WorldWideScience

Sample records for octane number requirement

  1. An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Kilicaslan, Ibrahim; Canakci, Mustafa; Ozsezen, Necati [Kocaeli Univ., Dept. of Mechanical Education, Izmit (Turkey)

    2005-06-01

    In this study, the effect of using higher-octane gasoline than that of engine requirement on the performance and exhaust emissions was experimentally studied. The test engine chosen has a fuel system with carburettor because 60% of the vehicles in Turkey are equipped with the carburettor. The engine, which required 91-RON (Research Octane Number) gasoline, was tested using 95-RON and 91-RON. Results show that using octane ratings higher than the requirement of an engine not only decreases engine performance but also increases exhaust emissions. (Author)

  2. Increasing the octane number of gasoline using functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Sara Safari [Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran (Iran, Islamic Republic of); Rashidi, Alimorad, E-mail: rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran 14665-1998 (Iran, Islamic Republic of); Aghabozorg, Hamid Reza [Catalysis Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Moradi, Leila [Faculty of Chemistry, Kashan University, Kashan (Iran, Islamic Republic of)

    2010-03-15

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  3. Increasing the octane number of gasoline using functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-01-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  4. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    KAUST Repository

    Singh, Eshan

    2017-02-01

    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures’ octane ratings were obtained from the literature. The mixtures cover a RON range of 0–100, with the majority being in the 70–100 range. A parametric simulation study across a temperature range of 650–950 K and pressure range of 15–50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON

  5. Experimental Study of the Effect of Octane Number on the

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The experiments had been carried out using two stroke, single cylinder type (TD113, with compression ratio of (7.3:1 Coupled to hydraulic dynamometer type (TD115.          The results showed that there is  enhancement   of the engine  performance  with increasing octane number. This appears clearly when comparing the results of performance with fuel of 75 and 95 octane number.The torque increases 10% at speed of 2750 RPM. The break power also increases 18% when the octane number changed from 75 to 95 at 3000 RPM of engine speed. The same change in octane number will increase the thermal efficiency by 9% at 2300 RPM of engine speed. The break specific fuel consumption decreases at the same ratio of thermal efficiency 9% but at 2400 RPM. The less fuel consumption happens at 2400 RPM for octane number 95. 

  6. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2016-10-17

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  7. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Morganti, Kai; Al-Qurashi, Khalid; Johansson, Bengt

    2016-01-01

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  8. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  9. A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times

    KAUST Repository

    Badra, Jihad A.

    2015-08-11

    Predicting octane numbers (ON) of gasoline surrogate mixtures is of significant importance to the optimization and development of internal combustion (IC) engines. Most ON predictive tools utilize blending rules wherein measured octane numbers are fitted using linear or non-linear mixture fractions on a volumetric or molar basis. In this work, the octane numbers of various binary and ternary n-heptane/iso-octane/toluene blends, referred to as toluene primary reference fuel (TPRF) mixtures, are correlated with a fundamental chemical kinetic parameter, specifically, homogeneous gas-phase fuel/air ignition delay time. Ignition delay times for stoichiometric fuel/air mixtures are calculated at various constant volume conditions (835 K and 20 atm, 825 K and 25 atm, 850 K and 50 atm (research octane number RON-like) and 980 K and 45 atm (motor octane number MON-like)), and for variable volume profiles calculated from cooperative fuel research (CFR) engine pressure and temperature simulations. Compression ratio (or ON) dependent variable volume profile ignition delay times are investigated as well. The constant volume RON-like ignition delay times correlation with RON was the best amongst the other studied conditions. The variable volume ignition delay times condition correlates better with MON than the ignition delay times at the other tested conditions. The best correlation is achieved when using compression ratio dependent variable volume profiles to calculate the ignition delay times. Most of the predicted research octane numbers (RON) have uncertainties that are lower than the repeatability and reproducibility limits of the measurements. Motor octane number (MON) correlation generally has larger uncertainties than that of RON.

  10. A Group Contribution Method for Estimating Cetane and Octane Numbers

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, William Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group

    2016-07-28

    Much of the research on advanced biofuels is devoted to the study of novel chemical pathways for converting nonfood biomass into liquid fuels that can be blended with existing transportation fuels. Many compounds under consideration are not found in the existing fuel supplies. Often, the physical properties needed to assess the viability of a potential biofuel are not available. The only reliable information available may be the molecular structure. Group contribution methods for estimating physical properties from molecular structure have been used for more than 60 years. The most common application is estimation of thermodynamic properties. More recently, group contribution methods have been developed for estimating rate dependent properties including cetane and octane numbers. Often, published group contribution methods are limited in terms of types of function groups and range of applicability. In this study, a new, broadly-applicable group contribution method based on an artificial neural network was developed to estimate cetane number research octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. The new method is more accurate over a greater range molecular weights and structural complexity than existing group contribution methods for estimating cetane and octane numbers.

  11. Kinetically based NMR method of measuring blending octane number of olefins

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.; Morley, C.

    1995-01-01

    Olefins are highly nonlinear octane blenders so that standard GC analyses are poor predictors of blend quality. Engine rating is the only way of measuring olefin octane number nonlinearity. It is thus not possible to rapidly assess the quality of the product obtained from an olefin-producing

  12. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.

    2016-04-12

    Ethanol is widely used as an octane booster in commercial gasoline fuels. Its oxygenated nature aids in reducing harmful emissions such as nitric oxides (NOx), soot and unburned hydrocarbons (HC). However, the non-linear octane response of ethanol blending with gasoline fuels is not completely understood because of the unknown intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase (synergistic) or decrease (antagonistic), and the non-linearity depends on the composition of the base gasoline. The complexity of commercial gasoline, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule to predict the octane numbers (ON) of ethanol/primary reference fuel (PRF; mixtures of iso-octane and n-heptane) and ethanol/toluene primary reference fuel (TPRF; mixtures of toluene, iso-octane and n-heptane) mixtures using the data available in literature and new data. The ON of ethanol blends with PRF-40, -50, and -60 were measured and compared with those from literature. Additional experimental data were collected to validate the developed model for ethanol blends of three different TPRFs having the same RON but different MON (i.e., different toluene contents). The three tested TPRF mixtures have octane ratings of RON 60.0/MON 58.0 (toluene 10.2 vol%), RON 60.0/MON 56.3 (toluene 19.8 vol%), and RON 60.0/MON 53.2 (toluene 40.2 vol%). The octane prediction model consists of linear and non-linear by mole regions. The transition point between the linear and non-linear regions is a function of the RON and MON of the base PRF and TPRF mixture. The non-linear by

  13. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan

    2017-03-28

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  14. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan; Waqas, Muhammad; Johansson, Bengt; Sarathy, Mani

    2017-01-01

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  15. Ignition studies of n-heptane/iso-octane/toluene blends

    KAUST Repository

    Javed, Tamour

    2016-07-09

    Ignition delay times of four ternary blends of n-heptane/iso-octane/toluene, referred to as Toluene Primary Reference Fuels (TPRFs), have been measured in a high-pressure shock tube and in a rapid compression machine. The TPRFs were formulated to match the research octane number (RON) and motor octane number (MON) of two high-octane gasolines and two prospective low-octane naphtha fuels. The experiments were carried out over a wide range of temperatures (650–1250 K), at pressures of 10, 20 and 40 bar, and at equivalence ratios of 0.5 and 1.0. It was observed that the ignition delay times of these TPRFs exhibit negligible octane dependence at high temperatures (T > 1000 K), weak octane dependence at low temperatures (T < 700 K), and strong octane dependence in the negative temperature coefficient (NTC) regime. A detailed chemical kinetic model was used to simulate and interpret the measured data. It was shown that the kinetic model requires general improvements to better predict low-temperature conditions and particularly requires improvements for high sensitivity (high toluene concentration) TPRF blends. These datasets will serve as important benchmark for future gasoline surrogate mechanism development and validation. © 2016 The Combustion Institute

  16. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  17. Fiscal 2000 report of investigation. Research study on reduction of carbon dioxide discharge by increase in octane number in gasoline through use of biomass; 2000 nendo biomass wo riyoshita gasoline no octane ka kojo ni yoru nisanka tanso haishutsu sakugen ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigative research was conducted on the means of reducing fuel consumption of motor vehicles and reducing greenhouse effect gases, by making octane boosters for gasoline through the use of alcohol derived from biomass feedstock. As a result of the investigation, the following proposals were made. In present gasoline-fueled motor vehicles, an increase in the octane number by 5 will allow a higher compression by 1, thereby reducing fuel consumption by 2.5% during running. The suitable octane boosters are MTBE (methyl tertiary butylether) and ETBE (ethyl tertiary butylether) both of which can be produced from either methanol or ethanol derived from biomass feedstock. Blending regular gasoline with an octane number of 90 and either MTBE or ETBE by 18% may make gasoline having an octane number of 95, leading to a reduction of carbon dioxide emission by 4.8% and 6.8% respectively. The amount of alcohol needed for these octane boosters is 2.2 megatons of methanol per year for MTBE production and 2.7 megatons of ethanol per year for ETBE; this requires 12 plants nationwide for producing the octane boosters at 0.5 megatons per year; and, in view of the cost of transportation, alcohol producing plants are desirably located near the octane booster producing plants. (NEDO)

  18. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal

    2016-09-21

    A methodology for estimating the octane index (OI), the research octane number (RON) and the motor octane number (MON) using ignition delay times from a constant volume combustion chamber with liquid fuel injection is proposed by adopting an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures of isooctane and n-heptane). Our methodology was developed using ignition delay times for toluene reference fuels (mixtures of toluene and n-heptane). A correlation between the OI and the ignition delay time at the initial charge temperature enabled the OI of non-PRFs to be predicted at specified temperatures. The methodology was validated using ignition delay times for toluene primary reference fuels (ternary mixtures of toluene, iso-octane, and n-heptane), fuels for advanced combustion engines (FACE) gasolines, and certification gasolines. Using this methodology, the RON, the MON, and the octane sensitivity were estimated in agreement with values obtained from standard test methods. A correlation between derived cetane number and RON is also provided. (C) 2016 Elsevier Ltd. All rights reserved.

  19. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal

    2017-11-05

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  20. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal; Sarathy, Mani; Chung, Suk-Ho

    2017-01-01

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  1. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer; Morganti, Kai; Masurier, Jean-Baptiste; Johansson, Bengt

    2017-01-01

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  2. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer

    2017-10-08

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  3. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad; AlRamadan, Abdullah S.; Sarathy, Mani

    2017-01-01

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  4. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad

    2017-07-04

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  5. The development of isomerization catalysts for production of high-octane products

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, A.M. Garrido; Melo, D.M.A.; Araujo, A.S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Souza, M.J.B.; Silva, A.O.S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Engenharia Quimica

    2004-07-01

    In current petroleum industry, paraffins larger than C5 are used for catalytic reform. The catalytic reform is one of the most important processes for petroleum refine in reason of all reactions they drive to production of high-octane products. Reformate has high-octane products, but they contain 60% aromatics. Isomerization of C5- C7 can improve the octane number. The octane number of n-heptane is zero and increases after isomerization. For tri branched C7, the octane number reaches 113, which is higher than that of benzene. So, isomerization of C5-C7 is suggested to be a reasonable way to replace or partly replace the catalytic reforming process. It can decrease aromatics content with enhancement of octane number. Liquid acid catalysts were widely used in chemical industry in past decades. However, they face strong environmental challenges. The heavy corrosion of the reactor system is one of the main problems. Thus, solid acid catalysts are investigated for the isomerization reactions. The aim of this work is to develop a catalysts for the production of reformate products. Isomerization is catalyzed by metal-acid bifunctional catalysts. The metal components aid in hydrogenation, while the support, such as, zirconium, clays or zeolites, is the acidic component. (author)

  6. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks

    KAUST Repository

    Abdul Jameel, Abdul Gani; Oudenhoven, Vincent Van; Emwas, Abdul-Hamid M.; Sarathy, Mani

    2018-01-01

    Machine learning algorithms are attracting significant interest for predicting complex chemical phenomenon. In this work, a model to predict research octane number (RON) and motor octane number (MON) of pure hydrocarbons, hydrocarbon-ethanol blends and gasoline-ethanol blends has been developed using artificial neural networks (ANN) and molecular parameters from 1H nuclear Magnetic Resonance (NMR) spectroscopy. RON and MON of 128 pure hydrocarbons, 123 hydrocarbon-ethanol blends of known composition and 30 FACE (fuels for advanced combustion engines) gasoline-ethanol blends were utilized as a dataset to develop the ANN model. The effect of weight % of seven functional groups including paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups on RON and MON was studied. The effect of branching (i.e., methyl substitution), denoted by a parameter termed as branching index (BI), and molecular weight (MW) were included as inputs along with the seven functional groups to predict RON and MON. The topology of the developed ANN models for RON (9-540-314-1) and MON (9-340-603-1) have two hidden layers and a large number of nodes, and was validated against experimentally measured RON and MON of pure hydrocarbons, hydrocarbon-ethanol and gasoline-ethanol blends; a good correlation (R2=0.99) between the predicted and the experimental data was obtained. The average error of prediction for both RON and MON was found to be 1.2 which is close to the range of experimental uncertainty. This shows that the functional groups in a molecule or fuel can be used to predict its ON, and the complex relationship between them can be captured by tools like ANN.

  7. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2018-04-17

    Machine learning algorithms are attracting significant interest for predicting complex chemical phenomenon. In this work, a model to predict research octane number (RON) and motor octane number (MON) of pure hydrocarbons, hydrocarbon-ethanol blends and gasoline-ethanol blends has been developed using artificial neural networks (ANN) and molecular parameters from 1H nuclear Magnetic Resonance (NMR) spectroscopy. RON and MON of 128 pure hydrocarbons, 123 hydrocarbon-ethanol blends of known composition and 30 FACE (fuels for advanced combustion engines) gasoline-ethanol blends were utilized as a dataset to develop the ANN model. The effect of weight % of seven functional groups including paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups on RON and MON was studied. The effect of branching (i.e., methyl substitution), denoted by a parameter termed as branching index (BI), and molecular weight (MW) were included as inputs along with the seven functional groups to predict RON and MON. The topology of the developed ANN models for RON (9-540-314-1) and MON (9-340-603-1) have two hidden layers and a large number of nodes, and was validated against experimentally measured RON and MON of pure hydrocarbons, hydrocarbon-ethanol and gasoline-ethanol blends; a good correlation (R2=0.99) between the predicted and the experimental data was obtained. The average error of prediction for both RON and MON was found to be 1.2 which is close to the range of experimental uncertainty. This shows that the functional groups in a molecule or fuel can be used to predict its ON, and the complex relationship between them can be captured by tools like ANN.

  8. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani

    2018-04-02

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol

  9. Détermination automatique de l'indice d'octane et de la composition des reformats par chromatographie en phase gazeuse Automatic Determination of Reformate Octane Number and Composition by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Petroff N.

    2006-11-01

    Full Text Available Utilisant des analyses par chromatographie en phase gazeuse, diverses méthodes ont été testées pour calculer l'indice d'octane de reformats. L'une d'elles s'est imposée par la simplicité de l'appareillage, ses possibilités d'automatisation et son adéquation à des échantillons provenant de charges différentes. Cette étude décrit les conditions opératoires de la méthode chromatographique optimisées pour les réformes, en vue d'obtenir des valeurs calculées de l'indice d'octane (IO dit Recherche différant de moins de un point des valeurs mesurées sur un moteur CFR selon la norme ASTM/D2699 (NF MO7026. L'analyse chromatographique est faite sur une colonne capillaire fonctionnant en température programmée. Le traitement des données est réalisé par un logiciel qui assure àla fois l'identification des constituants et le calcul de l'indice d'octane, à partir des données chromatographiques standard (temps de rétention et surface des pics. Les résultats obtenus portent sur une soixantaine de reformats divers. La fiabilité de la méthode d'identification, la répétabilité et la reproductibilité des valeurs de IO calculés sont démontrées. Ces résultats permettent d'envisager l'exploitation de la méthode en sortie d'unité. Various methods were tested by gas chromatography analysis for calculating the octane number of reformates. One of them was superior because of the simplicity of its equipment, its possibilities of automation and its suitability for samples coming from different feeds. This article describes the operating conditions of the optimized chromatographic method for reformates with a view to obtaining calculated values of the so-called Researchoctane number (RON different by at least one point from the values measured with a CFR engine according to the ASTM/D2699 standard. Chromatographic analysis is performed in a capillary column operating with programmedtemperature. Data processing is done with a software

  10. Catalysts for producing high octane-blending value olefins for gasoline

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, de J.N.H.

    2001-01-01

    New restrictions on gasoline components mean that oxygenates and aromatics must be replaced by other high octane components. The dimerization of linear butene to form high octane gasoline blending components is evaluated under liquid phase reaction conditions over a number of different heterogeneous

  11. Sulfur and octane trade off in FCC naphta conventional hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Badra, C. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Perez, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Salazar, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Cabrera, L. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Gracia, W. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion

    1997-06-01

    A model to predict the change of octane numbers expected in an FCC naphtha hydrotreating process as a function of the hydroprocessing severity (degree of sulfur removal) and the type of naphtha (expressed as the sulfur content and bromine number in the feedstock) is presented. When considering hydrotreating as an option for processing their catalytic naphthas, refiners search for the proper balance between the desired reduction of sulfur and olefins and the resulting undesired reduction of octane (RON and MON). In doing so, refiners should study the possibility of performing the hydrotreating at mild severities and/or the possibility of fractionating FCC naphthas to just treat a specific cut. This paper provides simple tools to study and analyze these study cases and to assess the sulfur-octane trade offs. (orig.)

  12. Summary of High-Octane Mid-Level Ethanol Blends Study

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Timothy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alleman, Teresa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Fioroni, Gina [National Renewable Energy Lab. (NREL), Golden, CO (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Huff, Shean P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leiby, Paul Newsome [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oladosu, Gbadebo A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szybist, James P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thomas, John F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Original equipment manufacturers (OEMs) of light-duty vehicles are pursuing a broad portfolio of technologies to reduce CO2 emissions and improve fuel economy. Central to this effort is higher efficiency spark ignition (SI) engines, including technologies reliant on higher compression ratios and fuels with improved anti-knock properties, such as gasoline with significantly increased octane numbers. Ethanol has an inherently high octane number and would be an ideal octane booster for lower-octane petroleum blendstocks. In fact, recently published data from Department of Energy (DOE) national laboratories (Splitter and Szybist, 2014a, 2014b; Szybist, 2010; Szybist and West, 2013) and OEMs (Anderson, 2013) and discussions with the U.S. Environmental Protection Agency (EPA) suggest the potential of a new high octane fuel (HOF) with 25–40 vol % of ethanol to assist in reaching Renewable Fuel Standard (RFS2) and greenhouse gas (GHG) emissions goals. This mid-level ethanol content fuel, with a research octane number (RON) of about 100, appears to enable efficiency improvements in a suitably calibrated and designed engine/vehicle system that are sufficient to offset its lower energy density (Jung, 2013; Thomas, et al, 2015). This efficiency improvement would offset the tank mileage (range) loss typically seen for ethanol blends in conventional gasoline and flexible-fuel vehicles (FFVs). The prospects for such a fuel are additionally attractive because it can be used legally in over 18 million FFVs currently on the road. Thus the legacy FFV fleet can serve as a bridge by providing a market for the new fuel immediately, so that future vehicles will have improved efficiency as the new fuel becomes widespread. In this way, HOF can simultaneously help improve fuel economy while expanding the ethanol market in the United States via a growing market for an ethanol blend higher than E10. The DOE Bioenergy Technologies Office initiated a collaborative research program

  13. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Naser, Nimal; Roberts, William L.; Dibble, Robert W.; Sarathy, Mani

    2016-01-01

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited

  14. Refining economics of U.S. gasoline: octane ratings and ethanol content.

    Science.gov (United States)

    Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James

    2014-10-07

    Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30).

  15. Review of market for octane enhancers: Final report

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Sinor Consultants, Inc.

    2000-06-20

    Crude oil is easily separated into its principal products by simple distillation. However, neither the amounts nor the quality of these natural products matches demand. Today, octane requirements must be achieved by changing the chemical composition of the straight-run gasoline fraction.

  16. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt

    2018-01-01

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock

  17. High-Octane Mid-Level Ethanol Blend Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC, Colorado Springs, CO (United States); Leiby, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Maxwell L. [Colorado School of Mines, Golden, CO (United States)

    2015-12-01

    The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research to increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and

  18. Osmotic and activity coefficients of triorganophosphates in n-octane

    International Nuclear Information System (INIS)

    Sagert, N.H.; Lau, D.W.P.

    1982-01-01

    Vapour pressure osmometry was used to measure osmotic coefficients for tributylphosphate (TBP), tricresylphosphate (TCP), and triethylhexylphosphate (THEP) in n-octane at 30, 40, 50, and 60 0 C and at molalities up to 0.3 mol/kg. Activity coefficients and excess thermodynamic properties (unsymmetrical definition) were calculated from these osmotic coefficients. At 30 0 C, the excess Gibbs free energies for 0.1 mol of solute in 1.0 kg n-octane were -42 J, -66 J, and -20 J for TBP, TCP, and TEHP, respectively. The more ideal behavior of the TEHP-octane system is attributed to the increasing importance of hydrocarbon-hydrocarbon interactions as the chain length is increased. The excess enthalpies for 0.1 mol of solute in 1.0 kg of solvent were -100 J, and -300 J, and -150 J for TBP, TCP, and TEHP, respectively. Thus, association of these solutes arises primarily from entropic effects. Our data could generally be accommodated adequately by postulating association of monomers into dimmers. The exception was TCP at lower temperatures, where more complex models were required

  19. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  20. Dimerisation of n-butenes for high octane gasoline components

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.

    2000-01-01

    Dimerization of linear olefins represents an attractive route for the production of high octane number blending components. The oligomerization needs not only to be high conversion and to produce mainly dimers but also to be selective within the dimer range, as only certain isomers have advantageous

  1. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  2. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.

    2016-09-16

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited (SI) engine. Terpineol is a bio-derived oxygenated fuel obtained from pine tree resin, and has the advantage of higher calorific value than ethanol. The ignition delay time (IDT) of terpineol was first investigated in an ignition quality tester (IQT). The IQT results demonstrated a long ignition delay of 24.7 ms for terpineol and an estimated research octane number (RON) of 104, which was higher than commercial European (Euro V) gasoline. The octane boosting potential of terpineol was further investigated by blending it with a non-oxygenated gasoline (FACE F), which has a RON (94) lower than Euro V gasoline (RON = 97). The operation of a gasoline direct injection (GDI) SI engine fueled with terpineol-blended FACE F gasoline enabled spark timing advancement and improved engine combustion. The knock intensity of FACE F + 30% terpineol was lower than FACE F gasoline at both maximum brake torque (MBT) and knock limited spark advance (KLSA) operating points. Increasing proportions of terpineol in the blend caused peak heat release rate, in-cylinder pressure, CA50, and combustion duration to be closer to those of Euro V gasoline. Furthermore, FACE F + 30% terpineol displayed improved combustion characteristics when compared to Euro V gasoline. © 2016

  3. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Chavdarov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R.; Petkov, P.

    2013-01-01

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C 4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  4. A method for express estimation of the octane number of gasoline using a portable spectroimpedance meter and statistical analysis methods

    Directory of Open Access Journals (Sweden)

    Mamykin A. V.

    2017-10-01

    Full Text Available The authors propose a method for determination of the electro-physical characteristics of electrical insulating liquids on the example of different types of gasoline. The method is based on the spectral impedance measurements of a capacitor electrochemical cell filled with the liquid under study. The application of sinusoidal test voltage in the frequency range of 0,1—10 Hz provides more accurate measurements in comparison with known traditional methods. A portable device for measuring total electrical resistance (impedance of dielectric liquids was designed and constructed. An approach for express estimation of octane number of automobile gasoline using spectroimpedance measurements and statistical multi variation methods of data analysis has been proposed and tested.

  5. Lignin conversion to high-octane fuel additives

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Zmierczak, W.; Kadangode, S. [University of Utah, Salt Lake City (United States); Chornet, E.; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1999-07-01

    Continuing previous studies on the conversion of lignin to reformulated gasoline compositions, new lignin upgrading processes were developed that allow preferential production of specific high-octane fuel additives of two distinct types: (1) C{sub 7}-C{sub 10} alkylbenzenes; and (2) aryl methyl ethers, where aryl mostly = phenyl, 2-methylphenyl, 4-methylphenyl, and dimethylphenyl. Process (1) comprises base-catalyzed depolymerization (BCD) and simultaneous partial ({approx} 50%) deoxygenation of lignin at 270 - 290{sup o}C, in the presence of supercritical methanol as reaction medium, followed by exhaustive hydrodeoxygenation and attendant mild hydrocracking of the BCD product with sulfided catalysts to yield C{sub 8}-C{sub 10} alkylbenzenes as main products. Process (2) involves mild BCD at 250 - 270{sup o}C with preservation of the lignin oxygen, followed by selective C-C hydrocracking with solid superacid catalysts. This method preferentially yields a mixture of alkylated phenols, which upon acid-catalyzed etherification with methanol are converted into corresponding aryl methyl ethers (see above) possessing blending octane numbers in the range of 142-166. In a recent extension of this work, a greatly advantageous procedure for performing the BCD stage of processes (1) and (2) in water as reaction medium was developed. (author)

  6. Performance and emissions of gasoline blended with terpineol as an octane booster

    KAUST Repository

    Vallinayagam, R.

    2016-11-10

    This study investigates the effect of using terpineol as an octane booster for gasoline fuel. Unlike ethanol, terpineol is a high energy density biofuel that is unlikely to result in increased volumetric fuel consumption when used in engines. In this study, terpineol is added to non-oxygenated FACE F gasoline (Research Octane Number = 94.5) in volumetric proportions of 10%, 20% and 30% and tested in a single cylinder spark ignited engine. The performance of terpineol blended fuels are compared against a standard oxygenated EURO V (ethanol blended) gasoline. It was determined that the addition of terpineol to FACE F gasoline enhanced the octane number of the blend, resulting in improved brake thermal efficiency and total fuel consumption. For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel consumption was reduced by 6.2% and 9.7% with 30% terpineol in the blend when compared to FACE F gasoline at low and full load conditions, respectively. Gaseous emissions such as total hydrocarbon and carbon monoxide emission were reduced by 36.8% and 22.7% for FACE F + 30% terpineol compared to FACE F gasoline at full load condition. On the other hand, nitrogen oxide and soot emissions are increased for terpineol blended FACE F gasoline when compared to FACE F and EURO V gasoline. © 2016 Elsevier Ltd

  7. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    Science.gov (United States)

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  8. Base catalyzed synthesis of bicyclo[3.2.1]octane scaffolds.

    Science.gov (United States)

    Boehringer, Régis; Geoffroy, Philippe; Miesch, Michel

    2015-07-07

    The base-catalyzed reaction of achiral 1,3-cyclopentanediones tethered to activated olefins afforded in high yields bicyclo[3.2.1]octane-6,8-dione or bicyclo[3.2.1]octane-6-carboxylate derivatives bearing respectively three or five stereogenic centers. The course of the reaction is closely related to the reaction time and to the base involved in the reaction.

  9. Low-cost high-efficiency GDCI engines for low octane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, Christopher P.; Sellnau, Mark C.

    2018-01-09

    A GDCI engine has a piston arranged within a cylinder to provide a combustion chamber. According to one embodiment, the GDCI engine operates using a method that includes the steps of supplying a hydrocarbon fuel to the combustion chamber with a research octane number in the range of about 30-65. The hydrocarbon fuel is injected in completely stratified, multiple fuel injections before a start of combustion and supplying a naturally aspirated air charge to the combustion chamber.

  10. Aromatization of n-octane over Pd/C catalysts

    KAUST Repository

    Yin, Mengchen; Natelson, Robert H.; Campos, Andrew A.; Kolar, Praveen; Roberts, William L.

    2013-01-01

    Gas-phase aromatization of n-octane was investigated using Pd/C catalyst. The objectives were to: (1) determine the effects of temperature (400-600 °C), weight hourly space velocity (WHSV) (0.8-∞), and hydrogen to hydrocarbon molar ratio (MR) (0-6) on conversion, selectivity, and yield (2) compare the activity of Pd/C with Pt/C and Pt/KL catalysts and (3) test the suitability of Pd/C for aromatization of different alkanes including n-hexane, n-heptane, and n-octane. Pd/C exhibited the best aromatization performance, including 54.4% conversion and 31.5% aromatics yield at 500 °C, WHSV = 2 h-1, and a MR of 2. The Pd/C catalyst had higher selectivity towards the preferred aromatics including ethylbenzene and xylenes, whereas Pt/KL had higher selectivity towards benzene and toluene. The results were somewhat consistent with adsorbed n-octane cyclization proceeding mainly through the six-membered ring closure mechanism. In addition, Pd/C was also capable of catalyzing aromatization of n-hexane and n-heptane. © 2012 Elsevier Ltd. All rights reserved.

  11. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  12. Thermodynamic and kinetic anisotropies in octane thin films.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent

  13. Lignin derivatives as potential octane boosters

    NARCIS (Netherlands)

    Tian, M.; van Haaren, R.W.G.; Reijnders, J.J.E.; Boot, M.D.

    2015-01-01

    Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates

  14. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai

    2016-06-28

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high-octane bio-derived components with low octane naphtha streams is attractive. 2-phenyl ethanol (2-PE), is one such potential candidate that can be derived from lignin, a biomass component made of interconnected aromatic groups. We first ascertained the blending anti-knock quality of 2-PE by studying the effect of spark advancement on knock for various blends 2-PE, toluene, and ethanol with naphtha in a cooperative fuels research engine. The blending octane quality of 2-PE indicated an anti-knock behavior similar or slightly greater than that of toluene, and ethylbenzene, which could be attributed to either chemical kinetics or charge cooling effects. To isolate chemical kinetic effects, a model for 2-PE auto-ignition was developed and validated using ignition delay times measured in a high-pressure shock tube. Simulated ignition delay times of 2-PE were also compared to those of traditional high-octane gasoline blending components to show that the gas phase reactivity of 2-PE is lower than ethanol, and comparable to toluene, and ethylbenzene at RON, and MON relevant conditions. The gas-phase reactivity of 2-PE is largely controlled by its aromatic ring, while the effect of the hydroxyl group is minimal. The higher blending octane quality of 2-PE compared to toluene, and ethylbenzene can be attributed primarily to the effect of the hydroxyl group on increasing heat of vaporization. © 2016 The Combustion Institute.

  15. Synthesis of Highly Functionalised Enantiopure Bicyclo[3.2.1]- octane Systems from Carvone

    Directory of Open Access Journals (Sweden)

    Noelia Vera

    2004-04-01

    Full Text Available The commercially available monoterpene carvone has been efficiently convertedinto the tricyclo[3.2.1.02.7]octane and bicyclo[3.2.1]octane systems characteristic of somebiologically active compounds. The sequence used for this transformation involves as keyfeatures an intramolecular Diels-Alder reaction of a 5-vinyl-1,3-cyclohexadiene and acyclopropane ring opening.

  16. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    KAUST Repository

    Atef, Nour

    2017-02-05

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.

  17. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  18. Thermodynamic and kinetic anisotropies in octane thin films

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ S . Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ S , while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ S ) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ S ) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing

  19. Thermodynamic and kinetic anisotropies in octane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ{sub S}. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ{sub S}, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ{sub S}) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ{sub S}) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy

  20. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour; Ahmed, Ahfaz; Lovisotto, Leonardo; Issayev, Gani; Badra, Jihad; Sarathy, Mani; Farooq, Aamir

    2017-01-01

    , were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2

  1. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Sang Kyu; Chung, Suk-Ho

    2015-01-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted

  2. Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes

    International Nuclear Information System (INIS)

    Shariatinia, Zahra; Jalali, Azin Mazloom; Taromi, Faramarz Afshar

    2016-01-01

    Molecular dynamics (MD) simulations were performed at 298.15 K and 1 atm in order to study microstructure and transport behaviors of polydimethylsiloxane (PDMS) membranes containing 0%–8% SiO 2 nanoparticles used for the separation of thiophene from n-octane. It was found that the fractional free volume (FFV) of 0% SiO 2 was the highest (47.24%) among five nanocomposite membranes and addition of 2%–8% silica nanoparticles led to dramatic decrease in the FFV of the cells. The x-ray diffraction (XRD) patterns of all membranes showed that they had a semi-crystalline structure containing a broad peak around 15°–18°. The radial distribution function (RDF) analysis proved that the smallest C(CH 2 -octane)–O(SiO 2 ), C(PDMS)–O(SiO 2 ) and H(thiophene)–O(SiO 2 ) distances were present in 4% SiO 2 membrane reflecting the silica–octane, silica–polymer and silica–thiophene interactions were the strongest in this membrane. The mean squared displacement (MSD) and diffusion coefficients of n-octane were both small in the 6% silica membrane but they were high for thiophene suggesting this membrane was the most suitable for the desulfurization process and separation of thiophene from n-octane. (paper)

  3. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  4. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be safely...

  5. Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating

    KAUST Repository

    Mannaa, Ossama

    2016-05-04

    Laminar burning velocities of fuels for advanced combustion engines (FACE) C gasoline and of several blends of surrogate toluene reference fuels (TRFs) (n-heptane, iso-octane, and toluene mixtures) of the same research octane number are presented. Effects of ethanol addition on laminar flame speed of FACE-C and its surrogate are addressed. Measurements were conducted using a constant volume spherical combustion vessel in the constant pressure, stable flame regime at an initial temperature of 358 K and initial pressures up to 0.6 MPa with the equivalence ratios ranging from 0.8 to 1.6. Comparable values in the laminar burning velocities were measured for the FACE-C gasoline and the proposed surrogate fuel (17.60% n-heptane + 77.40% iso-octane + 5% toluene) over the range of experimental conditions. Sensitivity of flame propagation to total stretch rate effects and thermo-diffusive instability was quantified by determining Markstein length. Two percentages of an oxygenated fuel of ethanol as an additive, namely, 60 vol% and 85 vol% were investigated. The addition of ethanol to FACE-C and its surrogate TRF-1 (17.60% n-heptane + 77.40% iso-octane + 5% toluene) resulted in a relatively similar increase in the laminar burning velocities. The high-pressure measured values of Markstein length for the studied fuels blended with ethanol showed minimal influence of ethanol addition on the flame’s response to stretch rate and thermo-diffusive instability. © 2016 Taylor & Francis.

  6. Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating

    KAUST Repository

    Mannaa, Ossama; Mansour, Morkous S.; Roberts, William L.; Chung, Suk-Ho

    2016-01-01

    Laminar burning velocities of fuels for advanced combustion engines (FACE) C gasoline and of several blends of surrogate toluene reference fuels (TRFs) (n-heptane, iso-octane, and toluene mixtures) of the same research octane number are presented. Effects of ethanol addition on laminar flame speed of FACE-C and its surrogate are addressed. Measurements were conducted using a constant volume spherical combustion vessel in the constant pressure, stable flame regime at an initial temperature of 358 K and initial pressures up to 0.6 MPa with the equivalence ratios ranging from 0.8 to 1.6. Comparable values in the laminar burning velocities were measured for the FACE-C gasoline and the proposed surrogate fuel (17.60% n-heptane + 77.40% iso-octane + 5% toluene) over the range of experimental conditions. Sensitivity of flame propagation to total stretch rate effects and thermo-diffusive instability was quantified by determining Markstein length. Two percentages of an oxygenated fuel of ethanol as an additive, namely, 60 vol% and 85 vol% were investigated. The addition of ethanol to FACE-C and its surrogate TRF-1 (17.60% n-heptane + 77.40% iso-octane + 5% toluene) resulted in a relatively similar increase in the laminar burning velocities. The high-pressure measured values of Markstein length for the studied fuels blended with ethanol showed minimal influence of ethanol addition on the flame’s response to stretch rate and thermo-diffusive instability. © 2016 Taylor & Francis.

  7. Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline

    KAUST Repository

    Chen, Bingjie

    2017-03-28

    This work examines the oxidation of a well-characterized, high-octane-number FACE (fuel for advanced combustion engines) F gasoline. Oxidation experiments were performed in a jet-stirred reactor (JSR) for FACE F gasoline under the following conditions: pressure, 10 bar; temperature, 530-1250 K; residence time, 0.7s; equivalence ratios, 0.5, 1.0, and 2.0. Detailed species profiles were achieved by identification and quantification from gas chromatography with mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FTIR). Four surrogates, with physical and chemical properties that mimic the real fuel properties, were used for simulations, with a detailed gasoline surrogate kinetic model. Fuel and species profiles were well-captured and-predicted by comparisons between experimental results and surrogate simulations. Further analysis was performed using a quantities of interest (QoI) approach to show the differences between experimental and simulation results and to evaluate the gasoline surrogate kinetic model. Analysis of the multicomponent surrogate kinetic model indicated that iso-octane and alkyl aromatic oxidation reactions had impact on species profiles in the high-temperature region;. however, the main production and consumption channels were related to smaller molecule reactions. The results presented here offer new insights into the oxidation chemistry of complex gasoline fuels and provide suggestions for the future development of surrogate kinetic models.

  8. Structural investigation of diglycerol monolaurate reverse micelles in nonpolar oils cyclohexane and octane

    International Nuclear Information System (INIS)

    Shrestha, Lok Kumar; Aramaki, Kenji

    2009-01-01

    Structure of diglycerol monolaurate (abbreviated as C 12 G 2 ) micelles in nonpolar oils cyclohexane and n-octane as a function of compositions, temperatures, and surfactant chain length has been investigated by small-angle X-ray scattering (SAXS). The SAXS data were evaluated by the generalized indirect Fourier transformation (GIFT) method and real-space structural information of particles was achieved. Conventional poly(oxyethylene) type nonionic surfactants do not form reverse micelles in oils unless a trace water is added. However, present surfactant C 12 G 2 formed reverse micelle (RM) in cyclohexane and n-octane without addition of water at normal room temperature. A clear signature of one dimensional (1-D) micellar growth was found with increasing C 12 G 2 concentration. On the other hand, increasing temperature or hydrocarbon chain length of surfactant shorten the length of RM, which is essentially a cylinder-to-sphere type transition in the aggregate structure. Drastic changes in the structure of RM, namely, transition of ellipsoidal prolate to long rod-like micelles was observed upon changing oil from cyclohexane to octane. All the microstructural transitions were explained in terms of critical packing parameter. (author)

  9. Thermophysical properties for (diethyl carbonate + p-xylene + octane) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Casas, L.M., E-mail: lmcasas@uvigo.es [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Curras, M.R. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Mariano, A.B. [Laboratorio de Fisicoquimica, Departamento de Quimica, Facultad de Ingenieria, Universidad Nacional de Comahue, 8300 Neuquen (Argentina); Legido, J.L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)

    2011-12-15

    Highlights: > Thermophysical properties of (diethyl carbonate + p-xylene + octane) were measured. > Excess molar volumes and isentropic compressibilities were determined and correlated. > Ternary surface tension deviations were correlated using Cibulka equation. > Intermolecular interactions based on the derived properties trend were discussed. - Abstract: The density and speed of sound of the ternary mixture (diethyl carbonate + p-xylene + octane) have been measured at atmospheric pressure and in the temperature range T = (288.15 to 308.15) K. Besides, surface tension has been also determined for the same mixture at T = 298.15 K. The experimental measurements have allowed the calculation of the corresponding derived properties: excess molar volumes, excess isentropic compressibilities, and surface tension deviations. Excess properties have been correlated using Nagata and Tamura equation and correlation for the surface tension deviation has been done with the Cibulka equation. Good accuracy has been obtained. Based on the variations of the derived properties values with composition, a qualitative discussion about the intermolecular interactions was drawn.

  10. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed

    2015-12-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  11. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani; Shankar, Vijai; Tripathi, Rupali; Pitsch, Heinz; Sarathy, Mani

    2018-01-01

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index

  12. Ignition delay measurements of light naphtha: A fully blended low octane fuel

    KAUST Repository

    Javed, Tamour; Nasir, Ehson Fawad; Ahmed, Ahfaz; Badra, Jihad; Djebbi, Khalil; Beshir, Mohamed; Ji, Weiqi; Sarathy, Mani; Farooq, Aamir

    2016-01-01

    . To the best of our knowledge, this is the first fundamental autoignition study on the reactivity of a low-octane fully blended fuel and the use of a suitably formulated multi-component surrogate to model its behavior.

  13. Production of high-octane, unleaded motor fuel by alkylation of isobutane with isoamylenes obtained by dehydrogenation of isopentane

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.; Hann, P.D.

    1981-01-31

    A process combination, with inter-cooperation, for producing high-octane alkylates comprising (a) dehydrogenating isopentane to isopentenes (amylenes), (b) introducing the mixture of said amylenes and unconverted isopentane into an HF alkylation unit for reaction with fresh or recycled isobutane, (c) separating the alkylation products into high octane alkylates, isopentane (for recycling to the dehydrogenation reactor) and isobutane (for recycling to the alkylation reactor).

  14. Technological processes for obtaining high octane benzene from methanol. Tekhnologicheskie protsessy polucheniya vysokooktanovogo benzina iz metanola

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, M A; Nefedov, B K

    1982-01-01

    The study is on one of the most promising processes for obtaining high octane components of motor fuel from methanol, with crude that has been made with a mixture of CO and H/sub 2/ gases, separated from coal, shale oil, natural and waste smoky gases, heavy oil sediments. The results of foreign scientific and technological studies over the last 5 years in synthesizing high octane benzene from methanol are systematized. Possible improvements over the next 10-15 years in these processes were examined.

  15. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    KAUST Repository

    Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah; Rashidi, Mariam Al; Banyon, Colin; Mehl, Marco; Heufer, Karl Alexander; Nasir, Ehson Fawad; Alfazazi, Adamu; Das, Apurba K.; Westbrook, Charles K.; Pitz, William J.; Lu, Tianfeng; Farooq, Aamir; Sung, Chih-Jen; Curran, Henry J.; Sarathy, Mani

    2017-01-01

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents

  16. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  17. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai; Alabbad, Mohammed; El-Rachidi, Mariam; Mohamed, Samah; Singh, Eshan; Wang, Zhandong; Farooq, Aamir; Sarathy, Mani

    2016-01-01

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high

  18. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  19. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  20. 1984 CRC (Coordinating Research Council, Inc.) Octane Number Requirement Rating Workshop.

    Science.gov (United States)

    1985-06-01

    Richard J . Tither Mobil Oil Corporation Sam D. Vallas Amoco Oil Company Douglas A. Voss Chevron Research Company Andy Vukovic Shell Canada Dave G...Instrumentation, * Preparation a Test Fuels: Procurement of Fuels and Cans, and Coordina- tion of On-Site Handling e Data Handling and Analysis j 2 nI |S 0- B-2 V...Doug McCorkell Union Oil Company of California James D. Merritt Amoco Oil Company Michael J . Mlotkowski Mobil Oil Corporation John Pandosh Sun Tech

  1. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  2. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  3. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  4. Isomerization-cracking of n-octane on catalysts based on heteropolyacid H{sub 3}Pw{sub 12}O{sub 40} and heteropolyacid supported on zirconia and promoted with Pt and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Manuele, Debora L.; Torres, Gerardo C.; Benitez, Viviana M.; Badano, Juan M.; Yori, Juan C.; Sepulveda, Jorge H., E-mail: jsepulve@fiq.unl.edu.ar [Universidad Nacional de Litoral, Santa Fe (Argentina). Instituto de Investiaciones en Catalisis y Petroquimica. Consejo Nacional de Investigaciones Cientificas y Tecnicas

    2013-10-01

    Isomerization-cracking of n-octane was studied using H{sub 3}PW{sub 12}O{sub 40} (HPA) and HPA supported on zirconia and promoted with Pt and Cs. The addition of Pt and Cs to the supported HPA did not modify the Keggin structure. The Pt addition to the supported HPA did not substantially modify the total acidity; however, the Broensted acidity increased significantly. Cs increased the total acidity and Broensted acidity. A linear relation was observed between the n-C{sub 8} total conversion and Broensted acidity. The most adequate catalysts for performing isomerization and cracking to yield high research octane number (RON) are those with higher values of Broensted acidity. (author)

  5. Growth on Octane Alters the Membrane Lipid Fatty Acids of Pseudomonas oleovorans due to the Induction of alkB and Synthesis of Octanol

    NARCIS (Netherlands)

    Chen, Qi; Janssen, Dick B.; Witholt, Bernard

    1995-01-01

    Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the

  6. Compendium of Experimental Cetane Numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, Janet [Ecoengineering, Sharonville, OH (United States); Ratcliff, Matthew A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Taylor, J. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Murphy, M. J. [Battelle, Columbus, OH (United States)

    2017-02-22

    This report is an updated version of the 2014 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single-compound cetane number data found in the scientific literature up until December 2016 as well as a number of previously unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This version of the compendium contains cetane values for 496 pure compounds, including 204 hydrocarbons and 292 oxygenates. 176 individual measurements are new to this version of the compendium, all of them collected using ASTM Method D6890, which utilizes an Ignition Quality Tester (IQT) a type of constant-volume combustion chamber. For many compounds, numerous measurements are included, often collected by different researchers using different methods. The text of this document is unchanged from the 2014 version, except for the numbers of compounds in Section 3.1, the Appendices, Table 1. Primary Cetane Number Data Sources and Table 2. Number of Measurements Included in Compendium. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines. It is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant-volume combustion chamber. Values in the previous compendium derived from octane numbers have been removed and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane number has been expanded, and the data have been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  7. Effects of convective motion in n-octane pool fires in an ice cavity

    DEFF Research Database (Denmark)

    Farahani, Harried Farmahini; Jomaas, Grunde; Rangwala, Ali S.

    2015-01-01

    The effects of convective flows in n-octane pool fires in an ice cavity were investigated and it was found that a new set of parameters to the classical problem of bounded pool fires arises under these unique conditions. To systematically understand these parameters, two sets of experiments were...

  8. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol.

    Science.gov (United States)

    Chen, Q; Janssen, D B; Witholt, B

    1995-01-01

    Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the involvement of OCT-plasmid-encoded functions. When recombinant strain GPo12(pGEc47) carrying the alk genes from the OCT plasmid was grown on octane, the cells showed the same changes in fatty acid composition as those found for GPo1, indicating that such changes result from induction and expression of the alk genes. This finding was corroborated by inducing GPo12(pGEc47) with dicyclopropylketone (DCPK), a gratuitous inducer of the alk genes. Further experiments showed that the increase of the mean acyl chain length of fatty acids is related to the expression of alkB, which encodes a major integral membrane protein, while the formation of trans unsaturated fatty acids mainly results from the effects of 1-octanol, an octane oxidation product. PMID:7592483

  9. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  10. High Octane Fuel: Terminal Backgrounder

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanol-based high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions. When the HOF blend is made with 25%-40% ethanol by volume, this energy efficiency improvement is potentially sufficient to offset the reduced vehicle range often associated with the decreased volumetric energy density of ethanol. The purpose of this study is to assess the ability of the fuel supply chain to accommodate more ethanol at fuel terminals. Fuel terminals are midstream in the transportation fuel supply chain and serve to store and distribute fuels to end users. While there are no technical issues to storing more ethanol at fuel terminals, there are several factors that could impact the ability to deploy more ethanol. The most significant of these issues include the availability of land to add more infrastructure and accommodate more truck traffic for ethanol deliveries as well as a lengthy permitting process to erect more tanks.

  11. An amateur chemist's high-octane idea

    International Nuclear Information System (INIS)

    Koch, G.

    1996-01-01

    The construction of a state-of-the-art facility near Fort Saskatchewan, Alberta, which will produce the gasoline additive methyl tertiary butyl ether (MTBE), was discussed. The additive is considered to be an effective, safe and economical product to enhance gasoline's octane. Although expensive, (US$0.95 per US gallon) it has significant environmental benefits. It is less toxic that other additives such as benzene, xylene and toluene. MTBE reduces gasoline evaporation from tailpipes, refuelling and tank venting in hot weather. The company BioClean Fuels Inc., has patented its own multiple oxygenate manufacturing process which combines the CO 2 from fermentation with the H 2 from butane to produce methanol, a key MTBE ingredient. The new facility will consume 250 million gallons of butane and 650,000 metric tonnes of barley annually to produce 19,000 barrels of MTBE per day, mostly for the California market. 1 fig

  12. Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane

    International Nuclear Information System (INIS)

    Mejia, Andres; Cartes, Marcela; Segura, Hugo

    2011-01-01

    Highlights: → Experimental interfacial tensions in binary mixtures with aneotropic behavior. → Experimental interfacial tensions for ethanol + hydrocarbon mixtures. → Aneotropic displacement in ethanol mixtures. - Abstract: This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K. Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy. For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase. Finally, the experimental data of interfacial tensions were smoothed with the Scott-Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.

  13. High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, clevage and alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.

    1980-07-08

    A process is described for producing high octane value gasoline which comprises in a disproportionation zone subjecting propylene and a mixture of propylene and ethylene obtained as hereinafter delineated to disproportionation conditions to produce a stream containing ethylene and a stream containing butenes, passing the ethylene-containing stream from said disproportionation zone together with a catalytic cracking gasoline to a cleavage zone under disproportionation conditions and subjecting the mixture of hydrocarbons therin to cleavage to produce said mixture of propylene and ethylene, a C/sub 5//sup +/ gasoline-containing product and butenes and wherein the butenes obtained in the overall operation of the disproportionation zone and the cleavage zone are passed to an alkylation zone wherein said butenes are used to alkylate an isoparaffin to produce additional high octane value product.

  14. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang

    2018-01-01

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  15. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  16. Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane

    Directory of Open Access Journals (Sweden)

    Ashutosh Mishra

    2013-03-01

    Full Text Available The complete oxidation of n-Hexane and iso-Octane was studied individually in a fixed bed tubular flow reactor over CuO-CeO2 catalysts synthesized via four different methods namely urea-nitrate combustion method, urea gelation/co-precipitation method, citric acid sol-gel method and co-impregnation method. Laser diffraction was employed in catalysts characterization. The results obtained from the complete conversion of n-Hexane and iso-Octane revealed that the CuO-CeO2 catalysts prepared by urea-nitrate combustion method (UNC showed the best performance than the catalysts prepared by other methods used in the present investigation. CuO-CeO2 catalysts prepared by UNC method achieve total n-Hexane and iso-Octane conversion to CO2 at lower temperatures of 280 0C and 340 0C respectively due to the larger surface area of the catalysts which increases the specific rate of reaction. © 2013 BCREC UNDIP. All rights reservedReceived: 30th October 2012; Revised: 30th November 2012; Accepted: 3rd December 2012[How to Cite: A. Mishra, B.D. Tripathi, A.K. Rai, R. Prasad (2013. Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane. Bulletin of Chemical Reaction Engineering & Catalysis, 7(3: 172-178. (doi:10.9767/bcrec.7.3.4076.172-178][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4076.172-178 ] View in  |

  17. Conversion of the Iridoid Glucoside Antirrhinoside into 3-Azabicyclo[3.3.0]-octane Building Blocks

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    2000-01-01

    The iridoid glucoside antirrhinoside (1) was transformed into polysubstituted 3-azabicyclo[3.3.0]octanes 3, 12 and 13 in 4-5 steps. Ozonolysis of the diacetonide of 1 and of its 7-deoxy-derivative 8 afforded cyclopentanoids 2 and 10, respectively. Conditions for the selective conversion of 2 and 10...

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  19. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  20. Increasing Octane Value in Catalytic Cracking of n-Hexadecane with Addition of *BEA Type Zeolite

    Directory of Open Access Journals (Sweden)

    Iori Shimada

    2015-04-01

    Full Text Available In this study, multifunctional catalysts were developed by adding *BEA or MFI zeolite with high Si/Al ratio to a residual fluidized catalytic cracking (RFCC catalyst and tested in the catalytic cracking of n-hexadecane, which is a heavy crude oil model compound, for the purpose of increasing the octane value of produced gasoline under the strong hydrogen transfer activity of the RFCC catalyst. Reaction products analysis revealed that the addition of *BEA zeolite to the RFCC catalyst increased the yields of olefins and multi-branched paraffins, which resulted in improvement of the octane value without sacrificing gasoline yield. On the contrary, the addition of MFI zeolite decreased the gasoline yield because it cracks the gasoline range olefins into LPG range olefins. In general, it is difficult to increase the yield of multi-branched molecules because the multi-branched molecule is more easily cracked than linear molecules. Our results suggest the possibility for the selective acceleration of isomerization reaction by the addition of less acidic *BEA zeolite to the RFCC catalyst.

  1. 20 CFR 209.3 - Social security number required.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Social security number required. 209.3... RAILROAD EMPLOYERS' REPORTS AND RESPONSIBILITIES § 209.3 Social security number required. Each employer shall furnish to the Board a social security number for each employee for whom any report is submitted...

  2. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  3. Ignition delay measurements of light naphtha: A fully blended low octane fuel

    KAUST Repository

    Javed, Tamour

    2016-06-15

    Light naphtha is a fully blended, low-octane (RON. = 64.5, MON. = 63.5), highly paraffinic (>. 90% paraffinic content) fuel, and is one of the first distillates obtained during the crude oil refining process. Light naphtha is an attractive low-cost fuel candidate for advanced low-temperature compression ignition engines where autoignition is the primary control mechanism. We measured ignition delay times for light naphtha in a shock tube and a rapid compression machine (RCM) over a broad range of temperatures (640-1250. K), pressures (20 and 40. bar) and equivalence ratios (0.5, 1 and 2). Ignition delay times were modeled using a two-component primary reference fuel (PRF) surrogate and a multi-component surrogate. Both surrogates adequately captured the measured ignition delay times of light naphtha under shock tube conditions. However, for low-temperature RCM conditions, simulations with the multi-component surrogate showed better agreement with experimental data. These simulated surrogate trends were confirmed by measuring the ignition delay times of the PRF and multi-component surrogates in the RCM at . P = 20. bar, . ϕ = 2. Detailed kinetic analyses were undertaken to ascertain the dependence of the surrogates\\' reactivity on their chemical composition. To the best of our knowledge, this is the first fundamental autoignition study on the reactivity of a low-octane fully blended fuel and the use of a suitably formulated multi-component surrogate to model its behavior.

  4. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil.

    Science.gov (United States)

    Liu, Kehai; Chen, Qiulin; Liu, Yanjun; Zhou, Xiaoyan; Wang, Xichang

    2012-11-01

    Product 1 (82.25% valencene), product 2 (73.36% decanal), product 3 (78.12% octanal), and product 4 (90.61% linalool) were isolated from sweet orange oil by combined usage of molecular distillation and column chromatography. The antioxidant activity of sweet orange oil and these products was investigated using 2,2-diphenyl-1-picrylhydrazyl and reducing power assays. In this test, product 1 (82.25% valencene), product 2 (73.36% decanal), and product 4 (90.61% linalool) had antioxidant activity, but lower than sweet orange oil. The antimicrobial activity was investigated in order to evaluate their efficacy against 5 microorganisms. The results showed that sweet orange oil, product 2 (73.36% decanal), product 3 (78.12% octanal), and product 4 (90.61% linalool) had inhibitory and bactericidal effect on the test microorganisms (except Penicillium citrinum). Valencene did not show any inhibitory effect. Saccharomyces cerivisiae was more susceptible, especially to the crude sweet orange oil (minimal inhibitory concentration 6.25 μL/mL). The cytotoxicity was evaluated on Hela cells using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. All test samples showed significant cytotoxicity on the cell lines with IC(50) values much less than 20 μg/mL. © 2012 Institute of Food Technologists®

  5. Excess molar volume along with viscosity, refractive index and relative permittivity for binary mixtures of exo-tetrahydrodicyclopentadiene with four octane isomers

    International Nuclear Information System (INIS)

    Yue, Lei; Qin, Xiaomei; Wu, Xi; Xu, Li; Guo, Yongsheng; Fang, Wenjun

    2015-01-01

    Highlights: • Binary mixtures of JP-10 with octane isomers are studied as model hydrocarbon fuels. • Density, viscosity, refractive index and relative permittivity are determined. • Excess molar volumes and viscosity deviations are calculated and correlated. - Abstract: The fundamental physical properties including density, viscosity, refractive index and relative permittivity, have been measured for binary mixtures of exo-tetrahydrodicyclopentadiene (JP-10) with four octane isomers (n-octane, 3-methylheptane, 2,4-dimethylhexane and 2,2,4-trimethylpentane) over the whole composition range at temperatures T = (293.15 to 313.15) K and pressure p = 0.1 MPa. The values of excess molar volume (V m E ), viscosity deviation (Δη), refractive index deviation (Δn D ) and relative permittivity deviation (Δε r ) are then calculated. All of the values of V m E and Δη are observed to be negative, while those of Δn D and Δε r are close to zero. The effects of temperature and composition on the variation of V m E values are discussed. The negative values of V m E and Δη are conductive to high-density and low-resistance of fuels, which is favorable for the design and preparation of advanced hydrocarbon fuels

  6. Novel selective catalytic reduction with tritium: synthesis of the GABAA receptor radioligand 1-(4-ethynylphenyl)-4-[2,3-3H2]propyl-2,6,7-trioxabicyclo[2.2.2 ]octane

    International Nuclear Information System (INIS)

    Palmer, C.J.; Casida, J.E.

    1991-01-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo[2.2.2] octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-[2,3- 3 H 2 ] propyl-2,6,7-trioxabicyclo-[2.2.2] octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-[2,3- 3 H 2 ]propyl-1-[4-[(trimethylsilyl)ethynyl]phenyl]-2,6,7-trioxabicyclo[2.2.2]octane is useful for studies on the metabolic activation of this selective proinsecticide. (author)

  7. 33 CFR 181.23 - Hull identification numbers required.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hull identification numbers... SECURITY (CONTINUED) BOATING SAFETY MANUFACTURER REQUIREMENTS Identification of Boats § 181.23 Hull... identify each boat produced or imported with two hull identification numbers that meet the requirements of...

  8. Synthesis and structure-activity relationship of di-(3, 8-diazabicyclo[3.2.1]octane) diquaternary ammonium salts as unique analgesics.

    Science.gov (United States)

    Liu, Hong; Cheng, Tie-Ming; Zhang, Hong-Mei; Li, Run-Tao

    2003-11-01

    Based on the structure characteristics of the lead compounds, 1, 1' octanedioyl-4, 4'-dimethyl-4, 4'-dibenzyl dipiperazinium dibromide (2) and 3, 8-disubstituted-3, 8-diazabicyclo [3.2.1]octanes (DBO), di-(3, 8-diazabicyclo [3.2.1]octane) diquaternary ammonium salts 3 a-c were designed and synthesized through a highly practical procedure. Target compounds 3 a-c and the hydrochloride salts of their precursors 10 a-c were evaluated for their in vivo analgesic and sedative activities. Interestingly, the introduction of an endoethylenic bridge in the piperazine of lead compound 2 causes loss of the analgesic activity and increases the toxicity dramatically. This result shows that the flexible conformation of piperazine in compound 2 is favorable for interaction with the receptor, and the quaternization of compounds 10 a-c is the main reason for the toxicity increase.

  9. Well-to-Wheels Greenhouse Gas Emission Analysis of High-Octane Fuels with Ethanol Blending: Phase II Analysis with Refinery Investment Options

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; DiVita, Vincent [Jacobs Consultancy Inc., Houston, TX (United States)

    2016-08-01

    Higher-octane gasoline can enable increases in an internal combustion engine’s energy efficiency and a vehicle’s fuel economy by allowing an increase in the engine compression ratio and/or by enabling downspeeding and downsizing. Producing high-octane fuel (HOF) with the current level of ethanol blending (E10) could increase the energy and greenhouse gas (GHG) emissions intensity of the fuel product from refinery operations. Alternatively, increasing the ethanol blending level in final gasoline products could be a promising solution to HOF production because of the high octane rating and potentially low blended Reid vapor pressure (RVP) of ethanol at 25% and higher of the ethanol blending level by volume. In our previous HOF well-to-wheels (WTW) report (the so-called phase I report of the HOF WTW analysis), we conducted WTW analysis of HOF with different ethanol blending levels (i.e., E10, E25, and E40) and a range of vehicle efficiency gains with detailed petroleum refinery linear programming (LP) modeling by Jacobs Consultancy and showed that the overall WTW GHG emission changes associated with HOFVs were dominated by the positive impact associated with vehicle efficiency gains and ethanol blending levels, while the refining operations to produce gasoline blendstock for oxygenate blending (BOB) for various HOF blend levels had a much smaller impact on WTW GHG emissions (Han et al. 2015). The scope of the previous phase I study, however, was limited to evaluating PADDs 2 and 3 operation changes with various HOF market share scenarios and ethanol blending levels. Also, the study used three typical configuration models of refineries (cracking, light coking, and heavy coking) in each PADD, which may not be representative of the aggregate response of all refineries in each PADD to various ethanol blending levels and HOF market scenarios. Lastly, the phase I study assumed no new refinery expansion in the existing refineries, which limited E10 HOF production to the

  10. Stereochemical preference of yeast epoxide hydrolase for the O-axial C3 epimers of 1-oxaspiro[2.5] octanes

    NARCIS (Netherlands)

    Weijers, C.A.G.M.; Koenst, P.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2007-01-01

    The 1-oxaspiro[2.5]octane moiety is a common motif in many biologically active spiroepoxide compounds. Stereochemistry plays an important role in the action of these spiroepoxides, since the O-axial C3 epimers are predominantly responsible for biological activity. In view of this, the reactivity of

  11. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Jonathan L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sindler, Petr [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fouts, Lisa A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.

  12. Stereoselectivity and substrate specificity in the kinetic resolution of methyl-substituted 1-oxaspiro[2.5]octanes by Rhodotorula glutinis epoxide hydrolase

    NARCIS (Netherlands)

    Weijers, C.A.G.M.; Meeuwse, P.; Herpers, R.L.J.M.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2005-01-01

    [GRAPHICS] The kinetic resolution of a range of methyl-substituted 1-oxaspiro[2.5]octanes by yeast epoxide hydrolase (YEH) from Rhodotorula glutinis has been investigated. The structural determinants of substrate specificity and stereoselectivity of YEH toward these substrates appeared to be the

  13. Novel selective catalytic reduction with tritium: synthesis of the GABA sub A receptor radioligand 1-(4-ethynylphenyl)-4-(2,3- sup 3 H sub 2 )propyl-2,6,7-trioxabicyclo(2. 2. 2 )octane

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J; Casida, J E [California Univ., Berkeley, CA (United States). Pesticide Chemistry and Toxicology Lab.

    1991-07-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo(2.2.2) octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-(2,3-{sup 3}H{sub 2}) propyl-2,6,7-trioxabicyclo-(2.2.2) octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-(2,3-{sup 3}H{sub 2})propyl-1-(4-((trimethylsilyl)ethynyl)phenyl)-2,6,7-trioxabicyclo(2.2.2)octane is useful for studies on the metabolic activation of this selective proinsecticide. (author).

  14. An experimental assessment on the influence of high octane fuels on biofuel based dual fuel engine performance, emission, and combustion

    Directory of Open Access Journals (Sweden)

    Masimalai Senthilkumar

    2017-01-01

    Full Text Available This paper presents an experimental study on the effect of different high octane fuels (such as eucalyptus oil, ethanol, and methanol on engine’s performance behaviour of a biofuel based dual fuel engine. A single cylinder Diesel engine was modified and tested under dual fuel mode of operation. Initially the engine was run using neat diesel, neat mahua oil as fuels. In the second phase, the engine was operated in dual fuel mode by using a specially designed variable jet carburettor to supply the high octane fuels. Engine trials were made at 100% and 40% loads (power outputs with varying amounts of high octane fuels up-to the maximum possible limit. The performance and emission characteristics of the engine were obtained and analysed. Results indicated significant improvement in brake thermal efficiency simultaneous reduction in smoke and NO emissions in dual fuel operation with all the inducted fuels. At 100% load the brake thermal efficiency increased from 25.6% to a maximum of 32.3, 30.5, and 28.4%, respectively, with eucalyptus oil, ethanol, and methanol as primary fuels. Smoke was reduced drastically from 78% with neat mahua oil a minimum of 41, 48, and 53%, respectively, with eucalyptus oil, ethanol, and methanol at the maximum efficiency point. The optimal energy share for the best engine behaviour was found to be 44.6, 27.3, and 23.2%, respectively, for eucalyptus oil, ethanol, and methanol at 100% load. Among the primary fuels tested, eucalyptus oil showed the maximum brake thermal efficiency, minimum smoke and NO emissions and maximum energy replacement for the optimal operation of the engine.

  15. Computer simulations of material ejection during C{sub 60} and Ar{sub m} bombardment of octane and β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Palka, G.; Kanski, M.; Maciazek, D. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Garrison, B.J. [Department of Chemistry, 104 Chemistry Building, Penn State University, University Park, PA 16802 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)

    2015-06-01

    Molecular dynamics (MD) computer simulations are used to investigate material ejection and fragment formation during keV C{sub 60} and Ar{sub m} (m = 60, 101, 205, 366, 872 and 2953) bombardment of organic solids composed from octane and β-carotene molecules at 0° and 45° impact angle. Both systems are found to sputter efficiently. For the octane system, material removal occurs predominantly by ejection of intact molecules, while fragment emission is a significant ejection channel for β-carotene. A difference in the molecular dimensions is proposed to explain this observation. It has been shown that the dependence of the sputtering yield Y on the primary kinetic energy E and the cluster size n can be expressed in a simplified form if represented in reduced units. A linear and nonlinear dependence of the Y/n on the E/n are identified and the position of the transition point from the linear to nonlinear regions depends on the size of the cluster projectile. The impact angle has a minor influence on the shape of the simplified representation.

  16. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    Science.gov (United States)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  17. A divergent [5+2] cascade approach to bicyclo[3.2.1]octanes: facile synthesis of ent-kaurene and cedrene-type skeletons.

    Science.gov (United States)

    He, Chi; Bai, Zengbing; Hu, Jialei; Wang, Bingnan; Xie, Hujun; Yu, Lei; Ding, Hanfeng

    2017-07-25

    A solvent-dependent oxidative dearomatization-induced divergent [5+2] cascade approach to bicyclo[3.2.1]octanes was described. This novel protocol enables a facile synthesis of a series of diversely functionalized ent-kaurene and cedrene-type skeletons in good yields and excellent diastereoselectivities.

  18. Analogues of the muscarinic agent 2'-methylspiro[1-azabicyclo[2.2.2]octane-3,4'-[1,3]dioxolane]: synthesis and pharmacology.

    Science.gov (United States)

    Nordvall, G; Sundquist, S; Glas, G; Gogoll, A; Nilvebrant, L; Hacksell, U

    1992-05-01

    A number of tetrahydrofuran analogues of 2'-methylspiro[1-azabicyclo[2.2.2]octane-3,4'-[1,3]dioxolane] (1) have been prepared with the aim to obtain information about the relative importance of each of the oxygens in 1 for efficacy and for selectivity. In addition, the dimethyl and desmethyl analogues of 1 were prepared. The new compounds were compared to cis- and trans-1 with regard to their ability to displace (-)-[3H]-3-quinuclidinyl benzilate ((-)-[3H]QNB) from muscarinic receptors in cerebral cortex, heart, parotid gland, and urinary bladder from guinea pigs. Functional studies were made on isolated guinea pig bladder and ileum. The new compounds exhibited both lower affinity and efficacy than cis-1. A conformational study was performed, and the effects of steric and electronic factors on the biological activity of the compounds are discussed.

  19. 14N NQR study of hydrogen bonded complexes of 1,4 diazabicyclo [2,2,2] octane (ted) with phenols and thiourea

    Science.gov (United States)

    Murgich, Juan; Magaly, Santana R.; Diaz, Olga E.

    The 14N NQR spectra of H bonded complexes of 1,4 diazabicyclo [2,2,2] octane, also known as triethylenediamine (TED), with phenol (1:2), p-chlorophenol (1:2), p-nitrophenol (1:2), hydroquinone (1:1), resorcinol (1:1) and thiourea (1:2) were observed at 77 K. The 14N frequency shifts produced by the H bonds in the TED complexes were approximately two times larger than those found for similar complexes of Hexamethylenetetramine (HMT). Such change was explained by the effect on the remaining N atoms of the increase in the number of -CH 2- groups and the decrease in N atoms in passing from HMT to TED. From the above results it seems that the inductive effect plays an important role in the formation of H bonds in tertiary amines like HMT and TED.

  20. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, E. C. D.; Talmadge, M.; Dutta, A.; Hensley, J.; Schaidle, J.; Biddy, M.; Humbird, D.; Snowden-Swan, L. J.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  1. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  2. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Cha, Junepyo

    2015-01-01

    -octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel

  3. Research of combustion in older generation spark-ignition engines in the condition of use leaded and unleaded petrol

    Directory of Open Access Journals (Sweden)

    Bulatović Željko M.

    2014-01-01

    Full Text Available This paper analyzes the potential problems in the exploitation of the older generation of spark-ignition engines with higher octane number of petrol (unleaded petrol BMB 95 than required (leaded petrol MB 86. Within the experimental tests on two different engines (STEYR-PUCH model 712 and GAZ 41 by applying piezoelectric pressure sensors integrated with the engine spark plugs, acceleration sensors (accelerometers and special electronic block connected with distributor, show that the cumulative first and second theoretical phase of combustion when petrol of higher octane number (BMB 95 is used lasts slightly longer than when the low-octane petrol MB 86 is used. For new petrol (BMB 95 higher optimal angles of pre-ignition have been determined by which better performances of the engine are achieved without a danger of the combustion with detonation (also called knocking.

  4. Economic and environmental benefits of higher-octane gasoline.

    Science.gov (United States)

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  5. PENGARUH PENAMBAHAN ZAT ADITIF OCTANE BOOSTER X TERHADAP KINERJA DAN EMISI GAS BUANG KENDARAAN SEPEDA MOTOR TIPE ALL NEW CBR150R

    Directory of Open Access Journals (Sweden)

    Gusti Yuditia Rahmadian

    2017-11-01

    Full Text Available Proses pembakaran pada kendaraan bermotor sangat mempengaruhi kinerja mesin secara keseluruhan dan efisiensi pembakaran pada mesin itu sendiri. Zat aditif merupakan bahan yang ditambahkan pada bahan bakar, baik mesin bensin maupun mesin diesel. Zat aditif digunakan sebagai anti knocking akibat pembakaran yang tidak sempurna dan meningkatakan angka oktan untuk bahan bakar bensin. Penelitian ini bertujuan untuk menganalisis pengaruh komposisi penggunaan zat aditif Octane Booster terhadap kinerja mesin motor CBR150R tahun 2014 menggunakan Dyno test, gas analyzer dan tes konsumsi bahan bakar. Berdasarkan eksperimen didapatkan bahwa campuran komposisi OB2 (1 liter pertamax ditambah 3 ml zat aditif Octane Booster membuat daya dan torsi meningkat menjadi 12.54 kW @10500 rpm dan 12.17 Nm @y500 rpm, serta menurunkan kadar CO menjadi 0.08 % Vol, HC menjadi 129 ppm Vol, O2 menjadi 2.68 % Vol dan menaikkan kadar CO2 menjadi 9.82 % Vol dan masih berada di bawah ambang batas dari ketentuan pemerintah. Komposisi tersebut juga menurunkan tingkat konsumsi bahan bakar menjadi 22.73 ,l/km yang membuat kendaraan menjadi lebih irit.

  6. 42 CFR 456.245 - Number of studies required to be performed.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Number of studies required to be performed. 456.245 Section 456.245 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Ur Plan: Medical Care Evaluation Studies § 456.245 Number of studies required to be performed. The...

  7. 42 CFR 456.145 - Number of studies required to be performed.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Number of studies required to be performed. 456.145 Section 456.145 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN...: Medical Care Evaluation Studies § 456.145 Number of studies required to be performed. The hospital must...

  8. Dissolution of di-2-ethylhexyl phosphates of ree in an octane + octanol mixture under the influence of gaseous ammonia

    International Nuclear Information System (INIS)

    Trifonov, Y.I.; Legin, E.K.; Suglobov, D.N.

    1986-01-01

    The authors find that the solubility of di-2-ethylhexyl phosphates rises considerably under the influence of gaseous ammonia on the solvent-LnA 3 system when a mixture of octane and octanol is used as solvent. The dissolving power of ammonia rises with alcohol concentration and attains the maximum at an alcohol content of ca 20 vol. %. An equation is presented that describes the dependence of the LnA 3 solubility on the partial amonia pressure

  9. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    KAUST Repository

    Singh, Eshan; Badra, Jihad; Mehl, Marco; Sarathy, Mani

    2017-01-01

    the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79

  10. Excess Molar Volumes of (Octane + 1-Chloropentane) at Temperatures between 298.15 K and 328.15 K and at Pressures up to 40 MPa

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Linek, Jan

    2003-01-01

    Roč. 35, č. 7 (2003), s. 1119-1127 ISSN 0021-9614 R&D Projects: GA ČR GA203/00/0600; GA ČR GA203/02/1098 Institutional research plan: CEZ:AV0Z4072921 Keywords : octane * 1-chloropentane * binary mixture Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.986, year: 2003

  11. Comparative Studies of Gasoline Samples Used in Nigeria *1U.Z ...

    African Journals Online (AJOL)

    on octane number, sulphur content, Reid vapour pressure, specific gravity, boiling point ... combustion engine, its chemical composition varies .... into the system. .... to improve performance and reduce exhaust .... The effect of Octane Number.

  12. Excess Molar Volumes of (Octane + Benzene, or + Toluene, or + 1,3-Xylene, or 1,3,5-Trimethylbenzene) at Temperatures between (298.15 K and 328.15) K

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Linek, Jan

    2008-01-01

    Roč. 40, č. 4 (2008), s. 671-676 ISSN 0021-9614 R&D Projects: GA ČR(CZ) GA104/06/0656 Institutional research plan: CEZ:AV0Z40720504 Keywords : octane * benzene * excess volume Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.876, year: 2008

  13. Rational design and enantioselective synthesis of (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid - a novel inhibitor at human glutamate transporter subtypes 1, 2, and 3

    DEFF Research Database (Denmark)

    Bunch, Lennart; Nielsen, Birgitte; Jensen, Anders A.

    2006-01-01

    The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S)-pyroglut......The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S...

  14. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  15. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  16. Density, viscosity and excess molar volume of binary mixtures of tri-n-octylamine + diluents (n-heptane, n-octane, n-nonane, and n-decane) at various temperatures

    International Nuclear Information System (INIS)

    Fang, Sheng; Zuo, Xiao-Bo; Xu, Xue-Jiao; Ren, Da-Hai

    2014-01-01

    Highlights: • Densities and viscosities of tri-n-octylamine + n-heptane, +n-octane, +n-nonane, or +n-decane are determined. • The excess molar volume is calculated. • The Grunberg and Nissan equation and Fang and He equation are used to correlate the binary viscosities. -- Abstract: Densities (ρ) and viscosities (η) for binary mixtures of tri-n-octylamine (TOA) + n-heptane, TOA + n-octane, TOA + n-nonane, and TOA + n-decane are determined at T (283.15, 293.15, and 303.15) K and atmospheric pressure. The excess molar volume is calculated from the density data and is correlated by a Redlich–Kister type equation. The excess molar volume is negative for all the four systems. The results show that the volume accommodation effect is predominant in these systems. The Grunberg and Nissan equation and Fang and He equation for binary mixtures are used to correlate the experimental viscosity data. The Fang and He equation gives an average absolute deviation (AAD%) of 0.8% for TOA with alkane mixtures, better than that of 3.8% given by the Grunberg and Nissan equation

  17. 4-Aza-1-azoniabicyclo?[2.2.2]octa?ne?2-amino?benzoate?2-amino?benzoic acid (1/1/1)

    OpenAIRE

    Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.

    2011-01-01

    A 4-aza-1-azoniabicyclo[2.2.2]octane cation, a 2-aminobenzoate anion and a neutral 2-aminobenzoic acid molecule comprise the asymmetric unit of the title compound, C6H13N2+·C7H6NO2−·C7H7NO2. An intramolecular N—H...O hydrogen bond occurs in the anion and in the neutral 2-aminobenzoic acid molecule. The cation provides a charge-assisted N—H...O hydrogen bond to the anion, and the 2-aminobenzoic acid molecule forms an O—H...N hydrogen bo...

  18. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  19. Requirements on qualification, competence and sufficient number of personnel for NPP operation

    International Nuclear Information System (INIS)

    Simon, M.

    2004-01-01

    The safe operation of NPPs presupposes qualified personnel on site in sufficient numbers. While the acquisition and preservation of technical expertise and the qualification of the shift personnel and other staff is well regulated by regulatory guidelines in Germany, there is a lack of such regulations with the exception for shift personnel - for the minimum number of technical personnel required for safe operation of a NPP. By order of the BMU, an attempt was made with this study to work out the requirements for qualification, competence and number of personnel to be maintained at the plant, representing the minimum requirements for safe operation of a NPP. The scope of the project was restricted to requirements for technical plant personnel. The aim was to work out requirements which would be as independent as possible of the existing organisation in a particular power plant. This study therefore does not assume a given organisational structure but was rather more oriented on the work processes in a NPP which are the basis for planning and performing routine work in the plant. For the study a work process model of typical tasks in a NPP had to be developed. Then, the tasks to be performed within the so defined work processes were described (task profiles) on the basis of existing manuals for plant organisation. From these task profiles such tasks were defined or selected which shall not be delegated to external personnel for specific reasons, and which were called vital competences. To keep these vital competences at the plant, an assessment and/or calculation of the necessary number of plant technical personnel was made using the task profiles for responsible personnel, but also by the evaluation of thousands of work orders for maintenance personnel. On the basis of these data, a proposal was made for the minimal number of technical personnel which is necessary to operate a NPP unit safely. Beside of this number, general criteria were developed which should be

  20. Mapping surrogate gasoline compositions into RON/MON space

    NARCIS (Netherlands)

    Morgan, N.; Smallbone, A.; Bhave, A.; Kraft, M.; Cracknell, R.; Kalghatgi, G.T.

    2010-01-01

    In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane

  1. Compressed liquid densities for the (n-heptane + n-decane) and (n-octane + n-decane) systems from T = (313 to 363) K

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo-Nolasco, Rodolfo [Laboratorio de Termodinamica, SEPI-ESIQIE, Instituto Politecnico Nacional, UPALM, Ed. Z, Secc. 6, 1ER piso, Lindavista, C.P. 07738 Mexico D.F. (Mexico); Galicia-Luna, Luis A., E-mail: lgalicial@ipn.mx [Laboratorio de Termodinamica, SEPI-ESIQIE, Instituto Politecnico Nacional, UPALM, Ed. Z, Secc. 6, 1ER piso, Lindavista, C.P. 07738 Mexico D.F. (Mexico); Elizalde-Solis, Octavio [Departamento de Ingenieria Quimica Petrolera, ESIQIE, Instituto Politecnico Nacional, UPALM, Edif. 8, 2o piso, Lindavista, C.P. 07738 Mexico D.F. (Mexico)

    2012-01-15

    Highlights: > We built an equipment which consists of a variable volume cell and a VTD Anton Paar DMA-HPM. > Compressed liquid densities are reported for n-heptane and n-decane. > Binary (n-heptane or n-octane + n-decane) systems were studied in the whole range of composition. > Derived properties were calculated from experimental data. - Abstract: Densities (p, {rho}, T, x{sub 1}) of two binary n-alkane systems are reported from T = (313 to 363) K in the compressed liquid phase up to 25 MPa over the whole range of composition. The binary mixtures {l_brace}x{sub 1}n-heptane + (1 - x{sub 1})n-decane{r_brace} and {l_brace}x{sub 1}n-octane + (1 - x{sub 1})n-decane{r_brace} were prepared at compositions of (x{sub 1} = 0.0531, 0.2594, 0.5219, 0.777, 0.952), and (x{sub 1} = 0.0616, 0.2801, 0.5314, 0.7736, 0.9623), respectively. A measuring system based on a vibrating tube densimeter, DMA HPM from Anton Paar with data acquisition system was developed in order to obtain experimental densities. Water and nitrogen were used as reference fluids to calibrate the densimeter. Experimental methodology was checked by comparing the n-heptane and n-decane densities against multi-parameter equations proposed in the literature. Differences between both sets of data show a maximum deviation of 0.07%. Excess molar volumes, isothermal compressibility and isobaric thermal expansivity were computed from experimental densities.

  2. Compressed liquid densities for the (n-heptane + n-decane) and (n-octane + n-decane) systems from T = (313 to 363) K

    International Nuclear Information System (INIS)

    Quevedo-Nolasco, Rodolfo; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio

    2012-01-01

    Highlights: → We built an equipment which consists of a variable volume cell and a VTD Anton Paar DMA-HPM. → Compressed liquid densities are reported for n-heptane and n-decane. → Binary (n-heptane or n-octane + n-decane) systems were studied in the whole range of composition. → Derived properties were calculated from experimental data. - Abstract: Densities (p, ρ, T, x 1 ) of two binary n-alkane systems are reported from T = (313 to 363) K in the compressed liquid phase up to 25 MPa over the whole range of composition. The binary mixtures {x 1 n-heptane + (1 - x 1 )n-decane} and {x 1 n-octane + (1 - x 1 )n-decane} were prepared at compositions of (x 1 = 0.0531, 0.2594, 0.5219, 0.777, 0.952), and (x 1 = 0.0616, 0.2801, 0.5314, 0.7736, 0.9623), respectively. A measuring system based on a vibrating tube densimeter, DMA HPM from Anton Paar with data acquisition system was developed in order to obtain experimental densities. Water and nitrogen were used as reference fluids to calibrate the densimeter. Experimental methodology was checked by comparing the n-heptane and n-decane densities against multi-parameter equations proposed in the literature. Differences between both sets of data show a maximum deviation of 0.07%. Excess molar volumes, isothermal compressibility and isobaric thermal expansivity were computed from experimental densities.

  3. Gasoline marketing

    International Nuclear Information System (INIS)

    England-Joseph, J.

    1991-06-01

    This paper is a discussion of two reports. One, issued in April 1990, addresses gasoline octane mislabeling, and the other, issued in February 1991, addresses possible consumer overbuying of premium gasoline. Consumers can purchase several grades of unleaded gasoline with different octane ratings regular (87 octane), mid-grade (89 octane), and premium (91 octane or above). A major concern of consumer buying gasoline is that they purchase gasoline with an octane rating that meets their vehicles' octane requirements. In summary, it was found that consumers may unknowingly be purchasing gasoline with lower octane than needed because octane ratings are mislabeled on gasoline pumps. At the same time, other consumers, believing they may get better performance, may be knowingly buying higher priced premium gasoline when regular gasoline would meet their vehicles' needs. These practices could be coasting consumers hundred of millions of dollars each year

  4. Crystal structure of bis(1,4-diazabicyclo[2.2.2]octan-1-ium thiosulfate dihydrate

    Directory of Open Access Journals (Sweden)

    Gorgui Awa Seck

    2016-03-01

    Full Text Available The crystal structure of the hydrated title salt, 2C6H13N2+·S2O32−·2H2O, contains a centrosymmetric cyclic motif of eight hydrogen-bonded molecular subunits. Two DABCOH+ cations (DABCO = 1,4-diazabicyclo[2.2.2]octane are linked to two water molecules and two thiosulfate anions via O—H...N and O—H...O hydrogen bonds, respectively. Two other water molecules close the cyclic motif through O—H...O contacts to the first two water molecules and to the two thiosulfate anions. A second pair of DABCOH+ cations is N—H...O hydrogen bonded to the two anions and is pendant to the ring. Adjacent cyclic motifs are bridged into a block-like arrangement extending along [100] through O—H...O interactions involving the second pair of water molecules and neighbouring thiosulfate anions.

  5. Phase equilibria of microemulsion forming system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol

    DEFF Research Database (Denmark)

    Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan

    1997-01-01

    of multicomponent system is the coexistence of a highly structural liquid phase enriched with amphiphilic compounds and an excess water or an excess oil phase or both of them. The phase behaviour was studied experimentally by use of turbidity titration and HPLC measurements and theoretically by application...... of the UNIQUAC-equation and the UNIFAC-method. The UNIFAC-method is able to describe the phase behaviour in the quaternary system qualitatively, without fitting parameters. However, by applying the UNIQUAC-method, with adjustable parameters, it was only possible to model the ternary subsystems. The modelling......A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...

  6. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  7. Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.

    Science.gov (United States)

    Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G

    1988-05-01

    A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.

  8. Hydrogen condensation products of Turkmenistan gas fields as motor fuel components

    Energy Technology Data Exchange (ETDEWEB)

    Kul-dzhaev, B.A.; Sergienko, S.R.; Tsibrova, E.G.

    1985-07-01

    Technical data are provided in tabular form on the composition of hydrocarbon condensation products obtained from various gas fields in Turkmenia, with an analysis of their usefulness as gasoline and diesel fuels. For example, high-paraffin condensates are characterized by low octane numbers (30-50) of the gasoline fraction (150-180/sup 0/C). However, lowering the temperature at the end of distillation to 120-130/sup 0/C increased the octane number to 73, one point higher than required by State Standards for automobile gasoline A-72. The cetane number of diesel fuels in general exceed the State Standards, especially in the case of fractions 150/sup 0/C and 180/sup 0/C of the high-paraffin condensates obtained from the Shatlyk site. Summarized data are presented on the suitability of the products obtained from the different site for the different types of fuels. 4 references.

  9. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    Science.gov (United States)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  10. Antiknock additives for engine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Poletaeva, O. [Ufa State Petroleum Technological Univ., Ufa (Russian Federation); Movsumzade, E. [Institute of Education of Indigenous Small-Nambered Peoples of the North RAE, Moscow (Russian Federation)

    2013-11-01

    Obtaining gasoline with necessary quality and quantity is an actual problem. To increase fuel resources in the development are involved heavy oil, shale gas with further obtaining synthetic oil. Here is presented an analysis of processing technologies of natural and synthetic oil obtained in the Fischer-Tropsch synthesis, wherein focus is on octane number of gasoline fraction. Due to the low octane number, resolution of questions related to improving the detonation resistance, does not lose its relevance to the present day. Represented a quantum-chemical studies of some antiknock agents in the purpose by quantum chemistry methods to identify trends to increase the octane number of compounds and gasoline when they are added. (orig.)

  11. Linear chain compounds of molybdenum (II) acetate linked by pyrazine, 4,4'-bipyridine, and 1,4-diazabicyclo[2.2.2]octane

    International Nuclear Information System (INIS)

    Handa, Makoto; Yamada, Kori; Nakao, Tadahiro; Matsumoto, Hiroki; Kasuga, Kuninobu; Mikuriya, Masahiro; Kotera, Takanori.

    1995-01-01

    A series of linear-chain complexes of molybdenum (II) acetate linked by bidentate bridging ligands, [Mo 2 (O 2 CCH 3 ) 4 L] n (L=pyrazine (pyz), 4,4'-bipyridine (4,4'-bpy), and 1,4-diazabicyclo[2.2.2]octane (dabco)), have been prepared, and their crystal structures determined by an X-ray diffraction method. It has been shown that the relatively weak coordinations of the bridging ligands at the axial positions of Mo 2 (O 2 CCH 3 ) 4 (Mo-N=2.619 (8)-2.658(6) A) can effectively control the arrangement of the dimer units to give chain structures with good linearities. No significant interactions between the dimer units have been observed. (author)

  12. Changes of refractive indices in ternary mixtures containing chlorobenzene + n-hexane + (n-heptane or n-octane at 298.15 K

    Directory of Open Access Journals (Sweden)

    M. IGLESIAS

    2004-06-01

    Full Text Available The refractive indices of ternary mixtures of chlorobenzene + n-hexane + (n-heptane or n-octane have been measured at 298.15 K and at atmospheric pressure over the whole composition diagram. Parameters of polynomial equations which represent the composition dependence of physical and derived properties are gathered. The experimental refractive indices and the ternary derived properties are compared with the data obtained using several predictive semi-empirical models. The use of the Soave–Redlich–Kwong (SRK and the Peng–Robinson (PR cubic equations of state with the Van der Waals one-fluid mixing rule, which incorporate different combining rules to predict refractive indices on mixing, are tested against the measured results, good agrement being obtained.

  13. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl Magnus Goran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vuilleumier, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

  14. Crystal structures of 1,4-diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate and 1,4-diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate: the influence of solvent upon the stoichiometry of the formed salt

    Directory of Open Access Journals (Sweden)

    Aina Mardia Akhmad Aznan

    2014-07-01

    Full Text Available The 1:1 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (DABCO with 4-nitrobenzoic acid in ethanol–water (3/1 gave the salt dihydrate C6H13N2+·C7H4NO4−·2H2O, (1, whereas from methanol, the salt C6H14N22+·2C7H4NO4−, (2, was isolated. In (1, the cation and anion are linked by a strong N—H...O hydrogen bond, and the carboxylate anion is close to planar [dihedral angle between terminal residues = 6.83 (9°]. In (2, a three-ion aggregate is assembled by two N—H...O hydrogen bonds, and the carboxylate anions are again close to planar [dihedral angles between terminal residues = 1.7 (3 and 5.9 (3°]. Through the intervention of solvent water molecules, which self-assemble into helical supramolecular chains along the b axis, the three-dimensional architecture in (1 is stabilized by water–DABCO O—H...N and water–carboxylate O—H...O hydrogen bonds, with additional stability afforded by C—H...O interactions. The global crystal structure comprises alternating layers of water molecules and ion pairs stacked along the c axis. In the crystal of (2, the three-ion aggregates are assembled into a three-dimensional architecture by a large number of methylene–carboxylate/nitro C—H...O interactions as well as π–π contacts between inversion-related benzene rings [inter-centroid distances = 3.5644 (16 and 3.6527 (16 Å]. The cations and anions assemble into alternating layers along the c axis.

  15. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  16. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz

    2015-11-12

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  17. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  18. Requirements on the Redshift Accuracy for future Supernova and Number Count Surveys

    International Nuclear Information System (INIS)

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-01-01

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters

  19. The effect of 1,4-diazabicyclo 2.2.2 octane on the radiosensitivity of bacteria

    International Nuclear Information System (INIS)

    Anderson, R.F.; Patel, K.B.

    1978-01-01

    Hydroxyl radicals (OH) are scavenged by 1,4-diazabicyclo[2.2.2]octane (DABCO) at a diffusion-controlled rate of 1.25 +- 0.1 x 10 9 M -1 s -1 . Unlike other efficient OH scavengers which exhibit protection of bacteria against irradiation both in oxic and hypoxic conditions, DABCO has been shown to protect Serratia marcescens and various strains of Escherichia coli only in oxic conditions. DABCO appears to eliminate a component of the sensitization afforded by oxygen in all strains of E. coli tested. The level of this protection increased from approximately 15% in the wild type AB 1157 to approximately 100% in the recA uvrA mutant AB 2480. It is suggested that DABCO protects against lethal events that can occur on macromolecules other than DNA such as the cell membrane. Results with added glycerol, as well as work in D 2 0 solution, indicate that DABCO is more likely to be acting by scavenging radicals rather than by quenching 1 0 2 . If 1 0 2 is a component of the sensitization afforded by oxygen, then it is unlikely to be formed in a hydrophilic environment in the cell. (author)

  20. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  1. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao; Jaasim, Mohammed; Vallinayagam, R.; Vedharaj, S.; Im, Hong G.; Johansson, Bengt.

    2017-01-01

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  2. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon

    2015-11-02

    Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions. An attempt to scale the effect of pressure on total ignition delay was undertaken and the equivalence ratio exponent and activation energy in the Arrhenius expression of total ignition delay were determined. Ignition delay results indicated that there were strong correlations of pressure, temperature, and equivalence ratio under most conditions studied except at relatively low pressures. Diesel (DCN 52.5) and n-heptane (DCN 54) fuels exhibited reasonably similar ignition delay characteristics, while iso-octane showed a distinct behavior under low temperature regime having a two-stage ignition, which substantiate the adoption of the gradient method in determining ignition delay.

  3. The number of subjects per variable required in linear regression analyses.

    Science.gov (United States)

    Austin, Peter C; Steyerberg, Ewout W

    2015-06-01

    To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lidia [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, C/Marcelli Domingo s/n, 43007 Tarragona (Spain); Ramis, Xavier [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Salla, Josep Maria [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: salla@mmt.upc.edu; Mantecon, Ana; Serra, Angels [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, C/Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2007-11-25

    The kinetics of the thermal cationic cure reaction of mixtures in different proportions of diglycidylether of bisphenol A (DGEBA) with 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione) (MCP) initiated by ytterbium or lanthanum triflates or using a conventional initiator, BF{sub 3}.MEA was investigated. The non-isothermal differential scanning calorimetry (DSC) experiments at a controlled heating rate was used for obtaining the kinetic parameters of the reactive systems. BF{sub 3}.MEA and lanthanide triflates initiated curing systems follow a complete different kinetic model. Among lanthanide triflates, ytterbium is the most active initiator.

  5. Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione)

    International Nuclear Information System (INIS)

    Gonzalez, Lidia; Ramis, Xavier; Salla, Josep Maria; Mantecon, Ana; Serra, Angels

    2007-01-01

    The kinetics of the thermal cationic cure reaction of mixtures in different proportions of diglycidylether of bisphenol A (DGEBA) with 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione) (MCP) initiated by ytterbium or lanthanum triflates or using a conventional initiator, BF 3 .MEA was investigated. The non-isothermal differential scanning calorimetry (DSC) experiments at a controlled heating rate was used for obtaining the kinetic parameters of the reactive systems. BF 3 .MEA and lanthanide triflates initiated curing systems follow a complete different kinetic model. Among lanthanide triflates, ytterbium is the most active initiator

  6. General collection efficiency in liquid iso-octane and tetramethylsilane used as sensitive media in a thimble ionization chamber

    International Nuclear Information System (INIS)

    Johansson, B.E.; Bahar-Gogani, J.; Wickman, G.

    1999-01-01

    The general collection efficiency in the dielectric liquids iso-octane (C 8 H 18 ; 2-2-4 trimethylpentane) and tetramethylsilane (Si(CH 3 ) 4 ), used as sensitive media in a thimble liquid ionization chamber (LIC) with a liquid layer thickness of 1 mm, has been studied. Measurements were made for continuous radiation at varying dose rates using 140 keV photons from the decay of 99m Tc for chamber polarizing voltages of 50, 100 and 500 V. The maximum dose rate in each measurement session was about 150 mGy min -1 . The experimental results were compared with theoretical general collection efficiencies calculated by the equation for the general collection efficiency in gases. The results show that the general collection efficiency in a thimble LIC for continuous radiation can be calculated with the equation for the general collection efficiency in gas ionization chambers, using the same chamber geometry correction factors and analogous characteristic ion recombination parameters for the dielectric liquids. (author)

  7. New hydride compounds of 1,4-diazabicyclo[2.2.2]octane and its dication with borine and tetrahydridoborate anion and products of their transformations

    International Nuclear Information System (INIS)

    Shevchenko, Yu.N.; Yashina, N.I.; Markova, O.Z.; Trachevskij, V.V.

    1996-01-01

    New compounds [dabcoH 2 ](BH 4 ) 2 , dabco(BH 3 ) 2 2H 2 , [dabco(BH 3 ) 2 H 2 ] n have been synthesized by means of interaction between dihydrochloride of 1,4-diazobicyclo[2.2.2] octane (dabco) and NaBH 4 in the medium of nonaqueous solvents (glyme, diglyme, tetrahydrofuran, dimethylsulfoxide) and identified by the methods of element analysis, conductometry, 1 H, 11 B, 14 N NMR, IR spectroscopy and thermal analysis. A mechanism is suggested and the conditions are defined for mutual transformations of the compounds studied. Their ability to bind reversibly molecular hydrogen has been revealed for the first time. 19 refs.; 3 figs.; 1 tab

  8. Changes in trehalose content of baker's yeast as affected by octanoic acid Alterações no teor de trealose de levedura de panificação provocadas por ácido octanóico

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available Octanoic acid inhibited ethanolic fermentation by Saccharomyces cerevisiae (bakers yeast and the trehalose accumulation, however did not affect the endogenous degradation of trehalose. This inhibition may be explained by the binding of octanoic acid to hexokinase or other proteins of plasma membrane because they are not necessary for endogenous fermentation. The degradation of trehalose may be due to an activation of trehalase.A adição de ácido octanóico inibiu a fermentação alcoólica realizada por Saccharomyces cerevisiae (levedura de panificação e o acúmulo de trealose, contudo não afetou a degradação endógena de trealose. Esta inibição poderia ser explicada pela ligação do ácido octanóico a hexoquinase ou outra proteína da membrana plasmática porque não são necessárias para a fermentação endógena. A degradação da trealose poderia ser devida a uma ativação da trealase.

  9. Pressure effects on enzyme reactions in mainly organic media: alpha-chymotrypsin in reversed micelles of Aerosol OT in octane.

    Science.gov (United States)

    Mozhaev, V V; Bec, N; Balny, C

    1994-08-01

    Biocatalytic transformations in reversed micelles formed by anionic surfactant Aerosol OT in octane have been studied at high pressures by an example of alpha-chymotrypsin-catalyzed hydrolysis of N-carbobenzoxy-L-tyrosine p-nitrophenyl ester and N-succinyl-L-phenylalanine p-nitroanilide. For the first time it has been found that the enzyme retains high activity in these water-in-oil microemulsions up to a pressure of 2 kbar. The value of the activation volume (delta V*) for the enzyme reactions shows a dependence on the water content in the system. When the size of the micellar aqueous inner cavity (as evaluated at 1 atm) approaches the molecular size of alpha-chymotrypsin, delta V* becomes significantly different from the value in aqueous solution and in the micelles with a larger size. Possibilities of regulating the enzyme activity by pressure in systems with a low content of water are discussed.

  10. Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships

    International Nuclear Information System (INIS)

    Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

    2001-01-01

    Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration

  11. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  12. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  13. Convection-driven melting in an n-octane pool fire bounded by an ice wall

    Science.gov (United States)

    Farmahini Farahani, Hamed; Alva, Ulises; Rangwala, Ali; Jomaas, Grunde

    2017-11-01

    Burning of the liquid fuels adjacent to ice bodies creates a lateral cavity due to melting of the ice. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. One study has shown lateral cavity formation with length of 12 cm for 5 minutes burning of oil. Based on the hypothesis that melting is facilitated by the convection in the liquid fuel, a series of PIV tests were conducted on burning of n-octane in a square glass tray with a 3 cm thick ice wall placed on one side of the tray. Marangoni generates a flow below the surface of the fuel and near the ice from hot to cold regions. The flow measurements by a 2D PIV system indicated the existence of different flow regimes. Before ignition, combined surface tension and buoyancy effects led to a one roll structure. After ignition the flow field began transitioning toward an unstable regime with an increase in velocity magnitude. Unfortunately, the PIV quality declined in the unstable regime, but indications of a multi-roll structure separating from a primary horizontal flow on the top driven by Marangoni convection were observed. The knowledge gained from these experiments will help determine the influential parameters in ice melting during burning of oil in ice-infested waters.

  14. Improving gasoline quality produced from MIDOR light naphtha isomerization unit

    Directory of Open Access Journals (Sweden)

    M.F. Mohamed

    2017-03-01

    Full Text Available Isomerization process became one of the best gasoline production sources, as it gives a high octane product while saving environment from pollution impacts. This paper presents a practical study that aims to improve the gasoline quality and economic income of an existing light naphtha isomerization unit used for octane improvement. The study included selecting the optimum combination of isomerization unit equipment that gives better product specifications for a specified feed. Eight scenarios were studied and simulated to predict the product specs. The original studied unit is MIDOR light naphtha isomerization unit at Alexandria-Egypt that recycles the unconverted hexane (C6. The other studied scenarios were adding fractionators for separating feed iso-pentanes, and recycling unconverted pentanes, hexanes and/or combinations of these fractionators. The results show a change in octane number of gasoline product for a specific feed. Once through process with no extra fractionators has lower octane number of 81 while that with de-iso-pentanizer–de-pentanizer and de-hexanizer produces gasoline with 92.3 octane number. Detailed economic study was done to calculate the return on investment “ROI” for each process option based on equipment, utilities, feed and product prices. Once through simple isomerization unit had the lowest ROI of 14.3% per year while the combination of De-iso-pentanizer with the De-hexanizer had the best ROI of 26.6% per year.

  15. A Theoretical investigation of a potential high energy density compound 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo[3.1.1.1(2,4]octane

    Directory of Open Access Journals (Sweden)

    Guozheng Zhao

    2013-01-01

    Full Text Available The B3LYP/6-31G (d density functional theory (DFT method was used to study molecular geometry, electronic structure, infrared spectrum (IR and thermodynamic properties. Heat of formation (HOF and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4]octane (TTTO was investigated by calculating bond dissociation energy (BDE at the unrestricted B3LYP/6-31G(d level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM methods belongs to P2(1/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC.

  16. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  17. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  18. An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)-sorangicin A and elaboration of the (Z,Z,E)-triene acid system.

    Science.gov (United States)

    Smith, Amos B; Dong, Shuzhi

    2009-03-05

    An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)-sorangicin A (1), in conjunction with an effective, stereocontrolled protocol to arrive at the requisite (Z,Z,E)-triene acid system has been developed. Highlights of the core construction entail a three-component union, a KHMDS-promoted epoxide ring formation-ring opening cascade, a Takai olefination, and a chemoselective Sharpless dihydroxylation. Assembly of the triene acid system was then achieved via Stille cross-coupling with the ethyl ester of (Z,Z)-5-tributylstannyl-2,4-pentadienoic acid, followed by mild hydrolysis preserving the triene configuration.

  19. Rural postman parameterized by the number of components of required edges

    DEFF Research Database (Denmark)

    Gutin, Gregory; Wahlström, Magnus; Yeo, Anders

    2017-01-01

    In the Directed Rural Postman Problem (DRPP), given a strongly connected directed multigraph D=(V,A) with nonnegative integral weights on the arcs, a subset R of required arcs and a nonnegative integer ℓ, decide whether D has a closed directed walk containing every arc of R and of weight at most ...... suppresses polynomial factors. Using an algebraic approach, we prove that DRPP has a randomized algorithm of running time O⁎(2k) when ℓ is bounded by a polynomial in the number of vertices in D. The same result holds for the undirected version of DRPP........ Let k be the number of weakly connected components in the subgraph of D induced by R. Sorge et al. [30] asked whether the DRPP is fixed-parameter tractable (FPT) when parameterized by k, i.e., whether there is an algorithm of running time O⁎(f(k)) where f is a function of k only and the O⁎ notation...

  20. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  1. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture

    KAUST Repository

    Javed, Tamour

    2015-01-01

    Ignition delay times and CO, H2O, OH and CO2 time-histories were measured behind reflected shock waves for two FACE (Fuels for Advanced Combustion Engines) gasolines and one PRF (Primary Reference Fuel) blend. The FACE gasolines chosen for this work are primarily paraffinic and have the same octane rating (∼RON = 84) as the PRF blend, but contain varying amounts of iso- and n-paraffins. Species time-histories and ignition delay times were measured using laser absorption methods over a temperature range of 1350-1550 K and pressures near 2 atm. Measured species time-histories and ignition delay times of the PRF blend and the two FACE fuels agreed reasonably well. However, when compared to recent gasoline surrogate mechanisms, the simulations did not capture some of the kinetic trends found in the species profiles. To our knowledge, this work provides some of the first shock tube species time-history data for gasoline fuels and PRF surrogates and should enable further improvements in detailed kinetic mechanisms of gasoline fuels.

  2. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-11-01

    Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i)\\tLow octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii)\\t Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii)\\t A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G

  3. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  4. PREDICCION DE PROPIEDADES DE MEZCLAS GASOLINA-ETANOL MEDIANTE ESPECTROSCOPIA DE INFRARROJO

    Directory of Open Access Journals (Sweden)

    Felipe Sánchez-Minero

    2013-01-01

    Full Text Available The effect of ethanol in the gasoline reformulation was studied by infrared spectroscopy (IR. Six samples with different ethanol content were prepared (0, 20, 40, 60, 80 and 100 volume percent. IR spectra of these blends were achieved in the region from 4000 to 850 cm -1. Then, a characteristic factor of ethanol (F CO was obtained. This factor relates the area under the curve at 1050 cm -1 and the total area of the spectrum. The FCO factor was used to propose models for the prediction of properties of gasoline-ethanol blends as octane number, heat value and vapor pressure. In general, results shows a high degree of adjustment for the proposed models (R 2>0.98 with residual values for octane number, heat value and vapor pressure of -0.92/+0.75 octanes, -87.4/+107.6 Kcal/Kg and -2.67/+3.09 KPa, respectively.

  5. 31 CFR 351.68 - Are taxpayer identification numbers (TINs) required for registration of book-entry Series EE...

    Science.gov (United States)

    2010-07-01

    ... (TINs) required for registration of book-entry Series EE savings bonds? 351.68 Section 351.68 Money and... TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES EE Book-Entry Series EE Savings Bonds § 351.68 Are taxpayer identification numbers (TINs) required for registration of book-entry...

  6. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    Energy Technology Data Exchange (ETDEWEB)

    Azhar, Mueed; Greiner, Andreas [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Department of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Kauzlarić, David, E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg (Germany)

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  7. Linear Mapping of Numbers onto Space Requires Attention

    Science.gov (United States)

    Anobile, Giovanni; Cicchini, Guido Marco; Burr, David C.

    2012-01-01

    Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive,…

  8. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population

    International Nuclear Information System (INIS)

    Roeske, John C; Stinchcomb, Thomas G

    2006-01-01

    Alpha-particle emitters are currently being considered for the treatment of micrometastatic disease. Based on in vitro studies, it has been speculated that only a few alpha-particle hits to the cell nucleus are considered lethal. However, such estimates do not consider the stochastic variations in the number of alpha-particle hits, energy deposited, or in the cell survival process itself. Using a tumour control probability (TCP) model for alpha-particle emitters, we derive an estimate of the average number of hits to the cell nucleus required to provide a high probability of eradicating a tumour cell population. In simulation studies, our results demonstrate that the average number of hits required to achieve a 90% TCP for 10 4 clonogenic cells ranges from 18 to 108. Those cells that have large cell nuclei, high radiosensitivities and alpha-particle emissions occurring primarily in the nuclei tended to require more hits. As the clinical implementation of alpha-particle emitters is considered, this type of analysis may be useful in interpreting clinical results and in designing treatment strategies to achieve a favourable therapeutic outcome. (note)

  9. hf alkylation in the 1980's: the role of isobutane/olefin ratio

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.

    1978-08-01

    Research devoted to maximizing no-lead octane numbers in motor fuel is reported. Results of the studies are the basis for the following conclusions: 1. Isobutane alkylate made from either propylene, butene-2, or C/sub 3/--C/sub 4/ mixed olefins is a low sensitivity, high motor octane product. Typically, C/sub 3/--C/sub 4/ mixed olefin alkylate has a clear motor octane number of about 92.2 and a clear Research octane number of about 93.5. 2. In separate studies with propylene, butene-2 and C/sub 3/--C/sub 4/ mixed olefins, increasing the isobutane-to-olefin ratio suppressed the formation of high molecular weight residue, indicating a substantial reduction in the role of olefin polymerization to large ions. The overall result of increasing ratio was an improvement in selectivity to high-octane components in the alkylate. 3. When alkylating isobutane with propylene, increasing the ratio resulted in a decrease in the concentration of C/sub 7/-fraction (primary product) and an increase in the C/sub 8/-fraction (from chain initiation and subsequent hydrogen transfer). At the same time, the production of chain-termination-product propane also increased. 4. When alkylating isobutane with C/sub 3/--C/sub 4/ mixed olefins, increasing the ratio showed the same trend obtained in separate alkylation tests with propylene and butene-2. As the ratio increased, the concentration of C/sub 7/-fraction (primary propylene--isobutane product) decreased and the concentration of C/sub 8/-fraction increased markedly. Thus, increasing isobutane-to-olefin ratio exerted a strong effect on alkylate quality in the area of about 5 to 1 to 20 to 1; this effect diminished at ratios 20:1.

  10. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mukadder Korkmaz

    Full Text Available ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. METHODS: Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. RESULTS: Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. CONCLUSION: The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo.

  11. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo.

    Science.gov (United States)

    Korkmaz, Mukadder; Korkmaz, Hakan

    2016-01-01

    Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Evaluation for leaded and unleaded Gasoline as Hazardous Waste

    International Nuclear Information System (INIS)

    Abou El Naga, H.H.

    1999-01-01

    With the phase out of alkyl lead compounds as necessary additives for gasoline in order to raise its octane number , the alternative is to reformulate gasoline to have nearly same octane number but with other chemical structures. Such reformulated gasoline (RFG) is found to contain higher aromatics, benzene, iso paraffins, in comparison to leaded gasoline. Additionally, this reformulated gasoline can also contain oxygenated additives. Accordingly, this paper is aiming at evaluation of emitted hazardous chemical compounds from car engines at fuel combustion. Role of chemical structures for reformulated gasoline in emission of volatile organic compounds (VOC) and poisoning materials are considered

  13. Etherification of Glycerol with Propylene or 1-Butene for Fuel Additives

    Directory of Open Access Journals (Sweden)

    Chakrapong Saengarun

    2017-01-01

    Full Text Available The etherification of glycerol with propylene over acidic heterogeneous catalysts, Amberlyst-15, S100, and S200 resins, produced mono-propyl glycerol ethers (MPGEs, 1,3-di- and 1,2-di-propyl glycerol ethers (DPGEs, and tri-propyl glycerol ether (TPGE. The propylation of glycerol over Amberlyst-15 yielded only TPGE. The glycerol etherification with 1-butene over Amberlyst-15 and S200 resins produced 1-mono-, 2-mono-, 1,2-di-, and 1,3-di-butyl glycerol ethers (1-MBGE, 2-MBGE, 1,2-DBGE, and 1,3-DBGE. The use of Amberlyst-15 resulted in the propylation and butylation of glycerol with higher yields than those obtained from the S100 and S200 resins. The PGEs, TPGE, and BGEs were evaluated as cold flow improvers and octane boosters. These alkyl glycerol ethers can reduce the cloud point of blended palm biodiesels with diesel. They can increase the research octane number and the motor octane number of gasoline.

  14. Developing a Steady-state Kinetic Model for Industrial Scale Semi-Regenerative Catalytic Naphtha Reforming Process

    Directory of Open Access Journals (Sweden)

    Seif Mohaddecy, R.

    2014-05-01

    Full Text Available Due to the demand for high octane gasoline as a transportation fuel, the catalytic naphtha reformer has become one of the most important processes in petroleum refineries. In this research, the steady-state modelling of a catalytic fixed-bed naphtha reforming process to predict the momentous output variables was studied. These variables were octane number, yield, hydrogen purity, and temperature of all reforming reactors. To do such a task, an industrial scale semi-regenerative catalytic naphtha reforming unit was studied and modelled. In addition, to evaluate the developed model, the predicted variables i.e. outlet temperatures of reactors, research octane number, yield of gasoline and hydrogen purity were compared against actual data. The results showed that there is a close mapping between the actual and predicted variables, and the mean relative absolute deviation of the mentioned process variables were 0.38 %, 0.52 %, 0.54 %, 0.32 %, 4.8 % and 3.2 %, respectively.

  15. Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    KAUST Repository

    Alabbad, Mohammed; Issayev, Gani; Badra, Jihad; Voice, Alexander K.; Giri, Binod; Djebbi, Khalil; Ahmed, Ahfaz; Sarathy, Mani; Farooq, Aamir

    2017-01-01

    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.

  16. Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    KAUST Repository

    Alabbad, Mohammed

    2017-11-24

    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.

  17. Reoriention of diprotonated DABCO (1,4-Diazabicyclo[2.2.2]octane) cation and proton transfer in organic ferroelectric adduct DABCO-2(2-Chlorobenzoic acid)

    Science.gov (United States)

    Asaji, Tetsuo

    2018-05-01

    Temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T1 were investigated of a ferroelectric molecular adduct with Tc = 323 K, in which 1,4-diazabicyclo[2.2.2]octane (DABCO) is sandwiched between two 2-chlorobenzoic acid (2-ClBA). The NQR frequencies clearly show that proton transfer from 2-ClBA to DABCO is occurred and the molecular adduct consists of diprotonated DABCO cation and two 2-chlorobenzoate anions. The correlation time of reorientational motion of the diprotonated DABCO molecule was determined as a function of temperature. The activation energy Ea of the motion was estimated as 22 kJ mol-1 below Tc. The steep decrease of the NQR T1 with Ea = 50 kJ mol-1, observed above ca. 280 K in the ferroelectric phase, suggests a slow fluctuation of electric field gradient at chlorine nucleus.

  18. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  19. A study of the required Rayleigh number to sustain dynamo with various inner core radius

    Science.gov (United States)

    Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.

    2017-12-01

    It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.

  20. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  1. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.; Sarathy, Mani; Khurshid, Muneeb; Badra, Jihad

    2016-01-01

    -gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule

  2. Required number of records for ASCE/SEI 7 ground-motion scaling procedure

    Science.gov (United States)

    Reyes, Juan C.; Kalkan, Erol

    2011-01-01

    The procedures and criteria in 2006 IBC (International Council of Building Officials, 2006) and 2007 CBC (International Council of Building Officials, 2007) for the selection and scaling ground-motions for use in nonlinear response history analysis (RHA) of structures are based on ASCE/SEI 7 provisions (ASCE, 2005, 2010). According to ASCE/SEI 7, earthquake records should be selected from events of magnitudes, fault distance, and source mechanisms that comply with the maximum considered earthquake, and then scaled so that the average value of the 5-percent-damped response spectra for the set of scaled records is not less than the design response spectrum over the period range from 0.2Tn to 1.5Tn sec (where Tn is the fundamental vibration period of the structure). If at least seven ground-motions are analyzed, the design values of engineering demand parameters (EDPs) are taken as the average of the EDPs determined from the analyses. If fewer than seven ground-motions are analyzed, the design values of EDPs are taken as the maximum values of the EDPs. ASCE/SEI 7 requires a minimum of three ground-motions. These limits on the number of records in the ASCE/SEI 7 procedure are based on engineering experience, rather than on a comprehensive evaluation. This study statistically examines the required number of records for the ASCE/SEI 7 procedure, such that the scaled records provide accurate, efficient, and consistent estimates of" true" structural responses. Based on elastic-perfectly-plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI 7 scaling procedure is applied to 480 sets of ground-motions. The number of records in these sets varies from three to ten. The records in each set were selected either (i) randomly, (ii) considering their spectral shapes, or (iii) considering their spectral shapes and design spectral-acceleration value, A(Tn). As compared to benchmark (that is, "true") responses from unscaled records using a larger catalog of ground

  3. Study of the binary mixtures of {monoglyme + (hexane, cyclohexane, octane, dodecane)} by ECM-average and PFP models

    International Nuclear Information System (INIS)

    Rivas, M.A.; Buep, A.H.; Iglesias, T.P.

    2015-01-01

    Highlights: • Polarization of the real mixture is less than that of the ideal mixture. • Molar excess volume does not exert the dominant effect on the polarization of the mixture. • Similar influence of molecular interactions on the behaviour of excess permittivity. • Excess molar volume is more influenced by the interactions than excess permittivity. - Abstract: Excess molar volumes and excess permittivity of binary mixtures involving monoglyme and alkanes, such as n-hexane, cyclohexane, n-octane and n-dodecane, were calculated from density and relative permittivity measurements for the entire composition range at several temperatures (288.15, 298.15 and 308.15) K and atmospheric pressure. The excess permittivity was calculated on the basis of a recent definition considering the ideal volume fraction. Empirical equations for describing the experimental data in terms of temperature and concentration are given. The experimental values of permittivity have been compared with those estimated by well-known models from literature. The results have indicated that better predictions are obtained when the volume change on mixing is incorporated in these calculations. The contribution of interactions to the excess permittivity was analysed by means of the ECM-average model. The Prigogine–Flory–Patterson (PFP) theory of the thermodynamics of solutions was used to shed light on the contribution of interactions to the excess molar volume. The work concludes with an interpretation of the information given by the theoretical models and the behaviour of both excess magnitudes

  4. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul; Ahmed, Ahfaz; Nasir, Ehson Fawad; Badra, Jihad; Kalghatgi, Gautam; Sarathy, Mani; Curran, Henry; Farooq, Aamir

    2017-01-01

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components

  5. A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times

    KAUST Repository

    Badra, Jihad A.; Bokhumseen, Nehal; Mulla, Najood; Sarathy, Mani; Farooq, Aamir; Kalghatgi, Gautam; Gaillard, Patrick

    2015-01-01

    , are correlated with a fundamental chemical kinetic parameter, specifically, homogeneous gas-phase fuel/air ignition delay time. Ignition delay times for stoichiometric fuel/air mixtures are calculated at various constant volume conditions (835 K and 20 atm, 825 K

  6. Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment

    OpenAIRE

    Miqdam Tariq Chaichan

    2016-01-01

    Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend u...

  7. Potentiel des moteurs à mélange pauvre face aux moteurs actuels à réglage stoechiométrique : consommation, émissions, exigence en octane The Challenge to Modern Stoichiometric Engines by the Potential Lean-Burn Engine: Consumption, Emissions, Fuel Requirements

    Directory of Open Access Journals (Sweden)

    Douaud A. M.

    2006-11-01

    Full Text Available Le moteur à allumage commandé pour application automobile aux États-Unis est généralement dépollué par catalyse trifonctionnelle qui impose un contrôle stoechiométrique du mélange air-carburant. Le contexte européen de 1990 pour la qualité de l'air stimule l'industrie automobile dans ses recherches de solutions techniques performantes. Le moteur à mélange pauvre, performant en consommation, est une solution potentielle si l'émission de NOx peut être maîtrisée par la combustion. Cet objectif nécessite une conception du moteur contrôlant la turbulence et l'hétérogénéité du mélange air + carburant + résiduels pendant la combustion. La longévité de l'adaptation optimale moteur-carburant nécessitera un contrôle électronique de l'allumage et l'utilisation d'additifs détergents. Pour satisfaire les réglementations les plus sévères, les émissions de CO et HC pourront être contrôlées par un simple pot catalytique d'oxydation. Des oxydes de métaux non précieux introduits dans la formule catalytique en addition aux métaux précieux maintiennent la fonction oxydante pendant les transitoires en mélange riche tout en réduisant partiellement les NOx. Une vue d'ensemble de ce concept basé sur des simulations numériques et des résultats expérimentaux de consommation, d'émission, d'exigence en octane, etc. est présentée. Spark-ignition engines for automotive applications in the United States are currently depolluted by a 3-way catalyst that requires air-fuel control at stoichiometry. The 1990 European context for air pollution control is stimulating the automotive industry to search for improved technical solutions. The lean-burn engine is a potential fuel-efficient answer if its combustion can be optimized for low NOx emissions. Achieving this challenging approach requires engine design to control the turbulence and heterogeneity of the air + fuel + residual mixture during combustion. Electronic ignition

  8. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System: Outage-Limited Scenario

    KAUST Repository

    Makki, Behrooz

    2016-03-22

    This paper investigates the performance of the point-To-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas, which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency/feedback error probability on the performance of the MIMO-HARQ systems is analyzed. Then, we use some recent results on the achievable rates of finite block-length codes, to analyze the effect of the codewords lengths on the system performance. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 1972-2012 IEEE.

  9. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  10. Improvement of locally produced gasoline and studying its effects on both the performance of the engine and the environment

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Al-Subaih, T.A.

    2002-01-01

    This study aims at investigating the effect of methyl-tertiary butyl ether (MTBE) addition to gasoline on its octane number and, hence, the performance of an engine. Also, its effect on the emitted gases was investigated. Locally produced gasoline was blended with five different percentages of MTBE, namely 0%, 5%, 10%, 15% and 20%. Then, these fuels were burned in an engine, which is coupled to a gas analyzer. It was found that the octane number of the gasoline increases continuously and linearly with MTBE percentage in the gasoline. The best performance of the engine occurs at around 10% MTBE addition and this percentage also gives the best reduction in exhaust eases emissions. (author)

  11. Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

    KAUST Repository

    Jaasim, Mohammed

    2018-04-04

    Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE™, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane. The emphasis was on the assessment of two common spray breakup models, namely the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) and linearized instability sheet atomization (LISA) models, in terms of their influence on auto-ignition predictions. Two spray models resulted in different local mixing, and their influence in the prediction of auto-ignition was investigated. The relative importance of physical ignition delay, characterized by spray evaporation and mixing processes, in the overall ignition behavior for the two different fuels were examined. The results provided an improved understanding of the essential contribution of physical and chemical processes that are critical in describing the IQT auto-ignition event at different pressure and temperature conditions, and allowed a systematic way to distinguish between the physical and chemical ignition delay times.

  12. Catalytic treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-23

    A process is described for increasing the octane number of a hydrocarbon oil. The substance is subjected under pressure to a temperature between 800 and 1100/sup 0/C. Catalysts include metal compounds of Groups IV, V, Vi, or VIII (Group VI is perferred). Experiments are performed under a hydrogen atmosphere. Reaction time, temperature, pressure, and partial pressure of the hydrogen are adjusted so that there will be no net hydrogen consumption. The reaction gases (including the products) are recycled in whole or in part to supply the hydrogen gas required.

  13. Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr; Christensen, Earl; Fouts, Lisa; Chupka, Gina M.; McCormick, Robert L.

    2016-04-01

    Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.

  14. Analysis of Physicochemical Properties of Mexican Gasoline and Diesel Reformulated with Ethanol

    Directory of Open Access Journals (Sweden)

    Porfirio Caballero-Mata

    2012-07-01

    Full Text Available High energy prices, environmental issues and increasing importation of fossil fuels has provoked, in some countries, a reorientation of resources towards the development of biofuels that can partially substitute the consumption of fossil fuels. Ethanol is one of the biofuels more commonly used in the world; in the United States, Brazil and Australia gasoline blends that reach up to 85% Ethanol are commercialized. This work presents the results of a physicochemical characterization of commercial Mexican gasoline (Magna and Premium and diesel blends with 10% vol. and 15% vol. anhydrous Ethanol. The analytical testing included: Research Octane Number, Motor Octane Number, Cetane Number, Reid Vapor Pressure, Distillation Curve and Heating Value. The stability of the blends was also evaluated. The theoretical emissions of CO2 were calculated based on the results of the physicochemical characterization. The ethanol-gasoline blends increased their Octane Number with respect to the commercial gasoline, while conserving an appropriate Distillation Index. The Cetane Number of the ethanol-diesel blends showed a substantial decrease, while the heating value of gasoline and diesel blends was negatively affected by the addition of ethanol. Nevertheless, taking into account the credits by the use of a renewable fuel, the use of the reformulated gasoline blends would imply a maximum theoretical reduction of 7.5% in CO2 emissions whereas in the case of ethanol-diesel blends it would represent a 9.2% decrease.

  15. Catalytic agents; motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1935-09-16

    The anti-knock qualities of benzines are improved by passing them in the vapor phase and at temperatures below which cracking takes place over catalysts comprising phosphates. A Mexican straight run gasoline (octane no. 55) is passed at 450/sup 0/C over granular boron phosphate. A product having an octane number of 62.5 is obtained without loss due to formation of gases. The boron phosphate was prepared by heating on a steam bath orthophosphoric acid and boric acid in the ratio corresponding to the compound BPO/sub 4/.

  16. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    NARCIS (Netherlands)

    Achinas, Spyridon; Euverink, Gerrit Jan Willem

    2016-01-01

    Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower

  17. A flow system for generation of concentration perturbation in two-dimensional correlation near-infrared spectroscopy: application to variable selection in multivariate calibration.

    Science.gov (United States)

    Pereira, Claudete Fernandes; Pasquini, Celio

    2010-05-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection of relevant variables for multivariate calibration models for the determination of quality parameters of gasoline, including ethanol content, MON (motor octane number), and RON (research octane number). The main advantage of this variable selection approach is the direct association between spectral features and chemical composition, allowing easy interpretation of the regression models.

  18. 78 FR 36725 - Numbering Policies for Modern Communications; IP-Enabled Services; Telephone Number Requirements...

    Science.gov (United States)

    2013-06-19

    ... help speed the delivery of innovative services to consumers and businesses, while preserving the... available for public inspection during regular business hours in the FCC Reference Information Center... already broken the historical tie between a number and a specific device. For example, Skype permits users...

  19. Preparation of Pt/USY catalysers and application in the reformation of n-octane; Preparacao de catalisadores Pt/USY e aplicacao na reforma do n-octano

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Alfredina dos S.; Sousa, Bianca V.; Grau, Javier M.; Rodrigues, Meiry Glaucia F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    During the catalytic reform, the hydrocarbons of long chain are reconstructed, through reactions of isomerization, hydrogenation, desidrocyclization and dehydrogenation, among others. These reactions occur in acid or metallic small farms, on a bifunctional catalyzer of type Pt/Al{sub 2}O{sub 3}-Cl. The metallic component is active in the hydrogenation and dehydrogenation, while the support (chlorinated alumine) possess acidity enough to promote isomerization reactions. The joint action of the two small farms promotes other reactions, as the desidrocyclization, through a bifunctional mechanism. Reactions also occur undesirable (hydrocracking and hydrogenation) that they diminish the selectivity and they deactivate the catalyzer for coke formation. The catalyzers most promising for this reaction are the acid zeolites of great pores, had to its textural characteristics that facilitate the access of the reagents to active small farms. In this work, the catalytic performance of the metallic function in the dehydrogenation reaction, the conversion and income in the reaction of reform of n-octane will be studied, of the catalyzers of the Pt/USY type. (author)

  20. 76 FR 79607 - Local Number Portability Porting Interval and Validation Requirements; Telephone Number Portability

    Science.gov (United States)

    2011-12-22

    ... customer's account; a positive indication that the new service provider has the authority from the customer... comments. Email: [email protected] , and include the following words in the body of the message, ``get form.'' A... telephone number associated with the customer's account; a positive indication that the new service provider...

  1. Hydroprocessing to produce reformulated Gasolines. The ISAL{sup TM} process

    Energy Technology Data Exchange (ETDEWEB)

    Antos, G.J. [UOP, Des Plaines, IL (United States); Solari, B.; Monque, R. [Intevep S.A., Caracas (Venezuela)

    1997-07-01

    As a result of forthcoming environmental regulations, such as those established in the U.S. Clean Air Act, petroleum refiners around the world are searching for low-investment solutions to accomplish hydroprocessing requirements. These regulations are expressed in the Complex Model, which brings together sulfur content, olefin content, vapor pressure, and boiling range in an interactive fashion. Processes need to successfully reduce these pollutants and still maintain high yields of high octane-product. Because FCC naphta accounts for 90 % of the sulfur and olefins in the entire gasoline pool, hydrotreating this material is an attractive process alternative, provided that octane losses are minimized. The ISAL{sup TM} process, jointly developed by INTEVEP, S.A., and UOP, is a selective hydrotreating process to improve naphta quality by reducing sulfur, nitrogen, and olefins without octane loss. The paper discusses aspects of the process and catalyst chemistries leading to these desirable results. 6 refs.

  2. Influence of crystallite size and shape of zeolite ZSM-22 on its activity and selectivity in the catalytic cracking of n-octane

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Ernst, S. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    2013-11-01

    Light olefins belong to the major building blocks for the petrochemical industry, particularly for the production of polymers. It has become necessary to increase the production of light olefins specifically in the case for propene with so called 'on-purpose propene' technologies. One possible route is to increase the amount of propene that can be obtained from Fluid Catalytic Cracking (FCC) by optimizing the catalyst through introducing new additives, which offer a high selectivity to propene. Zeolite ZSM-22 samples with different crystallite sizes and morphologies have been synthesized via hydrothermal syntheses and characterized by powder X-Ray diffraction, nitrogen physisorption, atomic absorption spectroscopy, scanning electron microscopy and solid-state NMR spectroscopy. The zeolites in the Broensted-acid form have been tested as catalysts in the catalytic cracking of n-octane as a model hydrocarbon. Clear influences of the crystallite size on the deactivation behavior have been observed. Larger crystals of zeolite ZSM-22 produce an increased amount of coke deposits resulting in a faster deactivation of the catalyst. The experimental results suggest that there is probably some influence of pore diffusion on the catalytic activity of the ZSM-22 sample with the large crystallite size. However a noticeable influence on the general product distribution could not be observed. (orig.)

  3. Development of A 5,000 BBL, Rubberized Fabric Fuel Storage Tank, Collapsible,

    Science.gov (United States)

    1981-04-01

    Note l/ after soil burial. 6/ Reference fuel D is ASTM D-471, 60% iso-octane and 40% toluene. 7/ Retained after 56 days -25- i IGOODYEAR AEROSPACE 0 0...331.7) Pure. 9.I - 9.6 920 0() 09/O 0A) 2.7 ". paum Mese IEststa"t r.e ASIN 11-70 W1 I (ma) 7.3A -n-i I GAC 19-1337 Rev 2 USLE is (continmed) () The...the greater requirement. 5/ Method 5762 except that the specimens were prepared by Note 1/ after soil burial and the number of specimens was reduced

  4. Study of the hydro-isomerization of paraffins with 7 and 8 carbon atoms on bifunctional catalysts; Etude de l'hydroisomerisation des paraffines a 7 et 8 atomes de carbone sur catalyseurs bifonctionnels

    Energy Technology Data Exchange (ETDEWEB)

    Patrigeon, A.

    2000-10-11

    Due to the suppression of lead additives and the trend to decrease the aromatic and olefinic content in gasoline, the interest for new octane enhancement processes has increased, particularly for isomerization of C{sub 7} and C{sub 8} linear paraffins into higher octane number multi-branched paraffins. Up to the present day, no industrial bifunctional catalyst exists due to the high tendency of the paraffins to be cracked limiting the amount of multi-branched products. The aim of this work is to study the possibility of isomerizing linear C{sub 7} and C{sub 8} paraffins in two steps in order to increase the amount of formed multi-branched paraffins. The first step converts linear paraffins into mono-branched paraffins (that step is supposed to be the slowest one) carried out using one bifunctional catalyst. The second step converts the formed mono-branched paraffins into multi-branched paraffins using a second bifunctional catalyst. The aim is to determine the characteristics of the two catalysts. To study the first step, Pt/zeolite or Pt/meso-porous solid catalysts, with different acidities and porosities, were tested in n-heptane and n-octane hydro-conversion. The role of solid porosity on selectivities was clearly established. Molecular modelling was utilised to explain the observed selectivities. To study the second step, the 2-methyl-hexane and 2-methyl-heptane hydro-conversion on Pt/H-beta and Pt/H-Y was carried out. This lead to maximum multi-branched yields similar to those obtained with the n-heptane and n-octane hydro-conversion. That result shows that the two steps isomerization process is not necessarily required because no more multi-branched products are formed. A kinetic study on the n-heptane hydro-conversion was performed. The decomposition of isomerization and cracking reactions into elementary steps has shown the major role of the paraffins physio-sorption step in the zeolite pores. (author)

  5. Impact of fuel molecular structure on auto-ignition behavior – Design rules for future high performance gasolines

    KAUST Repository

    Boot, Michael D.

    2016-12-29

    At a first glance, ethanol, toluene and methyl tert-butyl ether look nothing alike with respect to their molecular structures. Nevertheless, all share a similarly high octane number. A comprehensive review of the inner workings of such octane boosters has been long overdue, particularly at a time when feedstocks for transport fuels other than crude oil, such as natural gas and biomass, are enjoying a rapidly growing market share. As high octane fuels sell at a considerable premium over gasoline, diesel and jet fuel, new entrants into the refining business should take note and gear their processes towards knock resistant compounds if they are to maximize their respective bottom lines. Starting from crude oil, the route towards this goal is well established. Starting from biomass or natural gas, however, it is less clear what dots on the horizon to aim for. The goal of this paper is to offer insight into the chemistry behind octane boosters and to subsequently distill from this knowledge, taking into account recent advances in engine technology, multiple generic design rules that guarantee good anti-knock performance. Careful analysis of the literature suggests that highly unsaturated (cyclic) compounds are the preferred octane boosters for modern spark-ignition engines. Additional side chains of any variety will dilute this strong performance. Multi-branched paraffins come in distant second place, owing to their negligible sensitivity. Depending on the type and location of functional oxygen groups, oxygenates can have a beneficial, neutral or detrimental impact on anti-knock quality.

  6. Preparation and Characterization of Dabco (1,4-Diazabicyclo [2.2.2]octane) modified bentonite: Application for Congo red removal

    Science.gov (United States)

    Taher, Tarmizi; Rohendi, Dedi; Mohadi, Risfidian; Lesbani, Aldes

    2018-01-01

    Natural bentonite provided from Sarolangun deposit was modified with 1,4-Diazabicyclo[2.2.2]octane (Dabco) to form a new class of porous material. Prior further modification, the natural bentonite was cleaned up and activated by NaCl to remove the impurities and increase the bentonite nature. Dabco modified bentonite (Dabco-bent) was prepared by exchanging the inorganic cation placed in the interlayer space of the montmorillonite mineral structure with the 0.01 M Dabco1+ at pH 6. The modified bentonite products were characterized using X-Ray powder diffraction and FT-IR to monitor the change of the bentonite crystallinity and function group due to the modification process. The XRD result confirmed that during the modification process, the d(001) of smectite peak at 2q around 6° was shifted. After the modification, the d(001) reflection of the montmorillonite interlayer was shifted 0.36° to the left indicating that the interlayer space of the montmorillonite has been expanded during the modification process. The FTIR spectra of Dabco modified bentonite exhibit no significantly different with the host bentonite. However, the presence of the new band at the wavenumber around 3000 and 2800 cm-1 indicates that the Dabco molecule has been successfully inserted to the bentonite molecule. The Congo red adsorption experiment was performed onto Dabco-bent product by batch technique. The experiment data described that kinetic model for Congo red adsorption onto Dabco-bent was adequately followed the second-order kinetic model and well described by Freundlich adsorption isotherm model.

  7. Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric, viscometric, and acoustic properties

    International Nuclear Information System (INIS)

    Dubey, Gyan P.; Sharma, Monika

    2008-01-01

    Experimental values of densities (ρ) and speeds of sound (u) at T = (298.15, 303.15, and 308.15) K while the viscosities (η) at T = 298.15 K in the binary mixtures of 1-octanol with n-hexane, n-octane, and n-decane are presented over the entire composition range of the binary mixtures. Using these data, excess molar volumes (V m E ), viscosity deviation (Δη), deviation in speeds of sound (Δu), deviation in isentropic compressibility (Δκ s ), excess free volume (V f E ), and excess Gibbs free energy of activation of viscous flow (ΔG* E ) are calculated and presented graphically. All the computed quantities are fitted to a polynomial equation. The values of V m E have been analyzed using Prigogine-Flory-Patterson (PFP) theory. Furthermore, the theoretical values of speed of sound (u) and isentropic compressibility (κ s ) have also been estimated using the Prigogine-Flory-Patterson (PFP) theory with the van der Waals (vdW) potential energy model and the results have been compared with experimental values. The experimental and calculated quantities are used to study the nature of mixing behaviour between the mixture components

  8. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul

    2017-08-14

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.

  9. Coding strategies in number space : Memory requirements influence spatial-numerical associations

    NARCIS (Netherlands)

    Lindemann, Oliver; Abolafia, Juan M.; Pratt, Jay; Bekkering, Harold

    The tendency to respond faster with the left hand to relatively small numbers and faster with the right hand to relatively large numbers (spatial numerical association of response codes, SNARC effect) has been interpreted as an automatic association of spatial and numerical information. We

  10. Determining the number of samples required for decisions concerning remedial actions at hazardous waste sites

    International Nuclear Information System (INIS)

    Skiles, J.L.; Redfearn, A.; White, R.K.

    1991-01-01

    The processing of collecting, analyzing, and assessing the data needed to make to make decisions concerning the cleanup of hazardous waste sites is quite complex and often very expensive. This is due to the many elements that must be considered during remedial investigations. The decision maker must have sufficient data to determine the potential risks to human health and the environment and to verify compliance with regulatory requirements, given the availability of resources allocated for a site, and time constraints specified for the completion of the decision making process. It is desirable to simplify the remedial investigation procedure as much as possible to conserve both time and resources while, simultaneously, minimizing the probability of error associated with each decision to be made. With this in mind, it is necessary to have a practical and statistically valid technique for estimating the number of on-site samples required to ''guarantee'' that the correct decisions are made with a specified precision and confidence level. Here, we will examine existing methodologies and then develop our own approach for determining a statistically defensible sample size based on specific guidelines that have been established for the risk assessment process

  11. The influence of Compression Ratio to Performance of Four Stroke Engine Use of Arak Bali as a Fuel

    Directory of Open Access Journals (Sweden)

    I Dewa Made Krishna Muku

    2012-11-01

    Full Text Available Arak bali is alternative fuel as ethanol. Ethanol has octane number 108. Octane number which was higher can over come adetonation, and can work at higher compression ratio. This experiment has done to now how the effect of compression ratiovariation to the performance four strokes engine by arak bali fuel. This research was done by changing the compressionratio that is 8,8 : 1, 8,9 : 1, 9 : 1 and 9,3 : 1. The change was done by reducing combustion chamber by scrap the cylinderhead. The result, for the used arak bali fuel to the vehicle is, if engine compression ratio to increase can be influence ofengine performance to be increase and engine fuel consumption to be decrease. For premium is, if engine compression ratioto increase to influence of engine performance to be decrease and engine fuel consumption to be increase.

  12. Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach

    Energy Technology Data Exchange (ETDEWEB)

    K. Brudzewski; A. Kesik; K. Kolodziejczyk; U. Zborowska; J. Ulaczyk [Warsaw University of Technology, Warsaw (Poland). Department of Chemistry

    2006-03-01

    This paper reports on analysis of 45 gasoline samples with different qualities, namely, octane number and chemical composition. Measurements of data from gas chromatography and IR (FTIR) spectroscopy are used to gasoline quality prediction and classification. The data were processed using principal component analysis (PCA) and fuzzy C means (FCM) algorithm. The data were then analyzed following the neural network paradigms, hybrid neural network and support vector machines (SVM) classifier. The IR spectra were compressed and de-noised by the discrete wavelet analysis. Using the hybrid neural network and multi linear regression method (MLRM), excellent correlation between chemical composition of the gasoline samples and predicted value of the octane number was obtained. About 100% correct classification for six different categories of the gasoline was achieved, each of which has different qualities. 9 refs., 4 figs., 5 tabs.

  13. Typical Complexity Numbers

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Typical Complexity Numbers. Say. 1000 tones,; 100 Users,; Transmission every 10 msec. Full Crosstalk cancellation would require. Full cancellation requires a matrix multiplication of order 100*100 for all the tones. 1000*100*100*100 operations every second for the ...

  14. The number of subjects per variable required in linear regression analyses

    NARCIS (Netherlands)

    P.C. Austin (Peter); E.W. Steyerberg (Ewout)

    2015-01-01

    textabstractObjectives To determine the number of independent variables that can be included in a linear regression model. Study Design and Setting We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression

  15. 'Chasing the numbers': Australian Bachelor of Midwifery students' experiences of achieving midwifery practice requirements for registration.

    Science.gov (United States)

    Licqurish, Sharon; Seibold, Camel

    2013-06-01

    to explore one aspect of the findings from a qualitative study exploring Australian Bachelor of Midwifery students' experiences of achieving competency for beginning practice. a qualitative study using grounded theory, incorporating situational analysis. Data were collected by interviews, field observation and students' documents. one university in Victoria, Australia, which was a member of a consortium of universities that first implemented Bachelor of Midwifery curricula. 19 women, aged 20-40 years, completing the Bachelor of Midwifery course between the years 2005 and 2008. data analysis revealed an overarching social process of assimilation, and three related subprocesses namely realisation, adaptation and consolidation. This paper focuses on consolidation in terms of competency achievement in relation to set requirements. while generally found competent for beginning practice, the Bachelor of Midwifery students in this study felt that their ability to achieve competency according to professional midwifery standards, was constrained by the restricted nature of midwifery practice and medical dominance in the hospitals where they were placed. Furthermore, they found it challenging to achieve the minimum midwifery experience requirements, as well as their own personal learning objectives, within the clinical practicum hours provided in the curriculum. a review of the clinical hours provided by Bachelor of Midwifery curricula is required, with a view to ensure that clinical hours are consistent with recommended hours suggested by Australian Bachelor of Midwifery course accreditation standards. Universities implementing midwifery curricula in Australia need to be cognisant of the theory-practice gap and therefore the applicability of professional competency standards to the education of midwives. The concerns about the reliability of competency standards need to be addressed. Finally, further research is required to validate the current number of, minimum practice

  16. Innate or Acquired? – Disentangling Number Sense and Early Number Competencies

    Directory of Open Access Journals (Sweden)

    Julia Siemann

    2018-04-01

    Full Text Available The clinical profile termed developmental dyscalculia (DD is a fundamental disability affecting children already prior to arithmetic schooling, but the formal diagnosis is often only made during school years. The manifold associated deficits depend on age, education, developmental stage, and task requirements. Despite a large body of studies, the underlying mechanisms remain dubious. Conflicting findings have stimulated opposing theories, each presenting enough empirical support to remain a possible alternative. A so far unresolved question concerns the debate whether a putative innate number sense is required for successful arithmetic achievement as opposed to a pure reliance on domain-general cognitive factors. Here, we outline that the controversy arises due to ambiguous conceptualizations of the number sense. It is common practice to use early number competence as a proxy for innate magnitude processing, even though it requires knowledge of the number system. Therefore, such findings reflect the degree to which quantity is successfully transferred into symbols rather than informing about quantity representation per se. To solve this issue, we propose a three-factor account and incorporate it into the partly overlapping suggestions in the literature regarding the etiology of different DD profiles. The proposed view on DD is especially beneficial because it is applicable to more complex theories identifying a conglomerate of deficits as underlying cause of DD.

  17. Innate or Acquired? – Disentangling Number Sense and Early Number Competencies

    Science.gov (United States)

    Siemann, Julia; Petermann, Franz

    2018-01-01

    The clinical profile termed developmental dyscalculia (DD) is a fundamental disability affecting children already prior to arithmetic schooling, but the formal diagnosis is often only made during school years. The manifold associated deficits depend on age, education, developmental stage, and task requirements. Despite a large body of studies, the underlying mechanisms remain dubious. Conflicting findings have stimulated opposing theories, each presenting enough empirical support to remain a possible alternative. A so far unresolved question concerns the debate whether a putative innate number sense is required for successful arithmetic achievement as opposed to a pure reliance on domain-general cognitive factors. Here, we outline that the controversy arises due to ambiguous conceptualizations of the number sense. It is common practice to use early number competence as a proxy for innate magnitude processing, even though it requires knowledge of the number system. Therefore, such findings reflect the degree to which quantity is successfully transferred into symbols rather than informing about quantity representation per se. To solve this issue, we propose a three-factor account and incorporate it into the partly overlapping suggestions in the literature regarding the etiology of different DD profiles. The proposed view on DD is especially beneficial because it is applicable to more complex theories identifying a conglomerate of deficits as underlying cause of DD. PMID:29725316

  18. Sheep numbers required for dry matter digestibility evaluations when fed fresh perennial ryegrass or forage rape.

    Science.gov (United States)

    Sun, Xuezhao; Krijgsman, Linda; Waghorn, Garry C; Kjestrup, Holly; Koolaard, John; Pacheco, David

    2017-03-01

    Research trials with fresh forages often require accurate and precise measurement of digestibility and variation in digestion between individuals, and the duration of measurement periods needs to be established to ensure reliable data are obtained. The variation is likely to be greater when freshly harvested feeds are given, such as perennial ryegrass ( Lolium perenne L.) and forage rape ( Brassica napus L.), because the nutrient composition changes over time and in response to weather conditions. Daily feed intake and faeces output data from a digestibility trial with these forages were used to calculate the effects of differing lengths of the measurement period and differing numbers of sheep, on the precision of digestibility, with a view towards development of a protocol. Sixteen lambs aged 8 months and weighing 33 kg at the commencement of the trial were fed either perennial ryegrass or forage rape (8/treatment group) over 2 periods with 35 d between measurements. They had been acclimatised to the diets, having grazed them for 42 d prior to 11 days of indoor measurements. The sheep numbers required for a digestibility trial with different combinations of acclimatisation and measurement period lengths were subsequently calculated for 3 levels of imposed precision upon the estimate of mean dry matter (DM) digestibility. It is recommended that if the standard error of the mean for digestibility is equal to or higher than 5 g/kg DM, and if sheep are already used to a fresh perennial ryegrass or forage rape diet, then a minimum of 6 animals are needed and 4 acclimatisation days being fed individually in metabolic crates followed by 7 days of measurement.

  19. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels

    International Nuclear Information System (INIS)

    Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F.

    2013-01-01

    Highlights: • Heat flux sensors used to characterise the locations of fuel spray wall impingement. • Droplet evaporation modelling used to study the effect of fuel properties. • Behaviour of ethanol and butanol distinctively different to hydrocarbons. -- Abstract: Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling

  20. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs.

    Science.gov (United States)

    Pashirova, Tatiana N; Lukashenko, Svetlana S; Zakharov, Sergey V; Voloshina, Alexandra D; Zhiltsova, Elena P; Zobov, Vladimir V; Souto, Eliana B; Zakharova, Lucia Ya

    2015-03-01

    Aggregation properties of mono (mono-CS) and dicationic (di-CS) surfactants, namely quaternised derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO), have been evaluated in water and in nutrient broths of different pH, i.e. in Hottinger broth (рН=7.2) and Sabouraud dextrose broth (рН=5.6). Aggregation capacity of surfactants was shown to be responsible for the solubilization properties of a complex composed of a hydrophobic probe (Sudan I) and a selected drug (quercetin), contributing to the antimicrobial activity of this surfactant system. The effect of N-methyl-d-glucamine (NmDg) additive on the antimicrobial activity of mono-CS, and its aggregation and solubilization parameters, has also been evaluated. A substantial decrease in critical micelle concentration (CMC) of cationic surfactants in nutrient broths (up to 60 times) has been reported. Twofold dilution of monocationic surfactant by NmDg slightly changed the CMC of surfactant; however, it provided a remarkable increase in solubilization capacity (∼by 4 times) and decrease in its toxicity. The data anticipate the potential use of DABCO quaternized derivatives as innovative non-toxic delivery systems for hydrophobic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 7 CFR 273.6 - Social security numbers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Social security numbers. 273.6 Section 273.6... normally uses the Receipt of Application for a Social Security Number, Form SSA-5028, as evidence that an... security numbers. (a) Requirements for participation. The State agency shall require that a household...

  2. Technical Appraisal of Continuous Destilator Type as Alternative Fuel Producer from Basic Materials of Arak Bali

    Directory of Open Access Journals (Sweden)

    Sukadana -

    2012-11-01

    Full Text Available Arrack Bali which is produced from traditional process has low quality (<40%. With controlling of operational variable such as evaporation temperature, will improve arrack Bali quality. Arrack Bali with quality more than 80 % has octane number more than 108,6, higher then petroleum octane number (80 until 90, easy burning and evaporation, very good to be alternative fuel to engine. In order to product height quality any operational variables like temperature, step, and sprayer models should be noticed. This experiment is to obtain operational variables of distillatory to product arrack Bali as an alternative fuel and it is tested in motor cycle engine at speed and compression ratio variables toward performance like emission. The higher evaporation temperature is the higher capacity of product to be obtained, on the other hand, the lower quality to be reached. Generally, comparing with petroleum, arrack Bali yields lower emission.

  3. 20 CFR 422.103 - Social security numbers.

    Science.gov (United States)

    2010-04-01

    ... personal interview with the dependent is not required. Form SS-5 may be obtained at: (i) Any local social... previously assigned social security number(s), if any, of the applicant. A personal interview may be required... sponsoring agency of a refugee, if no personal mailing address is available). (d) Social security number...

  4. Fermion number in supersymmetric models

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    1975-01-01

    The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)

  5. Antinociceptive action of DBO 17 and DBO 11 in mice: two 3,8 diazabicyclo (3.2.1.) octane derivates with selective mu opioid receptor affinity.

    Science.gov (United States)

    Fadda, P; Barlocco, D; Tronci, S; Cignarella, G; Fratta, W

    1997-11-01

    Two 3,8 diazabicyclo (3.2.1.) octane derivates, namely DBO 17 and DBO 11, were studied for the opioid-like activity. In the rat brain membrane preparation binding studies, DBO 17 and DBO 11 showed a high affinity and selectivity for the mu opioid receptor (Ki's: 5.1 and 25 nM, respectively). DBO 17 and DBO 11 inhibited the nociceptive response in the hot-plate test of mice with ED50 values of 0.16 mg/kg and 0.44 mg/kg, respectively. The antinociceptive action of both DBO 17 and DBO 11 was blocked by naloxone. Tolerance to the antinociceptive action of DBO 17 and DBO 11 was present after 13 and 7 days of repeated treatment, respectively. Both DBO 17 and DBO 11 were ineffective in morphine-tolerant mice and vice versa. Chronic treatments (three times daily for seven consecutive days) of DBO 17 and DBO 11 induced a naloxone-precipitated withdrawal syndrome in DBO 17 treated mice similar to that in morphine treated mice, whereas in DBO 11 treated mice abstinence signs were virtually absent. These results indicate an interesting pharmacological profile that suggests these compounds as possible new candidates for the clinical treatment of pain.

  6. Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission

    KAUST Repository

    Zhang, Bo; Sarathy, Mani; Abdul-Manan, Amir F.N.

    2017-01-01

    Lifecycle CO2 emission of ethanol blended gasoline was simulated to investigate how fuel properties and composition affect overall emission. Fuel research octane number (RON), octane sensitivity and ethanol content (derived from sugarcane and corn) were varied in the simulations to formulate blended fuels that economically achieve target specifications. The well-to-pump (WTP) simulation results were then analyzed to understand the effects of fuel composition on emission. Elevated ethanol content displaces aromatics and olefins required in gasoline blendstock to reach a target fuel specification. The addition of greater sugarcane-based ethanol percentage in constant aromatics and olefins fuel reduces its WTP CO2 emission. Corn-based ethanol blending does not offer CO2 emission offset due to its high production emissions. The mixing of sugarcane-based with corn-based ethanol is shown to be a potentially effective method for achieving a blended fuel with a lower lifecycle CO2 emission. Besides CO2 emission, the total greenhouse gas (GHG) emission from land-use conversions (LUC), CH4, and N2O are also significant in determining the optimal fuel blend. Herein, we present preliminary results showing that total GHG emissions significantly increase when either corn or sugarcane ethanol is blended at even small percentages; detailed results will be addressed in future communications.

  7. Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission

    KAUST Repository

    Zhang, Bo

    2017-06-02

    Lifecycle CO2 emission of ethanol blended gasoline was simulated to investigate how fuel properties and composition affect overall emission. Fuel research octane number (RON), octane sensitivity and ethanol content (derived from sugarcane and corn) were varied in the simulations to formulate blended fuels that economically achieve target specifications. The well-to-pump (WTP) simulation results were then analyzed to understand the effects of fuel composition on emission. Elevated ethanol content displaces aromatics and olefins required in gasoline blendstock to reach a target fuel specification. The addition of greater sugarcane-based ethanol percentage in constant aromatics and olefins fuel reduces its WTP CO2 emission. Corn-based ethanol blending does not offer CO2 emission offset due to its high production emissions. The mixing of sugarcane-based with corn-based ethanol is shown to be a potentially effective method for achieving a blended fuel with a lower lifecycle CO2 emission. Besides CO2 emission, the total greenhouse gas (GHG) emission from land-use conversions (LUC), CH4, and N2O are also significant in determining the optimal fuel blend. Herein, we present preliminary results showing that total GHG emissions significantly increase when either corn or sugarcane ethanol is blended at even small percentages; detailed results will be addressed in future communications.

  8. Elementary number theory

    CERN Document Server

    Dudley, Underwood

    2008-01-01

    Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta

  9. Benzine-keuzegedrag van automobilisten

    NARCIS (Netherlands)

    Borgers, A.W.J.; Waerden, van der P.J.H.J.

    1990-01-01

    Most gas stations in the Netherlands offer three types of gasoline: Euro (unleaded, low octane grade), Superplus (unleaded, high octane grade), and Super (leaded, high octane grade). Depending on the type of the car, many car drivers can choose between two or three types of gasoline. According to

  10. 33 CFR 181.29 - Hull identification number display.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hull identification number... SECURITY (CONTINUED) BOATING SAFETY MANUFACTURER REQUIREMENTS Identification of Boats § 181.29 Hull identification number display. Two identical hull identification numbers are required to be displayed on each...

  11. Thermal requirements and estimated number of generations of Neopamera bilobata (Say in strawberry-producing regions of Brazil

    Directory of Open Access Journals (Sweden)

    Taciana Melissa de Azevedo Kuhn

    2017-12-01

    Full Text Available ABSTRACT: The thermal threshold and thermal requirements of Neopamera bilobata were determined, and the number of generations that this species may produce in the main strawberry-producing regions of Brazil was estimated. In a climate chamber (70±10% RH and 12h photophase at 16, 19, 22, 25, 28, or 30±1°C, the development of 120 eggs was monitored until the adult stage, at each temperature. Nymphs were maintained in individual cages and fed on strawberry fruits of the cultivar Aromas. The mean duration and viability of the egg and nymph stages were calculated by estimating the lower and upper developmental thresholds and the thermal constant, and this information was used to estimate the number of generations per year in different strawberry-producing regions of Brazil. The egg-to-adult duration decreased as temperatures increased, up to 28°C (93.4, 83.2, 43.9, and 31.4 days at 19, 22, 25, and 28°C, respectively. Viability of nymphs was highest between 22 and 28°C. At 30°C, the egg-to-adult duration increased (36 days, while the viability decreased (11.11%. The lower egg-to-adult developmental threshold was 15.2°C and the thermal constant was 418.4 degree-days. Calculating the number of generations indicated that the largest number (5.1 generations yr-1 was obtained for the municipality of Jaboti, Paraná, and the smallest for Caxias do Sul, Rio Grande do Sul (1.9 generations yr-1. Our findings demonstrated that important strawberry-producing regions in Brazil are suitable for the development of N. bilobata.

  12. 33 CFR 181.25 - Hull identification number format.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hull identification number format... (CONTINUED) BOATING SAFETY MANUFACTURER REQUIREMENTS Identification of Boats § 181.25 Hull identification number format. Each of the hull identification numbers required by § 181.23 must consist of twelve...

  13. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  14. Production of clean gasoline from the condensate

    Directory of Open Access Journals (Sweden)

    Noureddin Bentahar

    2013-12-01

    Full Text Available The locally available Algerian bentonite is explored to prepare catalysts for the isomerization of the light fractions of Algerian condensate to produce high quality gasoline of high octane number. Satisfying results are obtained which render these catalysts applicable for a large scale production.

  15. Thermal requirements and estimate of the annual number of generations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on strawberry crop

    International Nuclear Information System (INIS)

    Nondillo, Aline; Redaelli, Luiza R.; Pinent, Silvia M.J.; Gitz, Rogerio

    2008-01-01

    Frankliniella occidentalis (Pergande) is one of the major strawberry pests in southern Brazil. The insect causes russeting and wither in flowers and fruits reducing commercial value. In this work, the thermal requirements of the eggs, larvae and pupae of F. occidentalis were estimated. Thrips development was studied in folioles of strawberry plants at six constant temperatures (16, 19, 22, 25, 28 and 31 deg C) in controlled conditions (70 +- 10% R.H. and 12:12 L:D). The number of annual generations of F. occidentalis was estimated for six strawberry production regions of Rio Grande do Sul State based on its thermal requirements. Developmental time of each F. occidentalis stages was proportional to the temperature increase. The best development rate was obtained when insects were reared at 25 deg C and 28 deg C. The lower threshold and the thermal requirements for the egg to adult stage were 9.9 deg C and 211.9 degree-days, respectively. Considering the thermal requirements of F. occidentalis, 10.7, 12.6, 13.1, 13.6, 16.5 and 17.9 generations/year were estimated, respectively, for Vacaria, Caxias do Sul, Farroupilha, Pelotas, Porto Alegre and Taquari producing regions located in Rio Grande do Sul State, Brazil. (author)

  16. Crunching the Numbers

    International Development Research Centre (IDRC) Digital Library (Canada)

    Operating a Demographic Surveillance System (DSS) like this one requires a blend of high-tech number-crunching ability and .... views follow a standardized format that takes several ... general levels of health and to the use of health services.

  17. Future production of gasoline in Brazil; Producao futura de gasolina no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Perisse, Juarez B.; Oddone, Maria Regina R.; Lemos, Solange S.F.; Lucena, Sergio Cunha de; Gomes, Hedemir F. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Faced with the challenge of making 2014 gasoline, PETROBRAS established the planning of a new refining park that made possible this production. The proposal comprised new process units with hydrotreating and conversion. These units have the function to work synergistically, according to the needs and characteristics of each refinery. The large reduction in the sulfur content generated the need to use cracked naphtha hydrodesulfurization units (HDS) in the refining scheme. However, these units, in addition to removing sulfur, reduce octane number due to saturation of some olefins, which would imply a drop in gasoline production. The reduction of the content of olefins in the specification led the need to dilute the produced olefins in the blend, as PETROBRAS gasoline is composed on average of 70% cracked naphtha. Catalytic Reforming Units (CCR) will become part of the refining scheme with two main functions, dilute olefins and restore the octane number loss in the hydrodesulfurization process. This is possible because reformed naphtha has no olefins and a high octane index. The feedstock must be hydrotreated to remove contaminants, and such units become even more severe if the feedstock is combined with naphtha from Delayed coking units (DCU). As a result, new hydrotreatment of naphtha (distillation and DCU) were also included in the new refinery schemes. All this new refining structure, focusing on the new gasoline specification, is being implemented. Each refinery has a new scheme of its own, according to its characteristics. (author)

  18. Suppression of secondary reactions during n-butene dimerization to gasoline blending components : Chemical Reaction Engineering

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.

    2000-01-01

    There are 72 isomers of the octene molecules and only a small number of them have high value as a blending octane component in gasoline. The amorphous silica alumina catalyst used for selectively dimerizing octenes from linear butenes can itself isomerize the target species. It is demonstrated that

  19. 40 CFR 86.1313-94 - Fuel specifications.

    Science.gov (United States)

    2010-07-01

    ... and have a minimum sensitivity of 7.5 octane numbers, where sensitivity is defined as the Research... submitted evidence to the Administrator demonstrating to the Administrator's satisfaction that this fuel... contracts from customers indicating the intent to purchase and use “Type 1-D” grade diesel fuel as the...

  20. On the relation between grammatical number and cardinal numbers in development.

    Science.gov (United States)

    Sarnecka, Barbara W

    2014-01-01

    This mini-review focuses on the question of how the grammatical number system of a child's language may help the child learn the meanings of cardinal number words (e.g., "one" and "two"). Evidence from young children learning English, Russian, Japanese, Mandarin, Slovenian, or Saudi Arabic suggests that trajectories of number-word learning differ for children learning different languages. Children learning English, which distinguishes between singular and plural, seem to learn the meaning of the cardinal number "one" earlier than children learning Japanese or Mandarin, which have very little singular/plural marking. Similarly, children whose languages have a singular/dual/plural system (Slovenian and Saudi Arabic) learn the meaning of "two" earlier than English-speaking children. This relation between grammatical and cardinal number may shed light on how humans acquire cardinal-number concepts. There is an ongoing debate about whether mental symbols for small cardinalities (concepts for "oneness," "twoness," etc.) are innate or learned. Although an effect of grammatical number on number-word learning does not rule out nativist accounts, it seems more consistent with constructivist accounts, which portray the number-learning process as one that requires significant conceptual change.

  1. HIV in hiding: methods and data requirements for the estimation of the number of people living with undiagnosed HIV

    DEFF Research Database (Denmark)

    Lundgren, Jens

    2011-01-01

    Many people who are HIV positive are unaware of their infection status. Estimation of the number of people with undiagnosed HIV within a country or region is vital for understanding future need for treatment and for motivating testing programs. We review the available estimation approaches which...... are in current use. They can be broadly classified into those based on prevalence surveys and those based on reported HIV and AIDS cases. Estimation based on prevalence data requires data from regular prevalence surveys in different population groups together with estimates of the size of these groups....... The recommended minimal case reporting data needed to estimate the number of patients with undiagnosed HIV are HIV diagnoses, including CD4 count at diagnosis and whether there has been an AIDS diagnosis in the 3 months before or after HIV diagnosis, and data on deaths in people with HIV. We would encourage all...

  2. The FCC process as a producer of light olefins

    International Nuclear Information System (INIS)

    Yung, K.Y.; Yanik, S.; O'Connor, P.; Pouwels, C.

    1992-01-01

    To reduce emissions from the gasoline engine, aromatics content and vapor pressure of the motor gasoline pool will be reduced and a minimum amount of oxygen will be mandated. This reformulation will limit the application of high octane components like benzene, toluene and butanes and will require the use of oxygenates. To compensate for the loss in octane, the use of alkylate and, of course also oxygenates will grow. The Fluid Catalytic Cracking Unit is, as producer of (olefinic) propanes, butanes and pentanes, an important feedstock producer for alkylate and oxygenate producing process. Hence, process adjustments and FCC catalyst formations to increase the yield of above desirable light products are of prime importance and will be dealt with in this paper

  3. Metabolism of the insecticidally active GABAA receptor antagonist 4-sec-[3,4-3H2]butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo[2.2.2]octane

    International Nuclear Information System (INIS)

    Deng, Yanli; Palmer, C.J.; Toia, R.F.; Casida, J.E.

    1990-01-01

    4-sec-[3,4- 3 H 2 ]Butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo[2.2.2]octane (referred to as [ 3 H]COB) was examined as an example of a new class of insecticidally active compounds that block the γ-aminobutyric acid gated chloride channel. Metabolites were identified by thin-layer cochromatography with standards from synthesis and by consideration of their hydrolytic and oxidative degradation products formed in situ on two-dimensional silica gel chromatoplates. Metabolism of [ 3 H]COB by mouse liver and housefly abdomen microsomes is dependent on fortification with NADPH. The O-methylene and sec-butyl sites are sensitive to oxidation. Each carbon of the sec-butyl group is individually functionalized with strong preference for the methylene site in the mouse but not the housefly microsomal system. O-Methylene hydroxylation initiates spontaneous cage opening to form an aldehyde that undergoes metabolic reduction, ultimately yielding the same cyanobenzoate ester of 2,2-bis-(hydroxymethyl)-3-methylpentan-1-ol formed by direct hydrolysis. Houseflies injected with [ 3 H]COB form many if not all of the same metabolites, with major products being the aforementioned cyanobenzoate, the orthoester oxidized at the sec-butyl methylene site, and polar conjugates

  4. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  5. On the Relation Between Grammatical Number and Cardinal Numbers in Development

    Directory of Open Access Journals (Sweden)

    Barbara W Sarnecka

    2014-10-01

    Full Text Available This mini-review focuses on the question of how the grammatical number system of a child’s language may help the child learn the meanings of cardinal number words (e.g., ‘one’ and ‘two’. Evidence from young children learning English, Russian, Japanese, Mandarin, Slovenian or Saudi Arabic suggests that trajectories of number-word learning differ for children learning different languages. Children learning English, which distinguishes between singular and plural, seem to learn the meaning of the cardinal number ‘one’ earlier than children learning Japanese or Mandarin, which have very little singular/plural marking. Similarly, children whose languages have a singular/dual/plural system (Slovenian and Saudi Arabic learn the meaning of ‘two’ earlier than English-speaking children. This relation between grammatical and cardinal number may shed light on how humans acquire cardinal-number concepts. There is an ongoing debate about whether mental symbols for small cardinalities (concepts for ‘oneness,’ ‘twoness,’ etc. are innate or learned. Although an effect of grammatical number on number-word learning does not rule out nativist accounts, it seems more consistent with constructivist accounts, which portray the number-learning process as one that requires significant conceptual change.

  6. Number theory and its history

    CERN Document Server

    Ore, Oystein

    1988-01-01

    A prominent mathematician presents the principal ideas and methods of number theory within a historical and cultural framework. Oystein Ore's fascinating, accessible treatment requires only a basic knowledge of algebra. Topics include prime numbers, the Aliquot parts, linear indeterminate problems, congruences, Euler's theorem, classical construction problems, and many other subjects.

  7. 47 CFR 68.354 - Numbering and labeling requirements for terminal equipment.

    Science.gov (United States)

    2010-10-01

    ... no competitive advantage for any entity or segment of the industry. (e) FCC numbering and labeling...) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions.... Customs Service to carry out their functions, and for consumers to easily identify the responsible party...

  8. Quality pseudo-random number generator

    International Nuclear Information System (INIS)

    Tarasiuk, J.

    1996-01-01

    The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented

  9. 49 CFR 229.105 - Steam generator number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...

  10. Experimental analysis of an autothermal reformer for automotive purposes

    International Nuclear Information System (INIS)

    Caners, C.; Peppley, B.; Harrison, S.; Oosthuizen, P.

    2004-01-01

    This paper describes the experimental analysis, concomitant with modeling research, to determine improved operating parameters and design of an autothermal reformer. The reformer, utilizing both partial oxidation and steam reforming reactions, along with the water gas shift phenomena is well suited for the mobile application of transportation. This is due to the novel geometry of the autothermal reformer, which seeks to improve the heat transfer characteristics of the process, whereby the exothermic partial oxidation reaction provides the heat energy required to drive the steam reforming reaction, to the point of a thermally neutral system. The paper will present data from the experimental results of reforming iso-octane as a surrogate for gasoline in the form of reformate composition, iso-octane conversion percentages and efficiencies in terms of hydrogen realized per mol of fuel input. (author)

  11. 4 CFR 83.9 - Social Security number.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Social Security number. 83.9 Section 83.9 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS PRIVACY PROCEDURES FOR PERSONNEL RECORDS § 83.9 Social Security number. (a) GAO may not require individuals to disclose their Social Security Number (SSN) unless...

  12. CONFUSION WITH TELEPHONE NUMBERS

    CERN Multimedia

    Telecom Service

    2002-01-01

    he area code is now required for all telephone calls within Switzerland. Unfortunately this is causing some confusion. CERN has received complaints that incoming calls intended for CERN mobile phones are being directed to private subscribers. This is caused by mistakenly dialing the WRONG code (e.g. 022) in front of the mobile number. In order to avoid these problems, please inform your correspondents that the correct numbers are: 079 201 XXXX from Switzerland; 0041 79 201 XXXX from other countries. Telecom Service

  13. Large numbers hypothesis. II - Electromagnetic radiation

    Science.gov (United States)

    Adams, P. J.

    1983-01-01

    This paper develops the theory of electromagnetic radiation in the units covariant formalism incorporating Dirac's large numbers hypothesis (LNH). A direct field-to-particle technique is used to obtain the photon propagation equation which explicitly involves the photon replication rate. This replication rate is fixed uniquely by requiring that the form of a free-photon distribution function be preserved, as required by the 2.7 K cosmic radiation. One finds that with this particular photon replication rate the units covariant formalism developed in Paper I actually predicts that the ratio of photon number to proton number in the universe varies as t to the 1/4, precisely in accord with LNH. The cosmological red-shift law is also derived and it is shown to differ considerably from the standard form of (nu)(R) - const.

  14. 49 CFR 10.29 - Social Security numbers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Social Security numbers. 10.29 Section 10.29... INDIVIDUALS Maintenance of Records § 10.29 Social Security numbers. (a) No individual is denied any right... which is required by Federal statute; or (2) The disclosure of a Social Security number when such...

  15. 14 CFR 1212.604 - Social security numbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Social security numbers. 1212.604 Section... REGULATIONS Instructions for NASA Employees § 1212.604 Social security numbers. (a) It is unlawful for NASA to...' refusal to disclose their social security numbers, except where: (1) The disclosure is required by law; or...

  16. CONFUSION WITH TELEPHONE NUMBERS

    CERN Multimedia

    Telecom Service

    2002-01-01

    The area code is now required for all telephone calls within Switzerland. Unfortunately this is causing some confusion. CERN has received complaints that incoming calls intended for CERN mobile phones are being directed to private subscribers. This is caused by mistakenly dialing the WRONG code (e.g. 022) in front of the mobile number. In order to avoid these problems, please inform your correspondents that the correct numbers are: 079 201 XXXX from Switzerland; 0041 79 201 XXXX from other countries. Telecom Service  

  17. Anticipating requirements changes-using futurology in requirements elicitation

    OpenAIRE

    Pimentel, João Henrique; Santos, Emanuel; Castro, Jaelson; Franch Gutiérrez, Javier

    2012-01-01

    It is well known that requirements changes in a later phase of software developments is a major source of software defects and costs. Thus, the need of techniques to control or reduce the amount of changes during software development projects. The authors advocate the use of foresight methods as a valuable input to requirements elicitation, with the potential to decrease the number of changes that would be required after deployment, by anticipating them. In this paper, the authors define a pr...

  18. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  19. New hydride compounds of 1,4-diazabicyclo[2.2.2]octane and its dication with borine and tetrahydridoborate anion and products of their transformations; Novye gidridnye soedineniya 1,4-diazabitsiklo[2.2.2]oktana i ego dikationa s borinom i tetergidridoborat-anionom i produkty ikh prevrashcheniya

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Yu N; Yashina, N I; Markova, O Z; Trachevskij, V V

    1997-12-31

    New compounds [dabcoH{sub 2}](BH{sub 4}){sub 2}, dabco(BH{sub 3}){sub 2}2H{sub 2}, [dabco(BH{sub 3}){sub 2}H{sub 2}]{sub n} have been synthesized by means of interaction between dihydrochloride of 1,4-diazobicyclo[2.2.2] octane (dabco) and NaBH{sub 4} in the medium of nonaqueous solvents (glyme, diglyme, tetrahydrofuran, dimethylsulfoxide) and identified by the methods of element analysis, conductometry, {sup 1}H, {sup 11}B, {sup 14}N NMR, IR spectroscopy and thermal analysis. A mechanism is suggested and the conditions are defined for mutual transformations of the compounds studied. Their ability to bind reversibly molecular hydrogen has been revealed for the first time. 19 refs.; 3 figs.; 1 tab.

  20. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    Energy Technology Data Exchange (ETDEWEB)

    Portsmouth, J.H. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  1. Drawing a random number

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik

    2006-01-01

    Random numbers are used for a great variety of applications in almost any field of computer and economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic traffic modelling in operations research to photon and ray tracing in graphics. The construction...... distributions into others with most of the required characteristics. In essence, a uniform sequence which is transformed into a new sequence with the required distribution. The subject of this article is to consider the well known highly uniform Halton sequence and modifications to it. The intent is to generate...

  2. When a number is not only a number

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj; Roepstorff, Andreas; Saddy, Douglas

    at. 1999, 2004). Furthermore, lesions studies have shown that damage to the posterior inferior parietal cortex leads to severe difficulties with performing simple calculation, such as stepwise computation (Joseph 2000: 463). The same frontal-parietal network is also involved in working memory (WM......MRI study which involves numerical processing as well as WM and error detection. Three types of stimuli: (a) repeated chunks (x, y, z, x, y, z…), (b) smaller structured chunks requiring minimal calculation (x, x+1, y, y+1, z, z+1…), and (c) strings with an increased calculation requirement (x = x+3......). The control condition consists of simple x = x+1 strings (e.g. 1, 2, 3, 4, 5, 6…). The subjects have to press a button when they detect error to the general patterns, i.e., when a number does not conform to the numerical string. Using a block design to investigate the numerical processing, all three...

  3. Construction and validation of detailed kinetic models for the combustion of gasoline surrogates; Construction et validation de modeles cinetiques detailles pour la combustion de melanges modeles des essences

    Energy Technology Data Exchange (ETDEWEB)

    Touchard, S.

    2005-10-15

    The irreversible reduction of oil resources, the CO{sub 2} emission control and the application of increasingly strict standards of pollutants emission lead the worldwide researchers to work to reduce the pollutants formation and to improve the engine yields, especially by using homogenous charge combustion of lean mixtures. The numerical simulation of fuel blends oxidation is an essential tool to study the influence of fuel formulation and motor conditions on auto-ignition and on pollutants emissions. The automatic generation helps to obtain detailed kinetic models, especially at low temperature, where the number of reactions quickly exceeds thousand. The main purpose of this study is the generation and the validation of detailed kinetic models for the oxidation of gasoline blends using the EXGAS software. This work has implied an improvement of computation rules for thermodynamic and kinetic data, those were validated by numerical simulation using CHEMKIN II softwares. A large part of this work has concerned the understanding of the low temperature oxidation chemistry of the C5 and larger alkenes. Low and high temperature mechanisms were proposed and validated for 1 pentene, 1-hexene, the binary mixtures containing 1 hexene/iso octane, 1 hexene/toluene, iso octane/toluene and the ternary mixture of 1 hexene/toluene/iso octane. Simulations were also done for propene, 1-butene and iso-octane with former models including the modifications proposed in this PhD work. If the generated models allowed us to simulate with a good agreement the auto-ignition delays of the studied molecules and blends, some uncertainties still remains for some reaction paths leading to the formation of cyclic products in the case of alkenes oxidation at low temperature. It would be also interesting to carry on this work for combustion models of gasoline blends at low temperature. (author)

  4. Dynamic Virtual Credit Card Numbers

    Science.gov (United States)

    Molloy, Ian; Li, Jiangtao; Li, Ninghui

    Theft of stored credit card information is an increasing threat to e-commerce. We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate multiple virtual credit card numbers that are either usable for a single transaction or are tied with a particular merchant. We call the scheme dynamic because the virtual credit card numbers can be generated without online contact with the credit card issuers. These numbers can be processed without changing any of the infrastructure currently in place; the only changes will be at the end points, namely, the card users and the card issuers. We analyze the security requirements for dynamic virtual credit card numbers, discuss the design space, propose a scheme using HMAC, and prove its security under the assumption the underlying function is a PRF.

  5. Testing of the activity of a zeolite hydrocracking catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A A; Yulin, M K

    1973-01-01

    The activity of a catalyst having 3.5% of molybdena supported on the hydrogen form of sodium-Y zeolite remained constant during an 800 hour laboratory test carried out at 380/sup 0/C and 40 atm with an hourly space velocity of 1.0 and a hydrogen feed rate of 1000 l/l of feed on a 180 to 320/sup 0/C fraction obtained by hydrogenating a 35 : 65 mixture of coal and an atmospheric residuum boiling above 240/sup 0/C. The catalyst was first subjected to oxidative regeneration after 500 hours of high-temperature hydrogenation of aromatized extracts. A 56.2 to 61.9% conversion to a fraction boiling up to 180/sup 0/C was achieved with a 7.3 to 9.5% yield of gas consisting most of C/sub 3/-C/sub 4/ alkanes. The isobutene/n-butene ratio was 2.5 : 1 to 3.0 : 1. A 184 to 316/sup 0/C diesel fraction having a cetane number of 50.0 and a 46 to 177/sup 0/C gasoline fraction having a Motor octane number of 81.5 and a Research octane number of 91.0 were separated from the product.

  6. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  7. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  8. Within- and between-individual variation in energy and nutrient intake in Japanese adults: effect of age and sex differences on group size and number of records required for adequate dietary assessment.

    Science.gov (United States)

    Fukumoto, Azusa; Asakura, Keiko; Murakami, Kentaro; Sasaki, Satoshi; Okubo, Hitomi; Hirota, Naoko; Notsu, Akiko; Todoriki, Hidemi; Miura, Ayako; Fukui, Mitsuru; Date, Chigusa

    2013-01-01

    Information on within- and between-individual variation in energy and nutrient intake is critical for precisely estimating usual dietary intake; however, data from Japanese populations are limited. We used dietary records to examine within- and between-individual variation by age and sex in the intake of energy and 31 selected nutrients among Japanese adults. We also calculated the group size required to estimate mean intake for a group and number of days required both to rank individuals within a group and to assess an individual's usual intake, all with appropriate arbitrary precision. A group of Japanese women (younger: 30-49 years, n = 58; older: 50-69 years, n = 63) and men (younger: 30-49 years, n = 54; older: 50-76 years, n = 67) completed dietary records for 4 nonconsecutive days in each season (16 days in total). Coefficients of within-individual variation and between-individual variation were generally larger in the younger group than in the older group and in men as compared with women. The group size required to estimate a group's mean intake, and number of days required to assess an individual's usual intake, were generally larger for the younger group and for men. In general, a longer period was required to rank women and older adults. In a group of Japanese adults, coefficients of within-individual variation and between-individual variation, which were used to estimate the group size and number of records required for adequate dietary assessment, differed by age, sex, and nutrient.

  9. 78 FR 26244 - Updating of Employer Identification Numbers

    Science.gov (United States)

    2013-05-06

    ... Number, or EIN. Employers are required to know the identity of their responsible party. The amount of...-BK02 Updating of Employer Identification Numbers AGENCY: Internal Revenue Service (IRS), Treasury... assigned an employer identification number (EIN) to provide updated information to the IRS in the manner...

  10. Certification of a second series of five hydrocarbon materials for the determination of equilibrium flashpoint (temperature ranges -10/sup 0/C to +5/sup 0/C and 80/sup 0/C to 135/sup 0/C)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D J; Gonska, H; Karcher, W

    1984-01-01

    The closed cup flashpoints of five pure hydrocarbon materials (iso-octane, toluene, n-dodecane, n-tetradecane and n-hexadecane) have been determined by equilibrium methods in an interlaboratory exercise, involving twelve laboratories of the European Community member countries and one laboratory of the Commission of the European Communities. The methods used were based on IP303/74 (or ASTM D3278-73; Rapid Tester) and IP304/74 (Abel, Abel-Pensky, Pensky-Martens Cups) with extension to allow equilibrium conditions to be maintained outside the ranges of these methods. For each hydrocarbon material, the numbers of individual measurements accepted have been between 81 and 92. As a result, the closed cup flashpoints of these materials by an equilibrium method are certified at the following temperatures: CRM No. Hydrocarbon Equilibrium closed cup flashpoint 83 iso-octane -9.5 +- 0.5/sup 0/C 84 toluene +6.0 +- 0.5/sup 0/C 85 n-dodecane +81.0 +- 1.0/sup 0/C 86 n-tetradecane +108.0 +- 1.0/sup 0/C 87 n-hexadecane +133.5 +- 1.0/sup 0/C. This report describes the experimental details of the interlaboratory measurements and the certification procedure. The procedure required extensions to be made to methods IP303/74 and IP304/74 which are given in detail and recommendations are made for the improvement of these methods over the temperature range covered by the flashpoint reference materials.

  11. 29 CFR 4010.15 - OMB control number.

    Science.gov (United States)

    2010-07-01

    ... Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION CERTAIN REPORTING AND DISCLOSURE REQUIREMENTS ANNUAL FINANCIAL AND ACTUARIAL INFORMATION REPORTING § 4010.15 OMB control number. The collection of information requirements contained in this part have been approved by the Office of...

  12. 7 CFR 1940.1000 - OMB control number.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true OMB control number. 1940.1000 Section 1940.1000 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS....1000 OMB control number. The collection of information requirements contained in this regulation has...

  13. Cognitive Analysis of Educational Games: The Number Game

    NARCIS (Netherlands)

    Van der Maas, Han; Nyamsuren, Enkhbold

    2018-01-01

    We analyze the cognitive strategies underlying performance in the Number task, a Math game that requires both arithmetic fluency and mathematical creativity. In this game all elements in a set of numbers (for instance, 2, 5, 9) have to be used precisely once to create a target number (for

  14. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo

    2017-02-05

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  15. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo; Wang, Yu; Chung, Suk-Ho; Sarathy, Mani

    2017-01-01

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  16. The impact of implementation of the requirements of Standard No. OHSAS 18001:2007 to reduce the number of injuries at work and financial costs in the Republic of Croatia.

    Science.gov (United States)

    Palačić, Darko

    2017-06-01

    This article contains the results of research into the impact of implementation of the requirements mentioned in Standard No. OHSAS 18001:2007 to reduce the number of injuries at work and the financial costs incurred in this way. The study was conducted on a determined sample by a written questionnaire survey method in the Republic of Croatia. The objective of the empirical research is to determine the impact of implementation of the requirements of Standard No. OHSAS 18001:2007 to reduce the number of injuries at work and financial costs in Croatia in business organizations that implement these requirements. To provide a broader picture, the research included the collection and analysis of data on the impact of the Standard No. OHSAS 18001:2007 on accidents and fatalities at work. Research findings are based on the analysis of performed statistical data where correlation and regression analysis has been applied.

  17. Metabolism of the insecticidally active GABA sub A receptor antagonist 4-sec-(3,4- sup 3 H sub 2 )butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo(2. 2. 2)octane

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yanli; Palmer, C.J.; Toia, R.F.; Casida, J.E. (Univ. of California, Berkeley (USA))

    1990-03-01

    4-sec-(3,4-{sup 3}H{sub 2})Butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo(2.2.2)octane (referred to as ({sup 3}H)COB) was examined as an example of a new class of insecticidally active compounds that block the {gamma}-aminobutyric acid gated chloride channel. Metabolites were identified by thin-layer cochromatography with standards from synthesis and by consideration of their hydrolytic and oxidative degradation products formed in situ on two-dimensional silica gel chromatoplates. Metabolism of ({sup 3}H)COB by mouse liver and housefly abdomen microsomes is dependent on fortification with NADPH. The O-methylene and sec-butyl sites are sensitive to oxidation. Each carbon of the sec-butyl group is individually functionalized with strong preference for the methylene site in the mouse but not the housefly microsomal system. O-Methylene hydroxylation initiates spontaneous cage opening to form an aldehyde that undergoes metabolic reduction, ultimately yielding the same cyanobenzoate ester of 2,2-bis-(hydroxymethyl)-3-methylpentan-1-ol formed by direct hydrolysis. Houseflies injected with ({sup 3}H)COB form many if not all of the same metabolites, with major products being the aforementioned cyanobenzoate, the orthoester oxidized at the sec-butyl methylene site, and polar conjugates.

  18. Developing Deaf Students Fraction Skills Requires Understanding Magnitude and Whole Number Division

    Science.gov (United States)

    Mousley, Keith; Kelly, Ronald R.

    2018-01-01

    Research has shown that fraction magnitude and whole number division are important precursors to learning and understanding fractions. Deaf and hard-of-hearing (DHH) students are consistently challenged with learning fractions from K-12 through college. Sixty DHH college students were tested for both their understanding of magnitude between two…

  19. Cognitive Analysis of Educational Games : The Number Game

    NARCIS (Netherlands)

    van der Maas, H.L.J.; Nyamsuren, E.

    We analyze the cognitive strategies underlying performance in the Number task, a Math game that requires both arithmetic fluency and mathematical creativity. In this game all elements in a set of numbers (for instance, 2, 5, 9) have to be used precisely once to create a target number (for instance,

  20. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS

    Science.gov (United States)

    Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...

  1. Chemical and fuel products from mixtures of coal and petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A A; Yulin, M K

    1973-01-01

    From a 1:1 coal-petroleum low-pressure (less than 100 atm) hydrogenation product, C/sub 6-8/ phenols comprising 7.4 percent of the product distilling below 240/sup 0/C were extracted with 10 percent aqueous caustic soda and hydrofined at 325/sup 0/C and 20 atm on cobalt molybdenum alumina catalyst. The combined 240/sup 0/ to 320/sup 0/C and less than or equal to 240/sup 0/C neutral fractions were hydrofined at 400/sup 0/C and 50 atm on cobalt molybdenum alumina catalyst, and the gasoline comprising 42.8 percent of the catalyzate hydroreformed at 490/sup 0/C and 50 atm to raise the octane number from 50.4 to 81.8 to 91.3 and increase the aromatics content from 9.0 to 55.6 percent. Gasoline of 78.5 to 90.5 octane number was prepared by hydrocracking the 180 to 320/sup 0/C catalyzate fraction at 380/sup 0/C and 40 atm on a molybdenum hydrogen sodium yttrium zeolite catalyst greatly favoring C/sub 3-4/ hydrocarbons in the gaseous products (9.0 percent).

  2. 42 CFR 435.910 - Use of social security number.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Use of social security number. 435.910 Section 435... of social security number. (a) The agency must require, as a condition of eligibility, that each... religious objections, refuses to obtain a Social Security Number (SSN). The identification number may be...

  3. Environmental Requirements Management

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.; Frey, Jeffrey A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number of requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance

  4. Children's Early Mental Number Line: Logarithmic or Decomposed Linear?

    Science.gov (United States)

    Moeller, Korbinean; Pixner, Silvia; Kaufmann, Liane; Nuerk, Hans-Christoph

    2009-01-01

    Recently, the nature of children's mental number line has received much investigation. In the number line task, children are required to mark a presented number on a physical number line with fixed endpoints. Typically, it was observed that the estimations of younger/inexperienced children were accounted for best by a logarithmic function, whereas…

  5. A study of the minimum number of slices required for quantification of pulmonary emphysema by computed tomography

    International Nuclear Information System (INIS)

    Hitsuda, Yutaka; Igishi, Tadashi; Kawasaki, Yuji

    2000-01-01

    We attempted to determine the minimum number of slices required for quantification of overall emphysema by computed tomography (CT). Forty-nine patients underwent CT scanning with a 15-mm slice interval, and 13 to 18 slices per patient were obtained. The percentage of low attenuation area (LAA%) per slice was measured with a method that we reported on previously, utilizing a CT program and NIH image. The average LAA% values for 1, 2, 3, and 6 slices evenly spaced through the lungs [LAA% (1), LAA% (2), LAA% (3), and LAA% (6)] were compared with those for all slices [LAA% (All)]. The correlation coefficients for LAA% (1), LAA% (2), LAA% (3), and LAA% (6) with LAA% (All) were 0.961, 0.981, 0.993, and 0.997, respectively. Mean differences ±SD were -3.20±4.21%, -2.32±3.00, -0.20±1.84, and -0.16±1.26, respectively. From these results, we concluded that overall emphysema can be quantified by using at least three slices: one each of the upper, middle, and lower lung. (author)

  6. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    International Nuclear Information System (INIS)

    Machrafi, Hatim

    2008-01-01

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO 2 emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N 2 and CO 2 from 0 to 46 vol.%, changing the EGR temperature from 30 to 120 deg. C, altering the addition of CO and NO from 0 to 170 ppmv and varying the addition of CH 2 O from 0 to 1400 ppmv. These validations were performed respecting the HCCI conditions for the inlet temperature and the equivalence ratio. The results showed that the mechanism is validated experimentally in dilution ranges going up to 21-30 vol.%, depending on the species of dilution and over the whole range of the EGR temperature. The mechanism is validated over the whole range of CO and CH 2 O addition. As for the addition of NO, the mechanism is validated quantitatively up to 50 ppmv and qualitatively up to 170 ppmv

  7. 40 CFR 91.113 - Requirement of certification-emission control information label and engine identification number.

    Science.gov (United States)

    2010-07-01

    ... control information label and engine identification number. 91.113 Section 91.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM... certification—emission control information label and engine identification number. (a) The engine manufacturer...

  8. The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis--a simulation study

    DEFF Research Database (Denmark)

    Thorlund, Kristian; Imberger, Georgina; Walsh, Michael

    2011-01-01

    Meta-analyses including a limited number of patients and events are prone to yield overestimated intervention effect estimates. While many assume bias is the cause of overestimation, theoretical considerations suggest that random error may be an equal or more frequent cause. The independent impact...... of random error on meta-analyzed intervention effects has not previously been explored. It has been suggested that surpassing the optimal information size (i.e., the required meta-analysis sample size) provides sufficient protection against overestimation due to random error, but this claim has not yet been...

  9. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal; Yang, Seung Yeon; Kalghatgi, Gautam; Chung, Suk-Ho

    2016-01-01

    an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures

  10. Isobaric vapour-liquid-liquid equilibrium and vapour-liquid equilibrium for the system water + ethanol + iso-octane at 101.3 kPa

    OpenAIRE

    Ruiz Beviá, Francisco; Gomis Yagües, Vicente; Asensi Steegmann, Juan Carlos; Font Escamilla, Alicia

    2002-01-01

    Poster enviado a Equifase 2002, VI Iberoamerican Conference on Phase Equilibria for Process Design, Foz de Iguazú (Brazil), October 12th to 16th, 2002. Many studies have been carried out in the heterogeneous azeotropic distillation field either by experiment or by simulation. The development of all these studies requires the use of sets of isobaric vapour–liquid–liquid equilibrium (VLLE) data. However, the number of ternary systems with experimental VLLE data is very limited, since it is d...

  11. Neolignans and sesquiterpenes from leaves and embryogenic cultures of Ocotea Catharinensis (Lauraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Funasaki, Mariko; Kato, Massuo J. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Lordello, Ana Luisa L. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Viana, Ana Maria [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Centro de Ciencias Biologicas. Dept. de Botanica; Santa-Catarina, Claudete; Floh, Eny I.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Biociencias; Yoshida, Massayoshi [Centro de Biotecnologia da Amazonia, Manaus, AM (Brazil)

    2009-07-01

    The extracts from leaves of Ocotea catharinensis Mez (Lauraceae) were found to contain fourteen neolignans and two sesquiterpenes: nine benzofuran types (including three new compounds 1e, 2f and 4b), one new seco-benzofuran type (3b), two bicyclo[3.2.1]octane types (including the new compound 5c), two new dimers of bicyclo[3.2.1]octane type (7a and 7b) and two sesquiterpenes (including a new humulanol 9). In addition, seven neolignans were also showed to occur in somatic embryos of O. catharinensis including one new bicyclo[3.2.1]octane type (4a). (author)

  12. Neolignans and sesquiterpenes from leaves and embryogenic cultures of Ocotea Catharinensis (Lauraceae)

    International Nuclear Information System (INIS)

    Funasaki, Mariko; Kato, Massuo J.

    2009-01-01

    The extracts from leaves of Ocotea catharinensis Mez (Lauraceae) were found to contain fourteen neolignans and two sesquiterpenes: nine benzofuran types (including three new compounds 1e, 2f and 4b), one new seco-benzofuran type (3b), two bicyclo[3.2.1]octane types (including the new compound 5c), two new dimers of bicyclo[3.2.1]octane type (7a and 7b) and two sesquiterpenes (including a new humulanol 9). In addition, seven neolignans were also showed to occur in somatic embryos of O. catharinensis including one new bicyclo[3.2.1]octane type (4a). (author)

  13. Optimization of the reaction parameters of heavy naphtha reforming process using Pt-Re/Al2O3 catalyst system

    Directory of Open Access Journals (Sweden)

    Hussien A. Elsayed

    2017-12-01

    Full Text Available One of the most significant procedures in oil refineries is naphtha catalytic reforming unit in which high octane gasoline is gained. Normally, in oil refineries, flow instability in the composition of feedstock can affect the product quality. The aim of the present work was focused on modifications of the final product flow rate and product’s octane number with respect to the modifications of the feedstock composition. The main three reforming reactions investigated, namely; dehydrogenation, dehydrocyclization, and hydrocracking were conducted employing silica supported bimetallic (Pt-Re patented catalyst. Optimization of the catalytic process reaction conditions, i.e.; temperature, hydrogen pressure and liquid hourly space velocity (LHSV was carried out with regard to conversion and selectivity. The optimization results indicated that heavy naphtha component conversion (paraffin’s and naphthenes increases with an increasing in reaction temperature and pressure while decreases with an increase in LHSV. The kinetic study of catalytic reforming reactions reported helped establishing the reaction model explicitly.

  14. One-of-A-Kind: A Microporous Metal-Organic Framework Capable of Adsorptive Separation of Linear, Mono- and Di-branched Alkane Isomers via Temperature- and Adsorbate-Dependent Molecular Sieving

    KAUST Repository

    Wang, Hao

    2018-03-29

    Separation of alkane isomers represents a crucial process in the petrochemical industry in order to achieve high octane rating of gasoline. Herein, we report the first example of complete separation of linear, monobranched and dibranched alkane isomers by a single adsorbent. A calcium-based robust microporous metal-organic framework, Ca(H2tcpb) (tcpb = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) exhibits unique molecular exclusion behavior which enables full separation of binary or ternary mixtures of alkane isomers into pure form of each isomerate. The successful separation of monobranched and dibranched hexane isomers will not only lead to the production of higher quality gasoline with maximum possible octane numbers but also fill the gap in the current separation technology. Exploration of separation mechanism indicates that structural flexibility and adsorbate-dependent structure change of the porous framework plays a vital role for the observed temperature-dependent molecular sieving property of the adsorbent.

  15. Isobutane/olefin-alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Waitkamp, J.; Maixner, S.

    1983-11-01

    Isobutane/olefin-alkylation - technology and reaction mechanism of a refinery process for production of high octane gasoline components: The alkylation of i-butane with olefins, especially with butenes, is a process for the conversion of light byproducts of a catalytic cracker to high quality gasoline components. Alkylate is a complex mixture of i-paraffins containing 5 to ca. 12 carbon atoms. Due to their octane numbers the four trimethylpentane isomers are the most desirable product components. Indeed, under optimum process conditions these isomers are the main products. Presently, alkylation capacity in the western world amounts to more than 40x10/sup 6/ t/a. Most units are located in the USA. Two liquid-phase processes using sulfuric acid and hydrofluoric acid, respectively, are of commercial importance. At present, there is a definite trend towards HF-alkylation. The reaction mechanism which proceeds via carbocations, is extremely complex. It is composed of a great variety of individual steps. Modern mechanistic concepts are discussed.

  16. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  17. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  18. An examination of the number of required apertures for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Jiang, Z; Earl, M A; Zhang, G W; Yu, C X; Shepard, D M

    2005-01-01

    We have examined the degree to which step-and-shoot IMRT treatment plans can be simplified (using a small number of apertures) without sacrificing the dosimetric quality of the plans. A key element of this study was the use of direct aperture optimization (DAO), an inverse planning technique where all of the multi-leaf collimator constraints are incorporated into the optimization. For seven cases (1 phantom, 1 prostate, 3 head-and-neck and 2 lung), DAO was used to perform a series of optimizations where the number of apertures per beam direction varied from 1 to 15. In this work, we attempt to provide general guidelines for how many apertures per beam direction are sufficient for various clinical cases using DAO. Analysis of the optimized treatment plans reveals that for most cases, only modest improvements in the objective function and the corresponding DVHs are seen beyond 5 apertures per beam direction. However, for more complex cases, some dosimetric gain can be achieved by increasing the number of apertures per beam direction beyond 5. Even in these cases, however, only modest improvements are observed beyond 9 apertures per beam direction. In our clinical experience, 38 out of the first 40 patients treated using IMRT plans produced using DAO were treated with 9 or fewer apertures per beam direction. The results indicate that many step-and-shoot IMRT treatment plans delivered today are more complex than necessary and can be simplified without sacrificing plan quality

  19. 24 CFR 200.6 - Employer identification and social security numbers.

    Science.gov (United States)

    2010-04-01

    ... identification and social security numbers. The requirements set forth in 24 CFR part 5, regarding the disclosure and verification of social security numbers and employer identification numbers by applicants and... security numbers. 200.6 Section 200.6 Housing and Urban Development Regulations Relating to Housing and...

  20. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon

    2013-01-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  1. Hypothetical requirements on number of personnel in Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Halik, J.

    1990-01-01

    The structural changes of Czechoslovak power prevent prediction of labor force development by extrapolating the existing development trends. Nuclear power demands a different qualification and occupation structure of the labor force than conventional power generation. The prediction of the number of personnel is based on data on the expected installed capacity and on its commissioning. The following organizational structures are envisaged for a nuclear power plant: the divisions of the Director, of production, maintenance, radiation safety and quality control, technology and investment, economics and personnel. A total of 15,654 personnel are envisaged for nuclear power plants in 2005. A brief comparison is submitted of labor demands in nuclear power plants in Czechoslovakia and in the world. (M.D.). 1 fig., 4 tabs., 3 refs

  2. New test procedure to determine fuel's knock resistance; Neues Kraftstoffpruefverfahren zur Bestimmung der Klopffestigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Karl [Hochschule Ingolstadt (Germany). Thermodynamik und Verbrennungsmotoren; Hauber, Johann; Raba, Andreas [Hochschule Ingolstadt (Germany). Inst. fuer Angewandte Forschung; Nell, Robert [Rofa Laboratory and Process Analyzers, Kritzendorf (Austria). Bereich Produktentwicklung

    2013-07-15

    Knock resistance is one of the most important quality features of gasoline that is determined by standardised motor test procedures. These procedures were developed more than 80 years ago and have been used nearly unchanged since then. During a four-year research project at Ingolstadt University of Applied Sciences, the procedures for determination of octane numbers were analysed in order to develop a new engine-based test method. (orig.)

  3. Production of aviation gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-25

    A process is described for preparing gasoline possessing properties for use as a fuel, particularly for aviation motors, beginning with gasolines composed among others of cyclic hydrocarbons, especially aromatics, consisting in treating the gasoline by means of selective solvents of aromatic hydrocarbons, especially aromatics, and preferably at the same time employing liquid hydrocarbons which are gaseous under normal conditions and adding to the refined product nonaromatics which boil in the range of the gasoline and have an actane number above 95 or which give the mixture an octane number of 82.5.

  4. Forecasting the Number of Soil Samples Required to Reduce Remediation Cost Uncertainty

    OpenAIRE

    Demougeot-Renard, Hélène; de Fouquet, Chantal; Renard, Philippe

    2008-01-01

    Sampling scheme design is an important step in the management of polluted sites. It largely controls the accuracy of remediation cost estimates. In practice, however, sampling is seldom designed to comply with a given level of remediation cost uncertainty. In this paper, we present a new technique that allows one to estimate of the number of samples that should be taken at a given stage of investigation to reach a forecasted level of accuracy. The uncertainty is expressed both in terms of vol...

  5. Quantification of Biogenic Volatile Organic Compounds with a Flame Ionization Detector Using the Effective Carbon Number Concept

    Science.gov (United States)

    Faiola, C. L.; Erickson, M. H.; Fricaud, V. L.; Wallace, H. W.; Jobson, B. T.; VanReken, T. M.

    2011-12-01

    make quantitative gas standards of VOCs with mixing ratios from 20-55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The MS and FID were used for identification and quantification respectively. The ECNs of approximately 18 BVOC compounds were evaluated with this approach, with each test compound analyzed at least three times. The results from these experiments will be compared to the compounds' actual carbon number as well as to ECN estimates from literature values. Preliminary results indicate that the difference between the actual carbon number and the measured ECN ranged from -10% to -2%. The difference between the estimated ECN and measured ECN ranged from -6% to 14%. The effect of the terpene molecular structure on the ECN will be discussed within the context of the flame ionization reaction mechanism to explain these discrepancies.

  6. Working Memory Strategies during Rational Number Magnitude Processing

    Science.gov (United States)

    Hurst, Michelle; Cordes, Sara

    2017-01-01

    Rational number understanding is a critical building block for success in more advanced mathematics; however, how rational number magnitudes are conceptualized is not fully understood. In the current study, we used a dual-task working memory (WM) interference paradigm to investigate the dominant type of strategy (i.e., requiring verbal WM…

  7. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [LGPPTS, Ecole Nationale Superieure de Chimie de Paris/ Universite Pierre et Marie Curie (Paris 6), 11, rue de Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2008-11-15

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO{sub 2} emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N{sub 2} and CO{sub 2} from 0 to 46 vol.%, changing the EGR temperature from 30 to 120 C, altering the addition of CO and NO from 0 to 170 ppmv and varying the addition of CH{sub 2}O from 0 to 1400 ppmv. These validations were performed respecting the HCCI conditions for the inlet temperature and the equivalence ratio. The results showed that the mechanism is validated experimentally in dilution ranges going up to 21-30 vol.%, depending on the species of dilution and over the whole range of the EGR temperature. The mechanism is validated over the whole range of CO and CH{sub 2}O addition. As for the addition of NO, the mechanism is validated quantitatively up to 50 ppmv and qualitatively up to 170 ppmv. (author)

  8. Migration from PVC cling films compared with their field of application

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Lillemark, L.; Lund, L.

    1997-01-01

    Samples of PVC cling films were taken at importers, wholesalers and retail shops, and their overall migration to the alternative food simulant iso-octane was measured, after establishment of a correlation between overall migration to olive oil at 40 degrees C in 10 days and to iso-octane in 2 h...

  9. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    OpenAIRE

    Korkmaz, Mukadder; Korkmaz, Hakan

    2016-01-01

    ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning proced...

  10. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam

    2017-04-03

    The worldwide demand for transport fuels will increase significantly but will still be met substantially (a share of around 90%) from petroleum-based fuels. This increase in demand will be significantly skewed towards commercial vehicles and hence towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using conventional diesel fuels which ignite very easily. Gasoline compression ignition engines can be run on gasoline-like fuels with a long ignition delay to make low-nitrogen-oxide low-soot combustion very much easier. Moreover, the research octane number of the optimum fuel for gasoline compression ignition engines is likely to be around 70 and hence the surplus low-octane components could be used without much further processing. Also, the final boiling point can be higher than those of current gasolines. The potential advantages of gasoline compression ignition engines are as follows. First, the engine is at least as efficient and clean as current diesel engines but is less complicated and hence could be cheaper (lower injection pressure and after-treatment focus on control of carbon monoxide and hydrocarbon emissions rather than on soot and nitrogen oxide emissions). Second, the optimum fuel requires less processing and hence would be easier to make in comparison with current gasoline or diesel fuel and will have a lower greenhouse-gas footprint. Third, it provides a path to mitigate the global demand imbalance between heavier fuels and lighter fuels that is otherwise projected and improve the sustainability of refineries. The concept has been well demonstrated in research engines but development work is needed to make it feasible on practical vehicles, e.g. on cold start, adequate control of exhaust carbon monoxide and hydrocarbons and control of noise at medium to high loads

  11. 33 CFR 173.27 - Numbers: Display; size; color.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Numbers: Display; size; color...: Display; size; color. (a) Each number required by § 173.15 must: (1) Be painted on or permanently attached...; (3) Contrast with the color of the background and be distinctly visible and legible; (4) Have spaces...

  12. Isomérisation des paraffines de C4 à C7 sur catalyseurs zéolithiques. Revue bibliographique Isomerization of C4 to C7 Paraffins on Zeolitic Catalysts (Bibliographic Review

    Directory of Open Access Journals (Sweden)

    Belloum M.

    2006-11-01

    té envisagées. Il apparaît que la réactivité des alcanes augmente avec le nombre d'atomes de carbone et le degré de ramification de la molécule, et que la présence de composés aromatiques provoque une inhibition de la réaction d'isomérisation. Ce dernier point est très important pour l'industrie. There has been renewed interest in the isomerization of alkanes since legislation, with a view to environmental protection, has undertaken to eliminate lead alkyls from gasoline between now and 1992. Starting from low octane-number n-paraffins issuing from catalytic reforming or straight-run distillation, this catalytic reaction can be used to produce iso-paraffins having a much higher octane number. It is thermodynamically enhanced at low temperature and hence requires the use of catalysts developing high acidity. Two types of catalysts are currently used industrially, i. e. Pt base catalysts on chlorinated alumina and Pt base zeolitic catalysts on mordenite. These latter are considered to be the new generation of catalysts. They have the advantage of being easy to use and of being much less sensitive to the presence of poisons such as sulfur and water in the feedstock. However, they lead to a considerably lower improvement in octane than what is obtained with Pt catalysts on chlorinated alumina. This bibliographic study reviews the different mechanisms used according to the type of catalyst, the kinetic data obtained from the literature and the different processes used. In particular, it highlights the respective contributions of the acidic and metallic functions for the isomerization of C4 to C7 alkanes. Indeed, depending on the type of catalyst used, it appears the traction mechanism may be acidic bifunctional or monofunctional. In some cases two mechanisms might even be superposed. The study has also considered the effect of the length of this carbon chain on the isomerization reaction as well as the influence of the presence of ring compounds, whether aromatic or

  13. An integrable low-cost hardware random number generator

    Science.gov (United States)

    Ranasinghe, Damith C.; Lim, Daihyun; Devadas, Srinivas; Jamali, Behnam; Zhu, Zheng; Cole, Peter H.

    2005-02-01

    A hardware random number generator is different from a pseudo-random number generator; a pseudo-random number generator approximates the assumed behavior of a real hardware random number generator. Simple pseudo random number generators suffices for most applications, however for demanding situations such as the generation of cryptographic keys, requires an efficient and a cost effective source of random numbers. Arbiter-based Physical Unclonable Functions (PUFs) proposed for physical authentication of ICs exploits statistical delay variation of wires and transistors across integrated circuits, as a result of process variations, to build a secret key unique to each IC. Experimental results and theoretical studies show that a sufficient amount of variation exits across IC"s. This variation enables each IC to be identified securely. It is possible to exploit the unreliability of these PUF responses to build a physical random number generator. There exists measurement noise, which comes from the instability of an arbiter when it is in a racing condition. There exist challenges whose responses are unpredictable. Without environmental variations, the responses of these challenges are random in repeated measurements. Compared to other physical random number generators, the PUF-based random number generators can be a compact and a low-power solution since the generator need only be turned on when required. A 64-stage PUF circuit costs less than 1000 gates and the circuit can be implemented using a standard IC manufacturing processes. In this paper we have presented a fast and an efficient random number generator, and analysed the quality of random numbers produced using an array of tests used by the National Institute of Standards and Technology to evaluate the randomness of random number generators designed for cryptographic applications.

  14. Autonomous Real Time Requirements Tracing

    Science.gov (United States)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  15. 7 CFR 636.4 - Program requirements.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE LONG TERM CONTRACTING WILDLIFE HABITAT INCENTIVES PROGRAM § 636.4 Program requirements. (a) To... members' tax identification numbers and percentage interest in the entity. Where applicable, American... individuals and payments made, by tax identification number or other unique identification number, during the...

  16. Control of the low-load region in partially premixed combustion

    Science.gov (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  17. 38 CFR 3.216 - Mandatory disclosure of social security numbers.

    Science.gov (United States)

    2010-07-01

    ... social security numbers. 3.216 Section 3.216 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Requirements § 3.216 Mandatory disclosure of social security numbers. Any person who applies for or receives..., furnish the Department of Veterans Affairs upon request with his or her social security number and the...

  18. Number-theory dark matter

    International Nuclear Information System (INIS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2011-01-01

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1) B-L gauge symmetry, Z 2 (B-L). We introduce a set of chiral fermions charged under the U(1) B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1) B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z 2 (B-L).

  19. Neutrosophy for software requirement prioritization

    Directory of Open Access Journals (Sweden)

    Ronald Barriga Dias

    2017-09-01

    Full Text Available Software engineers are involved in complex decisions that require multiples viewpoints. A specific case is the requirement prioritization process. This process is used to decide which software requirement to develop in certain release from a group of candidate requirements. Criteria involved in this process can involve indeterminacy. In this paper a software requirement prioritization model is develop based SVN numbers. Finally, an illustrative example is presented in order to show the proposed model.

  20. Number skills are maintained in healthy ageing.

    Science.gov (United States)

    Cappelletti, Marinella; Didino, Daniele; Stoianov, Ivilin; Zorzi, Marco

    2014-03-01

    Numerical skills have been extensively studied in terms of their development and pathological decline, but whether they change in healthy ageing is not well known. Longer exposure to numbers and quantity-related problems may progressively refine numerical skills, similar to what happens to other cognitive abilities like verbal memory. Alternatively, number skills may be sensitive to ageing, reflecting either a decline of number processing itself or of more auxiliary cognitive abilities that are involved in number tasks. To distinguish between these possibilities we tested 30 older and 30 younger participants on an established numerosity discrimination task requiring to judge which of two sets of items is more numerous, and on arithmetical tasks. Older participants were remarkably accurate in performing arithmetical tasks although their numerosity discrimination (also known as 'number acuity') was impaired. Further analyses indicate that this impairment was limited to numerosity trials requiring inhibiting information incongruent to numerosity (e.g., fewer but larger items), and that this also correlated with poor inhibitory processes measured by standard tests. Therefore, rather than a numerical impairment, poor numerosity discrimination is likely to reflect elderly's impoverished inhibitory processes. This conclusion is supported by simulations with a recent neuro-computational model of numerosity perception, where only the specific degradation of inhibitory processes produced a pattern that closely resembled older participants' performance. Numeracy seems therefore resilient to ageing but it is influenced by the decline of inhibitory processes supporting number performance, consistent with the 'Inhibitory Deficit' Theory. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. 24 CFR 242.68 - Disclosure and verification of Social Security and Employer Identification Numbers.

    Science.gov (United States)

    2010-04-01

    ... Social Security and Employer Identification Numbers. 242.68 Section 242.68 Housing and Urban Development... Requirements § 242.68 Disclosure and verification of Social Security and Employer Identification Numbers. The requirements set forth in 24 CFR part 5, regarding the disclosure and verification of Social Security Numbers...

  2. Limitations and possibilities of low cell number ChIP-seq

    Directory of Open Access Journals (Sweden)

    Gilfillan Gregor D

    2012-11-01

    Full Text Available Abstract Background Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq offers high resolution, genome-wide analysis of DNA-protein interactions. However, current standard methods require abundant starting material in the range of 1–20 million cells per immunoprecipitation, and remain a bottleneck to the acquisition of biologically relevant epigenetic data. Using a ChIP-seq protocol optimised for low cell numbers (down to 100,000 cells / IP, we examined the performance of the ChIP-seq technique on a series of decreasing cell numbers. Results We present an enhanced native ChIP-seq method tailored to low cell numbers that represents a 200-fold reduction in input requirements over existing protocols. The protocol was tested over a range of starting cell numbers covering three orders of magnitude, enabling determination of the lower limit of the technique. At low input cell numbers, increased levels of unmapped and duplicate reads reduce the number of unique reads generated, and can drive up sequencing costs and affect sensitivity if ChIP is attempted from too few cells. Conclusions The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells, and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance.

  3. Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study

    OpenAIRE

    Liu, Chong; van Santen, Rutger A.; Poursaeidesfahani, Ali; Vlugt, Thijs J. H.; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2017-01-01

    The alkylation of isobutane with light alkenes plays an essential role in modern petrochemical processes for the production of high-octane gasoline. In this study we have employed periodic DFT calculations combined with microkinetic simulations to investigate the complex reaction mechanism of isobutane–propene alkylation catalyzed by zeolitic solid acids. Particular emphasis was given to addressing the selectivity of the alkylate formation versus alkene formation, which requires a high rate o...

  4. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins.

    Science.gov (United States)

    Wang, Kun; Arntfield, Susan D

    2016-11-15

    Molecular interactions between heterologous classes of flavour compounds with salt-extracted pea protein isolates (PPIs) were determined using various bond disrupting agents followed by GC/MS analysis. Flavour bound by proteins decreased in the order: dibutyl disulfide>octanal>hexyl acetate>2-octanone=benzaldehyde. Benzaldehyde, 2-octanone and hexyl acetate interacted non-covalently with PPIs, whereas octanal bound PPIs via covalent and non-covalent forces. Dibutyl disulfide reacted with PPIs covalently, as its retention was not diminished by urea and guanidine hydrochloride. Using propylene glycol, H-bonding and ionic interactions were implicated for hexyl acetate, benzaldehyde, and 2-octanone. A protein-destabilising salt (Cl3CCOONa) reduced bindings for 2-octanone, hexyl acetate, and benzaldehyde; however, retention for octanal and dibutyl disulfide increased. Conversely, a protein-stabilising salt (Na2SO4) enhanced retention for benzaldehyde, 2-octanone, hexyl acetate and octanal. Formation of a volatile flavour by-product, 1-butanethiol, from dibutyl disulfide when PPIs were treated with dithiothreitol indicated occurrence of sulfhydryl-disulfide interchange reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Study of energy transfer to solvent in radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The radiation-initiated graft polymerization of styrene onto polyethylene was studied to determine whether energy transfer to diluent was responsible for the previously observed high orders of dependence of the grafting rate on monomer concentration. n-Octane was used as the diluent instead of benzene. If energy transfer from excited polyethylene to benzene were present, it should not be with n-octane. The percent swelling of polyethylene by various n-octane--styrene mixtures was determined. The compositions of various n-octane--styrene mixtures absorbed inside polyethylene were determined by ultraviolet and refractive index measurements and found to be richer in styrene than the corresponding mixtures in which the polyethylene had been placed. The graft polymerization rates were determined at 0.000761, 0.0371, and 0.213 Mrad/hr and plotted against the inside styrene concentrations on a log-log scale to yield the kinetic orders of dependence of rate on monomer as 2, 3, and 3, respectively. It was concluded that energy transfer to diluent was not responsible for the high-order dependence observed

  6. Number of patients needed to discriminate between subgroups in patient reported outcome measures

    DEFF Research Database (Denmark)

    Paulsen, Aksel

    2011-01-01

    analysis of variance. The hypothetical number of subjects needed to find the significant difference in PRO mean value between groups (assuming a significance level of 5 % and a power of 85 % to detect differences between the actual groups in our current study) was estimated for each PRO subscales...... with sample size calculations or by power calculations and simulated ANOVA F tests, depending on the number of groups. Results: To discriminate between gender, the least number needed to find a statistically significant difference in mean sum score in each group was 298 (OHS) while HOOS QoL required the most...... number of subjects (760 in each group). PCS had the least number needed in relation to diagnoses (51 patients per group needed), while HOOS Pain required the most (116 patients per group needed). Concerning age, the least number needed was 270 (EQ-VAS), and OHS required the most (1566 in each group...

  7. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    OpenAIRE

    Kinawy Amal A

    2009-01-01

    Abstract Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in ...

  8. 10 CFR 1008.22 - Use and collection of social security numbers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use and collection of social security numbers. 1008.22... security numbers. (a) The System Manager of each system of records which utilizes social security numbers... individuals may not be required to furnish social security numbers without statutory authorization, and that...

  9. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.)

    NARCIS (Netherlands)

    Bocanski, J.; Sreckov, Z.; Nastasic, A.; Ivanovic, M.; Djalovic, I.; Vukosavljev, M.

    2010-01-01

    Bocanski J., Z. Sreckov, A. Nastasic, M. Ivanovic, I.Djalovic and M. Vukosavljev (2010): Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.) - Genetika, Vol 42, No. 1, 169- 176. Utilization of heterosis requires the study of

  10. Talking probabilities: communicating probabilistic information with words and numbers

    NARCIS (Netherlands)

    Renooij, S.; Witteman, C.L.M.

    1999-01-01

    The number of knowledge-based systems that build on Bayesian belief networks is increasing. The construction of such a network however requires a large number of probabilities in numerical form. This is often considered a major obstacle, one of the reasons being that experts are reluctant to

  11. 77 FR 59575 - Hull Identification Numbers for Recreational Vessels

    Science.gov (United States)

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 181 [Docket No. USCG-2012-0843] Hull Identification Numbers for Recreational Vessels AGENCY: Coast Guard, DHS. ACTION: Request for public comments... requirement to indicate a boat's model year as part of the 12-character Hull Identification Number (HIN...

  12. Pseudo-Random Number Generator Based on Coupled Map Lattices

    Science.gov (United States)

    Lü, Huaping; Wang, Shihong; Hu, Gang

    A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.

  13. Effect of Number of Various-Type Acid Sites Located on 20 % Co/ZrO2 • SiO2 Sample Surface on Parameters of Catalytic Process in Synthesis of High-Octane Motor Fuel Components

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchouk

    2011-01-01

    Full Text Available The paper considers an effect of ZrO2 content in 20%Co/xZrO2∙(100 – xSiO2 (x = 0, 10, 15, 25, 30, 40 and 100 mass percent catalyst carriers on their catalytic properties. Temperature programmed desorption of NH3 has made it possible to determine relations between their acid and catalytic properties. The paper reveals the TPD spectrum is the result of 4 overlapping peaks originating during NH3 desorption from the respective groups of acid sites. Total acidity of samples and contribution of separate acid site groups into the given acidity have been have been determined in the paper. The paper contains graphical dependences of a various-type acid site number on  content of zirconium oxide in the carrier. Correlations between change in various-type acid site number and catalytic process parameters (CO conversion, C5+ hydrocarbon output and  C5+ isoparaffin output have been found in the paper. The paper shows that the highest values of CO conversion and C5+ hydrocarbon output correspond to maximum number of acid sites, and that number accounts for a peak of desorbed ammonia at Tmax = 122 °C, while the lowest isoparaffin output corresponds to minimum number of acid sites, which characterizes a peak of desorbed ammonia at Tmax = 224–257 °C. 

  14. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    Science.gov (United States)

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  15. The metrological assurance of quality petroleum products. Methods for determining octane and sulfur numbers in the petroleum products

    Science.gov (United States)

    Shalkov, A. V.; Fadeev, Y. A.

    2018-01-01

    At present, solving environmental problems in industrially developed regions with a large concentration of mining and machine building enterprises is one of the main socially important tasks. Taking into account the increase in the volume of mining, there is an increase in the environmental burden, which affects the internal migration of the population. This is particularly evident in the examples of single-industry towns, in which a gradual decrease in the young workable population occurs. The article presents an analysis of the sources of maximum pollution of the environment by coal mining enterprises. Modern methods of controlling automobile fuel were analyzed. The analysis of fuel quality and the environmental assessment of combustion products was carried out. The equipment used in the article makes it possible to exclude substandard fuel and to reduce harmful emissions of vehicles to the atmosphere.

  16. Talking probabilities: communicating probalistic information with words and numbers

    NARCIS (Netherlands)

    Renooij, S.; Witteman, C.L.M.

    1999-01-01

    The number of knowledge-based systems that build on Bayesian belief networks is increasing. The construction of such a network however requires a large number of probabilities in numerical form. This is often considered a major obstacle, one of the reasons being that experts are reluctant to provide

  17. Degradation of a recalcitrant xenobiotic compound: methyl tert-butyl ether (MTBE) metabolism by mycobacterium austroafricanum; Degradation d'un compose xenobiotique recalcitrant: metabolisme du methyl tert-butyl ether (MTBE) par mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Francois, A

    2002-11-01

    Methyl tert-butyl ether (MTBE) is introduced up to 15% (vol/vol) in gasoline in order to obtain a good octane number and to prevent carbon monoxide emissions. However, as a consequence of storage tanks leakage, MTBE became one of the major pollutants of aquifers because of its very low biodegradability. The present study aimed at investigating the biodegradation of MTBE by Mycobacterium austroafricanum IFP 2012. The MTBE metabolic pathway was partially elucidated owing to the identification of some intermediates (tert-butyl formate (TBF), tert-butyl alcohol (TBA), a-hydroxy-isobutyric acid and acetone) and some enzymatic activities (MTBE/TBA monooxygenase (non hemic and inducible), TBF esterase, 2-propanol: NDMA oxidoreductase and another monooxygenase involved in acetone degradation). The involvement of TBF and the requirement of cobalt could be explanations for the low natural attenuation of MTBE; whereas the methoxy group does not seem to be implicated. (author)

  18. Degradation of a recalcitrant xenobiotic compound: methyl tert-butyl ether (MTBE) metabolism by mycobacterium austroafricanum; Degradation d'un compose xenobiotique recalcitrant: metabolisme du methyl tert-butyl ether (MTBE) par mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Francois, A.

    2002-11-01

    Methyl tert-butyl ether (MTBE) is introduced up to 15% (vol/vol) in gasoline in order to obtain a good octane number and to prevent carbon monoxide emissions. However, as a consequence of storage tanks leakage, MTBE became one of the major pollutants of aquifers because of its very low biodegradability. The present study aimed at investigating the biodegradation of MTBE by Mycobacterium austroafricanum IFP 2012. The MTBE metabolic pathway was partially elucidated owing to the identification of some intermediates (tert-butyl formate (TBF), tert-butyl alcohol (TBA), a-hydroxy-isobutyric acid and acetone) and some enzymatic activities (MTBE/TBA monooxygenase (non hemic and inducible), TBF esterase, 2-propanol: NDMA oxidoreductase and another monooxygenase involved in acetone degradation). The involvement of TBF and the requirement of cobalt could be explanations for the low natural attenuation of MTBE; whereas the methoxy group does not seem to be implicated. (author)

  19. Number-theory dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori [Theory Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, Fuminobu, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Yanagida, Tsutomu T. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-05-23

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1){sub B-L} gauge symmetry, Z{sub 2}(B-L). We introduce a set of chiral fermions charged under the U(1){sub B-L} in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1){sub B-L} gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z{sub 2}(B-L).

  20. LHCb Online Networking Requirements

    CERN Document Server

    Jost, B

    2003-01-01

    This document describes the networking requirements of the LHCb online installation. It lists both quantitative aspects such as the number of required switch ports, as well as some qualitative features of the equipment, such as minimum buffer sizes in switches. The document comprises both the data acquisition network and the controls/general-purpose network. While the numbers represent our best current knowledge and are intended to give (in particular) network equipment manufacturers an overview of our needs, this document should not be confused with a market survey questionnaire or a formal tendering document. However the information contained in this document will be the input of any such document. A preliminary schedule for procurement and installation is also given.

  1. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  2. Thermodesorption studies of ammonium nitrate prills by high-resolution thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Jones, D.E.G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-07-01

    Ammonium nitrate prills with fuel oil (ANFO) are commonly used in commercial explosives. The wettability of AN is influenced by porosity and surface area. To date, scanning electron microscopy (SEM), mercury porosimetry, and nuclear magnetic resonance (NMR) microscopy have been used to characterize prill porosities. This study used high-resolution thermogravimetry (TG) to investigate the thermodesorption of octane from ammonium nitrate (AN) prills of different porosities. Samples were immersed in octane. Samples of AN prills were monitored over a temperature range between 25 to 120 degrees C. Mass-loss curves were measured to determine the evaporation of excess liquids as well as the rate of octane thermodesorption from the pores and surfaces of the AN prills. An analysis of the curves suggested that the initial mass loss was caused by evaporation of the bulk liquid. The following step represented the thermodesorption of adsorbed octane on the surface of the AN remote from the monolayer. Properties of the surface liquid differed significantly from the bulk liquid as the adsorbate materials interacted with the solid surface. The study demonstrated that the quantity of octane desorbed in the steps correlated with the volume observed in the pores and the amount adsorbed on the surface. Results of the study were then compared with data obtained using SEM. It was concluded that high resolution TG can be used to characterize AN porosity and adsorption capacity. 16 refs., 1 tab., 5 figs.

  3. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Science.gov (United States)

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  4. Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2016-04-05

    The US Department of Energy has formulated different gasoline fuels called \\'\\'Fuels for Advanced Combustion Engines (FACE)\\'\\' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model. The temporal variations of the liquid mass fractions of the droplet components were used to characterize the evaporation process. Components with similar evaporation characteristics were merged together. A representative component was initially chosen based on the highest initial mass fraction. Three 6 components surrogates, Surrogate 1-3, that match evaporation characteristics of FACE I have been formulated without keeping same mass fractions of different hydrocarbon types. Another two surrogates (Surrogate 4 and 5) were considered keeping same hydrocarbon type concentrations. A distillation based surrogate that matches measured distillation profile was proposed. The calculated molar mass, hydrogen-to-carbon (H/C) ratio and RON of Surrogate 4 and distillation based one are close to those of FACE I.

  5. Number of Migration Scenarios Passing through each HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forest dwelling neotropical migratory birds require intact forested stopovers during migration. The number of paths that pass through a HUC highlight that huc's...

  6. 40 CFR 305.2 - Use of number and gender.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Use of number and gender. 305.2... Use of number and gender. As used in this part, words in the singular also include the plural and words in the masculine gender also include the feminine, as the case may require. ...

  7. Excess Molar Volumes and Viscosities of Binary Mixtures of p-Xylene with Cyclohexane, n-Heptane, n-Octane,Sulfolane, N-Methyl-2-pyrrolidone and Acetic Acid at 303.15 K and 323.15 K and Atmospheric Pressure%对二甲苯与环己烷、正庚烷、正辛烷、环丁砜和N-甲基-2-吡咯烷酮和乙酸二元混合物在303.15K和323.15K的 超额体积和黏度

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 周清

    2004-01-01

    Experimental data on density and viscosity at 303.15K and 323.15K are presented for the binary mixtures of p-xylene with cyclohexane, n-heptane, n-octane, sulfolane, N-methyl-2-pyrrolidone and acetic acid.From these data, the excess molar volume and deviations in viscosity have been calculated. The computed quantities have been fitted to the Redlich-Kister Equation to derive coefficients and estimate the standard error values. Results are discussed in terms of intermolecular interactions.

  8. Synthesis, molecular modeling, and opioid receptor affinity of 9, 10-diazatricyclo[4.2.1.1(2,5)]decanes and 2,7-diazatricyclo[4.4.0. 0(3,8)]decanes structurally related to 3,8-diazabicyclo[3.2. 1]octanes.

    Science.gov (United States)

    Vianello, P; Albinati, A; Pinna, G A; Lavecchia, A; Marinelli, L; Borea, P A; Gessi, S; Fadda, P; Tronci, S; Cignarella, G

    2000-06-01

    Various lines of evidence, including molecular modeling studies, imply that the endoethylenic bridge of 3,8-diazabicyclo[3.2. 1]octanes (DBO, 1) plays an essential role in modulating affinity toward mu opioid receptors. This hypothesis, together with the remarkable analgesic properties observed for N(3) propionyl, N(8) arylpropenyl derivatives (2) and of the reverted isomers (3), has prompted us to insert an additional endoethylenic bridge on the piperazine moiety in order to identify derivatives with increased potency toward this receptor class. In the present report, we describe the synthesis of the novel compounds 9,10-diazatricyclo[4.2. 1.1(2,5)]decane (4) and 2,7-diazatricyclo[4.4.0.0(3,8)]decane (5), as well as the representative derivatives functionalized at the two nitrogen atoms by propionyl and arylpropenyl groups (6a-e, 7a-d). Opioid receptor binding assays revealed that, among the compounds tested, the N-propionyl-N-cinnamyl derivatives 6a and 7a exhibited the highest mu-receptor affinity, and remarkably, compound 7a displayed in vivo (mice) an analgesic potency 6-fold that of morphine.

  9. The covariance between the number of accidents and the number of victims in multivariate analysis of accident related outcomes

    NARCIS (Netherlands)

    Bijleveld, F. D.

    In this study some statistical issues involved in the simultaneous analysis of accident related outcomes of the road traffic process are investigated. Since accident related outcomes like the number of victims, fatalities or accidents show interdependencies, their simultaneous analysis requires that

  10. Number of patients studied prior to approval of new medicines

    DEFF Research Database (Denmark)

    Duijnhoven, Ruben G; Straus, Sabine M J M; Raine, June M

    2013-01-01

    length of time), whereas 67 (79.8%) of the medicines met the criteria for 12-mo patient exposure (at least 100 participants studied for 12 mo). CONCLUSIONS: For medicines intended for chronic use, the number of patients studied before marketing is insufficient to evaluate safety and long-term efficacy....... Both safety and efficacy require continued study after approval. New epidemiologic tools and legislative actions necessitate a review of the requirements for the number of patients studied prior to approval, particularly for chronic use, and adequate use of post-marketing studies. Please see later...

  11. Effect of Feed Composition Changing at Naphtha Catalytic Reforming Unit Due to Involvement of Gasoline Fraction Obtained by Diesel Fuels Hydrodewaxing into the Processing

    OpenAIRE

    Belinskaya, Natalia Sergeevna; Ivanchina, Emilia Dmitrievna; Ivashkina, Elena Nikolaevna; Frantsina, Evgeniya Vladimirovna; Silko, Galina Yurievna

    2014-01-01

    One of the primary products of hydrodewaxing process is stable gasoline, which is characterized by low octane number on the one hand. On the other hand, it contains a significant amount of iso-paraffins (on average 45% wt.) and naphthenes (on average 25% wt.), which are reagents in the naphtha catalytic reforming process primary reactions. Feasibility of stable gasoline obtained by means of diesel fuel catalytic hydrodewaxing process involving into the processing at the naphtha catalytic refo...

  12. 36 CFR 1202.22 - Will NARA need my Social Security Number?

    Science.gov (United States)

    2010-07-01

    ... Will NARA need my Social Security Number? (a) Before a NARA employee or NARA contractor asks you to provide your social security number (SSN), he or she will ensure that the disclosure is required by... Security Number? 1202.22 Section 1202.22 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS...

  13. 13 CFR 102.35 - Use and collection of Social Security Numbers.

    Science.gov (United States)

    2010-01-01

    ... § 102.35 Use and collection of Social Security Numbers. Each Program/Support Office Head or designee... their social security numbers, unless: (1) The collection is authorized either by a statute; or (2) The social security numbers are required under statute or regulation adopted prior to 1975 to verify the...

  14. Pell and Pell–Lucas numbers with applications

    CERN Document Server

    Koshy, Thomas

    2014-01-01

    Pell and Pell–Lucas Numbers has been carefully crafted as an undergraduate/graduate textbook; the level of which depends on the college/university and the instructor’s preference. The exposition moves from the basics to more advanced topics in a systematic rigorous fashion, motivating  the reader with numerous examples, figures, and exercises. Only a strong foundation in precalculus, plus a good background in matrices, determinants, congruences, and combinatorics is required. The text may be used in a variety of number theory courses, as well as in seminars, workshops, and other capstone experiences for teachers in-training and instructors at all levels.   A number of  key features  on the Pell family surrounds the historical flavor that is interwoven into an extensive, in-depth coverage of this unique text on the subject. Pell and Pell-Lucas numbers, like the well-known Fibonacci and Catalan numbers, continue to intrigue the mathematical community with their beauty and applicability. Beyond  the cla...

  15. Number Sense on the Number Line

    Science.gov (United States)

    Woods, Dawn Marie; Ketterlin Geller, Leanne; Basaraba, Deni

    2018-01-01

    A strong foundation in early number concepts is critical for students' future success in mathematics. Research suggests that visual representations, like a number line, support students' development of number sense by helping them create a mental representation of the order and magnitude of numbers. In addition, explicitly sequencing instruction…

  16. Measurement of dihydro testosterone by radioimmunoassay after celite column chromatography

    International Nuclear Information System (INIS)

    Lando, V.S.

    1992-01-01

    A method for measuring dihydro testosterone after celite column chromatography is developed. One milliliter of serum containing 1000 cpm of tritiated dihydro testosterone was extracted with hexane: ethyl acetate (2:3): dried, diluted with non saturated iso octane and injected in the column previously washed with 3.5 ml of pure iso octane. The serum was eluted from the column with pure iso octane (3.5 ml) followed by 5% ethyl acetate in iso octane. The quantity of tritiated dihydro testosterone which was recovered ranged from 50% to 80% in all assays. The sensitivity of the method was 4 ng/d l. The intra-assay variation was less than 9% and the inter-assay variation was less than 9,7%. It was measured dihydro testosterone, testosterone and testosterone/dihydro testosterone ratio in the following groups: Group 1- forty-one normal adult subjects in basal conditions, Group 2 - six normal adult subjects, evaluated in basal conditions and after stimulus with 6000 International Unity of human Chorionic Gonadotropin; Group 3- six pre-puberal children with unilateral cryptochidism. Group 4- eight patients with male pseudo hermaphroditism due to 5-alpha-reductase deficiency in basal conditions and after HCG. (author)

  17. 76 FR 16802 - Extension of Approval of Information Collection, OMB Control Number 1004-0196

    Science.gov (United States)

    2011-03-25

    ... paperwork requirements for operators and operating rights owners in the National Petroleum Reserve--Alaska... is provided for the information collection: Title: Oil and Gas Leasing: National Petroleum Reserve... Control Number: 1004-0196. Abstract: This control number covers paperwork requirements for operators and...

  18. Extremes in Otolaryngology Resident Surgical Case Numbers: An Update.

    Science.gov (United States)

    Baugh, Tiffany P; Franzese, Christine B

    2017-06-01

    Objectives The purpose of this study is to examine the effect of minimum case numbers on otolaryngology resident case log data and understand differences in minimum, mean, and maximum among certain procedures as a follow-up to a prior study. Study Design Cross-sectional survey using a national database. Setting Academic otolaryngology residency programs. Subjects and Methods Review of otolaryngology resident national data reports from the Accreditation Council for Graduate Medical Education (ACGME) resident case log system performed from 2004 to 2015. Minimum, mean, standard deviation, and maximum values for total number of supervisor and resident surgeon cases and for specific surgical procedures were compared. Results The mean total number of resident surgeon cases for residents graduating from 2011 to 2015 ranged from 1833.3 ± 484 in 2011 to 2072.3 ± 548 in 2014. The minimum total number of cases ranged from 826 in 2014 to 1004 in 2015. The maximum total number of cases increased from 3545 in 2011 to 4580 in 2015. Multiple key indicator procedures had less than the required minimum reported in 2015. Conclusion Despite the ACGME instituting required minimum numbers for key indicator procedures, residents have graduated without meeting these minimums. Furthermore, there continues to be large variations in the minimum, mean, and maximum numbers for many procedures. Variation among resident case numbers is likely multifactorial. Ensuring proper instruction on coding and case role as well as emphasizing frequent logging by residents will ensure programs have the most accurate data to evaluate their case volume.

  19. Topics in number theory

    CERN Document Server

    LeVeque, William J

    2002-01-01

    Classic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary quadratic forms to the Thue-Siegel-Roth Theorem and the Prime Number Theorem. Includes numerous problems and hints for their solutions. 1956 edition. Supplementary Reading. List of Symb

  20. 28 CFR 802.23 - Use and disclosure of social security numbers.

    Science.gov (United States)

    2010-07-01

    ... provided by law because of such individual's refusal to disclose his or her social security number. (b... which is required by Federal statute, or (2) The disclosure of a social security number to any Federal... identity of an individual. (c) Requests for disclosure of social security number. If the Agency requests an...

  1. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    Science.gov (United States)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  2. Specifying Functional Requirements Dependency in the REWiki

    OpenAIRE

    ZHANG, ZHANG

    2013-01-01

    Most of the individual requirements cannot be treated in isolation. Requirements may affect each other in various ways. The dependency between requirements impacts a number of software development aspects and activities. How to classify and specify requirements dependency remains a classic research topic. This research aims at providing an approach of specifying functional requirements dependency. In this thesis we generalize a classification of functional requirements dependency. We also pro...

  3. Number of core samples: Mean concentrations and confidence intervals

    International Nuclear Information System (INIS)

    Jensen, L.; Cromar, R.D.; Wilmarth, S.R.; Heasler, P.G.

    1995-01-01

    This document provides estimates of how well the mean concentration of analytes are known as a function of the number of core samples, composite samples, and replicate analyses. The estimates are based upon core composite data from nine recently sampled single-shell tanks. The results can be used when determining the number of core samples needed to ''characterize'' the waste from similar single-shell tanks. A standard way of expressing uncertainty in the estimate of a mean is with a 95% confidence interval (CI). The authors investigate how the width of a 95% CI on the mean concentration decreases as the number of observations increase. Specifically, the tables and figures show how the relative half-width (RHW) of a 95% CI decreases as the number of core samples increases. The RHW of a CI is a unit-less measure of uncertainty. The general conclusions are as follows: (1) the RHW decreases dramatically as the number of core samples is increased, the decrease is much smaller when the number of composited samples or the number of replicate analyses are increase; (2) if the mean concentration of an analyte needs to be estimated with a small RHW, then a large number of core samples is required. The estimated number of core samples given in the tables and figures were determined by specifying different sizes of the RHW. Four nominal sizes were examined: 10%, 25%, 50%, and 100% of the observed mean concentration. For a majority of analytes the number of core samples required to achieve an accuracy within 10% of the mean concentration is extremely large. In many cases, however, two or three core samples is sufficient to achieve a RHW of approximately 50 to 100%. Because many of the analytes in the data have small concentrations, this level of accuracy may be satisfactory for some applications

  4. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Javed, Tamour; Ahmed, Ahfaz; Naser, Nimal; Tekawade, Aniket; Kosiba, Graham; Alabbad, Mohammed; Singh, Eshan; Park, Sungwoo; Rashidi, Mariam Al; Chung, Suk-Ho; Roberts, William L.; Oehlschlaeger, Matthew A.; Sung, Chih-Jen; Farooq, Aamir

    2016-01-01

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  5. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  6. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels.

    Science.gov (United States)

    Wu, Di; Zhang, Fei; Lou, Wenhao; Li, Dan; Chen, Jianmin

    2017-12-15

    Fuel consumption is one of the major contributors to air pollution worldwide. Plenty of studies have demonstrated that the diesel and petrol exhaust fine particulate matters (FPMs) are associated with increases of various diseases. However, the influences of different fuel types and their chemical components on toxicity have been less investigated. In this study, four kinds of fuels that widely used in China were burned in a laboratory simulation, and the FPMs were collected and analyzed. Transmission electron microscopy showed that black carbon was mainly soot with a dendritic morphology. For light diesel oil, marine heavy diesel oil, 93 octane petrol and 97 octane petrol diesel oil, the emission factors of FPMs were 3.05±0.29, 3.21±0.54, 2.36±0.33, and 2.28±0.25g/kg fuel, respectively. And the emission factors for the "16 US EPA" PAHs of FPM were 0.45±0.20, 0.80±0.22, 1.00±0.20, and 1.05±0.19mg/g FPMs, respectively. Fe is the most abundant metal in these FPMs, and the emission factors of FPMs were 2.58±1.70, 4.45±0.11, 8.18±0.58, and 9.24±0.17mg/g FPMs, respectively. We ranked the cytotoxicity of the FPMs emission from fuels combustion: marine heavy diesel oil>97 octane petrol>93 octane petrol>light diesel oil, and the genotoxicity of FPMs emission from fuels combustion: marine heavy diesel oil>light diesel oil>93 octane petrol>97 octane petrol. Significant correlations were found between PAH concentrations and reactive oxygen species (ROS) generation. Our results demonstrated that fuels exhaust FPMs have strong association with ROS activity, cytotoxicity and genotoxicity. These results indicated that fuels exhaust FPMs pose a potentially serious health, and emphasized the importance of assessing the health risks posed by the particulate pollutants in vehicle exhausts. Copyright © 2017. Published by Elsevier B.V.

  7. Reduction in the Number of Comparisons Required to Create Matrix of Expert Judgment in the Comet Method

    Directory of Open Access Journals (Sweden)

    Sałabun Wojciech

    2014-09-01

    Full Text Available Multi-criteria decision-making (MCDM methods are associated with the ranking of alternatives based on expert judgments made using a number of criteria. In the MCDM field, the distance-based approach is one popular method for receiving a final ranking. One of the newest MCDM method, which uses the distance-based approach, is the Characteristic Objects Method (COMET. In this method, the preferences of each alternative are obtained on the basis of the distance from the nearest characteristic ob jects and their values. For this purpose, the domain and fuzzy numbers set for all the considered criteria are determined. The characteristic objects are obtained as the combination of the crisp values of all the fuzzy numbers. The preference values of all the characteristic ob ject are determined based on the tournament method and the principle of indifference. Finally, the fuzzy model is constructed and is used to calculate preference values of the alternatives. In this way, a multi-criteria model is created and it is free of rank reversal phenomenon. In this approach, the matrix of expert judgment is necessary to create. For this purpose, an expert has to compare all the characteristic ob jects with each other. The number of necessary comparisons depends squarely to the number of ob jects. This study proposes the improvement of the COMET method by using the transitivity of pairwise comparisons. Three numerical examples are used to illustrate the efficiency of the proposed improvement with respect to results from the original approach. The proposed improvement reduces significantly the number of necessary comparisons to create the matrix of expert judgment.

  8. The winding number of three complexes in SU(3)

    International Nuclear Information System (INIS)

    Lasher, G.

    1989-01-01

    The Phillip-Stone algorithm for the topological charge of a lattice gauge field requires the computation of the winding number of certain 3-complexes in the space of the group. The extension of the computational procedure for the SU(2) gauge group to SU(3) requires an understanding of the SU(3) geometry. An important issue is the behavior of a 3-cell in SU(3) as it approaches a critical configuration, i.e., one at which the cell is a discontinuous function of its vertices. A measure of the proximity of a cell to criticality is found and a method for computing its contribution to the winding number is recommended. (orig.)

  9. Random numbers spring from alpha decay

    International Nuclear Information System (INIS)

    Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Clark, N.A.; Tyler, S.A.

    1980-05-01

    Congruential random number generators, which are widely used in Monte Carlo simulations, are deficient in that the number they generate are concentrated in a relatively small number of hyperplanes. While this deficiency may not be a limitation in small Monte Carlo studies involving a few variables, it introduces a significant bias in large simulations requiring high resolution. This bias was recognized and assessed during preparations for an accident analysis study of nuclear power plants. This report describes a random number device based on the radioactive decay of alpha particles from a 235 U source in a high-resolution gas proportional counter. The signals were fed to a 4096-channel analyzer and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts (0 for an even count and 1 for an odd count) were then assembled in sequence to form 31-bit binary random numbers and transcribed to a magnetic tape. This cycle was repeated as many times as were necessary to create 3 million random numbers. The frequency distribution of counts from the present device conforms to the Brockwell-Moyal distribution, which takes into account the dead time of the counter (both the dead time and decay constant of the underlying Poisson process were estimated). Analysis of the count data and tests of randomness on a sample set of the 31-bit binary numbers indicate that this random number device is a highly reliable source of truly random numbers. Its use is, therefore, recommended in Monte Carlo simulations for which the congruential pseudorandom number generators are found to be inadequate. 6 figures, 5 tables

  10. Interaction of cationic porphyrins with DNA: Importance of the number and position of the charges and minimum structural requirements for intercalation

    International Nuclear Information System (INIS)

    Sari, M.A.; Battioni, J.P.; Dupre, D.; Mansuy, D.; Le Pecq, J.B.

    1990-01-01

    Thirty-three porphyrins or metalloporphyrins corresponding to the general formula [meso-[N-methyl-4(or 3 or 2)-pyridiniumyl] n (aryl) 4-n porphyrin]M (M = H 2 , Cu II , or ClFe III ), with n = 2-4, have been synthesized and characterized by UV-visible and 1 H NMR spectroscopy and mass spectrometry. These porphyrins differ not only in the number (2-4) and position of their cationic charges but also in the steric requirements to reach even temporarily a completely planar geometry. Interaction of these porphyrins or metalloporphyrins with calf thymus DNA has been studied and their apparent affinity binding constants have been determined by use of a competition method with ethidium bromide which was applicable not only for all the free base porphyrins but also for their copper (II) or iron (III) complexes. Whatever their mode of binding may be, their apparent affinity binding constants were relatively high and a linear decrease of log K app with the number of porphyrin charges was observed. Studies of porphyrin-DNA interactions by UV and fluorescence spectroscopy, viscosimetry, and fluorescence energy transfer experiments showed that not only the tetracationic meso-tetrakis[N-methyl-4(or 3)-pyridiniumyl]porphyrins, which both involved four freely rotating meso-aryl groups, but also the corresponding tri- and dicationic porphyrins were able to intercalate into calf thymus DNA. These results show that only half of the porphyrin ring is necessary for intercalation to occur

  11. Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.

    Science.gov (United States)

    Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P

    2018-03-01

    The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.

  12. Demonstration of CO{sub 2} Conversion to Synthetic Transport Fuel at Flue Gas Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Dowson, George R. M. [Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom); Styring, Peter, E-mail: p.styring@sheffield.ac.uk [Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom); UK Centre for Carbon Dioxide Utilisation, Department of Chemistry, The University of Sheffield, Sheffield (United Kingdom)

    2017-10-12

    A mixture of 1- and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO{sub 2} utilization step uses dry, dilute carbon dioxide (12% CO{sub 2} in nitrogen) similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO{sub 2}, this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO{sub 2} to butanol requires significantly less hydrogen than CO{sub 2} to octanes, there is a potentially reduced burden on the so

  13. Demonstration of CO2 Conversion to Synthetic Transport Fuel at Flue Gas Concentrations

    Directory of Open Access Journals (Sweden)

    George R. M. Dowson

    2017-10-01

    Full Text Available A mixture of 1- and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO2 utilization step uses dry, dilute carbon dioxide (12% CO2 in nitrogen similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO2, this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO2 to butanol requires significantly less hydrogen than CO2 to octanes, there is a potentially reduced burden on the so-called hydrogen

  14. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    Science.gov (United States)

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  15. Analysis of clinical data to determine the minimum number of sensors required for adequate skin temperature monitoring of superficial hyperthermia treatments.

    Science.gov (United States)

    Bakker, Akke; Holman, Rebecca; Rodrigues, Dario B; Dobšíček Trefná, Hana; Stauffer, Paul R; van Tienhoven, Geertjan; Rasch, Coen R N; Crezee, Hans

    2018-04-27

    Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients. Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm 2 ). Reduced temperature monitoring schemes involved randomly selected subsets of stationary skin sensors, and another subset simulating continuous thermal mapping of the skin. Temperature differences (ΔT) between subsets and complete sets of sensors were evaluated in terms of overall minimum (T min ) and maximum (T max ) temperature, as well as T90 and T10. Eighty patients were included yielding a total of 400 hyperthermia sessions. Median ΔT was 50 sensors were used. Subsets of sensors result in underestimation of T max up to -2.1 °C (ΔT 95%CI), which decreased to -0.5 °C when >50 sensors were used. Thermal profiles (8-21 probes) yielded a median ΔT 50 stationary sensors or thermal profiles. Adequate coverage of the skin temperature distribution during superficial hyperthermia treatment requires the use of >50 stationary sensors per 400 cm 2 applicator. Thermal mapping is a valid alternative.

  16. Pseudo-random number generator for the Sigma 5 computer

    Science.gov (United States)

    Carroll, S. N.

    1983-01-01

    A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.

  17. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar

    2016-04-05

    Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  18. Laboratory and numerical investigations of kinetic interface sensitive tracers transport for immiscible two-phase flow porous media systems

    Science.gov (United States)

    Tatomir, Alexandru Bogdan A. C.; Sauter, Martin

    2017-04-01

    A number of theoretical approaches estimating the interfacial area between two fluid phases are available (Schaffer et al.,2013). Kinetic interface sensitive (KIS) tracers are used to describe the evolution of fluid-fluid interfaces advancing in two phase porous media systems (Tatomir et al., 2015). Initially developed to offer answers about the supercritical (sc)CO2 plume movement and the efficiency of trapping in geological carbon storage reservoirs, KIS tracers are tested in dynamic controlled laboratory conditions. N-octane and water, analogue to a scCO2 - brine system, are used. The KIS tracer is dissolved in n-octane, which is injected as the non-wetting phase in a fully water saturated porous media column. The porous system is made up of spherical glass beads with sizes of 100-250 μm. Subsequently, the KIS tracer follows a hydrolysis reaction over the n-octane - water interface resulting in an acid and phenol which are both water soluble. The fluid-fluid interfacial area is described numerically with the help of constitutive-relationships derived from the Brooks-Corey model. The specific interfacial area is determined numerically from pore scale calculations, or from different literature sources making use of pore network model calculations (Joekar-Niasar et al., 2008). This research describes the design of the laboratory setup and compares the break-through curves obtained with the forward model and in the laboratory experiment. Furthermore, first results are shown in the attempt to validate the immiscible two phase flow reactive transport numerical model with dynamic laboratory column experiments. Keywords: Fluid-fluid interfacial area, KIS tracers, model validation, CCS, geological storage of CO2

  19. Number of Migration Scenarios Passing through each HUC (future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forest dwelling neotropical migratory birds require intact forested stopovers during migration. The number of paths that pass through a HUC highlight that huc's...

  20. 47 CFR 95.1217 - Labeling requirements.

    Science.gov (United States)

    2010-10-01

    ... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1217 Labeling requirements. (a) MedRadio... operating in the 400.150-406.000 MHz band in the Meteorological Aids, Meteorological Satellite, and Earth... shall be identified with a serial number. The FCC ID number associated with a medical implant...

  1. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  2. Comments for the Update to the ATSDR Toxicological Profile for JP-5 and JP-8 Occurring in FY14

    Science.gov (United States)

    2013-12-30

    Exposure Chamber. Made of stainless steel, about the size and shape of an attaché case, this IN-TOX product will hold up to 24 mice, each contained in...hydrocarbon markers (n- octane, n-decane, n-tetradecane, toluene, ethylbenzene , and m-xylene)” is incomplete and therefore incorrect. The model, in...aromatic hydrocarbon markers (n-octane, n-decane, n- tetradecane, toluene, ethylbenzene , and m-xylene), plus three chemical lumped compartments based

  3. Fuel octane effects in the partially premixed combustion regime in compression ignition engines

    NARCIS (Netherlands)

    Hildingsson, L.; Kalghatgi, G.T.; Tait, N.; Johansson, B.H.; Harrison, A.

    2009-01-01

    Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before

  4. 77 FR 15004 - Updating of Employer Identification Numbers

    Science.gov (United States)

    2012-03-14

    ... operation, maintenance, and purchase of services to provide information. The collection of information in... Identification Number. The IRS accepts applications for EINs electronically and by telephone, facsimile, or mail... taxes, Gift taxes, Income taxes, Penalties, Reporting and recordkeeping requirements. Proposed...

  5. Using Computer-Generated Random Numbers to Calculate the Lifetime of a Comet.

    Science.gov (United States)

    Danesh, Iraj

    1991-01-01

    An educational technique to calculate the lifetime of a comet using software-generated random numbers is introduced to undergraduate physiques and astronomy students. Discussed are the generation and eligibility of the required random numbers, background literature related to the problem, and the solution to the problem using random numbers.…

  6. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  7. A Variable Turbulent Schmidt Number Formulation for Scramjet Application

    Science.gov (United States)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.; Cutler, A. D.

    2004-01-01

    In high speed engines, thorough turbulent mixing of fuel and air is required to obtain high performance and high efficiency. Thus, the ability to predict turbulent mixing is crucial in obtaining accurate numerical simulation of an engine and its performance. Current state of the art in CFD simulation is to assume both turbulent Prandtl number and Schmidt numbers to be constants. However, since the mixing of fuel and air is inversely proportional to the Schmidt number, a value of 0.45 for the Schmidt number will produce twice as much diffusion as that with a value of 0.9. Because of this, current CFD tools and models have not been able to provide the needed guidance required for the efficient design of a scramjet engine. The goal of this investigation is to develop the framework needed to calculate turbulent Prandtl and Schmidt numbers as part of the solution. This requires four additional equations: two for the temperature variance and its dissipation rate and two for the concentration variance and its dissipation rate. In the current investigation emphasis will be placed on studying mixing without reactions. For such flows, variable Prandtl number does not play a major role in determining the flow. This, however, will have to be addressed when combustion is present. The approach to be used is similar to that used to develop the k-zeta model. In this approach, relevant equations are derived from the exact Navier-Stokes equations and each individual correlation is modeled. This ensures that relevant physics is incorporated into the model equations. This task has been accomplished. The final set of equations have no wall or damping functions. Moreover, they are tensorially consistent and Galilean invariant. The derivation of the model equations is rather lengthy and thus will not be incorporated into this abstract, but will be included in the final paper. As a preliminary to formulating the proposed model, the original k-zeta model with constant turbulent Prandtl and

  8. 49 CFR 451.25 - Required information.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Required information. 451.25 Section 451.25....25 Required information. (a) The safety approval number appearing on line 1 of the safety approval... safety approval plate on the freight container provided that all the information contained on the...

  9. A hybrid-type quantum random number generator

    Science.gov (United States)

    Hai-Qiang, Ma; Wu, Zhu; Ke-Jin, Wei; Rui-Xue, Li; Hong-Wei, Liu

    2016-05-01

    This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178010 and 11374042), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China, and the Fundamental Research Funds for the Central Universities of China (Grant No. bupt2014TS01).

  10. 20 CFR 422.112 - Employer identification numbers.

    Science.gov (United States)

    2010-04-01

    ... Form SSA-214-CD to the interstate instrumentality to notify it of the number assigned. [60 FR 42433... pension or excise tax return is not subject to this requirement. To apply for an EIN, employers file Form... employers, Form SS-4 is available at all SSA and IRS offices. Household employers, agricultural employers...

  11. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  12. 76 FR 47114 - Wireless E911 Location Accuracy Requirements; E911 Requirements for IP-Enabled Service Providers

    Science.gov (United States)

    2011-08-04

    .... Power and Associates, indicate that indoor wireless calls have increased dramatically in the past few... Docket No. 05-196; FCC 11-107] Wireless E911 Location Accuracy Requirements; E911 Requirements for IP... transmission is entirely over IP-based networks. By referencing E.164 telephone numbers and eliminating...

  13. Structure Study on Microemulsion System with an Ionic Liquid (IL) by Small-Angle Neutron Scattering

    Science.gov (United States)

    Kang, Tae Hui; Qian, Shuo; Smith, Gregory S.; Do, Changwoo; Heller, William T.

    The self-assembly of IL with a long alkyl chains provides molecular level control on the structure enabling applications, including, creating microemulsion with dual functions of extractant and surfactant. The IL, C14MIMCl is not soluble in alkane solvents, even with the addition of octanol. However, with a small amount of water, a water-in-oil micromemulsion forms, that obeys the swelling law with water content. The mixed surfactant system, C14MIMCl/octanol, has different chemistry and molecular geometries depending on its composition. Through the use of SANS, it is possible to determine the impact of the surfactant system on the structure of the microemulsion, as well as to learn the composition of various regions in the structure. The microemulsion system was studied by dilution with octane from 10 to 70 wt%. A strong intensity peak was observed near 0.1 Å-1, and the stable phase shows a structural transition at 30 wt% octane. Contrast variation experiments were done with d-octane and h-octane to understand the structure of the microemulsion, as well as the structural transition. Further, systematic concentration studies of surfactant at constant water-to-oil molar ratio and of water at constant 30 wt% surfactant were performed.

  14. The optimal number of surveys when detectability varies.

    Directory of Open Access Journals (Sweden)

    Alana L Moore

    Full Text Available The survey of plant and animal populations is central to undertaking field ecology. However, detection is imperfect, so the absence of a species cannot be determined with certainty. Methods developed to account for imperfect detectability during surveys do not yet account for stochastic variation in detectability over time or space. When each survey entails a fixed cost that is not spent searching (e.g., time required to travel to the site, stochastic detection rates result in a trade-off between the number of surveys and the length of each survey when surveying a single site. We present a model that addresses this trade-off and use it to determine the number of surveys that: 1 maximizes the expected probability of detection over the entire survey period; and 2 is most likely to achieve a minimally-acceptable probability of detection. We illustrate the applicability of our approach using three practical examples (minimum survey effort protocols, number of frog surveys per season, and number of quadrats per site to detect a plant species and test our model's predictions using data from experimental plant surveys. We find that when maximizing the expected probability of detection, the optimal survey design is most sensitive to the coefficient of variation in the rate of detection and the ratio of the search budget to the travel cost. When maximizing the likelihood of achieving a particular probability of detection, the optimal survey design is most sensitive to the required probability of detection, the expected number of detections if the budget were spent only on searching, and the expected number of detections that are missed due to travel costs. We find that accounting for stochasticity in detection rates is likely to be particularly important for designing surveys when detection rates are low. Our model provides a framework to do this.

  15. 40 CFR 63.1018 - Reporting requirements.

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1018 Reporting requirements. (a... § 63.1007(e)(2) and those pumps complying with the closed vent system provisions of § 63.1007(e)(3). (iv) Number of compressors subject to the requirements of § 63.1012, excluding those compressors...

  16. 78 FR 12623 - Insurer Reporting Requirements

    Science.gov (United States)

    2013-02-25

    ... NHTSA's regulation requiring motor vehicle insurers to submit information on the number of thefts and recoveries of insured vehicles and actions taken by the insurer to deter or reduce motor vehicle theft. NHTSA..., which requires insurers to submit information about the make, model, and year of all vehicle thefts, the...

  17. 40 CFR 264.1065 - Reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... Air Emission Standards for Equipment Leaks § 264.1065 Reporting requirements. (a) A semiannual report...). (iii) The equipment identification number of each compressor for which a leak was not repaired as... monitoring required by § 264.1060 and was not corrected within 24 hours, the duration and cause of each...

  18. 12 CFR 27.3 - Recordkeeping requirements.

    Science.gov (United States)

    2010-01-01

    ... work or profession for the applicant(s). (xii) Years on present job. Number of continuous years... accounts, stocks and bonds, cash value of life insurance, value of real estate owned, net worth of business... deposit balance is required, and if so, the amount. (iv) The note (simple) interest rate. (v) The number...

  19. Large number discrimination in newborn fish.

    Directory of Open Access Journals (Sweden)

    Laura Piffer

    Full Text Available Quantitative abilities have been reported in a wide range of species, including fish. Recent studies have shown that adult guppies (Poecilia reticulata can spontaneously select the larger number of conspecifics. In particular the evidence collected in literature suggest the existence of two distinct systems of number representation: a precise system up to 4 units, and an approximate system for larger numbers. Spontaneous numerical abilities, however, seem to be limited to 4 units at birth and it is currently unclear whether or not the large number system is absent during the first days of life. In the present study, we investigated whether newborn guppies can be trained to discriminate between large quantities. Subjects were required to discriminate between groups of dots with a 0.50 ratio (e.g., 7 vs. 14 in order to obtain a food reward. To dissociate the roles of number and continuous quantities that co-vary with numerical information (such as cumulative surface area, space and density, three different experiments were set up: in Exp. 1 number and continuous quantities were simultaneously available. In Exp. 2 we controlled for continuous quantities and only numerical information was available; in Exp. 3 numerical information was made irrelevant and only continuous quantities were available. Subjects successfully solved the tasks in Exp. 1 and 2, providing the first evidence of large number discrimination in newborn fish. No discrimination was found in experiment 3, meaning that number acuity is better than spatial acuity. A comparison with the onset of numerical abilities observed in shoal-choice tests suggests that training procedures can promote the development of numerical abilities in guppies.

  20. Increase in the number of distributed power generation installations in electricity distribution grids - General requirements; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, G.; Mauchle, P.

    2003-07-01

    This is the third part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. The first part of this second appendix to the main report examines the electrical conditions and requirements that have to be met by distributed production facilities. These include limits for voltage and frequency, synchronisation aspects, protection, reactive power questions and islanding. Also, recommendations are made on the assessment of grid reactions and on the avoidance of non-permissible effects on the grid's audio-frequency remote control apparatus. A second part examines the situation concerning the connection of distributed power units to the grid and grid topologies. The last chapter lists relevant standards and guidelines.

  1. Conversion of dependability deterministic requirements into probabilistic requirements

    International Nuclear Information System (INIS)

    Bourgade, E.; Le, P.

    1993-02-01

    This report concerns the on-going survey conducted jointly by the DAM/CCE and NRE/SR branches on the inclusion of dependability requirements in control and instrumentation projects. Its purpose is to enable a customer (the prime contractor) to convert into probabilistic terms dependability deterministic requirements expressed in the form ''a maximum permissible number of failures, of maximum duration d in a period t''. The customer shall select a confidence level for each previously defined undesirable event, by assigning a maximum probability of occurrence. Using the formulae we propose for two repair policies - constant rate or constant time - these probabilized requirements can then be transformed into equivalent failure rates. It is shown that the same formula can be used for both policies, providing certain realistic assumptions are confirmed, and that for a constant time repair policy, the correct result can always be obtained. The equivalent failure rates thus determined can be included in the specifications supplied to the contractors, who will then be able to proceed to their previsional justification. (author), 8 refs., 3 annexes

  2. Effect of ionizing radiation on physicochemical and mechanical properties of commercial multilayer coextruded flexible plastics packaging materials

    Science.gov (United States)

    Goulas, Antonios E.; Riganakos, Kyriakos A.; Kontominas, Michael G.

    2003-12-01

    The effect of gamma radiation (doses: 5, 10 and 30 kGy) on mechanical properties, gas and water vapour permeability and overall migration values into distilled water, 3% aqueous acetic acid and iso-octane was studied for a series of commercial multilayer flexible packaging materials based on coextruded polypropylene (PP), ethylene vinyl alcohol (EVOH), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyamide (PA) and Ionomer. The results showed that radiation doses of 5 and 10 kGy induced no statistically significant differences ( p>0.05) in all polymer properties examined. A dose of 30 kGy induced differences ( pfilms. In addition, the same dose induced differences ( pfilms into 3% acetic acid and iso-octane and in the overall migration from PP/EVOH/LDPE-LLDPE into iso-octane. Differences recorded, are discussed in relation to food irradiation applications of respective packaging materials.

  3. 21 CFR 203.38 - Sample lot or control numbers; labeling of sample units.

    Science.gov (United States)

    2010-04-01

    ... numbers; labeling of sample units. (a) Lot or control number required on drug sample labeling and sample... identifying lot or control number that will permit the tracking of the distribution of each drug sample unit... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sample lot or control numbers; labeling of sample...

  4. Optical CDMA components requirements

    Science.gov (United States)

    Chan, James K.

    1998-08-01

    Optical CDMA is a complementary multiple access technology to WDMA. Optical CDMA potentially provides a large number of virtual optical channels for IXC, LEC and CLEC or supports a large number of high-speed users in LAN. In a network, it provides asynchronous, multi-rate, multi-user communication with network scalability, re-configurability (bandwidth on demand), and network security (provided by inherent CDMA coding). However, optical CDMA technology is less mature in comparison to WDMA. The components requirements are also different from WDMA. We have demonstrated a video transport/switching system over a distance of 40 Km using discrete optical components in our laboratory. We are currently pursuing PIC implementation. In this paper, we will describe the optical CDMA concept/features, the demonstration system, and the requirements of some critical optical components such as broadband optical source, broadband optical amplifier, spectral spreading/de- spreading, and fixed/programmable mask.

  5. Minimization of number of setups for mounting machines

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, Pavel; Nchor, Dennis; Hampel, David [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 603 00 Brno (Czech Republic); Žák, Jaroslav [Institute of Technology and Business, Okružní 517/10, 370 01 České Budejovice (Czech Republic)

    2015-03-10

    The article deals with the problem of minimizing the number of setups for mounting SMT machines. SMT is a device used to assemble components on printed circuit boards (PCB) during the manufacturing of electronics. Each type of PCB has a different set of components, which are obligatory. Components are placed in the SMT tray. The problem consists in the fact that the total number of components used for all products is greater than the size of the tray. Therefore, every change of manufactured product requires a complete change of components in the tray (i.e., a setup change). Currently, the number of setups corresponds to the number of printed circuit board type. Any production change affects the change of setup and stops production on one shift. Many components occur in more products therefore the question arose as to how to deploy the products into groups so as to minimize the number of setups. This would result in a huge increase in efficiency of production.

  6. Space station data system analysis/architecture study. Task 1: Functional requirements definition, DR-5. Appendix: Requirements data base

    Science.gov (United States)

    1985-01-01

    Appendix A contains data that characterize the system functions in sufficient depth as to determine the requirements for the Space Station Data System (SSDS). This data is in the form of: (1) top down traceability report; (2) bottom up traceability report; (3) requirements data sheets; and (4) cross index of requirements paragraphs of the source documents and the requirements numbers. A data base users guide is included that interested parties can use to access the requirements data base and get up to date information about the functions.

  7. Independent Verification and Validation Of SAPHIRE 8 Software Requirements Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Kent Norris

    2009-09-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE requirements definition is to assess the activities that results in the specification, documentation, and review of the requirements that the software product must satisfy, including functionality, performance, design constraints, attributes and external interfaces. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP).

  8. 20 CFR 422.104 - Who can be assigned a social security number.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Who can be assigned a social security number... General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN assignment. We can assign you a social security number if you meet the evidence requirements in § 422.107 and...

  9. Study the influence of reacted aliphatic amine series length on its kinetic reaction with dimeric fatty acid C36 and properties of resulted polyamide

    International Nuclear Information System (INIS)

    Al-Mohammad, H.; Falah, A.; Al-Hammoy, M.

    2013-01-01

    Kinetic studies were carried out on the reaction between dimeric fatty acid C 3 6 with 1.3 Diamino propane and 1.4 Diamino butane and 1.6 Diamino hexane and 1.8 Diamino octane in molten phase. The reaction was performed at 145 o C. The polyamidation reaction was found to be on the overall a second order up to 83% conversion for reaction dimeric fatty acid C-36 with 1.3 Diamino propane and 86% conversion for reaction dimeric fatty acid C 3 6 with 1.4 Diamino butane and 87% conversion for reaction dimeric fatty acid C 3 6 with 1.6 Diamino hexane and 1.8 Diamino octane then the reaction order changes to the third order above last conversion. The degree of polymerization,number average molecular weight and weight average molecular weight have been calculated during different times. Their relationships with the times are linear until last conversion. The melting point and thermodynamic constants for melting are determined by use of differential scanning calorimetry DSC. The melting point and thermodynamic constants increase by increasing the length of reacted amine series. (author)

  10. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  11. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    DEFF Research Database (Denmark)

    Chen, Xiao; Nielsen, Kristian Fog; Borodina, Irina

    2011-01-01

    BACKGROUND: Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because...... of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. RESULTS: The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous...

  12. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Science.gov (United States)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  13. Nuclear plant requirements during power system restoration

    International Nuclear Information System (INIS)

    Adamski, G.; Jenkins, R.; Gill, P.

    1995-01-01

    This paper is one of a series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration issues. This paper discusses a number of nuclear power plant requirements that require special attention during power system restoration

  14. Requirements management at Westinghouse Electric Company

    International Nuclear Information System (INIS)

    Gustavsson, Henrik

    2014-01-01

    Field studies and surveys made in various industry branches support the Westinghouse opinion that qualitative systems engineering and requirements management have a high value in the development of complex systems and products. Two key issues causing overspending and schedule delays in projects are underestimation of complexity and misunderstandings between the different sub-project teams. These issues often arise when a project jumps too early into detail design. Good requirements management practice before detail design helps the project teams avoid such issues. Westinghouse therefore puts great effort into requirements management. The requirements management methodology at Westinghouse rests primarily on four key cornerstones: 1 - Iterative team work when developing requirements specifications, 2 - Id number tags on requirements, 3 - Robust change routine, and 4 - Requirements Traceability Matrix. (authors)

  15. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    International Nuclear Information System (INIS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-01-01

    Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  16. On gauged Baryon and Lepton numbers

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1990-01-01

    The observation that Baryon number and Lepton number are conserved in nature provides strong motivation for associating gauge symmetries to these conserved numbers. This endeavor requires that the gauge group of electroweak interactions be extended from SU(2) L X U(1) Y to SU(2) L X U(1) R X U(1) Lepton where U(1) R couples only to the right-handed quarks and leptons. If it furthur postulated that right-handed currents exist on par with the left-handed ones, then the full electroweak symmetry is SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton . The SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton model is described in some detail. The triangle anomalies of the three families of quarks and leptons in the model are cancelled invoking leptoquark matter which is new fermionic matter that carries baryon as well as lepton numbers. In addition to the standard neutral boson (Z degree), the theory predicts two neutral gauge bosons with mass lower bounds of 120 GeV and 210 GeV which makes these particles prospective candidates for production at LEP, the TEVATRON and the SSC

  17. Gauge transformations with fractional winding numbers

    International Nuclear Information System (INIS)

    Abouelsaood, A.

    1996-01-01

    The role which gauge transformations of noninteger winding numbers might play in non-Abelian gauge theories is studied. The phase factor acquired by the semiclassical physical states in an arbitrary background gauge field when they undergo a gauge transformation of an arbitrary real winding number is calculated in the path integral formalism assuming that a θFF term added to the Lagrangian plays the same role as in the case of integer winding numbers. Requiring that these states provide a representation of the group of open-quote open-quote large close-quote close-quote gauge transformations, a condition on the allowed backgrounds is obtained. It is shown that this representability condition is only satisfied in the monopole sector of a spontaneously broken gauge theory, but not in the vacuum sector of an unbroken or a spontaneously broken non-Abelian gauge theory. It is further shown that the recent proof of the vanishing of the θ parameter when gauge transformations of arbitrary fractional winding numbers are allowed breaks down in precisely those cases where the representability condition is obeyed because certain gauge transformations needed for the proof, and whose existence is assumed, are either spontaneously broken or cannot be globally defined as a result of a topological obstruction. copyright 1996 The American Physical Society

  18. Engineering testing requirements in FED/INTOR

    International Nuclear Information System (INIS)

    Abdou, M.A.; Nygren, R.E.; Morgan, G.D.; Trachsel, C.A.; Wire, G.; Oppermann, E.; Puigh, R.; Gold, R.E.

    1982-10-01

    The FED/INTOR critical issues activity has addressed three key testing requirements that have the largest impact on the design, operation and cost of FED/INTOR. These are: (1) the total testing time (fluence) during the device lifetime, (2) the minimum number of back-to-back cycles, and (3) the neutron wall load (power density in the first wall/blanket). The testing program activities were structured into three tasks in order to define the benefits, and in some cases, costs and risks of these testing requirements. The three tasks were carried out with wide participation of experts from a number of organizations in the United States. Similar effort was performed by Japan, the European Community and the Soviet Union

  19. Cosmic numbers the numbers that define our universe

    CERN Document Server

    Stein, James D

    2011-01-01

    Our fascination with numbers begins when we are children and continues throughout our lives. We start counting our fingers and toes and end up balancing checkbooks and calculating risk. So powerful is the appeal of numbers that many people ascribe to them a mystical significance. Other numbers go beyond the supernatural, working to explain our universe and how it behaves. In Cosmic Numbers , mathematics professor James D. Stein traces the discovery, evolution, and interrelationships of the numbers that define our world. Everyone knows about the speed of light and absolute zero, but numbers lik

  20. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  1. [Intel random number generator-based true random number generator].

    Science.gov (United States)

    Huang, Feng; Shen, Hong

    2004-09-01

    To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.

  2. The Mental Number Line in Dyscalculia: Impaired Number Sense or Access from Symbolic Numbers?

    Science.gov (United States)

    Lafay, Anne; St-Pierre, Marie-Catherine; Macoir, Joël

    2017-01-01

    Numbers may be manipulated and represented mentally over a compressible number line oriented from left to right. According to numerous studies, one of the primary reasons for dyscalculia is related to improper understanding of the mental number line. Children with dyscalculia usually show difficulty when they have to place Arabic numbers on a…

  3. Synthesis, characterization, and application of hydrotalcites in hydrodesulfurization of FCC gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ruiyu; Yin, Changlong; Zhao, Huiji; Liu, Chenguang [College of Chemistry and Chemical Engineering, Key Laboratory of Catalysis, CNPC, University of Petroleum, Dongying, Shandong 257061 (China)

    2003-05-25

    Magnesium-aluminum, copper-aluminum, zinc-aluminum hydrotalcite(HT) compounds were synthesized using co-precipitation method. The effects of stirring rate, feeding rate of reactants, pH, calcination temperature on the properties of Mg-Al mixed oxides were investigated by using XRD, TG-DTA and BET techniques. The catalytic activity and selectivity of CoMo/{gamma}-Al{sub 2}O{sub 3}, CoMo/{gamma}-Al{sub 2}O{sub 3}+HT catalysts for hydrodesulfurization of FCC gasoline were examined in a high pressure microreactor. The results showed that the catalysts with mixed oxide obtained from hydrotalcite as support give lower levels of olefin hydrogenation than the catalyst with {gamma}-Al{sub 2}O{sub 3} as support, and lower octane number reduction and hydrodesulfurization yield, too. The hydrodesulfurization activity order was as follows: CoMo/{gamma}-Al{sub 2}O{sub 3}>CoMo/{gamma}-Al{sub 2}O{sub 3}+Mg-Al(HT)>CoMo/{gamma}-Al{sub 2}O{sub 3}+Cu-A l(HT)>CoMo/{gamma}-Al{sub 2}O{sub 3}+Zn-Al(HT), and the olefin hydrogenation activity and octane number reduction order were as follows: CoMo/{gamma}-Al{sub 2}O{sub 3}+Zn-Al(HT)

  4. The potential of medium-pore zeolites for improved propene yields from catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Salas, N.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry, Chemical Technology

    2011-07-01

    The medium-pore zeolites ZSM-5 (MFI), ZSM-22 (TON), ZSM-23 (MTT), and EU-1 (EUO) were synthesized under hydrothermal conditions and modified by ion exchange to obtain the Broensted-acid forms. The activity and selectivity of these catalysts in catalytic cracking of a model compound, viz. n-octane, was studied in a fixed-bed flow-type reactor. The catalytic results clearly reflect the differences in the pore architectures of the tested zeolites on n-octane conversion and on the product selectivities. Over the zeolites with one-dimensional pore systems and without large intracrystalline cavities, a remarkable increase of the contribution of the monomolecular cracking mechanism could be observed as compared to the standard catalyst zeolite ZSM-5. This is indicated by a high selectivity for unsaturated products and, hence, increasing yields of propene. Large cavities in the pore system, viz. in the case of zeolite EU-1, increase the conversion in particular at lower temperatures. However, the large cavities also favor the formation of large transition states required for the classical bimolecular cracking mechanism, resulting in decreased selectivities for unsaturated products, increased selectivities for aromatics formation and faster deactivation. (orig.)

  5. Computational sieving applied to some classical number-theoretic problems

    NARCIS (Netherlands)

    H.J.J. te Riele (Herman)

    1998-01-01

    textabstractMany problems in computational number theory require the application of some sieve. Efficient implementation of these sieves on modern computers has extended our knowledge of these problems considerably. This is illustrated by three classical problems: the Goldbach conjecture, factoring

  6. European Utility Requirements: European nuclear energy

    International Nuclear Information System (INIS)

    Komsi, M.; Patrakka, E.

    1997-01-01

    The work procedure and the content of the European Utility Requirements (EUR) concerning the future LWRs is described in the article. European Utility Requirements, produced by utilities in a number of European countries, is a document specifying the details relating to engineered safety, operating performance, reliability and economics of the reactors to be built by manufacturers for the European market

  7. Extracting random numbers from quantum tunnelling through a single diode.

    Science.gov (United States)

    Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J

    2017-12-19

    Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.

  8. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    Science.gov (United States)

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  9. Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence.

    Science.gov (United States)

    Storch, Michael; Lind, Susanne; Will, Stefan; Zigan, Lars

    2016-10-20

    In this work, the planar laser-induced fluorescence of a fuel tracer is applied for the analysis of mixture formation for various ethanol/iso-octane blends in a direct-injection spark-ignition (DISI) engine. The tracer triethylamine (TEA) was added to pure iso-octane and ethanol as well as to their blends E20 and E85 for the measurement of the fuel/air ratio. In general, ethanol blending strongly affects the mixture formation process, which is caused by specific physical fuel properties influencing the evaporation process of ethanol in comparison to iso-octane. As interactions of the fuel and tracer fluorescence appear possible, TEA fluorescence was studied for different fuel blends in a cuvette, in a calibration cell under constant conditions, and in an optically accessible internal combustion engine at late injection timing. It was found that ethanol blending strongly affects the fluorescence intensity of TEA in the liquid phase, which can be explained by the interaction of the tracer and ethanol molecules. However, in the gas phase a quantification of the fuel/air ratio is possible for different ethanol fuel blends, which is demonstrated in a DISI engine. Under stratified charge conditions the engine results showed a significant impact of a high amount of ethanol on the mixture formation process, leading to a leaner mixture in comparison to iso-octane.

  10. Functional Requirements for an Electronic Work Package System

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This document provides a set of high level functional requirements for a generic electronic work package (eWP) system. The requirements have been identified by the U.S. nuclear industry as a part of the Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative. The functional requirements are mainly applied to eWP system supporting Basic and Moderate types of smart documents, i.e., documents that have fields for recording input such as text, dates, numbers, and equipment status, and documents which incorporate additional functionalities such as form field data “type“ validation (e.g. date, text, number, and signature) of data entered and/or self-populate basic document information (usually from existing host application meta data) on the form when the user first opens it. All the requirements are categorized by the roles; Planner, Supervisor, Craft, Work Package Approval Reviewer, Operations, Scheduling/Work Control, and Supporting Functions. The categories Statistics, Records, Information Technology are also included used to group the requirements. All requirements are presented in Section 2 through Section 11. Examples of more detailed requirements are provided for the majority of high level requirements. These examples are meant as an inspiration to be used as each utility goes through the process of identifying their specific requirements. The report’s table of contents provides a summary of the high level requirements.

  11. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, Josh A [ORNL; West, Brian H [ORNL; Toops, Todd J [ORNL; Adelman, Brad [Navistar; Derybowski, Edward [Navistar

    2011-10-01

    compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in

  12. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    Science.gov (United States)

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  13. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    Science.gov (United States)

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  14. A new equation of correction of the specific volume of the hydrocarbons C1 to C8 liquids for the equation of state of Peng-Robinson

    International Nuclear Information System (INIS)

    Hoyos Madrigal, Bibian

    2000-01-01

    A new generalized correction equation for specific volume of hydrocarbon pure liquids is proposed. Which can be used in a wide temperature range and that do not require additional parameters for each substance. The equation was developed for the normal hydrocarbon series from methane to octane and the obtained results applied to other substances are analysed. A comparison is also made with the equation proposed by Peneloux et al. (1982) resulting. In all cases, in a better performance of the equation proposed in this work

  15. VLSI Architectures for the Multiplication of Integers Modulo a Fermat Number

    Science.gov (United States)

    Chang, J. J.; Truong, T. K.; Reed, I. S.; Hsu, I. S.

    1984-01-01

    Multiplication is central in the implementation of Fermat number transforms and other residue number algorithms. There is need for a good multiplication algorithm that can be realized easily on a very large scale integration (VLSI) chip. The Leibowitz multiplier is modified to realize multiplication in the ring of integers modulo a Fermat number. This new algorithm requires only a sequence of cyclic shifts and additions. The designs developed for this new multiplier are regular, simple, expandable, and, therefore, suitable for VLSI implementation.

  16. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane...... (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects...

  17. Functional requirements for core surveillance systems

    International Nuclear Information System (INIS)

    Andersson, T.

    2000-01-01

    Operating experience at Ringhals-2 has demonstrated the feasibility of a mixed core surveillance system comprised of fixed in-core detectors combined with the original movable detector system. A small number of fixed in-core detectors provide continuous measurement of the thermal margins while the movable detectors are used mainly at start-up to verify the expected power distribution. Reactor noise diagnostics and neural networks can further improve the monitoring system. The reliability of the movable detector system can be improved by mechanical simplification. Wear and maintenance costs are lowered if the required flux-mapping frequency is reduced. Improved computer codes make the measurement uncertainties less dependent on the number of instrumented positions. A mixed system requires new types of technical specifications. (author)

  18. THE RELATIONSHIP BETWEEN NUMBER NAMES AND NUMBER CONCEPTS

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    Different countries have different names for numbers. These names are often related in a regular way to the base-10 place value system used for writing numbers as digits. However, in several languages, this regularity breaks down (e.g., between 10 and 20), and there is limited knowledge of how th......, a second, regular set of number names is introduced in primary school. The study’s findings suggest that the regularity of number names influences the development of number concepts and creates a positive impact on the understanding of the base-10 system....

  19. Manpower requirements of quality assurance personnel for the nuclear power plants

    International Nuclear Information System (INIS)

    Aly, A.E.; El-sayed, A.A.; Shabaan, I.H.

    1987-01-01

    Basic principles for structuring and staffing of the quality assurance (Q.A.)organisation in the nuclear power plant (NPP) are presented. the manpower requirements of the Q.A.organisation in the NPP during both construction and operational stages are determined. the manpower requirements for Q.A./Q.C. functions in a NPP are found to be proportional to the number of craft workers needed to perform the required level of the construction. The Q.A./Q.C. personnel are about 15% of the total number of the craft workers required during construction

  20. The Warfighting Capacity of Air Combat Command's Numbered Air Forces

    National Research Council Canada - National Science Library

    Hanser, Lawrence

    2000-01-01

    ...) of the Air Combat Command (ACC), General Richard E. Hawley, the ACC Commander, asked if RAND could offer an analysis of the number of NAFs that were needed by ACC to meet warfighting requirements...

  1. Potential Requirement of Positron Emission Tomography Apparatuses in Asia and Latin America Including Mexico

    International Nuclear Information System (INIS)

    Watanabe, Naoyuki; Padhy, Ajit Kumar; Oku, Shinya; Sasaki, Yasuhito

    2013-01-01

    The number of positron emission tomography (PET) machines has been increasing in regions of East-, Southeast-, and South-Asia as well as in Latin America including Mexico. This study was performed to assess the potential requirement of PET machines in 19 countries which already use PET in the aforementioned regions. Data on the number of PET machines and internationally available characteristics of the restrictive countries such as the land area, the total population, the gross national income (GNI), and the average life span of inhabitants were obtained from IAEA, UN, WB, and WHO. Correlation between the number of PET machines and the characteristics of each country was evaluated. The potentially required number of PET machines, which was obtained by adjusting the number of PET machines with statistically significant, correlative characteristics of each country, standardized on the state of Japan, were compared. The number of PET machines could be significantly correlated to the GNI of a country and the average life span of its inhabitants (P < 0.05). Based on Japan, most of the countries in the regions would require considerably more PET machines. With installation of the potentially required number of PET machines in each of the countries, the number of PET machine per 10 6 population would increase by 1.1- to 12-fold, in comparison with the current situation. With regards to the potentially required number of PET machines, most of the countries in these regions may require a considerable increase of PET machines. Nevertheless, some countries in the Asia seem to require outside assistance such as international support in order to introduce PET and enhance the efficacy of their health services

  2. a Pseudo-Random Number Generator Employing Multiple RÉNYI Maps

    Science.gov (United States)

    Lui, Oi-Yan; Yuen, Ching-Hung; Wong, Kwok-Wo

    2013-11-01

    The increasing risk along with the drastic development of multimedia data transmission has raised a big concern on data security. A good pseudo-random number generator is an essential tool in cryptography. In this paper, we propose a novel pseudo-random number generator based on the controlled combination of the outputs of several digitized chaotic Rényi maps. The generated pseudo-random sequences have passed both the NIST 800-22 Revision 1a and the DIEHARD tests. Moreover, simulation results show that the proposed pseudo-random number generator requires less operation time than existing generators and is highly sensitive to the seed.

  3. From document to database: modernizing requirements management

    International Nuclear Information System (INIS)

    Giajnorio, J.; Hamilton, S.

    2007-01-01

    The creation, communication, and management of design requirements are central to the successful completion of any large engineering project, both technically and commercially. Design requirements in the Canadian nuclear industry are typically numbered lists in multiple documents created using word processing software. As an alternative, GE Nuclear Products implemented a central requirements management database for a major project at Bruce Power. The database configured the off-the-shelf software product, Telelogic Doors, to GE's requirements structure. This paper describes the advantages realized by this scheme. Examples include traceability from customer requirements through to test procedures, concurrent engineering, and automated change history. (author)

  4. 7 CFR 1940.350 - Office of Management and Budget (OMB) control number.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Office of Management and Budget (OMB) control number....350 Office of Management and Budget (OMB) control number. The collection of information requirements in this regulation has been approved by the Office of Management and Budget and has been assigned OMB...

  5. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  6. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  7. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed

    2017-02-07

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  8. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed; Javed, Tamour; Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2017-01-01

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  9. A Research on a Certain Family of Numbers and Polynomials Related to Stirling Numbers, Central Factorial Numbers, and Euler Numbers

    Directory of Open Access Journals (Sweden)

    J. Y. Kang

    2013-01-01

    Full Text Available Recently, many mathematicians have studied different kinds of the Euler, Bernoulli, and Genocchi numbers and polynomials. In this paper, we give another definition of polynomials Ũn(x. We observe an interesting phenomenon of “scattering” of the zeros of the polynomials Ũn(x in complex plane. We find out some identities and properties related to polynomials Ũn(x. Finally, we also derive interesting relations between polynomials Ũn(x, Stirling numbers, central factorial numbers, and Euler numbers.

  10. Identification of Bodies by Unique Serial Numbers on Implanted Medical Devices.

    Science.gov (United States)

    Blessing, Melissa M; Lin, Peter T

    2018-05-01

    Visual identification is the most common identification method used by medical examiners but is not always possible. Alternative methods include X-ray, fingerprint, or DNA comparison, but these methods require additional resources. Comparison of serial numbers on implanted medical devices is a rapid and definitive method of identification. To assess the practicality of using this method, we reviewed 608 consecutive forensic autopsies performed at a regional medical examiner office. Of these, 56 cases required an alternative method of identification due to decomposition (n = 35), gunshot wound (n = 9), blunt trauma (n = 6), or charring (n = 6). Of these 56 cases, eight (14.3%) were known to have an implanted medical device. Of these eight cases, five (63%) could be positively identified by comparing serial numbers. If an implanted medical device is known to be present, and medical records are available, identification by medical device serial number should be a first-line method. © 2017 American Academy of Forensic Sciences.

  11. 78 FR 3496 - Reports, Forms, and Recordkeeping Requirements

    Science.gov (United States)

    2013-01-16

    .... NHTSA-2012-0179] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... other economic costs associated with motor vehicle crashes. In 2010, 899,000 police-reported crashes involved a distracted driver. This number accounts for 17 percent of the total number of police-reported...

  12. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  13. Unpredictability and the transmission of numbers

    Science.gov (United States)

    Myers, John M.; Madjid, F. Hadi

    2016-03-01

    Curiously overlooked in physics is its dependence on the transmission of numbers. For example, the transmission of numerical clock readings is implicit in the concept of a coordinate system. The transmission of numbers and other logical distinctions is often achieved over a computer-mediated communications network in the face of an unpredictable environment. By unpredictable we mean something stronger than the spread of probabilities over given possible outcomes, namely an opening to unforeseeable possibilities. Unpredictability, until now overlooked in theoretical physics, makes the transmission of numbers interesting. Based on recent proofs within quantum theory that provide a theoretical foundation to unpredictability, here we show how regularities in physics rest on a background of channels over which numbers are transmitted. As is known to engineers of digital communications, numerical transmissions depend on coordination reminiscent of the cycle of throwing and catching by players tossing a ball back and forth. In digital communications, the players are computers, and the required coordination involves unpredictably adjusting "live clocks" that step these computers through phases of a cycle. We show how this phasing, which we call logical synchronization, constrains number-carrying networks, and, if a spacetime manifold in invoked, put "stripes" on spacetime. Via its logically synchronized channels, a network of live clocks serves as a reference against which to locate events. Such a network in any case underpins a coordinate frame, and in some cases the direct use of a network can be tailored to investigate an unpredictable environment. Examples include explorations of gravitational variations near Earth.

  14. Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections

    International Nuclear Information System (INIS)

    Markfort, D.

    1975-01-01

    Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de

  15. Straight flavor of Binary Number in Decimal Number System

    OpenAIRE

    MD. Abdul Awal Ansary; Sushanta Acharjee

    2012-01-01

    Different number systems are available on the basis of their base numbers. For instance, decimal number system is of base 10, hexadecimal number system which base is 16 and, Binary number system which base is 2 etc. Some numbers systems are easy to understand by the human being and some are easy to understand by electronics machine for instance digital computers. Computers only can understand data and instructions that are stored in binary form, though we input the data and instruction in dec...

  16. Signals of lepton number violation

    CERN Document Server

    Panella, O; Srivastava, Y N

    1999-01-01

    The production of like-sign-dileptons (LSD), in the high energy lepton number violating ( Delta L=+2) reaction, pp to 2jets+l/sup +/l /sup +/, (l=e, mu , tau ), of interest for the experiments to be performed at the forthcoming Large Hadron Collider (LHC), is reported, taking up a composite model scenario in which the exchanged virtual composite neutrino is assumed to be a Majorana particle. Numerical estimates of the corresponding signal cross-section that implement kinematical cuts needed to suppress the standard model background, are presented which show that in some regions of the parameter space the total number of LSD events is well above the background. Assuming non-observation of the LSD signal it is found that LHC would exclude a composite Majorana neutrino up to 700 GeV (if one requires 10 events for discovery). The sensitivity of LHC experiments to the parameter space is then compared to that of the next generation of neutrinoless double beta decay ( beta beta /sub 0 nu /) experiment, GENIUS, and i...

  17. General Aviation Activity and Avionics Survey. Calendar Year 1989

    Science.gov (United States)

    1989-01-01

    gasoline, 76 million gallons were 100 octane gasoline, 237 million gallons were 100 octane low lead gasoline, and 11 million gallons were automobile ...0 CQI vH 0z Cl0) c 0 0 p. 0l 2: HRM -0 0 P4 E-4 E-4E- HD a. E-0H4 4 AH H H OH) ID IDIDa) Q a4 ) cn H l OH~ a) L) UI H 0~~~ H- 44 O 0 wwHwC. 4 H U la

  18. Evaluation of Future Fuels in a High Pressure Common Rail System - Part 1 Cummins XPI

    Science.gov (United States)

    2012-10-01

    with iso -octane. The larger components on the stand, such as heaters and heat exchangers, were drained and flushed with new test fuel. Typical...Removed with Debris Unclassified 35 The plunger was washed with iso -octane and the particles collected on filter paper. Examination of the...during this, or any other, time. 27000 27500 28000 28500 29000 29500 30000 0 5 10 15 20 25 30 35 40 Ra il  Pr es su re , p si Cycle Fuel Pressure in

  19. Search for Baryon-Number Violating Ξ_{b}^{0} Oscillations.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombacher, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-11-03

    A search for baryon-number violating Ξ_{b}^{0} oscillations is performed with a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3  fb^{-1}. The baryon number at the moment of production is identified by requiring that the Ξ_{b}^{0} come from the decay of a resonance Ξ_{b}^{*-}→Ξ_{b}^{0}π^{-} or Ξ_{b}^{'-}→Ξ_{b}^{0}π^{-}, and the baryon number at the moment of decay is identified from the final state using the decays Ξ_{b}^{0}→Ξ_{c}^{+}π^{-},Ξ_{c}^{+}→pK^{-}π^{+}. No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω<0.08  ps^{-1}, where ω is the associated angular frequency.

  20. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  1. On the intriguing number 1001

    DEFF Research Database (Denmark)

    Krarup, Jakob

    2016-01-01

    Born in 1936 I was a schoolboy on the threshold of the secondary school when a knapsack-type game was played with a class mate around 1946–1947. To play the game well and fascinated by numbers in general since my early childhood, however, I realized soon the usefulness of knowing that 1001 = 7 × 11...... × 13. Today, about 70 years later, the game has been passed to some of my grandchildren who also should convince themselves that simple, arithmetic calculations do not necessarily require a pocket computer. As a side effect of the recent revival of the game I felt motivated to seek more insight...

  2. 40 CFR 86.142-90 - Records required.

    Science.gov (United States)

    2010-07-01

    ... emissions family, basic engine description (including displacement, number of cylinders, turbo-/supercharger... this measurement. (o) Additional records required for diesel vehicles. (1) Pressure and temperature of...

  3. Health Code Number (HCN) Development Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  4. Elementary number theory an algebraic approach

    CERN Document Server

    Bolker, Ethan D

    2007-01-01

    This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and the Fermat conjecture for exponents three and four. The text contains abundant numerical examples and a particularly helpful collection of exercises, many of which are small research problems requiring substantial study or outside reading. Some problems call for new proofs for theorems already covered or for inductive explorations and proofs of theorems found in later chapters.Ethan D. Bolke

  5. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diagnostic Implications of the Reactivity of Fluorescence Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Sick, V; Westbrook, C

    2008-07-14

    Measurements of fuel concentration distributions with planar laser induced fluorescence of tracer molecules that are added to a base fuel are commonly used in combustion research and development. It usually is assumed that the tracer concentration follows the parent fuel concentration if physical properties such as those determining evaporation are matched. As an example to address this general issue a computational study of combustion of biacetyl/iso-octane mixtures was performed to investigate how well the concentration of biacetyl represents the concentration of iso-octane. For premixed mixture conditions with flame propagation the spatial concentration profiles of the two species in the flame front are separated by 110 {micro}m at 1 bar and by 11 {micro}m at 10 bar. For practical applications this spatial separation is insignificantly small. However, for conditions that mimic ignition and combustion in diesel and HCCI-like operation the differences in tracer and fuel concentration can be significant, exceeding hundreds of percent. At low initial temperature biacetyl was found to be more stable whereas at higher temperature (>1000K) iso-octane is more stable. Similar findings were obtained for a multi-component fuel comprised of iso-octane, n-heptane, methylcyclohexane, and toluene. It may be assumed that similar differences can exist for other tracer/fuel combinations. Caution has therefore to be applied when interpreting PLIF measurements in homogeneous reaction conditions such as in HCCI engine studies.

  7. A public finance analysis of multiple reserve requirements

    OpenAIRE

    Espinosa-Vega, Marco; Russell, Steven

    1998-01-01

    This paper analyzes multiple reserve requirements of the type that have been imposed by a number of developing countries. We show that previous theoretical work on this topic has not succeeded in providing a social welfare rationale for the existence of multiple reserve requirements: in the basic reserve requirements model, any allocation that can be supported by a multiple-reserves regime can also be supported by a single-bond reserve requirement. We go on to present extended versions of the...

  8. Bernoulli-Carlitz and Cauchy-Carlitz numbers with Stirling-Carlitz numbers

    OpenAIRE

    Kaneko, Hajime; Komatsu, Takao

    2017-01-01

    Recently, the Cauchy-Carlitz number was defined as the counterpart of the Bernoulli-Carlitz number. Both numbers can be expressed explicitly in terms of so-called Stirling-Carlitz numbers. In this paper, we study the second analogue of Stirling-Carlitz numbers and give some general formulae, including Bernoulli and Cauchy numbers in formal power series with complex coefficients, and Bernoulli-Carlitz and Cauchy-Carlitz numbers in function fields. We also give some applications of Hasse-Teichm...

  9. Determining the number of samples required for decisions concerning remedial actions at hazardous waste sites

    International Nuclear Information System (INIS)

    Skiles, J.L.; Redfearn, A.; White, R.K.

    1991-01-01

    An important consideration for every risk analyst is how many field samples should be taken so that scientifically defensible decisions concerning the need for remediation of a hazardous waste site can be made. Since any plausible remedial action alternative must, at a minimum, satisfy the condition of protectiveness of human and environmental health, we propose a risk-based approach for determining the number of samples to take during remedial investigations rather than using more traditional approaches such as considering background levels of contamination or federal or state cleanup standards

  10. 77 FR 56212 - Federal Acquisition Regulation; Information Collection; Use of Data Universal Numbering System...

    Science.gov (United States)

    2012-09-12

    ...; Information Collection; Use of Data Universal Numbering System (DUNS) as Primary Contractor Identification... ``Information Collection 9000-0145, Use of Data Universal Numbering System (DUNS) as Primary Contractor... extension of a previously approved information collection requirement concerning use of the Data Universal...

  11. Photon number projection using non-number-resolving detectors

    International Nuclear Information System (INIS)

    Rohde, Peter P; Webb, James G; Huntington, Elanor H; Ralph, Timothy C

    2007-01-01

    Number-resolving photo-detection is necessary for many quantum optics experiments, especially in the application of entangled state preparation. Several schemes have been proposed for approximating number-resolving photo-detection using non-number-resolving detectors. Such techniques include multi-port detection and time-division multiplexing. We provide a detailed analysis and comparison of different number-resolving detection schemes, with a view to creating a useful reference for experimentalists. We show that the ideal architecture for projective measurements is a function of the detector's dark count and efficiency parameters. We also describe a process for selecting an appropriate topology given actual experimental component parameters

  12. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  13. High Reynolds number flows using liquid and gaseous helium

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium

  14. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  15. Army Research Office and Air Force Office of Scientific Research Contractors’ Meeting in Chemical Propulsion Held in Boulder, Colorado on June 11-13, 2007

    Science.gov (United States)

    2007-06-01

    Hanson, "Methyl Concentration Time Histories during iso -Octane and n-Heptane Oxidation," Proceedings of the Combustion Institute 31, 321-328, 2007. T...1000 -700 -400 -100 200 500 800 Temperature(K): 300 700 1100 1500 1900 2300 27000 . A l/ 0.1 0.60.0 OWN 00,o2 a3 0 0 . . . o’.4 0 0.1 02 o0. 0.4 x(m...reproduce extinction and autoignition characteristics of JP-8. A surrogate made up of n-decane (60 %) and iso -octane (40 %) by liquid volume best

  16. Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    DEFF Research Database (Denmark)

    Fog, Agner

    2015-01-01

    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways...

  17. Baryon number violation, baryogenesis, and defects with extra dimensions

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2002-01-01

    In generic models for grand unified theories (GUT), various types of baryon-number-violating processes are expected when quarks and leptons propagate in the background of GUT strings. On the other hand, in models with large extra dimensions, the baryon number violation in the background of a string is not trivial because it must depend on the mechanism of the proton stabilization. In this paper, we argue that cosmic strings in models with extra dimensions can enhance the baryon number violation to a phenomenologically interesting level, if the proton decay is suppressed by the mechanism of localized wave functions. We also make some comments on baryogenesis mediated by cosmological defects. We show that at least two scenarios will be successful in this direction. One is the scenario of leptogenesis where the required lepton number conversion is mediated by cosmic strings, and the other is the baryogenesis from the decaying cosmological domain wall. Both scenarios are new and have not been discussed in the past

  18. 12 CFR 27.1 - Scope and OMB control number.

    Science.gov (United States)

    2010-01-01

    ... Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM § 27.1 Scope and OMB control number. (a) Scope. This part applies to the activities of national... information requirements contained in this part were approved by the Office of Management and Budget under OMB...

  19. Quantum random number generation for loophole-free Bell tests

    Science.gov (United States)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  20. Principles of the Machine Arithmetic of Complex Numbers,

    Science.gov (United States)

    1981-03-31

    c, d 0). We have h-- , -- tk2 k, .(2.1) Key: (1). and. (2). ts.ch. Hence cx dy = k, p1, (2.2) -dx I cy=h2 p ,• (2.3) DOC 81024003 PAGE The joint...positional code of a number and do not require in connection with this aiditional procedures. DOC -810241007 PAGE Deficiency /lack is the fact that range K