (United States)

    Matsumura, Hirotoshi; Moënne-Loccoz, Pierre

    2014-01-01

    The combination of rapid freeze quenching (RFQ) with resonance Raman (RR) spectroscopy represents a unique tool with which to investigate the nature of short-lived intermediates formed during the enzymatic reactions of metalloproteins. Commercially available equipment allows trapping of intermediates within a millisecond to second time scale for low-temperature RR analysis resulting in the direct detection of metal-ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses RFQ-RR studies carried out previously in our laboratory and presents, as a practical example, protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) under anaerobic conditions. Also described are important controls and practical procedures for the analysis of these samples by low-temperature RR spectroscopy.

  9. Diffusion-weighted magnetic resonance imaging in the prostate transition zone: histopathological validation using magnetic resonance-guided biopsy specimens

    NARCIS (Netherlands)

    Hoeks, C.M.A.; Vos, E.K.; Bomers, J.G.R.; Barentsz, J.O.; Kaa, C.A. van de; Scheenen, T.W.J.

    2013-01-01

    OBJECTIVES: The objective of this study was to evaluate the apparent diffusion coefficient (ADC) of diffusion-weighted magnetic resonance (MR) imaging for the differentiation of transition zone cancer from non-cancerous transition zone with and without prostatitis and for the differentiation of

  10. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    Science.gov (United States)

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  11. Raman and infrared spectroscopic investigations of a ferroelastic phase transition in B a2ZnTe O6 double perovskite

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson

    2018-05-01

    The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.

  12. Al-doped MgB{sub 2} materials studied using electron paramagnetic resonance and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Albertstr. 19, Freiburg (Germany)

    2016-05-16

    Undoped and aluminum (Al) doped magnesium diboride (MgB{sub 2}) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB{sub 2}. Above a certain level of Al doping, enhanced conductive properties of MgB{sub 2} disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  13. Nonlinear narrow Doppler-free resonances for optical transitions and annihilation radiation of a positronium atom

    International Nuclear Information System (INIS)

    Letokhov, V.S.; Minogin, V.G.

    1976-01-01

    The possibilities of obtaining narrow resonances without the Doppler broadening for transition between the fine structure levels of the ground and first excited states of a positronium atom are considered. An analysis is carried out of the conditions required for observation of the narrow resonances of saturation of single quantum absorption in the 1S-2P transitions and observation of narrow two-photon absorption resonances in the 1S-2S transitions. It is shown that narrow 2γ annihilation radiation lines of a positronium atom may be obtained with a width much smaller than the Doppler one

  14. Evaluation of strain in GaN/AlN quantum dots by means of resonant Raman scattering: the effect of capping

    Energy Technology Data Exchange (ETDEWEB)

    Cros, A.; Budagosky, J.A.; Garro, N.; Cantarero, A. [Institut de Ciencia del Materials, Universitat de Valencia, 46071 Valencia (Spain); Coraux, J.; Renevier, H.; Favre-Nicolin, V. [CEA-CNRS Group, ' ' Nanophysique et Semiconducteurs' ' , DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Universite Joseph Fourier, BP 53, 38041 Grenoble Cedex 9 (France); Proietti, M.G. [Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Daudin, B. [CEA-CNRS Group, ' ' Nanophysique et Semiconducteurs' ' , DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2007-06-15

    We have studied in detail changes in the strain state of GaN/AlN quantum dots during the capping process. {mu}-Raman scattering experiments allowed the detection of a resonant mode which provided information on the evolution of strain with capping. Simultaneously, Multiwavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) experiments were performed on the same samples, providing the independent determination of the wurtzite lattice parameters a and c. The remarkable agreement between Raman and X-ray data stands out the suitability of polar vibrational modes for the determination of strain in nanostructures. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Stand-off imaging Raman spectroscopy for forensic analysis of post-blast scenes: trace detection of ammonium nitrate and 2,4,6-trinitrotoluene

    Science.gov (United States)

    Ceco, Ema; Önnerud, Hans; Menning, Dennis; Gilljam, John L.; Bââth, Petra; Östmark, Henric

    2014-05-01

    The following paper presents a realistic forensic capability test of an imaging Raman spectroscopy based demonstrator system, developed at FOI, the Swedish Defence Research Agency. The system uses a 532 nm laser to irradiate a surface of 25×25mm. The backscattered radiation from the surface is collected by an 8" telescope with subsequent optical system, and is finally imaged onto an ICCD camera. We present here an explosives trace analysis study of samples collected from a realistic scenario after a detonation. A left-behind 5 kg IED, based on ammonium nitrate with a TNT (2,4,6-trinitrotoluene) booster, was detonated in a plastic garbage bin. Aluminum sample plates were mounted vertically on a holder approximately 6 m from the point of detonation. Minutes after the detonation, the samples were analyzed with stand-off imaging Raman spectroscopy from a distance of 10 m. Trace amounts could be detected from the secondary explosive (ammonium nitrate with an analysis time of 1 min. Measurement results also indicated detection of residues from the booster (TNT). The sample plates were subsequently swabbed and analyzed with HPLC and GC-MS analyses to confirm the results from the stand-off imaging Raman system. The presented findings indicate that it is possible to determine the type of explosive used in an IED from a distance, within minutes after the attack, and without tampering with physical evidence at the crime scene.

  16. Time-frequency analysis of the restricted three-body problem: transport and resonance transitions

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V; Marsden, Jerrold E

    2004-01-01

    A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space

  17. Raman overtone intensities measured for H2

    International Nuclear Information System (INIS)

    Shelton, D.P.

    1990-01-01

    The Raman spectra of the vibrational fundamental, first overtone and second overtone transitions of the H 2 molecule were recorded using visible and ultraviolet argon--ion laser excitation. The ratios of transition polarizability matrix elements, α 01,21 /α 01,11 and α 01,31 /α 01,11 , were determined from the measured intensities of the Q(1) Raman lines v,J=0,1→v',1 for v'=1,2,3. The experimentally determined value of the Raman first overtone matrix element is in good agreement with the value from the best ab initio calculation

  18. Pump Side-scattering in Ultra-powerful Backward Raman Amplifiers

    International Nuclear Information System (INIS)

    Solodov, A.A.; Malkin, V.M.; Fisch, N.J.

    2004-01-01

    Extremely large laser power might be obtained by compressing laser pulses through backward Raman amplification (BRA) in plasmas. Premature Raman backscattering of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even as the desired amplification of the seed persists with a high efficiency. In this paper, we analyze side-scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller than that of backscattering, the side-scattering can nevertheless be dangerous, because of a longer path of side-scattered pulses in plasmas and because of an angular dependence of the Raman resonance detuning. We show that side-scattering of laser pumps by plasma noise in BRA might be suppressed to a tolerable level at all angles by an appropriate combination of two detuning mechanisms associated with plasma density gradient and pump chirp

  19. A new method for detection of the electron temperature in laser-plasma short wave cut off of stimulated Raman scattering spectrum

    International Nuclear Information System (INIS)

    Zhang Jiatai

    1994-01-01

    From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments

  20. Interference in the resonance fluorescence of two incoherently coupled transitions

    International Nuclear Information System (INIS)

    Kiffner, Martin; Evers, Joerg; Keitel, Christoph H.

    2006-01-01

    The fluorescence light emitted by a four-level system in J=1/2 to J=1/2 configuration driven by a monochromatic laser field and in an external magnetic field is studied. We show that the spectrum of resonance fluorescence emitted on the π transitions shows a signature of spontaneously generated interference effects. The degree of interference in the fluorescence spectrum can be controlled by means of the external magnetic field, provided that the Lande g factors of the excited and the ground state doublet are different. For a suitably chosen magnetic field strength, the relative weight of the Rayleigh line can be completely suppressed, even for low intensities of the coherent driving field. The incoherent fluorescence spectrum emitted on the π transitions exhibits a very narrow peak whose width and weight depend on the magnetic field strength. We demonstrate that the spectrum of resonance fluorescence emitted on the σ transitions shows an indirect signature of interference. A measurement of the relative peak heights in the spectrum from the σ transitions allows us to determine the branching ratio of the spontaneous decay of each excited state into the σ channel

  1. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    International Nuclear Information System (INIS)

    Bai, H; Chen, P; Fang, H; Lin, L; Tang, G Q; Mu, G G; Gong, W; Liu, Z P; Wu, H; Zhao, H; Han, Z C

    2011-01-01

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability ( -1 , symmetric stretching of C–C in lipids at 877 cm -1 and CH deformation in proteins at 1342 cm -1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules

  2. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  3. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  4. Raman spectroscopy, dielectric properties and phase transitions of Ag{sub 0.96}Li{sub 0.04}NbO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Niewiadomski, Adrian, E-mail: aniewiadomski@us.edu.pl [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kania, Antoni [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kugel, Godefroy E. [LMPOS, University of Metz and Supelec Metz, 2 rue E. Belin, Metz 57070 (France); Hafid, Mustapha [LPGC Dept. of Physics BP 133, Faculty of Science, Ibn Tofail University, 14000 Kenitra (Morocco); Sitko, Dorota [Institute of Physics, Pedagogical University, ul. Podchorazych 2, PL 30-084 Krakow (Poland)

    2015-05-15

    Highlights: • First Raman scattering studies of Ag{sub 0.96}Li{sub 0.04}NbO{sub 3}, allowed us to correlate temperature evolution of relaxational frequency γ{sub R}(T) with the Nb-ion dynamics and showed its changes at freezing temperature and ferrielectric transition. - Abstract: Silver lithium niobates Ag{sub 1−x}Li{sub x}NbO{sub 3} are promising lead free piezoelectrics. Good quality Ag{sub 0.96}Li{sub 0.04}NbO{sub 3} ceramics were obtained. Dielectric and DSC studies showed that, in comparison to AgNbO{sub 3,} temperatures of phase transitions slightly decrease. Dielectric studies pointed to enhancement of polar properties. Remnant polarisations achieves value of 0.6 μC/cm{sup 2}. Maximum of ϵ(T) dependences related to the relaxor-like ferroelectric/ferrielectric M{sub 1}–M{sub 2} transition becomes higher and more frequency dependent. Analysis of Raman spectra showed that two modes at 50 and 194 cm{sup −1} exhibit significant softening. Low frequency part of the Raman spectra which involve central peak and soft mode were analysed using two models. CP was assumed as relaxational vibration and described by Debye function. The slope of temperature dependences of relaxational frequency γ{sub R}(T) changes at approximately 470 and 330 K, indicating that slowing down process of relaxational vibrations changes in the vicinity of partial freezing of Nb-ion dynamics T{sub f} and further freezing at ferroelectric/ferrielectric phase transition.

  5. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.

    Science.gov (United States)

    Baumgart, Judith; Humbert, Laure; Boulais, Étienne; Lachaine, Rémi; Lebrun, Jean-Jaques; Meunier, Michel

    2012-03-01

    A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (transfection for skin cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.

    Science.gov (United States)

    Odedra, Smita; Wimperis, Stephen

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking 23 Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Hemoglobin structural dynamics as monitored by resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Spiro, T.G.

    1981-01-01

    Resonance Raman spectra of the heme group are now understood at a level sufficient to provide a useful monitor of several heme structural features. Some porphyrin vibrational frequencies are sensitive to Fe oxidation state, or π-electron distribution, and give insight into the electronic structure of O 2 , CO and NO hemes. Others are sensitive to Fe spin-state, via the associated geometry variation, and provide an accurate index of the porphyrin core size. When examined during the photolysis of CO-hemoglobin via short laser pulses, these frequencies indicate that conversion from low- to h+gh-spin Fe 11 takes place within 30 ps of photolysis, presumably via intersystem-crossing in the excited state, but that the subsequent relaxation of the Fe atom out of the heme plane takes longer than 20 ns, probably because of restraint by the protein. Axial ligand modes have been identified for several heme derivatives. The Fe-imidazole frequency in deoxyhemoglobin is appreciably lowered in the T quaternary structure, as determined in both static and kinetic experiments, suggesting molecular tension or proximal imidazole H-bond weakening in the T state. (author)

  8. High pressure Raman scattering study on the phase stability of LuVO4

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Sakuntala, T.; Achary, S.N.; Tyagi, A.K.

    2009-01-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO 4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported. - Graphical abstract: Study of scheelite-fergusonite transition in RVO 4 by Raman spectroscopy is rare. Here we report Raman spectroscopic investigations of LuVO 4 at high pressure to obtain insight into nature of post-scheelite phases.

  9. Pressure-Raman study of resonant TO({gamma})-two-phonon decay processes in ZnS: Comparison of three isotope compositions

    Energy Technology Data Exchange (ETDEWEB)

    Tallman, R.E.; Weinstein, B.A. [Department of Physics, SUNY at Buffalo, NY 14260-1500 (United States); Serrano, J.; Lauck, R.; Cardona, M. [Max Plank Institut fuer Festkoerperforschung, 70569 Stutgart (Germany); Cantarero, A.; Garro, N. [Institut de Ciencia dels Materials, Universtitat de Valencia, E-46071 Valencia (Spain); Ritter, T.M. [Department of Chemistry and Physics,UNC Pembroke, North Carolina 28372 (United States)

    2004-11-01

    Pressure-Raman studies (to 15 GPa, at 300 K and 16 K) are reported on {sup 64}Zn{sup 34}S, {sup 68}Zn{sup 32}S, and natural ZnS to compare the effects of resonant 3-phonon mixing on the TO({gamma}) phonons for the different isotope compositions. Under pressure the TO({gamma}) Raman profiles exhibit several distinct features, and a sharp Lorentzian TO({gamma}) peak eventually emerges at a threshold pressure P{sub Th} that differs for each isotope composition. These effects are due to resonant mixing of the TO({gamma}) phonon with TA+LA combination modes. Calculations based on a bond-charge model and perturbation theory reproduce the observed pressure variations in the shape and the width of the TO({gamma}) peaks. It is shown that these changes relate to singularities in the TA+LA density of states. Mass scaling of the TO({gamma}) and TA+LA modes explains the isotope effect on P{sub Th}, and leads to the estimate {gamma}{sub LA(W)} {proportional_to}1.2. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  11. Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator

    Science.gov (United States)

    Chen, H. Y.; MacQuarrie, E. R.; Fuchs, G. D.

    2018-04-01

    We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain coupled to a NV center's orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multiphonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV-center orbital states.

  12. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.

    Science.gov (United States)

    Saariaho, Anna-Maija; Jääskeläinen, Anna-Stiina; Nuopponen, Mari; Vuorinen, Tapani

    2003-01-01

    Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.

  13. Hybrid lasers produced in potassium vapor by off-resonance pumping

    International Nuclear Information System (INIS)

    Clark, B.K.; Stack, C.A.; Muehsler, H.E.

    1993-01-01

    Pulsed amplified emissions are observed at or near atomic transitions cascading down from the K(6S) and K(4D 5/2 ) states, when a pulsed dye laser is tuned near the K(6S left-arrow 4 3/2,1/2 ) and the K(4D 5/2 left-arrow 4P 3/2 ) transitions. Emissions are suppressed when the pulsed dye laser is tuned to the K(4D 3/2 left-arrow 4P 5/3,3/2 ) transitions. The pulsed dye laser is used to excite molecules in a heat-pipe oven from high-bring ro-vibrational levels in the K 2 (X 1 Σ g + ) ground state to ro-vibrational levels in the K 2 (B 1 product u ) state that predissociate to K(4S) and K(4P) atoms. The transitions can be pumped when the laser is tuned sufficiently close to the atomic resonances. We discuss the non-linear mechanisms responsible for the observed emissions. Emissions cascading down from the K(4S) state were first reported by Wang et al

  14. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  15. Theoretical investigation of the hyper-Raman scattering in hexagonal semiconductors under two-photon excitation near resonance with the An=2 exciton level

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The hyper-Raman scattering of light by LO-phonons under two-photon excitation near resonance with the An=2 exciton level in the wurtzite semiconductors A2B6 was theoretically investigated, taking into account the influence of the complex structure of the top valence band.

  16. Off-resonance transformer charging for 250-kV water Blumlein

    International Nuclear Information System (INIS)

    Cook, E.; Reginato, L.

    1978-01-01

    An off-resonance transformer for charging a 250-kV Blumlein system provides a viable alternative to other charging schemes by permitting the use of conventional thyratrons. Such a transformer must have reliability, a reasonable voltage step-up, and a non-reversing primary current. The analysis, design, and performance data for such a transformer are presented. The strong interrelationship between transformer design and Blumlein requirements necessitates that Blumlein description and design criterion be briefly presented prior to transformer design such that transformer load requirements be defined

  17. Phase transformation in multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-02-28

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  18. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  19. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    Science.gov (United States)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  20. Theoretical treatment of the processes involving the dipole transitions to the lowest exciton states in hexagonal semiconductors

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The treatment of the two-photon transitions to the An=1 exciton level and the resonant Raman scattering of light by LO-phonons is given for the hexagonal semiconductors A2B6, taking into account the influence of the complex top valence band and anisotropy of the exciton effective mass.

  1. Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.

    Science.gov (United States)

    Soo, Caroline H; Donelan, J Maxwell

    2012-02-01

    In human walking, each transition to a new stance limb requires redirection of the center of mass (COM) velocity from one inverted pendulum arc to the next. While this can be accomplished with either negative collision work by the leading limb, positive push-off work by the trailing limb, or some combination of the two, physics-based models of step-to-step transitions predict that total positive work is minimized when the push-off and collision work are equal in magnitude. Here, we tested the importance of the coordination of push-off and collision work in determining transition work using ankle and knee joint braces to limit the ability of a leg to perform positive work on the body. To isolate transitions from other contributors to walking mechanics, participants were instructed to rock back and forth from one leg to the other, restricting motion to the sagittal plane and eliminating the need to swing the legs. We found that reduced push-off work increased the collision work required to complete the redirection of the COM velocity during each transition. A greater amount of total mechanical work was required when rocking departed from the predicted optimal coordination of step-to-step transitions, in which push-off and collision work are equal in magnitude. Our finding that transition work increases if one or both legs do not push-off with the optimal coordination may help explain the elevated metabolic cost of pathological gait irrespective of etiology. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    Science.gov (United States)

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  3. Evaluating Iron Content and Tissue Microstructure with Off-Resonance Saturation MRI

    Science.gov (United States)

    Fahmy, Sherif R.

    We present three magnetic resonance imaging (MRI) studies, each focused on applying off-resonance saturation (ORS) imaging to a different context or application. Particularly, we are interested in using ORS to evaluate the uptake of superparamagnetic MRI contrast agents in biological tissue, and to evaluate endogenous iron content. This relies on ORS being applied at low off-resonance frequency offsets where most of the negative contrast is due to signal loss from direct saturation of the water content of the sample. Additionally, we wish to combine this information with magnetization transfer contrast, which is obtained by applying ORS at offsets that are far from the resonance frequency, where magnetization transfer (MT) becomes the dominant effect rather than direct saturation (DS). In the first study, we observed the uptake of ultra-small superparamagnetic iron oxide (USPIO) nanoparticles in a simple model system by imaging the uptake in healthy murine liver in vivo, and by testing different metrics to quantify the uptake. Through this process, we discovered an approach that provides high sensitivity and specificity in low-signal scenarios. In the second study, we evaluated image contrast between brain regions in healthy human adults, and related these to the expected iron content in different regions based on age. Images were evaluated based on different MRI contrast mechanisms including quantitative transverse relaxation rates, as well as parameters obtained from ORS imaging. We also performed a field inhomogeneity adjustment on low-offset ORS data using the information obtained from the coarsely sampled ORS spectrum, and this was sufficient to correct for the inhomogeneities. In the third study, we used transverse relaxation, DS - which is strongly dependent on iron content, and MT contrast, in order to classify ex vivo brain samples having Alzheimer's disease pathology and normal controls, and were able to find strong classifiers. The three studies helped

  4. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Interaction between confined phonons and photons in periodic silicon resonators

    Science.gov (United States)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  6. ‘Face’ and psychological processes of laid-off workers in transitional China

    Directory of Open Access Journals (Sweden)

    Bingxin Wang

    2016-08-01

    Full Text Available Objective: The objective was to explore the psychological experiences of laid-off workers in contemporary transitional China and to formulate a theoretical model of these. Methods: In-depth interviews of 26 laid-off workers were conducted and analysed using grounded theory techniques. Results: Four themes underline the psychological processes of these laid-off workers – feeling of loss, feeling of physical pain, feeling of fatalism, and final acceptance. These are characterized by Chinese culture and its philosophy – feeling of loss is dominated by their loss of face (diu mianzi, physical pain is a somatization of their mental painfulness, their fatalism is traced back to the Chinese ancient theocratic concept of Tian Ming, and their acceptance of reality to their final making face (zheng mianzi is sourced from both Confucianism and Daoism. Conclusion: The psychological experience of laid-off workers (or unemployed workers is likely to have varied manifestations in different cultural contexts. The psychological processes of Chinese laid-off workers (or unemployed workers might be different from those of laid-off workers in Western countries. A therapeutic intervention to cater for the needs of laid-off workers derived from the four themes might be effective.

  7. Micro-Raman scattering and dielectric investigations of phase transitions behavior in the PbHf0.7Sn0.3O3 single crystal

    Science.gov (United States)

    Jankowska-Sumara, Irena; Ko, Jae-Hyeon; Podgórna, Maria; Oh, Soo Han; Majchrowski, Andrzej

    2017-09-01

    Raman light scattering was used to detect the sequence of transitions in a PbHf1-xSnxO3 (PHS) single crystal with x = 0.30 in a temperature range of 77-873 K. Changes of Raman spectra were observed in the vicinity of structural phase transitions: between the antiferroelectric (AFE1)-antiferroelectric (AFE2)—intermediate—paraelectric phases. Light scattering and dielectric investigations were used to find out the nature and sequence of the phase transition, as well as the large dielectric permittivity values measured at the phase transition, by searching for the soft-phonon-mode behavior. The experimentally recorded spectra were analyzed in terms of the damped-harmonic oscillator model for the phonon bands. It is demonstrated that the structural phase transformations in PHS can be considered as the result of softening of many modes, not only the ferroelectric one. It was also proved that locally broken symmetry effects are present at temperatures far above the Curie temperature and are connected with the softening of two optic modes of different nature.

  8. Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2008-12-01

    Full Text Available This review presents the development of a Raman Tweezers system for detecting hemoglobin-related blood disorders at a single cell level. The study demonstrates that the molecular fingerprint insight provided by Raman analysis holds great promise for distinguishing between healthy and diseased cells in the field of biomedicine. Herein a Raman Tweezers system has been applied to investigate the effects of thalassemia, a blood disease quite diffuse in the Mediterranean Sea region. By resonant excitation of hemoglobin Raman bands, we examined the oxygenation capability of normal, alpha- and beta-thalassemic erythrocytes. A reduction of this fundamental red blood cell function, particularly severe for beta-thalassemia, has been found. Raman spectroscopy was also used to draw hemoglobin distribution inside single erythrocytes; the results confirmed the characteristic anomaly (target shape, occurring in thalassemia and some other blood disorders. The success of resonance Raman spectroscopy for thalassemia detection reported in this review provide an interesting starting point to explore the application of a Raman Tweezers system in the analysis of several blood disorders.

  9. Raman E sub 1 , E sub 1 + DELTA sub 1 resonance in nonstressed quantum dots of germanium

    CERN Document Server

    Talochkin, A B; Efanov, A V; Kozhemyako, I G; Shumskij, V N

    2001-01-01

    The Raman light scattering on the optical phonons in the nonstressed Ge quantum dots, obtained in the GaAs/ZnSe/Ge/ZnSe structures is studied through the molecular-beam epitaxy. The E sub 1 , E sub 1 + DELTA sub 1 resonance energy shift, connected with quantization of the electron and hole states spectrum in the quantum dots is observed. Application of the simplest localization model with an account of the Ge electron states spectrum made it possible to explain the observed peculiarities

  10. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  11. Comparative study of the two-phonon Raman bands of silicene and graphene

    International Nuclear Information System (INIS)

    Popov, Valentin N; Lambin, Philippe

    2016-01-01

    We present a computational study of the two-phonon Raman spectra of silicene and graphene within a density-functional non-orthogonal tight-binding model. Due to the presence of linear bands close to the Fermi energy in the electronic structure of both structures, the Raman scattering by phonons is resonant. We find that the Raman spectra exhibit a crossover behavior for laser excitation close to the π-plasmon energy. This phenomenon is explained by the disappearance of certain paths for resonant Raman scattering and the appearance of other paths beyond this energy. Besides that, the electronic joint density of states (DOS) is divergent at this energy, which is reflected on the behavior of the Raman bands of the two structures in a qualitatively different way. Additionally, a number of Raman bands, originating from divergent phonon DOS at the M point and at points, inside the Brillouin zone, is also predicted. The calculated spectra for graphene are in excellent agreement with available experimental data. The obtained Raman bands can be used for structural characterization of silicene and graphene samples by Raman spectroscopy. (paper)

  12. Raman scattering in a nearly resonant density ripple

    International Nuclear Information System (INIS)

    Barr, H.C.; Chen, F.F.

    1987-01-01

    Stimulated Raman scattering of light waves by an underdense plasma is affected by the presence of a density ripple caused by a simultaneously occurring stimulated Brillouin instability. The problem is treated kinetically for the particularly interesting case where the ripple has nearly the same wavelength as the plasma wave. The ripple is found to reduce the growth rate of the usual Raman instability but allows other decay modes to occur. Numerical results for the frequencies, growth rates, and k spectra of these modes are obtained. A physical explanation is given for a baffling result of the calculation. The physical picture is also of interest to particle acceleration by plasma waves

  13. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    Science.gov (United States)

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.

  14. Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy

    International Nuclear Information System (INIS)

    Siqueira, Kisla P. F.; Dias, Anderson

    2011-01-01

    Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2–5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature–time–pressure conditions.

  15. Density functional theory and Raman spectroscopy applied to structure and vibrational mode analysis of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro- benzimidazolocarbocyanine iodide and its aggregate.

    Science.gov (United States)

    Aydin, Metin; Dede, Özge; Akins, Daniel L

    2011-02-14

    We have measured electronic and Raman scattering spectra of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro-benzimidazolocarbocyanine iodide (TTBC) in various environments, and we have calculated the ground state geometric and spectroscopic properties of the TTBC cation in the gas and solution phases (e.g., bond distances, bond angles, charge distributions, and Raman vibrational frequencies) using density functional theory. Our structure calculations have shown that the ground state equilibrium structure of a cis-conformer lies ∼200 cm(-1) above that of a trans-conformer and both conformers have C(2) symmetry. Calculated electronic transitions indicate that the difference between the first transitions of the two conformers is about 130 cm(-1). Raman spectral assignments of monomeric- and aggregated-TTBC cations have been aided by density functional calculations at the same level of the theory. Vibrational mode analyses of the calculated Raman spectra reveal that the observed Raman bands above 700 cm(-1) are mainly associated with the in-plane deformation of the benzimidazolo moieties, while bands below 700 cm(-1) are associated with out-of-plane deformations of the benzimidazolo moieties. We have also found that for the nonresonance excited experimental Raman spectrum of aggregated-TTBC cation, the Raman bands in the higher-frequency region are enhanced compared with those in the nonresonance spectrum of the monomeric cation. For the experimental Raman spectrum of the aggregate under resonance excitation, however, we find new Raman features below 600 cm(-1), in addition to a significantly enhanced Raman peak at 671 cm(-1) that are associated with out-of-plane distortions. Also, time-dependent density functional theory calculations suggest that the experimentally observed electronic transition at ∼515 nm (i.e., 2.41 eV) in the absorption spectrum of the monomeric-TTBC cation predominantly results from the π → π∗ transition. Calculations are further interpreted

  16. Raman scattering in condensed media placed in photon traps

    Science.gov (United States)

    Goncharov, A. P.; Gorelik, V. S.; Krawtsow, A. V.

    2007-11-01

    A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.

  17. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    Science.gov (United States)

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  19. Raman spectroscopy study of the crystal - melt phase transition of lanthanum, cerium and neodymium trichlorides

    International Nuclear Information System (INIS)

    Zakir'yanova, I.D.; Salyulev, A.B.

    2007-01-01

    Systematic structural studies of crystalline (over a wide temperature range) and molten LaCl 3 , CeCl 3 , and NdCl 3 salts (near the crystal-melt phase transition temperature) are conducted employing Raman spectroscopy. A change in the trend of temperature dependences of characteristic frequencies is revealed in the pre-melting region of the compounds. This is attributed to an increase in the number of crystal defects due to weakening of a part of Ln-Cl bonds and decreasing of coordination number of chloride anions in the vicinity of rare earth cation [ru

  20. Deformations of the Heme Group of Different Ferrocytochrome c Proteins Probed by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hagarman, Andrew; Schweitzer-Stenner, Reinhard; Wallace, Carmichael; Laberge, Monique

    2008-01-01

    We measured the low-frequency polarized resonance Raman spectra of horse heart, chicken, and yeast(C102T) ferrocytochromes c with Soret excitation. We examined the out-of-plane deformations of the heme groups by determining the relative intensities and depolarization ratios of a variety of out-of-plane and in-plane Raman active bands. Analysis of relative Raman intensities shows differences in non-planarity of the heme groups of yeast(C102T), horse heart and chicken cytochrome c. Cytochrome c has been shown to have a dominant ruffling (B 1u ) deformation by means of normal coordinate structural decomposition (NSD) analysis of the heme group in crystal structures. The presence and intensity of B 1u modes, γ 10 -γ 12 , support the indication of ruffling being the major contribution to the non-planar deformations in cytochrome c. Other types of non-planar deformations like doming (A 2U ) and waving (E g ) can be deduced from the Raman activity of γ 5 (A 2u ), γ 21 and γ 22 (E g ). The depolarization ratios of γ 5 , γ 10 , γ 11 and γ 12 are larger than 0.125, indicating the presence of other deformations such as saddling (B 2u ) and propellering (A 1u ), which is again in agreement with the crystal structures of horse heart and yeast ferrocytochrome c. An analysis of the intensities and depolarization ratios of out-of-plane modes revealed that ruffling is comparable in yeast and horse heart cytochrome c, saddling is larger and doming as well as propellering are lower in yeast cytochrome c. With respect to doming and ruffling our results contradict values obtained from the NSD analysis of the corresponding crystal structures. With respect to saddling, our data are in agreement with the crystal structure. The NSD analysis of heme structures resulting from MD simulations did not correlate very well with the spectroscopically obtained results concerning the ruffling and doming coordinate, whereas a qualitative agreement was again obtained for saddling.

  1. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    Science.gov (United States)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  2. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    Science.gov (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  3. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

    Science.gov (United States)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.

    2017-12-01

    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  4. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  5. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  6. Two Magnon Raman Scattering as Indicator for Superconducting to Antiferromagnetic Phase Transition Upon Hydrogenation of YBCO

    International Nuclear Information System (INIS)

    Biton, Y.; Shuker, R.

    1999-01-01

    Raman spectra of Hydrogenated YBa 2 Cu 3 O 7-x + H y , where y = 0.45 and 0.19 is the number of Hydrogen atoms per units cell. The spectra exhibit important changes in the electronic scattering. Upon progressive doping with Hydrogen two magnon scattering features emerge. This coincides with the transition of YBa 2 Cu 3 O 7x +H y from superconducting to antiferromagnetic phase. Exchange energy values were obtained from two magnon Raman scattering of the y = 0.45 material. It has been found that for y= 0.19 the sample has not lost its superconductivity, and indeed two-magnon scattering has not been observed. However, the situation changed substantially when the doping of the Hydrogen atoms was 0.45. The two-magnon scattering has been observed at different temperatures down to 20K. The two-magnon energy density exhibits two peak values around 2100cm -1 and 3000cm -1

  7. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  8. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors.

    Science.gov (United States)

    Chung, Hyunjoong; Dudenko, Dmytro; Zhang, Fengjiao; D'Avino, Gabriele; Ruzié, Christian; Richard, Audrey; Schweicher, Guillaume; Cornil, Jérôme; Beljonne, David; Geerts, Yves; Diao, Ying

    2018-01-18

    Martensitic transition is a solid-state phase transition involving cooperative movement of atoms, mostly studied in metallurgy. The main characteristics are low transition barrier, ultrafast kinetics, and structural reversibility. They are rarely observed in molecular crystals, and hence the origin and mechanism are largely unexplored. Here we report the discovery of martensitic transition in single crystals of two different organic semiconductors. In situ microscopy, single-crystal X-ray diffraction, Raman and nuclear magnetic resonance spectroscopy, and molecular simulations combined indicate that the rotating bulky side chains trigger cooperative transition. Cooperativity enables shape memory effect in single crystals and function memory effect in thin film transistors. We establish a molecular design rule to trigger martensitic transition in organic semiconductors, showing promise for designing next-generation smart multifunctional materials.

  9. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Jessica; Wood, Sebastian; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Beatrup, Daniel; Hurhangee, Michael; McCulloch, Iain; Durrant, James R. [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AY (United Kingdom); Bronstein, Hugo [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AY (United Kingdom); Department of Chemistry, University College London, London WC1H 0AJ (United Kingdom)

    2015-06-28

    We report on the electrochemical stability of hole polarons in three conjugated polymers probed by resonant Raman spectroscopy. The materials considered are all isostructural to poly(3-hexyl)thiophene, where thiazole units have been included to systematically deepen the energy level of the highest occupied molecular orbital (HOMO). We demonstrate that increasing the thiazole content planarizes the main conjugated backbone of the polymer and improves the electrochemical stability in the ground state. However, these more planar thiazole containing polymers are increasingly susceptible to electrochemical degradation in the polaronic excited state. We identify the degradation mechanism, which targets the C=N bond in the thiazole units and results in disruption of the main polymer backbone conjugation. The introduction of thiazole units to deepen the HOMO energy level and increase the conjugated backbone planarity can be beneficial for the performance of certain optoelectronic devices, but the reduced electrochemical stability of the hole polaron may compromise their operational stability.

  10. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin; Guo, Huaihong; Yang, Teng; Zhang, Zhidong; Kumamoto, Yasuaki; Shen, Chih Chiang; Hsu, Yu Te; Li, Lain-Jong; Saito, Riichiro; Kawata, Satoshi

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  11. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    Science.gov (United States)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  12. Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue

    2005-01-01

    In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above

  13. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Hot phonon generation by split-off hole band electrons in AlxGa1-xAs alloys investigated by picosecond Raman scattering

    International Nuclear Information System (INIS)

    Jacob, J.M.; Kim, D.S.; Zhou, J.F.; Song, J.J.

    1992-01-01

    The initial generation of hot LO phonons by the relaxation of hot carriers in GaAs and Al x Ga 1-x As alloy semiconductors is studied. Within the initial 2ps of photoexcitation, only those electrons originating from the split-off hole bands are found to generate a significant number of I-valley hot phonons when photon energies of 2.33eV are used. A picosecond Raman scattering technique is used to determine the hot phonon occupation number in a series of MBE grown Al x Ga 1-x As samples with 0≤x≤0.39. The Stokes and anti-Stokes lines were measured for both GaAs-like and AlAs-like LO phonon modes to determine their occupation numbers. The authors observe a rapid decrease in the phonon occupation numbers as the aluminum concentration increases beyond x = 0.2. This rapid decrease is explained by considering only those electrons photoexcited from the split-off hole band. Almost all of the electrons originating from the heavy and light-hole bands are shown to quickly transfer and remain in the X and L valleys without generating significant numbers of hot LO phonons during the initial 2ps and at a carrier density of 10 17 cm -3 . A model based upon the instantaneous thermalization of hot electrons photoexcited from the split-off hole bands is used to fit the data. They have obtained very good agreement between experiment and theory. This work provides a clear understanding to the relaxation of Γ valley hot electrons by the generation of hot phonons on subpicosecond and picosecond time scales, which has long standing implications to previous time resolved Raman experiments

  15. Designing of Raman laser

    International Nuclear Information System (INIS)

    Zidan, M. D.; Al-Awad, F.; Alsous, M. B.

    2005-01-01

    In this work, we describe the design of the Raman laser pumped by Frequency doubled Nd-YAG laser (λ=532 nm) to generate new laser wavelengths by shifting the frequency of the Nd-YAG laser to Stokes region (λ 1 =683 nm, λ 2 =953.6 nm, λ 3 =1579.5 nm) and Antistokes region (λ ' 1 =435 nm, λ ' 2 =369.9 nm, λ ' 3=319.8 nm). Laser resonator has been designed to increase the laser gain. It consists of two mirrors, the back mirror transmits the pump laser beam (λ=532 nm) through the Raman tube and reflects all other generated Raman laser lines. Four special front mirrors were made to be used for the four laser lines λ 1 =683 nm, λ 2 =953.6 nm and λ ' 1 = 435 nm, λ ' 2 =369.9 nm. The output energy for the lines υ 1 s, υ 2 s, υ 1 as,υ 2 as was measured. The output energy of the Raman laser was characterized for different H 2 pressure inside the tube. (Author)

  16. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  17. Development of a tunable femtosecond stimulated raman apparatus and its application to beta-carotene.

    Science.gov (United States)

    Shim, Sangdeok; Mathies, Richard A

    2008-04-17

    We have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with Raman excitation, the resonant S1 state modes are enhanced by a factor of approximately 200 compared with 800 nm FSRS experiments. The improved signal-to-noise ratios facilitate the measurement of definitive time constants for beta-carotene dynamics including the 180 fs appearance of the S1 vibrational features due to direct internal conversion from S2 and their characteristic 9 ps decay to S0. By tuning the FSRS system to 590 nm Raman excitation, we are able to selectively enhance vibrational features of the hot ground state S hot 0 and monitor its approximately 5 ps cooling dynamics. This tunable FSRS system is valuable because it facilitates the direct observation of structural changes of selected resonantly enhanced states and intermediates during photochemical and photobiological reactions.

  18. Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Erdem, Emre; Mass, Valentina; Gembus, Armin; Schulz, Armin; Liebau-Kunzmann, Verena; Fasel, Claudia; Riedel, Ralf; Eichel, Rüdiger-A

    2009-07-21

    Lithium-doped polymer-derived silicon carbonitride ceramics (SiCN:Li) synthesized at various pyrolysis temperatures, have been investigated by means of multifrequency and multipulse electron paramagnetic resonance (EPR) and Raman spectroscopy in order to determine different defect states that may impact the materials electronic properties. In particular, carbon- and silicon-based 'dangling bonds' at elevated, as well as metallic networks containing Li0 in the order of 1 microm at low pyrolysis temperatures have been observed in concentrations ranging between 10(14) and 10(17) spins mg(-1).

  19. Off-energy-shell variations of two-nucleon transition matrix and three-nucleon problem

    International Nuclear Information System (INIS)

    Stingl, M.; Sauer, P.U.

    1975-01-01

    For a schematic three-nucleon problem, approximate analytic expressions are derived for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3 He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. An indication is given how results of this kind may be to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order

  20. Raman-laser spectroscopy of Wannier-Stark states

    International Nuclear Information System (INIS)

    Tackmann, G.; Pelle, B.; Hilico, A.; Beaufils, Q.; Pereira dos Santos, F.

    2011-01-01

    Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.

  1. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  2. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  3. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  4. Chirality, Metallicity, and Transition Dependent Asymmetries in Resonance Raman Excitation Profiles of Chirality-Enriched Carbon Nanotubes

    Science.gov (United States)

    Doorn, Stephen; Duque, Juan; Telg, Hagen; Haroz, Erik; Tu, Xiaomin; Zheng, Ming

    2014-03-01

    Access to carbon nanotube samples enriched in single chiralities allows the observation of new photophysical behaviors obscured or difficult to demonstrate in mixed-chirality ensembles. Recent examples include the observation of strongly asymmetric G-band excitation profiles resulting from non-Condon effects1 and the unambiguous demonstration of Raman interference effects.2 We present here our most recent results demonstrating the generality of the non-Condon behavior to include metallic species (specifically several armchair chiralities). Additionally, the Eii dependence in non-Condon behavior with excitations from E11 thru E44 for both RBM and G modes will be discussed. 1. J.G. Duque, et. al., ACS Nano, 5, 5233 (2011). 2. J.G. Duque, et. al., Phys. Rev. Lett. 108, 117404 (2012).

  5. Resonant enhancement in leptogenesis

    Science.gov (United States)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  6. Evolution of magnetic and superconducting fluctuations with doping of high-Tc superconductors. An electronic Raman scattering study

    International Nuclear Information System (INIS)

    Blumberg, G.

    1998-01-01

    For YBa 2 Cu 3 O 6+δ and Bi 2 Sr 2 CaCu 2 O 3±δ superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T c the system exhibits a sharp Raman resonance of B 1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T c produces a global SC state

  7. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  8. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    International Nuclear Information System (INIS)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W

    2016-01-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the ( E 1 , A 1 ) longitudinal optical (LO) near 590 cm −1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap ( E g   =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer. (paper)

  9. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    Science.gov (United States)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.

    2016-06-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g  =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.

  10. Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions

    DEFF Research Database (Denmark)

    Schunk, G.; Vogl, U.; Sedlmeir, F.

    2016-01-01

    photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications...

  11. Q-branch Raman scattering and modern kinetic thoery

    Energy Technology Data Exchange (ETDEWEB)

    Monchick, L. [The Johns Hopkins Univ., Laurel, MD (United States)

    1993-12-01

    The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

  12. γ-transitions from neutron resonances and many-quasiparticle configurations

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1991-01-01

    One should answer the question posed in 1972: Are there large many-quasiparticle components in the wave functions of highly excited low-spin states and, in particular, of neutron resonances? With increasing excitation energy the structure of states becomes more complex; the contribution of few-quasiparticle components to wave function normalization decreases exponentially and for the neutron resonances of heavy nuclei it equals 10 -6 . It is obvious that the wave function of neutron resonances contain many thousands of various quasiparticle components. Two extreme cases are possible. In the first case all the components are small and distributed according to statistical laws. In the second case among many components there is one or a few large many-quasiparticle components. There are many-quasiparticle isomers with high spins whose large life-time is due to the absence of few-quasiparticle components. This indicates a small fragmentation of these states. Low-spin states are fragmented more strongly than high-spin ones. What experiments are to be performed to answer the question about the existence are to be performed to answer the question about the existence of many-quasiparticle components of the wave functions of neutron resonances? It seems that the most straight way for observing large many-quasiparticle components is many-nucleon transfer reactions. However, in this way one faces great difficulties. The author thinks it to be more convenient to study γ transitions from neutron resonances to the states with energies by 1-2 MeV less than the energies of neutron resonances

  13. Directional effects in transitional resonance spectra and group constants

    International Nuclear Information System (INIS)

    Hill, R.N.; Oh, K.O.; Rhodes, J.D.

    1989-01-01

    Analytical exploratory investigations indicate that transition effects such as streaming cause a considerable spatial variation in the neutron spectra across resonances; streaming leads to opposite effects in the forward and backward directions. The neglect of this coupled spatial/angular variations of the transitory resonance spectra is an approximation that is common to all current group constant generation methodologies. This paper presents a description of the spatial/angular coupling of the neutron flux across isolated resonances. It appears to be necessary to differentiate between forward-and backward-directed neutron flux components or even to consider components in narrower angular cones. The effects are illustrated for an isolated actinide resonance in a simplified fast reactor blanket problem. The resonance spectra of the directional flux components φ + and φ - , and even more so the 90-deg cone components, are shown to deviate significantly from the infinite medium approximation, and the differences increase with penetration. The charges in φ + lead to a decreasing scattering group constant that enhances neutron transmission; the changes in φ - lead to an increasing group constant inhibiting backward scattering. Therefore, the changes in the forward-and backward-directed spectra both lead to increased neutron transmission. Conversely, the flux (φ = φ + +φ - ) is shown to agree closely with the infinite medium approximation both in the analytical formulas and in the numerical solution. The directional effect cancel in the summation. The forward-and backward-directed flux components are used as weighting spectra to illustrate the group constant changes for a single resonance

  14. Resonance Raman assignment and evidence for noncoupling of individual 2- and 4-vinyl vibrational modes in a monomeric cyanomethemoglobin

    International Nuclear Information System (INIS)

    Gersonde, K.; Yu, N.T.; Lin, S.H.; Smith, K.M.; Parish, D.W.

    1989-01-01

    We have investigated the resonance Raman spectra of monomeric insect cyanomethemoglobins (CTT III and CTT IV) reconstituted with (1) protohemes IX selectively deuterated at the 4-vinyl as well as the 2,4-divinyls, (2) monovinyl-truncated hemes such as pemptoheme (2-hydrogen, 4-vinyl) and isopemptoheme (2-vinyl, 4-hydrogen), (3) symmetric hemes such as protoheme III (with 2- and 3-vinyls) and protoheme XIII (with 1- and 4-vinyls), and (4) hemes without 2- and 4-vinyls such as mesoheme IX, deuteroheme IX, 2,4-dimethyldeuteroheme IX, and 2,4-dibromodeuteroheme IX. Evidence is presented that the highly localized vinyl C = C stretching vibrations at the 2- and 4-positions of the heme in these cyanomet CTT hemoglobins are noncoupled and inequivalent; i.e., the 1631- and 1624-cm-1 lines have been assigned to 2-vinyl and 4-vinyl, respectively. The elimination of the 2-vinyl (in pemptoheme) or the 4-vinyl (in isopemptoheme) does not affect the C = C stretching frequency of the remaining vinyl. Furthermore, two low-frequency vinyl bending modes at 412 and 591 cm-1 exhibit greatly different resonance Raman intensities between 2-vinyl and 4-vinyl. The observed intensity at 412 cm-1 is primarily derived from 4-vinyl, whereas the 591-cm-1 line results exclusively from the 2-vinyl. Again, there is no significant coupling between 2-vinyl and 4-vinyl for these two bending modes

  15. Raman spectroscopic determination of norbixin and tartrazine in sugar.

    Science.gov (United States)

    Uhlemann, Ute; Strelau, Katharina K; Weber, Karina; Da Costa Filho, Paulo Augusto; Rösch, Petra; Popp, Jürgen

    2012-08-01

    In this paper, a method for the detection of norbixin and tartrazine in sugar by means of resonance Raman spectroscopy is presented. The extraction was done in four steps using methanol and the measurements were performed in aqueous solution. The excitation wavelength was 514 nm for norbixin and 488 nm for tartrazine samples. The characteristic resonance Raman signals of the dyes were fitted by different functions. Depending on the R² values of the different fits, each spectrum was classified as positive or negative response. A detection limit of 250 ng g⁻¹ for norbixin and 989 ng g⁻¹ for tartrazine in solid sugar samples could be reached by logistic regression.

  16. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems.

    Science.gov (United States)

    Stillhart, Cordula; Kuentz, Martin

    2012-02-05

    Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Continuous Flow-Resonance Raman Spectroscopy of an Intermediate Redox State of Cytochrome-C

    DEFF Research Database (Denmark)

    Forster, M.; Hester, R. E.; Cartling, B.

    1982-01-01

    An intermediate redox state of cytochrome c at alkaline pH, generated upon rapid reduction by sodium dithionite, has been observed by resonance Raman (RR) spectroscopy in combination with the continuous flow technique. The RR spectrum of the intermediate state is reported for excitation both...... in the (alpha, beta) and the Soret optical absorption band. The spectra of the intermediate state are more like those of the stable reduced form than those of the stable oxidized form. For excitation of 514.5 nm, the most prominent indication of an intermediate state is the wave-number shift of one RR band from...... 1,562 cm-1 in the stable oxidized state through 1,535 cm-1 in the intermediate state to 1,544 cm-1 in the stable reduced state. For excitation at 413.1 nm, a band, present at 1,542 cm-1 in the stable reduced state but not present in the stable oxidized state, is absent in the intermediate state. We...

  18. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    Science.gov (United States)

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    Science.gov (United States)

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  20. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

    Energy Technology Data Exchange (ETDEWEB)

    Hatef, Ali, E-mail: alih@nipissingu.ca; Darvish, Behafarid [Nipissing University, Nipissing Computational Physics Laboratory (NCPL), Department of Computer Science and Mathematics (Canada); Sajjadi, Amir Yousef [Massachusetts General Hospital, Cutaneous Biology Research Center (United States)

    2017-02-15

    The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ∼1000 times compared to the conventional approach.

  1. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

    International Nuclear Information System (INIS)

    Hatef, Ali; Darvish, Behafarid; Sajjadi, Amir Yousef

    2017-01-01

    The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ∼1000 times compared to the conventional approach.

  2. Resonance effects of transition radiation emitted from thin foil stacks using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Awata, Takaaki; Yajima, Kazuaki; Tanaka, Takashi [Kyoto Univ. (Japan). Faculty of Engineering; and others

    1997-03-01

    Transition Radiation(TR) X rays are expected to be a high brilliant X-ray source because the interference among TR X rays emitted from many thin foils placed periodically in vacuum can increase their intensity and make them quasi-monochromatic. In order to study the interference (resonance) effects of TR, we measured the energy spectra of TR for several sets of thin-foil stacks at various emission angles. It was found that the resonance effects of TR are classified into intrafoil and interfoil resonances and the intensity of TR X rays increases nonlinearly with increasing foil number, attributing to the interfoil resonance. It became evident that the brilliance of TR is as high as that of SR. (author)

  3. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    Science.gov (United States)

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.

  4. Electric and magnetic dipole transitions from broad s-wave neutron resonance in even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igashira, M.; Shimizu, M.; Muto, K.; Oda, T.; Achiha, Y.; Lee, Y.; Mukai, N.

    1992-01-01

    Observations have been performed for electromagnetic transitions from the broad s-wave neutron resonances at 658 keV in 24 Mg, at 180 keV in 28 Si, and at 103 keV in 32 S. Capture gamma rays were measured with an anti-Compton NaI(Tl) detector, using a neutron time-of-flight technique. E1 and M1 transitions from those resonances to low-lying states with a strong single-particle character were found. The deduced partial radiative widths for E1 transition are in excellent agreement with the Lane-Mughabghab valence-capture model calculations taking the neutron effective charge, -Ze/A. Moreover, it is shown that essential features of the observed E1 and M1 transitions can be well explained by assuming a configuration-mixing wave function, Ψ i (1/2 + )=a(0 + direct-product 1/2 + )+b(1 + direct-product 1/2 + )+c(1 + direct-product 3/2 + ), for each resonance. The M1 transition strengths are compared also with more detailed shell model calculations in the model space of full (sd) n configurations, using the Wildenthal effective interaction

  5. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    Science.gov (United States)

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic

  6. Digital micromirror devices in Raman trace detection of explosives

    Science.gov (United States)

    Glimtoft, Martin; Svanqvist, Mattias; Ågren, Matilda; Nordberg, Markus; Östmark, Henric

    2016-05-01

    Imaging Raman spectroscopy based on tunable filters is an established technique for detecting single explosives particles at stand-off distances. However, large light losses are inherent in the design due to sequential imaging at different wavelengths, leading to effective transmission often well below 1 %. The use of digital micromirror devices (DMD) and compressive sensing (CS) in imaging Raman explosives trace detection can improve light throughput and add significant flexibility compared to existing systems. DMDs are based on mature microelectronics technology, and are compact, scalable, and can be customized for specific tasks, including new functions not available with current technologies. This paper has been focusing on investigating how a DMD can be used when applying CS-based imaging Raman spectroscopy on stand-off explosives trace detection, and evaluating the performance in terms of light throughput, image reconstruction ability and potential detection limits. This type of setup also gives the possibility to combine imaging Raman with non-spatially resolved fluorescence suppression techniques, such as Kerr gating. The system used consists of a 2nd harmonics Nd:YAG laser for sample excitation, collection optics, DMD, CMOScamera and a spectrometer with ICCD camera for signal gating and detection. Initial results for compressive sensing imaging Raman shows a stable reconstruction procedure even at low signals and in presence of interfering background signal. It is also shown to give increased effective light transmission without sacrificing molecular specificity or area coverage compared to filter based imaging Raman. At the same time it adds flexibility so the setup can be customized for new functionality.

  7. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Ferreira, Fabio F.; Costa, Fanny N. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Giles, Carlos [Depto. de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  8. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu [Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093 (United States); Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-28

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases when the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.

  9. Magnetodynamical resonance near the low-temperature phase transition in ErFeO3

    International Nuclear Information System (INIS)

    Dan'shin, N.K.; Kovtun, N.M.; Sdvizhkov, M.A.

    1986-01-01

    Magnetodynamical resonance (MDR) near low-temperature phase transition (PT) in erbium ortoferrite is investigated. At temperature below 4K (PT temperature) pt can be induced by a magnetic field. It is revealed that PT is accompained by partialsoftening of one of the magnetic resonance MR) branches. Besides MR soft mode resonance absorption was observed. This absorption is shown to be related to the excitation in a sample of dielectric resonance (DR). Essential differences of MDR near PT in ErFeO 3 are as follows: interaction between MR abd DR at PT takes place under softening of all interacting models; ErFeO 3 is characterized by a high value of permittivity epslon and by considerable anisotropy epsilon and magnetic permeability

  10. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  11. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  12. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  13. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy.

    Science.gov (United States)

    Stockburger, M; Klusmann, W; Gattermann, H; Massig, G; Peters, R

    1979-10-30

    Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.

  14. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    Science.gov (United States)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  15. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  16. Raman scattering study of the structural phase transition in single crystal KDy(MoO4)2

    Science.gov (United States)

    Peschanskii, A. V.

    2017-11-01

    Raman scattering of light in single-crystal KDy(MoO4)2 is studied at frequencies of 3-1000 cm-1 for temperatures ranging from 2 to 300 K, including that of a structural phase transition of the cooperative Jahn-Teller type (TC ˜ 14.5 K). During the transition to the low-temperature phase, a series of additional phonon lines corresponding to the Ag, B1g, B2g, and B3g modes is observed which indicates a doubling of the unit cell during the phase transition. An analysis of the symmetry of the phonon modes shows that the low-temperature phase has a predominantly monoclinic symmetry with conservation of a second order axis along the crystallographic b direction, i.e., perpendicular to the layers. Excitations are discovered which correspond to low-energy electronic transitions between levels of the ground-state 6H15/2 multiplet of the Dy3+ ion, which is split in the crystal field with a C2 symmetry. In the vicinity of the first excited Kramers doublet of the Dy3+ ion in crystalline KDy(MoO4)2, the scattered spectrum contains four lines [16.5, 21.0, 24.9, and 29.1 cm-1 (2 K)] at low temperatures, instead of a single line [18.3 cm-1 (25 K)] above the phase transition temperature (14.5 K). This indicates the existence of four nonequivalent dysprosium ions in the low-temperature phase.

  17. Light-Driven Reconfiguration of a Xanthophyll Violaxanthin in the Photosynthetic Pigment-Protein Complex LHCII: A Resonance Raman Study.

    Science.gov (United States)

    Grudzinski, Wojciech; Janik, Ewa; Bednarska, Joanna; Welc, Renata; Zubik, Monika; Sowinski, Karol; Luchowski, Rafal; Gruszecki, Wieslaw I

    2016-05-19

    Resonance Raman analysis of the photosynthetic complex LHCII, immobilized in a polyacrylamide gel, reveals that one of the protein-bound xanthophylls, assigned as violaxanthin, undergoes light-induced molecular reconfiguration. The phototransformation is selectively observed in a trimeric structure of the complex and is associated with a pronounced twisting and a trans-cis molecular configuration change of the polyene chain of the carotenoid. Among several spectral effects accompanying the reconfiguration there are ones indicating a carotenoid triplet state. Possible physiological importance of the light-induced violaxanthin reconfiguration as a mechanism associated with making the pigment available for enzymatic deepoxidation in the xanthophyll cycle is discussed.

  18. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  19. Temperature dependence of the Raman spectrum of 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.

    2017-06-01

    The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500 K and Raman scattering at the temperature range 10-413 K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10 K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393 K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403 K and then sublimates in the temperature range 403-413 K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397 K is founded to be 121.5 J/g.

  20. Accurate Cross Sections for Excitation of Resonance Transitions in Atomic Oxygen

    Science.gov (United States)

    Tayal, S. S.

    2004-01-01

    Electron collision excitation cross sections for the resonance 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0), 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3s (sup 3)P(sup 0) and 2p(sup 4) (sup 3)P-2s2p(sup 5) (sup 3)P(sup 0) transitions have been calculated by using the R matrix with a pseudostates approach for incident electron energies from near threshold to 100 eV. The excitation of these transition sgives rise to strong atomic oxygen emission features at 1304, 1027, 989, 878, and 792 Angstrom in the spectra of several planetary atmospheres. We included 22 spectroscopic bound and autoionizing states and 30 pseudostates in the close-coupling expansion. The target wave functions are chosen to properly account for the important correlation and relaxation effects. The effect of coupling to the continuum is included through the use of pseudostates. The contribution of the ionization continuum is significant for resonance transitions. Measured absolute direct excitation cross sections of 0 I are reported by experimental groups from the Jet Propulsion Laboratory and Johns Hopkins University. Good agreement is noted for the 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0) transition (lambda 1304 Ang) with measured cross sections from both groups that agree well with each other. There is disagreement between experiments for other transitions. Our results support the measured cross sections from the Johns Hopkins University for the 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0) and 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transitions, while for the 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transition the agreement is switched to the measured cross sections from the Jet Propulsion Laboratory.

  1. Raman spectroscopy study of the tetragonal-to-monoclinic transition in zirconium oxide scales and determination of overall oxygen diffusion by nuclear microanalysis of O18

    International Nuclear Information System (INIS)

    Godlewski, J.; Lambertin, M.; Gros, J.P.; Wadier, J.F.; Weidinger, H.

    1991-01-01

    This paper reports on two allotropic forms of zirconium oxide, monoclinic and tetragonal that have been identified in the scales formed on zirconium alloys. The transition from tetragonal to monoclinic has been followed by Z-ray measurements and Raman laser spectroscopy. Information on the average content of the tetragonal phase was obtained by X-ray diffraction, whereas Raman laser analyses on tapered sections revealed its distribution through the scale thickness. Oxidation exposures were made in an autoclave, using H 2 O 18 and D 2 O 18 to determine the overall diffusion coefficients. In particular, oxide scales have been studied on Zircaloy-4 with three different precipitate sizes, and on a Zr-1Nb alloy, after exposure in an autoclave for between 3 and 100 days. The specimens were analyzed in detail in the vicinity of the kinetics transition point, where the acceleration of corrosion occurs. Raman spectroscopy analyses enabled the crystallographic nature of the ZrO 2 to be determined. Close to the interface, the tetragonal phase content is about 40%, when after the transition the tetragonal phase is transformed into monoclinic. The O 18 diffusion treatment was carried out in an autoclave at 400 degrees C under pressure on specimens previously oxidized for between 3 and 100 days in natural water vapor pressure. The diffusion profiles were determined by nuclear microanalysis using the O 18 (p, α) → N 15 reaction. Based on these profiles, the volume and grain boundary diffusion coefficients were calculated for each material and for each oxidation time

  2. In situ detection of atomic and molecular iodine using Resonance and Off-Resonance Fluorescence by Lamp Excitation: ROFLEX

    Directory of Open Access Journals (Sweden)

    J. C. Gómez Martín

    2011-01-01

    Full Text Available We demonstrate a new instrument for in situ detection of atmospheric iodine atoms and molecules based on atomic and molecular resonance and off-resonance ultraviolet fluorescence excited by lamp emission. The instrument combines the robustness, light weight, low power consumption and efficient excitation of radio-frequency discharge light sources with the high sensitivity of the photon counting technique. Calibration of I2 fluorescence is achieved via quantitative detection of the molecule by Incoherent Broad Band Cavity-enhanced Absorption Spectroscopy. Atomic iodine fluorescence signal is calibrated by controlled broad band photolysis of known I2 concentrations in the visible spectral range at atmospheric pressure. The instrument has been optimised in laboratory experiments to reach detection limits of 1.2 pptv for I atoms and 13 pptv for I2, for S/N = 1 and 10 min of integration time. The ROFLEX system has been deployed in a field campaign in northern Spain, representing the first concurrent observation of ambient mixing ratios of iodine atoms and molecules in the 1–350 pptv range.

  3. Temperature dependence Infrared and Raman studies of III-V/II-VI core-shell nanostructures

    Science.gov (United States)

    Manciu, Felicia S.; McCombe, Bruce D.; Lucey, Derrick

    2005-03-01

    The temperature dependence (8 K InP/ZnS sample. Raman scattering (457.9 nm excitation) features were determined without polarization selection in the backscattering geometry. Interesting T-dependent resonant Raman effect of the surface optical phonon modes has been discovered in InP/ZnSe sample. Reasonable agreement is obtained between the Raman and FIR results, as well as with theoretical calculations.

  4. Electrical properties and Raman studies of phase transitions in ferroelectric [N(CH3)4]2CoCl2Br2

    Science.gov (United States)

    Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.

    2018-03-01

    The present paper accounted for the synthesis, electric properties and vibrational spectroscopy of [N(CH3)4]2CoCl2Br2. The dielectric spectra were measured in the frequency range 10-1-105 Hz and temperature interval from 223 to 393 K. The dielectical properties confirm the ferroelectric-paraelectric phase transition at 290 K, which is reported by Abdallah Ben Rhaiem et al. (2013). The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I and non-overlapping small polaron tunneling model (NSPT) in phases II and III. Raman spectra as function temperature have been used to characterize the phase transitions and their nature, which indicates a change of the some peak near the transitions phase.

  5. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Transition times between the extremum points of the current–voltage characteristic of a resonant tunneling diode with hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F. [National Research Nuclear University “MEPhI” (Russian Federation)

    2016-08-15

    A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the application of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.

  7. Shot-Noise Limited Time-Encoded Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Karpf

    2017-01-01

    Full Text Available Raman scattering, an inelastic scattering mechanism, provides information about molecular excitation energies and can be used to identify chemical compounds. Albeit being a powerful analysis tool, especially for label-free biomedical imaging with molecular contrast, it suffers from inherently low signal levels. This practical limitation can be overcome by nonlinear enhancement techniques like stimulated Raman scattering (SRS. In SRS, an additional light source stimulates the Raman scattering process. This can lead to orders of magnitude increase in signal levels and hence faster acquisition in biomedical imaging. However, achieving a broad spectral coverage in SRS is technically challenging and the signal is no longer background-free, as either stimulated Raman gain (SRG or loss (SRL is measured, turning a sensitivity limit into a dynamic range limit. Thus, the signal has to be isolated from the laser background light, requiring elaborate methods for minimizing detection noise. Here, we analyze the detection sensitivity of a shot-noise limited broadband stimulated time-encoded Raman (TICO-Raman system in detail. In time-encoded Raman, a wavelength-swept Fourier domain mode locking (FDML laser covers a broad range of Raman transition energies while allowing a dual-balanced detection for lowering the detection noise to the fundamental shot-noise limit.

  8. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  9. Laser pulses for coherent xuv Raman excitation

    Science.gov (United States)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  10. The Trade-Off between Female Fertility and Longevity during the Epidemiological Transition in the Netherlands

    DEFF Research Database (Denmark)

    Kaptijn, Ralf; Thomese, Fleur; Liefbroer, Aart C

    2015-01-01

    as an evolutionary trade-off between reproduction and survival. We examine the relationship between fertility and longevity during the epidemiological transition in the Netherlands. This period of rapid decline in mortality from infectious diseases offers a good opportunity to study the relationship between...... fertility and longevity, using registry data from 6,359 women born in The Netherlands between 1850 and 1910. We hypothesize that an initially negative relationship between women's fertility and their longevity gradually turns less negative during the epidemiological transition, because of decreasing costs...

  11. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    Science.gov (United States)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  12. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  13. Measurement of line overlap for resonant photopumping of transitions in neonlike ions by nickel-like ions

    International Nuclear Information System (INIS)

    Elliott, S.; Beiersdorfer, P.; Nilsen, J.

    1993-01-01

    A measurement is made of the 3d-4f transition energies in the Ni-like ions Re 47+ , Ir 49+ , Pt 50+ , Au 51+ , and Bi 55+ and the 2p-4d transition energies in the Ne-like ions Br 25+ , Kr 26+ , Rb 27+ , and Y 29+ using the Livermore electron-beam ion trap. The ions studied are candidates for an x-ray laser scheme based on resonant photopumping which predicts lasing among the 3p-3s transitions in a Ne-like ion. The results of the measurements are compared to multiconfiguration Dirac-Fock calculations and systematic differences are found. The best resonance is found for the Pt-Rb pair at 2512 eV, whose energies differ by 0.4±0.1 eV, that is, by only 160 ppm

  14. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  15. Influence of the ac Stark effect on stimulated hyper-Raman profiles in sodium vapor

    International Nuclear Information System (INIS)

    Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-08-01

    When pumping near the two-photon 3d resonance in pure sodium vapor and observing the backward hyper-Raman emission to the 3p substates, an asymmetry in ratios of 3p/sub 1/2/, 3p/sub 3/2/ associated emissions was observed dependent upon the direction of the initial laser detuning from the resonance. It has been determined that this asymmetry can be attributed to the ac Stark effect induced by the hyper-Raman emission itself. 3 refs., 3 figs

  16. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  17. Enhanced resonant second harmonic generation in plasma based on density transition

    Directory of Open Access Journals (Sweden)

    Kant Niti

    2015-06-01

    Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

  18. Resonance Raman study on the structure of the active sites of microsomal cytochrome P-450 isozymes LM2 and LM4.

    Science.gov (United States)

    Hildebrandt, P; Greinert, R; Stier, A; Taniguchi, H

    1989-12-08

    The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form

  19. Controlling the delocalization-localization transition of light via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Cheng Jing; Huang Guoxiang

    2011-01-01

    We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determined and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.

  20. b-dipole transitions in trans-HOCO observed by far infrared laser magnetic resonance

    International Nuclear Information System (INIS)

    Sears, T.J.; Radford, H.E.; Moore, M.A.

    1993-01-01

    Far infrared laser magnetic resonance spectroscopy is used to measure components of 12 rotational transitions in the ground state of the HOCO radical. The transitions are all b-dipole in character in contrast to the a-dipole rotational spectrum previously reported [Radford, Wei, and Sears, J. Chem. Phys. 97, 3989 (1992)]. The new data determine the A rotational constant to high precision and allow the determination of several centrifugal distortion constants for the first time. The hyperfine coupling in the radical leads to observable splittings in several of the observed transitions and these are used to estimate two of the four expected nonzero hyperfine parameters in the radical

  1. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  2. Raman scattering study of filled skutterudite compounds

    International Nuclear Information System (INIS)

    Ogita, N; Kojima, R; Hasegawa, T; Takasu, Y; Udagawa, M; Kondo, T; Takeda, N; Ikeno, T; Ishikawa, K; Sugawara, H; Kikuchi, D; Sato, H; Sekine, C; Shirotani, I

    2007-01-01

    Raman scattering of skutterudite compounds RT 4 X 12 (R=La, Ce, Pr, Nd, Sm and Yb, T=Fe, Ru and Os, X=P and Sb) have been measured. All first-order Raman active phonons are observed and are assigned as the pnicogen vibrations. At the low energy region, the second-order phonons, due to the vibration of the rare earth ions with a flat phonon dispersion, are observed in the spectra of RRu 4 P 12 (R=La and Sm) and ROs 4 Sb 12 (R=La, Ce, Pr, Nd, and Sm). The appearance of the second-order phonons in the spectra is caused by an anharmonic vibrations of rare earth ions in large cage space and a large density of state due to the flat phonon dispersion. However, in spite of the similar cage space, the 2nd-order phonons are hardly observed for RFe 4 Sb 12 and RRu 4 Sb 12 . Thus, these results suggest that the dynamics of the rare earth ion is closely related to not only the cage size but also the electronic state due to the transition metals. Raman spectra of PrRu 4 P 12 show the drastic spectral change due to the metal-insulator transition. The phonon spectra and crystal field excitations due to the structural change have been assigned above and below the transition temperature

  3. On the gyro resonance electron-whistler interaction in transition layers of near-earth plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1996-01-01

    Gyro resonance interaction of electrons with low amplitude triggered whistler in the transition layers of the ionospheric and magnetospheric plasma that correspond to the blurred jumps of the magnetic field and plasma concentration was studied

  4. Redox reactions of cytochrome c in isolated mitochondria exposed to blue or red lasers using resonance Raman spectroscopy

    Science.gov (United States)

    Denton, Michael L.; Gonzalez, Cherry C.; Noojin, Gary D.; Yakovlev, Vladislav V.

    2018-02-01

    Resonance Raman spectroscopy of cytochrome c was used to follow reduction/oxidation (redox) states of isolated mitochondria in response to blue or red laser exposure. Mitochondria were isolated from hTERT-RPE1 cells and were kept in a buffer formulation known to be conducive to electron transport chain (ETC) activity. Using either pyruvate or succinate as substrates for ETC, we found differences in the redox responses of cytochrome c for different exposure laser irradiance and excitation wavelength. We anticipate that the proposed new method will be valuable in the study of metabolic processes in mitochondria in response to low level laser exposure, and thus aid in elucidating the mechanism(s) of photobiomodulation.

  5. Spin-phonon and magnetostriction phenomena in CaMn7O12 helimagnet probed by Raman spectroscopy

    International Nuclear Information System (INIS)

    Nonato, A.; Araujo, B. S.; Ayala, A. P.; Maciel, A. P.; Yanez-Vilar, S.; Sanchez-Andujar, M.; Senaris-Rodriguez, M. A.; Paschoal, C. W. A.

    2014-01-01

    In this letter, we investigated the temperature-dependent Raman spectra of CaMn 7 O 12 helimagnet from room temperature down to 10 K. The temperature dependence of the Raman mode parameters shows remarkable anomalies for both antiferromagnetic and incommensurate transitions that this compound undergoes at low temperatures. The anomalies observed at the magnetic ordering transition indicate a spin-phonon coupling at higher-temperature magnetic transition in this material, while a magnetostriction effect at the lower-temperature magnetic transition

  6. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  7. Raman spectroscopy as a tool for the characterization and classification of pollen; Raman-Spektroskopie als Werkzeug fuer die Charakterisierung und Klassifizierung von Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Franziska

    2010-09-20

    The chemical composition of pollen, the physiological containers that produce the male gametophytes of seed plants, has been a subject of research of plant physiologists, biochemists, and lately even material scientists for various reasons. The aim of this work was the analysis of whole pollen grains and pollen components by Raman Spectroscopy. These experiments were complemented by other techniques such as Enviromental Scanning Electron Microscopy (ESEM), High-Performance- Thin-Layer-Chromatography (HPTLC), Infrared Spectroscopy (IR) and Nuclear-Magnetic-Resonance Spectroscopy (NMR). As reported here, individual fresh pollen grains and their morphological constituents can be characterized and also classified in situ without prior preparation. Classification of pollen is based on their biochemical fingerprint revealed in their Raman spectrum. Raman spectroscopy is nondestructive and can be carried out with single pollen grains or fragments. It could be shown that the biochemical makeup of the pollen (as a part of the recognition/mating system) is altered during formation of a new biological species and that the species-specific chemical similarities and dissimilarities indeed reflect in the Raman spectral fingerprint. On the basis of the chemical information, unsupervised multivariate analysis consisting of hierarchical clustering revealed in most cases chemical similarities between species that were indicative of both phylogenetic relationship and matin behavior. Therefore experiments were conducted that gave the in situ Raman spectroscopic signatures ot the carotenoid molecules. As the data indicates, the in situ Raman spectra of the carotenoid molecules measured in single intact pollen grains provide in situ evidence of interspecies variations in pollen carotenoid content, structure, and/or assembly without prior purification. Results from HPTLC confirmed that carotenoid composition varied greatly between species and that the different in situ spectral

  8. Inverse Bremsstrahlung Stabilization of Noise in the Generation of Ultra-short Intense Pulses by Backward Raman Amplification

    International Nuclear Information System (INIS)

    Berger, Richard L.; Clark, Daniel S.; Solodov, Andrei; Valeo, Ernest J.; Fisch, Nathaniel J.

    2003-01-01

    Inverse bremsstrahlung absorption of the pump laser beam in a backward Raman amplifier over the round-trip light transit time through the sub-critical density plasma can more than double the electron temperature of the plasma and produce time-varying axial temperature gradients. The resulting increased Landau damping of the plasma wave and detuning of the resonance can act to stabilize the pump against unwanted amplification of Langmuir noise without disrupting nonlinear amplification of the femtosecond seed pulse. Because the heating rate increases with the charge state Z, only low-Z plasmas (hydrogen, helium, or helium-hydrogen mixtures) will maintain a low enough temperature for efficient operation

  9. Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan

    2011-01-01

    The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis...... of the Sudan I molecule was involved in the majority of the vibrations through N N and C–N stretching and various bending modes. Low-intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line....... Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different...

  10. Raman study of low-temperature-grown Al0.29Ga0.71ASGaAs photorefractive materials

    International Nuclear Information System (INIS)

    Guo, L.W.; Han, Y.J.; Hu, C.Y.; Tan, P.H.; Yang, F.H.; Huang, Q.; Zhou, J.M.

    2002-01-01

    We report on the observation of resonant Raman scattering in low-temperature-grown AlGaASGaAs structure. Two kinds of excitation lights, 632.8 and 488 nm laser lines, were used to detect scattering signal from different regions based on different penetration depths. Under the outgoing resonant condition, up to fourth-order resonant Raman peaks were observed in the low-temperature-grown AlGaAs alloy, owing to a broad exciton luminescence in low-temperature-grown AlGaAs alloy induced by intrinsic defects and As cluster after post-annealing. These resonant peaks were assigned according to their fundamental modes. Among the resonant peaks, besides the overtones of the GaAs- or AlAs-like mode, there exist combination bands of these two kinds of modes. In addition, a weak scattering peak similar to the bulk GaAs longitudinal optical mode was observed in low-temperature Raman experiments. We consider the weak signal correlated with GaAs clusters appearing in AlGaAs alloys. The accumulation of GaAs in AlGaAs alloys was enhanced after annealing at high temperatures. A detailed study of the dependence of vibration modes on measuring temperature and post-annealing conditions is given also. In light of our experiments, it is suggested that a Raman scattering experiment is a sensitive microscopic probe of local disorder and, especially performed at low temperature, is a superior method in detecting and analyzing the weak interaction between phonons and electrons

  11. A resonant ultrasound spectroscopy study of the phase transitions in Na0.75CoO2

    Science.gov (United States)

    Keppens, Veerle; Sergienko, Ivan; Jin, Rongying

    2005-03-01

    The layered transition metal oxides NaxCoO2 have attracted much interest in the past few years. Crystals with the x˜0.75 composition undergo an order-disorder transition near 340 K, a spin-density-wave transition near 22 K and other subtle transitions at intermediate temperatures. These phase transitions, likely related to a rearrangement of the Na atoms among the available sites, have been mapped out using resonant ultrasound spectroscopy. The results are modeled within the Landau theory for second order phase transitions. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725

  12. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  13. What can we learn from Raman Spectroscopy on irradiation-induced defects in UO2?

    International Nuclear Information System (INIS)

    Desgranges, L.; Martin, Ph.; Simon, P.; Guimbretiere, G.; Baldinozzi, G.

    2014-01-01

    Recent results on irradiated UO 2 by Raman spectroscopy evidenced Raman lines that are characteristic of irradiation-induced defects. Three main mechanisms are identified to explain their origin: resonant Raman, formation of new molecular entities, or breakdown in symmetry. Arguments are given to consider breakdown in symmetry as the predominant mechanism. A tentative description of the defects at the origin of this symmetry breakdown is proposed in terms of coordination polyhedrons of uranium. This discussion led us to consider that the Raman defect modes could be related to area with different stoichiometry. (authors)

  14. First detection of lamella-gyroid-cylinder phase transition of neat polyethylene-poly(ethylene oxide) diblock copolymers on the basis of synchrotron WAXD/SAXS and infrared/Raman spectral measurements

    International Nuclear Information System (INIS)

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-01-01

    The phase transition behaviour of polyethylene-b-poly(ethylene oxide) (PE-b-PEO) diblock copolymer with relatively short chain lengths has been studied on the basis of temperature dependent infrared and Raman spectral measurements and synchrotron WAXD/SAXS simultaneous measurements, from which the concrete structural changes were deduced successfully from the various levels of molecular chain conformation, chain packing mode and higher-order structure. The higher-order structure has been found to transform between lamella, perforated lamella, gyroid, cylinder and sphere structures. The inner structural changes occurring in the polyethylene and poly(ethylene oxide) parts have been related with these morphological changes. The morphological transition from lamella to gyroid occurs with keeping the crystalline state of polyethylene parts. This apparently curious transition can be interpreted reasonably by assuming the thermally-activated chain motion in the crystal lattice, which may play an important role as a trigger to induce the morphological change from lamella to gyroid. This idea was supported by the measurement of half-width of Raman anti-symmetric CH 2 stretching band sensitive to the thermal mobility of alkyl chains.

  15. Helicity and isospin asymmetries in the electroproduction of nucleon resonances

    International Nuclear Information System (INIS)

    Warns, M.; Pfeil, W.; Rollnik, H.

    1989-10-01

    We investigate the helicity asymmetries and isospin ratios of ratiative transition amplitudes for nucleon resonances electroproduced off proton and neutron targets at momentum transfers of Q 2 ≤3 GeV 2 . Calculations were done in the framework of a relativized constituent quark model which includes many-body effects due to the quark interaction potential and to a relativistic treatment of the center-of-mass motion of the three quark system. We find significant deviations from the predictions of the nonrelativistic quark models and the SU(6) W algebraic approach based on the single quark transition hypothesis. Our calculated relativistic corrections lead to an overall better agreement with the experimental data. The question if some of the low-lying P-wave baryons are of hermaphrodite nature is briefly discussed. Finally we analyse the electroexcitation of the missing [20,1 + ] P-wave resonances. (orig.)

  16. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    International Nuclear Information System (INIS)

    Candefjord, Stefan; Nyberg, Morgan; Ramser, Kerstin; Lindahl, Olof A; Jalkanen, Ville

    2010-01-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard-–histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization

  17. Extremely short pulses via stark modulation of the atomic transition frequencies.

    Science.gov (United States)

    Radeonychev, Y V; Polovinkin, V A; Kocharovskaya, Olga

    2010-10-29

    We propose a universal method to produce extremely short pulses of electromagnetic radiation in various spectral ranges. The essence of the method is a resonant interaction of radiation with atoms under the conditions of adiabatic periodic modulation of atomic transition frequencies by a far-off-resonant control laser field via dynamic Stark shift of the atomic levels and proper adjustment of the control field intensity and frequency, as well as the optical depth of the medium. The potential of the method is illustrated by an example in a hydrogenlike atomic system.

  18. Conformational states of N-acylalanine dithio esters: correlation of resonance Raman spectra with structures

    International Nuclear Information System (INIS)

    Lee, H.; Angus, R.H.; Storer, A.C.; Varughese, K.I.; Carey, P.R.

    1988-01-01

    The conformational states of N-acylalanine dithio esters, involving rotational isomers about the RC(=O)NH-CH(CH 3 ) and NHCH(CH 3 )-C(=S) bonds, are defined and compared to those of N-acylglycine dithio esters. The structure of N-(p-nitrobenzoyl)-DL-alanine ethyl dithio ester has been determined by X-ray crystallographic analysis; it is a B-type conformer with the amide N atom cis to the thiol sulfur. Raman and resonance Raman (RR) measurements on this compound and for the B conformers of solid N-benzoyl-DL-alanine ethyl dithio ester and N-(β-phenylpropionyl)-DL-alanine ethyl dithio ester and its NHCH(CD 3 )C(=S) and NHCH(CH 3 ) 13 C(=S) analogues are used to set up a library of RR data for alanine-based dithio esters in a B-conformer state. RR data for this solid material in its isotopically unsubstituted and CH(C-D 3 )C(=S) and CH(CH 3 ) 13 C(=S) forms provide information on the RR signatures of alanine dithio esters in A-like conformations. RR spectra are compared for the solid compounds, for N-(p-nitrobenzoyl)-DL-alanine, N-(β-phenylpropionyl)-DL-alanine, and (methyloxycarbonyl)-L-phenylalanyl-DL-alanine ethyl dithio ester, and for several 13 C=S- and CD 3 -substituted analogues in CCl 4 or aqueous solutions. The RR data demonstrate that the alanine-based dithio esters take up A, B, and C 5 conformations in solution. The RR spectra of these conformers are clearly distinguishable from those for the same conformers of N-acylglycine dithio esters. However, the crystallographic and spectroscopic results show that the results show that the conformational properties of N-acylglycine and N-acylalanine dithio esters are very similar

  19. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  20. An investigation on phase transition behaviors in MgO-doped Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ferroelectric ceramics by Raman and dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junxia, E-mail: wjunxia2002@163.com [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Genshui; Chen, Xuefeng [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Hu, Zhigao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Nie, Hengchang; Cao, Fei [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Dong, Xianlin, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-03-15

    Highlights: • The phase transition behaviors were strongly dependent on MgO concentration. • The F{sub R(LT)}–F{sub R(HT)} phase transition temperature obviously shifted toward a lower temperature with increasing MgO addition. • The F{sub R(HT)}–cubic paraelectric (P{sub C}) phase transition changed to a higher temperature with increasing MgO addition. • The distortion of BO{sub 6} oxygen octahedron caused by B-site replacement of Mg{sup 2+} ions is proposed to explain the observed behaviors. • Superior room-temperature pyroelectric properties were obtained in 0.1 wt% MgO-modified PZTN 95/5 ceramics during F{sub R(LT)}–F{sub R(HT)} phase transition. - Abstract: The phase transition behaviors of Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ferroelectric ceramics doped with different MgO concentrations (0–0.2 wt%) were systematically investigated by Raman and dielectric measurements. Raman results showed that the phase transitions were strongly dependent on MgO concentration. It was found that the low temperature rhombohedral (F{sub R(LT)})–high temperature rhombohedral (F{sub R(HT)}) ferroelectric phase transition shifted toward a lower temperature with increasing MgO concentration up to 0.1 wt%, while the F{sub R(HT)}–cubic paraelectric (P{sub C}) phase transition changed to a higher temperature. The Raman results were in good agreement with phase transition determined by dielectric measurements. Moreover, it was indicated that the changes of Raman active modes were related to distortion of BO{sub 6} octahedra during the phase transitions. Then, the distortion of BO{sub 6} octahedron caused by B-site replacement of Mg{sup 2+} ions was proposed to explain the observed behaviors. In addition, the effects of MgO doping on the dielectric, ferroelectric and pyroelectric properties were also discussed.

  1. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2006-01-01

    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Karthik Raman1 Nagasuma Chandra2. Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland; Bioinformatics Centre, Raman building, Indian Institute of Science, Bangalore 560 012, India. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 3. Current Issue

  3. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  4. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing

    Science.gov (United States)

    Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian

    2018-01-01

    Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate

  5. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing.

    Science.gov (United States)

    Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian

    2018-01-01

    Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate

  6. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing

    Directory of Open Access Journals (Sweden)

    Marc-Olivier Baradez

    2018-03-01

    Full Text Available Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible

  7. Off-take and slug transition at T-junction of vertical-up branch in the horizontal pipe

    International Nuclear Information System (INIS)

    Moon, Young Min; No, Hee Cheon

    2003-01-01

    The off-take and the slug transition on air-water interface are experimentally investigated at the T-junction of the horizontal pipe with a vertical upward branch to simulate the loss-of-residual-heat-removal during a mid-loop operation in the Korea standard nuclear power plant. Scaling analysis is performed to scale down the experimental facility to the reference nuclear power plant. Two different diameters of branch pipes are used to verify the scaling laws and their scale effects. Air is used as working gaseous fluid and no water flow exists. Off-take behavior on horizontal stratified and slug flows is visually observed in the horizontal pipe. The experimental data are divided into three categories; onset of liquid entrainment at T-junctions, onset of slug transition in the horizontal pipe, and discharge quality in the branch pipe. It is found out that the scale effect of the branch diameter on the onset of liquid entrainment is small and the existing correlations for it are applicable. Also, the onset of slug transition shows a discrepancy with Taitel-Dukler's correlation and has a strong influence on the discharge quality. New correlations for discharge quality are developed considering the critical dependency of the onset of slugging. (author)

  8. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  9. A quarter century of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1987-01-01

    To round out a quarter century of SRS the timing of this writing (1986) requires a look ahead of only one year into the future. The proceedings of the 10th International Conference on Raman Spectroscopy present a picture of current activity. Further progress will be made in time-resolved spectroscopy with subpicosecond resolution, in the study of hyper-Raman and other higher order effects with CARS, in extension of resonant Raman excitation in the UV region of spectrum, and in the development of Raman laser sources. During past few years extensive theoretical investigations have been made for four-wave light mixing in the case of one or more very strong light beams. The perturbation approach for those fields ceases to be valid. If only one light field is strong, the usual approach is to make a transformation to a rotating coordinate system so that the strong Hamiltonian for this light field becomes time-independent. Very recently these techniques have been extended to the case of two or more strong fields. CARS-type experiments with strong beams are likely to receive more attention. Extrapolation of the current activities instills confidence in the vitality of stimulated Raman scattering for the foreseeable future

  10. Stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable duffing oscillator and bifurcation of moment equation

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue; Wang Jue; Yue Zhifeng; Zou Hailin

    2009-01-01

    In this paper stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator is analyzed by moment method. This kind of novel transition refers to the one among three potential well on two sides of bifurcation point of original system at the presence of internal noise. Several conclusions are drawn. First, the semi-analytical result of stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator can be obtained, and the semi-analytical result is qualitatively compatible with the one of Monte Carlo simulation. Second, a bifurcation of double-branch fixed point curves occurs in the moment equations with noise intensity as their bifurcation parameter. Third, the bifurcation of moment equations corresponds to stochastic resonance of original system. Finally, the mechanism of stochastic resonance is presented from another viewpoint through analyzing the energy transfer induced by the bifurcation of moment equation.

  11. Forbidden Raman scattering processes. I. General considerations and E1--M1 scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1979-01-01

    The generalized theory of forbidden Raman scattering processes is developed in terms of the multipole expansion of the electromagnetic interaction Hamiltonian. Using the general expressions, the theory of electric dipole--magnetic dipole (E1--M1) Raman scattering is derived in detail. The 1 S 0 → 3 P 1 E1--M1 Raman scattering cross section in atomic magnesium is calculated for two applicable laser wavelengths using published f-value data. Since resonantly enhanced cross sections larger than 10 -29 cm 2 /sr are predicted it should be possible to experimentally observe this scattering phenomenon. In addition, by measuring the frequency dependence of the cross section near resonance, it may be possible to directly determine the relative magnitudes of the Axp and AxA contributions to the scattering cross section. Finally, possible applications of the effect in atomic and molecular physics are discussed

  12. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  13. Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Kozytskiy, A.V. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Mazanik, A.V.; Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Dzhagan, V.M., E-mail: dzhagan@isp.kiev.ua [V.E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 41 Nauky Av., 03028 Kyiv (Ukraine)

    2014-07-01

    Properties of CdS nanoparticles (NPs) grown by successive ionic layer adsorption and reaction (SILAR) method on the surface of electrodeposited ZnO films were studied by Raman, photocurrent and UV–Vis absorption spectroscopies. The CdS nanoparticles deposited at a SILAR cycle number (N) from 5 to 10 exhibit a broadening of the band gap (E{sub g}) by 0.17–0.31 eV as compared with that of the CdS particles grown at N = 30. The size quantization of the interband transition energy in CdS nanoparticles is in accordance with the Raman spectroscopic data demonstrating a considerable increase in the LO peak intensity with increasing the N from 5 to 10 as a result of transition to resonant light scattering. The spectral width of the LO peak decreases from 50 to 15 cm{sup −1} as the N increases from 5 to 30 reflecting a less pronounced effect of the nanoparticle surface on the phonon scattering. A large spectral width of the Raman peaks is assumed to originate from a complex structure of the CdS nanoparticles comprising crystallinity domains that can affect the phonon confinement. The photocurrent spectroscopy of ZnO/CdS heterostructures showed that the band gap of CdS NPs deposited at N > 20 is smaller by ∼ 0.08 eV than that of bulk cadmium sulfide. It was concluded that this effect is not associated with photoexcitation of structural defects but rather reflects intrinsic electronic properties of SILAR-deposited CdS nanoparticles. - Highlights: • Visible-light-sensitive ZnO/CdS heterostructures were prepared by SILAR. • A large Raman peak width originates from a complex structure of CdS nanoparticles. • Vibrational properties of CdS nanoparticles depend on SILAR cycle number.

  14. Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Kozytskiy, A.V.; Stroyuk, O.L.; Kuchmiy, S.Ya.; Mazanik, A.V.; Poznyak, S.K.; Streltsov, E.A.; Kulak, A.I.; Korolik, O.V.; Dzhagan, V.M.

    2014-01-01

    Properties of CdS nanoparticles (NPs) grown by successive ionic layer adsorption and reaction (SILAR) method on the surface of electrodeposited ZnO films were studied by Raman, photocurrent and UV–Vis absorption spectroscopies. The CdS nanoparticles deposited at a SILAR cycle number (N) from 5 to 10 exhibit a broadening of the band gap (E g ) by 0.17–0.31 eV as compared with that of the CdS particles grown at N = 30. The size quantization of the interband transition energy in CdS nanoparticles is in accordance with the Raman spectroscopic data demonstrating a considerable increase in the LO peak intensity with increasing the N from 5 to 10 as a result of transition to resonant light scattering. The spectral width of the LO peak decreases from 50 to 15 cm −1 as the N increases from 5 to 30 reflecting a less pronounced effect of the nanoparticle surface on the phonon scattering. A large spectral width of the Raman peaks is assumed to originate from a complex structure of the CdS nanoparticles comprising crystallinity domains that can affect the phonon confinement. The photocurrent spectroscopy of ZnO/CdS heterostructures showed that the band gap of CdS NPs deposited at N > 20 is smaller by ∼ 0.08 eV than that of bulk cadmium sulfide. It was concluded that this effect is not associated with photoexcitation of structural defects but rather reflects intrinsic electronic properties of SILAR-deposited CdS nanoparticles. - Highlights: • Visible-light-sensitive ZnO/CdS heterostructures were prepared by SILAR. • A large Raman peak width originates from a complex structure of CdS nanoparticles. • Vibrational properties of CdS nanoparticles depend on SILAR cycle number

  15. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy

    NARCIS (Netherlands)

    Bonifacio, A.; Keizers, P.H.J.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Robert, B.; Gooijer, C.; van der Zwan, G.

    2006-01-01

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for the first time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different

  16. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  17. Stochastic phenomena in a fiber Raman amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikov, Vladimir [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Institute of Photonics, Vienna University of Technology (Austria); Sergeyev, Sergey V. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Ania-Castanon, Juan Diego [Instituto de Optica CSIC, Madrid (Spain); Jacobsen, Gunnar [Acreo, Kista (Sweden); Popov, Sergei [Royal Institute of Technology (KTH), Stockholm (Sweden)

    2017-01-15

    The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering-based nonlinearity, the random birefringence of a fiber, and the pump-to-signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence-induced resonance-like enhancement of the gain fluctuations (stochastic anti-resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  19. A magnetic resonance study of 3d transition metals and thermal donors in silicon

    International Nuclear Information System (INIS)

    Wezep, D.A. van.

    1986-01-01

    This thesis describes a study of 3d-transition metal impurities in silicon (titanium and iron in particular) and a study of oxygen-related heat-treatment centers in silicon, both carried out mainly by magnetic resonances techniques like EPR and ENDOR. 119 refs.; 31 figs.; 14 tabs

  20. Characterization of Barium Borate Frameworks Using Raman Spectroscopy.

    Science.gov (United States)

    Gharavi-Naeini, Jafar; Yoo, Kyung W; Stump, Nathan A

    2018-04-01

    Systematic micro-Raman scattering investigations have been carried out on Sm +2 doped 2(BaO)-n(B 2 O 3 ) matrices for n = 4, 5, 8, and 2(BaO)-(Na 2 O)-9(B 2 O 3 ) using the 364 nm excitation of an Ar + laser. The Raman results have been compared with the known structures of barium tetraborate, barium pentaborate, barium octaborate, and barium sodium nonaborate. An excellent correlation has been found between the BO 4 /BO 3 composition ratios for each product and intensity ratios of the designated BO 4 and BO 3 Raman peaks. Furthermore, the Raman frequencies of both BO 4 and BO 3 groups undergo a systematic blueshift as n increases from four to nine. The shift results from a decrease of the B-O bond lengths for both BO 4 and BO 3 groups as the samples transition from the tetraborate to nonaborate structures. Linear relations (with negative slopes) have been determined between the measured Raman frequencies and B-O bond lengths in the frameworks.

  1. Coupled two-quantum-transition probability for laser photons and microwave plasmons

    International Nuclear Information System (INIS)

    Hildebrandt, J.

    1985-01-01

    The introduction of a plasmon-state vector analogous to a photon-field oscillator allows within the rotating-wave approximation, transformation to a time-independent interaction Hamiltonian, so that Fermi's golden rule can be applied to the two-quantum transition. Although the existence of a vector potential is necessary for the oscillator state vectors, only the multipolar Hamiltonian need be used for the off-resonant frequencies

  2. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  3. Construction of coherent antistokes Raman spectroscopy (CARS)

    International Nuclear Information System (INIS)

    Zidan, M. D.; Jazmati, A.

    2007-01-01

    Coherent Antistokes Raman Spectroscopy (CARS) has been built. It consists of a Raman cell, which is filled with CO 2 gas at 5 atm pressure and a frequency doubled Nd-YAG laser pumped dye laser. The two beams are focused by means of a bi-convex lens into Raman cell. The Antistokes signals (CARS signals) are generated due to Four-wave mixing process. The antistokes signals were directed to monochrometer entrance slit by prism . The signals are detected by photomultiplier detector which is fixed on the exit slit and connected to data acquisition card located inside the computed case. The dye laser frequency has to be tuned to satisfy the energy difference between the ν 1 beam (Nd- YAG laser beam) and the ν 2 beam (the stokes beam or the dye laser beam) exactly corresponds to a vibrational - rotational Raman resonance (ν 2 - ν 1 = ν M ) in the 12 CO 2 or 13 CO 2 molecule, then the antistokes signals (ν 3 ) will be generated. The spectra of the CARS signals have been recorded to determine the isotope shift of 12 CO 2 , 13 CO 2 , which is 18.3 cm -1 . (author)

  4. Aerodynamic Analyses and Database Development for Lift-Off/Transition and First Stage Ascent of the Ares I A106 Vehicle

    Science.gov (United States)

    Pamadi, Bandu N.; Pei, Jing; Covell, Peter F.; Favaregh, Noah M.; Gumbert, Clyde R.; Hanke, Jeremy L.

    2011-01-01

    NASA Langley Research Center, in partnership with NASA Marshall Space Flight Center and NASA Ames Research Center, was involved in the aerodynamic analyses, testing, and database development for the Ares I A106 crew launch vehicle in support of the Ares Design and Analysis Cycle. This paper discusses the development of lift-off/transition and ascent databases. The lift-off/transition database was developed using data from tests on a 1.75% scale model of the A106 configuration in the NASA Langley 14x22 Subsonic Wind Tunnel. The power-off ascent database was developed using test data on a 1% A106 scale model from two different facilities, the Boeing Polysonic Wind Tunnel and the NASA Langley Unitary Plan Wind Tunnel. The ascent database was adjusted for differences in wind tunnel and flight Reynolds numbers using USM3D CFD code. The aerodynamic jet interaction effects due to first stage roll control system were modeled using USM3D and OVERFLOW CFD codes.

  5. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  6. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    Science.gov (United States)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  7. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus.

    Science.gov (United States)

    Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen; Kneipp, Janina

    2018-01-25

    Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus , using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues.

  8. Operating regime for a backward Raman laser amplifier in preformed plasma

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    A critical issue in the generation of ultraintense, ultrashort laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [Phys. Rev. Lett. 84, 1208 (2000)] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the T e -n e plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D [R. L. Berger et al., Phys. Plasmas 5, 4337 (1998)], which includes the effects of thermal fluctuations, is used to verify these analytic estimates

  9. Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates

  10. Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Clark; Nathaniel J. Fisch

    2003-02-06

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates.

  11. Gold Nanostructures for Surface-Enhanced Raman Spectroscopy, Prepared by Electrodeposition in Porous Silicon

    Directory of Open Access Journals (Sweden)

    Yukio H. Ogata

    2011-04-01

    Full Text Available Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

  12. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  13. Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Struzhkin, V.V.

    2003-01-01

    We overview recent high-pressure studies of high-temperature superconductor MgB 2 by Raman scattering technique combined with measurements of superconducting critical temperature T c and lattice parameters up to 57 GPa. An anomalously broadened Raman band at 620 cm -1 is observed and assigned to the in-plane boron stretching E 2g mode. It exhibits a large Grueneisen parameter indicating that the vibration is highly anharmonic. The pressure dependencies of the E 2g mode and T c reveal anomalies at 15-22 GPa (isotope dependent). The anharmonic character of the E 2g phonon mode, its anomalous pressure dependence, and also that for T c are interpreted as a result of a phonon-assisted Lifshitz electronic topological transition

  14. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy.

    Science.gov (United States)

    Egawa, Tsuyoshi; Yeh, Syun-Ru

    2005-01-01

    Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.

  15. Observability of localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of far-infrared, Raman, and electron-energy-loss spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, Texas 77251 (United States)

    2016-03-15

    We investigate a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn’s theorem (GKT) in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energies capable of being explored with the FIR, Raman, and/or electron-energy-loss spectroscopy. This implies that either of these probes is competent in observing the localized magnetoplasmons in the system. As an application of the rigorous analytical diagnosis of the system, we have presented various pertinent single-particle, such as Fock-Darwin spectrum, Fermi energy, zigzag excitation spectrum, and magneto-optical transitions, and the many-particle phenomena, such as magneto-optical absorption, Raman intensity, and electron energy-loss probability. In the latter, the energy position of the resonance peaks is observed to be independent of the electron-electron interactions and hence of the number of electrons in the quantum dot in compliance with the GKT. It is found that both confinement potential and magnetic field play a decisive role in influencing the aforementioned many-particle phenomena. Specifically, increasing (decreasing) the strength of the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots and results into a blue (red) shift in the respective spectra. Intensifying the magnetic field has two-fold effects in the resonance

  16. Abnormal anti-Stokes Raman emission as a coherent anti-Stokes Raman scattering-like process in disordered media

    International Nuclear Information System (INIS)

    Baltog, Ioan; Baibarac, Mihaela; Smaranda, Ion; Lefrant, Serge

    2011-01-01

    In this paper, we demonstrate that, by continuous single beam excitation, one can generate an abnormal anti-Stokes Raman emission (AASRE) whose properties are similar to a coherent anti-Stokes Raman scattering (CARS). The effect has been observed in materials which possess intrinsically nonlinear properties (LiNbO 3 and CdS), which have the electric susceptibility of third order different from zero, χ (3) ≠ 0, as well as in materials that become nonlinear under resonant optical excitation. In the latter case, we used poly-3,4-ethylendioxythiophene (PEDOT) in its undoped state deposited electrochemically on Au support. Raman studies corroborated with images of optical microscopy demonstrate that the production of AASRE is conditioned by the existence of a particular morphology of the sample able to ensure efficient transport of the light inside the sample through a multiple light scattering mechanism. In this context, it was found that LiNbO 3 and CdS in powder form as well as the PEDOT films layered on a rough Au substrate are suitable morphological forms. We explain AASRE as resulting from a wave-mixing mechanism of the incident laser light ω l with a Stokes-shifted Raman light ω S produced by a spontaneous Raman light scattering process, both strongly scattered inside the sample. As a CARS process, AASRE is conditioned by the achievement of phase-matching requirements, which makes the difference between the wave vectors of mixing light close to zero, Δk =/2k l - k S - k CARS /∼ 0. In condensed media, the small dispersion of the refractive index makes Δk ∼ 0 so that the formation of a favourable phase-matching geometry may be accomplished even at a crossing angle θ of travelling scattered light ω l and ω S . For tightly focused beams, the requirement of phase matching relaxes; it is no longer sensitive to the Raman shift, so that a wide intense anti-Stokes Raman spectrum is observed at an angle larger than the Stokes Raman spectrum.

  17. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K

    2010-09-01

    Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  19. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  20. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  1. Signature of ferro–paraelectric transition in biferroic LuCrO3 from electron paramagnetic resonance and non-resonant microwave absorption

    International Nuclear Information System (INIS)

    Alvarez, G.; Montiel, H.; Durán, A.; Conde-Gallardo, A.; Zamorano, R.

    2014-01-01

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO 3 is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr 3+ (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH pp ), the g-factor and the integral intensity (I EPR ). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO 3 powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material

  2. Circular dichroism and Raman optical activity in antiferromagnetic transition metal fluorides

    International Nuclear Information System (INIS)

    Hoffman, K.R.; Lockwood, D.J.; Yen, W.M.

    2005-01-01

    The Raman optical activity (ROA) of magnons in rutile-structure antiferromagnetic FeF 2 (T N = 78 K) has been studied as a function of temperature and applied magnetic field. For exciting light incident along the c axis, ROA is observed for magnons but not for phonons. In zero field, a small splitting (0.09 cm -1 ) of the two acoustic-magnon branches is observed for the first time by inelastic light scattering. The splitting in applied magnetic field is found to reduce with increasing temperature in accordance with theory. No ROA was detected for two-magnon excitations. In optical absorption measurements performed over thirty years ago, a very small circular dichroism (CD) was observed in the magnon sidebands of other simple rutile antiferromagnetic fluorides (MnF 2 and CoF 2 ). The origin of this CD was not understood at the time. The Raman studies of the one-magnon Raman scattering in FeF 2 have demonstrated that in zero field the degeneracy of the antiferromagnetic magnon branches is lifted by a weak magnetic dipole-dipole interaction, as predicted by Pincus and Loudon and by White four decades ago. The source of the observed CD in the magnon sidebands can now be traced to this same magnetic-dipole induced splitting

  3. Rigorous results in quantum theory of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Rupasov, V.I.

    1993-01-01

    The modern theory of stimulated Raman scattering (SRS) of light in resonant media is based on the investigations of appropriate integrable models of the classical field theory by means of the inverse problem method. But, strictly speaking, Raman scattering is a pure spontaneous process and, hence, it is necessary to take into account a quantum nature of the phenomenon. Moreover, there are some questions and problems, for example, the problem of scattered photons statistics, which can be studied only within the framework of the quantum field theory. We have developed an exact quantum theory of SRS for the case of point-like geometry of resonant media (two-level atoms or harmonic oscillators) of the radius r much-lt λ 0 , where λ 0 is the typical wavelength of the light, but all our results are also valid for the case of short extended medium of the length L much-lt l p (l p is the typical size of pulses) when the spatially homogeneous approximation is valid

  4. Development of cryo-cell for infrared Raman laser

    International Nuclear Information System (INIS)

    Harada, Tetsuro; Ohmori, Takao; Saito, Hideaki

    1984-01-01

    Laser isotope separation (LIS) for uranium enrichment is remarkable for its higher efficiency and cost effectiveness over the gaseous diffusion process. A prototype Raman Laser apparatus for uranium enrichment was developed and manufactured by IHI for the Institute of Physical and Chemical Research. This apparatus is capable of emitting tunable infrared Laser beam of a wave length from 13 μm to 17 μm from its multiple pass resonator by injecting a highly coherent CO 2 Laser beam into the para-hydrogen gas vessel (kept at 100 K) to induce Raman scattering. This paper describes the Laser oscillation mechanism and the structure of the multiple pass cell; it also discusses the technical aspects that are essential for a Raman Laser apparatus. Moreover, the cooling characteristics of the present apparatus are reported by analyzing the results of tests conducted in actual service thermal conditions. (author)

  5. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  6. Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing

    Science.gov (United States)

    Passaro, Vittorio M.N.; De Leonardis, Francesco

    2009-01-01

    In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481

  7. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  8. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2013-12-01

    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  9. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  10. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    Science.gov (United States)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  11. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  12. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    Science.gov (United States)

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  13. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  14. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  15. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  16. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  17. Raman and fluorescence contributions to the resonant inelastic soft x-ray scattering on LaAlO3/SrTiO3 heterostructures

    Science.gov (United States)

    Pfaff, F.; Fujiwara, H.; Berner, G.; Yamasaki, A.; Niwa, H.; Kiuchi, H.; Gloskovskii, A.; Drube, W.; Gabel, J.; Kirilmaz, O.; Sekiyama, A.; Miyawaki, J.; Harada, Y.; Suga, S.; Sing, M.; Claessen, R.

    2018-01-01

    We present a detailed study of the Ti 3 d carriers at the interface of LaAlO3/SrTiO3 heterostructures by high-resolution resonant inelastic soft x-ray scattering (RIXS), with special focus on the roles of overlayer thickness and oxygen vacancies. Our measurements show the existence of interfacial Ti 3 d electrons already below the critical thickness for conductivity. The (total) interface charge carrier density increases up to a LaAlO3 overlayer thickness of 6 unit cells before it levels out. Furthermore, we observe strong Ti 3 d charge carrier doping by oxygen vacancies. The RIXS data combined with photoelectron spectroscopy and transport measurements indicate the simultaneous presence of localized and itinerant charge carriers. At variance with previous interpretations, we show that in our excitation energy dependent RIXS measurements the amounts of localized and itinerant Ti 3 d electrons in the ground state do not scale with the intensities of the Raman and fluorescence peaks, respectively. Rather, we attribute the observation of either Raman components or fluorescence signal to the specific nature of the intermediate state reached in the RIXS excitation process.

  18. First-principles determination of the Raman fingerprint of rhombohedral graphite

    Science.gov (United States)

    Torche, Abderrezak; Mauri, Francesco; Charlier, Jean-Christophe; Calandra, Matteo

    2017-09-01

    Multilayer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed to ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite is not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral, and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multilayer graphene. Our work is a prerequisite to experimental nondestructive identification and synthesis of rhombohedral graphite.

  19. Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering

    International Nuclear Information System (INIS)

    Huang, D.J.; Lin, H.-J.; Okamoto, J.; Hsu, C.-H.; Huang, C.-M.; Yang, C.S.; Chao, K.S.; Wu, W.B.; Jeng, H.-T.; Guo, G.Y.; Ling, D.C.; Chen, C.T.

    2006-01-01

    We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T V . Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T V and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite

  20. Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2.

    Science.gov (United States)

    Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin

    2017-10-24

    The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

  1. Signature of ferro–paraelectric transition in biferroic LuCrO{sub 3} from electron paramagnetic resonance and non-resonant microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G., E-mail: memodin@yahoo.com [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico); Montiel, H. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-186, México DF 04510 (Mexico); Durán, A. [Centro de Nanociencias y Nanotecnología de la Universidad Nacional Autónoma de México, Km. 107, Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800 Ensenada, B.C. México (Mexico); Conde-Gallardo, A. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Zamorano, R. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico)

    2014-12-15

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO{sub 3} is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr{sup 3+} (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH{sub pp}), the g-factor and the integral intensity (I{sub EPR}). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO{sub 3} powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material.

  2. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  3. Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2018-02-01

    Full Text Available The structural stability of hexagonal Nd2O3 under pressure has been investigated by in situ synchrotron angle dispersive x-ray diffraction and Raman spectroscopy up to 53.1 GPa and 37.0 GPa, respectively. Rietveld analysis of the x-ray diffraction data indicate that the hexagonal Nd2O3 undergoes an isostructural phase transition in the pressure range from 10.2 to 20.3 GPa, accompanied by anomalous lattice compressibility and pressure-volume curve. A third-order Birch-Murnaghan fit based on the observed Pressure-Volume data yields zero pressure bulk moduli (B0 of 142(4 and 183(6 GPa for the low and high pressure hexagonal phases, respectively. Raman spectroscopy confirms this isostructural transition, the pressure dependence of the Raman modes display noticeable breaks in the pressure range of 9.7-20.9 GPa, which is consistent with the change of Nd-O bond length. The pressure coefficients of Raman peaks and the mode Grüneisen parameters of different Raman modes were also determined.

  4. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  5. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules

    International Nuclear Information System (INIS)

    Hayden, C.C.; Chandler, D.W.

    1995-01-01

    Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics

  6. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    Science.gov (United States)

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  7. Configurable unitary transformations and linear logic gates using quantum memories.

    Science.gov (United States)

    Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K

    2014-08-08

    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.

  8. Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling

    Directory of Open Access Journals (Sweden)

    V. Le Nader

    2012-01-01

    Full Text Available This paper presents an effective Tip-Enhanced Raman Spectrometer (TERS in backscattering reflection configuration. It combines a tip-probe nanopositioning system with Raman spectroscope. Specific tips were processed by anchoring gold nanoparticles on the apex of tapered optical fibers, prepared by an improved chemical etching method. Hence, it is possible to expose a very small area of the sample (~20 nm2 to the very strong local electromagnetic field generated by the lightning rod effect. This experimental configuration was modelled and optimised using the finite element method, which takes into account electromagnetic effects as well as the plasmon resonance. Finally, TERS measurements on single-wall carbon nanotubes were successfully performed. These results confirm the high Raman scattering enhancement predicted by the modelling, induced by our new nano-Raman device.

  9. Raman scattering in orthorhombic CuInS2 nanocrystals

    International Nuclear Information System (INIS)

    Dzhagan, V.M.; Valakh, M.Ya.; Litvinchuk, A.P.; Kruszynska, M.; Kolny-Olesiak, J.; Himcinschi, C.; Zahn, D.R.T.

    2014-01-01

    We report the results of non-resonant and resonant Raman scattering in orthorhombic nanocrystalline CuInS 2 semiconductor, supported by density functional first principle lattice dynamics calculations. A larger number of dominant phonon modes in comparison with standard tetragonal CuInS 2 phases is shown to be associated with peculiarities of cation sublattice ordering and is the ''fingerprint'' of the corresponding structural polymorph. Good overall agreement is found between theoretical and experimental phonon mode frequencies. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination.

    Science.gov (United States)

    Abdelhamid, Rehab F; Obara, Yuji; Kohzuma, Takamitsu

    2008-01-01

    Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.

  11. A relativized quark model for radiative baryon transitions

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)

  12. Thermal dehydration of potash alum studied by Raman spectroscopy and X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kishimura, Hiroaki, E-mail: kisimura@nda.ac.jp; Imasu, Yuhta; Matsumoto, Hitoshi

    2015-01-15

    The thermal dehydrations of potash alum caused by heating at various temperatures for at least 2 h were investigated by ex situ Raman spectroscopy and X-ray diffraction (XRD) analyses in air. With increasing the heating temperature, all Raman peaks were observed to broaden, while an additional broad peak appeared at approximately 1030 cm{sup −1} and shifted toward higher wavenumbers. In addition, the Raman band assigned to the O–H stretching mode weakened. The orientational disorder (OD) of the sulfate ions, as indicated by the intensity ratio of doublet peaks at 989 and 974 cm{sup −1}, was found to increase with increasing the heating temperature. The XRD patterns demonstrated that a structural phase transition from crystalline KAl(SO{sub 4}){sub 2}⋅12H{sub 2}O to amorphous phases began at around 75 °C, while broadening of the Raman peaks and an increase in OD also suggested the onset of an amorphous phase. Raman peaks corresponding to anhydrous KAl(SO{sub 4}){sub 2} appeared at approximately 180 °C. It was concluded that the elimination of water molecules was responsible for increase in the extent of OD, and this in turn induced the observed phase transitions. The formation of the amorphous phases observed in this work was similar to the pressure-induced amorphization of KAl(SO{sub 4}){sub 2}⋅12H{sub 2}O. - Highlights: • The thermal dehydration of potash alum proceeds through several steps. • Raman spectra and X-ray diffraction reveal the amorphization of the heated samples. • A transition from the amorphous phase to the KAl(SO{sub 4}){sub 2} crystal phase is observed in the sample heated at 180 °C.

  13. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  14. KOI-142, the king of transit variations, is a pair of planets near the 2:1 resonance

    DEFF Research Database (Denmark)

    Nesvorný, David; Kipping, David; Terrell, Dirk

    2013-01-01

    The transit timing variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Many Kepler Objects of Interest (KOIs) exhibit significant TTVs, but KOI-142.01 stands out among them with an unrivaled ≃12 hr TTV amplitude. Here we report...... mass inferred from the transit variations is consistent with the measured transit depth, suggesting a Neptune-class planet (KOI-142b). The orbital period ratio P /P = 2.03 indicates that the two planets are just wide of the 2:1 resonance. The present dynamics of this system, characterized here...

  15. Diagnostic value of T1 and T2 * relaxation times and off-resonance saturation effects in the evaluation of Achilles tendinopathy by MRI at 3T.

    Science.gov (United States)

    Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian

    2015-04-01

    To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.

  16. Raman spectroscopy and single-photon source in an ion-cavity system

    International Nuclear Information System (INIS)

    Goncalves de Barros, H.

    2010-01-01

    The work presented in this thesis explores the interaction between a single trapped 40Ca+ ion and the electromagnetic field inside a high-finesse optical cavity. The coupling takes place via the use of a vacuum stimulated Raman transition, which transfers atomic population from the S1/2 to the D3/2 manifolds of the calcium ion producing a photon in the cavity. This photon is measured and properties of the system are evaluated. Spectroscopy measurements of the Raman transitions are performed and all possible transitions are identified for different polarizations of both drive laser and cavity fields. The system is also used to deterministically produce single photons. Simulation curves quantitatively match the experimental results within calibration error bars. The single-photon creation efficiency obtained in this work overcomes previous ion-cavity setups and is comparable to state-of-the-art systems composed of a neutral atom and a cavity operating in the strong coupling regime. (author)

  17. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  18. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    Science.gov (United States)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  19. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    Science.gov (United States)

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  20. The use of Raman scattering for studying the defects created by implantation in semiconductors

    International Nuclear Information System (INIS)

    Morhange, J.F.; Beserman, R.; Bourgoin, J.

    1974-01-01

    The evolution of Raman scattering with the dose of implanted ions and annealing temperature in silicon and diamond was studied. The variation in the concentration of the defects introduced by implantation, with the dose and annealing temperature were deduced. These results were compared with results obtained using electron paramagnetic resonance. The comparison shows that Raman scattering is a good technique to study the behavior of the defects in ion implanted semiconductors [fr