WorldWideScience

Sample records for odd-mass cs nuclei

  1. Where is the Scissors Mode Strength in Odd-Mass Nuclei?

    International Nuclear Information System (INIS)

    Enders, J.; Huxel, N.; von Neumann-Cosel, P.; Richter, A.

    1997-01-01

    It is demonstrated by a fluctuation analysis based on the assumption of a Wigner distribution for the nuclear level spacings and of a Porter-Thomas distribution for the transition strengths that significant parts of the dipole strength excited in photon scattering experiments in heavy, deformed odd-mass nuclei are hidden in the background of the experimental spectra. With this additional strength, the heretofore claimed severe reduction of the B(M1) scissors mode strength in odd-mass nuclei compared to the one in neighboring even-even nuclei disappears. copyright 1997 The American Physical Society

  2. Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei

    International Nuclear Information System (INIS)

    Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.

    1982-01-01

    Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)

  3. Microscopic structure of a new type of collective excitation in odd-mass Mo, Ru, I, Cs and La isotopes

    International Nuclear Information System (INIS)

    Kuriyama, Atsushi; Okamoto, Ryoji; Marumori, Toshio; Matsuyanagi, Kenichi.

    1975-01-01

    With the aid of microscopic theory of collective excitations in spherical odd-mass nuclei proposed by Kuriyama, Marumori and Matsuyanagi, structures of low-lying collective 5/2 + states in odd-mass I, Cs and La isotopes and of collective 3/2 + states in odd-mass Mo and Ru isotopes are investigated. These collective 5/2 + and 3/2 + states, which are hard to understand within the framework of the conventional quasi-particle-phonon-coupling theory, are identified as a new kind of fermion-type collective excitation mode. The change in microscopic structure of these states depending on the mass number is also investigated in relation with the shell structure. (auth.)

  4. 1+ collective states of 124Cs and 126Cs nuclei

    International Nuclear Information System (INIS)

    Ivanova, S.P.; Kuliev, A.A.; Salamov, D.I.

    1977-01-01

    Within the framework of the random phase approximation β-decay properties of the 1 + states of 124 Cs and 126 Cs have been investigated. Greatly collectivized 1 + states in odd-odd nuclei are produced by the spin-dependent charge-exchange nucleon interaction. For numerical calculations the scheme of single-particle levels in the deformed Saxon-Woods potential has been used

  5. Pairing correlations. II. Microscopic analysis of odd-even mass staggering in nuclei

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    The odd-even mass staggering in nuclei is analyzed in the context of self-consistent mean-field calculations, for spherical as well as for deformed nuclei. For these nuclei, the respective merits of the energy differences Δ (3) and Δ (5) to extract both the pairing gap and the time-reversal symmetry breaking effect at the same time are extensively discussed. The usual mass formula Δ (3) is shown to contain additional mean-field contributions when realistic pairing is used in the calculation. A simple tool is proposed in order to remove the time-reversal symmetry breaking effects from Δ (5) . Extended comparisons with the odd-even mass staggering obtained in the zero-pairing limit (schematic model and self-consistent calculations) show the nonperturbative contribution of pairing correlations on this observable

  6. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  7. Description of odd-mass nuclei by multi-reference energy density functional methods

    International Nuclear Information System (INIS)

    Bally, B.

    2014-01-01

    In this work, we are interested in the treatment of odd-mass atomic nuclei in energy density functional (EDF) models. More precisely, the goal of this thesis is to develop and to apply to odd-mass nuclei, the theoretical extensions of the EDF method that are: first, the projection technique, and secondly the configuration mixing by the generator coordinate method (GCM). These two extensions are part of the so-called multi-reference energy density functional (MR-EDF) formalism and allow one to take into account, within an EDF context, the 'beyond-mean-field' correlations between the nucleons forming the nucleus. Until now, the MR-EDF formalism has been applied, in its fully-fledged version, only to the calculation of even-even nuclei. In this thesis, we want to demonstrate the applicability of such a model also for the description of odd-mass nuclei. In the first part of this thesis, we describe the theoretical formalism of the EDF models, giving particular attention to the treatment of symmetries within our approach. In the second part of the manuscript, we apply our model to the nucleus 25 Mg and investigate different aspects of the method (e.g. numerical accuracy, convergence of the configuration mixing, comparison to known experimental data). The results obtained in this work are encouraging and demonstrate the potential of our approach for theoretical nuclear structure calculations. (author)

  8. Modeling level structures of odd-odd deformed nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-01-01

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  9. High spin states in odd-odd {sup 132}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J; Furuno, K [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  10. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Kuliev, Ali Akbar [Azerbaijan National Academy of Aviation, Baku (Azerbaijan)

    2017-01-15

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed {sup 229–233}Th and {sup 233–239}U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even {sup 228–232}Th and {sup 232–238}U nuclei. For {sup 235}U the summed M1 strength in the energy range 1.5–2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  11. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    International Nuclear Information System (INIS)

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O + states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs

  12. A systematic study of odd-odd Gallium nuclei

    International Nuclear Information System (INIS)

    Allegro, P.R.P.; Medina, N.H.; Oliveira, J.R.B.; Ribas, R.V.; Cybulska, E.W.; Seale, W.A.; Zagatto, V.A.B.; Zahn, G.S.; Genezini, F.A.; Silveira, M.A.G.; Tabor, S.; Bender, P.; Tripathi, V.; Baby, L.

    2012-01-01

    Full text: Recently, many studies have been published attempting to explain the role of the 0g 9/2 orbital in the high spin excited states of nuclei in the region of the mass A=50-80, especially very neutron rich nuclei like, for example 59-66 Fe [1], 65,67 Cu [2], 70,80 Ge [3,4] nuclei and those with odd mass number like As, Ge and Ga [5]. Stefanescu et al. [6] demonstrated the presence of bands in the neutron-rich isotopes Ga formed from excitation of a proton to the 0g 9/2 orbital and Cheal et al. [7] revealed, from the study of the spins and moments of the ground state, changes in nuclear structure of the odd Ga isotopes between N = 40 and N 50, indicating a change in the energy gap between the 0g 9/2 orbital and the pf shell. In this work, we have performed a systematic study of odd-odd 64,66,68,70 Ga nuclei to examine the behavior of the 0g 9/2 orbital with an increasing number of neutrons. We have compared the predictions of the Large Scale Shell Model, obtained using the Antoine code [8] with the FPG [9] and JUN45 [10] effective interactions, with the experimental results obtained with in-beam gamma-ray spectroscopy experiments performed at University of Sao Paulo using SACI-PERERE spectrometer and at Florida State University using the Clover Array System. We have also performed calculations to study 67 Ge, an odd nucleus in the same mass region, in order to verify the behavior of the effective interactions in a nucleus without the proton-neutron interaction. [1] S. Lunardi. et al., Phys. Rev. C 76, 034303 (2007). [2] C. J. Chiara et al., Phys. Rev. C 85, 024309 (2012). [3] M. Sugawara et al., Phys. Rev. C 81, 024309 (2010). [4] H. Iwasaki.et al., Phys. Rev. C 78, 021304(R) (2008). [5] N. Yoshinaga et al. Phys. Rev. C 78, 044320 (2008). [6] I. Stefanescu et al., Phys. Rev. C 79, 064302 (2009). [7] B. Cheal et al. Phys. Rev. Lett. 104, 252502 (2010). [8] E. Caurier and F. Nowacki, Acta Phys. Polonica B 30, 705 (1999). [9] O. Sorlin et al., Phys. Rev. Lett

  13. Fingerprint states of odd mass 115I nuclei in the framework of particle rotor model

    International Nuclear Information System (INIS)

    Goswami, R.; Saha Sarkar, M.; Sen, S.

    2008-01-01

    Extensive theoretical as well as experimental investigation of the nuclear structure of odd-mass iodine nuclei have revealed systematic presence of strongly coupled bands in all neutron deficient as well as neutron rich odd-mass iodine isotopes. The present work shows that the positive as well as the negative parity are fairly well reproduced in the framework of particle rotor model

  14. Dynamical symmetries for odd-odd nuclei

    International Nuclear Information System (INIS)

    Balantekin, A.B.

    1986-01-01

    Recent work for developing dynamical symmetries and supersymmetries is reviewed. An accurate description of odd-odd nuclei requires inclusion of the fermion-fermion force (the residual interaction) and the distinguishing of fermion configurations which are particle like and those which are hole like. A parabolic dependence of the proton-neutron multiplet in odd-odd nuclei is demonstrated. It is shown that a group structure for Bose-Fermi symmetries can be embedded in a supergroup. These methods are used to predict level schemes for Au-196 and Au-198. 11 refs., 3 figs

  15. The core-quasiparticle model for odd-odd nuclei and applications to candidates for gamma-ray lasers

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1988-01-01

    A reliable estimate of the properties of isomers that may be viable candidates for a gamma-ray laser requires the use of the most accurate save functions possible. The majority of models that have been used to estimate the properties of isomers are applicable to only selected regions of the nuclear mass table. In particular, the Bohr-Mottelson model of odd-A and odd-odd nuclei will fail if the even-even core is not strongly deformed or if the deformations are changing strongly as a function of mass. This paper reports how the problem is overcome in a new core- quasiparticle model for odd-odd nuclei. The model introduces the pairing interaction ab initio; the odd-A states are mixtures of particle and hole states. The core may be soft towards deformation or axial asymmetry and may change rapidly as a function of mass. Thus, the model is ideally suited for application to the region of transitional nuclei such as the Te, La, and Os regions

  16. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Spevak, V.; Auerbach, N.; Flambaum, V.V.

    1997-01-01

    Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed theoretical treatment of the collective T-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation. copyright 1997 The American Physical Society

  17. Pairing correlations. I. Description of odd nuclei in mean-field theories

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    In order to extract informations on pairing correlations in nuclei from experimental masses, the different contributions to odd-even mass differences are investigated within the Skyrme Hartree-Fock-Bogoliubov (HFB) method. In this part of the paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd nuclei are also reported

  18. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  19. Collective properties of the odd-mass I nuclei: 123,125,127I

    Science.gov (United States)

    Shroy, R. E.; Gordon, D. M.; Gai, M.; Fossan, D. B.; Gaigalas, A. K.

    1982-09-01

    The high-spin states of 123,125,127I have been investigated via the ASn(6Li, 3n)A+3I reactions to study the collective properties of the odd-mass I isotopes. In-beam measurements of γ-ray excitations, γ-γ coincidences, γ-ray angular distributions, and pulsed beam-γ timing were performed with Ge detectors to determine level energies, decay schemes, γ-ray multipolarities, Jπ assignments, and lifetime information. A similar study of the 117,119,121I isotopes is reported in the following paper. Two collective features have been identified in these odd-mass I nuclei. Systematic ΔJ=1 bands built on low-lying 92+ proton-hole (4p-1h) states were observed. The 92+ bandheads, that involve the excitation of a 1g92 proton across the Z=50 shell, drop to very low energies near the middle of the neutron shell. The properties of the 92+ proton-hole states for all of the odd-mass I isotopes are presented and related to the systematic information for the proton-hole states in the entire Z>50 transition region. Systematic ΔJ=2 bands built on 112- (1h112 quasiproton) states, on 72+ (1g72 quasiproton) states, and on 52+ (2d52 quasiproton) states were also observed. The ΔJ=2 band spacings generally follow the spacings of the Te-core ground-state bands with the exception of the 112- ΔJ=2 bands, for which the spacings decrease significantly relative to those for the Te cores as A decreases. These systematic properties are discussed in terms of several theoretical approaches to the onset of collectivity in transitional nuclei. An isomer at 2660 keV in 123I was observed to have a mean lifetime τ=38+/-3 ns. NUCLEAR REACTIONS 120-124Sn(6Li, 3n)123-127I measured γ-γ coincidences, γ(E, θ, t) deduced level schemes in odd-mass 123-127I, γ multipolarities, Jπ, T12. Enriched targets, Ge(Li) detectors.

  20. Influence of triaxiality on the signature inversion in odd-odd nuclei

    International Nuclear Information System (INIS)

    Zheng, R.R.; Luo, X.D.; Timar, J.; Sohler, S.; Nyako, B.M.; Zolnai, L.; Paul, E.S.

    2004-01-01

    Complete text of publication follows. Signature inversion in the A ∼ 100 region has been reported earlier only in the case of the odd-odd 98 Rh nucleus. Our studies on the 100-103 Rh isotopes and a close inspection of the known πg 9/2 νh 11/ 2 bands of the Rh (Z = 45) and Ag (Z = 47) isotopes revealed that the signature splitting effects, earlier considered as quenchings of signature splitting, are not only quenchings but signature inversions. Indeed, the energetically favored signature at low spins in these πg 9/2 νh 11/2 bands is the α = 1 branch (odd spins) instead of the expected α = 0 branch (even spins). The systematic occurrence of signature inversion in this mass region is discussed in Refs. together with attempts to understand its behavior qualitatively. Among many attempts for interpreting the mechanism of signature inversion in odd-odd nuclei, a model using an axially symmetric rotor plus two quasi-particles has already been successfully applied to describe the observed signature inversions in the A ∼ 80 and A ∼ 160 mass regions. According to this model the signature inversion is caused by the competition between the Coriolis and the proton-neutron residual interactions in low K space. Such calculations have been also successfully applied to the π g9/2 νh 11/2 bands in the odd-odd 98 Rh and 102 Rh nuclei. Recent observations of chiral band structures in the nearby Rh nuclei suggest a possibility of triaxiality in these nuclei, too. In the present work we examined the possible influence of triaxiality on the signature inversion using a triaxial rotor plus two-quasiparticle model and compared the results with the experimental data of 98 Rh and 102 Rh. The calculations provided a better agreement with the experiment than the axially symmetric calculations. Compared to the axially symmetric case, the triaxiality applied in the Hamiltonian enlarges the amplitudes of high-spin signature zigzags at small triaxial deformation and might push the

  1. Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei

    International Nuclear Information System (INIS)

    Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir

    2002-01-01

    It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed

  2. Conflicting coupling of unpaired nucleons in odd-odd nuclei

    International Nuclear Information System (INIS)

    Volkov, D.A.; Levon, A.I.

    1990-01-01

    Phenomenological approach is described, using it, energy spectra of odd-odd nucleus collective bands based on conflicting state of unpaired nucleons can be calculated. It is ascertained that in a conflicting bond unpaired nucleon acts as a spectator, i.e. energy spectra of collective bands in odd-odd nuclei are similar to the spectra of collective bands in heighbouring odd nuclei, which are based on the state of a strongly bound nucleon is included in the conflicting configuration

  3. Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball

    CERN Multimedia

    Lauer, M; Iwanicki, J S

    2002-01-01

    We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.

  4. Phonon-particle coupling effects in odd-even mass differences of semi-magic nuclei

    Science.gov (United States)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2017-11-01

    A method to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei, based on a direct solving the Dyson equation with PC corrected mass operator, is used for finding the odd-even mass difference between 18 even Pb isotopes and their odd-proton neighbors. The Fayans energy density functional (EDF) DF3-a is used which gives rather high accuracy of the predictions for these mass differences already on the mean-field level, with the average deviation from the existing experimental data equal to 0.389 MeV. It is only a bit worse than the corresponding value of 0.333 MeV for the Skyrme EDF HFB-17, which belongs to a family of Skyrme EDFs with the highest overall accuracy in describing the nuclear masses. Account for the PC corrections induced by the low-laying phonons 2 1 + and 3 1 - significantly diminishes the deviation of the theory from the data till 0.218 MeV.

  5. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  6. Underlying physics of identical odd- and even-mass bands in normally deformed rare-earth nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Lei Yian; Zeng Jinyan

    2001-01-01

    The microscopic mechanism of the identical odd- and even-mass number nuclear bands in normally deformed rare-earth nuclei was investigated using the particle-number conserving (PNC) method for treating nuclear pairing correlation. It was found that the odd particle of an odd-A identical band always occupied a cranked low j and high Ω Nilsson orbital (e.g. proton [404]7/2, [402]5/2. On the contrary, if the odd particle occupies an intruder high j orbital (e.g. neutron [633]7/2, proton[514]9/2), the moment of inertia of the odd-A band was much larger than that of neighboring even-even ground state band. The observed variation of moment of inertia (below band crossing) was reproduced quite well by the PNC calculation, in which no free parameter was involved. The strengths of monopole and Y 20 quadrupole interactions were determined by the experimental odd-even differences in binding energy and band head moment of inertia

  7. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    International Nuclear Information System (INIS)

    Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented

  8. Searches for possible T-odd and P-odd short range interactions using polarized nuclei

    Directory of Open Access Journals (Sweden)

    Chu P. H.

    2014-03-01

    Full Text Available Various theories predict the possible existence of T-odd and P-odd shortrange forces between spin ½ fermions, proportional to S・r where S is the fermion spin and r is the separation between particles. We use ensembles of polarized nuclei and an un-polarized mass to search for such a force over sub-mm ranges. We established an improved upper bound on the product gsgpn of the scalar coupling to particles in the un-polarized mass and the pseudo-scalar coupling of polarized neutrons for force ranges from 10−4 to 10−2 m, corresponding to a mass range of 2・10−3 to 2・10−5 eV for the exchange boson [1].

  9. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    Science.gov (United States)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  10. The odd-proton effects on the potential energy surfaces of odd mass Tl, Au, Ir and Re isotopes

    CERN Document Server

    De Wieclawik, W; Larsson, S E; Leander, G; Vieu, C; Dionisio, J S

    1976-01-01

    The total potential energy surfaces of thallium, gold, iridium and rhenium odd mass isotopes are calculated microscopically as functions of the quadrupole deformation, epsilon /sub 2/, when the odd protons occupy definite orbitals. The nuclear shapes and the static equilibrium deformations of these nuclei are deduced from the results of these calculations for the proton orbitals nearest to the Fermi level. The influence of the hexadecapole deformation, epsilon /sub 4/, on these results is investigated too. Finally, a few experimental data available for these odd mass nuclei are correlated to the corresponding theoretical results. (16 refs).

  11. Quartetting in even-even and odd-odd N=Z nuclei

    Science.gov (United States)

    Sambataro, M.; Sandulescu, N.

    2018-02-01

    We report on a microscopic description of even-even N = Z nuclei in a formalism of quartets. Quartets are four-body correlated structures characterized by isospin T and angular momentum J. We show that the ground state correlations induced by a realistic shell model interaction can be well accounted for in terms of a restricted set of T = 0 low-J quartets, the J = 0 one playing by far a leading role among them. A conceptually similar description of odd-odd self-conjugate nuclei is given in terms of two distinct families of building blocks, one formed by the same T = 0 quartets employed for the even-even systems and the other by collective pairs with either T = 0 or T = 1. Some applications of this formalism are discussed for nuclei in the sd shell.

  12. E2 and M1 Transition Probabilities in Odd Mass Hg Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Berg, V; Baecklin, A; Fogelberg, B; Malmskog, S G

    1969-10-15

    L- and M-subshell ratios have been measured for the 39.5 keV transition in {sup 193}Hg and the 37.1 and 16.2 keV transitions in {sup 195}Hg yielding 0.38 {+-} 0.12 , <0.02 and 0.08 {+-} 0.03 per cent E2, respectively. The half-lives of the 39.5 keV level in {sup 193}Hg and the 53.3 and 37.1 keV levels in {sup 195}Hg have been measured by the delayed coincidence method, yielding values of 0.63 {+-} 0.03, 0.72 {+-} 0.03 and <0.05 nsec respectively. A systematic compilation of reduced E2 and M1 transition probabilities in odd mass Pt, Hg and Pb nuclei is given and compared to theoretical predictions.

  13. Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei

    International Nuclear Information System (INIS)

    Levon, A.I.; Pasternak, A.A.

    2011-01-01

    The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.

  14. gamma -transition rates in transitional odd gold nuclei

    CERN Document Server

    Berg, V; Oms, J

    1981-01-01

    The results of two half-life measurements of excited states in /sup 185/Au are presented. One supports the proposed interpretation of the ground state configuration, the other one calls attention to the h 9/2 to h 11/2 M1 transitions in odd mass gold nuclei, which, in spite of considerable deformation changes of the h 9/2 state, all show the same retardation. (5 refs).

  15. Fission barriers of two odd-neutron heavy nuclei

    International Nuclear Information System (INIS)

    Koh, Meng-Hock; Bonneau, L.; Nhan Hao, T. V.; Duc, Dao Duy; Quentin, P.

    2015-01-01

    The fission barriers of two odd-neutron heavy odd nuclei,namely the 235 U and 239 Pu isotopes have been calculated within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. A full account of the genuine time-reversal symmetry breaking due to the presence of an unpaired nucleon has been incorporated at the mean field level. The SIII and SkM* parametrizations of the Skyrme interaction have been retained as well as for a part a newer parametrization, SLy5*. The seniority force parameters have been fitted to reproduce experimental odd-even mass differences in the actinide region. To assess the relevance of our calculated fission barrier distribution (as a function of the quantum numbers), we have studied the quality of our results with respect to the spectroscopy of band heads (for configurations deemed to be a pure single particle character) in the ground and fission isomeric states. Fission barriers of the considered odd nuclei have been compared with what is obtained for their even-even neighbouring isotopes (namely 234 U and 236 U, 238 Pu and 240 Pu respectively) to determine the so-called specialization energies. Various corrections and associated uncertainties have been discussed in order to compare our results with available data

  16. E2,M1 Multipole mixing ratios in odd-mass nuclei, 59< or =A< or =149

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of the E2,M1 mxing ratios of gamma-ray transitions in odd-mass nuclei with 59< or =A< or =149. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included, based on averages of results from various studies. The survey includes data available in the literature up to September 1976

  17. Semimicroscopic description of the ODD iodine nuclei in the mass region 123<=A<=133

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Rao, M.N.; Sala, O.; Krmpotic, F.

    A systematic study of the low-energy properties of odd-mass I nuclei is performed in terms of the Alaga model. Previous theoretical works are made up-to-date, according to the present level of experimental information, and extended to lighter isotopes. The residual interaction among the valence protons is approximated by both the pairing force and the surface delta interaction. The refinements introduced by the last interaction are of little importance in the description of low energy states. Excitation energies, one-body reaction amplitudes, dipole and quadrupole moments and B(M1) and B(E2) values are calculated and compared with the corresponding experimental data. Also, a few allowed β-transitions are briefly discussed

  18. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  19. The moments of inertia of a rotational band 3/2- [521] isotones odd nuclei

    International Nuclear Information System (INIS)

    Karahodjaev, A.K.; Kuyjonov, H.

    2003-01-01

    The moments of inertia are received from experimental data from the following expression for energy of a level with spin I: E I = E 0 +ℎ 2 /2j·I(I+1), K≠l/2. The characteristics of low statuses of a rotational band 3/2 - [521] and inertial parameters 1.75A 1 keV ( A-1=ℎ 2 /2j) for nuclei 155 Dy and 155 Gd are given. The values of inertial parameters 1.75A1 keV for odd nuclei with N = 89, 91, 93, 95, 97, 99, 101 and 103 are presented. At quantity of neutrons N = 89 with increase of mass number of a nucleus the moment of inertia rather quickly grows. In nuclei with quantity of neutrons equal 91 and 93, with increase of mass number the moment of inertia of nuclei slowly changes and since A=159 and A=163, accordingly, begins sharply to grow. In isotones with N = 95, 97 and 99 moments of inertia decrease with increase of quantity neutrons in a nucleus. The reason of various dependence of the moment of inertia from mass number is, the coriolis interaction of an odd particle with even-even kernel and change of parameter of pair correlation because of presence of an odd particle above a kernel

  20. Odd-odd neutron-excess nuclei from the magicity region close to 132Sn

    International Nuclear Information System (INIS)

    Erokhina, K.I.; Isakov, V.I.

    1994-01-01

    This is the second publication in a series devoted to theoretical study of neutron-excess nuclei close to the doubly magic nuclide 132 Sn. Odd-odd nuclei from this region are considered by using the quasi-boson approximation. Energy level spectra, electromagnetic transition probabilities, and β-decay properties of nuclei are analyzed. Among other things, the renormalization of the axial-vector constant in the nucleus is determined. Numerical calculations are made for 134 Sb, 130 In, 132 Sb, and 132 In nuclides. Whenever possible, the results are compared with experimental data. 33 refs., 11 figs., 1 tab

  1. Magnetic dipole moments of deformed odd-odd nuclei up to 2p-1f shells

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Verma, A K; Gandhi, R; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-02-01

    The expression for magnetic moments for the states comprising ground state configurations of odd-odd nuclei has been simplified by excluding mixing of other nucleonic configurations. This is contrary to Sharma's and Davidson's results which had been obtained by diagonalizing state matrices for a set of parameters using Davidov and Filippov's non-axial rotor model. According to the relative directions of spins of unpaired odd nucleons, the nuclei have been classified under four categories-an exercise not attempted till now. The calculations have been done with various quenching factors depending upon the relative spin orientations of odd nucleons. For most of the nuclei, the results show considerable improvement over those of Gallagher and Moszkowski and of Sharma.

  2. Nuclear structure of the N = Z odd - odd nuclei around N=28 closed shell interpreted with IBFFM

    International Nuclear Information System (INIS)

    Dragulescu, E.; Serbanut, G. C.; Serbanut, I.

    2001-01-01

    In the very recent years the knowledge of the level structure at lower and higher energies in the fpg shell N=Z nuclei has renewed a growing interest due to major improvements in the theoretical techniques. Going away from closed shell, the shell model calculations rapidly exhaust computer capabilities and we must resort to the model observed on collective phenomena. The fpg odd-odd N = Z nuclei close to the doubly magic 56 Ni nucleus are good candidates to investigate the competition between collective and single-particle excitations. Here part of the results obtained from an exhaustive systematic study of the self conjugate doubly-odd nuclei with A > 62: 62 Ga and 66 As nuclei using the interacting - boson - fermion - fermion - model (IBFFM) is presented. The odd-odd nuclei are described in the framework of the IBFFM by coupling valence shell proton and neutron quasiparticles to even-even core described in the interacting - boson model. In the first step of the calculations the core parameters for 60 Zn and 64 Ge cores were fitted to the energies of their excited states. In the second step of calculations, we have adjusted the IBFM proton Hamiltonian to the low - lying levels of 63 Ga and 67 As nuclei and IBFM neutron Hamiltonian of low - lying levels of 61 Zn and 65 Ge nuclei involved in the cases of the structure of odd-odd 62 Ga and 66 As nuclei. We have finally calculated the level spectra and electromagnetic properties of above mentioned nuclei. The IBFFM positive - parity energy spectra are compared with experimental ones. The calculations show a reasonable agreement with experimental data and existing shell - model calculations. (authors)

  3. Effects of ground state correlations on the structure of odd-mass spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V. V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the quasiparticle and phonon operators, used to describe them, are built of fermions and as a consequence they are not ideal bosons. The correct treatment of this problem requires calculation of the exact commutators between the quasiparticle and phonon operators and in this way to take into account the Pauli principle corrections. In addition to the correlations due to the quasiparticle interaction in the ground-state influence the single-particle fragmentation as well. In this article, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned above. As an illustration of our approach, calculations of the structure of the low-lying states in the odd-mass nuclei 131-137 Ba have been performed

  4. Chiral doublet bands in odd-A nuclei 103,105Rh

    International Nuclear Information System (INIS)

    Qi Bin; Wang Shouyu; Zhang Shuangquan; Meng Jie

    2010-01-01

    Spontaneous chiral symmetry breaking is a phenomenon of general interest in chemistry, biology and particle physics. Since the pioneering work of nuclear chirality in 1997 [1] , much effort has been devoted to further explore this interesting phenomenon. Following the observation of chiral doublet bands in N = 75 isotones [2] more candidates have been reported over more than 20 nuclei experimentally in A∼100, 130 and 190 mass regions including odd-odd, odd-A and even-even nuclei. However, the identification and the intrinsic mechanism of candidate chiral doublet bands are still under debate. Although various versions of particle rotor model (PRM) and titled axis cranking model (TAC) had been applied to study chiral bands, the essential starting point for understanding their properties is based on the ideal picture, i.e. one particle and one hole coupled with a γ = 30 rigid triaxial rotor. On the other hand, from the investigation of semiclassical TAC based on the mean field, it is shown that the chiral doublet bands in the real nuclei are not always consistent with the static chirality, but mixed with the character of dynamic chirality. Thus it is necessary to construct a fully quantal model for the description of chiral doublet bands in the real nuclei, which is aimed to understand the properties of chiral doublet bands in real nuclei, and to present clearly the picture and character of chiral motion [3] . Recently, we have developed the multi-particle multi-hole coupled with the triaxial rotor model, which is able to describe the nuclear rotation related to many valence nucleons. Adopting this model, chirality in odd-A nuclei 103,105 Rh with πg 9/2 -1 ⊗νh 11/2 2 configuration and in odd-A nucleus 135 Nd with πh 11/2 2 ⊗νh 11/2 1 configuration [4] are studied in a fully quantal approach. For the chiral doublet bands, the observed energies and the B(M1) and B(E2) values are reproduced very well. Root mean square values of the angular momentum components

  5. Single Particle energy levels in ODD-A Nuclei

    International Nuclear Information System (INIS)

    Lasijo, R.S.

    1997-01-01

    Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot

  6. Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Universidad Politecnica de Madrid, Center for Computational Simulation, Boadilla del Monte (Spain)

    2017-12-15

    The parametrization D1M of the Gogny energy density functional is used to study fission in the odd-mass Uranium and Plutonium isotopes with A = 233,.., 249 within the framework of the Hartree-Fock-Bogoliubov (HFB) Equal Filling Approximation (EFA). Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, barrier heights and fission isomer excitation energies are given. Fission paths, collective masses and zero point rotational and vibrational quantum corrections are used to compute the systematic of the spontaneous fission half-lives t{sub SF}, the masses and charges of the fission fragments as well as their intrinsic shapes. Although there exits a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account fully variationally within the HFB-EFA blocking scheme, lead to larger spontaneous fission half-lives in odd-mass U and Pu nuclei as compared with the corresponding even-even neighbors. It is shown that modifications of a few percent in the strengths of the neutron and proton pairing fields can have a significant impact on the collective masses leading to uncertainties of several orders of magnitude in the predicted t{sub SF} values. Alpha-decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. (orig.)

  7. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  8. Single proton transfer reactions on odd-even nuclei

    International Nuclear Information System (INIS)

    Blasi, N.

    1984-01-01

    This thesis is devoted to the study of one proton transfer reactions, performed with the use of the magnetic spectrograph QMG/2 of the KVI, in two regions of the mass table. Stripping and pickup reactions on the odd-A target nuclei 193 Ir and 197 Au are described in the first part. The experimental spectroscopic factors obtained are used to test several collective models that are based on coupling between bosons (phonons) and fermions. In the second part, the proton stripping reactions on 113 In and 115 In are studied. Shell model calculations are performed and applied to the experimental results. (Auth.)

  9. Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM

    International Nuclear Information System (INIS)

    Dong Yongsheng; Hu Wentao; Feng Youliang; Wang Jinbao; Yu Shaoying; Shen Caiwan

    2012-01-01

    The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104 Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104 Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)

  10. Energy spectra of odd nuclei in the generalized model

    Directory of Open Access Journals (Sweden)

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  11. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  12. Low-spin identical bands in odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C; Garrett, J D; Winchell, D F; Smith, A [Oak Ridge National Lab., TN (United States)

    1992-08-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig.

  13. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig

  14. Effective neutron-proton interaction in rare earth odd-odd nuclei

    International Nuclear Information System (INIS)

    Boisson, Jean-Paul.

    1975-01-01

    The effective neutron-proton interaction V(np) in the rare earth odd-odd deformed nuclei is studied. The parameters of the effective interaction are determined from least square fits of calculated matrix elements compared to the ones extracted from experiment. These fits show the existence of a long range repulsive component as well the importance of the even term of the tensor part of V(np). Some informations are obtained concerning the influence of the choice of the sample of experimental data, of the average field and finally, of the radial shape of the effective interaction. Some predictions are made concerning as yet unconfirmed V(np) matrix elements [fr

  15. Highly-distorted and doubly-decoupled rotational bands in odd-odd nuclei

    International Nuclear Information System (INIS)

    McHarris, W.C.; Olivier, W.A.; Rios, A.; Hampton, C.; Chou, Wentsae; Aryaeinejad, R.

    1991-01-01

    Heavy-ion reactions induce large amounts of angular momentum; hence, they selectively populate rotationally-aligned particle states in compound nuclei. Such states tend to deexcite through similar states connected by large coriolis matrix elements, resulting in relatively few - but highly distorted - bands in the lower-energy portions of odd-odd spectra. The extreme cases of this are doubly-decoupled, K ∼ 1 (π 1/2 x ν 1/2) bands, whose γ transitions are the most intense in spectra from many light Re and Ir nuclei. The authors made a two-pronged assault on such bands, studying them via different HI reactions at different laboratories and using interacting-boson (IBFFA) calculations to aid in sorting them out. The authors are beginning to understand the types of (primarily coriolis) distortions involved and hope to grasp a handle on aspects of the p-n residual interaction, although the coriolis distortions are large enough to mask much of the latter. They also discuss similar but complementary effects in the light Pr region

  16. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  17. Spectroscopy of odd Z trans-fermium nuclei: the nuclear structure of Md251

    International Nuclear Information System (INIS)

    Chatillon, A.

    2005-10-01

    The objective of this thesis was to determine the structure of trans-fermium nuclei (Z 100) with odd proton number, which remained largely unexplored. These nuclei were produced in fusion-evaporation reactions with small cross sections below 1 μb. The experimental methods of Recoil-Tagging and Recoil-Decay-Tagging were used for their identification. In order to identify the active orbitals in this mass region, 255 Lr, 251 M1d and 247 Es nuclei have been studied by decay spectroscopy at the University of Jyvaskyla and at GANIL with the LISE spectrometer and the α-electron detector BEST coupled to four CLover detectors from the EXOGAM array. New states have been observed in each of the isotopes, and their configuration has been proposed. The collective properties were also studied in two experiments using prompt γ and electron spectroscopy, combining the JUROGAM and SACRED arrays, respectively, with the recoil separator RITU and the GREAT spectrometer at its focal plane. A rotational band has been observed for the first time in a proton-odd trans-fermium nucleus. The interpretation of this collective structure is based on the theoretical HFB calculations. (author)

  18. High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb

    International Nuclear Information System (INIS)

    Barneoud, D.; Foin, C.; Pinston, J.A.; Monnand, E.

    1983-06-01

    The ( 7 Li, 5n) and ( 11 B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150 Eu and 152 Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150 Eu and 152 Tb

  19. Influence of triaxiality on the signature inversion in odd-odd nuclei

    International Nuclear Information System (INIS)

    Zheng Renrong; Zhu Shunquan; Luo Xiangdong; Gizon, A.; Gizon, J.; Paul, E.S.

    2004-01-01

    The nature of signature inversion in the πg 9/2 νh 11/2 bands of odd-odd 98,102 Rh nuclei is studied. Calculations are performed by using a triaxial rotor plus two-quasiparticle model and are compared with the experimentally observed signature inversions. The calculations reproduce well the observations and suggest that, in these bands, the signature inversion can be interpreted mainly as a competition between the Coriolis and the proton-neutron residual interactions in low K space. The triaxiality applied in the Hamiltonian enlarges the amplitudes of high spin signature zigzags at small triaxial deformation and might push the signature inversion point to higher spin at large triaxial deformation

  20. The Lowest Spin and Parity Levels on Two Particle System for Odd-oddNuclei 60Co and 46K

    International Nuclear Information System (INIS)

    Wardhani, VIS; Siagian, Toga

    2000-01-01

    For obtaining the lowest spin and parity levels of odd-odd nuclei, theanalyzing of the nuclei 60 Co and 46 K has been done using delta forcemodel. The calculation is done by theoretically and compared with experiment.To get a result optimally, the data analyzed using least square method. It isshown that the lowest spin and parity level from calculation result and theexperiment result are similar. (author)

  1. Study of the anharmonic effects on low-lying states of odd-mass nuclei in 1g sub(9/2)+ shell region

    International Nuclear Information System (INIS)

    Nakano, Masahiro

    1980-01-01

    Anharmonic effects on the low-lying states of the odd-mass nuclei in 1g sub(9/2)sup(+) shell region are investigated by introduction of 1, 3, 5 and 7 quasiparticle modes. Special attention is paid to the energy-lowering of anomalous coupling states in N = 41 nuclei and to the spin sequence of so-called ''one-quasiparticle-two-phonon multiplet''. It is shown that one cannot attribute the special-lowering of the energies of the anomalous coupling (j - 2) states to the dynamical effects due to the coupling between the 3-quasiparticle mode and the 5-quasiparticle mode, and is also shown that not only the kinematical effect but also the dynamical effect plays an important role in the energy-lowering of the anomalous coupling (j - 1) states in N = 41 nuclei. The second (j - 2) state is predicted to be the lowest member of one-quasiparticle-two-phonon multiplet by taking account of the kinematical effect for the 5-quasiparticle mode, which corresponds to the experimental fact. (author)

  2. The asymmetric rotator model applied to odd-mass iridium isotopes

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1980-04-01

    The method of inversion of the eigenvalue problem previously developed for nuclei with axial symmetry is extended to asymmetric equilibrium shapes. This new approach of the asymmetric rotator model is applied to the odd-mass iridium isotopes. A satisfactory and coherent description of the observed energy spectra is obtained, especially for the lighter isotopes

  3. Systematics of the properties of excited states of odd-even nuclei in the mass range A approximately 100

    International Nuclear Information System (INIS)

    Kleymann, G.

    1976-01-01

    This paper is a compilation of results of experimental and theoretical studies on the term diagrams of odd-even nuclei from the isotope series of Nb, Tc, Rh and Ag, published until October 1975. As a relatively simple interpretation of the excitements of these nuclei, De Shalit proposed the coupling of a particle, whose quantum numbers may be derived from a shell model, to excited states of the core of the nucleus. (orig./BJ) [de

  4. Gamow-Teller transitions and proton-neutron pair correlation in N =Z odd-odd p -shell nuclei

    Science.gov (United States)

    Morita, Hiroyuki; Kanada-En'yo, Yoshiko

    2017-10-01

    We have studied the Gamow-Teller (GT) transitions from N =Z +2 neighbors to N =Z odd-odd nuclei in the p -shell region by using isospin-projected and β γ -constraint antisymmetrized molecular dynamics combined with the generator coordinate method. The calculated GT transition strengths from 0+1 states to 1+0 states such as 6He(01+1 ) →6Li(11+0 ) , 10Be(01+1 ) →10B(11+0 ) , and 14C(01+1 ) →14N(12+0 ) exhaust more than 50% of the sum rule. These N =Z +2 initial states and N =Z odd-odd final states are found to dominantly have S =0 ,T =1 n n pairs and S =1 ,T =0 p n pairs, respectively. Based on the two-nucleon (N N ) pair picture, we can understand the concentration of the GT strengths as the spin-isospin-flip transition n n (S =0 ,T =1 )→p n (S =1 ,T =0 ) in L S coupling. The GT transition can be a good probe to identify the spin-isospin partner states with n n pairs and p n pairs of N =Z +2 and N =Z odd-odd nuclei, respectively.

  5. Internal contamination assessment, with regard to 90Sr, 134Cs, and 137Cs nuclei during nuclear accident

    International Nuclear Information System (INIS)

    Ayad, M.; Hanna, K.M.

    2000-01-01

    In case of nuclear reactor accident leading to the release of some radioactive isotopes in the plume, the sedimentation of its constituents on the ground causes surface contamination which consequently can be observed in the form of an internal contamination in the living biosphere. The migration of the radio nuclei from the soil to the plant root, stem, and the other edible parts is considered the main source for the contaminated foodstuffs used by the general public. In this work we have calculated the total accumulative internal dose for 9 0Sr, 1 34Cs, and 1 37Cs radio contaminants with regard to different public age groups (infant, child, and adult) due to an unexpected nuclear accident. In our calculations we have applied the protective measure inequality for the chosen standard group of foodstuffs, with respect to each age group of the public as well as the three indicated above radio nuclei. Our results indicated that the values of the calculated protective measures with regard to 9 0Sr, 1 37Cs, and 1 34Cs radio nuclei are increasing respectively for all age groups. In addition, we found that the ratio of the total protection measure values of all radio nuclei for different age groups still less than one which requires no intervention level procedures

  6. Boson and fermion degrees of freedom in the orthosymplectic extension of the IVBM: Odd-odd nuclear spectra

    International Nuclear Information System (INIS)

    Ganev, H. G.; Georgieva, A. I.

    2008-01-01

    The dynamical symmetry group Sp(12, R) of the Interacting Vector Boson Model (IVBM) is extended to the orthosymplectic group OSp(2Ω/12, R) in order to incorporate fermion degrees of freedom. The structure of even-even nuclei is used as a core on which the collective excitations of the neighboring odd-mass and odd-odd nuclei are build on. Hence, the spectra of odd-mass and odd-odd nuclei arise as a result of the coupling of the fermion degrees of freedom, specified by the fermion sector SOF (2Ω) to the boson core, whose states belong to an Sp(12, R) irreducible representation. The orthosymplectic dynamical symmetry is applied for the simultaneous description of the spectra of some neighboring nuclei from rare earth region. The theoretical predictions for different low-lying collective bands with positive and negative parity are compared with the experiment. The obtained results reveal the applicability of the model and its boson-fermion extension.

  7. Inverted spin sequences in the spectra of odd-odd nuclei in the 2S-1d and 2P-1f shells

    International Nuclear Information System (INIS)

    Sharma, Arvind; Sharma, S.D.

    1990-01-01

    In case of odd-odd nuclei, near magic numbers, there are found inverted sequences as well as few rotational members. In order to explain the unique feature of the spectra of odd-odd nuclei, we have applied modified form of rotational-vibrational model with two parameters A and B. It is found that level orders in inverted as well as in rotational sequences are very well reproduced on the basis of this model. In case of inverted spin sequences, the sign of B is found to be positive. The ratio of B/A is ≅ 10 -2 as compared to its value of the order of 10 -3 in case of even-even and odd-A nuclei. We infer that pair correlations are responsible for these invertions. The simple model applied here worked well to predict these inverted spectra. (author)

  8. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    International Nuclear Information System (INIS)

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  9. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    International Nuclear Information System (INIS)

    Fellah, M.; Allal, N.H.; Oudih, M.R.

    2015-01-01

    An expression of a wave function which describes odd–even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches. (author)

  10. Gamma bands in doubly odd rhenium and iridium nuclei

    Directory of Open Access Journals (Sweden)

    Balodis M.

    2015-01-01

    Full Text Available Structure of the |K ± 2| bands in doubly-odd nuclei belonging to the transitional deformation region at A∼190 is discussed. Relation of these quasi gamma-bands with the non-axial deformation of the parent two-quasiparticle configurations is studied. Using available experimental information, new tentative |K ± 2| bands are proposed in 188Re, and 192,194Ir nuclei. Coexistence of two-quasiparticle states with different deformation modes is considered in the case of 188Re and 194Ir.

  11. Second proton and neutron alignments in the doubly-odd nuclei 154,156Tb

    International Nuclear Information System (INIS)

    Hartley, D.J.; Allen, J.L.; Brown, T.B.; Kondev, F.G.; Pfohl, J.; Riley, M.A.; Fischer, S.M.; Janssens, R.V.; Nisius, D.T.; Fallon, P.; Ma, W.C.; Simpson, J.

    1999-01-01

    High-spin states in the doubly-odd nuclei 154,156 Tb have been populated in two separate experiments using the 36 S+ 124 Sn reaction at different beam energies (160 and 175 MeV). The yrast structures of both nuclei were extended to much higher spin (I≤48ℎ) than previously known and several quasiparticle alignments have been identified. These include the second neutron alignment and a clear delineation of the second proton crossing in 156 Tb. Systematics of these crossings for odd-Z nuclei and comparisons with results of cranked shell model calculations are discussed. thinsp copyright 1999 The American Physical Society

  12. Nuclear quantum shape-phase transitions in odd-mass systems

    Science.gov (United States)

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  13. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  14. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1993-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21 % for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (orig.)

  15. Study of band structure of some odd proton Eu isotopes

    International Nuclear Information System (INIS)

    Pandit, Rakesh K.; Rani Devi; Khosa, S.K.

    2016-01-01

    Much work has been done on the odd-Z, odd-A nuclei in the rare earth region because of occurrence of fascinating variety of structures of nuclei in this mass region. The Eu nuclei are in the transitional deformation region and it provides an opportunity to investigate theoretically the deformation changes with mass number and excitation energy besides to study the structure of their excited states. The 153 Eu nucleus has been well studied over the last two decades. The aim of the present work is to study in detail the band structure of some odd-Z nuclei

  16. Microscopic mechanism of moments of inertia and odd-even differences for well-deformed actinide nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Zeng Jinyan

    2004-01-01

    The microscopic mechanism of the variation with rotational frequency of moments of inertia and their odd-even differences for well-deformed actinide nuclei are analyzed by using the particle-number conserving (PNC) method for treating nuclear pairing interaction. The moments of inertia for bands building on high j intruder orbitals in odd-A nuclei, e.g., the 235 U (ν[743]7/2) band, are found to be much larger than those of ground-state bands in neighboring even-even nuclei. Moreover, there exist large odd-even differences in the ω variation of moments of inertia. All these experimental odd-even differences are reproduced quite well in the PNC calculation, in which the effective monopole and quadrupole pairing interaction strengths are determined by the experimental odd-even differences in binding energies and bandhead moments of inertia, and no free parameter is involved in the PNC calculation

  17. Influence of fragment deformation and orientation on compact configuration of odd-Z superheavy nuclei

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-01-01

    The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis

  18. Magnetic dipole moments of deformed odd-odd nuclei in 2s-1d and 2p-1f shells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A K; Garg, V P; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    A simple expression is derived for the computation of the magnetic moments of odd-odd nuclei. The computation of magnetic dipole moments is done with and without quenching factors for the last proton and neutron. The results are found to improve for /sup 22/Na, /sup 24/Na, sup(82m)Rb, /sup 14/N, /sup 68/Gd, /sup 54/Mn and /sup 86/Rb with extreme coupling of angular moments.

  19. Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei

    International Nuclear Information System (INIS)

    Olejniczak, U.; Gundorin, N.A.; Pikelner, L.B.; Serov, D.G.; Przytula, M.

    2002-01-01

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122 Sb, 160 Tb and 166 Ho was found to be quite distinct. For the 182 Ta compound nucleus it proved to be rather weak

  20. Covariant Density Functionals: time-odd channel investigated

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2009-01-01

    The description of exotic nuclear systems and phenomena requires a detailed understanding of all channels of density functional theories. The role of time-odd mean fields, their evidence in experiment, and an accurate description of these fields are subject of current interest. Recent studies advanced the understanding of these fields in energy density functional theories based on the Skyrme force [1,2]. Time-odd mean fields are related to nuclear magnetism in covariant density functional (CDF) theories [3]. They arise from space-like components of vector mesons and Lorentz invariance requires that their coupling strengths are identical to that of time-like components. There were only few limited efforts to understand the role of time-odd mean fields in covariant density functional theory [4,5]. For example, the microscopic role of nuclear magnetism and its impact on rotational properties of nuclei has been studied in Ref. [5]. It is known that time-odd mean fields modify the angular momentum content of the single-particle orbitals and thus the moments of inertia, effective alignments, alignment gains at the band crossings and other physical observables. We aim on more detailed and systematic understanding of the role of time-odd mean fields in covariant density functional theory. This investigation covers both rotating and non-rotating systems. It is shown that contrary to the Skyrme energy density functionals time-odd mean fields of CDF theory always provide additional binding in the systems with broken time-reversal symmetry (rotating nuclei, odd mass nuclei). This additional binding increases with spin and has its maximum exactly at the terminating state [6], where it can reach several MeV. The impact of time-odd mean fields on the properties of rotating systems has been studied in a systematic way (as a function of particle number and deformation) across the nuclear chart [7]. In addition, this contribution extends these studies to non-rotating systems such as

  1. Equilibrium deformations of single-particle states of odd nuclei of rare earth region

    International Nuclear Information System (INIS)

    Alikov, B.A.; Tsoj, E.G.; Zuber, K.; Pashkevich, V.V.

    1983-01-01

    In terms of the Strutinsky shell-correction method using the Woods-Saxon non-spherical potential the energies, quadrupole, and hexadecapole momenta of the ground and excited states of odd-proton nuclei with 61 6 deformation on atomic nuclei non-rotation states energies is discussed. It is shown that account of deformation of α 6 type slightly influences on the quadrupole and hexadecapole deformation value

  2. Theoretical study of band structure of odd-mass {sup 115,117}I isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dhanvir, E-mail: singh1472phy@gmail.com; Kumar, Amit, E-mail: akbcw2@gmail.com; Sharma, Chetan, E-mail: chetan24101985@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics, Govt. Degree College, Kathua-184101 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2016-05-06

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich {sup 115,117}I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  3. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  4. Investigation of the structure of core-coupled odd-proton copper nuclei in fpg valence space using the projected shell model

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-01-15

    By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)

  5. Fermionic symmetries: Extension of the two to one relationship between the spectra of even-even and neighboring odd mass nuclei

    International Nuclear Information System (INIS)

    Zamick, L.; Devi, Y.D.

    1999-01-01

    In the single j shell there is a two to one relationship between the spectra of certain even-even and neighboring odd mass nuclei; e.g., the calculated energy levels of J=0 + states in 44 Ti are at twice the energies of corresponding levels in 43 Ti( 43 Sc) with J=j=7/2. Here an approximate extension of the relationship is made by adopting a truncated seniority scheme; i.e., for 46 Ti and 45 Sc we get the relationship if we do not allow the seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we get very close to the two to one relationship if seniority v=4 states are admixed perturbatively. In addition, it is shown that for the J=0 T=3 state in 46 Ti and for the J=j T=5/2 state in 45 Sc (i.e., the states of higher isospin) there are no admixtures in which the neutrons have seniority 4. copyright 1999 The American Physical Society

  6. Effect of the Pauli principle on the nonrotational states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Nesterenko, V.O.; Soloviev, V.G.

    1982-01-01

    The commutation relations between the quasiparticle and phonon operators are used to obtain the equations allowing a correct accounting of the Pauli principle for the description of the states of odd-A deformed nuclei. It is shown, that if in the quasiparticle plus phonon component the Pauli principle is not violated or is slightly violated, then a relevant vibrational state may exist in an odd-A deformed nucleus

  7. Description of low-lying states in odd-odd deformed nuclei taking account of the coupling with core rotations and vibrations. 1

    International Nuclear Information System (INIS)

    Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.

    1990-01-01

    The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs

  8. A semi-classical approach to signature splitting and signature inversion in odd–odd nuclei

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Suresh; Kumar, Sushil; Hasan, Zafrul; Koranga, B.S.; Kumar, Deepak; Negi, D.; Angus, Lee

    2011-01-01

    The signature inversion observed in rotational bands belonging to high-j configurations of odd–odd deformed nuclei has been analyzed within the framework of an axially symmetric rotor plus two-particle model. The Coriolis and n–p interaction are considered the main cause of energy staggering. However, γ-triaxial deformation and the numbers of valence protons, N p , and neutrons, N n also contribute to the energy staggering between odd- and even-spin states. (author)

  9. The Role of Broken Cooper Pairs in Warm Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Larsen, A.C.; Rekstad, J.; Siem, S.; Syed, N.U.H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2007-01-01

    In order to understand warm nuclei and describe the underlying microscopic structure, entropy is measured for several even-even and odd-mass nuclei. Mid-shell nuclei show significant odd-even entropy differences interpreted as the single-particle entropy introduced by the valence nucleon. A method to extract critical temperatures for the pair breaking process is demonstrated. (author)

  10. Quasiparticle--phonon model of the nucleus. V. Odd spherical nuclei

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Voronov, V.V.; Solov'ev, V.G.; Stoyanov, C.

    1985-01-01

    The formalism of the quasiparticle--phonon model of the nucleus for odd spherical nuclei is presented. The exact commutation relations of the quasiparticle and phonon operators together with the anharmonic corrections for the phonon excitations are taken into account in the derivation of equations for the energies and structure coefficients of the wave functions of excited states, which include quasiparticle--phonon and quasiparticle--two-phonon components. The influence of various physical effects and of the dimension of the phonon basis on the fragmentation of the single-quasiparticle and quasiparticle-phonon states is investigated

  11. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  12. Systematics of Absolute Gamma Ray Transition Probabilities in Deformed Odd-A Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1965-11-15

    All known experimentally determined absolute gamma ray transition probabilities between different intrinsic states of deformed odd-A nuclei in the rare earth, region (153 < A < 181) and in the actinide region (A {>=} 227) are compared with transition probabilities (Weisskopf and Nilsson estimate). Systematic deviations from the theoretical values are found. Possible explanations for these deviations are given. This discussion includes Coriolis coupling, {delta}K ={+-}2 band-mixing effects and pairing interaction.

  13. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  14. Description of excitations in odd nonmagic nuclei by the Green's function method

    International Nuclear Information System (INIS)

    Avdeenkov, A.V.; Kamerdzhiev, S.P.

    1999-01-01

    General equations for single-particle Green's functions in nonmagic nuclei have been derived. A pairing mechanism similar to the Bardeen-Cooper-Schrieffer mechanism is singled out explicitly in these equations. A refining procedure for phenomenological single-particle energies and for the gap has been developed to avoid doubly taking into account mixing with phonons for the situation in which the input data for the problem in question are formulated in terms of these phenomenological quantities. The resulting general equations are written within the second-order approximation in the phonon-creation amplitude. This corresponds to taking into account quasiparticle(multiply-in-circle sign)phonon configuration and is shown to be a fairly good approximation for semimagic nuclei. A secular equation for calculating excitations in odd nuclei that takes fully into account ground-state correlations and which is invariant under the reversal of the sign of the energy variable has been derived in this approximation. Distributions of single-particle strengths have been computed for 119 Sn and 121 Sn. Reasonably good agreement with available experimental data has been obtained

  15. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  16. Precise mass measurements of exotic nuclei--the SHIPTRAP Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Herfurth, F.; Ackermann, D.; Block, M.; Dworschak, M.; Eliseev, S.; Hessberger, F.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Rauth, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Neidherr, D.; Chaudhuri, A.; Marx, G.; Schweikhard, L.; Neumayr, J.

    2007-01-01

    The SHIPTRAP Penning trap mass spectrometer has been designed and constructed to measure the mass of short-lived, radioactive nuclei. The radioactive nuclei are produced in fusion-evaporation reactions and separated in flight with the velocity filter SHIP at GSI in Darmstadt. They are captured in a gas cell and transfered to a double Penning trap mass spectrometer. There, the cyclotron frequencies of the radioactive ions are determined and yield mass values with uncertainties ≥4.5·10 -8 . More than 50 nuclei have been investigated so far with the present overall efficiency of about 0.5 to 2%

  17. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  18. Masses of nuclei close to the dripline

    International Nuclear Information System (INIS)

    Herfurth, F.; Blaum, K.; Audi, G.; Lunney, D.; Beck, D.; Kluge, H.J.; Rodriguez, D.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Kellerbauer, A.

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (orig.)

  19. Fission properties of odd-A nuclei in a mean field framework

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Robledo, L.M.

    2009-01-01

    Theoretical tools at the level of the mean field approximation are used to explore the spontaneous fission properties of odd-A nuclei. The tools rely on the equal (or uniform) filling approximation to deal with the unpaired nucleon in a time-reversal preserving manner. Realistic calculations have been carried out with the finite range Gogny force D1S, which was tailored to reasonably reproduce fission properties in the actinides. The preliminary results obtained for the nucleus 235 U are analyzed and the physical origin for the hindrance factor for the spontaneous fission half life is discussed. (author)

  20. Study on the high-spin states and signature inversion of odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2002-01-01

    The high-spin states of odd-odd nucleus 170 Ta were populated via the 155 Gd( 19 F, 4n) 170 Ta reaction with beam energy of 97 MeV provided by the HI-13 tandem accelerator of China Institute of Atomic Energy. Three rotational bands have been pushed to higher spin states and the signature inversion point of the semidecoupled band based on the πh 9/2 1/2 - [541] direct x νi 13/2 configuration has been observed to be 19.5 ℎ. The systematic features of the signature inversion in semidecoupled bands in odd-odd rare earth nuclei were summarized. The systematic differences of signature inversion, especially the difference in the energy splitting between the yrast hands and the semidecoupled hands in odd-odd rare earth nuclei are pointed out and discussed for the first time. It seems that p-n interaction between the odd proton and odd neutron in the odd-odd nuclei plays an important role

  1. Determination of {sup 135}Cs by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, C.M.; Charles, C.R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L.; Kieser, W.E. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Cornett, R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [IsoTrace Laboratory, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada)

    2015-10-15

    The ratio of anthropogenic {sup 135}Cs and {sup 137}Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying {sup 135}Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn{sub 2}, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10{sup −3} and 1.7 × 10{sup −7} respectively. This quantification of {sup 135}Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  2. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  3. Generalized seniority scheme for bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Gai, M.; Arima, A.; Strottman, D.

    1980-01-01

    The microscopic generalized seniority scheme is applied for the description of bands in odd-A nuclei. A perturbation expansion in terms of the core-particle interaction is performed. The first-order correction for the band head and the first member of the band is discussed. The specific band structure of a given nucleus, as well as the systematic trend of bands, is described in an explicit N-dependent analytical formula. This formula involves a linear dependence on N which arises from the first-order perturbation expansion. This term is shown responsible for the large deviation of the 11/2 - ΔJ=2 band spacing in I isotopes from the spacing of the Te core. All observed band structures of an odd-A nucleus arise from one simple core-particle coupling. Hence decoupled-E2 bands and strongly coupled ΔJ=1 bands, particle or hole bands of low-spin or high-spin orbits, all follow one simple N-dependence. This uniformity of bands is manifested in E2 bands in 53 I isotopes and deltaJ=1 bands in 51 Sb that have the same 52 Te cores. For the calculations a particle-particle force with a large contribution from a g delta force is used with a coupling constant that is deduced from 210 Pb. 1 figure

  4. Band crossing and signature splitting in odd mass fp shell nuclei

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Sun, Yang

    2001-01-01

    Structure of two sets of mirror nuclei: 47 V- 47 Cr and 49 Cr- 49 Mn, as well as 49 V and 51 Mn, is studied using the projected shell model. Their yrast spectra are described as an interplay between the angular momentum projected states around the Fermi level which carry different intrinsic K-quantum numbers. The deviations from a regular rotational sequence are attributed to band crossing and signature splitting, which are usually discussed in heavy nuclear systems. Our results agree reasonably with experimental data, and are comparable with those from the full pf shell model calculations

  5. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  6. Dynamic moments of inertia in Xe, Cs and Ba nuclei

    International Nuclear Information System (INIS)

    El-Samman, H.; Barci, V.; Gizon, A.

    1984-01-01

    The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references

  7. Independent Yields of Kr and Xe Fragments at Photofission of Odd Nuclei ^{237}Np and ^{243}Am

    CERN Document Server

    Gangrsky, Yu P; Myshinskii, G V; Penionzhkevich, Yu E

    2004-01-01

    he independent yields of fragments Kr (A=89-93) and Xe (A=135-142) at photofission of odd nuclei 237Np and 243Am are presented. The experiments were performed using the bremsstrahlung of 25 MeV electrons on the microtron of FLNR, JINR. A technique was used that included the transportation of fragments which escaped from the target with the gas flow through a capillary and the condensation of inert gases in a cryostat at the temperature of liquid nitrogen. Kr and Xe isotopes were identified by the spectra of their daughter products. The mass number distributions of the independent yields of Kr and Xe isotopes and of the complementary fragments (Y and La at the photofission of ^{237}Np and Nb and Pr at the photofission of ^{243}Am) were obtained.

  8. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  9. Systematic studies of the energy levels of odd z even mass actinides

    International Nuclear Information System (INIS)

    Sood, P.C.

    1985-01-01

    The bandhead energies for the two-particle states in doubly odd actinides are evaluated based on the calculation of the zero-range residual interaction energy contribution. Guidelines are presented to decide the relative ordering of the expected configurations, leading to spin-parity assignments to the ground states and to the isomeric states in these nuclei. Presently available experimental information lists definite spin-parity for only four out of over fifty known nuclides in the region. Expected location of several new isomers, particularly in heavier nuclei, is indicated

  10. Spectroscopy of odd Z trans-fermium nuclei: the nuclear structure of Md{sup 251}; Spectroscopie des transfermiums impairs en proton: la structure du noyau de {sup 251}Md

    Energy Technology Data Exchange (ETDEWEB)

    Chatillon, A

    2005-10-01

    The objective of this thesis was to determine the structure of trans-fermium nuclei (Z 100) with odd proton number, which remained largely unexplored. These nuclei were produced in fusion-evaporation reactions with small cross sections below 1 {mu}b. The experimental methods of Recoil-Tagging and Recoil-Decay-Tagging were used for their identification. In order to identify the active orbitals in this mass region, {sup 255}Lr, {sup 251}M1d and {sup 247}Es nuclei have been studied by decay spectroscopy at the University of Jyvaskyla and at GANIL with the LISE spectrometer and the {alpha}-electron detector BEST coupled to four CLover detectors from the EXOGAM array. New states have been observed in each of the isotopes, and their configuration has been proposed. The collective properties were also studied in two experiments using prompt {gamma} and electron spectroscopy, combining the JUROGAM and SACRED arrays, respectively, with the recoil separator RITU and the GREAT spectrometer at its focal plane. A rotational band has been observed for the first time in a proton-odd trans-fermium nucleus. The interpretation of this collective structure is based on the theoretical HFB calculations. (author)

  11. Simple description of odd-A nuclei around the critical point of the spherical to axially deformed shape phase transition

    International Nuclear Information System (INIS)

    Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.

    2011-01-01

    An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.

  12. Determination of "1"3"5Cs by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    MacDonald, C.M.; Charles, C.R.J.; Zhao, X.-L.; Kieser, W.E.; Cornett, R.J.; Litherland, A.E.

    2015-01-01

    The ratio of anthropogenic "1"3"5Cs and "1"3"7Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying "1"3"5Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn_2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10"−"3 and 1.7 × 10"−"7 respectively. This quantification of "1"3"5Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  13. Isomeric structures in neutron-rich odd-odd Pm (Z = 61) isotopes

    International Nuclear Information System (INIS)

    Sood, P.C.; Singh, B.; Jain, A.K.

    2008-01-01

    Each of the heavier odd-odd isotopes, namely, 152 Pm, 154 Pm and 156 Pm, have multiple low-lying isomers, almost all of them with undefined configuration and also undefined energy placement. Present investigations attempt credible characterization of the isomers using a simplified two-quasiparticle rotor model which has been widely employed for description of odd-odd deformed nuclei

  14. Low-energy E1 transitions and octupole softness in odd-A deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, G B [Niels Bohr Inst., Copenhagen (Denmark); Hamamoto, I [Lund Univ. (Sweden). Dept. of Mathematical Physics; Kownacki, J; Satula, W [Warsaw Univ. (Poland)

    1992-08-01

    It is found that B(E1) values for yrast spectroscopy of deformed odd-A rare-earth nuclei calculated by using a model in which one quasiparticle is coupled to a rotor are more than an order of magnitude too small. Therefore, measured B(E1) values for {sup 169}Lu were analyzed by introducing parameters which effectively took octupole softness into account. Some preliminary results of the theoretical analysis which are presented in this paper still give do not agree completely with experiment. 4 refs., 1 tab., 5 figs.

  15. Influence of the Pauli principle on the one-quasiparticle states in odd spherical nuclei

    International Nuclear Information System (INIS)

    Chan Zuy Khuong

    1980-01-01

    The effect of the Pauli principle on the fragmentation of one-quasiparticle states in odd spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states. The fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle into account roughly. (author)

  16. Neutron-proton mass difference in finite nuclei and the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Meissner, U.G.; Rakhimov, A.M.; Wirzba, A.; Yakhshiev, U.T.

    2008-01-01

    The neutron-proton mass difference in finite nuclei is studied in the framework of a medium-modified Skyrme model. The possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei. (orig.)

  17. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  18. Lifetimes and magnetic moments in odd-odd 70 As

    International Nuclear Information System (INIS)

    Pantelica, D.; Negoita, F.; Stanoiu, M.

    1998-01-01

    The extensive experimental and theoretical work on the structure of N∼Z, A = 60-80 nuclei revealed many interesting features: large prolate deformations (β = 0.4), strong shape variations as a function of particle number, excitation energy, spin and shape coexistence effects. They are related with drastic changes of properties observed in nuclei with Z≥33 when going from spherical nuclei with N = 50 to neutron deficient nuclei with N = 38 or 40. Both the rapid changes in structure and the shape coexistence appear to reflect the competition between the shell gaps which occur at large oblate and prolate deformations near nucleon numbers 36 and 38 for both protons and neutrons. For N∼Z nuclei the same shell gaps appear simultaneously for both protons and neutrons and reinforce each other. The microscopic structure of the nuclei in the mass region A = 60-80 is essentially determined by the 1g 9/2 , 2p 1/2 , 1f 5/2 and 2p 3/2 orbitals. Because no unique interpretation of the unusual features discovered in these nuclei exists, the systematic experimental study of structure of these nuclei is still an interesting subject. As part of a systematic experimental study undertaken to investigate the structure of neutron deficient, odd-odd As nuclei, 68,70,72 As, the level scheme of 70 As was investigated using heavy ion induced reactions and in-beam γ-ray spectroscopy techniques. At energies between 500 and 900 keV a multiplet of negative parity levels has been observed. At higher energies a high-spin positive parity sequence of levels starting with a E x = 1676 keV, J π 8 + level is strongly populated. Additional information is required in order to establish the structure of low and high-spin levels of both parities. The magnetic moments of the 8 + and 9 + levels have been measured using the time-integral perturbed angular distribution technique and the lifetimes of four levels have been determined using the recoil-distance method. From the measured lifetime for the 9

  19. Measurement of thermal neutron cross section and resonance integral of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio; Nakamura, Shoji; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1997-03-01

    The thermal neutron(2,200 m/s neutron) capture cross section({sigma}{sub 0}) and the resonance integral(I{sub 0}) of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs were measured by an activation method. Targets of radioactive cesium, which include {sup 135}Cs, {sup 137}Cs and stable {sup 133}Cs, were irradiated with reactor neutrons within or without a Cd shield case. The ratio of the number of nuclei of {sup 135}Cs to that of {sup 137}Cs was measured with a quadrupole mass spectrometer. This ratio and the ratio of activity of {sup 136}Cs to that of {sup 137}Cs were used for deduction of the {sigma}{sub 0} and the I{sub 0} of {sup 135}Cs. The {sigma}{sub 0} and the I{sub 0} of the reaction {sup 135}Cs(n,{sigma}){sup 136}Cs were 8.3 {+-} 0.3 barn and 38.1 {+-} 2.6 barn, respectively. (author)

  20. Anomalous signature splitting of the πh11/2direct x νi13/2 band in A-160 odd-odd nuclei

    International Nuclear Information System (INIS)

    Yang Chunxiang; Zhou Hongyu

    2003-01-01

    Systematic features of anomalous signature splitting of the πh 11/2 direct x νi 13/2 band in A-160 odd-odd nuclei have been investigated. It is shown that the mechanism of anomalous signature splitting is similar to that of the normal signature splitting which is essentially caused by the Coriolis mixing of Ω=1/2 components into the nuclear wavefunction and the anomalous splitting in signature is mainly caused by the definition. The extensively observed anomalous signature splitting in this band might be an indication that the interaction between the h 11/2 proton and the i 13/2 neutron cannot be neglected. The new observation of high- and low-K bands based on the same πh 11/2 direct x νi 13/2 configuration in 164 Tm is also discussed

  1. Quantum phase transitions and collective enhancement of level density in odd–A and odd–odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karampagia, S., E-mail: karampag@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Renzaglia, A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Zelevinsky, V. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2017-06-15

    The nuclear shell model assumes an effective mean-field plus interaction Hamiltonian in a specific configuration space. We want to understand how various interaction matrix elements affect the observables, the collectivity in nuclei and the nuclear level density for odd–A and odd–odd nuclei. Using the sd and pf shells, we vary specific groups of matrix elements and study the evolution of energy levels, transition rates and the level density. In all cases studied, a transition between a “normal” and a collective phase is induced, accompanied by an enhancement of the level density in the collective phase. In distinction to neighboring even–even nuclei, the enhancement of the level density is observed already at the transition point. The collective phase is reached when the single-particle transfer matrix elements are dominant in the shell model Hamiltonian, providing a sign of their fundamental role.

  2. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  3. Survey of odd-odd deformed nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1993-01-01

    In this paper, we survey the current experimental data that support assignment of rotational bands in odd-odd deformed nuclear in the rare earth and actinide regions. We present the results of a new study of 170 Mt nuclear structure. In a comparing experimental and calculated Gallagher-Moszkowski matrix elements for rare earth-region nuclei, we have developed a new approach to the systematics of these matrix elements

  4. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  5. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  6. Pairing correlations in N ∝Z pf-shell nuclei

    International Nuclear Information System (INIS)

    Langanke, K.; Dean, D.J.; Koonin, S.E.; Radha, P.B.

    1997-01-01

    We perform shell model Monte Carlo calculations to study pair correlations in the ground states of N=Z nuclei with masses A=48-60. We find that T=1, J π =0 + proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N=Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52-58 Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50 Mn and 52 Fe as exemplars of odd-odd and even-even N=Z nuclei. While for 52 Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50 Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T=700 keV, while the isovector correlations among like-nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases. (orig.)

  7. Calculation of β-ray spectra. Odd-odd nuclei

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1996-01-01

    In order to study β-ray of atomic nucleus, it is natural to consider β-ray data fundamental and important. In a recent experiment, Rudstam measured β-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on β-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of β-ray through decay heat for its various properties due to the general theory of the β-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the β spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  8. Calculation of {beta}-ray spectra. Odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  9. Systematic study of iodine nuclei in A∼125 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, H. P.; Chakraborty, S.; Kumar, A. [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Banerjee, P. [Division of Nuclear Physics, Saha Institute of Nuclear Physics, Kolkata-700064 (India); Ganguly, S. [Department of Physics, Chandernagore College, Chandannagar-721136 (India); Muralithar, S.; Singh, R. P. [Inter University Accelerator Center, New Delhi-110067 (India); Kumar, A.; Kaur, N. [Department of Physics, Punjab University, Chandigarh-160014 (India); Kumar, S. [Department of Physics and Astrophysics, University of Delhi, New Delhi-110067 (India); Chaturvedi, L. [Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009 (India); Jain, A. K. [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Laxminarayan, S. [Department of Physics, Andhra University, Visakhapatnam-530003 (India)

    2014-08-14

    Excited states of {sup 127}I were populated via {sup 124}Sn({sup 7}Li,{sup 4}nγ){sup 127}I fusion-evaporation reaction at beam energy of 33 MeV. Multipolarities of several transitions were determined and spins of corresponding states have been confirmed. The band-head spin and parity of an already reported band at 2901.2 keV has been confirmed. Based on the observed characteristic features and by comparing with the systematics of odd mass iodine nuclei, a πg{sub 7/2}⊗νh{sub 11/2}{sup 2} configuration has been proposed for this band. The experimental B(M1)/B(E2) values for πg{sub 7/2} band were compared with the theoretical results of semi classical model of Frauendorf and Donau and found in well agreement.

  10. Electromagnetic properties of some odd-odd nuclei in the A≈ 100 region and IBFFM description of 106Ag

    Science.gov (United States)

    Andrejtscheff, W.; Kostov, L. K.; Petkov, P.; Brant, S.; Paar, V.; Lopac, V.; Boehm, G.; Eberth, J.; Wirowski, R.; Zell, K. O.

    1990-09-01

    Electromagnetic properties of odd-odd transitional nuclei with A≈ 100 are investigated experimentally and theoretically. Nanosecond isomers are studied in-beam by means of delayed γγ-coincidences and the generalized centroid-shift method. The reactions 98Mo+30MeV 7Li and 92,94Mo+ 50 MeV 12C are utilized. Following half-lives are determined: T {1}/{2} (547.2 keV in 102Rh) = 0.25±0.07ns, T {1}/{2} (243.1 keV in 102Rh) = 0.30±0.10ns, T {1}/{2}(181.1 keV in 99Tc) = 3.8 ± 0.3ns, T {1}/{2} (2902.0keV in 104Cd) = 0.6±0.1 ns, T {1}/{2} (118.7keV in 103Pd) =0.8±0.2 ns, T {1}/{2} (131.1 keV in 105Cd) = 1.5 ±0.3 ns, T {1}/{2} (211.8 keV in 104Ag) = 1.4±0.1 ns, T {1}/{2} (181.0 keV in 102Ag) = 3.5±0.2 ns. Additionally, several upper limits of level lifetimes are derived. The systematics of E1, M1 and E2 transition rates in 100,102,104Rh and 102,104,106Ag is presented and discussed. Fast M1 transitions within the 2qp π g˜{9}/{2}ν h˜{1}/{2} band appear to be associated with the strong coupling of the π g˜{9}/{2} proton and the rotational alignment of the h˜{11}/{2} neutron. Extensive IBFFM calculations of level energies and electromagnetic properties of 106Ag as a typical case demonstrate that this model could account for the complex structural pattern of this type of nuclei. NUCLEAR REACTIONS 98Mo( 7Li, 3n), ( 7Li2nα), E=30 MeV; 92,94Mo( 12C, pn), 94Mo( 12C, 2n), ( 12C, 2pn), E = 50 MeV; measured Eγ, Iγ, γγ( t). 102Rh, 99Tc, 102,104Ag, 104Cd,

  11. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    Science.gov (United States)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  12. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    Science.gov (United States)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  13. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  14. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Bentz, B.L.; Weiss, H.; Liebl, H.

    1981-12-01

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  15. New mass analysis and results for neutron rich nuclei performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel [Justus-Liebig-Universitaet Giessen, Giessen (Germany); Knoebel, Ronja; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Patyk, Zygmunt [Soltan Institute for Nuclear Studies, Warsaw (Poland); Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The Isochronous Mass Spectrometry (IMS) allows to measure masses of rare exotic nuclei in a storage ring in a timescale of tens of μs. The ring is operated in an isochronous mode, i.e. such that particles with different velocities but same mass-to-charge ratio (m/q) travel different paths in the ring arcs (faster ions travel longer paths whereas slower ions travel shorter paths). This means that for each m/q a fix revolution time exists and can be measured by a time-of-flight (TOF) detector which then yields the masses of the nuclei for known charge states. A new analysis approach of IMS data with a correlation matrix method allowed combining data with different quality. The latest production run was using an additional determination of the magnetic rigidity which increased the resolving power of the experiment. Combining this experiment with previous experiments one can increase the statistics and accuracy of the overall mass determination. It was possible to deduce mass values of neutron rich isotopes which have not been measured before. One of those isotopes is {sup 130}Cd which is a very important nuclei involved in the r-process. Those mass values and a comparison to theoretical predictions will be presented in the poster.

  16. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  17. Knudsen cell--mass spectrometer studies of cesium--urania interactions. [Cs/sub 2/CO/sub 3/ or CsOH

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.; Lorenz, R.A.; Manning, S.R.

    1976-06-01

    Limited Knudsen cell--mass spectrometer studies were made of the partial pressures of cesium-containing species (assumed to be primarily Cs(g)) over Cs/sub 2/CO/sub 3/ and over phase equilibria involving UO/sub 2/ and probable Cs-U-O compounds formed from mixtures that initially contained either Cs/sub 2/CO/sub 3/-UO/sub 2/ or CsOH-UO/sub 2/. Although additional work is required to further define the equilibria involved, the data demonstrate unambiguously a significant reduction in cesium partial pressures due to probable Cs-U-O compound formation and indicate essentially identical behavior with either CsOH or Cs/sub 2/CO/sub 3/ as the starting material with UO/sub 2/.

  18. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    Science.gov (United States)

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-11-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even-even and even-odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  19. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    International Nuclear Information System (INIS)

    Benouaret, N; Beller, J; Pai, H; Pietralla, N; Ponomarev, V Yu; Romig, C; Schnorrenberger, L; Zweidinger, M; Scheck, M; Isaak, J; Savran, D; Sonnabend, K; Raut, R; Rusev, G; Tonchev, A P; Tornow, W; Weller, H R; Kelley, J H

    2016-01-01

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205 Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205 Tl have been identified. The measured strength distribution of 205 Tl is discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model. (paper)

  20. Knudsen cell mass spectrometric study of the Cs2IOH(g) molecule thermodynamics

    International Nuclear Information System (INIS)

    Roki, F-Z.; Ohnet, M-N.; Fillet, S.; Chatillon, C.; Nuta, I.

    2013-01-01

    Highlights: • The pronounced ionic character leads to only dissociative ionization processes. • Ions formed are same as those coming from pure dimmers. • De-convolution of the ions origin needs accurate thermodynamic values for the pure gas phase. • Mass spectrometric interpretation has to be performed gradually and as a function of suitable condensed compositions. • Thermal functions have to be fully estimated. -- Abstract: The gas phase of the CsI + CsOH system is analyzed by high temperature Knudsen cell mass spectrometry in order to confirm the existence of the Cs 2 IOH(g) complex molecule. The mass spectrometric analysis is quite complex since such molecules undergo dissociative ionization into fragment ions that mix with the same ions from dimers of the pure compounds in the same vapor phase. Varying the chemical conditions for vaporization by using different CsI + CsOH mixture contents showed that the ionization of the Cs 2 IOH(g) molecule led to five different fragment ions, Cs 2 OH + , Cs 2 I + , Cs + , CsOH + and CsI + . This complex ionization pattern was studied in relation with previous assessed values for the vaporization of CsOH and CsI pure compounds in which monomer and dimer molecules are predominant. The equilibrium constant for the reaction CsI(g) + CsOH(g) = Cs 2 IOH(g) was determined and, after modeling the structure of the Cs 2 IOH molecule, the enthalpy of formation was determined using the third law of thermodynamics, as follows: Δ f H°(Cs 2 IOH, g, 298.15 K) = −578 ± 14.7 kJ · mole −1

  1. Mass-measurements far from stability of neutron rich light nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Gregoire, C.; Schutz, Y.

    1987-07-01

    The study of nuclei far from stability is a verification of nuclear models that generally have been established using the properties of stable nuclei. The direct measurement of the mass has considerable advantages for nuclei very far from stability. This implies a high resolution measurement device, reasonable production rates of the nuclei of interest, and very low systematic errors. This is discussed here. Some of the results have been published recently. They are compared to different classes of models. Region presented is Z=9-15 region

  2. Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F

    We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.

  3. Physics of the N = Z and N = Z + 1 Nuclei in the A = 80 -100 Region

    International Nuclear Information System (INIS)

    Bucurescu, D.

    2007-01-01

    A review of the experimental work performed at the GASP array with the purpose of the identification and first spectroscopic measurements of the heaviest even-even N = Z and odd-A N = Z + 1 nuclei (mass larger than 80) is made. Systematic experiments in this mass region led to the first study of seven such nuclei: 88 Ru, 81 Zr, 85 Mo, 89 Ru, 91 Rh, 93 Pd, and 95 Ag, and extensive data on many other nuclei in their neighborhood. The systematic evolution of the level structures in both even-even and odd-A nuclei, between N ∼ Z ∼ 40 and N ∼ Z ∼ 47 is briefly presented. The possibility that effects of the neutron-proton pairing have been observed, as well as the type of collectivity observed in this region are discussed. (author)

  4. Precision measurement of the mass difference between light nuclei and anti-nuclei with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    is produced in the central pseudorapidity region allowing for a precise investigation of their properties. Mass and binding energy are expected to be the same in nuclei and anti-nuclei as long as the CPT invariance holds for the nuclear force, a remnant of the underlying strong interaction between quarks and gluons. The measurements of the difference in mass-to-charge ratio between deuteron and anti-deuteron, and 3He and 3\\bar{He} nuclei performed with the ALICE detector at the LHC is presented. The ALICE measurements improve by one to two orders of magnitude previous analogous direct measurements. Given the equivalence between mass and energy, the results improve by a factor two the constraints on CPT invariance inferred from measurements in the (anti-)deuteron system. The binding energy difference has been determined for the first time in the case of (anti-)3He, with a precision comparable to the one obtained in the...

  5. Signature inversion of the semi-decoupled band in the odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Yang Chunxiang; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2001-01-01

    The high-spin states of the odd-odd nucleus 170 Ta have been studied by the 155 Gd( 19 F, 4n) 170 Ta reaction at the beam energy of 97 MeV. The α = 1 sequence of the semi-decoupled band has been pushed to higher-spin states and the signature inversion point was observed at 19.5 ℎ. the results are compared with those of the neighbouring odd-odd nuclei

  6. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70

    International Nuclear Information System (INIS)

    Longour, Christophe

    1999-01-01

    Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78 Y, 82 Nb and 86 Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72 Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)

  7. Allowed unhindered beta connected states in rare earth nuclei

    International Nuclear Information System (INIS)

    Sood, P.C.; Ray, R.S.

    1986-03-01

    The beta-connected states in odd-mass as well as even mass rare earth nuclei, where the transition is of allowed unhindered nature, are listed. The tabulation includes 54 cases of such transitions. Validity of Alaga selection rules is examined and the results are used to assign configurations to the involved single particle and two-particle states. (author)

  8. Study of some odd-mass nuclei with 51 neutrons or 51 protons

    International Nuclear Information System (INIS)

    Duffait, Roger.

    1976-01-01

    The level schemes of 93 Mo, 113 Sb, 115 Sb and 119 Sb nuclei were studied. The knowledge of the sup(93m+g)Tc decays was improved. The 2,0 min 113 Te isotope was produced and studied for the first time; two 115 Te isomers with neighbouring half-lives were found and ambiguities on the 115 Te nature cleared up. The sup(119m+g)Te decays were studied with the help of isotopically separated sources and the 119 Sb level scheme was revised. The 93 Mo and 119 Sb level lifetimes were studied using Doppler-shift attenuation method (DSAM) using (p,nγ) reactions at the Van de Graaff accelerator of the University of Lyon. On the whole 16 lifetimes were measured. The experimental results were interpreted in the unified model by intermediate coupling between particle states and the even-even vibrational core; attempts to improve the interpretation by using a semi-microscopical model with the delta surface interaction were made and the two calculations were compared [fr

  9. Shape transition in Pt-nuclei with mass A ∼190

    International Nuclear Information System (INIS)

    Chamoli, S.K.

    2017-01-01

    The nuclei in mass region A ∼190 are well known for the prolate-oblate shape co-existence/transition phenomena. The shape coexistence phenomena has been observed in nuclei like Hg and Tl of this mass region. The calculations done for Pt nuclei in indicate a smooth shape change from prolate deformed "1"8"6Pt to nearly spherical "2"0"2"-"2"0"4 Pt through the region of triaxially deformed "1"8"8"-"1"9"8Pt and slightly oblate "2"0"0Pt. In these calculations, a change of shape from prolate to oblate is expected at A = 188. In recent high spin spectroscopic investigations, significant amount of reduced prolate collectivity has been observed in "1"8"8Pt. The level lifetimes provide valuable information about the nuclear shape and also the shape change with increase in spin along a band. So, to get clear signature of prolate to oblate shape inversion in Pt nuclei near A = 190, it is required to perform lifetime measurements. With this objective, the RDM lifetime measurements of high spin states have been done for various even-even Pt isotopes with masss A ≤ 186 over the years. The results obtained in these measurements are very encouraging and do indicate changing nuclear structure for Pt-isotopes with increasing mass at low spins. A gradual increase in B(E2) values upto 4"+ state and near constant nature there after in "1"8"8Pt, contrary to the other light neighboring Pt nuclei tends to indicate the volatile nature of deformation in Pt nuclei near A ∼ 190 which needs further theoretical investigations. (author)

  10. Calculated single-proton levels for nuclei with N equal to 152, 154, 156, 158, 160 and 162

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    The decay properties of nuclei in many cases depend strongly on the quantum numbers of the single-particle levels in the vicinity of the Fermi surface. A striking illustration is the prolonged fission half-lives of odd nuclei relative to their even neighbors. The hindrance factor depends on the spin of unpaired odd particle and increases with increasing spin of the odd particle. The effect has been studied theoretically. For 257 Fm the hindrance factor is almost ten orders of magnitude. The computer code for calculating nuclear masses calculates single-particle levels at the deformations considered as one step in the calculations. We have run this code at the ground state deformation of all nuclei considered in the 1981 mass study and stored the calculated single-particle levels on permanent mass storage. A computer code has been constructed for extracting levels of nuclei that are specified to the program and plotting them. In this report we consider single-proton levels for even-N nuclei in the range 152 ≤ N ≤ 162. Six such plots are included in this report. The levels are plotted relative to the Fermi surface of each nucleus. We also include tables of the plotted single-particle levels since it is not always possible to determine the spin from an inspection of the plots, when levels are overlapping. 6 figs

  11. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  12. Isospin invariant boson models for fp-shell nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1994-01-01

    Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs

  13. The 1992 FRDM mass model and unstable nuclei

    International Nuclear Information System (INIS)

    Moeller, P.

    1994-01-01

    We discuss the reliability of a recent global nuclear-structure calculation in regions far from β stability. We focus on the results for nuclear masses, but also mention other results obtained in the nuclear-structure calculation, for example ground-state spins. We discuss what should be some minimal requirements of a nuclear mass model and study how the macroscopic-microscopic method and other nuclear mass models fullfil such basic requirements. We study in particular the reliability of nuclear mass models in regions of nuclei that were not considered in the determination of the model parameters

  14. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  15. Radiation and penetration matrix elements for magnetic quadrupole transitions between Nilsson states in odd nuclei

    International Nuclear Information System (INIS)

    Feresin, A.P.; Guseva, I.S.

    1984-01-01

    Single-particle matrix elements for magnetic quadrupole gamma radiation in odd deformed nuclei, calculated with the aid of Nilsson-potential wave functions, are presented. Also given are the internal conversion penetration matrix elements, calculated in the same manner. The penetration matrix elements are needed to estimate the nuclear penetration parameter, which determines the deviation of experimental internal conversion coefficients from their standard values given in tables. Matrix elements are given for transitions between all pairs of Nilsson single-particle states with ΔN = 1 and ΔK = 0, 1, and 2 for the nuclear shells with 4< or =N< or =7 and for the two deformation values epsilon = 0.2 and 0.3

  16. Exotic decay modes of odd-Z (105-119) superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, N.S. [Bharathiar University, Department of Physics, Coimbatore (India); Avinashilingam Institute for Home Science and Higher Education for Women - University, Department of Physics, Coimbatore (India); Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2014-06-15

    Half-lives of proton emission for proton emitters with Z = 51 to 83 are calculated, in the frame-work of unified fission model with the penetrability calculated using the WKB approximation. For all the ground and isomeric state of the proton, the deformation degree of freedom is included. Calculated half-lives are in good agreement with the experimental ones. Experimentally for a few isotopes, proton and alpha branches are reported. Hence we have calculated the half-lives of alpha decay for these elements. For parent nuclei {sup 157}Ta, {sup 166}Ir, {sup 167}Ir, {sup 176}Tl and {sup 177}Tl, the alpha decay mode is preferred over the proton emission. Further, the calculations are extended to find half-lives of superheavy element with odd proton number in the range Z = 105 to 119, for both proton, alpha and for a few cluster decays. Calculations on superheavy elements reveal that cluster radioactivity has half-lives comparable with proton emissions. It is found that proton emission is the primary competing decay mode with respect to alpha decay for superheavy elements. Among considered clusters, {sup 12}C, {sup 20}Ne and {sup 24}Mg are found to have lowest half-lives among other N = Z clusters and for a few clusters the half-lives are found to be comparable with that of proton emission. (orig.)

  17. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    International Nuclear Information System (INIS)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  18. Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu

    Directory of Open Access Journals (Sweden)

    Patial Monika

    2014-03-01

    Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.

  19. Study of nuclei far from stability with AYE-Ball array

    International Nuclear Information System (INIS)

    Carpenter, M.P.

    1996-01-01

    The coupling of a Compton-suppressed Ge (CsGe) detector array to a recoil mass separator (RMS) has seen limited use in the past due to the low efficiency for measuring recoil-γ ray coincidences (< 0.1%). With the building of new generation recoil separators and gamma-ray arrays, a substantial increase in detection efficiency has been achieved. This allows for the opportunity to measure excited states in nuclei with cross-sections approaching 100 nb. In this paper, results from the coupling of a modest array of CsGe detectors (AYE-Ball) with a recoil separator (FMA) will be presented

  20. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  1. Constituent quark mass and nucleon properties in nuclei

    International Nuclear Information System (INIS)

    Beyer, M.; Singh, S.K.

    1986-01-01

    It is shown that the Nolen-Schiffer anomaly, the quenching of gsub(A) and the increase in some electromagnetic properties of nucleons in nuclei can all be explained qualitatively in a constituent quark model if the quark mass is assumed to depend on its confinement size. (author)

  2. Systematic description of superdeformed bands in the mass-190 region

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang; Guidry, M. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States); Zhang, Jing-ye [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    Superdeformed bands for the mass-190 region are described by the Projected Shell Model. Even-even, odd mass and odd-odd nuclei are equally well described. Good agreement with available data for all isotopes studied is obtained. The authors calculation of electromagnetic properties and pairing correlations provides an understanding of the observed gradual increase of dynamical moments of inertia with angular momentum observed in many bands in this mass region.

  3. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  4. Partner bands of 126Cs - first observation of chiral electromagnetic selection rules

    International Nuclear Information System (INIS)

    Grodner, E.; Sankowska, I.; Morek, T.; Rohozinski, S.G.; Droste, Ch.; Srebrny, J.; Pasternak, A.A.; Kisielinski, M.; Kowalczyk, M.; Kownacki, J.; Mierzejewski, J.; Krol, A.

    2011-01-01

    The lifetimes of the excited states belonging to the chiral partner bands built on the πh 11/2 xνh 11/2 -1 configuration in 126 Cs have been measured using the DSA technique. For the first time the large set of the experimental transition probabilities is in qualitative agreement with all selection rules predicted for the strong chiral symmetry breaking limit. The selection rules originate from two general features of a chiral nucleus, namely, from the existence of well separated left- and right-handed systems built of three angular momentum vectors and extra symmetries appearing in addition to the chiral symmetry breaking. The B(M1) staggering resulting from these additional symmetries is sensitive to triaxiality of odd-odd nuclei as well as configuration of valence particles.

  5. Half-life measurements in doubly-odd sup(186,188,190)Au nuclei and the 188Hg -> Au decay

    International Nuclear Information System (INIS)

    Abreu, M.C.; Berg, V.; Fransson, K.; Hoeglund, A.; Oms, J.; Porquet, M.G.

    1985-01-01

    A level scheme has been established for 188 Hg -> Au decay which was studied with the online isotope separator ISOCELE. Precise conversion-electron measurements were performed with a semicircular magnetic spectrograph. The half-lives of the 16.0, 82.7 and 114.8 keV levels in 188 Au were measured with a lens electron spectrometer and reduced transition rates were deduced. Similarly the half-lives of the 36.1, 113.9, 227.7, 251.5, 288.0 and 363.6 keV levels in 186 Au and of the 28.9 and 171.5 keV levels in 190 Au were measured. Comparison of the reduced e.m. transition rates shows that a 1 + and a 2 - state have respectively the same structure in sup(186,) sup(188,) sup(190,) 192 Au, the same conclusion holding for the 1 - sub(g.s.) of sup(188,) sup(190,) 192 Au. Additional measurements in 189 , 191 Hg and 185 , 187 Au together with data from the literature enable us to interpret them as a coupling of certain quasiparticle states of neighbouring odd-A nuclei corresponding to oblate shapes. Indications are given that some other negative- and positive-parity states in 188 Au also belong to an oblate system. The nucleus 188 Au appears as the last of a series of doubly-odd gold nuclei where no shape coexistence has, as yet, been observed. (orig.)

  6. Isotopic distribution of Rb, In and Cs, produced in interactions of high energy protons, deuterons and alpha particles with Ta nuclei

    International Nuclear Information System (INIS)

    Avdeev, S.P.; Karnaukhov, V.A.; Korovin, G.Yu.; Kuznetsov, V.D.; Nad', T.; Petrov, L.A.

    1982-01-01

    The purpose of the paper is to clarify how the isotopical distribution form of deep fissaon products depends on the type of the bombarding particles. Isotopical distributions of Rb, In, Cs, produced at interactions of protons, deuterons ( 8 GeV) and α particles (15.2 GeV) with Ta nuclei are measured by means of the ''off-line'' mass separation. The isotopical distributions are obtained by the experimentally measured yields directly without complex procedure of processing necessary for transition to the charge distribution. It was found that neither the position of the maximum, nor the shape of the curve are changed essentially at variation of the projectile. In all the cases the relative behaviour of the distribution is in a qualitative agreement with the calculations based upon the semiempirical formula by Rudstam. For indium the mesurements are performed also with the proton beam of energy 0.66 GeV. In this case the shape of the isotopic distribution is influenced by the fission process [ru

  7. Time-odd mean fields in covariant density functional theory: Rotating systems

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2010-01-01

    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.

  8. E2 and M1 transition strengths in heavy deformed nuclei revisited

    International Nuclear Information System (INIS)

    Draayer, J.P.; Popa, G.; Hirsch, J.G.; Vargas, C.E.

    2003-01-01

    An update on the status of pseudo-SU(3) shell-model calculations in strongly deformed nuclei in the rare earth region is presented. Representative results for energy levels as well as E2 (quadrupole) and M1 (scissors) transitions strengths in 162 Dy (even-even) and 163 Dy (odd-mass) are given. The calculations use realistic single-particle energies and quadrupole-quadrupole and pairing interaction strengths fixed from systematics. The strengths of rotor-like terms included in the Hamiltonian- all small relative to the other terms in the interaction were adjusted to give an overall best fit to the energy spectra. The results present a paradox: for even-even nuclei (integer angular momentum) non-zero pseudo-spin configurations seems to be unimportant while for the odd-mass systems (half-integer angular momentum) pseudo-spin mixing is essential as spin-flip couplings appear to dominate the M1 transition strengths. (Author)

  9. The multiphonon method as a dynamical approach to octupole correlations in deformed nuclei

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1986-09-01

    The octupole correlations in nuclei are studied within the framework of the multiphonon method which is mainly the exact diagonalization of the total Hamiltonian in the space spanned by collective phonons. This treatment takes properly into account the Pauli principle. It is a microscopic approach based on a reflection symmetry of the potential. The spectroscopic properties of double even and odd-mass nuclei are nicely reproduced. The multiphonon method appears as a dynamical approach to octupole correlations in nuclei which can be compared to other models based on stable octupole deformation. 66 refs

  10. Superdeformation in the A = 190 region. The lead nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Henry, E A; Becker, J A; Brinkman, M J; Kuhnert, A; Stoyer, M A; Wang, T F; Yates, S W [Lawrence Livermore National Lab., CA (United States); Azaiez, F A; Beausang, C W; Burde, J; Deleplanque, M A; Diamond, R M; Draper, J E; Kelly, W H; Korton, W; Macchiavelli, A O; Oliveira, J; Rubel, E; Stephens, F S [Lawrence Berkeley Lab., CA (United States); Cizewski, J A [Rutgers--the State Univ., New Brunswick, NJ (United States)

    1992-08-01

    Superdeformed (SD) bands have been identified in the four even-even lead nuclei {sup 192}Pb, {sup 194}Pb, {sup 196}Pb, and {sup 198}Pb. The discovery of SD bands in these nuclei extended the region of superdeformation in the A = 190 region to Z = 82, and to neutron numbers up to N = 116. All of the SD bands in these nuclei are observed with transition energies ranging from about 250 keV to about 600 keV, with the lowest energy SD band transition for the entire region of 169 keV in {sup 194}Pb. The spins deduced for the lowest levels in the SD bands are 6, 8, and 12 for {sup 192,194,196,198}Pb, respectively. The dynamic moments of inertia of {sup 192}Pb and {sup 194}Pb are similar to each other, and to those of many other SD bands in this mass region. The dynamic moments of inertia of {sup 1}`9{sup 6}Pb and {sup 198}Pb are somewhat lower than those of {sup 192,194}Pb at a given frequency. The experimental lifetimes in {sup 194}Pb and the deduced transition quadrupole moments (Qt {approx} 20 eb) are equal to those of other nuclei in the region within errors. While SD bands have been observed in the odd-neutron Hg and Tl nuclei, SD bands have not been reported for the odd-neutron Pb nuclei. In this contribution we discuss briefly three topics on superdeformation in the lead nuclei. First, we have recent experimental data on {sup 196}Pb that extends our knowledge of the SD band in that nucleus. Next we review briefly the population of low-lying yrast levels from the decay of the SD bands in {sup 192,194,196}Pb. Finally, we summarize our efforts to identify superdeformation in the odd-A Pb nuclei. All of the experiments described here were performed using the HERA spectrometer at the 88-Inch Cyclotron facility located at Lawrence Berkeley Laboratory. (author) 9 refs., 4 figs.

  11. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry

    NARCIS (Netherlands)

    Lou, X.; Dongen, van J.L.J.; Meijer, E.W.

    2010-01-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3)

  12. Rotational structure of odd-proton {sup 103,105,107,109,111}Tc isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit [University of Jammu, Department of Physics and Electronics, Jammu (India); Government of J and K, Department of Higher Education, Jammu (India); Singh, Dhanvir; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Singh, Suram; Bhat, G.H. [Government of J and K, Department of Higher Education, Jammu (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    A systematic study of the yrast band structure for the neutron-rich odd-mass {sup 103-111}Tc nuclei is carried out using Projected Shell Model. The rotational band structure has been studied up to a maximum spin of 59/2{sup +}. Excellent agreement with available experimental data for all isotopes is obtained. The energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states are studied in detail. Signature splitting in the yrast rotational band is well described in the perspective of nuclear structure physics. The back-bending phenomenon is also well described for these nuclei in the present work. (orig.)

  13. The radiative capture of fast nucleons in the mass area of medium and heavy nuclei

    International Nuclear Information System (INIS)

    Rigaud, F.

    1978-01-01

    The radiative capture of 14 MeV neutrons cross-sections on the 59 Co, 93 Nb, 103 Rh, 133 Cs, 139 La, Ce and 159 Tb nuclei were investigated by the integration method and by the activation method on the 27 Al, 50 Ti, 51 V, 103 Rh, 127 I and 139 La nuclei. The gamma-ray spectra following the capture of 8-22 MeV protons on 110 Cd and 115 In nuclei were measured and the single-particle states capture cross-sections deduced. The 110 Cd(p,γ 0 ) 111 In angular distribution was also measured at 13 MeV. The direct and semi-direct processes explained the experimental results. The volume form of the coupling interaction was adequate to account the neutrons results and the surface form to account the 110 Cd(p,γ 0 ) 111 In results. The 110 Cd nuclei electric quadrupole excitation was formed negligible compared with the electric dipole excitation which is adequate to explain the 110 Cd(p,γ 0 ) 111 In excitation function [fr

  14. Mass Measurement of Very Short Half-Lived Nuclei

    CERN Document Server

    Duma, M; Iacob, V E; Thibault, C

    2002-01-01

    The MISTRAL (Mass measurements at ISolde with a Transmission RAdiofrequency spectrometer on-Line) experiment exploits a rapid measurement technique to make accurate mass determinations of very short-lived nuclei. The physics goals are to elucidate new nuclear structure effects and constrain nuclear mass models in regions of interest to nuclear astrophysics.\\\\ \\\\The spectrometer, installed in May 97, performed as promised in the proposal with mass resolution exceeding 100,000. In its first experiment in July 1998, neutron-rich Na isotopes having half-lives as short as 31 ms were measured. A second experiment in November 1998 enabled us to improve the measurement precision of the isotopes $^{26-30}$Na to about 20 keV. The measurement program continues as experiment IS 373.

  15. Effects of Velocity-Dependent Force on the Magnetic Form Factors of Odd-Z Nuclei

    International Nuclear Information System (INIS)

    Tie-Kuang, Dong; Zhong-Zhou, Ren

    2008-01-01

    We investigate the effects of the velocity-dependent force on the magnetic form factors and magnetic moments of odd-Z nuclei. The form factors are calculated with the harmonic-oscillator wavefunctions. It is found that the contributions of the velocity-dependent force manifest themselves in the very large momentum transfer region (q ≥ 4fm- 1 ). In the low and medium q region the contributions of the velocity-dependent force are very small compared with those without this force. However, in the high-q region the contributions of the velocity-dependent force are larger than the normal form factors. The diffraction structures beyond the existing experimental data are found after the contributions of the velocity-dependent force are included. The formula of the correction to the single particle magnetic moment due to the velocity-dependent force is reproduced exactly in the long-wavelength limit (q = 0) of the M1 form factor

  16. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  17. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  18. Search for asymmetric rotors in mass region A∼100

    International Nuclear Information System (INIS)

    Bihari, Chhail; Singh, Yuvraj; Varshney, A.K.; Singh, M.; Gupta, K.K.; Gupta, D.K.

    2009-01-01

    Recently in mass region a∼120-140 xenon and barium nuclei have been studied and the energy systematics have been drawn with excellent correlations in mass coefficient and rotation vibration interaction parameter with product of valance nucleons NpNn using three mass coefficients one each for yrast, odd and even γ-bands within the framework of general asymmetric rotor model. Interestingly in the mass region A ∼ 100 ruthenium nuclei have been dealt using similar approach but only one mass coefficient (B γ = B rot ) was found sufficient to reproduce the striking correlations among various parameters. The purpose of the present work is to study whether one mass coefficient works well in describing the inter band transitions in other nuclei in mass region a ∼ 100. We consider Mo, Ru and Pd nuclei and calculate the B(E2) values using asymmetric rotor model

  19. Shell-model Monte Carlo studies of nuclei

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-01-01

    The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented

  20. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  1. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  2. Neutron-Proton Mass Difference in Nuclear Matter and in Finite Nuclei and the Nolen-Schiffer Anomaly

    Directory of Open Access Journals (Sweden)

    Yakhshiev U.T.

    2010-04-01

    Full Text Available The neutron-proton mass difference in (isospin asymmetric nuclear matter and finite nuclei is studied in the framework of a medium-modified Skyrme model. The proposed effective Lagrangian incorporates both the medium influence of the surrounding nuclear environment on the single nucleon properties and an explicit isospin-breaking effect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass difference is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore, the possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon’s effective mass in nuclei.

  3. The Masses and Stellar Content of Nuclei in Early-Type Galaxies from Multi-Band Photometry and Spectroscopy

    Science.gov (United States)

    Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu

    2018-01-01

    It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi

  4. Description of highly perturbed bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Joshi, P.C.; Sood, P.C.

    1976-01-01

    Recently some highly perturbed positive parity bands have been populated in odd-mass rare earth nuclei. The energy spacings and sometimes even the spin sequences are drastically different from the usual strong coupling rotational model picture. The levels belonging to 'odd and even' I+1/2 are found to make separate groupings. The levels belonging to odd values of I+1/2 are seen to be very much favoured in comparison to the levels for which I+1/2 is even. In some cases only the favoured levels have been identified. These bands have been studied in the frame-work of rotation aligned coupling scheme in which the odd neutron in the unique parity orbital (in this case the isub(13/2) orbital) is strongly decoupled from the body fixed symmetry axis by the Coriolis force so as to make the projection of its angular momentum α on the rotation axis approximately a good quantum number. A description of the energy levels is suggested by assigning the quantum number α-j to the favoured levels and α-j-1 to the unfavoured levels. The intraband transitions of the favoured and unfavoured bands are examined in comparison with those in the adjacent ground state bands in even-even nuclei. (author)

  5. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  6. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  7. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  8. Shell model Monte Carlo investigation of rare earth nuclei

    International Nuclear Information System (INIS)

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  9. A study of nuclei far from stability by using the JAERI ISOL

    International Nuclear Information System (INIS)

    Ichikawa, Shin-ichi

    1988-01-01

    Since a mass separator was installed at the JAERI tandem accelerator facilities, a high-temperature ion source, a tape transport system, a radiation detection system and a data acquisition system have been constructed for online experiments. Although the ion source can ionize effectively alkali, alkaline-earth and rare-earth elements, further we have developed a new technique applying the favoured formation of monoxide ions of La and Ce to strengthen elemental selectivity. Taking advantage of the technique and heavy-ion fusion-nucleon evaporation reactions, we are studying nuclei in the light rare-earth region. So far, decays of odd-odd nuclei such as 122,124 , 126 La and 128,130 Pr have been studied, and the isotope 121 La has been newly identified with a half-life of 5.2 ± 0.2 s. (author)

  10. High-Spin Structure in Odd-Odd 160Lu Nucleus

    International Nuclear Information System (INIS)

    Wang Lie-Lin; Lu Jing-Bin; Yang Dong; Ma Ke-Yan; Yin Li-Chang; Zhou Yin-Hang; Wu Xiao-Guang; Wen Shu-Xian; Li Guang-Sheng; Yang Chun-Xiang

    2012-01-01

    The high-spin states of 160 Lu are populated by the fusion-evaporation reaction 144 Sm( 19 F,3n) 160 Lu at beam energies of 90 and 106 MeV. A new level scheme of 160 Lu is established. A possible isomeric state based on the πh 11/2 νh 9/2 configuration is observed. The new decoupled band with the configuration of πd 3/2 [411]1/2 + νi 13/2 [660]1/2 + is established, and the configurations of these similar decoupled bands in the neighboring odd-odd 162−166 Lu nuclei are suggested. A positive parity coupled band is assigned as the πd 5/2 [402]5/2 + νi 13/2 [660]1/2 + configuration. (nuclear physics)

  11. Universal charge-mass relation: From black holes to atomic nuclei

    International Nuclear Information System (INIS)

    Hod, Shahar

    2010-01-01

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q≤μ 2/3 E c -1/3 , where q and μ are the charge and mass of the physical system respectively, and E c is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z≤Z * =α -1/3 A 2/3 , where α=e 2 /h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  12. Universal charge-mass relation: From black holes to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2010-10-04

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  13. Decay properties of heavier nuclei and mass formula

    International Nuclear Information System (INIS)

    Uno, Masahiro

    2000-01-01

    The stabilities of heavy nuclei, including super-heavy elements, are governed by alpha decay and fission. Some exotic types of decay, such as heavy cluster decay, which does not occur so frequently as to govern stability, have been also reported. The half-time estimations of various types of decay are reviewed. And the possibility of decay, mainly in case of heavy cluster decay, is discussed with Q-value obtained from mass formulae as well. Some topics concerning other types of exotic decay are presented. Recent trends in the research on mass formula are reviewed from the historical point of view, to get perspectives of future development. (Yamamoto, A.)

  14. Decay properties of heavier nuclei and mass formula

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    2000-03-01

    The stabilities of heavy nuclei, including super-heavy elements, are governed by alpha decay and fission. Some exotic types of decay, such as heavy cluster decay, which does not occur so frequently as to govern stability, have been also reported. The half-time estimations of various types of decay are reviewed. And the possibility of decay, mainly in case of heavy cluster decay, is discussed with Q-value obtained from mass formulae as well. Some topics concerning other types of exotic decay are presented. Recent trends in the research on mass formula are reviewed from the historical point of view, to get perspectives of future development. (Yamamoto, A.)

  15. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  16. Redundancy-free single-particle equation-of-motion method for nuclei. Pt. 1

    International Nuclear Information System (INIS)

    Rolnick, P.; Goswami, A.; Oregon Univ., Eugene

    1986-01-01

    The problem of coupling an odd nucleon to the collective states of an even core is considered in the intermediate-coupling limit. It is now well known that such intermediate-coupling calculations in spherical open-shell nuclei necessitate the inclusion of ground-state correlation or backward coupling which gives rise to an overcomplete basic set of states for the diagonalization of the hamiltonian. In a recent letter, we have derived a technique to free the single-particle equation-of-motion method of redundancy. Here we shall apply this redundancy-free equation-of-motion method to intermediate-coupling calculations in two regions of near-spherical odd-mass nuclei where forward coupling alone has not been successful. It is shown that qualitative effects of backward coupling previously reported are not spurious effects of double counting, although they are significantly modified by the removal of redundancy. We also discuss what further modifications of the theory will be needed in order to treat the dynamical interplay of collective and single-particle modes in nuclei self-consistently on the same footing. (orig.)

  17. Structure of odd-A Pm nuclei (II)

    International Nuclear Information System (INIS)

    Piiparinen, M.; Kortelahti, M.; Pakkanen, A.; Komppa, T.; Komu, R.

    1977-12-01

    The level structures of 141 Pm and 145 Pm were studied by methods of in-beam γ-ray and electron spectroscopy using the reactions 142 Nd(p,2n) 141 Pm, 141 Pr( 3 He,3n) 141 Pm and 146 Nd(p,2n) 145 Pm. Nineteen new levels with spins up to (19/2) were observed in 141 Pm and twenty-two new levels with spins up to 15/2 in 145 Pm. In both nuclei, a group of positive-parity levels have been identified which can be interpreted as members of multiplets of d 5 / 2 and g 7 / 2 protons coupled to the quadrupole vibrations of the core. Transition probabilities of the decay modes of isomeric h 11 / 2 states have been determined. (author)

  18. Dynamical and luminosity evolution of active galactic nuclei - Models with a mass spectrum

    International Nuclear Information System (INIS)

    Murphy, B.W.; Cohn, H.N.; Durisen, R.H.

    1991-01-01

    A multimass energy-space Fokker-Planck code is used to follow the dynamical and luminosity evolution of an AGN model that consists of a dense stellar system surrounding a massive black hole. It is found that stellar evolution and tidal disruption are the predominant mass-loss mechanisms for low-density nuclei, whereas physical collisions dominate in high-density nuclei. For initial central densities greater than 10 million solar masses/cu pc the core of the stellar system contacts due to the removal of kinetic energy by collisions, whereas for densities less than this the core of the stellar system expands due to heating that results from the settling of a small population of stars into orbits tightly bound to the black hole. These mechanisms produce differing power-law slopes in the resulting stellar density cusp surrounding the black hole, -7/4 and -1/2 for low- and high-density nuclei, respectively. 60 refs

  19. Rapid determination of {sup 135}Cs and precise {sup 135}Cs/{sup 137}Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guosheng [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049 (China); Tazoe, Hirofumi [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Yamada, Masatoshi, E-mail: myamada@hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan)

    2016-02-18

    For source identification, measurement of {sup 135}Cs/{sup 137}Cs atomic ratio not only provides information apart from the detection of {sup 134}Cs and {sup 137}Cs, but it can also overcome the application limit that measurement of the {sup 134}Cs/{sup 137}Cs ratio has due to the short half-life of {sup 134}Cs (2.06 y). With the recent advancement of ICP-MS, it is necessary to improve the corresponding separation method for rapid and precise {sup 135}Cs/{sup 137}Cs atomic ratio analysis. A novel separation and purification technique was developed for the new generation of triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The simple chemical separation, incorporating ammonium molybdophosphate selective adsorption of Cs and subsequent single cation-exchange chromatography, removes the majority of isobaric and polyatomic interference elements. Subsequently, the ICP-MS/MS removes residual interference elements and eliminates the peak tailing effect of stable {sup 133}Cs, at m/z 134, 135, and 137. The developed analytical method was successfully applied to measure {sup 135}Cs/{sup 137}Cs atomic ratios and {sup 135}Cs activities in environmental samples (soil and sediment) for radiocesium source identification. - Highlights: • A simple {sup 135}Cs/{sup 137}Cs analytical method was developed. • The separation procedure was based on AMP adsorption and one column chromatography. • {sup 135}Cs/{sup 137}Cs was measured by ICP-MS/MS. • Decontamination factors for Ba, Mo, Sb, and Sn were improved. • {sup 135}Cs/{sup 137}Cs atomic ratios of 0.341–0.351 were found in Japanese soil samples.

  20. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  1. Mass-spectrometer of knock-on nuclei for reactor 'Pik'

    International Nuclear Information System (INIS)

    Begzhanov, P.B.; Nazarov, A.G.; Petrov, G.A.; Pikul', V.P.

    1999-01-01

    For reactor 'Pik' (that is being built in St. Petersburg Institute of Nuclear Physics) there was designed a universal two shoulder mass-spectrometer for non-decelerated fission products (FP) of nuclei. The spectrometer helps to obtain different values of linear magnification, dispersion, aberration coefficients and transmission without making structural changes in the device. To separate FP for one shoulder of spectrometer we chose ion-optical scheme (IOS) consisting of three electrostatic analyzers and three-sectional magnet 'JOSEF' that had high dispersion by masses at small deflection radius. IOS calculations of mass-spectrometer were performed with the help of program TRANSVOL (transfer of phase volume) designed basing on TRIO program. The program allows calculating of complete IOS transmission with taking into account elements aperture and beam officering

  2. An experimental study of odd mass promethium isotopes using proton stripping and pickup reactions

    International Nuclear Information System (INIS)

    Straume, O.

    1979-11-01

    Odd Pm isotopes have been studied by one proton pick-up and stripping reactions. Spin assignment and spectroscopic factors have been obtained for a number of energy levels. In the stripping reactions, the relative cross-sections have been measured with an unusually high precision by the use of a target of natural neodymium. The spectroscopic strengths have been extracted using standard distorted wave methods. The nuclear structures of these promethium isotopes fall into three categories. The spherical approach seems valid for 143 Pm and 145 Pm and the deformed regime covers 151 Pm and 153 Pm, while 147 Pm and 149 Pm remain as transitional nuclei. (Auth.)

  3. Nuclear data sheets for (odd-A) A = 249 through A = 263

    International Nuclear Information System (INIS)

    Schmorak, M.R.

    1976-01-01

    The available experimental data pertaining to the nuclear structure of nuclei with odd mass numbers A = 249 through 263 are compiled (the even-A mass chains were published in March 1976). The results from various decay and reaction measurements, as available through February 1976, are compared and evaluated and alpha-hindrance factors are calculated (see Table 2); syst refers to systematics values: in the case of SF a rough order of magnitude estimate of T/sub 1/2/(SF) was made in a manner similar to that of 73Ra38, T/sub 1/2/(α) syst were obtained as in 72E1Sc, and Q-values from systematics were obtained in a manner similar to that of 71WaGo

  4. Properties of Cs-intercalated single wall carbon nanotubes investigated by 133Cs Nuclear Magnetic resonance

    KAUST Repository

    Schmid, Marc R.

    2012-11-01

    In the present study, we investigated Cs-intercalated single wall carbon nanotubes (SWCNTs) using 133Cs Nuclear Magnetic resonance. We show that there are two types of Cs cations depending on the insertion level. Indeed, at low concentrations, Static spectra analysis shows that the Cs (α)+ species are fully ionized, i.e. α equal ca.1, while at higher concentrations a second paramagnetically shifted line appears, indicating the formation of Cs (β)+ ions with β < α ∼ +1. At low concentrations and low temperatures the Cs (α)+ ions exhibit a weak hyperfine coupling to the SWCNT conduction electrons, whereas, at higher temperatures, a thermally activated slow-motion diffusion process of the Cs (α)+ ions occurs along the interstitial channels present within the carbon nanotube bundles. At high concentrations, the Cs (β)+ ions seem to occupy well defined positions relative to the carbon lattice. As a matter of fact, the Korringa relaxation behavior suggests a strong hyperfine coupling between Cs nuclei and conduction electrons in the carbon nanotubes and a partial charge transfer, which suggest a plausible Cs(6s)-C(2p) hybridization. © 2012 Elsevier Ltd. All rights reserved.

  5. Direct mass measurements of 100Sn and magic nuclei near the N=Z line

    International Nuclear Information System (INIS)

    Chartier, M.

    1996-01-01

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A ≅ 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a 78 Kr beam on a nat Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of 70 Se and 71 Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus 100 Sn was successfully performed, using this original technique. Secondary ions of 100 Ag, 100 Cd, 100 In and 100 Sn produced via fusion-evaporation reaction 50 Cr + 58 Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of 100 Cd and, for the first time, the masses of 100 Sn were determined directly with respect to the reference mass of 100 Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author)

  6. Silicon-CsI detector array for heavy-ion reactions

    CERN Document Server

    Norbeck, E; Pogodin, P I; Cheng, Y W; Ingram, F D; Bjarki, O; Grévy, S; Magestro, D J; Molen, A M V; Westfall, G D

    2000-01-01

    An array of 60 silicon-CsI(Tl) detector telescopes has been developed along with associated electronics. The close packing of the telescopes required novel designs for the photodiodes and the silicon DELTA E detectors. Newly developed electronics include preamplifiers, shaping amplifiers, test pulse circuitry, and a module to monitor leakage currents in the silicon diodes. The array covers angles from 5 deg. to 18 deg. in the 4 pi Array at the National Superconducting Cyclotron Laboratory at Michigan State University. It measures protons to 150 MeV and has isotopic resolution for intermediate mass nuclei.

  7. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    Science.gov (United States)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  8. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  9. Total β-decay energies and atomic masses in regions far from β-stability

    International Nuclear Information System (INIS)

    Aleklett, K.

    1977-01-01

    This thesis is a summary of experimental investigations on total β-decay energies and deduced atomic masses of nuclei far from the region of β-stability. The Qsub(β) values are given for isotopes of Zn, Ga, Ge, As, Br, Rb, In, Sn, Sb, Te, Cs, Fr, Ra and Ac, with β-unstable nuclei. These unstable nuclei have very short half-lives, often below 10s, and the experimental techniques for the production, separation and collection of these short-lived nuclei are described. Neutron deficient nuclides were produced by spallation, in the ISOLDE facility, and neutron deficient nuclides were produced by thermal neutron induced fission of 235 U in the OSIRIS facility. β-spectra were recorded using an Si(Li)-detector and a coincidence system. Qsub(β) values obtained from mass formulae have been compared with experimental values obtained in different mass regions and a comparison made between results obtained from different droplet mass formulae. (B.D.)

  10. A microscopic multiphonon approach to even and odd nuclei

    Czech Academy of Sciences Publication Activity Database

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, Petr

    2017-01-01

    Roč. 92, č. 7 (2017), č. článku 074003. ISSN 0031-8949 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : E1 response in nuclei * nuclear many-body theory * nuclear structure Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.280, year: 2016

  11. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  12. The decay of hot dysprosium nuclei

    International Nuclear Information System (INIS)

    Atac, A.; Rekstad, J.; Guttormsen, M.; Messelt, S.; Ramsoey, T.; Thorsteinsen, T.F.; Loevhoeiden, G.; Roedland, T.

    1987-03-01

    The γ-decay following the 162,163 Dy( 3 He,αxn) reactions with E 3 He =45 MeV has been studied. Non-statistical γ-radiation with energies of E γ ≅1 MeV and ≅2 MeV is found for various residual nuclei. The properties of these γ-ray bumps depend on the number of emitted neutrons and reveal an odd-even mass dependence. New techniques to extract average neutron energies as a function of excitation energy and of the number of emitted neutrons are employed. The deduced neutron energies are consistent with Fermi-gas model predictions

  13. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  14. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  15. Study on the energy spectra of sdg odd-A nuclei sup 1 sup 1 sup 5 sup - sup 1 sup 2 sup 3 I with PDHF method

    CERN Document Server

    Liu Ying Tai

    2002-01-01

    The approximate angular-momentum-projected Hartree-Fock (PDHF) method is used to study some odd-A nuclei in the 3s-2d-1g shell: sup 1 sup 1 sup 5 sup - sup 1 sup 2 sup 3 I. Their ground bands and low excited bands are calculated. The calculated results agree well with the experimental spectrum

  16. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Onken, Christopher A.; Ferrarese, Laura; Merritt, David

    2004-01-01

    We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...

  17. Thermodynamic study of gaseous CsBO2 by Knudsen effusion mass spectrometry

    Science.gov (United States)

    Nakajima, K.; Takai, T.; Furukawa, T.; Osaka, M.

    2017-08-01

    One of the main chemical forms of cesium in the gas phase during severe light-water reactor accidents is expected to be cesium metaborate, CsBO2, according to thermodynamic equilibrium calculations considering its reaction with boron. However, the accuracy of the thermodynamic data of the gaseous metaborate, CsBO2(g), has been judged as poor. Thus, Knudsen effusion mass spectrometric measurements of CsBO2 were carried out to obtain reliable thermodynamic data. The evaluated values of the standard enthalpy of formation of CsBO2(g), obtained by the 2nd and 3rd-law treatments, are -700.7 ± 10.7 kJ/mol and -697.0 ± 10.6 kJ/mol, respectively, and agree with each other within the experimental errors, which indicates that our data are reliable. Furthermore, it was found that the existing data of the Gibbs energy function and the standard enthalpy of formation agreed well with the values evaluated in this study, which indicates that the existing thermodynamic data are also reliable.

  18. Experimental First Order Pairing Phase Transition in Atomic Nuclei

    International Nuclear Information System (INIS)

    Moretto, L G; Larsen, A C; Giacoppo, F; Guttormsen, M; Siem, S

    2015-01-01

    The natural log of experimental nuclear level densities at low energy is linear with energy. This can be interpreted in terms of a nearly 1st order phase transition from a superfluid to an ideal gas of quasi particles. The transition temperature coincides with the BCS critical temperature and yields gap parameters in good agreement with the values extracted from even- odd mass differences from rotational states. This converging evidence supports the relevance of the BCS theory to atomic nuclei

  19. Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

    International Nuclear Information System (INIS)

    Oganessian, Yu Ts; Abdullin, F Sh; Dmitriev, S N; Itkis, M G; Polyakov, A N; Alexander, C; Binder, J; Boll, R A; Ezold, J; Felker, K; Grzywacz, R K; Miernik, K; Roberto, J B; Gostic, J M; Henderson, R A; Moody, K J; Hamilton, J H; Ramayya, A V; Miller, D; Ryabinin, M A

    2015-01-01

    The reaction of 249 Bk with 48 Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48 Ca ions of about 9x10 19 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293 117 and 294 117 – the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289 115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243 Am( 48 Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294 118 was observed from the reaction with 249 Cf – a result of the in-growth of 249 Cf in the 249 Bk target. The observed decay chain of 294 118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249 Cf( 48 Ca,3n) 294 118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184

  20. Mass dependence of azimuthal asymmetry in the fission of 232Th and 233,235,236,238U by polarized photons

    International Nuclear Information System (INIS)

    Denyak, V.V.; Khvastunov, V.M.; Paschuk, S.A.; Schelin, H.R.

    2013-01-01

    Fission of the even-even nuclei 232 Th, 236,238 U and even-odd nuclei 233,235 U by linearly polarized photons has been studied at excitation energies in the region of a giant dipole resonance. The performed investigations unambiguously showed the existence of the fragment mass dependence of the cross section azimuthal asymmetry in the photofission of 236 U and 238 U. In addition, the obtained results provided the first evidence for the possible difference between the asymmetry values in asymmetric and symmetric mass distribution regions in the case of 236 U. The measured cross section azimuthal asymmetry of the fission of 232 Th does not show any fragment mass dependence. In the even-odd nuclei 233 U and 235 U the difference between the far-asymmetric and other mass distribution regions was also observed but with the statistical uncertainty not small enough for definitive conclusion. (orig.)

  1. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  2. Decays of a NMSSM CP-odd Higgs in the low-mass region

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, Florian [Instituto de Física Teórica (UAM/CSIC), Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Instituto de Física de Cantabria (CSIC-UC),E-39005 Santander (Spain)

    2017-03-09

    A popular regime in the NMSSM parameter space involves a light CP-odd Higgs A{sub 1}. This scenario has consequences for e.g. light singlino Dark Matter annihilating in the A{sub 1}-funnel. In order to confront the pseudoscalar to experimental limits such as flavour observables, Upsilon decays or Beam-Dump experiments, it is necessary to control the interactions of this particle with hadronic matter and derive the corresponding decays. The partonic description cannot be relied upon for masses close to m{sub A{sub 1}}∼1 GeV and we employ a chiral lagrangian, then extended to a spectator model for somewhat larger masses, to describe the interplay of the CP-odd Higgs with hadrons. Interestingly, a mixing can develop between A{sub 1} and neutral pseudoscalar mesons, leading to substantial hadronic decays and a coupling of A{sub 1} to the chiral anomaly. Additionally, quartic A{sub 1}-meson couplings induce tri-meson decays of the Higgs pseudoscalar. We investigate these effects and propose an estimate of the Higgs widths for masses below m{sub A{sub 1}}≲3 GeV. While we focus on the case of the NMSSM, our results are applicable to a large class of models.

  3. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    Science.gov (United States)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  4. The structure of nuclei far from stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1993-01-01

    Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0 + states in even endash even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in 185 Pt, shape coexistence in 184 Pt and 187 Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the 186,188 Tl decay to determine the lifetime of the 0 2 + and 2 2 + deformed states in 186,188 Hg. A search for the population of superdeformed states in 192 Hg by the radioactive decay of 192 Tl was accomplished by using a prototype internal pair formation spectrometer

  5. Measurements of gamma rays from keV-neutron resonance capture by odd-Z nuclei in the 2s-1d shell region

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki; Lee, Sam Yol; Mizuno, Satoshi; Hori, Jun-ichi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Kitazawa, Hideo

    1998-03-01

    Measurements of gamma rays from keV-neutron resonance capture by {sup 19}F, {sup 23}Na, and {sup 27}Al, which are odd-Z nuclei in the 2s-1d shell region, were performed, using an anti-Compton HPGe spectrometer and a pulsed neutron source by the {sup 7}Li(p,n){sup 7}Be reaction. Capture gamma rays from the 27-, 49-, and 97-keV resonances of {sup 19}F, the 35- and 53-keV resonances of {sup 23}Na, and the 35-keV resonance of {sup 27}Al were observed. Some results are presented. (author)

  6. The mass (charge) spectrum of superheavy nuclei fission fragments: the new perspectives for the theory of nucleosynthesis

    International Nuclear Information System (INIS)

    Maslyuk, V.T.

    2012-01-01

    A new approach to the problem of nucleosynthesis based on assumption of a nuclear matter or superheavy nuclei series fragmentation up to atomic nuclei is proposed. It is shown that studies of the mass (charge) fragments yields (MCFY) after nuclear matter disintegration is possible within proposed statistical theory. The data of MCFY calculation for exotic superheavy nuclei multifragmentation with A=300, 900 and 1200 and arbitrary Z values are demonstrated

  7. Triaxiality and alternating M1 strengths in f-p-g shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tabor, S L; Johnson, T D; Holcombe, J W; Womble, P C; Doring, J; Nazarewicz, W [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    1992-08-01

    The appearance of alternating patterns in B(M1) strengths in f-p-g shell nuclei is surveyed. The M1 alternations in a sequence of N= 41 isotones, in conjunction with particle-rotor model calculations, is shown to provide information about changing {gamma} deformation. In addition to other odd-A nuclei, several odd-odd nuclei are shown to exhibit alternating B(M1) values and signature inversion. alternations have also been reported in a 4 quasiparticle band in {sup 86}Zr, where they have been interpreted in terms of the interacting boson model. (author). 15 refs., 1 tab., 6 figs.

  8. Coexistence of collective and non-collective structures in the odd-A f7/2 nuclei

    International Nuclear Information System (INIS)

    Bednarczyk, P.; Styczen, J.; Broda, R.

    1996-09-01

    High-spin states in 43 Ca, 45 Sc, and 45 Ti were studied with the GASP multidetector array coupled with the Recoil Mass Spectrometer. The nuclei were excited in the 60 MeV 18 O + 30 Si reaction. Lifetimes were extracted from the analysis of the Doppler-shift attenuation of γ-rays observed in the reversed 35 Cl+ 12 C reaction. The measurements suggest significant deformations of the positive-parity intruder bands in 45 Sc and 45 Ti. These bands are predicted by the mean-field calculations to be the cross-shell particle-hole excitation associated with a strong quadrupole core-polarization. Spherical shell-model calculations reproduce observed excitation energies and transition rates in both spherical and deformed structures. (author)

  9. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  10. Infinite nuclear matter based for mass of atomic nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    1987-01-01

    The ground-state energy of an atomic nucleus with asymmetry β is considered to be equivalent to the energy of a perfect sphere made up of infinite nuclear matter of the same asymmetry plus a residual energy eta, called the local energy. Eta represents the energy due to shell, deformation, diffuseness and exchange Coulomb effects, etc. Using this picture and the generalised Hugenholtz-Van Hove theorem of many-body theory, the previously proposed mass relation is derived in a transport way in which eta drops away in a very natural manner. The validity of this mass relation is studied globally using the latest mass table. The model is suitable for the extraction of the saturation properties of nuclear matter. The binding energy per nucleon and the saturation Fermi momentum of nuclear matter obtained through this model are 18.33 MeV and 1.48 fm -1 respectively. It is shown in several representative cases in the Periodic Table that the masses of nuclei in the far unknown region can be reliably predicted. (author)

  11. Self-consistent study of nuclei far from stability with the energy density method

    CERN Document Server

    Tondeur, F

    1981-01-01

    The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densities, shell structure, even-odd mass differences, single-particle potentials and nuclear deformations. A few possible consequences of the results for astrophysical problems are briefly considered. The predictions of the model in the super- heavy region are summarised. (34 refs).

  12. Evidence for two-dimensional ising structure in atomic nuclei

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1976-01-01

    Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations

  13. Study of cosmic ray nuclei detection by an image calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany)

    1995-09-01

    It is shown that a cosmic gamma-ray telescope made of a multilayer silicon tracker and a imaging CsI calorimeter, is capable of identifying cosmic ray nuclei. The telescope charge resolution is estimated around 4% independently of charge. Simulation methods are used to determine the telescope properties for nuclei detection.

  14. Superdeformation studies in the odd-odd nucleus {sup 192}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    The study of yrast and near-yrast structures of odd-odd nuclei to high spins is somewhat limited due to the complexity of the spectra resulting from the many proton-neutron couplings near the Fermi surface. In superdeformed nuclei, the number of available protons and neutrons near the Fermi surface is somewhat limited due to the presence of large-shell gaps which stabilize the nuclear shape. A relatively small number of available neutron and proton configurations can lead to fragmentation of the SD intensity into a number of different bands. Two good examples of this phenomenon were found in {sup 192}Tl and {sup 194}Tl where the presence of six superdeformed bands were reported in both nuclei. We reexamined {sup 192}Tl at Gammasphere using the {sup 160}Gd({sup 37}Cl,5n) reaction at 178 MeV to populate states in the superdeformed well of this nucleus. While our previous study on {sup 192}Tl at ATLAS was very successful, a number of questions remained which formed the basis of our objectives in this experiment: obtain better {gamma}-ray energies for the known transitions and identify higher spin members in each band; determine how the bands feed the known yrast states in {sup 192}Tl as well as determine the complete spectrum in coincidence with the SD bands; look for M1 transitions connecting proposed signature partners; and attempt to identify other excitations in the superdeformed well. Analysis is underway and four of the six bands were confirmed. The reasons that two of the reported bands were not observed in this latest work is still under investigation. As of this time, no other superdeformed bands were identified in the data. Two of the confirmed SD bands have a constant moment of inertia and show indications of cross-talk between each other. This observation is not unexpected since the calculated M1 rates for the proposed configuration of the band, {pi}{sub 13/2} x {upsilon}j{sub 15/2}, indicate that M1 transitions linking the two SD bands should be observed.

  15. Low-spin identical bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  16. Mass dependence of azimuthal asymmetry in the fission of {sup 232}Th and {sup 233,235,236,238}U by polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkiv (Ukraine); Pele Pequeno Principe Research Institute, Curitiba (Brazil); Khvastunov, V.M. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkiv (Ukraine); Paschuk, S.A. [Federal University of Technology - Parana, Curitiba (Brazil); Schelin, H.R. [Federal University of Technology - Parana, Curitiba (Brazil); Pele Pequeno Principe Research Institute, Curitiba (Brazil)

    2013-04-15

    Fission of the even-even nuclei {sup 232}Th, {sup 236,238}U and even-odd nuclei {sup 233,235}U by linearly polarized photons has been studied at excitation energies in the region of a giant dipole resonance. The performed investigations unambiguously showed the existence of the fragment mass dependence of the cross section azimuthal asymmetry in the photofission of {sup 236}U and {sup 238}U. In addition, the obtained results provided the first evidence for the possible difference between the asymmetry values in asymmetric and symmetric mass distribution regions in the case of {sup 236}U. The measured cross section azimuthal asymmetry of the fission of {sup 232}Th does not show any fragment mass dependence. In the even-odd nuclei {sup 233}U and {sup 235}U the difference between the far-asymmetric and other mass distribution regions was also observed but with the statistical uncertainty not small enough for definitive conclusion. (orig.)

  17. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  18. Activity standardization of 134Cs and 137Cs

    International Nuclear Information System (INIS)

    Sochorová, Jana; Auerbach, Pavel

    2014-01-01

    The paper presents the results from a primary standardization of 137 Cs using two independent methods – efficiency tracing using PC-NaI coincidence and the TDCR method. The nuclides 60 Co and 134 Cs were used as the tracers. Primary standardization of the 134 Cs is also discussed. The efficiency extrapolation was carried out by measuring samples of varying mass and using the wet extrapolation method. The results obtained are in good agreement; the differences did not exceed 0.5%. The advantages, pitfalls and also possibilities for improvement of the procedures are discussed

  19. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  20. Formation of fission-fragment mass distribution for nuclei lighter than thorium

    International Nuclear Information System (INIS)

    Itkis, M.G.; Mul'gin, S.I.; Rusanov, A.Y.; Okolovich, A.N.; Smirenkin, G.N.

    1986-01-01

    A phenomenological approach to description of fission-fragment mass distribution Y(M) for nuclei in the vicinity of Pb is developed and used to extract from the experimental Y(M) data the nuclear deformation potential energy V(M) and its components: the macroscopic (liquid-drop) part and the shell correction in the transition state. The results of the analysis are compared with the theoretically obtained V(M) and Y(M). The three-hump fragment-mass distributions observed in Ra fission are satisfactorily described within the framework of the approach developed. The properties of the symmetric and asymmetric fission valleys and the related Y(M) components are discussed

  1. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  2. Mixing of the odd-parity excitations in Nd, Sm and Gd nuclei with 86 and 87 neutrons

    International Nuclear Information System (INIS)

    Hammaren, Esko.

    1978-08-01

    The low- and medium-spin structure of the four nuclei 148 Sm 86 , 147 Nd 87 , 149 Sm 87 and 151 Gd 87 has been investigated experimentally and theoretically. The low-spin states of 151 Gd were obtained in the EC and β + decay of 151 Tb. The proposed level scheme, based on gamma-gamma coincidence and conversion-electron measurements, contains several new energy levels, among them a 5/2 - state at 427 keV. Nanosecond lifetimes of the states in 147 Nd were studied using the reaction 146 Nd(d,pγ) 147 Nd with 10 MeV deuterons. The reactions sup(148,150)Nd( 3 He,xn) at Esup(3sub(He)) = 19 - 27 MeV were used to study excited states in the nuclei 148 Sm and 149 Sm. Gamma-ray excitation fuctions, angular and time distributions, gamma-gamma coincidences and conversion electrons were measured. The presence of the Z = 64 closed proton core is proposed to be important for the structure of the even and odd isotones considered. Calculations performed for 148 Sm using the interacting-boson-approximation model and related to the N = 82, Z = 64 and N = 82, Z = 50 cores are discussed. The properties of the negative-parity low-spin states of the N = 87 isotones are explained with an axial particle-plus-rotor model. The calculated B(M1) and B(E2) probabilities are compared with a compilation of experimental values. Most of the spectroscopic factors of 149 Sm are reproduced well in the calculation. The consequences of nonaxiality are discussed for the fsub(7/2)- and hsub(9/2)-based excitations. The standard Meyer-ter-Vehn model calculation indicates different asymmetries for the fsub(7/2) and hsub(9/2) shells. (author)

  3. Rapid and sensitive determination of radiocesium (Cs-135, Cs-137) in the presence of excess barium by electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS) with potassium thiocyanate as modifier

    International Nuclear Information System (INIS)

    Song, M.; Probst, T.U.; Berryman, N.G.

    2001-01-01

    An electrothermal vaporization-inductively coupled plasma-mass spectrometric (ETV-ICP-MS) method based on selective volatilization of cesium with KSCN as modifier has been developed for determination of radiocesium, i.e. 135 Cs and 137 Cs, in the presence of isobaric barium. A 10000 times excess of barium, which was volatilized at a temperature of 1100 C, resulted only in a 1% signal increase in the signal of mass 135 amu. The recommended concentration of KSCN is 0.3 mM, and pretreatment and volatilization temperatures are 400 C and 1100 C, respectively. A ramp time of 1 s is recommended for the volatilization step. The achieved limit of detection for 135 Cs is 0.2 pg/mL (10 μBq/mL) and 4 fg (0.2 μBq) absolute for a sample volume of 20 μL. This means a limit of detection for 137 Cs of 0.2 pg/mL (0.6 Bq/mL) and of 4 fg (0.01 Bq) absolute. Signal variations of 135 Cs and 137 Cs, respectively, in spiked samples with various matrices were investigated. (orig.)

  4. Collective and non-collective structures in nuclei of mass region A ≈ 125

    International Nuclear Information System (INIS)

    Singh, A. K.

    2014-01-01

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kind of excitation mechanism, where 8-12 particles above the 114 Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model

  5. Structure of light mass (exotic) nuclei as evidenced by scattering from hydrogen

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, P.J.

    1998-01-01

    Microscopic optical model potentials generated by full folding of realistic two-nucleon (n/N) interactions with nuclear structure specified by large basis shell model calculations have been constructed. With those (nonlocal) optical potentials, predictions of light mass nuclei-hydrogen scattering were obtained at intermediate energies (65 to 800 MeV) that agree well with observations of cross sections and analyzing powers

  6. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    CERN Document Server

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  7. Determination of {sup 135}Cs and {sup 137}Cs in environmental samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Russell, B.C., E-mail: ben.russell@npl.co.uk [GAU-Radioanalytical, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Croudace, Ian W.; Warwick, Phil E. [GAU-Radioanalytical, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH (United Kingdom)

    2015-08-26

    Radionuclides of caesium are environmentally important since they are formed as significant high yield fission products ({sup 135}Cs and {sup 137}Cs) and activation products ({sup 134}Cs and {sup 136}Cs) during nuclear fission. They originate from a range of nuclear activities such as weapons testing, nuclear reprocessing and nuclear fuel cycle discharges and nuclear accidents. Whilst {sup 137}Cs, {sup 134}Cs and {sup 136}Cs are routinely measurable at high sensitivity by gamma spectrometry, routine detection of long-lived {sup 135}Cs by radiometric methods is challenging. This measurement is, however, important given its significance in long-term nuclear waste storage and disposal. Furthermore, the {sup 135}Cs/{sup 137}Cs ratio varies with reactor, weapon and fuel type, and accurate measurement of this ratio can therefore be used as a forensic tool in identifying the source(s) of nuclear contamination. The shorter-lived activation products {sup 134}Cs and {sup 136}Cs have a limited application but provide useful early information on fuel irradiation history and have importance in health physics. Detection of {sup 135}Cs (and {sup 137}Cs) is achievable by mass spectrometric techniques; most commonly inductively coupled plasma mass spectrometry (ICP-MS), as well as thermal ionisation (TIMS), accelerator (AMS) and resonance ionisation (RIMS) techniques. The critical issues affecting the accuracy and detection limits achievable by this technique are effective removal of barium to eliminate isobaric interferences arising from {sup 135}Ba and {sup 137}Ba, and elimination of peak tailing of stable {sup 133}Cs on {sup 135}Cs. Isobaric interferences can be removed by chemical separation, most commonly ion exchange chromatography, and/or instrumental separation using an ICP-MS equipped with a reaction cell. The removal of the peak tailing interference is dependent on the instrument used for final measurement. This review summarizes and compares the analytical procedures

  8. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  9. Masses and fission barriers of nuclei in the LSD model

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Krzysztof

    2009-07-01

    Recently developed Lublin-Strasbourg Drop (LSD) model together with the microscopic corrections taken r is very successful in describing many features of nuclei. In addition to the classical liquid drop model the LSD contains the curvature term proportional to the A{sup 1/3}. The r.m.s. deviation of the LSD binding energies of 2766 isotopes with Z,N>7 from the experimental ones is 0.698 MeV only. It turns out that the LSD model gives also a satisfactory prediction of the fission barrier heights. In addition, it was found in that taking into account the deformation dependence of the congruence energy proposed by Myers and Swiatecki significantly approaches the LSD-model barrier-heights to the experimental data in the case of light isotopes while the fission barriers for heavy nuclei remain nearly unchanged and agree well with experiment. It was also shown in that the saddle point masses of transactinides from {sup 232}Th to {sup 250}Cf evaluated using the LSD differ by less than 0.67 MeV from the experimental data.

  10. Nuclei far from stability. Individual and collective excitations at low energy

    International Nuclear Information System (INIS)

    Meyer, M.

    1984-01-01

    The low energy structure of exotic nuclei is discussed in terms of self-consistent microscopic models. The experimental striking features of the spectroscopy of these nuclei are briefly surveyed and the schematic steps performed to obtain from effective N-N interactions their spectroscopic properties are presented. Their saturation and deformation properties are given by the Hartree-Fock approximation (HF). Then it is shown how to describe the dynamics of even-even exotic nuclei excited states by solving the complete Bohr Hamiltonian, built microscopically using the HF approximation and the adiabatic limit (and its derivatives) of the time-dependent HF approximation (ATDHF). The structure of odd and doubly odd nuclei is discussed in the framework of the unified model, ie the microscopic rotor + quasiparticles model. Finally possible future directions of experimental research concerning exotic nuclei are described and improvements or new theoretical approaches discussed [fr

  11. Nuclear mass formulas and its application for astrophysics

    International Nuclear Information System (INIS)

    Koura, Hiroyuki

    2003-01-01

    Some nuclear mass formulae are reviewed and applied for the calculation of the rapid neutron-capture-process (r-process) nucleosynthesis. A new mass formula composed of the gross term, the even-odd term, and the shell term is also presented. The new mass formula is a revised version of the spherical basis mass formula published in 2001, that is, the even-odd term is treated more carefully, and a considerable improvement is brought about. The root-mean-square deviation of the new formula from experimental masses is 641 keV for Z ≥ 8 and N ≥ 8. Properties on systematic of the neutron-separation energy is compared with some mass formulas. The calculated abundances of the r-process from different mass formulae are compared with use of a simple reaction model, and the relation between the calculated abundances and the corresponding masses are discussed. Furthermore, fission barriers for the superheavy and neutron-rich nuclei are also applied for the endpoint of the r-process. (author)

  12. Electron scattering off short-lived radioactive nuclei

    International Nuclear Information System (INIS)

    Wang, S.; Emoto, T.; Furukawa, Y.

    2009-01-01

    We have established a novel method which make electron scattering off short-lived radioactive nuclei come into being. This novel method was named SCRIT (Self-Confining RI ion Target). It was based on the well known "ion trapping" phenomenon in electron storage rings. Stable nucleus, 133 Cs, was used as target nucleus in the R&D experiment. The luminosity of interaction between stored electrons and Cs ions was about 1.02(0.06) × 10 26 cm -2 s -1 at beam current around 80 mA. The angular distribution of elastically scattered electrons from trapped Cs ions was measured. And an online luminosity monitor was used to monitor the change of luminosity during the experiment. (author)

  13. Boson symmetries in exotic N∼Z nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1996-01-01

    Heavy N ∼ Z nuclei provide an ideal testing ground for various symmetries such as isospin and isospin-spin or SU(4) symmetry. The associated quantum numbers of orbital angular momentum L, isospin T, spin S AND SU(4) labels (λμnu)can be carried over onto appropriate versions of the interacting boson model (IBM). Symmetries allow to relate the boson model to the shell model; the composite character of the bosons permits a broader application of the concept of symmetry in IBM. The discussion then focuses on IBM-3 (which includes T = 1 bosons only) and IBM-4 (with T = 0 and T = 1 bosons). A connection is established between them which relies on an IBM-4 classification that breaks Wigner's SU(4) symmetry. The resulting generalised IBM-4 is relevant for studying the competition between T = 0 and T = 1 pairing in N ∼ Z nuclei. An application to odd-odd self-conjugate nuclei is presented. (author). 20 refs., 2 tabs

  14. Resonances in odd-odd 182Ta

    Directory of Open Access Journals (Sweden)

    Brits C.P.

    2017-01-01

    Full Text Available Enhanced γ-decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl γ-ray detector array (CACTUS and silicon particle telescopes (SiRi at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p182Ta and 181Ta(d,d'181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy.

  15. High-spin structure of the neutron-rich odd-odd sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 sub 4 sub 5 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 sub 4 sub 7 Ag isotopes

    CERN Document Server

    Porquet, M G; Deloncle, I; Wilson, A; Venkova, T; Petkov, P; Kutsarova, T; Astier, A; Buforn, N; Meyer, M; Redon, N; Duprat, J; Gall, B J P; Hoellinger, F; Schulz, N; Gautherin, C; Lucas, R; Gueorguieva, E; Minkova, A; Sergolle, H

    2002-01-01

    The sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 Ag nuclei have been produced as fission fragments following the fusion reaction sup 2 sup 8 Si+ sup 1 sup 7 sup 6 Yb at 145 MeV bombarding energy and studied with the Eurogam2 array. The yrast high-spin states of these four odd-odd nuclei, which are observed for the first time, consist of rotational bands in which the odd proton occupies the pi g sub 9 sub / sub 2 subshell and the odd neutron the nu h sub 1 sub 1 sub / sub 2 subshell. Their behaviour as a function of spin values does not vary with the number of neutrons: as observed in the odd-N neighbouring nuclei, the motion of the odd neutron remains decoupled from the motion of the core, from N=61 to N=65. Moreover, the staggering observed in the yrast bands of odd-odd isotopes is strongly reduced as compared to the large values displayed by the rotational bands built on the pi g sub 9 sub / sub 2 subshell in the odd-A Rh and Ag isotopes. The results of particle...

  16. Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Le Neindre, N.; Alderighi, M.; Anzalone, A.; Barna, R.; Bartolucci, M.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; Cavallaro, S.; D' Agostino, M. E-mail: dagostino@bo.infn.it; Dayras, R.; De Filippo, E.; De Pasquale, D.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Italiano, A.; Kowalski, S.; Lanchais, A.; Lanzano, G.; Lanzalone, G.; Li, S.; Lo Nigro, S.; Maiolino, C.; Manfredi, G.; Moisa, D.; Pagano, A.; Papa, M.; Paduszynski, T.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Russo, S.; Sambataro, S.; Sechi, G.; Simion, V.; Sperduto, M.L.; Steckmeyer, J.C.; Sutera, C.; Trifiro, A.; Tassan-Got, L.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W

    2002-09-01

    Mass and charge identification of charged products detected with Silicon-CsI(Tl) telescopes of the Chimera apparatus are presented. An identification function, based on the Bethe-Bloch formula, is used to fit empirical correlations between {delta}E and E ADC readings, in order to determine, event by event, the atomic and mass numbers of the detected charged reaction products prior to energy calibration.

  17. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  18. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  19. Subcoulomb fusion of 16O in odd Sm isotopes

    International Nuclear Information System (INIS)

    Pacheco, A.J.

    1989-01-01

    Cross sections for the formation of evaporation residues were measured for the reaction of 16 O with the odd 147 Sm and 149 Sm nuclei at near barrier energies. The results are well described by statistical model calculations. Fusion cross sections as a function of energy do not show any unusual behaviour that could be attributed to the presence of unpaired nucleons. An analysis based on a one-dimensional penetration model that includes the effect of permanent quadrupolar deformations shows that the extracted values of the parameter β 2 follow the systematics established by the rest of the even samarium isotopes. The dependence of β 2 on the mass of the target nucleus indicates that the influence exerted by collective aspects upon the subbarrier fusion process increases rapidly as a function of the number of neutrons added to the spherical semimagic 144 Sm nucleus. (Author) [es

  20. Spectroscopy of exotic nuclei with A {approx} 190: single particle states and collective properties of {sup 187,189}Bi and {sup 188}Pb; Spectroscopie de noyaux exotiques dans la region de masse A {approx} 190: la structure des isotopes {sup 187,189}Bi et {sup 188}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Huerstel, A

    2002-11-01

    This thesis is devoted to the study of very neutron deficient nuclei in the lead region of the nuclear chart and more precisely to the investigation of the single particle states and collective properties of the {sup 187,189}Bi isotopes by gamma-ray spectroscopy. These nuclei were produced via fusion-evaporation reaction induced by a krypton beam on a silver target. In this mass region, the cross section for producing these nuclei are very low, of the order of a few micro-barns, making experimental studies very difficult. The identification of the nuclei was done using the very powerful RDT (Recoil Decay Tagging) technique, based on the selection of the isotopes through their characteristic alpha-particle decays. The experiments were performed at the university of Jyvdskyla (Finland) with the facility combining the gamma-ray spectrometer JUROSPHERE and the magnetic gas-filled separator RITU. Isomeric states were observed in both nuclei and their life-times measured. The systematics of individual proton states in odd-mass bismuth isotopes have been reproduced with a shell model up to 20 neutrons away from the valley of stability. Furthermore, rotational bands, a signature of collective nuclear motion, have been established for the first time in these nuclei. The interpretation of these results led to the conclusion that {sup 187,189}Bi have a prolate shape at low excitation energy, unlike the heavier bismuth isotopes which have been interpreted to have oblate deformation, implying a shape transition in this mass region. Hartree-Fock-Bogolyubov calculations are consistent with the experimental indication of shape coexistence, as seen in the neighbouring even-even lead nuclei. (author)

  1. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  2. Spectroscopy of odd-proton nuclei in the region of 254No

    International Nuclear Information System (INIS)

    Ketelhut, S.; Greenlees, P. T.; Eeckhaudt, S.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppaenen, A.-P.; Nieminen, P.; Nyman, M.; Perkowski, J.; Rahkila, P.; Saren, J.; Scholey, C.; Uusitalo, J.; Chatillon, A.; Bouchez, E.; Clement, E.; Goergen, A.

    2008-01-01

    Two rotational bands have been found in the transfermium nuclei 251 Md and 255 Lr, the latter being the heaviest nucleus so far studied in-beam. Both are assigned to a [521]1/2 - Nilsson state by comparison to theory. The experiments have been carried out in the Accelerator Laboratory of the University of Jyvaeskylae (JYFL), where the array of germanium detectors JUROGAM was used in conjunction with the recoil-seperator RITU and the focal-plane setup GREAT for gamma-spectroscopic studies

  3. Description of rotational excitations of odd nuclei by the method of projection

    International Nuclear Information System (INIS)

    Mazepus, V.V.

    1981-01-01

    We have carried out a projection on the angular-momentum operator eigenspace for deformed nuclei. The space of the trial wave functions is chosen to be broader than in the ordinary projection approach. It is shown that this method of projection leads to the particle + rotor model but not to the cranking model. A comparison is made with the method of approximate projection

  4. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  5. Resonances in odd-odd 182Ta

    Science.gov (United States)

    Brits, C. P.; Wiedeking, M.; Bello Garrote, F. L.; Bleuel, D. L.; Giacoppo, F.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Klintefjord, M.; Larsen, A. C.; Malatji, K. L.; Nyhus, H. T.; Papka, P.; Renstrøm, T.; Rose, S.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.

    2017-09-01

    Enhanced γ-decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ) reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl) γ-ray detector array (CACTUS) and silicon particle telescopes (SiRi) at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p)182Ta and 181Ta(d,d')181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy. Note to the reader: the title of this article has been corrected on September 19, 2017.

  6. First observation of yrast band in odd-odd 162Lu

    International Nuclear Information System (INIS)

    Zhang, Y.H.; Yuan, G.J.; Liu, X.A.

    1996-01-01

    High spin states of the odd-odd 162 Lu nucleus have been studied via 147 Sm( 19 F, 4nγ) 162 Lu reaction at 95MeV beam energy. Level scheme for yrast band based on π[h 11/2 ] υ[i 13/2 ] quasiparticle configuration was established up to I π =(23 - ) for the first time. This band shows the signature inversion in energy before backbending generally appeared in this mass region. It is stressed that the signature splitting in 162 Lu is larger than that in the 160 Tm nucleus. (orig.)

  7. The broken-pair model for nuclei and its extension with quadrupole vibrations

    International Nuclear Information System (INIS)

    Hofstra, P.

    1979-01-01

    The author presents calculations for low energy properties of nuclei with an odd number of particles. These are described in the Broken-Pair approximation, where it is assumed that all but three particles occur as ordered Cooper pairs; the unpaired (one or three) particles are called quasiparticles. A model is developed with which it is hoped to describe odd nuclei with two open shells in terms of both single-particle and collective degrees of freedom. (Auth.)

  8. Correlations between potassium, rubidium and cesium (133Cs and 137Cs) in sporocarps of Suillus variegatus in a Swedish boreal forest

    International Nuclear Information System (INIS)

    Vinichuk, M.; Rosen, K.; Johanson, K.J.; Dahlberg, A.

    2011-01-01

    An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium ( 133 Cs and 137 Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and 133 Cs mass concentrations with 137 Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg -1 for K (mean ± SD, dwt), 0.40 ± 0.09 g kg -1 for Rb, 8.7 ± 4.36 mg kg -1 for 133 Cs and 63.7 ± 24.2 kBq kg -1 for 137 Cs. The mass concentrations of 133 Cs correlated with 137 Cs activity concentrations (r = 0.61). There was correlation between both 133 Cs concentrations (r = 0.75) and 137 Cs activity concentrations (r = 0.44) and Rb, but the 137 Cs/ 133 Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The 133 Cs mass concentrations, 137 Cs activity concentrations and 137 Cs/ 133 Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, 133 Cs and 137 Cs in sporocarps of S. variegatus is similar to other fungal species. - Highlights: → We studied uptake of Cs ( 133 Cs and 137 Cs), K and Rb by Suillus variegates sporocarps. → Genotypic origin of fungus did not affect uptake of studied elements (isotopes). → Genotypic origin did not affect correlation between Cs ( 133 Cs and 137 Cs), K and Rb.

  9. Identical bands in (even, odd) nuclei as evidence for spectator nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Schmeing, N C [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1992-08-01

    An explanation is sought for ``identical`` moments of inertia for pairs of rotational bands in superdeformed nuclei differing in particle number. The authors postulate that certain nucleons do not participate in the collective rotation. The energy of superdeformed {sup 152}Dy has been calculated using this model with a deformed Woods-Saxon potential and full mixing of oscillator shells. A significant reduction in energy is achieved when the protons and neutron with asymptotic quantum number N < 4 constitute a nonrotating factor, as compared to the conventional prolate nucleus. 9 refs.

  10. Gamma-gamma angular correlation for transitions in 101Tc and 76Se nuclei

    International Nuclear Information System (INIS)

    Zamboni, C.B.

    1988-01-01

    The technique of directional γ-γ angular correlation has been used the β - decay of 101 Mo (T 1/2 = 14,6 min) to levels in 101 Tc and 76 Hs (T 1/2 = 26,3 h) to levels in 76 Se. The angular correlation of coincident γ-transitions, in both nuclei, have been measured using HPGe-HPGe and HPGe-NaI(Tl) spectrometers. Measurements have been carried out for fifteen gamma-cascades in 101 Tc and twenty four cascades in 76 Se resulting in the determination of multipole mixing ratios δ(E2/M1), for fourteen γ-transitions in 101 Tc and sexteen γ-transitions in 76 Se. In the case of 101 Tc these measurements were realized for the first time and in the case of 76 Se the present results confirmed some of the mixing ratios determined In the earlier studies od nuclear orientation and angular correlation. Present results together with the results of earlier studies also permitted definite assigments of spins to the majority of levels in 101 Tc and 76 Se involved in the present study. The experimental results are discussed in terms of nuclear models and a comparasion of some of the properties of the Technetium odd mass nuclei with A = 95-103 and Selenium even mass nuclei with A = 76-82 has been made in order to ilustrate the systematic variation of these properties with mass number. (author) [pt

  11. Regional regularities for the even-even nuclei in intermediate mass region

    International Nuclear Information System (INIS)

    Varshney, Mani; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.

    2011-01-01

    With the development of experimental techniques more and more nuclear data are accumulated and compiled for over five decades. The proton neutron interaction has been considered the key ingredient in the development of collectivity and ultimately the deformation in atomic nuclei. The purpose of the present study is to analyze the growth of R4/2 in different mass regions. The rate of growth regions in regions having proton number Z = 38, 54, 60 and 76 with changing neutron number where the interaction between particle - particle, particle - hole and hole - hole

  12. Lifetimes in 121,123Cs and the question of core stiffness

    International Nuclear Information System (INIS)

    Droste, Ch.; Morek, T.; Rohozinski, S.G.

    1992-01-01

    Lifetimes of low-lying states in 121,123 Cs and 120,122 Xe are measured using the recoil-distance Doppler-shift method. The investigated nuclei were produced by the 107 Ag + 18 O and 109 Ag + 18 O reactions. The negative-parity states in 121,123 Cs are described in the framework of the core-quasiparticle coupling model with γ-soft (the extended Wilets-Jean model) and rigid (the Davydov-Filippov model) cores. (Author)

  13. The Array for Nuclear Astrophysics Studies with Exotic Nuclei

    Science.gov (United States)

    Linhardt, L. E.; Blackmon, J. C.; Matos, M.; Mondello, L. L.; Zganjar, E. F.; Johnson, E.; Rogachev, G.; Wiedenhover, I.

    2010-11-01

    The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array that is targeted primarily towards reaction studies with radioactive ion beams at FSU and the NSCL. ANASEN consists of 40 double-sided silicon-strip detectors backed with CsI scintillators and an innovative gas counter design that allows operation in a gas target/detector mode and experiments covering a broad range of center-of-mass energies simultaneously. Electronics based on ASIC components are being implemented to achieve a high channel count at low cost. Prototypes of all the detector components have been fabricated and are currently being tested. Performance of the individual components and plans for the first experiments that aim to improve our knowledge of the nuclear reactions important in stellar explosions will be reported.

  14. Staircase bands in odd-odd Ag isotopes: 107Ag a case study

    International Nuclear Information System (INIS)

    Datta, P.; Rather, Niyaz; Roy, Santosh; Chattopadhyay, S.; Goswami, A; Nag, S.; Palit, R.; Saha, S.; Trevadi, T.

    2012-01-01

    Nuclei near Z=50 shell closer display various facets of tilted axis rotation (TAR) as predicted both from mean field tilted axis cranking results (TAC) as well as more intuitive, geometrical model approach, popularly known as Shears mechanism. These include pure TAC features such as the observation of Chiral bands, Anti-magnetic rotation and Magnetic Rotation (MR). These excitations are predominantly generated by the valance neutrons in low-Ω orbitals of h 11/2 and the valance protons in high-Ω orbitals of g 9/2 . In contrary to the common notion of MR, significant core rotation were reported in these nuclei which were attributed to the neutron occupation in shape driving h 11/2 orbital. However, the interplay/competition between the core rotation (Principal axis rotation (PAR)) and the tilted angular momentum generated by the Shears structure, exhibit variety of phenomena already observed by our group in Ag and Cd isotopes. It is to be noted that the relatively small level densities near the Fermi levels for both neutron and proton sector in mass-100 region allow us to study such subtle effects which otherwise are not reported in any other mass region

  15. Langevin description of mass distributions of fragments originating from the fission of excited nuclei

    International Nuclear Information System (INIS)

    Vanin, D.V.; Nadtochy, P.N.; Adeev, G.D.; Kosenko, G.I.

    2000-01-01

    A stochastic approach to fission dynamics is proposed. The approach, which is based on Langevin equations, is used to calculate the mass distributions of fragments originating from the fission of excited nuclei. The effect of viscosity and light-particle emission on the variance of mass distributions is studied. The results of the calculations based on the above approach reveal that, in order to obtain a simultaneous description of mass-distribution parameters and the multiplicities of prescission particles, it is necessary to use sufficiently large values of nuclear viscosity both for the one-body and for the two-body viscosity mechanism, anomalously large values of the viscosity coefficient being required in the latter case

  16. Study of high angular momentum phenomena in rotating nuclei

    International Nuclear Information System (INIS)

    Walus, W.

    1982-01-01

    Information about rotational bands of deformed Yb nuclei as obtained through in-beam spectroscopic studies is discussed. Routhians and alignments have been extracted from the experimental data. Experimental single-quasineutron routhians have been used to construct two- and three-quasineutron routhians. Residual interaction between excited quasiparticles is obtained from a comparison of the excitation energies of multiple-quasiparticle states constructed from single-quasiparticle states. An odd-even neutron-number dependence of the alignment frequency of the first pair of isub(13/2) quasineutron in rare-earth nuclei is presented. This effect is explained by a reduction of the neutron pairing-correlation parameter for odd-N systems as compared to seniority-zero configurations in even-N nuclei. The signature dependence of the interband-intraband branching ratios as well as of the interband M1/E2 mixing ratios is discussed and compared to the signature dependence of B(M1) transition rates recently suggested by Hamamoto. (author)

  17. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-05-01

    The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.

  18. Level density and thermal properties in rare earth nuclei

    International Nuclear Information System (INIS)

    Siem, S.; Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.

    2000-01-01

    The level density at low spin has been extracted for several nuclei in the rare earth region using the ( 3 He,α) reaction. Within the framework of the microcanonical ensemble, the entropy and the temperature of the nuclei are derived. The temperature curve shows bumps which are associated with the break up of Cooper pairs. The entropies of the even-even and even-odd nuclei have been compared. The nuclear heat capacity is deduced within the framework of the canonical ensemble and exhibits an S-formed shape as function of temperature. (author)

  19. Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure: Implication for the 5 d transition metal oxides A OsO4 (A =K ,Rb, and Cs)

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-01-01

    We report our theoretical predictions on the linear magnetoelectric (ME) effects originating from odd-parity multipoles associated with spontaneous spin and orbital ordering on a diamond structure. We derive a two-orbital model for d electrons in eg orbitals by including the effective spin-orbit coupling which arises from the mixing between eg and t2 g orbitals. We show that the model acquires a net antisymmetric spin-orbit coupling once staggered spin and orbital orders occur spontaneously. The staggered orders are accompanied by odd-parity multipoles: magnetic monopole, quadrupoles, and toroidal dipoles. We classify the types of the odd-parity multipoles according to the symmetry of the spin and orbital orders. Furthermore, by computing the ME tensor using the linear response theory, we show that the staggered orders induce a variety of the linear ME responses. We elaborate all possible ME responses for each staggered order, which are useful to identify the order parameter and to detect the odd-parity multipoles by measuring the ME effects. We also elucidate the effect of lowering symmetry by a tetragonal distortion, which leads to richer ME responses. The implications of our results are discussed for the 5 d transition metal oxides, A OsO4 (A =K,Rb, and Cs) , in which the order parameters are not fully identified.

  20. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  1. Evolutionary calculations for planetary nebula nuclei with continuing mass loss and realistic starting conditions

    International Nuclear Information System (INIS)

    Faulkner, D.J.; Wood, P.R.

    1984-01-01

    Evolutionary calculations for nuclei of planetary nebulae are described. They were made using assumptions regarding mass of the NPN, phase in the He shell flash cycle at which the NPN leaves the AGB, and time variation of the mass loss rate. Comparison of the evolutionary tracks with the observational Harman-Seaton sequence indicates that some recently published NPN luminosities may be too low by a factor of three. Comparison of the calculated timescales with the observed properties of NPN and of white dwarfs provides marginal evidence for the PN ejection being initiated by the helium shell flash itself

  2. The CP-odd nucleon interaction and the value of T-violation in nuclei

    International Nuclear Information System (INIS)

    Gudkov, V.P.

    1997-01-01

    The relations between the value of T- and P-violating correlations in neutron scattering and different models of CP violation are discussed. It is shown that a specific structure of CP-odd nucleon interactions gives the possibility to obtain the essential information about CP-odd interaction at the quark-gluon level from nuclear experimental data. The up-to-date estimations for CP-violating nucleon coupling constants show that each class of CP-violating models can give a measurable effect for the neutron scattering experiments. 57 refs

  3. On mass in 4π solid angle around song CsI scintillator aboard coronas-I satellite

    International Nuclear Information System (INIS)

    Bucik, R.; Kudela, K.

    2003-01-01

    The complex geometric setup around the SONG CsI scintillator aboard the CORONAS-1 satellite has been modelled, to evaluate the mass thickness passed through by the cosmic ray particle striking the detector. The analytic functional form giving the amount of matter traversed in absorbers for an arbitrary incident directions is present. The population mean and variance of the mass thickness are estimated by random sampling of the uniformly distributed particle trajectories in the several solid angles (Authors)

  4. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    International Nuclear Information System (INIS)

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo

    2013-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a ΛCDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 200 , a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M 200 and in L X demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  5. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  6. Near-Ultraviolet Observations of CS 29497-030: New Constraints on Neutron-Capture Nucleosynthesis Processes

    Science.gov (United States)

    Ivans, Inese I.; Sneden, Christopher; Gallino, Roberto; Cowan, John J.; Preston, George W.

    2005-07-01

    Employing spectra obtained with the new Keck I HIRES near-UV-sensitive detector, we have performed a comprehensive chemical composition analysis of the binary blue metal-poor star CS 29497-030. Abundances for 29 elements and upper limits for an additional seven have been derived, concentrating on elements largely produced by means of neutron-capture nucleosynthesis. Included in our analysis are the two elements that define the termination point of the slow neutron-capture process, lead and bismuth. We determine an extremely high value of [Pb/Fe]=+3.65+/-0.07 (σ=0.13) from three features, supporting the single-feature result obtained in previous studies. We detect Bi for the first time in a metal-poor star. Our derived Bi/Pb ratio is in accord with those predicted from the most recent FRANEC calculations of the slow neutron-capture process in low-mass asymptotic giant branch (AGB) stars. We find that the neutron-capture elemental abundances of CS 29497-030 are best explained by an AGB model that also includes very significant amounts of pre-enrichment of rapid neutron-capture process material in the protostellar cloud out of which the CS 29497-030 binary system formed. Mass transfer is consistent with the observed [Nb/Zr]~0. Thus, CS 29497-030 is both an r+s and ``extrinsic AGB'' star. Furthermore, we find that the mass of the AGB model can be further constrained by the abundance of the light odd-element Na. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Structure of even-odd spherical nuclei using the BCS approximations and the ACQPV model: application to isotones with N=82 and Ni, Zn and Cs'' isotopes

    International Nuclear Information System (INIS)

    Losano, L.

    1986-01-01

    Calculations of the (E,J Π ) spectra and the electromagnetic properties (fe,Q,BEZ,BM1) are made for Ni odd isotopes, and odd isotones with N=82, using the Shell Model (SM), the usual BCS approximation (one and three quasiparticles), blocking BCS (BBCS) and projected BCS (PBCS). The importance of the five quasiparticle correlations and of the correlation introduced in BCS are examined in detail. The collective degrees of freedom of the core are introduced through the quasiparticle-cluster-vibrator coupling (QPCVC), so that this formalism permits as well the inclusion of blocking as the projection in number of particles in the cluster of one and three quasiparticles. Comparative calculations are made between the version with blocking (BQPCV) and with projection (PQPCV) for spectra and electromagnetic properties of Zn old isotopes. The projected version is applied to the cesium isotopes in the description of the 5/2 + states generated by the anomalous coupling. In all examined cases, the comparison with the available experimental data is also shown. (L.C.) [pt

  8. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  9. Lie algebra symmetries and quantum phase transitions in nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... 743–755. Lie algebra symmetries and quantum phase transitions in nuclei .... Applications of this CS to QPT in sdgIBM model will be briefly ..... as a linear combination of ˆC2, ˆC3 and ˆC4 of SUsdg(5) and similarly also for the.

  10. Correlations between potassium, rubidium and cesium ({sup 133}Cs and {sup 137}Cs) in sporocarps of Suillus variegatus in a Swedish boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, M., E-mail: Mykhailo.Vinichuk@slu.s [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Department of Ecology, Zhytomyr State Technological University, 103 Cherniakhovsky Str., 10005 Zhytomyr (Ukraine); Rosen, K.; Johanson, K.J. [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Dahlberg, A. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala (Sweden)

    2011-04-15

    An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium ({sup 133}Cs and {sup 137}Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and {sup 133}Cs mass concentrations with {sup 137}Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 {+-} 6.79 g kg{sup -1} for K (mean {+-} SD, dwt), 0.40 {+-} 0.09 g kg{sup -1} for Rb, 8.7 {+-} 4.36 mg kg{sup -1} for {sup 133}Cs and 63.7 {+-} 24.2 kBq kg{sup -1} for {sup 137}Cs. The mass concentrations of {sup 133}Cs correlated with {sup 137}Cs activity concentrations (r = 0.61). There was correlation between both {sup 133}Cs concentrations (r = 0.75) and {sup 137}Cs activity concentrations (r = 0.44) and Rb, but the {sup 137}Cs/{sup 133}Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The {sup 133}Cs mass concentrations, {sup 137}Cs activity concentrations and {sup 137}Cs/{sup 133}Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, {sup 133}Cs and {sup 137}Cs in sporocarps of S. variegatus is similar to other fungal species. - Highlights: {yields} We studied uptake of Cs ({sup 133}Cs and {sup 137}Cs), K and Rb by Suillus variegates sporocarps. {yields} Genotypic origin of fungus did not affect uptake of studied elements (isotopes). {yields} Genotypic origin did not affect correlation between Cs ({sup 133}Cs and {sup 137}Cs), K and Rb.

  11. Isoscalar giant resonances for nuclei with mass between 56 and 60

    International Nuclear Information System (INIS)

    Lui, Y.-W.; Youngblood, D.H.; Clark, H.L.; Tokimoto, Y.; John, B.

    2006-01-01

    The giant resonance region from 10 MeV x 56 Fe, 58 Ni, and 60 Ni has been studied with inelastic scattering of 240 MeV α particles at small angles, including 0 deg. Most of the expected isoscalar E0 and E2 strength has been identified below E x =40 MeV. Between 56 and 72% of the isoscalar E1 strength has been located in these nuclei. The mass dependence of the giant monopole energy between A=40 and 90 is compared to relativistic and nonrelativistic calculations for interactions with compressibility of nuclear matter K NM ∼211-225 MeV

  12. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction

    Directory of Open Access Journals (Sweden)

    R. Léguillon

    2016-10-01

    Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.

  13. Possibility of investigating P- and T-odd nuclear forces in atomic and molecular experiments

    International Nuclear Information System (INIS)

    Sushkov, O.P.; Flambaum, V.V.; Khriplovich, I.B.

    1984-01-01

    The P- and T-odd nucleon-nucleon potentials are found in the Kobayashi-Maskawa scheme. Analytic expressions for T-odd nuclear multipoles are obtained in the shell model. The electric dipole moments of the nuclei exceed that of the neutron by two to three orders of magnitude. The electric dipole moments are calculated for a number of atoms and molecules. The feasibility of experimental detection of T-invariance violation is discussed

  14. Systematic study of α half-lives of superheavy nuclei

    Science.gov (United States)

    Budaca, A. I.; Silisteanu, I.

    2014-03-01

    Two different descriptions of the α-decay process, namely, the shell model rate theory and phenomenological description are emphasized to investigate the α-decay properties of SHN. These descriptions are shortly presented and illustrated by their results. Special attention is given to the shell structure and resonance scattering effects due to which they exist and decay. A first systematics of α-decay properties of SHN was performed by studying the half-life vs. energy correlations in terms of atomic number and mass number. Such a systematics shows that the transitions between even-even nuclei are favored, while all other transitions with odd nucleons are prohibited. The accuracy of experimental and calculated α-half-lives is illustrated by the systematics of these results.

  15. The predictive accuracy of analytical formulas and semiclassical approaches for α decay half-lives of superheavy nuclei

    Science.gov (United States)

    Zhao, T. L.; Bao, X. J.; Guo, S. Q.

    2018-02-01

    Systematic calculations on the α decay half-lives are performed by using three analytical formulas and two semiclassical approaches. For the three analytical formulas, the experimental α decay half-lives and {Q}α values of the 66 reference nuclei have been used to obtain the coefficients. We get only four adjustable parameters to describe α decay half-lives for even-even, odd-A, and odd-odd nuclei. By comparison between the calculated values from ten analytical formulas and experimental data, it is shown that the new universal decay law (NUDL) foumula is the most accurate one to reproduce the experimental α decay half-lives of the superheavy nuclei (SHN). Meanwhile it is found that the experimental α decay half-lives of SHN are well reproduced by the Royer formula although many parameters are contained. The results show that the NUDL formula and the generalized liquid drop model (GLDM2) with consideration of the preformation factor can give fairly equivalent results for the superheavy nuclei.

  16. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  17. Direct mass and lifetime measurements of neutron-rich nuclei up to A∼100 using the TOFI spectrometer at LAMPF

    International Nuclear Information System (INIS)

    Lind, V.G.

    1993-01-01

    This project was directed toward the study of neutron-rich nuclei using the experimental facilities at LAMPF, which is a part of LANL. The principal results of the investigation include the discovery of many new isotopes along with a measurement of their masses and in particular those nuclides in the Z = 7--19 and 14 --26 regions of the chart of the nuclides.Thirty-four new nuclides were detected and studied with their masses being measured with relatively high accuracy, and an additional twenty-six that were previously known and measured were remeasured to an improved accuracy. Besides providing new information about the mass surface in new and extended redons of the chart of the nuclides, this investigation enabled properties and previously unknown structure of some of the nuclei to be determined such as nuclear deformation among some of the nuclides. Also a study of the neutron pairing gaps and the proton pairing gaps among these nuclides was made. Other developments also achieved included instrument (TOFI) improvements and upgrades and theoretical investigations into the masses of the hadrons

  18. Search for supermassive nuclei in nature

    International Nuclear Information System (INIS)

    Polikanov, S.; Sastri, C.S.; Herrmann, G.; Luetzenkirchen, K.; Overbeck, M.; Trautmann, N.

    1990-11-01

    We report on a search for supermassive nuclei in nature with masses up to 10 7 amu. Such exotic nuclei might consist, for example, of stable strange matter, which comprises a mixture of up, down, and strange quarks, or of relic particles from the early Universe. The experiments are based on Rutherford backscattering of heavy ions, preferably 238 U, from various target samples. The measured parameters of a deteced particle are its time-of-flight, scattering angle, and specific ionization. From this information the mass of the target nucleus can be inferred. Upper limits for the abundance of strange supermassive nuclei with masses A ≅ 4x10 2 to 10 7 amu relative to the number of nucleons were found to be in the range 10 -11 to 10 -15 . For the narrower mass range A ≅ 10 3 to 10 4 amu the limit is 2x10 -17 . (orig.)

  19. Woods-Saxon potential parametrization at large deformations for odd-plutonium nuclei

    International Nuclear Information System (INIS)

    Garcia, F.; Yoneama, M.L.; Arruda Neto, J.D.T.; Mesa, J.; Bringas, F.; Dias, J.F.; Likhachev, V.P.

    1997-01-01

    The structure of the the single-particle levels in the secondary minima of 237,239,241 Pu fissioning nuclei is analysed with the help of an axially-deformed Woods-Saxon potential. The nuclear shape was parametrized in terms of the Cassinian ovaloids. The parametrization of the spin-orbit part of the potential in the region corresponding to large deformations (second minimum), which depends only on the nuclear surface area, B s , was obtained. With this relation we were able to reproduce successfully the spin (parity) and the energies of the rotational band built on the 8μs isomeric rate in 239 Pu and also to make a spin assignment for both isomer states in 237 Pu and 241 Pu. (author)

  20. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    Directory of Open Access Journals (Sweden)

    Sun Bao-Hua

    2016-01-01

    Full Text Available The time-of-flight (TOF mass spectrometry (MS, a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10−4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  1. Precision measurement of the mass difference between light nuclei and anti-nuclei with the ALICE experiment at the LHC

    CERN Document Server

    2015-01-01

    We report on a measurement of the difference $\\Delta \\mu = \\Delta (m / |z|)$ between the mass-over-charge ratio of deuteron (d) and anti-deuteron ($\\overline{\\rm d}$), and $^3{\\rm He}$ and $^3{\\overline{\\rm He}}$ nuclei, carried out with ALICE (A Large Ion Collider Experiment) in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\\sqrt{s_{\\rm NN}}=~2.76~\\rm{TeV}$. Our measurement yields ${\\Delta \\mu}_{\\rm{d\\bar{d}}}/{\\mu}_{\\rm{d}} = [0.9 \\pm 0.5 (\\rm{stat.}) \\pm 1.4 (\\rm{syst.})] \\times 10^{-4}$ and ${\\Delta \\mu}_{\\rm{^{3}He ^{3}\\overline{He}}}/{\\mu}_{\\rm{^{3}He}} = [-1.2 \\pm 0.9 (\\rm{stat.}) \\pm 1.0 (\\rm{syst.})] \\times 10^{-3}$. Combining these results with existing measurements of the masses of the (anti-)nucleons, the relative binding energy differences are extracted, ${\\Delta \\varepsilon}_{\\rm{d\\bar{d}}}/{\\varepsilon}_{\\rm{d}} = -0.04 \\pm 0.05(\\rm{stat.}) \\pm 0.12(\\rm{syst.})$ and ${\\Delta \\varepsilon}_{\\rm{^{3}He ^{3}\\overline{He}}}/{\\varepsilon}_{\\rm{^{3}He}} = 0.24 \\pm 0.16(\\rm{stat.}) \\pm...

  2. Gross theory of beta-decay and half-lives of short-lived nuclei

    International Nuclear Information System (INIS)

    Yamada, Masami; Kondo, Norikatsu.

    1976-01-01

    The gross theory of beta-decay has been developed, and this theory offers the means of calculating directly the function of beta-decay intensity, then half-lives, complex beta spectra and so on are estimated from it. This paper presents the more refined theory by introducing the shell effect. The shell effect is considered in the intensity function. The half-lives in the electron decay of In with spin of 9/2 + , the positron decay of Bi, Po, At and Rn, and the decay of odd-odd nuclei were estimated. The introduction of the shell effect shows better agreement between the theory and the experimental data. The inequality relations of intensity functions and half-lives of two adjacent nuclei were obtained. When the spins and parities of two nuclei are same, the inequality relations hold especially good. (Kato, T.)

  3. SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

    Directory of Open Access Journals (Sweden)

    JOSHUA R. VERSEY

    2014-06-01

    Full Text Available This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%, cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min, and separation times (5, 10, 15, and 30 min. Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

  4. Systematics of triaxial deformation in Xe, Ba, and Ce nuclei

    International Nuclear Information System (INIS)

    Yan, J.; Vogel, O.; von Brentano, P.; Gelberg, A.

    1993-01-01

    The (β,γ) deformation parameters of even-even Xe, Ba, and Ce nuclei have been calculated by using the triaxial rotor model. Deformation parameters calculated, on one hand, from decay properties and, on the other hand, from energies are in good agreement. The smooth dependence of the deformation parameters on Z and N is discussed. The results are compared with those extracted from properties of odd-A nuclei

  5. Seperation of CsCl from LiCl-CsCl molten salt by cold finger melt cryst allization

    Energy Technology Data Exchange (ETDEWEB)

    Versey, Joshua R. [Dept. of Chemical and Materials Engineering and Nuclear Engineering Program University of Idaho, Idaho (United States); Phongikaroon, Supathorn [Dept. of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond (Korea, Republic of); Simpson, Michael F. [Dept. of Metallurgical Engineering University of Utah, Utah (Korea, Republic of)

    2014-06-15

    This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

  6. Meson exchange second class currents and the neutrino mass in the muon capture by light nuclei

    International Nuclear Information System (INIS)

    Katkhat, Ch.L.

    1988-01-01

    Influence of the Kubodera-Delorme-Rho model parameters (ζ and ξ), the scalar form factor (F s ) and the muonic neutrino rest mass (m νμ ) on the asymmetry coefficient (α μν ) of neutrino emission with respect to the muon spin orientation in the muon capture by light nuclei is analyzed. It is shown, that the mass m νμ , the parameters of ζ and ξ, and the form factor F s may be estimated by studying the coefficient α μν in O -> O, Gamov-Teller, and mixed transitions, respectively

  7. Odd nitrogen production by meteoroids

    Science.gov (United States)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  8. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  9. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-01-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes

  10. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  11. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  12. Interferometric measurements of dry mass content in nuclei and cytoplasm in the life cycle of antheridial filaments cells of Chara vulgaris L. in their successive developmental stages

    Directory of Open Access Journals (Sweden)

    Hanna Kuran

    2015-01-01

    Full Text Available Interferometric measurements of the nucleus and cytoplasm dry mass during interphase in the successive stages of development of antheridial filaments of Chara vulgaris demonstrated that the dry mass and surface area of cell nuclei double in size in each of the successive generations of the filaments, whereas neither the surface nor the dry mass of the cytoplasm increase in such proportion in the same period. In the successive stages of development of the antheridial filaments the dry mass and surface area of the nuclei and cytoplasm gradually diminish.

  13. Calculation of inelastic cross sections for H+ + Cs → H(n=2) + Cs+

    International Nuclear Information System (INIS)

    Valance, A.; Spiess, G.

    1975-01-01

    The cross sections for the processes H + +Cs → H(2p and 2s) +Cs + were calculated in the center of mass energy range 250--2400 eV using a simple pseudopotential formalism for the potential curves and coupling matrix elements and a perturbed stationary state (pss) formulation for the calculation of the cross sections. The results are found to be in reasonable agreement with experiment. (auth)

  14. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  15. Black hole masses in active galactic nuclei

    Science.gov (United States)

    Denney, Kelly D.

    2010-11-01

    We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these

  16. Mass and lifetime measurements of exotic nuclei in storage rings

    International Nuclear Information System (INIS)

    Franzke, B.; Geissel, H.; Muenzenberg, G.

    2007-11-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10 -7 -range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly-charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly-charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  17. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  18. The use of a numerical mass-balance model to estimate rates of soil redistribution on uncultivated land from 137Cs measurements

    International Nuclear Information System (INIS)

    Owens, P.N.; Walling, D.E.

    1988-01-01

    A numerical mass-balance model is developed which can be used to estimate rates of soil redistribution on uncultivated land from measurements of bombderived 137 Cs inventories. The model uses a budgeting approach, which takes account of temporal variations in atmospheric fallout of 137 Cs, radioactive decay, and net gains or losses of 137 Cs due to erosion and deposition processes, combined with parameters which describe internal 137 Cs redistribution processes, to estimate the 137 Cs content of topsoil and the 137 Cs inventory at specific points, from the start of 137 Cs fallout in the 1950s to the present day. The model is also able to account for potential differences in particle size composition and organic matter content between mobilised soil particles and the original soil, and the effect that these may have on 137 Cs concentrations and inventories. By running the model for a range of soil erosion and deposition rates, a calibration relationship can be constructed which relates the 137 Cs inventory at a sampling point to the average net soil loss or gain at that location. In addition to the magnitude and temporal distribution of the 137 Cs atmospheric fallout flux, the soil redistribution rates estimated by the model are sensitive to parameters which describe the relative texture and organic matter content of the eroded or deposited material, and the ability of the soil to retain 137 Cs in the upper part of the soil profile. (Copyright (c) 1988 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Systematics of triaxial moment of inertia and deformation parameters (β, γ) in even-even nuclei of mass region A = 90-120

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters ((β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov (DF). Researcher have found that the values of β obtained separately from energy and transition rate (β e and β b respectively), though, are found almost equal in heavy mass region (A ∼160-200) but, not so in medium mass (A∼120-140) nuclei. This observation puts a question mark whether the ββ dependence of moment of inertia in hydrodynamic model is reliable. The purpose of the present work is to study a relatively lighter mass region (A∼90-120) where the gap between values of two sets of β may further increase. To improve the calculations for extracting β e , the use of Grodzins rule will be made along with uncertainties, since only through this rule the E2 1 + is related with β G (value of β for symmetric nucleus and evaluated using Grodzins rule)

  20. Symmetry breaking nuclear quadrupole coupling tensor orientation for cesium-133 nuclei located in a mirror plane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Jin Eun [Dept. of Chemistry (BK21 plus) and Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Kang Yeol [School of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-11-15

    Simultaneous multiple data set fits of all transition peaks of {sup 133}Cs nuclei enabled us to obtain accurate cesium-133 nuclear magnetic resonance (NMR) parameters and Euler angles between the principal axis systems of the chemical shift (CS) and quadrupole coupling (Q) tensors of {sup 133}Cs nuclei in Cs{sub 2}CrO{sub 4} . Although in a previous study of Cs{sub 2}CrO{sub 4} by Power et al. (W. P. Power, S. Mooibroek, R. E. Wasylishen, T. S. Cameron, J. Phys. Chem. 1994, 98, 1552), one central transition was observed for cesium sites 1 and 2 in the {sup 133}Cs NMR spectra and one Euler angle between the CS tensors and Q tensors was obtained as 52° and 7° for cesium sites 1 and 2, respectively, the present single-crystal {sup 133}Cs NMR measurements found two Euler angles (10(2)°, 51.9(1)°, 0°) for site 1 and two central transition peaks for site 2. Three principal components of the CS tensor for Cs1 are oriented along the crystallographic a, b, and c axes, whereas none of the principal components of the Q tensor for Cs1 are oriented along the crystal axes. The principal component V{sub 22} of the Q tensor for Cs1 is tilted 10° from the b axis in the bc plane, and the other two components are not located in the ac plane. Therefore, we have found that the requirement that “the quadrupole coupling tensor for a nucleus located in a mirror plane has one principal axis perpendicular to the mirror plane” cannot be applied to Cs1. On the other hand, δ{sub 11} and V{sub 22} for Cs2 are aligned along the b axis, and the other components of the CS and Q tensors deviate at an angle of 1.4(1)° and 10.1(1)°, respectively, from the a and c axes in the ac plane. A distortion-free powder {sup 133}Cs NMR spectrum of Cs{sub 2}CrO{sub 4} was measured using a solid-state spin echo technique.

  1. Liquid Chromatography with Tandem Mass Spectrometry: A Sensitive Method for the Determination of Dehydrodiisoeugenol in Rat Cerebral Nuclei

    Directory of Open Access Journals (Sweden)

    You-Bo Zhang

    2016-03-01

    Full Text Available A new liquid chromatography–tandem mass spectrometry (LC-MS/MS method is developed for the quantification of dehydrodiisoeugenol (DDIE in rat cerebral nuclei after single intravenous administration. DDIE and daidzein (internal standard were separated on a Diamonsil™ ODS C18 column with methanol–water containing 0.1% formic acid (81:19, v/v as a mobile phase. Detection of DDIE was performed on a positive electrospray ionization source using a triple quadrupole mass spectrometer. DDIE and daidzein were monitored at m/z 327.2→188.0 and m/z 255.0→199.2, respectively, in multiple reaction monitoring mode. This method enabled quantification of DDIE in various brain areas, including, cortex, hippocampus, striatum, hypothalamus, cerebellum and brainstem, with high specificity, precision, accuracy, and recovery. The data herein demonstrate that our new LC-MS/MS method is highly sensitive and suitable for monitoring cerebral nuclei distribution of DDIE.

  2. Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of HIE-ISOLDE to provide post-accelerated $^{221,222}$Rn and $^{222,226,228}$Ra ion beams for the study of octupole collectivity in these nuclei. We will measure E3 transition moments in $^{222}$Rn and $^{222,226,228}$Ra in order to fully map out the variation in E3 strength in the octupole mass region with Z$\\thicksim$88 and N$\\thicksim$134. This will validate model calculations that predict different behaviour as a function of N. We will also locate the position of the parity doublet partner of the ground state in $^{221}$Rn, in order to test the suitability of odd-A radon isotopes for EDM searches.

  3. A near-infrared relationship for estimating black hole masses in active galactic nuclei

    Science.gov (United States)

    Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita

    2013-06-01

    Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.

  4. Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Li, Jun-Qing; Jin, Gen-Ming [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Zhang, Hong-Fei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-05-15

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the {sup 28}Si, {sup 32}S, {sup 40}Ar bombarding the target nuclides {sup 165}Ho, {sup 169}Tm, {sup 170-174}Yb, {sup 175,176}Lu, {sup 174,} {sup 176-180}Hf and {sup 181}Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the {sup 40}Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect. (orig.)

  5. Low energy level density and surface instabilities in heavy transition nuclei

    International Nuclear Information System (INIS)

    Wieclawik, W. de; Foucher, R.; Dionisio, J.S.; Vieu, C.; Hoglund, A.; Watzig, W.

    1975-01-01

    A statistical analysis of Au, Pt, Hg nuclear levels was performed with Ericson's method. The odd mass gold experimental number of levels distributions are compared to the theoretical distributions corresponding to vibrational (Alaga and Kisslinger-Sorensen) and rotational (Stephens, Meyer-ter-Vehn) models. The Alaga model gives the most complete description of 193 Au, 195 Au levels and fits the lowest part of Gilbert-Cameron high energy distributions (deduced from the statistical model and neutron capture data). The Ericson's method shows other interesting features of Pt and Hg isotopes (i.e. level density dependence on nuclear shape and pairing correlations, evidence for phase transitions). Consequently, this method is a useful tool for guiding experimental as well as theoretical investigations of transition nuclei [fr

  6. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  7. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  8. Monopole Effect on Isotopes in Sn and Pb Regions

    Directory of Open Access Journals (Sweden)

    M. KHITER

    2016-11-01

    Full Text Available Abstract. When going toward in description of neutron-rich nuclei, the monopole field plays a determining role in the properties of the quasiparticle states and their interactions. Detailed theoretical in shell model calculations of the characteristics of the neutron-rich isotopes in 132Sn and 208Pb regions are performed using the monopole hamiltonien effect. Some modification mentioned in literatures of effectives interactions are introduced for evaluated the effective single-particle energies. Their effect show a successful and consistent description of excitation energies spectra of these nuclei.Keywords:Nuclear Structure, Monopole Hamiltonian, Odd-Odd Nuclei,Three body Effects, Similarity, 21.60.Cs; 27.60. +j; 21.30.Fe

  9. Meson-exchange forces and medium polarization in finite nuclei

    International Nuclear Information System (INIS)

    Hengeveld, W.

    1986-01-01

    A G-matrix, derived from a meson-exchange potential in nuclear matter, is applied to finite, semi-magic nuclei. For the open shell the broken-pair model, which can accomodate many particle levels, is used. The excitations of the closed shell are treated as particle-hole states. Energy spectra and electromagnetic transition densities are calculated for 88 Sr and 58 Ni. The standard random-phase approximation for finite systems is extended by including the effects of the exchange of the RPA phonons in the residual interaction selfconsistently. It is shown that this particle-hole interaction is strongly energy dependent due to the presence of poles corresponding to 2p-2h (and more complex) excitations. The RPA eigenvalue problem with this energy-dependent residual interaction also provides solutions for these predominantly 2p2h-like states. In addition a modified normalization condition is obtained. This scheme is applied to 56 Ni( 56 Co) in a large configuration space using a residual interaction of the G-matrix type. The effect of dynamic medium polarization on the properties of giant resonances is illustrated for the case of A=48 nuclei. A large fragmentation of the monopole strength is calculated, which is in accordance with the non-observation of the GMR in light nuclei. Properties of A=48 nuclei are computed with an interaction deduced from the NN scattering data without introduction of additional parameters. The role of medium polarization is illustrated for spectra and (e,e') form factors. It is shown how medium polarization induces a coupling between excitations in even-even and in the adjacent odd-odd nuclei. (Auth.)

  10. Intruder bands in odd-A {sup 109-115}Sb

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, V P [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics; Andrews, H R; Galindo-Uribarri, A; Radford, D C; Ward, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Omar, A; Mullins, S; Persson, L; Prevost, D; Rodriguez, J; Sawicki, M; Unrau, P; Waddington, J C [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics; Drake, T E; Zwartz, G [Toronto Univ., ON (Canada). Dept. of Physics; Fossan, D B; Lafosse, D R; Hughes, J R; Schnare, H; Timmers, H; Vaska, P [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics; Haas, B [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Paul, E S; Wilson, J [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Pilotte, S [Ottawa Univ., ON (Canada). Dept. of Physics; Wadsworth, R [York Univ. (United Kingdom). Dept. of Physics; Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-08-01

    The existence of rotational structures in nuclei bordering on the spherical Z= 50 closed shell has been known for some time. Nevertheless, our understanding of collective effects in this region is remarkably incomplete; for example, before this work little high-spin data existed and there were no lifetime measurements to confirm the collectivity associated with the rotational bands observed in Sb (Z = 51) and Sn (Z = 50) nuclei. Furthermore, the role of the h{sub 11/2} orbital was virtually unknown, although it has the highest angular momentum of the orbitals in this mass region and therefore is expected to have the most influence on the properties of high-spin states. In the A {approx} 130 and A {approx} 180 mass regions, where highly deformed intruder bands have been observed, it is the neutron i{sub 13/2} orbitals, respectively, which are preferentially lowered in energy by a combination of large deformation and fast rotation In lighter nuclei the h{sub 11/2} orbital is expected to appear as an intruder configuration. (author). 11 refs., 1 tab., 4 figs.

  11. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Benlliure, J.; Junghans, A.R.

    2000-11-01

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  12. β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station

    Science.gov (United States)

    Lică, R.; Benzoni, G.; Morales, A. I.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Madurga, M.; Sotty, C.; Vedia, V.; De Witte, H.; Benito, J.; Berry, T.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernández-Martínez, G.; Fynbo, H.; Greenlees, P.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Leoni, S.; Lund, M.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Regis, J. M.; Rotaru, F.; Saed-Sami, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.

    2017-05-01

    Neutron-rich Ba isotopes are expected to exhibit octupolar correlations, reaching their maximum in isotopes around mass A = 146. The odd-A neutron-rich members of this isotopic chain show typical patterns related to non-axially symmetric shapes, which are however less marked compared to even-A ones, pointing to a major contribution from vibrations. In the present paper we present results from a recent study focused on 148-150Cs β-decay performed at the ISOLDE Decay Station equipped with fast-timing detectors. A detailed analysis of the measured decay half-lives and decay scheme of 149Ba is presented, giving a first insight in the structure of this neutron-rich nucleus.

  13. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  14. Direct mass measurements of {sup 100}Sn and magic nuclei near the N=Z line; Mesures directes des masses de {sup 100}Sn et de noyaux exotiques proches de la ligne N = Z

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, M

    1996-10-31

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A {approx_equal} 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a {sup 78}Kr beam on a {sup nat}Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of {sup 70}Se and {sup 71}Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus {sup 100}Sn was successfully performed, using this original technique. Secondary ions of {sup 100}Ag, {sup 100}Cd, {sup 100}In and {sup 100}Sn produced via fusion-evaporation reaction {sup 50}Cr + {sup 58}Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of {sup 100}Cd and, for the first time, the masses of {sup 100}Sn were determined directly with respect to the reference mass of {sup 100}Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author). 96 refs.

  15. Seniority four admixures in the low-lying 0+ states of even-mass tin and lead nuclei

    International Nuclear Information System (INIS)

    Quesne, C.; Salmon, Y.; Spitz, S.

    1977-01-01

    New statistical measures of symmetry breaking are used to evaluate the total seniority four admixtures in the low-lying 0 + states of even-mass tin and lead nuclei. This approach is based on the centroid energies and partial widths of fixed total seniority and parity spectral distributions. Some seniority four states are found to be surprisingly low. However, the ground state is always a very pure seniority zero state

  16. Fragments emission from light mass composite nuclei within collective clusterization mechanism

    International Nuclear Information System (INIS)

    Singh, BirBikram

    2016-01-01

    Based on the quantum mechanical fragmentation theory (QMFT) the dynamical cluster decay model (DCM) has been developed by Gupta and Collaborators to study the decay of hot and rotating compound systems. Number of compound nuclei (CN) in different mass regions have been studied quite extensively while taking into consideration nuclear structure effects in the same. It is quite relevant to mention here that in the binary decay of CN nuclear structure effects comes into picture, within DCM, via preformation probability P_0 of the complimentary fragments before penetrating the potential barrier between them with certain probability P . It is interesting to note here that the statistical models treat various decay modes of the CN on different footing contrary to the DCM. In very light mass region the decay of number of composite systems "2"0","2"1","2"2Ne*, "2"6"-"2"9Al, "2"8Si, "3"1P, "3"2S, "3"9K and "4"0Ca*, formed in low energy heavy ion reactions, have been investigated for different reaction mechanisms particularly fusion-fission (FF) and deep inelastic orbiting (DIO) from equilibrated and non-equilibrated compound nucleus processes, respectively

  17. Nuclear structure studies in A∼100 and A∼130 mass regions

    International Nuclear Information System (INIS)

    Sihotra, S.

    2012-01-01

    This paper reports the nuclear structure studies in the mass A∼ 100 and A∼130 regions. The investigations were performed in 98,99 Rh, 99 Pd, 96 Tc, 106,107 In, and 129,131 Cs nuclei near the proton (Z = 50) and neutron (N = 50, 64) shell closures with a view to understand the structural features that result from interplay between single particle and collective degrees of freedom. The nuclei in these regions are characterized by a small quadrupole deformation and soft to gamma deformation at low spins. In order to compare experimental results directly with the theoretical calculations, the experimental spins and level energies have been transformed into the rotating (intrinsic) frame of nucleus. The level schemes have been interpreted in the framework of theoretical model calculations. Configurations assigned to various bands are discussed in the framework of Principal/Tilted Axis Cranking (PAC/TAC) model and the deformed Hartree-Fock and angular momentum projection (PHF) calculations. Level energies and B(M1)/B(E2) ratios have, on the whole, been reproduced for the assigned configurations. Triaxial deformation in these mass regions has been inferred from the observed rotational-alignment frequencies, staggering behavior, M1 reduced transition probabilities and chiral-twin bands. Another important feature observed in these isotopes is the magnetic dipole bands generated through the shears mechanism. Observation of new E1 transitions linking the opposite-parity bands based on the proton/neutron h 11/2 and d 5/2 orbitals (Δl = 3, Δj = 1, Δπ = -1) in 131 Cs and 99 Pd provide fingerprints of possible octupole correlations in these mass-regions. (author)

  18. g factors and the interplay of collective and single-particle degrees of freedom in superdeformed mass-190 nuclei

    International Nuclear Information System (INIS)

    Sun, Yang; Zhang, Jing-ye; Guidry, Mike

    2001-01-01

    Interplay of collective and single-particle degrees of freedom is a common phenomenon in strongly correlated many-body systems. Despite many successful efforts in the study of superdeformed nuclei, there is still unexplored physics that can be best understood only through the nuclear magnetic properties. We point out that study of the gyromagnetic factor (g factor) may open a unique opportunity for understanding superdeformed structure. Our calculations suggest that investigation of the g-factor dependence on spin and particle number can provide important information on single-particle structure and its interplay with collective motion in the superdeformed mass-190 nuclei. Modern experimental techniques combined with the new generation of sensitive detectors should be capable of testing our predictions

  19. A test of Wigner's spin-isospin symmetry from double binding energy differences

    International Nuclear Information System (INIS)

    Van Isacker, P.; Warner, D.D.; Brenner, D.S.

    1995-01-01

    It is shown that the anomalously large double binding energy differences for even-even N = Z nuclei are a consequence of Wigner's SU(4) symmetry. These, and similar quantities for odd-mass and odd-odd nuclei, provide a simple and distinct signature of this symmetry in N ≅ Z nuclei. (authors). 16 refs., 2 figs., 1 tab

  20. The structure of nuclei far from beta stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1990-01-01

    This report discusses the following topics: shape coexistence, intruder states, and E0 transitions; the Ir isotopes; the Pt isotopes; the Au isotopes; the Hg isotopes; the Tl isotopes; decay properties of 153 Yb and 153 Tm; non-yrast levels structure of 135 Nd via beta decay of 135 Pm; decay of mass-separated 137 Eu and 137 Sm; structure of 130,132 Ce, 132,134 Nd, and 134 Pm; decay of 127 Cs to levels of odd-neutron 127 Xe; level structure of 119 Te; conversion electron spectroscopy in 116 Xe and 126 Xe; signature of the shape coexistence in 72 Kr; identification of transitions in 73 Kr and search for large oblate; high spin states and multiple band structure in 68 Ge; high spin states in 65 Ga and 67 Ga; electron spectroscopy; ion sources; and the on-line nuclear orientation facility

  1. Transitional nuclei in the A∼100 region

    International Nuclear Information System (INIS)

    Petry, R.F.

    1986-01-01

    This is a report on nuclear structure studies funded by the Department of Energy over a seven-year period from August 1, 1979 to August 31, 1986. In summary, the work was concerned with nuclear structure in the A∼100 region. In particular the focus of the work was on odd-A deformed nuclei in this region with N > 60

  2. Two quasi-particle excitations with particle-hole core polarization in even-even single closed shell nuclei

    International Nuclear Information System (INIS)

    Gillet, V.; Giraud, B.; Rho, M.

    1976-01-01

    The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr

  3. High-Precision Direct Mass Determination of Unstable Isotopes

    CERN Multimedia

    2002-01-01

    The extension of systematic high-precision measurements of the nuclear mass to nuclei far from the valley of $\\beta$ stability is of great interest in nuclear physics and astrophysics. The mass, or binding energy, is a fundamental gross property and a key input parameter for nuclear matter calculations. It is also a sensitive probe for collective and single-particle effects in nuclear structure. \\\\ \\\\ For such purposes, nuclear masses need to be known to an accuracy of about 10$^{-7}$ (i.e. $\\Delta$M~$\\leq$~10~keV for A~=~100). To resolve a particular mass from its nuclear isomers and isobars, resolving power of 10$^6$ are often required. To achieve this, the ions delivered by the on-line mass separator ISOLDE are confined in a Penning quadrupole trap. This trap is placed in the very homogeneous and stable magnetic field of a superconducting magnet. Here, the cyclotron frequency and hence the mass are determined. \\\\ \\\\ The first measurements using this new technique have been completed for a long chain of Cs ...

  4. Quantization of Differences Between Atomic and Nuclear Rest Masses and Self-organization of Atoms and Nuclei

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    2007-03-01

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.

  5. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  6. Search for shape coexistence in odd - Z rare earth proton emitters

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2015-01-01

    Nuclear shapes are very sensitive to the structural effects and can change with isospin and from one nucleus to its neighbour and in some cases configurations corresponding to different shapes may coexist at similar energies which may arise from intruder excitations. Search for such interesting phenomena of shape coexistence and rapidly changing shapes in the less explored region of rare earth odd Z nuclei from Z = 51 to 75 are the focus of present work

  7. Development of the model describing highly excited states of odd deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Solov'ev, V.G.

    1975-01-01

    An approximate method is given for solving the system of equations obtained earlier for describing the structure of states with intermediate and high energies in the framework of the model taking into account the interaction of quasiparticles with phonons. The new method possesses a number of advantages over the approximate methods of solving the system of equations mentioned. The study is performed for the example of an odd deformed nucleus when several one-quasiparticle components are taken into account at the same time

  8. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  9. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  10. Probing the density tail of radioactive nuclei with antiprotons

    CERN Document Server

    Obertelli, Alexandre; Uesaka, Tomohiro; Corsi, Anna; Pollacco, Emmanuel; Flavigny, Freddy

    2017-01-01

    We propose an experiment to determine the proton and neutron content of the radial density tail in short-lived nuclei. The objectives are to (i) to evidence new proton and neutron halos, (ii) to understand the development of neutron skins in medium-mass nuclei, (iii) to provide a new observable that characterises the density tail of short-lived nuclei.

  11. Towards 100Sn: Studies on neutron-deficient even isotopes of tin

    International Nuclear Information System (INIS)

    Rathke, G.E.

    1987-02-01

    Neutron-deficient 108,106,104 Sn isotopes were produced by heavy ion induced fusion reactions using high-intensity 59 Ni beams from the UNILAC of the GSI. Their decay properties were studied by techniques of gamma and conversion electron spectroscopy employing the mass separator on-line to the UNILAC. Earlier information on the 108 Sn → 108 In and 106 Sn → 106 In decays was complemented and improved in the course of this work. The new nucleus 104 Sn and its decay to excited states in 104 In was identified and studied for the first time. These investigations yield the following results: the mass of 104 Sn and of nuclei linked to it by alpha decay or proton radioactivity, 108 Te, 112 Xe and 109 I, 113 Cs, respectively were determined from the measured Q EC value of 104 Sn and the known mass value of 104 In. These are nuclei very close or beyond the proton drip line. In addition, information on the quenching of the fast Gamow-Teller beta decay of the even neutron-deficient tin isotopes was obtained. This complements investigations on the N = 50 isotones 94 Ru and 96 Pd, and allows a systematic comparison of these transition strengths for nuclei near the doubly magic 100 Sn. The spreading of the vertical strokeπg 9/2 -1 vg 7/2 , 1 + > configuration over several states, due to residual interactions, and the centroid energies of these magnetic dipole states were determined for the corresponding odd-odd indium isotopes. (orig./HSI)

  12. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  13. Nuclei far off the stability line

    International Nuclear Information System (INIS)

    Fenyes, T.

    1978-01-01

    Theoretical and experimental aspects of the formation of some ''exotic'' nuclei far off the stability line were reviewed in addition to the relevant results of research in this field. Results in beta- and gamma-ray spectroscopy, heavy-ion-spectroscopy, achievements in the fields of measuring the atomic mass, the moment, and the radius of the nuclei as well as some astronomical aspects were described. (Z.P.)

  14. Theoretical study of the Cs isotope exchange reaction of CsI + Cs' → Cs + ICs' (Contract research)

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Hashimoto, Masashi; Yokoyama, Keiichi

    2015-12-01

    To discuss the exchange reaction of Cs isotope by CsI + Cs' → Cs + ICs', the structure and chemical properties of Cs 2 I intermediate and potential energy surface of the entrance reaction are calculated using M06/def2-TZVPPD density functional calculation. The calculation shows that the reaction to the intermediate has no barrier and the two Cs-I bonds of Cs 2 I are chemically equivalent. These results suggest that the rate of the Cs exchange reaction of CsI + Cs' → Cs + ICs' is as high as the collision rate. (author)

  15. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  16. A model with charges and polarizability for CS2 in an ionic liquid

    Indian Academy of Sciences (India)

    RUTH M LYNDEN-BELL

    the static electrostatic distribution in the CS2 molecule with 7 charged sites and anisotropic polarizability on the carbon site and isotropic .... the charges modified to reproduce the molecular quad- ... face at 1.5 times the van der Waals radii from the nuclei ..... shows the probability distribution of induced dipoles on the C site ...

  17. Odd things, in odd places, in odd races | Ferndale | South African ...

    African Journals Online (AJOL)

    Odd things, in odd places, in odd races. L Ferndale, R Wise, S R Thomson. Abstract. No Abstract. South African Gastroenterology Vol. 5 (3) 2007: pp. 9-12. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/sagr.v5i3.30737 · AJOL African Journals ...

  18. On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies

    Science.gov (United States)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.

  19. Ground state properties of exotic nuclei in deformed medium mass region

    International Nuclear Information System (INIS)

    Manju; Chatterjee, R.; Singh, Jagjit; Shubhchintak

    2017-01-01

    The dipole moment, size of the nucleus and other ground state properties of deformed nuclei 37 Mg and 31 Ne are presented. Furthermore with this deformed wave function the electric dipole strength distribution for deformed nuclei 37 Mg and 31 Ne is calculated. This will allow us to investigate the two dimensional scaling phenomenon with two parameters: quadrupole deformation and separation energy

  20. Accurate mass measurements of very short-lived nuclei. Prerequisites for high-accuracy investigations of superallowed β-decays

    International Nuclear Information System (INIS)

    Herfurth, F.; Kellerbauer, A.; Sauvan, E.; Ames, F.; Engels, O.; Audi, G.; Lunney, D.; Beck, D.; Blaum, K.; Kluge, H.J.; Scheidenberger, C.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Moore, R.B.; Oinonen, M.

    2002-01-01

    Mass measurements of 34 Ar, 73-78 Kr, and 74,76 Rb were performed with the Penning-trap mass spectrometer ISOLTRAP. Very accurate Q EC -values are needed for the investigations of the Ft-value of 0 + → 0 + nuclear β-decays used to test the standard model predictions for weak interactions. The necessary accuracy on the Q EC -value requires the mass of mother and daughter nuclei to be measured with δm/m ≤ 3 . 10 -8 . For most of the measured nuclides presented here this has been reached. The 34 Ar mass has been measured with a relative accuracy of 1.1 .10 -8 . The Q EC -value of the 34 Ar 0 + → 0 + decay can now be determined with an uncertainty of about 0.01%. Furthermore, 74 Rb is the shortest-lived nuclide ever investigated in a Penning trap. (orig.)

  1. Mass measurement project by determination of Q{sub {beta}} for neutron-rich nuclei; Projet de mesure des masses par determination des Q{sub {beta}} pour des noyaux tres riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pautrat, M; Lagrange, J M; Petizon, L [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Vanhorenbeeck, J; Duhamel, P [Brussels Univ. (Belgium). Inst. d` Astronomie et d` Astrophysique; Binon, F [Universite Libre de Bruxelles (Belgium)

    1994-12-31

    The aim of the project described hereafter is to collect new data on the exotic neutron rich nuclei of the Fe to Zn region, and in particular to determine their masses, for both nuclear physics and astrophysics purposes. These isotopes will be produced through projectile fragmentation at the GANIL facility and selected by the LISE3 spectrometer. Their half-lives will be measured as well as the energy of their main {gamma} rays; {gamma} - {gamma} coincidences will then allow to build a preliminary level scheme. The analysis of {beta} spectra and {beta} - {gamma} coincidences will finally provide the maximum {beta} decay energies of the studied nuclei leading to their masses. The difficulties arising from the low production rates, the {beta} detection, the data handling are discussed together with the solutions proposed to overcome them. (authors). 17 refs.

  2. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  3. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  4. Two-proton radioactivity with 2p halo in light mass nuclei A=18–34

    Directory of Open Access Journals (Sweden)

    G. Saxena

    2017-12-01

    Full Text Available Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A=18–34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far. Keywords: Relativistic mean-field theory, Nilson Strutinsky approach, Two-proton radioactivity, One- and two-proton separation energy, Halo nuclei, Proton drip-lines

  5. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database

    DEFF Research Database (Denmark)

    Peterson, B. M.; Ferrarese, L.; Gilbert, K. M.

    2004-01-01

    We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product is obtained...

  6. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  7. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  8. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.

    1997-11-01

    One of the frontiers of today's nuclear science is the ''journey to the limits'': of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective

  9. Equation of motion method to describe quasiparticle structures in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Doenau, F.

    1985-01-01

    The development of the experimental techniques will supply one with more and more complete level schemes and transition matrix elements. This is a great challenge for the theorists to put the right questions and to work out the models accordingly. In this respect the method of equation of motion (EQM) seems to be a sulitable approach the inherent possibilities of which are yet not fully explored. The EQM is sketched for the case of one-quasiparticle (1qp) excitation in odd-mass nuclei. The coupling of a particle to the quasrupole and pair field is treated using the IBA for the collective degrees of freedom. Physical implications are shortly discussed. The selfconsistent aspects of the theory are considered. A perturbational treatment is proposed to construct the physical subspace that is necessary to perform selfconsistent calculations of the collective core energies. The EQM is formulated for the two-quasiparticle (2qp) excitations in transitional nuclei inclusive the coupling to the collective excitations (0 qp space). EQM can be widely applied to describe the complicated interplay between collective degrees of freedom and quasiparticle configurations are concluded

  10. On the odd-even effect in the charge radii of isotopes

    International Nuclear Information System (INIS)

    Talmi, I.

    1984-01-01

    Core polarization by valence neutrons is suggested as a possible mechanism for producing odd-even variation in the charge radii of isotopes. The nuclei considered have closed proton shells and neutrons in states with lowest seniority or generalized seniority. Simple expressions are derived for jsup(n) neutron configurations and various multipole terms of the pn interaction. The resulting expressions give a good fit to the radii of calcium isotopes and also of lead isotopes for which these expressions are only approximate. (orig.)

  11. Production and de excitation of hot nuclei

    International Nuclear Information System (INIS)

    Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.

    1988-01-01

    We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta

  12. Comparisons between shell-model calculations, seniority truncation, and quasiparticle approximations: Application to the odd Ni isotopes and odd N = 82 isotones

    International Nuclear Information System (INIS)

    Losano, L.; Dias, H.; Krmpotic, F.; Wildenthal, B.H.

    1988-01-01

    A detailed study of the results of correcting BCS approximation for the effects of particle-number projection and blocking has been carried out. A low-seniority shell-model approximation was used as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-mass Ni isotopes and in odd-mass N = 82 isotones. We discuss the results obtained for the energy spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-lying states have also been studied through the comparison of the low-seniority shell-model results with those which arose from the corresponding full shell-model calculations

  13. Triaxiality in the odd-A nuclei 109−117I studied through a microscopic rotationparticle coupling

    Directory of Open Access Journals (Sweden)

    Modi Swati

    2018-01-01

    Full Text Available A systematic study of ground state spectrum with the triaxial deformation γ for odd-A Iodine isotopes 109−117I is carried out with the nonadiabatic quasiparticle approach. The rotation-particle coupling is accomplished microscopically such that the matrix elements of a particle-plus-rotor system are written in terms of the rotor energies. The 5/2+ state is confirmed as ground state for odd-A 111−117I and also coming out as lowest in energy for 109I.

  14. Application of the interacting boson model to collective states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Kaup, U.

    1983-01-01

    In the framework of the interacting boson model a systematic description of even-even isotopes of the medium heavy elements selenium, krypton, and strontium is given. The number of the free parameters could be kept very small by the determination of the physically relevant terms of the general model Hamiltonian. The variation of the collectivity from spherical to deformed, γ-soft nuclei could be mainly derived from the influence of the number of valence nucleons. All model parameters vary smoothly as function of the valence particle number and in qualitative agreement with predictions of a simplified microscopical model. Odd nuclei were studied in the framework of the interacting boson-fermion model. Beside the phenomenological description of odd-even rubidium, technetium, and silver isotope this part of the thesis is occupied mainly by the microscopical theory of the boson-fermion model. The effect of the antisymmetrization of the last, odd particle with the core nucleons is discussed. The microscopic theory is supplemented by the derivation of the so called Pauli term from the interaction of identical nucleons. (orig./HSI) [de

  15. Heavy ions as probes of nuclei far from stability

    International Nuclear Information System (INIS)

    Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A.; Toth, K.S.

    1989-01-01

    Nuclei located far from stability provide us with an opportunity for studying nuclear matter existing under unusual conditions. In these regions of instability, radioactive decay becomes the predominant technique by which one can obtain structure information. We have been involved in the investigation of nuclear properties of nuclei close to the proton drip line. In our explorations we have utilized heavy-ion fusion, followed by particle evaporation, to produce the extremely neutron-deficient nuclei of interest. In our studies, single-particle states near the 82-neutron shell, populated in the β decay of short-lived nuclides, have been examined and their excitation energies determined. Numerous new isotopes, isomers, and β-delayed-proton and α-particle emitters have been discovered. This contribution will discuss our particle-decay investigations. These decay modes provide us with a convenient means of discovering new isotopes whose identification opens the way for further, more extensive explorations. Also, particle-decay energies in many instances can be used to determine mass differences between parent and daughter ground states. Such measurements are therefore used to test mass formulae and to obtain estimates of masses for proton rich nuclei. 19 refs., 13 figs

  16. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  17. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  18. High spin states and isomeric decays in doubly-odd 208Fr

    International Nuclear Information System (INIS)

    Kanjilal, D.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R.; Saha, S.; Bhowmik, R.K.; Gehlot, J.; Muralithar, S.; Singh, R.P.; Jnaneswari, G.; Mukherjee, G.; Mukherjee, B.

    2010-01-01

    Neutron deficient isotopes of francium (Z=87, N∼121-123) as excited nuclei were produced in the fusion-evaporation reaction: 197 Au( 16 O, xn) 213-x Fr at 100 MeV. The γ rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd 208 Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half-lives of the E γ =194(2) keV isomeric transition, known from earlier observations, was measured to be T 1/2 =233(18) ns. A second isomeric transition at E γ =383(2) keV and T 1/2 =33(7) ns was also found. The measured half-lives were compared with the corresponding single particle estimates, based on the level scheme obtained from the experiment.

  19. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  20. Study of single-nucleon spectroscopic characteristics in light nuclei

    International Nuclear Information System (INIS)

    Zhusupova, K.A.

    1998-01-01

    Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)

  1. Study of nuclear level densities for exotic nuclei

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Sepiani, M.

    2012-01-01

    Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.

  2. The nickel isotopes in a generalized-seniority approach

    International Nuclear Information System (INIS)

    Monnoye, O.; Van Isacker, P.; Pittel, S.; Bennett, J.

    2002-01-01

    The nickel isotopes exist over a wide range of neutron numbers, extending from proton-rich to very neutron-rich nuclei. We report here a consistent study of the odd-mass Z = 28 nuclei in the full p∫ + g 9/2 shell using the generalized-seniority shell model. We include up to three unpaired nucleons in the odd sector and up to two in the even sector. We also report related results for the odd-mass 69 Cu and odd-odd 66 Co nuclei. Our calculations make use of a realistic shell-model interaction, whose monopole part has been renormalized to fit the properties of nuclei near closed shells. The calculated results are in good global agreement with experimental data and contain some evidence for the persistence of the N = 40 sub-shell closure around 68 Ni. The results demonstrate the importance of keeping the entire p∫ + g 9/2 space as active, both for neutrons and protons. (authors)

  3. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  4. PARITY ODD BUBBLES IN HOT QCD.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.; PISARSKI,R.D.; TYTGAT,M.H.G.

    1998-04-16

    We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N {r_arrow} {infinity}. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T{sub d}, is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero {theta}--parity odd bubbles--can arise at temperatures just below T{sub d}. Experimentally, parity odd bubbles have dramatic signatures: the {eta}{prime} meson, and especially the {eta} meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as {eta} {r_arrow} {pi}{sup 0}{pi}{sup 0}, are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define.

  5. PARITY ODD BUBBLES IN HOT QCD

    International Nuclear Information System (INIS)

    KHARZEEV, D.; PISARSKI, R.D.; TYTGAT, M.H.G.

    1998-01-01

    We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N r a rrow ∞. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T d , is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero θ--parity odd bubbles--can arise at temperatures just below T d . Experimentally, parity odd bubbles have dramatic signatures: the ηprime meson, and especially the η meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as η r a rrow π 0 π 0 , are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define

  6. Odd-even mass differences from self-consistent mean field theory

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Bertulani, C. A.; Nazarewicz, W.; Schunck, N.; Stoitsov, M. V.

    2009-01-01

    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization, and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form c/A α . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences

  7. Recovery of Cs from high level radioactive waste

    International Nuclear Information System (INIS)

    Kumar, Amar; Kaushik, C.P.; Raj, K.; Varshney, Lalit

    2008-01-01

    Separation of Cs + from HLW restricts the personal radiation exposure during the vitrification and prevents thermal deformation of conditioned waste matrix during storage because of the high calorific power of 134 Cs (13.18 W/g) and 137 Cs (0.417 W/g) which would markedly reduce the storage cost. Separation will also reduce its volatility during vitrification and extent of migration from the vitrified mass in repository. In addition 137 Cs has enormous applications as radiation sources in food preservation, sterilization of medical products, brachy therapy, blood irradiation, hygienization of sewage sludge etc. The use of 137 Cs (T 1/2 = 30 years) in place of 60 Co (T 1/2 = 5.2 years) will also reduce the shielding requirement and frequency of source replenishment which will ease the handling/transportation of radioactive source

  8. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels.

    Science.gov (United States)

    Othman, Muhammad Bisyrul Hafi; Khan, Abbas; Ahmad, Zulkifli; Zakaria, Muhammad Razlan; Ullah, Faheem; Akil, Hazizan Md

    2016-01-20

    This study attempted to clarify the influence of a cross-linker, N,N-methylenebisacrylamide (MBA), and N-isopropylacrylamide (NIPAM) on the non-isothermal kinetic degradation, solid state and lifetime of hydrogels using the Flynn-Wall-Ozawa (F-W-O), Kissinger, and Coats-Redfern (C-Red) methods. The series of dual-responsive Cs-PNIPAM-MBA microgels were synthesized by soapless-emulsion free radical copolymerization in an aqueous medium at 70 °C. The thermal properties were investigated using thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under nitrogen atmosphere. The apparent activation energy using the chosen Flynn-Wall-Ozawa and Kissinger methods showed that they fitted each other. Meanwhile, the type of solid state mechanism was determined using the Coats-Redfern method proposed for F1 (pure Cs) and F2 (Cs-PNIPAM-MBA hydrogel series) types, which comprise random nucleation with one nucleus reacting on individual particles, and random nucleation with two nuclei reacting on individual particles, respectively. On average, a higher Ea was attributed to the greater cross-linking density of the Cs hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Study of the experimental data of multifragmentation of gold and krypton nuclei on interactions with photoemulsion nuclei at high energies

    International Nuclear Information System (INIS)

    Saleh, Z.A.; Abdel-Hafez, A.

    2002-01-01

    Results from EMU-01/12 collaboration for the experimental data on multifragmentation of gold residual nuclei created in the interactions with photoemulsion nuclei at the energy of 10.7 GeV/nucleon are presented together with the experimental data on multifragmentation of krypton created on the interactions with photoemulsion nuclei at energy of 0.9 GeV/nucleon. The data are analyzed in the frame of the statistical model of multifragmentation. It is obvious that there are two regimes for nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with masses close to each other created at different reactions are fragmented practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. These results give an indication that projectiles other than Gold and Krypton may give the same characterization on interaction with emulsion nuclei at high energies

  10. CS Informativeness Governs CS-US Associability

    Science.gov (United States)

    Ward, Ryan D.; Gallistel, C. R.; Jensen, Greg; Richards, Vanessa L.; Fairhurst, Stephen; Balsam, Peter D

    2012-01-01

    In a conditioning protocol, the onset of the conditioned stimulus (CS) provides information about when to expect reinforcement (the US). There are two sources of information from the CS in a delay conditioning paradigm in which the CS-US interval is fixed. The first depends on the informativeness, the degree to which CS onset reduces the average expected time to onset of the next US. The second depends only on how precisely a subject can represent a fixed-duration interval (the temporal Weber fraction). In three experiments with mice, we tested the differential impact of these two sources of information on rate of acquisition of conditioned responding (CS-US associability). In Experiment 1, we show that associability (the inverse of trials to acquisition) increases in proportion to informativeness. In Experiment 2, we show that fixing the duration of the US-US interval or the CS-US interval or both has no effect on associability. In Experiment 3, we equated the increase in information produced by varying the C̅/T̅ ratio with the increase produced by fixing the duration of the CS-US interval. Associability increased with increased informativeness, but, as in Experiment 2, fixing the CS-US duration had no effect on associability. These results are consistent with the view that CS-US associability depends on the increased rate of reward signaled by CS onset. The results also provide further evidence that conditioned responding is temporally controlled when it emerges. PMID:22468633

  11. Decay schemes of the radioactive nuclei A = 225 to 229. Skhemy raspada radioaktivnykh yader A = 225 - 229

    Energy Technology Data Exchange (ETDEWEB)

    Dzhelepov, B S; Ivanov, R B; Mikhailova, M A

    1976-01-01

    This monograph is devoted to properties of atomic nuclei with mass numbers A = 225 to 229. The book collects and systematizes all of the experimental data characterizing properties of radioactive isotopes: information concerning masses of nuclei, magnetic and electric moments, lifetimes of nuclear states, the most reliable information on characteristics of radiations, quantum characteristics of levels and other properties of the studied nuclei. On basis of a critical analysis of the totality of information, decay schemes of radioactive nuclei with mass numbers A = 225 to 229 were constructed, as well as the series of excited states of the isotopes which lie in this region of nuclei.

  12. Shell and pairing effects in spherical nuclei close to the nucleon drip lines

    International Nuclear Information System (INIS)

    Beiner, M.; Lombard, R.J.

    1975-01-01

    The unstability against nucleon emission of light and medium exotic spherical nuclei is investigated systematically using an extended version of the energy density formalism which reproduces correctly shell and pairing effects in stable nuclei. The reliability of the predictions of this microscopic, self-consistent and weakly parametrized model should not decrease significantly with the distance of the nuclei from the β-stability line, what is not the case for conventional mass formulae or mass tables [fr

  13. Odd-even staggering in the πg9/2νg9/2 band in 72Br

    International Nuclear Information System (INIS)

    Fotiades, N.; Cizewski, J.A.; Lister, C.J.; Davids, C.N.; Janssens, R.V.; Seweryniak, D.; Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reiter, P.; Uusitalo, J.; Wiedenhover, I.; Macchiavelli, A.O.; MacLeod, R.W.

    1999-01-01

    High-spin positive-parity states in 72 Br have been studied using the 16 O+ 58 Ni reaction. The πg 9/2 νg 9/2 decoupled band in 72 Br has been observed up to ∼10 MeV excitation energy and the expected odd-even staggering has been delineated. A larger signature splitting is observed for this band in 72 Br than in the same collective structures in the heavier 74,76,78 Br. No signature inversion at low spin is observed for this band in 72 Br, in contrast to the heavier isotopes, 74,76,78 Br, in which signature inversion is observed below ∼10ℎ. The observations are in general agreement with theoretical models in this mass region which predict no signature inversion for nuclei with less than 39 protons and neutrons. copyright 1999 The American Physical Society

  14. Gamma-gamma angular correlations in the 71 Ga and 69 Ga nuclei

    International Nuclear Information System (INIS)

    Bairrio Nuevo Junior, A.

    1975-01-01

    The directional correlations of v-transitions in 71 Ga and 69 Ga have been measured from the decay of 71 Z n and 69 Ge respectively using a Ge(Li)-NaI (f pound) gamma spectrometer. Spin assignments to the levels in Ga at 390(1/2), 487 (5/2 ) , 512(3/2 ) , 964(5/2 ) , 1107(7/2 ) , 1494(9/2*) and 2247 KeV(7/2 ), and 69 Ga at 318(1/2) , 574(5/2) , 872(3/2), 1106(5/2 , 3/2 ) , 1336(7/2 ) , and 1923 KeV(7/2) confirm the results of previous studies on these nuclei . The multipole mixing ratios 6(E2/M1) for several γ-transitions in both nuclei have been determined from the present angular correlation data. The results are: 6(121) - -0.2 * 6(142) * 0.04 - - 0.04, 6(386) = -0.003 - 0.014, 6(487) = 0.04 - 0.07, 5(512) - -0.14 - 0.10, 6(620) = 1.3 * j j and, 6(753) - 0.00 - 0.01 and 6(964) = 0.6 + Q 9 for transitions i n 71 Ga and 6(234) much greater than 0.28 - 0.04 or 0.08 - 0.02, 6(587) - -1.1 - 0.08, 6(1051) much greater than 0.0 - 0.10 and 6(1349) - 0.13 - 0.03 for transitions in 69 Ga . The experimental results are discussed in terms of various nuclear models which are applicable for the odd-A nuclei in this mass region. (author)

  15. On chiral-odd Generalized Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)

    2010-07-01

    The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)

  16. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    Science.gov (United States)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  17. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  18. Molecular structures and thermodynamic properties of 12 gaseous cesium-containing species of nuclear safety interest: Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I)

    Science.gov (United States)

    Badawi, Michael; Xerri, Bertrand; Canneaux, Sébastien; Cantrel, Laurent; Louis, Florent

    2012-01-01

    Ab initio electronic structure calculations at the coupled cluster level with a correction for the triples extrapolated to the complete basis set limit have been made for the estimation of the thermochemical properties of Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I). The standard enthalpies of formation and standard molar entropies at 298 K, and the temperature dependence of the heat capacities at constant pressure were evaluated. The calculated thermochemical properties are in good agreement with their literature counterparts. For Cs 2, CsH, CsOH, Cs 2(OH) 2, CsCl, Cs 2Cl 2, CsBr, CsI, and Cs 2I 2, the calculated ΔfH298K∘ values are within chemical accuracy of the most recent experimental values. Based on the excellent agreement observed between our calculated ΔfH298K∘ values and their literature counterparts, the standard enthalpies of formation at 298 K are estimated to be the following: ΔfH298K∘ (CsO) = 17.0 kJ mol -1 and ΔfH298K∘ (Cs 2Br 2) = -575.4 kJ mol -1.

  19. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  20. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  1. The collective bands of positive parity states in odd-A (fp) shell nuclei

    International Nuclear Information System (INIS)

    Ahalpara, D.P.

    1979-01-01

    The low-lying collective bands of positive parity states in (fp) shell nuclei are described in the deformed Hartree-Fock method by projecting states of definite angular momenta from 'the lowest energy intrinsic states in (sd)sup(-1)(fp)sup(n+1) configurations. The modified Kuo-Brown effective interaction for (fp) shell and modified surface delta interaction (MSDI) for a hole in (sd) shell with a particle in (fp) shell have been used. The collective bands of states are in general well reproduced by the effective interactions. The excitation energies of the band head states are however off by about one MeV. The calculated magnetic moments of the band head j = 3/2 + states are in reasonable agreement with experiment. Using effective charges esub(p) = 1.33 e and esub(n) = 0.64 e fairly good agreement is obtained for E(2) transitions. The hindered M(1) transition strengths are reproduced to the correct order, however they are slightly higher compared to the experiment. (author)

  2. Foliar uptake of 137Cs from the water column by aquatic macrophytes

    International Nuclear Information System (INIS)

    Kelly, M.S.; Pinder, J.E. III

    1996-01-01

    A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137 Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137 Cs g -1 dry mass) or uncontaminated sediments (i.e. -1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137 Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter -1 . The plants is uncontaminated sediments rapidly accumulated 137 Cs from the water column and after 35 days of immersion had 137 Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137 Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B. (author)

  3. Characterization of aromatic organosulfur model compounds relevant to fossil fuels by using atmospheric pressure chemical ionization with CS2 and high-resolution tandem mass spectrometry.

    Science.gov (United States)

    Tang, Weijuan; Sheng, Huaming; Jin, Chunfen; Riedeman, James S; Kenttämaa, Hilkka I

    2016-04-15

    The chemistry of desulfurization involved in processing crude oil is greatly dependent on the forms of sulfur in the oil. Sulfur exists in different chemical bonding environments in fossil fuels, including those in thiophenes and benzothiophenes, thiols, sulfides, and disulfides. In this study, the fragmentation behavior of the molecular ions of 17 aromatic organosulfur compounds with various functionalities was systematically investigated by using high-resolution tandem mass spectrometry. Multiple-stage tandem mass spectrometric experiments were carried out using a linear quadrupole ion trap (LQIT) equipped with an atmospheric pressure chemical ionization (APCI) source. (+)APCI/CS2 was used to generate stable dominant molecular ions for all the compounds studied except for three sulfides that also showed abundant fragment ions. The LQIT coupled with an orbitrap mass spectrometer was used for elemental composition analysis, which facilitated the identification of the neutral molecules lost during fragmentation. The characteristic fragment ions generated in MS(2) and MS(3) experiments provide clues for the chemical bonding environment of sulfur atoms in the examined compounds. Upon collision-induced dissociation (CID), the molecular ions can lose the sulfur atom in a variety of ways, including as S (32 Da), HS(•) (33 Da), H2 S (34 Da), CS (44 Da), (•) CHS (45 Da) and CH2 S (46 Da). These neutral fragments are not only indicative of the presence of sulfur, but also of the type of sulfur present in the compound. Generally, losses of HS(•) and H2 S were found to be associated with compounds containing saturated sulfur functionalities, while losses of S, CS and (•) CHS were more common for heteroaromatic sulfur compounds. High-resolution tandem mass spectrometry with APCI/CS2 ionization is a viable approach to determining the types of organosulfur compounds. It can potentially be applied to analysis of complex mixtures, which is beneficial to improving the

  4. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    International Nuclear Information System (INIS)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A.M.; Beard, Mary; Brown, Edward; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A.M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nuclides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  5. The analysis of predictability of α-decay half-life formulae and the α partial half-lives of some exotic nuclei

    International Nuclear Information System (INIS)

    Dasgupta-Schubert, N.; Reyes, M.A.; Tamez, V.A.

    2009-01-01

    The predictabilities of the three α-decay half-life formulae, the Royer GLDM, the Viola-Seaborg and the Sobiczewski-Parkhomenko formulae, have been evaluated by developing a method based on the ansatz of standard experimental benchmarking. The coefficients of each formula were re-derived using the reliable data of the α -standards nuclei. The modified formulae that resulted were used to evaluate the accuracies of the formulae towards the prediction of half-lives of a set of nuclides with well-studied α spectroscopic data as well as a set of exotic α emitters. Further, a simple linear optimisation of the modified formulae allowed adjustments for the insufficient statistics of the primary data set without changing the modified formulae. While the three modified formulae showed equivalent results for all the medium heavy nuclei except the odd-odd, the modified GLDM showed relatively the best figures of merit for the odd-odd and superheavy nuclides. (orig.)

  6. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  7. Theoretical description and predictions of the properties of superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sobiczewski, A [Department of Theoretical Physics, Andrzej Soltan Institute for Nuclear Studies (Poland)

    2009-12-31

    Theoretical descriptions of superheavy atomic nuclei are shortly reviewed and illustrated by their results. Such properties of these nuclei as their shapes, masses, fission barriers, decay modes, decay energies, half-lives, are discussed. Special attention is given to the shell structure of the nuclei, due to which they exist. The role of the physical studies of the superheavy nuclei for the chemical research on the superheavy elements and, more generally, the relationship between these two kinds of investigation is underlined. This stresses the importance of close cooperation between physicists and chemists, experimentalists and theoreticians, in these studies.

  8. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D; Dreyfuss, A C; Langr, D

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si

  9. Molecular CsF 5 and CsF 2 +

    KAUST Repository

    Rogachev, Andrey Yu.; Miao, Mao-sheng; Merino, Gabriel; Hoffmann, Roald

    2015-01-01

    D5h star-like CsF5, formally isoelectronic with known XeF5− ion, is computed to be a local minimum on the potential energy surface of CsF5, surrounded by reasonably large activation energies for its exothermic decomposition to CsF+2 F2, or to CsF3 (three isomeric forms)+F2, or for rearrangement to a significantly more stable isomer, a classical Cs+ complex of F5−. Similarly the CsF2+ ion is computed to be metastable in two isomeric forms. In the more symmetrical structures of these molecules there is definite involvement in bonding of the formally core 5p levels of Cs.

  10. Molecular CsF 5 and CsF 2 +

    KAUST Repository

    Rogachev, Andrey Yu.

    2015-06-03

    D5h star-like CsF5, formally isoelectronic with known XeF5− ion, is computed to be a local minimum on the potential energy surface of CsF5, surrounded by reasonably large activation energies for its exothermic decomposition to CsF+2 F2, or to CsF3 (three isomeric forms)+F2, or for rearrangement to a significantly more stable isomer, a classical Cs+ complex of F5−. Similarly the CsF2+ ion is computed to be metastable in two isomeric forms. In the more symmetrical structures of these molecules there is definite involvement in bonding of the formally core 5p levels of Cs.

  11. β-decay properties in the Cs decay chain

    Science.gov (United States)

    Benzoni, G.; Lică, R.; Borge, M. J. G.; Fraile, L. M.; IDS Collaboration

    2018-02-01

    The study of the decay of neutron-rich Cs isotopes has two main objectives: on one side β decay is a perfect tool to access the low-spin structures in the daughter Ba nuclei, where the evolution of octupole deformed shapes can be followed, while, on the other hand, the study of the gross properties of these decays, in terms of decay rates and branching to delayed-neutron emission, are fundamental inputs for the modelling of the r-process in the Rare-Earth Elements peak. Results obtained at CERN-ISOLDE are discussed within this framework and compared to existing data and predictions from state-of-the-art nuclear models.

  12. Study of the first collective levels of the even-even nuclei between masses 182 and 206; Etude des premiers niveaux collectifs des noyaux pairs-pairs entre les masses 182 et 206

    Energy Technology Data Exchange (ETDEWEB)

    Barloutaud, R; Leveque, A; Lehmann, P; Quidort, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The reduced probabilities of deexcitation of the first two 2 + levels of {sup 184}W, {sup 186}W, {sup 188}Os, {sup 190}Os, {sup 192}Os and {sup 194}Pt have been deduced from coulombic excitation experiments on these nuclei.The results are included in a chart of the properties of the first two 2 + levels of even-even nuclei situated between masses 182 and 206. The variation of these properties as a function of nuclear distortion is compared with the various theoretical predictions concerning vibration levels. (author) [French] Les probabilites reduites de desexcitation des deux premiers niveaux 2 + de {sup 184}W, {sup 186}W, {sup 188}Os, {sup 190}Os, {sup 192}Os and {sup 194}Pt ont ete deduites des experiences d'excitation coulombienne de ces noyaux. Les resultats sont inseres dans une systematique des proprietes des deux premiers niveaux 2 + des noyaux pairs-pairs situes entre les masses 182 et 206. La variation de ces proprietes en fonction de la deformation nucleaire est comparee aux diverses predictions theoriques concernant les niveaux de vibration. (auteur)

  13. Structure of negative parity yrast bands in odd mass 125−131Ce ...

    Indian Academy of Sciences (India)

    gion close to the N = 82 shell gap and have been the subject of many experimen- tal studies as these nuclei exhibit a competition between spherical and deformed ... 127Ce nucleus [5,6] three bands were identified: two based on 5/2+ and ...

  14. Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers

    International Nuclear Information System (INIS)

    Izosimov, I.N.

    2015-01-01

    It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.

  15. High spin states and isomeric decays in doubly-odd {sup 208}Fr

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, D.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R. [Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha, S., E-mail: satyajit.saha@saha.ac.i [Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhowmik, R.K.; Gehlot, J.; Muralithar, S.; Singh, R.P. [Inter University Accelerator Centre, New Delhi 110067 (India); Jnaneswari, G. [Department of Physics, Andhra University, Vishakhapatnam 530003 (India); Mukherjee, G. [Variable Energy Cyclotron Centre, Kolkata 700064 (India); Mukherjee, B. [Department of Physics, Visva Bharati, Santiniketan 731235 (India)

    2010-10-15

    Neutron deficient isotopes of francium (Z=87, N{approx}121-123) as excited nuclei were produced in the fusion-evaporation reaction: {sup 197}Au({sup 16}O, xn) {sup 213-x}Fr at 100 MeV. The {gamma} rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd {sup 208}Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half-lives of the E{sub {gamma}=}194(2) keV isomeric transition, known from earlier observations, was measured to be T{sub 1/2}=233(18) ns. A second isomeric transition at E{sub {gamma}=}383(2) keV and T{sub 1/2}=33(7) ns was also found. The measured half-lives were compared with the corresponding single particle estimates, based on the level scheme obtained from the experiment.

  16. Neutron induced reaction of light nuclei and its role in nuclear astrophysics

    International Nuclear Information System (INIS)

    Nagai, Y.

    2000-01-01

    Recently, much interest has arisen in the abundance of the s-process isotopes in stars of various metallicity to construct models of the chemical evolution of the Galaxy. Efforts involving both observations and yield estimations of these isotopes are being made for a wide range of metallicities and stellar masses to compare the chemical evolution models with the observational data. So far, in the models of the chemical evolution of the s-isotopes the yields of the isotopes versus the abundance of either 56 Fe (seed) nuclei or 16 O (source) nuclei have been suggested to be linear. However, it has now been shown to be nonlinear for low-metallicity massive stars. The nonlinearity was due to neutron poison by abundant light nuclei. Namely, if the neutron capture cross sections of the light nuclei would be large, the yields of heavier s-isotopes would decrease; the relationship of the yields versus the abundance of either 56 Fe (seed) or 16 O (source) nuclei becomes nonlinear; furthermore, the yields of p-process nuclei would decrease, since the s-process nuclei are the immediate predecessors of the p-nuclei. Therefore, in order to construct models to predict the s- and p-isotope productions as functions of the metallicity and stellar mass, it is necessary to know the neutron capture cross sections of light nuclei at stellar neutron energy. In the lecture, I discuss detailed motive of the study, together with results recently obtained. (author)

  17. Mechanism of disintegration of sup 2 sup 3 sup 8 U nuclei by relativistic projectiles

    CERN Document Server

    Andronenko, L N; Kravtsov, A V; Solyakin, G E

    2002-01-01

    The sup 2 sup 3 sup 8 U nuclei disintegration through the 16 GeV energy protons and sup 3 He 2 GeV energy nuclei are considered. The pulse mechanism compensation is proposed to explain the formation of collinear mass fragments accompanied by a large amount of charged secondaries and neutrons flying on the m sub 1 relativistic particle heavy nuclei on the account of the particle emission with the mass m sub 2 > m sub 1

  18. Design, simulations and test of a Time-of-Flight spectrometer for mass measurement of exotic beams from SPIRAL1/SPIRAL2 and γ-ray spectroscopy of N=Z nuclei close to 100Sn

    International Nuclear Information System (INIS)

    Chauveau, Pierre

    2016-01-01

    The new generation of nuclear facilities calls for new technological developments to produce, accelerate, manipulate and analyse exotic nuclei. The main topic of this thesis work was the simulation, design and test of a Multi-Reflection Time-of-Flight Mass spectrometer (MR-ToFMS) for fast mass separation and fast mass measurement of radioactive ions in the installations S3 and DESIR at SPIRAL2. Such a device could separate isobaric nuclei and provide SPIRAL2 with high purity beams. Also, its mass measurement capabilities would help to determine binding energies of exotic and superheavy nuclei with a high precision. This apparatus has been simulated with the SIMION 8.1 software and designed accordingly. First offline tests have been performed with a stable ion source at LPC Caen. In addition a low-aberration electrostatic deflector has been simulated and designed to operate with this MR-ToF-MS without spoiling its performances. This work also describes the analysis and results of the first online tests of a FEBIAD-type ion source intended to provide SPIRAL1 and SPIRAL2 radioactive beams of competitive intensities. Finally, we describe the analysis of a nuclear physics experiment, including the calibration of the different detectors and the gamma-spectroscopy of nuclei in the vicinity of the doubly magic 100 Sn. (author) [fr

  19. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.

  20. New discovery: quantization of atomic and nuclear rest mass differences and self-organization of atoms and nuclei

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; )

    2007-01-01

    Full text: We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schroedinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principles which are not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔM = n 1 /n 2 ·0.0076294 (in MeV/ ), n i =1,.2,3... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research field can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste

  1. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  2. CP-odd Phase Correlations and Electric Dipole Moments

    CERN Document Server

    Olive, Keith A; Ritz, A; Santoso, Y; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model (CMSSM), the CP-odd invariant related to the soft trilinear A-phase at the GUT scale, theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan beta, and can provide the dominant contribution to the electron EDM induced by theta_A. We perform a detailed analysis of the EDM constraints within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also i...

  3. Preparation and mass spectrometrical high temperature investigations on compounds of the quasi-ternary system Cs2O-Al2O3-SiO2

    International Nuclear Information System (INIS)

    Odoj, R.; Hilpert, K.; Nuernberg, H.W.

    1977-09-01

    Additions of aluminium oxide and silicen oxide to ceramic fuel for pyrocarbon-coated nuclear fuel paticles counteract a release of fission-cesium by compound formation. The vapourization tests carried out here using samples from the quasi-ternary system cesium-oxide-aluminium-oxide-silicon-oxide by means of high-temperature mass spectroscopy using a Knudsen cell served the optimization of this retention effect. The aim of the apparative changes on the knudsen cell were to shield heat radiation on the temperature measuring borehole through the tungsten wire cathode in order to be able to perform exact temperature measurements even below 1,000 0 C. A new method of preparation was developed to obtain defined cesium aluminium silicates whose composition was determined by Guinier and goniometer pictures as well as by microscopic investigations. According to the latter, 3 ternary compounds are present in the system investigated: CsAlSiO 4 , CsAlSi 2 O 6 and CsAlSi 5 O 12 . Their lattice constants were determined from goniometric measurements; the vapour pressure equection were set up from the measured cesium vapour pressure values over each sample and the enthalpies of the vapourization reactions were found to be 84 kcal for CsAlSiO 4 at 1,400 0 K, 100 kcal for CsAlSi 2 O 6 at 1,550 0 K and 122 kcal for CsAlSi 5 O 12 at 1,650 0 K. The cesium vapour pressures of the glas phases investigated of the system are above the Cs partial pressures of the solid crystalline phases of the same composition. The results of the work explain the causes of the reduction of the Cs release and show that the vapour pressure can be lowered by more than 10 orders of magnitude at reactor relevant temperatures by compound formation. (RB) [de

  4. Galaxy And Mass Assembly (GAMA): the effect of galaxy group environment on active galactic nuclei

    Science.gov (United States)

    Gordon, Yjan A.; Pimbblet, Kevin A.; Owers, Matt S.; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Croom, Scott M.; Holwerda, Benne W.; Loveday, Jonathan; Mahajan, Smriti; Wang, Lingyu

    2018-04-01

    In galaxy clusters, efficiently accreting active galactic nuclei (AGNs) are preferentially located in the infall regions of the cluster projected phase-space, and are rarely found in the cluster core. This has been attributed to both an increase in triggering opportunities for infalling galaxies, and a reduction of those mechanisms in the hot, virialized, cluster core. Exploiting the depth and completeness (98 per cent at r 9.9 in 695 groups with 11.53 ≤ log10(M200/M⊙) ≤ 14.56 at z 13.5, AGNs are preferentially found in the infalling galaxy population with 3.6σ confidence. At lower halo masses, we observe no difference in AGN fraction between core and infalling galaxies. These observations support a model where a reduced number of low-speed interactions, ram pressure stripping and intra-group/cluster medium temperature, the dominance of which increase with halo mass, work to inhibit AGN in the cores of groups and clusters with log10(M200/M⊙) > 13.5, but do not significantly affect nuclear activity in cores of less massive structures.

  5. A quasi-particle model for computational nuclei

    International Nuclear Information System (INIS)

    Boal, D.H.; Glosli, J.N.

    1988-03-01

    A model Hamiltonian is derived which provides a computationally efficient means of representing nuclei. The Hamiltonian includes both coulomb and isospin dependent terms, and incorporates antisymmetrization effects through a momentum dependent potential. Unlike many other classical or semiclassical models, the nuclei of this simulation have a well-defined ground state with a a non-vanishing 2 >. It is shown that the binding energies per nucleon and r.m.s. radii of these ground states are close to the measured values over a wide mass range

  6. Experiments with stored relativistic exotic nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Hellstroem, M.; Herfurth, F.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Quint, W.; Tradon, T.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Steck, M.; Suemmerer, K.; Vermeeren, L.; Winkler, M.; Winkler, Th.; Falch, M.; Kerscher, Th.; Loebner, K.E.G.; Fujita, Y.; Novikov, Yu.; Patyk, Z.; Stadlmann, J.; Wollnik, H.

    1999-01-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: 1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10 -6 . The achieved mass resolving power of m/Δm = 6.5·10 5 (FWHM) in recent measurements represents an improvement by a factor of two compared to authors' previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54≤Z≤84. The results are compared with mass models and estimated values based on extrapolations of experimental values. 2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5·10 5 (FWHM) was achieved in this mode of operation. 3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability

  7. Exclusive description of multiple production on nuclei in the additive quark model. Multiplicity distributions in interactions with heavy nuclei

    International Nuclear Information System (INIS)

    Levchenko, B.B.; Nikolaev, N.N.

    1985-01-01

    In the framework of the additive quark model of multiple production on nuclei we calculate the multiplicity distributions of secondary particles and the correlations between secondary particles in πA and pA interactions with heavy nuclei. We show that intranuclear cascades are responsible for up to 50% of the nuclear increase of the multiplicity of fast particles. We analyze the sensitivity of the multiplicities and their correlations to the choice of the quark-hadronization function. We show that with good accuracy the yield of relativistic secondary particles from heavy and intermediate nuclei depends only on the number N/sub p/ of protons knocked out of the nucleus, and not on the mass number of the nucleus (N/sub p/ scaling)

  8. Broken-pair, generalized seniority and interacting boson approximations in a spectroscopic study of Sn nuclei

    International Nuclear Information System (INIS)

    Bonsignori, K.; Allaart, K.; Egmond, A. van

    1983-01-01

    A broken-pair study of Sn nuclei is reported in which the model space includes two broken pair states. It is shown that for even Sn nuclei, with a rather simple Gaussian interaction and with single-particle-energies derived from data on odd nuclei, the main features of the excitation spectra up to about 3.5 MeV may be reproduced in this way. The idea of the generalized seniority scheme, that the composition of S-pair operator and that of the D-pair operator may be independent of the total number of pairs, is confirmed by the pair structures which result from energy minimization and diagonalization for each number of pairs separately. A general procedure is described to derive IBA parameters when the valence orbits are nondegenerate. Numerical results for Sn nuclei are given. (U.K.)

  9. Present and Future Experiments with Stored Exotic Nuclei at GSI

    International Nuclear Information System (INIS)

    Geissel, H.

    2009-01-01

    Recent results and perspectives of experiments with stored exotic nuclei at GSI-FAIR will presented. An overview on the planned NUSTAR experiments will also presented. Relativistic exotic nuclei produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage-cooler ring ESR for accurate mass- and lifetime measurements. Direct mass measurements of electron-cooled exotic nuclei were performed using time-resolved Schottky spectrometry. Fragments with half-lives shorter than the time required for electron cooling have been investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique gives access to all nuclei with half-lives down to the microsecond range and has been successfully applied. Lifetimes of stored bare and few-electron ions have been measured with the goal to study the beta-decay under ionization conditions prevailing in stellar plasma. For the first time the direct observation of bound-state beta decay has been achieved with 2 07T l fragments. The future project FAIR includes a new large-acceptance in-flight separator (Super-FRS) in combination with a new storage ring system (CR, NESR) which will be ideal tools to study exotic nuclei far from stability.(author)

  10. Signature effects in 2qp bands of doubly even rare-earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Kawalpreet [Amity University, AUUP, Department of Physics, Amity Institute of Applied Sciences (AIAS), Noida (India); Goel, Alpana [Amity University, AUUP, Amity Institute of Nuclear Science and Technology (AINST), Noida (India); Jain, A.K. [Indian Institute of Technology (IIT), Department of Physics, Roorkee (India)

    2016-12-15

    The two-quasiparticle rotational bands in deformed doubly even nuclei in the rare-earth region have been studied in detail. A number of interesting features like odd-even staggering and signature inversion have been observed. The phenomenon of signature inversion/reversal is observed experimentally in {sup 162}{sub 66}Dy, {sup 170}{sub 70}Yb and {sup 170}{sub 74}W in even-even nuclei. Two quasiparticle plus rotor model (TQPRM) calculations are carried out to explain the reverse pattern of signature in {sup 170}{sub 74}W for the rotational band having configuration {(h_1_1_/_2)_p x (d_5_/_2)_p}. (orig.)

  11. Evolution of collectivity in neutron-rich nuclei in the 132Sn region

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Sarkar, M. Saha; Sarkar, S.

    2006-01-01

    Motivated by the observed regularity in the energy spectra and the structure of the shell model wave functions for the levels of 137 Te and 137 I, a few weakly and moderately deformed neutron-rich odd-A nuclei above the doubly magic nucleus 132 Sn were studied using the particle rotor model (PRM). The calculated energy spectra and branching ratios agree reasonably well with the most recent experimental data. In a few cases ambiguity in level ordering was resolved and spin-parities were assigned to the levels. Observed octupole correlation in some of these nuclei is discussed in the light of the present results

  12. Using plot experiments to test the validity of mass balance models employed to estimate soil redistribution rates from 137Cs and 210Pbex measurements

    International Nuclear Information System (INIS)

    Porto, Paolo; Walling, Des E.

    2012-01-01

    Information on rates of soil loss from agricultural land is a key requirement for assessing both on-site soil degradation and potential off-site sediment problems. Many models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution as a function of the local topography, hydrometeorology, soil type and land management, but empirical data remain essential for validating and calibrating such models and prediction procedures. Direct measurements using erosion plots are, however, costly and the results obtained relate to a small enclosed area, which may not be representative of the wider landscape. In recent years, the use of fallout radionuclides and more particularly caesium-137 ( 137 Cs) and excess lead-210 ( 210 Pb ex ) has been shown to provide a very effective means of documenting rates of soil loss and soil and sediment redistribution in the landscape. Several of the assumptions associated with the theoretical conversion models used with such measurements remain essentially unvalidated. This contribution describes the results of a measurement programme involving five experimental plots located in southern Italy, aimed at validating several of the basic assumptions commonly associated with the use of mass balance models for estimating rates of soil redistribution on cultivated land from 137 Cs and 210 Pb ex measurements. Overall, the results confirm the general validity of these assumptions and the importance of taking account of the fate of fresh fallout. However, further work is required to validate the conversion models employed in using fallout radionuclide measurements to document soil redistribution in the landscape and this could usefully direct attention to different environments and to the validation of the final estimates of soil redistribution rate as well as the assumptions of the models employed. - Highlights: ► Soil erosion is an important threat to the long-term sustainability of agriculture.

  13. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  14. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  15. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  16. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  17. Shapes of non-rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Krumlinde, J.; Moeller, P.; Nix, J.R.; Zhang, J.

    1983-01-01

    We study nuclear potential-energy surfaces, ground-state masses and shapes calculated by use of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential for 4023 nuclei ranging from 16 O to 279 112. We discuss extensively the transition from spherical to deformed shapes and study the relation between shape changes and the mass corresponding to the ground-state minimum. The calculated values for the ground-state mass and shape show good agreement with experimental data throughout the periodic system, but some discrepancies remain that deserve further study. We also discuss the effect of deformation on Gamow-Teller #betta#-strength functions

  18. Mutual influence of the Na+ and Cs+ ions during their mass electrotransport through a perfluorinated sulfocation membrane

    International Nuclear Information System (INIS)

    Zezina, E.A.; Popkov, Yu.M.; Timashev, S.F.

    1997-01-01

    It is shown that by the Na + and Cs + ions sorption equilibrium conditions in perfluorinated cation-exchange membranes from the 0.1M NaCl and 0.1M CsCl mixtures the Cs + ions are sorbed primarily. The effective self-diffusion coefficients of the Na + and Cs + ions from individual solutions within the range of 0.01-1.00 M concentrations and in the above-mentioned equimolar mixture are found. It is shown that the membranes moisture content is the determining factor for the Cs + ions electrodialysis separation fro the above-mentioned electrolytes mixture

  19. Infrared Observations of Cometary Dust and Nuclei

    Science.gov (United States)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  20. Nuclear orientation experiments concerning odd-A gold isotopes

    International Nuclear Information System (INIS)

    Ligthart, H.J.

    1982-01-01

    This thesis describes nuclear spectroscopy aspects of nuclear orientation in the odd-A gold isotopes 191 Au, 193 Au, 195 Au and 197 Au. These isotopes lie in a transitional region between the spherical nuclei in the lead region and the strongly deformed rare earth isotopes. Following a general introduction to nuclear orientation, the experimental arrangement is described. A new technique is presented that applies in-beam recoil implantation inside the refrigerator itself and this was applied to the case of 191 Au. The three other gold isotopes were oriented using a conventional dilution refrigerator. The nuclear orientation experiments concerning 11/2 - isomers of the isotopes are described. The long-lived isomeric states were oriented using the large hyperfine field of gold in iron. Higher lying levels were studied by nuclear orientation of the Hg parent states. (Auth./C.F.)

  1. Growth and Interaction of Colloid Nuclei

    Science.gov (United States)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  2. Doubly magic nuclei from lattice QCD forces at MPS=469 MeV /c2

    Science.gov (United States)

    McIlroy, C.; Barbieri, C.; Inoue, T.; Doi, T.; Hatsuda, T.

    2018-02-01

    We perform ab initio self-consistent Green's function calculations of the closed shell nuclei 4He, 16O, and 40Ca, based on two-nucleon potentials derived from lattice QCD simulations, in the flavor SU(3) limit and at the pseudoscalar meson mass of 469 MeV/c2. The nucleon-nucleon interaction is obtained using the hadrons-to-atomic-nuclei-from-lattice (HAL) QCD method, and its short-distance repulsion is treated by means of ladder resummations outside the model space. Our results show that this approach diagonalizes ultraviolet degrees of freedom correctly. Therefore, ground-state energies can be obtained from infrared extrapolations even for the relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total binding energies are sensibly improved by the full account of many-body correlations. The results suggest an interesting possible behavior in which nuclei are unbound at very large pion masses and islands of stability appear at first around the traditional doubly magic numbers when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson mass considered here.

  3. Quark masses: An environmental impact statement

    International Nuclear Information System (INIS)

    Jaffe, Robert L.; Jenkins, Alejandro; Kimchi, Itamar

    2009-01-01

    We investigate worlds that lie on a slice through the parameter space of the standard model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as congenial worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charge one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers capable of measuring those quark masses depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis and including other astrophysical processes, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses via first-order perturbation theory in flavor SU(3) breaking. We estimate nuclear masses as functions of the baryon masses using two separate tools: for a nucleus made of two baryon species, when possible we consider its analog in our world, a nucleus with a similar binding energy, up to Coulomb contributions. For heavy nuclei or nuclei made of more than two baryons, we develop a generalized Weizsaecker semiempirical mass formula, in which strong kinematic flavor symmetry violation is modeled by a degenerate Fermi gas . We check for the stability of nuclei against fission, strong particle emission (analogous to α decay), and weak nucleon emission. For two light quarks with charges 2/3 and -1/3 , we find a band of congeniality roughly 29 MeV wide in their mass difference, with our own world lying comfortably

  4. Negative pion capture in atomic nuclei near the closed neutron shell at N=82

    International Nuclear Information System (INIS)

    Butsev, V.S.; Chultem, D.; Zhivotov, I.N.

    1981-01-01

    The results of studies of the excitation of high spin states in stopped π - -absorption in Nd, Pr, Ce, La and Ba nuclei are reported. States with spins 7 - , 8 - and 19/2 - have been identified. The isomeric ratios for the isotopes 131 Ba and 133 Ba have been determined to be equal to σsub(m)/σsub(g)=(5.1+-0.5) and (2.2+-0.3), respectively. For the isomers sup(134m)Cs and sup(135m)Cs the isotopic ratio is found to be σsub(msub(1))/σsub(msub(2))=8.2+-2.3. The distinguishing features of the mechanisms of excitation of high spin states by stopped π - and fast protons are discussed [ru

  5. THE BLACK HOLE MASS-BULGE LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI FROM REVERBERATION MAPPING AND HUBBLE SPACE TELESCOPE IMAGING

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope of the relationship for AGNs is 0.76-0.85 with an uncertainty of ∼0.1, somewhat shallower than the M BH ∝ L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall scaling factor that brings the AGN M BH -σ * relationship into agreement with that of quiescent galaxies. We discuss biases that may be inherent to the AGN and quiescent galaxy samples and could cause the apparent inconsistency in the forms of their M BH -L bulge relationships. Recent work by Graham, however, presents a similar slope of ∼0.8 for the quiescent galaxies and may bring the relationship for AGNs and quiescent galaxies into agreement.

  6. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    2012-01-01

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H 2 O masers. For initial cloud column densities ∼ 23.5 cm –2 the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  7. How far are we on the way to the superheavy nuclei?

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1989-10-01

    The discovery of the elements 107, 108, and 109 in a region of dominating shell stabilization is the most important step on the way to the superheavy nuclei in recent years. These experiments leading to the presently upper end of the periodic table were possible with the velocity filter SHIP to separate the heavy nuclei produced in complete fusion reactions of heavy ions. The identification of the unknown nuclei was established by α-α mother-daughter correlation of the nuclei decaying after the implantation into position sensitive surface-barrier detectors. With this method it is possible to identify even single nuclei of unknown isotopes unambiguously. The limits of sensitivity are production cross-sections of a few picobarns and about 2 μs of nuclear lifetime. With this method the elements 107, 108, and 109 were observed for the first time by their α-decay and identified unambiguously. For element 107 the isotopes with masses 261 and 262, for the element 108 the isotopes with masses 264 and 265, and for element 109 the isotope with mass 266 were found. The halflives range from 0.1 ms to 0.1 s. The highly fissile transactinide nuclei were produced in cold fusion of heavy ions using 207,208 Pb and 209 Bi targets, respectively, and 50 Ti, 54 Cr, or 58 Fe beams. The evaluation of the excitation functions for the production of very heavy evaporation residues shows a strong decrease above 25 MeV excitation energy caused by a destruction of the groundstate shell effects at high excitation energies. The strong competition of barrier transmission and survival probability results in rather narrow excitation functions and small production cross sections. The maximum cross section is observed close to the Coulomb barrier and corresponding to projectile energies near 5 MeV/u. (orig.) [de

  8. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    Directory of Open Access Journals (Sweden)

    Chowdhury P.

    2016-01-01

    nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154, we have populated high angular momentum states in a series of Pu (Z = 94, Cm (Z = 96 and Cf (Z = 98 nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  9. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gorelik, M.L.; Shlomo, S. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Tulupov, B.A. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Institute for Nuclear Research, RAS, Moscow 117312 (Russian Federation); Urin, M.H., E-mail: urin@theor.mephi.ru [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-11-15

    The particle–hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in {sup 208}Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron–nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  10. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    Science.gov (United States)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  11. Separation of CsCl and SrCl_2 from a ternary CsCl-SrCl_2-LiCl via a zone refining process for waste salt minimization of pyroprocessing

    International Nuclear Information System (INIS)

    Shim, Moonsoo; Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon; Lee, Jong Hyeon

    2016-01-01

    The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl_2 salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The k_e_f_f of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively. - Highlights: • The LiCl-CsCl-SrCl_2 salt ingot was purified by zone refining technique to minimize waste salt. • The concentration distribution of Cs and Sr were analyzed by mass transfer equation. • The decontamination factors of Cs and Sr were 1600 and 450 respectively in case of 60% of recovery yield.

  12. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  13. Bose-fermi symmetries and SUSY in nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.

    1986-01-01

    Most of the comparison with theory has compared energy levels and we have seen many beautiful examples of one-to-one level correspondences, sometimes supported with a few B(E2) values. However, what we really need to check, the author thinks, is the structural correspondence, to make sure these levels really correspond to each other, and that the energy level agreement is not just accidental; for that we need to look at transfer reactions, and more B(E2)'s. This brings up the very important question of the transfer operator. The author hopes that its importance can be seen in recent cases where a few B(E2)'s for a few transfer strengths have substantially changed the correspondence between theoretical and experimental levels even though the overall energy level agreement is neither better or worse. So it's clearly sensitive to that question. Also cases have been seen now where several different supergroups have been applied to the same regions, U(6/4) and U(6/20) for example, to the mass 130 region, and so the question of the single-particle spaces and the single-particle energies is an important one. The question of microscopic understanding of the parameters and the interactions, these bose-fermi symmetries is important since it probes the underlying physical basis. And finally there have be some very interesting, what the author calls ''exotic'' extensions of bose-fermi symmetry ideas presented at this meeting. One is the extension to odd-odd nuclei, another is the generalized SUSY extension that can apply to transition regions, and this is the interesting beta decay calculations of Dobes that were reported yesterday, and probably some others the author has missed

  14. Daily variation of I-131, Cs-134 and Cs-137 activity concentrations in the atmosphere in Osaka during the early phase after the FDNPP accident

    International Nuclear Information System (INIS)

    Zijian Zhang; Kazuhiko Ninomiya; Naruto Takahashi; Atsushi Shinohara

    2015-01-01

    To investigate the time variations of radionuclides discharged from the Fukushima Daiichi nuclear power plants accident, we started collecting aerosol samples in Osaka, Japan, using a high-volume sampler from March 15 to May 1, 2011. Atmospheric radioactivity concentrations of I-131, Cs-134 and Cs-137 were measured with germanium semi-conductor detectors. Only I-131 was detected in the early phase and two Cs-134.137 peaks were found in Osaka in April. Using the HYSPLIT model, we concluded that direct transportation of the air mass from the Fukushima area was responsible for such events. (author)

  15. Study of transitional nuclei at TRISTAN. Progress report

    International Nuclear Information System (INIS)

    Petry, R.F.

    1983-01-01

    During the past calendar year the Oklahoma group has participated in decay studies on the following nuclides: 99 Rb, 99 Sr, 101 Y, and 100 Y. The resulting information on the structure of these nuclides has defined band structure for the first time in the odd-A nuclei in this region. The principal investigator also participated in a measurement of the g-factor of an excited state in 97 Zr and two attempts to measure the quadrupole moment of the same state. Details of these and other activities are given

  16. Development of a model for the description of highly excited states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account

  17. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  18. Possibilities at LAMPF for studying nuclei of astrophysical interest

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.

    1985-01-01

    Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented

  19. Study of Triaxial deformation variable γ in even - even nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.

    2011-01-01

    The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly

  20. Formation and de-excitation of very hot nuclei in Ar + Au collisions at 30 and 60 MeV/nucleon

    International Nuclear Information System (INIS)

    Hamdani, T.

    1993-10-01

    The study of the formation and the de-excitation of very hot nuclei by using collisions between Ar and Au at 30 and 60 MeV/u is presented in this work. The detection system consisted of three multidetectors for fragments (DELF) or light particles (TONNEAU+MUR) plus two groups of four detectors (Silicium, CsI). This system and the triggering conditions adopted allowed the selection of two classes of events: semiperipheral collisions and central collisions. The studies presented using global variables, show clearly that the fragments produced in the reactions are emitted from an equilibrated source. Hence, an event generator based on the statistical model was employed to verify the method of calculation of the excitation energy of the source. It also provides information concerning experimental biases and the sensitivity of some of the global variables used in the experimental analysis. A detailed study of the temperatures of hot nuclei is presented using the data recorded with the CsI detectors. The temperatures measured reached up to 7 MeV for the reaction at 60 MeV/u. (orig.)

  1. Dissociation of gaseous complex fluorides MMnF3 and MMnF4 (M= Li - Cs)

    International Nuclear Information System (INIS)

    Sidorov, L.N.; Gubarevich, V.D.

    1982-01-01

    Mass spectrometric determination of dissociation enthalpies of gaseous complex fluorides CsMnF 3 and CsMnF 4 into neutral and charged particles is carried out using techniques of isothermal evaporation, electron impact and study of ion-molecular equilibria. As a result formation enthalpy values of CsMnFsub(3 gas) and CsMnFsub(4 gas) at T=298 are obtained, being -285.4 and -359.9 kcal/mol respectively

  2. One particle-hole excitations in p- and fp-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van.

    1982-01-01

    Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)

  3. CP-odd phase correlations and electric dipole moments

    International Nuclear Information System (INIS)

    Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model, the CP-odd invariant related to the soft trilinear A-phase at the grand unified theory (GUT) scale, θ A , induces nontrivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tanβ, and can provide the dominant contribution to the electron EDM induced by θ A . We perform a detailed analysis of the EDM constraints within the constrained minimal supersymmetric standard model, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also illustrate how this reach will expand with results from the next generation of experiments which are currently in development

  4. Odd Structures Are Odd

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2017-01-01

    Roč. 27, č. 2 (2017), s. 1567-1580 ISSN 0188-7009 Institutional support: RVO:67985840 Keywords : graded vector space * monoidal structure * Odd endomorphism operad Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 http://link.springer.com/article/10.1007%2Fs00006-016-0720-8

  5. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    Science.gov (United States)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  6. Quasiparticle features and level statistics of odd-odd nucleus

    International Nuclear Information System (INIS)

    Cheng Nanpu; Zheng Renrong; Zhu Shunquan

    2001-01-01

    The energy levels of the odd-odd nucleus 84 Y are calculated by using the axially symmetric rotor plus quasiparticles model. The two standard statistical tests of Random-Matrix Theory such as the distribution function p(s) of the nearest-neighbor level spacings (NNS) and the spectral rigidity Δ 3 are used to explore the statistical properties of the energy levels. By analyzing the properties of p(s) and Δ 3 under various conditions, the authors find that the quasiparticle features mainly affect the statistical properties of the odd-odd nucleus 84 Y through the recoil term and the Coriolis force in this theoretical mode, and that the chaotic degree of the energy levels decreases with the decreasing of the Fermi energy and the energy-gap parameters. The effect of the recoil term is small while the Coriolis force plays a major role in the spectral structure of 84 Y

  7. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  8. Separation of CsCl and SrCl{sub 2} from a ternary CsCl-SrCl{sub 2}-LiCl via a zone refining process for waste salt minimization of pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Moonsoo [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of); Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon [Graduate School of Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of); Graduate School of Department of Advanced Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of); Rapid Solidified Materials Research Center, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of)

    2016-11-15

    The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl{sub 2} salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The k{sub eff} of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively. - Highlights: • The LiCl-CsCl-SrCl{sub 2} salt ingot was purified by zone refining technique to minimize waste salt. • The concentration distribution of Cs and Sr were analyzed by mass transfer equation. • The decontamination factors of Cs and Sr were 1600 and 450 respectively in case of 60% of recovery yield.

  9. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  10. P-T and T-x projections of phase diagram of CsF-ZrF4 system

    International Nuclear Information System (INIS)

    Karasev, N.M.; Korenev, Yu.M.; Sidorov, L.N.

    1980-01-01

    The CsF-ZrF 4 system has been investigated by the Knudsen effusion method and mass-spectral analysis of vaporization products. A molecular composition of vapour was determined. CsF, Cs 2 F 2 , ZrF 4 , Cs 2 ZrF 6 , CsZrF 5 , CsZr 2 F 9 molecules were found in the saturated vapour of the system. Heats of phase transitions and partial pressures of the molecules detected were determined depending on the melt compositions. Dissociation enthalpies of complex molecules were calculated. P-T and T-x projections of the state diagram of the CsF-ZrF 4 system were constructed

  11. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  12. Tilted axis rotation in odd-odd {sup 164}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  13. The decay modes of proton drip-line nuclei with A between 42 and 47

    International Nuclear Information System (INIS)

    Borrel, V.; Dogny, S.; Guillemaud-Mueller, D.; Mueller, A.C.; Pougheon, F.; Sorlin, O.; Bazin, D.; Del Moral, R.; Dufour, J.P.; Faux, L.; Fleury, A.; Hubert, F.; Marchand, C.; Pravikoff, M.S.; Chubarian, G.G.

    1992-01-01

    Neutron-deficient isotopes with Z = 21 to 26 have been produced as projectile-like fragments of an intense 58 Ni GANIL beam of 69 MeV/nucleon. The nuclei selected by the upgraded LISE3 spectrometer were identified and implanted in a silicon detector telescope. The 43 Cr, 47 Fe and 46 Fe isotopes were identified for the first time whereas 45 Fe, 45 Mn, 44 Mn and 42 V were not observed, indicating probable instability of these nuclei against particle emission. Measurements of the half-lives of 43 Cr and 46 Mn have been performed and the analysis of their measured beta-delayed proton spectra has given, through the Isobaric Multiplet Mass Equation, an empirical estimation of their masses. Half-lives of 44 Cr, 43 V, 47 Fe and 46 Fe have also been measured. A discussion of various mass predictions for nuclei at the proton drip-line is given

  14. Configuration splitting and gamma-decay transition rates in the two-group shell model

    International Nuclear Information System (INIS)

    Isakov, V. I.

    2015-01-01

    Expressions for reduced gamma-decay transition rates were obtained on the basis of the twogroup configuration model for the case of transitions between particles belonging to identical groups of nucleons. In practical applications, the present treatment is the most appropriate for describing decays for odd–odd nuclei in the vicinity of magic nuclei or for nuclei where the corresponding subshells stand out in energy. Also, a simple approximation is applicable to describing configuration splitting in those cases. The present calculations were performed for nuclei whose mass numbers are close to A ∼ 90, including N = 51 odd—odd isotones

  15. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  16. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    Science.gov (United States)

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Molecular CsF{sub 5} and CsF{sub 2}{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Rogachev, Andrey Yu. [Illinois Institute of Technology, IL (United States). Dept. of Biological and Chemical Sciences; Miao, Mao-sheng [California State Univ., Northridge, CA (United States). Dept. of Chemistry and Biochemistry; Beijing Computational Science Research Center (China); Merino, Gabriel [Centro de Investigacion y de Estudios Avanzados, Unidad Merida (Mexico). Dept. de Fisica Aplicada; Hoffmann, Roald [Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology

    2015-07-06

    D{sub 5h} star-like CsF{sub 5}, formally isoelectronic with known XeF{sub 5}{sup -} ion, is computed to be a local minimum on the potential energy surface of CsF{sub 5}, surrounded by reasonably large activation energies for its exothermic decomposition to CsF + 2F{sub 2}, or to CsF{sub 3} (three isomeric forms) + F{sub 2}, or for rearrangement to a significantly more stable isomer, a classical Cs{sup +} complex of F{sub 5}{sup -}. Similarly the CsF{sub 2}{sup +} ion is computed to be metastable in two isomeric forms. In the more symmetrical structures of these molecules there is definite involvement in bonding of the formally core 5p levels of Cs.

  18. Recent shell-model results for exotic nuclei

    Directory of Open Access Journals (Sweden)

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  19. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Directory of Open Access Journals (Sweden)

    C. Wraith

    2017-08-01

    Full Text Available Collinear laser spectroscopy was performed on Zn (Z=30 isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni.

  20. Deep inelastic collisions between very heavy nuclei

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Civelekoglu, Y.

    1977-01-01

    A systematic survey of deep inelastic reactions was performed for colliding nuclei of masses between 80 and 240 amu. The application of large surface detectors and, particularly, of a position sensitive ionization chamber, has proved to be very effective and appropriate for this type of investigation. The Wilczynski diagrams describing the relative motion between the colliding objects shows a gradual trend as a function of growing masses of target and projectile where the trajectories lead the particles not toward negative scattering angles but increasingly into the direction around and above the grazing angle. This behavior is attributed to a delicate balance between Coulomb and nuclear forces. The energy dumping as a function of the mass transfer strength matches a general law between total kinetic energy loss and the variance of the proton number distribution. For the partly damped component this relation seems to hold independently from the choice of ingoing channel and bombarding energy. The dissipation of the kinetic energy does not depend only on the relative velocity of the impinging nuclei, and the simple friction model is not appropriate to describe these processes. The γ-multiplicity measurement displays a rapid increase as a function of scattering angle and total kinetic energy loss, which give new insights to the process and indicate the necessity of microscopic quantum mechanical calculations of the interaction. In the U-U collision large mass transfers are present which possibly populate with relatively large cross sections the transuranic elements. In the Pb-Pb reaction the mass transfer is more restricted. The decay probability by fission of the primary masses increases strongly for growing masses and excitation energies

  1. On the unified system of the nucleons in nuclei

    International Nuclear Information System (INIS)

    Sharafiddinov, R.S.

    2005-01-01

    Full text: One of an innate features of the interaction of neutrons and protons in nuclei is the connection between these phenomena and character of the structure of nucleons themselves. At the same time a question about the appearance of the united system of massive fermions of the different nature requires the special investigation. Our study of the behavior of massive Dirac neutrinos in a nucleus field shows clearly that the mass and charge of a particle correspond to two form of the unified regularity of the ultimate structure of this field. Thereby such a mass - charge duality of matter explains the coexistence of the united force, mass and charge. In the present work, we discuss the problem of the unified system of the structural particles in nuclei investigating the most diverse symmetries of Dirac fermions at the interaction of massive neutrinos with nuclei of electroweak charges. It is assumed that the neutrino has the longitudinal as well as the transversal polarization. In this connection appears of principle possibility to directly look at the nature of an incoming lepton and the united system of hadrons themselves. With the use of the studied processes cross sections a proof has been obtained regardless of a particle type, the appearance of the connected system of massive fermions can be explained by the interference of their currents of the different symmetrically. Findings allow to establish at the fundamental level the compound structure of the interaction of nucleons in nuclei elucidating the inter-ratio of intranuclear forces and the nature of invariance of these types of the actions concerning C, P and T, and also their combinations CP and CPT which open up new possibilities for solution of the problem of elementary particle chiral and isotopic symmetries

  2. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  3. A note on total muon capture rates in heavy nuclei

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1978-03-01

    The results of calculations of the total capture rates in heavy nuclei, into account the nucleon velocity-dependent terms in the Fujii-Primakoff Hamiltonian and the effective mass of nucleons inside the nucleus, are presented along with the recent experimental data. The results are in general agreement with experiment. However, they indicate a possible deviation from SU(4) symmetry and, in some nuclei, support the Salam-Strathdee idea of the vanishing of the Cabibbo angle at large magnetic fields.

  4. Proton-gamma coincidence experiment on medium mass nuclei at 400MeV and study of reaction mechanisms

    International Nuclear Information System (INIS)

    Baldit, Alain.

    1981-01-01

    Previous γ ray production experiments produced by proton on nuclei show important cross sections for residual nuclei corresponding to a four nucleon (2p + 2n) removal. With our (p - γ) coincidence experiment the forward emitted proton reflects the primary interaction and the γ spectra characterizes the final state of the reaction. Protons are detected with a magnetic spectrometer and γ rays are selected with a Ge(Li) diode. Angular and momentum analysis of scattered protons demonstrate a primary quasi free process on nucleons. No indication of knock out reactions on clusters has been seen. The residual nuclei are mainly produced by evaporation processes. A theoretical calculation involving intranuclear cascades and evaporation processes has been performed. The nucleus model is based upon a Fermi gas and nuclear density agrees with diffusion electron experiments. Residual nuclei far from target are well described with a such model. Residual nuclei near the target are sensitive to the nuclear structure [fr

  5. Analysis of 137Cs radionuclides activities in Cs-zeolite using gamma spectrometry

    International Nuclear Information System (INIS)

    Noviarty; Ginting, Aslina Br; Anggraini, Dian; Rosika K

    2013-01-01

    137 Cs Radionuclide activity analysis has been carried out. The objective is to determine the activity of the 137 Cs radionuclide in Cs-zeolite are packaged in the form of point source. Analysis of 137 Cs Radionuclide activities in Cs zeolite samples was determined by measuring intensity of the isotope 137 Cs gamma energy at 661.7 keV use-y spectrometer. Before measurement the sample, was first carried out measurements of 137 Cs radionuclide in certified point standards from Amersham, to determine the efficiency value. Result the standard sample measurement obtained the efficiency value of 43.98%. Efficiency values obtained are used in the calculation of sample activity. On the measurement of the intensity of the sample obtained results dose rate 196.4537 cps with a standard deviation of 0.5274. By using standard measurement efficiency values obtained by the calculation of the average activity of the radionuclide 137 Cs in Cs-zeolite 524.9082 Bq. Deviation measurements were below 5% (0.27% ) so that the analysis of the activity of radionuclide 137 Cs in Cs-zeolite samples using gamma spectrometer can be accepted with a 95% confidence level. (author)

  6. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  7. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  8. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  9. Neutrino-heated stars and broad-line emission from active galactic nuclei

    Science.gov (United States)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  10. Relationships of 137Cs inventory with magnetic measures of calcareous soils of hilly region in Iran

    International Nuclear Information System (INIS)

    Ayoubi, Shamsollah; Ahmadi, Mohamamd; Abdi, Mohammad Reza; Abbaszadeh Afshar, Farideh

    2012-01-01

    Erosion is a natural process, but it has been dramatically increased by human activities; and this adversely influences soil productivity and environmental quality. For quantification of soil erosion, several techniques including the use of Cs-137 have been employed. This study was conducted to explore the relationships of Cs-137 inventory with magnetic properties in calcareous soils in western Iran. Ten transects were selected in the hilly region in Chelgerd district of Iran. Soil samples from 0 to 30 and 30–50 cm depths were collected from fifty points to determine Cs-137 inventory, magnetic measures and selected physico-chemical properties (in total there were 100 soil samples). The results showed that simple mass balance model (SMBM) estimated a gross erosion rate of 29.6 t ha −1 yr −1 and a net soil deposition of 21.8 t ha −1 yr −1 ; hence, a net soil loss of 9.6 t ha −1 yr −1 and a sediment delivery ratio of 31.4%. Simple linear regression and non-linear regression analysis showed that mass magnetic susceptibility (χ lf ) explained only 33.64% and 45% of variability in Cs-137 in the transects studied. The results of multiple linear regression analysis of 137 Cs with magnetic parameters and physico-chemical properties indicated that extractable potassium and χ lf explained approximately 61% of the total variability in 137 Cs in the area studied. Overall, the results suggest that further research is needed for the use of magnetic characteristics as an alternative technique in place Cs-137 methodology for calcareous soils. - Highlights: ► Simple linear regression mass magnetic susceptibility (χ L ) explained only 33.64 % of Cs-137 variability. ► Non-linear regression model explained 45% of variability in Cs-137 in the transects studied. ► Magnetic Susceptibility measures could not directly be used in calcareous soils to evaluate soil redistribution. ► Magnetic characteristics as an alternative technique instead of Cs-137 in calcareous

  11. Spontaneous-fission half-lives for even nuclei with Z> or =92

    International Nuclear Information System (INIS)

    Randrup, J.; Larsson, S.E.; Moller, P.; Nilsson, S.G.; Pomorski, K.; Sobiczewski, A.

    1976-01-01

    The spontaneous-fission process for doubly even nuclei with Z> or =92 is studied in a semiempirical WKB framework. One-dimensional fission barrier potentials are established from theoretical deformation-energy surfaces based on the droplet model and the modified-oscillator model. The effects of axial asymmetry as well as reflection asymmetry have been taken into account. Macroscopic (irrotational flow) inertial-mass functions and, alternatively, microscopic (cranking model) inertial mass parameters have been employed for the calculation of the fission half-lives. With one over-all normalization parameter it is possible to fit the experimental half-lives to within a factor of 20 on the average. The resulting effective inertial-mass functions are used to estimate the stability of the transactinide elements. Only minor differences with previous estimates for the r process and superheavy nuclei are encountered

  12. Cumulation of light nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Bondarev, V.K.; Golovanov, L.B.

    1977-01-01

    Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8,6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150 deg with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to teh cumulation upto the third order

  13. Long-term 137Cs activity monitoring of mushrooms in forest ecosystems of the Czech Republic

    International Nuclear Information System (INIS)

    Skrkal, J.; Rulik, P.; Fantinova, K.; Burianova, J.; Helebrant, J.

    2013-01-01

    This paper reports on results of activity mass concentration analyses performed in various forest mushrooms in the Czech Republic within 1986 and 2011. The estimated effective half-life of 137 Cs and its environmental half-life (i.e. the effective half life minus the effect of physical decay) were found to be 5.6±0.6 and 6.9±0.7 y, respectively. Non-homogeneity in 137 Cs surface contamination over the country's territory and fungus species-based 137 Cs accumulation capacity then account for a span of up to 4 orders of magnitude in activity mass concentrations measured each year after the Chernobyl accident. The highest geometric activity mass concentration (Bq kg -1 of dry weight) means of 137 Cs (obtained from samples between years 2004 and 2011) were measured in Suillaceae (1050 Bq kg -1 ) and Boletus badius (930 Bq kg -1 ), the lowest in Agaricus (1 Bq kg -1 ). The geometric mean of all mushrooms amounted to 230 Bq kg -1 , being 440 Bq kg -1 in Boletales, 150 Bq kg -1 in Russulales and 21 Bq kg -1 in Agaricales. Geometric standard deviation levels were generally high. The highest Cs accumulation capacity was observed in Boletales (namely in Suillaceae), while the lowest in Agaricales, being over 3 orders of magnitude lower than in Suillaceae. (authors)

  14. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D

    2010-01-01

    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  15. The experimental studies of 137Cs elimination process from the organism of fish

    International Nuclear Information System (INIS)

    Volkova, O.M.; Belyajev, V.V.; Potrokhov, O.S.

    2003-01-01

    The influence of the ration of a feeding of fishes on the process of 137 Cs elimination from the organism was investigated. The inverse dependence between the mass of fishes and specific activity 137 Cs was found. The rations of the feeding of fishes make possible to lower the specific activity of fishes to the recommended level was determined

  16. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki

    1996-01-01

    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  17. Study of side-feeding time for light mass nuclei

    International Nuclear Information System (INIS)

    Ray, Sudatta; Bisoi, A.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.

    2011-01-01

    Precise determination of level lifetime is of utmost importance in nuclear γ-spectroscopy. Doppler Shift Attenuation (DSA) method suitable for measuring sub-pico second lifetimes, involves inclusion of proper correction for side-feeding which is synonymous to unknown feeding of the level under consideration. It is possible to avoid a sidefeeding contribution by gating on Doppler shifted gamma lines above (GTA) the level being studied in the cascade. In the present work, an empirical approach has been adopted to find the dependence of side-feeding times in nuclei in A ≅ 40 region as function of level energies

  18. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  19. 'Wash-out' of Cs-134 and Cs-137 from river sediment; 'Ispiranja' Cs-134 i Cs-137 iz recnog sedimenta

    Energy Technology Data Exchange (ETDEWEB)

    Skrbic, Z; Conkic, Lj; Bikit, I; Veskovic, M; Slivka, J; Marinkov, L [Institut za Fiziku, Novi Sad Univ. (Yugoslavia)

    1988-07-01

    Natural elimination and 'wash out' period of the Cs-134 and Cs-137 from the river sediment has been investigated. Obtained results suggest the possibility to describe these processes by exponential low and determination of the corresponding half lives. (author)

  20. Isospin Mixing in Nuclei Around N ∼ Z and the Superallowed β-Decay

    International Nuclear Information System (INIS)

    Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M.

    2011-01-01

    Theoretical approaches that use one-body densities as dynamical variables, such as Hartree-Fock or the density functional theory (DFT), break isospin symmetry both explicitly, by virtue of charge-dependent interactions, and spontaneously. To restore the spontaneously broken isospin symmetry, we implemented the isospin-projection scheme on top of the Skyrme-DFT approach. This development allows for consistent treatment of isospin mixing in both ground and exited nuclear states. In this study, we apply this method to evaluate the isospin impurities in ground states of even-even and odd-odd N ∼ Z nuclei. By including simultaneous isospin and angular-momentum projection, we compute the isospin-breaking corrections to the 0 + → 0 + superallowed β-decay. (authors)