A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.
Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping
2017-10-01
The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.
Moon, Suk-Hee; Seo, Joobeom; Park, Ki-Min
2017-11-01
The asymmetric unit of the title compound, [Co(NO 3 ) 2 (C 12 H 12 N 2 S) 2 ] n , contains a bis-(pyridin-3-ylmeth-yl)sulfane ( L ) ligand, an NO 3 - anion and half a Co II cation, which lies on an inversion centre. The Co II cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the Co II centre adopts a distorted octa-hedral geometry. Two symmetry-related L ligands are connected by two symmetry-related Co II cations, forming a 20-membered cyclic dimer, in which the Co II atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing Co II atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Inter-molecular C-H⋯π (H⋯ring centroid = 2.89 Å) inter-actions between one pair of corresponding L ligands and C-H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by inter-molecular π-π stacking inter-actions [centroid-to-centroid distance = 3.8859 (14) Å] and C-H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C-H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supra-molecular architecture.
cis-Difluoridobis(1,10-phenanthroline)chromium(III) perchlorate monohydrate
DEFF Research Database (Denmark)
Birk, Torben; Bendix, Jesper; Weihe, Högni
2008-01-01
The title complex, [CrF(2)(C(12)H(8)N(2))(2)]ClO(4)·H(2)O, displays a slightly distorted octa-hedral coordination geometry around the central chromium(III) ion. The Cr environment is composed of a cis arrangement of two 1,10-phenanthroline [average Cr(III)-N = 2.0726 (10) Å] and two fluoride [ave...
Stabilizing embedology: Geometry-preserving delay-coordinate maps
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
Observations on the Darboux coordinates for rigid special geometry
Ferrara, Sergio; Ferrara, Sergio; Macia, Oscar
2006-01-01
We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\\Lambda,q_\\Lambda), I=1,...,2n$. The central role of the real $2n\\times 2n$ matrix $M(\\Re \\mathcal{F},\\Im \\mathcal{F})$, where $\\mathcal{F} = \\partial_\\Lambda\\partial_\\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\\Omega M=\\Omega$ with $\\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\\frac{\\partial^2 S}{\\partial P^I\\partial P^J}$ of a certain hamiltonian real function $S(P)$, which also provides the metric of the special K\\"ahler manifold. When $S(P)=S(U+\\bar U)$ is regarded as a "K\\"ahler potential'' of a complex manifold with coordinates $U^I=\\frac12(P^I+iZ^I)$, then it provides a K\\"ahler metric of an hyperk\\"ahler manifold which describes the hypermultiplet geometry obtained by...
Directory of Open Access Journals (Sweden)
Mei Guo
2018-01-01
Full Text Available The syntheses, structural characterization, and magnetic properties of three lanthanide complexes with formulas [Ln(L13] (Ln = Dy (1Dy; Er (1Er; and [Dy(L22] (2Dy were reported. Complexes 1Dy and 1Er are isostructural with the metal ion in distorted trigonal-prismatic coordination geometry, but exhibit distinct magnetic properties due to the different shapes of electron density for DyIII (oblate and ErIII (prolate ions. Complex 1Dy shows obvious SMM behavior under a zero direct current (dc field with an effective energy barrier of 31.4 K, while complex 1Er only features SMM behavior under a 400 Oe external field with an effective energy barrier of 23.96 K. In stark contrast, complex 2Dy with the octahedral geometry only exhibits the frequency dependence of alternating current (ac susceptibility signals without χ″ peaks under a zero dc field.
Tetraammine(carbonato-κ(2) O,O')cobalt(III) perchlorate.
Mohan, Singaravelu Chandra; Jenniefer, Samson Jegan; Muthiah, Packianathan Thomas; Jothivenkatachalam, Kandasamy
2013-01-01
In the title complex, [Co(CO3)(NH3)4]ClO4, both the cation and anion lie on a mirror plane. The Co(III) ion is coordinated by two NH3 ligands and a chelating carbonato ligand in the equatorial sites and by two NH3 groups in the axial sites, forming a distorted octa-hedral geometry. In the crystal, N-H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.
(Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.
Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan
2009-12-12
The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Lossless Geometry Compression Through Changing 3D Coordinates into 1D
Directory of Open Access Journals (Sweden)
Yongkui Liu
2013-08-01
Full Text Available A method of lossless geometry compression on the coordinates of the vertexes for grid model is presented. First, the 3D coordinates are pre-processed to be transformed into a specific form. Then these 3D coordinates are changed into 1D data by making the three coordinates of a vertex represented by only a position number, which is made of a large integer. To minimize the integers, they are sorted and the differences between two adjacent vertexes are stored in a vertex table. In addition to the technique of geometry compression on coordinates, an improved method for storing the compressed topological data in a facet table is proposed to make the method more complete and efficient. The experimental results show that the proposed method has a better compression rate than the latest method of lossless geometry compression, the Isenburg-Lindstrom-Snoeyink method. The theoretical analysis and the experiment results also show that the important decompression time of the new method is short. Though the new method is explained in the case of a triangular grid, it can also be used in other forms of grid model.
Zhang, Yuan-Zhu; Gao, Song; Sato, Osamu
2015-01-14
An azido-bridged chair-like decanuclear cluster: [Co(II)10(bzp)8(Metz)2(N3)18]·4MeOH·3H2O (1, bzp = 2-benzoylpyridine and HMetz = 5-methyl-1H-tetrazole) was prepared with in situ tetrazolate anions as templates in a sealed system. 1 containing both octahedral and tetrahedral Co(II) ions exhibited slow relaxation of magnetization with an effective barrier of 26 K under an applied dc field of 1 kOe.
Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S
2008-10-18
In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Sossinsky, A B
2012-01-01
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...
Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher
2018-03-03
Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.
Indian Academy of Sciences (India)
. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...
Prasolov, V V
2015-01-01
This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.
A co-ordinate system for reactor physics calculations in hexagonal geometry
International Nuclear Information System (INIS)
Burte, D.P.
1990-01-01
A method for generating all the geometric information concerning typical reactor physics calculations for a basically hexagonal reactor core or its sector involving any of the possible symmetries is presented. The geometrically allowed symmetries for regular hexagons are discussed. The approach is based on the choice of a suitable co-ordinate system, viz. one using three coplanar (including one redundant) axes, each at 120 0 with its cyclically preceding one. A code named KEKULE' is developed for a 2-D, finite difference, one-group diffusion analysis of a hexagonal core using the approach. It can cater to a full hexagonal core as well as to any symmetric sectorial part of it. The main feature of the code is that the input concerning geometry is a bare minimum. It is hoped that the approach presented will be useful even for the calculations for hexagonal fuel assemblies. (author)
The flux-coordinate independent approach applied to X-point geometries
International Nuclear Information System (INIS)
Hariri, F.; Hill, P.; Ottaviani, M.; Sarazin, Y.
2014-01-01
A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
Bis(O-n-butyl dithio-carbonato-κS,S')bis-(pyridine-κN)manganese(II).
Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin
2011-08-01
The structure of the title manganese complex, [Mn(C(5)H(9)OS(2))(2)(C(5)H(5)N)(2)] or [Mn(S(2)CO-n-Bu)(2)(C(5)H(5)N)(2)], consists of discrete monomeric entities with Mn(2+) ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N(2)S(4) donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa-hedral geometry are caused by the bite angle of the bidentate κ(2)-S(2)CO-n-Bu ligands [69.48 (1)°]. The O(CH(2))(3)(CH(3)) chains of the O-n-butyl dithio-carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2).
[1,3-Bis(diphenyl-phosphino)pentane-κP,P']tetra-carbonyl-chromium(0).
Shawkataly, Omar Bin; Thangadurai, Daniel T; Pankhi, Mohd Aslam A; Shahinoor Dulal Islam, S M; Fun, Hoong-Kun
2009-02-04
In the title compound, [Cr(C(29)H(30)P(2))(CO)(4)], the Cr atom is octa-hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr-P and Cr-C bond lengths are 2.377 and 1.865 Å, respectively.
Energy Technology Data Exchange (ETDEWEB)
Akbar, M.M., E-mail: akbar@utdallas.edu
2017-06-10
It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case). The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.
International Nuclear Information System (INIS)
Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.
2004-01-01
X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2 Ge 0.8 Cr 0.2 O 4 , Ba 2 Ge 0.1 Cr 0.9 O 4 , Sr 2 CrO 4 , Ca 2 (PO 4 ) x (CrO 4 ) 1-x Cl (x=0.25,0.5), Ca 5 (CrO 4 ) 3 Cl, CrO 3 , the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3 , CrF 3 , Cr 2 O 3 , KCr(SO 4 ) 2 · 12H 2 O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code
Energy Technology Data Exchange (ETDEWEB)
Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D
2004-05-10
X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca{sub 2}Ge{sub 0.8}Cr{sub 0.2}O{sub 4}, Ba{sub 2}Ge{sub 0.1}Cr{sub 0.9}O{sub 4}, Sr{sub 2}CrO{sub 4}, Ca{sub 2}(PO{sub 4}){sub x}(CrO{sub 4}){sub 1-x}Cl (x=0.25,0.5), Ca{sub 5}(CrO{sub 4}){sub 3}Cl, CrO{sub 3}, the octahedrally coordinated compounds Cr(II)-acetate, CrCl{sub 3}, CrF{sub 3}, Cr{sub 2}O{sub 3}, KCr(SO{sub 4}){sub 2} {center_dot} 12H{sub 2}O, CrO{sub 2} and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.
Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.
2004-05-01
X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2Ge 0.8Cr 0.2O 4, Ba 2Ge 0.1Cr 0.9O 4, Sr 2CrO 4, Ca 2(PO 4) x(CrO 4) 1- xCl ( x=0.25,0.5), Ca 5(CrO 4) 3Cl, CrO 3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3, CrF 3, Cr 2O 3, KCr(SO 4) 2 · 12H 2O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2018-05-01
As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Une, Tsutomu.
1983-05-01
The geometry of the self-consistent collective-coordinate (SCC) method formulated within the framework of the time-dependent Hartree-Fock (TDHF) theory is investigated by associating the variational parameters with a symplectic manifold (a TDHF manifold). With the use of a canonical-variables parametrization, it is shown that the TDHF equation is equivalent to the canonical equations of motion in classical mechanics in the TDHF manifold. This enables us to investigate geometrical structure of the SCC method in the language of the classical mechanics. The SCC method turns out to give a prescription how to dynamically extract a ''maximally-decoupled'' collective submanifold (hypersurface) out of the TDHF manifold, in such a way that a certain kind of trajectories corresponding to the large-amplitude collective motion under consideration can be reproduced on the hypersurface as precisely as possible. The stability of the hypersurface at each point on it is investigated, in order to see whether the hypersurface obtained by the SCC method is really an approximate integral surface in the TDHF manifold or not. (author)
Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.
2013-04-01
An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.
Bean, Jonathan F.; Clarkson, Robert B.; Helm, Lothar; Moriggi, Loïck; Sherry, A. Dean
2009-01-01
Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd3+ ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd3+, would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties. PMID:18283704
Bis(O-ethyl dithio-carbonato-κS,S')bis-(pyridine-3-carbonitrile-κN)nickel(II).
Kapoor, Sanjay; Kour, Ramandeep; Sachar, Renu; Kant, Rajni; Gupta, Vivek K; Kapoor, Kamini
2012-01-01
The Ni(2+) ion in the title complex, [Ni(C(3)H(5)OS(2))(2)(C(6)H(4)N(2))(2)], is in a strongly distorted octa-hedral coordination environment formed by an N(2)S(4) donor set, with the Ni(2+) ion located on a centre of inversion. In the crystal, weak C-H⋯S and C-H⋯N inter-actions are observed.
DEFF Research Database (Denmark)
Krauss, M; Olsen, Lars; Antony, J
2002-01-01
Models of the metal ion binding sites of native ZnZn and of cadmium-substituted ZnCd and CdCd phosphotriesterase, including full amino acid side chains, were geometry optimized with quantum mechanical methods, with effective fragment potentials (EFP) representing the protein environment surroundi...... to the Od1 of the carboxylate of the first-shell aspartate designated M 1, but the energy difference between Cd1Zn2 and the lowest energy Zn1Cd2 structure is only about 2 kcal/mol and decreasing with the addition of water molecules. The Zn1Cd2 arrangement is found experimentally....
Kan, Jinglan; Wang, Hailong; Sun, Wei; Cao, Wei; Tao, Jun; Jiang, Jianzhuang
2013-08-05
Employment of the raise-by-one step method starting from M(TClPP)(acac) (acac = monoanion of acetylacetone) and [Pc(OPh)8]M'[Pc(OPh)8] led to the isolation and free modulation of the two rare-earth ions in the series of four mixed tetrapyrrole dysprosium sandwich complexes {(TClPP)M[Pc(OPh)8]M'[Pc(OPh)8]} [1-4; TClPP = dianion of meso-tetrakis(4-chlorophenyl)porphyrin; Pc(OPh)8 = dianion of 2,3,9,10,16,17,23,24-octa(phenoxyl)phthalocyanine; M-M' = Dy-Dy, Y-Dy, Dy-Y, and Y-Y]. Single-crystal X-ray diffraction analysis reveals different octacoordination geometries for the two metal ions in terms of the twist angle (defined as the rotation angle of one coordination square away from the eclipsed conformation with the other) between the two neighboring tetrapyrrole rings for the three dysprosium-containing isostructural triple-decker compounds, with the metal ion locating between an inner phthalocyanine ligand and an outer porphyrin ligand with a twist angle of 9.64-9.90° and the one between two phthalocyanine ligands of 25.12-25.30°. Systematic and comparative studies over the magnetic properties reveal magnetic-field-induced single-molecule magnet (SMM), SMM, and non-SMM nature for 1-3, respectively, indicating the dominant effect of the coordination geometry of the spin carrier, instead of the f-f interaction, on the magnetic properties. The present result will be helpful for the future design and synthesis of tetrapyrrole lanthanide SMMs with sandwich molecular structures.
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk
2015-03-01
Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
International Nuclear Information System (INIS)
Strominger, A.
1990-01-01
A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)
Developments in special geometry
International Nuclear Information System (INIS)
Mohaupt, Thomas; Vaughan, Owen
2012-01-01
We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.
cis-Aquabis(2,2'-bipyridine-κ2N,N')-fluoridochromium(III) bis(perchlorate) dihydrate
DEFF Research Database (Denmark)
Birk, Torben; Bendix, Jesper
2010-01-01
The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(2)·2H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa-hedral co......-hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol-ecules, the coordinated F atom and the perchlorate anions....
cis-Bis(O-methyl-dithio-carbonato-κ(2) S,S')bis-(tri-phenyl-phosphane-κP)ruthenium(II).
Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David
2013-01-01
In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the Ru(II) atom is in a distorted octa-hedral coordination by two xanthate anions (CH3OCS2) and two tri-phenyl-phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the Ru(II) atom with two slightly different Ru-S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C-H⋯O and C-H⋯π inter-actions.
Stephens, Susanna L; Bittner, Dror M; Mikhailov, Victor A; Mizukami, Wataru; Tew, David P; Walker, Nicholas R; Legon, Anthony C
2014-10-06
The molecular geometries of isolated complexes in which a single molecule of C2H4 or C2H2 is bound to CuCl have been determined through pure rotational spectroscopy and ab-initio calculations. The C2H2···CuCl and C2H4···CuCl complexes are generated through laser vaporization of a copper rod in the presence of a gas sample undergoing supersonic expansion and containing C2H2 (or C2H4), CCl4, and Ar. Results are presented for five isotopologues of C2H2···CuCl and six isotopologues of C2H4···CuCl. Both of these complexes adopt C(2v), T-shaped geometries in which the hydrocarbon binds to the copper atom through its π electrons such that the metal is equidistant from all H atoms. The linear and planar geometries of free C2H2 and C2H4, respectively, are observed to distort significantly on attachment to the CuCl unit, and the various changes are quantified. The ∠(*-C-H) parameter in C2H2 (where * indicates the midpoint of the C≡C bond) is measured to be 192.4(7)° in the r0 geometry of the complex representing a significant change from the linear geometry of the free molecule. This distortion of the linear geometry of C2H2 involves the hydrogen atoms moving away from the copper atom within the complex. Ab-initio calculations at the CCSD(T)(F12*)/AVTZ level predict a dihedral ∠(HCCCu) angle of 96.05° in C2H4···CuCl, and the experimental results are consistent with such a distortion from planarity. The bonds connecting the carbon atoms within each of C2H2 and C2H4, respectively, extend by 0.027 and 0.029 Å relative to the bond lengths in the isolated molecules. Force constants, k(σ), and nuclear quadrupole coupling constants, χ(aa)(Cu), [χ(bb)(Cu) - χ(cc)(Cu)], χ(aa)(Cl), and [χ(bb)(Cl) - χ(cc)(Cl)], are independently determined for all isotopologues of C2H2···CuCl studied and for four isotopologues of C2H4···CuCl.
Directory of Open Access Journals (Sweden)
Emílio Borges
2007-04-01
Full Text Available A simple method to obtain molecular Cartesian coordinates as a function of vibrational normal modes is presented in this work. The method does not require the definition of special matrices, like the F and G of Wilson, neither of group theory. The Eckart's conditions together with the diagonalization of kinetic and potential energy are the only required expressions. This makes the present approach appropriate to be used as a preliminary study for more advanced concepts concerning vibrational analysis. Examples are given for diatomic and triatomic molecules.
Iversen, Birger
1992-01-01
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
Hu, Zhiyong; Zhao, Meng; Su, Jian; Xu, Shasha; Hu, Lei; Liu, Hui; Zhang, Qiong; Zhang, Jun; Wu, Jieying; Tian, Yupeng
2018-02-01
Three novel coordination polymers, [Zn(μ2-HTCA)(Phen)]n (1), {[Cd(μ3-HTCA)(Phen)]·2H2O}n (2), [Mn(μ2-HTCA)(Phen)(H2O)]n (3) were prepared by hydrothermal synthesis from the 4, 4', 4''-nitrilotribenzoicacid (H3TCA) and 1, 10-phenanthroline monohydrate (Phen) with different transition metal salts, which were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray diffraction and thermogravimetric analysis. The photophysical properties of the complexes were investigated by solid-state diffuse reflectance spectra, photoluminescent properties, lifetime and quantum yield. For these complexes, it was found that the band gaps follow the order: 3 ＜ 2 ＜ 1 ＜ 2.80 eV, fluorescence intensity order: 1 ＞ H3TCA ＞ 2 ＞ 3; quantum yield order: H3TCA ＞ 1 ＞ 2 ＞ 3; while the lifetime order: 1 ＞ 2 ＞ H3TCA ＞ 3.
Ruthenium(II) carbonyl compounds with the 4'-chloro-2,2':6',2''-terpyridine ligand.
Tatikonda, Rajendhraprasad; Haukka, Matti
2017-04-01
Two ruthenium carbonyl complexes with the 4'-chloro-2,2':6',2''-terpyridine ligand (tpy-Cl, C 15 H 10 ClN 3 ), i.e. [RuCl(tpy-Cl)(CO) 2 ][RuCl 3 (CO) 3 ] (I) [systematic name: cis -di-carbonyl-chlorido(4'-chloro-2,2':6',2''-terpyridine-κ 3 N )ruthenium(II) fac -tricarbonyltri-chlorido-ruthenate(II)], and [RuCl 2 (tpy-Cl)(CO) 2 ] (II) [ cis -dicarbonyl- trans -di-chlorido(4'-chloro-2,2':6',2''-terpyridine-κ 2 N 1 , N 1' )ruthenium(II)], were synthesized and characterized by single-crystal X-ray diffraction. The Ru II atoms in both centrosymmetric structures (I) and (II) display similar, slightly distorted octa-hedral coordination spheres. The coordination sphere in the complex cation in compound (I) is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octa-hedral [Ru(CO) 3 Cl 3 ] - counter-anion. In the neutral compound (II), the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the Ru II atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I) and (II), weak C-H⋯Cl inter-actions are observed.
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
International Nuclear Information System (INIS)
Robinson, I.; Trautman, A.
1988-01-01
The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem
Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes
2014-01-01
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Kemnitz, Arnfried
Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
A Note on the Dipole Coordinates
Kageyama, Akira; Sugiyama, Tooru; Watanabe, Kunihiko; Sato, Tetsuya
2004-01-01
A couple of orthogonal coordinates for dipole geometry are proposed for numerical simulations of plasma geophysics in the Earth's dipole magnetic field. These coordinates have proper metric profiles along field lines in contrast to the standard dipole coordinate system that is commonly used in analytical studies for dipole geometry.
International Nuclear Information System (INIS)
Jonsson, Rickard; Westman, Hans
2006-01-01
We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity
Berger, Marcel
2010-01-01
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,
Connes, Alain
1994-01-01
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat
Indian Academy of Sciences (India)
mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Functional integration over geometries
International Nuclear Information System (INIS)
Mottola, E.
1995-01-01
The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Geometry The Language of Space and Form (Revised Edition)
Tabak, John
2011-01-01
Geometry, Revised Edition describes geometry in antiquity. Beginning with a brief description of some of the geometry that preceded the geometry of the Greeks, it takes up the story of geometry during the European Renaissance as well as the significant mathematical progress in other areas of the world. It also discusses the analytic geometry of Ren Descartes and Pierre Fermat, the alternative coordinate systems invented by Isaac Newton, and the solid geometry of Leonhard Euler. Also included is an overview of the geometry of one of the most successful mathematicians of the 19th century, Bernha
A vector space approach to geometry
Hausner, Melvin
2010-01-01
The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.
Modern differential geometry for physicists
Isham, C J
1989-01-01
These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Planetary Image Geometry Library
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Optimization of strong and weak coordinates
Swart, M.; Bickelhaupt, F.M.
2006-01-01
We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation
(Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.
Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria
2011-04-01
In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
International Nuclear Information System (INIS)
Gurevich, L.Eh.; Gliner, Eh.B.
1978-01-01
Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding
Luminescent lanthanide coordination polymers
Energy Technology Data Exchange (ETDEWEB)
Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.
1999-12-13
One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.
Noncommutative geometry and twisted conformal symmetry
International Nuclear Information System (INIS)
Matlock, Peter
2005-01-01
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra
Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.
Wang, Jian-Fei; Lin, Jian-Li
2010-09-30
In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
International Nuclear Information System (INIS)
Sloane, Peter
2007-01-01
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Energy Technology Data Exchange (ETDEWEB)
Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)
2007-09-15
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Foundations of arithmetic differential geometry
Buium, Alexandru
2017-01-01
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Arithmetic noncommutative geometry
Marcolli, Matilde
2005-01-01
Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...
Czech Academy of Sciences Publication Activity Database
Steiner, Jakub
-, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf
Czech Academy of Sciences Publication Activity Database
Steiner, Jakub
2008-01-01
Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008
Amin, Elizabeth A; Truhlar, Donald G
2008-01-01
We present nonrelativistic and relativistic benchmark databases (obtained by coupled cluster calculations) of 10 Zn-ligand bond distances, 8 dipole moments, and 12 bond dissociation energies in Zn coordination compounds with O, S, NH3, H2O, OH, SCH3, and H ligands. These are used to test the predictions of 39 density functionals, Hartree-Fock theory, and seven more approximate molecular orbital theories. In the nonrelativisitic case, the M05-2X, B97-2, and mPW1PW functionals emerge as the most accurate ones for this test data, with unitless balanced mean unsigned errors (BMUEs) of 0.33, 0.38, and 0.43, respectively. The best local functionals (i.e., functionals with no Hartree-Fock exchange) are M06-L and τ-HCTH with BMUEs of 0.54 and 0.60, respectively. The popular B3LYP functional has a BMUE of 0.51, only slightly better than the value of 0.54 for the best local functional, which is less expensive. Hartree-Fock theory itself has a BMUE of 1.22. The M05-2X functional has a mean unsigned error of 0.008 Å for bond lengths, 0.19 D for dipole moments, and 4.30 kcal/mol for bond energies. The X3LYP functional has a smaller mean unsigned error (0.007 Å) for bond lengths but has mean unsigned errors of 0.43 D for dipole moments and 5.6 kcal/mol for bond energies. The M06-2X functional has a smaller mean unsigned error (3.3 kcal/mol) for bond energies but has mean unsigned errors of 0.017 Å for bond lengths and 0.37 D for dipole moments. The best of the semiempirical molecular orbital theories are PM3 and PM6, with BMUEs of 1.96 and 2.02, respectively. The ten most accurate functionals from the nonrelativistic benchmark analysis are then tested in relativistic calculations against new benchmarks obtained with coupled-cluster calculations and a relativistic effective core potential, resulting in M05-2X (BMUE = 0.895), PW6B95 (BMUE = 0.90), and B97-2 (BMUE = 0.93) as the top three functionals. We find significant relativistic effects (∼0.01 Å in bond lengths, ∼0
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
A. Ball
Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-07-15
While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics.
DEFF Research Database (Denmark)
Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel
2013-01-01
Public procurement for innovation is a matter of using public demand to trigger innovation. Empirical studies have demonstrated that demand-based policy instruments can be considered to be a powerful tool in stimulating innovative processes among existing firms; however, the existing literature has...... not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how...
International Nuclear Information System (INIS)
Anon.
1986-01-01
While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics
Geometry of multihadron production
Energy Technology Data Exchange (ETDEWEB)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Geometry of multihadron production
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Methods of information geometry
Amari, Shun-Ichi
2000-01-01
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...
International Nuclear Information System (INIS)
Grotz, Andreas
2011-01-01
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
A. Ball
2010-01-01
Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...
Geometry on the space of geometries
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1988-06-01
We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs
Equilibrium between Different Coordination Geometries in Oxidovanadium(IV) Complexes
Ugone, Valeria; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele
2015-01-01
In this laboratory activity, the equilibrium between square pyramidal and octahedral V(IV)O[superscript 2+] complexes is described. We propose a set of experiments to synthesize and characterize two types of V(IV)O[superscript 2+] complexes. The experiment allows great flexibility and may be effectively used at a variety of levels and the activity…
International Nuclear Information System (INIS)
Gervais, J.L.
1993-01-01
By analyzing the extrinsic geometry of two dimensional surfaces chirally embedded in C P n (the C P n W-surface), we give exact treatments in various aspects of the classical W-geometry in the conformal gauge: First, the basis of tangent and normal vectors are defined at regular points of the surface, such that their infinitesimal displacements are given by connections which coincide with the vector potentials of the (conformal) A n -Toda Lax pair. Since the latter is known to be intrinsically related with the W symmetries, this gives the geometrical meaning of the A n W-Algebra. Second, W-surfaces are put in one-to-one correspondence with solutions of the conformally-reduced WZNW model, which is such that the Toda fields give the Cartan part in the Gauss decomposition of its solutions. Third, the additional variables of the Toda hierarchy are used as coordinates of C P n . This allows us to show that W-transformations may be extended as particular diffeomorphisms of this target-space. Higher-dimensional generalizations of the WZNW equations are derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth, singular points are studied from a global viewpoint, using our earlier observation that W-surfaces may be regarded as instantons. The global indices of the W-geometry, which are written in terms of the Toda fields, are shown to be the instanton numbers for associated mappings of W-surfaces into the Grassmannians. The relation with the singularities of W-surface is derived by combining the Toda equations with the Gauss-Bonnet theorem. (orig.)
Geometry of curves and surfaces with Maple
Rovenski, Vladimir
2000-01-01
This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Roe, John
2003-01-01
Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Tabachnikov, Serge
2005-01-01
Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio
2013-01-01
We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.
International Nuclear Information System (INIS)
Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J
2014-01-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Software Geometry in Simulations
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
Christophe Delaere
2013-01-01
The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...
C. Delaere
2013-01-01
Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...
Global aspects of complex geometry
Catanese, Fabrizio; Huckleberry, Alan T
2006-01-01
Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.
Definition of treatment geometry in radiation therapy
International Nuclear Information System (INIS)
Aaltonen, P.
1996-01-01
When accurate systems for quality assurance and treatment optimization are employed, a precise system for fixation and dosimetric and portal verification are as important as a continued and standardized code of practice for dosimetry and patient follow-up, including registration of tumour responses and acute and late normal tissue reactions. To improve the accuracy of existing dose response relations in order to improve future therapy the treatment geometry and dose delivery concepts have to be accurately defined and uniformly employed. A Nordic working group was set up in 1991 (by Nordic Association of Clinica Physics) to standardize the concepts and quantities used during the whole radiotherapy process in the Nordic countries. Now the group is finalizing its report ''Specification of Dose Delivery in Radiation Therapy''. The report emphasizes that the treatment geometry shall be consistent with the geometry used during the diagnostic work up. The patient fixation is of importance early in the diagnostic phase to ensure that the same reference points and patients position will be used both during the diagnostic work up, simulation and treatment execution. Reference Coordinate System of the patient is a concept based on defined anatomic reference points. This Patient Reference System is a local system which has validity for the tissues, organs and volumes defined during radiotherapy. The reference points of the Patient Reference System should in turn be used for beam set-up. The treatment geometry is then defined by using different concepts describing tissues which are mobile in the Patient Reference System, and finally, volumes which are fixed in this coordinate system. A Set-up Margin has to be considered for movements of the volumes defined in the Reference Coordinate System of the Patient in relation to the radiation beam. The Set-up Margin is dependent on the treatment technique and it is needed in the treatment planning procedure to ensure that the prescribed
Definition of treatment geometry in radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, P [Finnish Centre for Radiation and Nuclear Safety (STUK), Helsinki (Finland)
1996-08-01
When accurate systems for quality assurance and treatment optimization are employed, a precise system for fixation and dosimetric and portal verification are as important as a continued and standardized code of practice for dosimetry and patient follow-up, including registration of tumour responses and acute and late normal tissue reactions. To improve the accuracy of existing dose response relations in order to improve future therapy the treatment geometry and dose delivery concepts have to be accurately defined and uniformly employed. A Nordic working group was set up in 1991 to standardize the concepts and quantities used during the whole radiotherapy process in the Nordic countries. Now the group is finalizing its report ``Specification of Dose Delivery in Radiation Therapy``. The report emphasizes that the treatment geometry shall be consistent with the geometry used during the diagnostic work up. The patient fixation is of importance early in the diagnostic phase to ensure that the same reference points and patients position will be used both during the diagnostic work up, simulation and treatment execution. Reference Coordinate System of the patient is a concept based on defined anatomic reference points. This Patient Reference System is a local system which has validity for the tissues, organs and volumes defined during radiotherapy. The reference points of the Patient Reference System should in turn be used for beam set-up. The treatment geometry is then defined by using different concepts describing tissues which are mobile in the Patient Reference System, and finally, volumes which are fixed in this coordinate system. A Set-up Margin has to be considered for movements of the volumes defined in the Reference Coordinate System of the Patient in relation to the radiation beam. The Set-up Margin is dependent on the treatment technique and it is needed in the treatment planning procedure to ensure that the prescribed dose to the Target Volume is delivered.
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
Computational synthetic geometry
Bokowski, Jürgen
1989-01-01
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Arbitrariness of geometry and the aether
International Nuclear Information System (INIS)
Browne, P.F.
1976-01-01
As emphasized by Milne, an observer ultimately depends on the transmission and reception of light signals for the measurement of natural lengths and periods remote from his world point. The laws of geometry which are obeyed when these lengths and periods are plotted on a space--time depend, inevitably, on assumptions concerning the dependence of light velocity on the spatial and temporal coordinates. A convention regarding light velocity fixes the geometry, and conversely. However, the convention of flat space--time implies nonintegrable ''radar distances'' unless the concept of coordinate-dependent units of measure is employed. Einstein's space--time has the advantage of admitting a special reference system R with respect to which the aether fluid is at rest and the total gravitational field vanishes. A holonomic transformation from R to another reference system R belonging to the same space--time introduces a nonpermanent gravitational field and holonomic aether motion. A nonholonomic transformation from R to a reference system R* which belongs to a different space--time introduces a permanent gravitational field and nonholonomic aether motion. The arbitrariness of geometry is expressed by extending covariance to include the latter transformation. By means of a nonholonomic (or units) transformation it is possible, with the aid of the principle of equivalence, to obtain the Schwarzschild and de Sitter metrics from the Newtonian fields that would arise in a flat space--time description. Some light is thrown on the interpretation of cosmological models
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Multiplicity in difference geometry
Tomasic, Ivan
2011-01-01
We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.
Spacetime and Euclidean geometry
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
International Nuclear Information System (INIS)
Konopleva, N.P.
2009-01-01
The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...
Diophantine geometry an introduction
Hindry, Marc
2000-01-01
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
International Nuclear Information System (INIS)
Ezin, J.P.
1988-08-01
The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs
Motivic amplitudes and cluster coordinates
International Nuclear Information System (INIS)
Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.
2014-01-01
In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity
Simultaneous calibration phantom commission and geometry calibration in cone beam CT
Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong
2017-09-01
Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.
Special Geometry and Automorphic Forms
Berglund, P; Wyllard, N; Berglund, Per; Henningson, Mans; Wyllard, Niclas
1997-01-01
We consider special geometry of the vector multiplet moduli space in compactifications of the heterotic string on $K3 \\times T^2$ or the type IIA string on $K3$-fibered Calabi-Yau threefolds. In particular, we construct a modified dilaton that is invariant under $SO(2, n; Z)$ T-duality transformations at the non-perturbative level and regular everywhere on the moduli space. The invariant dilaton, together with a set of other coordinates that transform covariantly under $SO(2, n; Z)$, parameterize the moduli space. The construction involves a meromorphic automorphic function of $SO(2, n; Z)$, that also depends on the invariant dilaton. In the weak coupling limit, the divisor of this automorphic form is an integer linear combination of the rational quadratic divisors where the gauge symmetry is enhanced classically. We also show how the non-perturbative prepotential can be expressed in terms of meromorphic automorphic forms, by expanding a T-duality invariant quantity both in terms of the standard special coord...
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Multilevel geometry optimization
Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.
2000-02-01
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.
Multilevel geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)
2000-02-15
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.
Krauss, Lawrence M.; Turner, Michael S.
1999-01-01
The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
International Nuclear Information System (INIS)
Lepora, N.; Kibble, T.
1999-01-01
We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)
International Nuclear Information System (INIS)
Hull, C.M.
1993-01-01
The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)
Integral geometry and valuations
Solanes, Gil
2014-01-01
Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...
CBM RICH geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration
2016-07-01
The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.
Introducing geometry concept based on history of Islamic geometry
Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.
2018-01-01
Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.
Mathematical model of geometry and fibrous structure of the heart.
Nielsen, P M; Le Grice, I J; Smaill, B H; Hunter, P J
1991-04-01
We developed a mathematical representation of ventricular geometry and muscle fiber organization using three-dimensional finite elements referred to a prolate spheroid coordinate system. Within elements, fields are approximated using basis functions with associated parameters defined at the element nodes. Four parameters per node are used to describe ventricular geometry. The radial coordinate is interpolated using cubic Hermite basis functions that preserve slope continuity, while the angular coordinates are interpolated linearly. Two further nodal parameters describe the orientation of myocardial fibers. The orientation of fibers within coordinate planes bounded by epicardial and endocardial surfaces is interpolated linearly, with transmural variation given by cubic Hermite basis functions. Left and right ventricular geometry and myocardial fiber orientations were characterized for a canine heart arrested in diastole and fixed at zero transmural pressure. The geometry was represented by a 24-element ensemble with 41 nodes. Nodal parameters fitted using least squares provided a realistic description of ventricular epicardial [root mean square (RMS) error less than 0.9 mm] and endocardial (RMS error less than 2.6 mm) surfaces. Measured fiber fields were also fitted (RMS error less than 17 degrees) with a 60-element, 99-node mesh obtained by subdividing the 24-element mesh. These methods provide a compact and accurate anatomic description of the ventricles suitable for use in finite element stress analysis, simulation of cardiac electrical activation, and other cardiac field modeling problems.
Two lectures on D-geometry and noncommutative geometry
International Nuclear Information System (INIS)
Douglas, M.R.
1999-01-01
This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)
The Schwarzschild metric: It's the coordinates, stupid!
Fromholz, Pierre; Poisson, Eric; Will, Clifford M.
2014-04-01
Every general relativity textbook emphasizes that coordinates have no physical meaning. Nevertheless, a coordinate choice must be made in order to carry out real calculations, and that choice can make the difference between a calculation that is simple and one that is a mess. We give a concrete illustration of the maxim that "coordinates matter" using the exact Schwarzschild solution for a vacuum, static spherical spacetime. We review the standard textbook derivation, Schwarzschild's original 1916 derivation, and a derivation using the Landau-Lifshitz formulation of the Einstein field equations. The last derivation is much more complicated, has one aspect for which we have been unable to find a solution, and gives an explicit illustration of the fact that the Schwarzschild geometry can be described in infinitely many coordinate systems.
International Nuclear Information System (INIS)
Hook, D W
2008-01-01
A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric framework, and
Dooner, David B
2012-01-01
Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Torsional heterotic geometries
International Nuclear Information System (INIS)
Becker, Katrin; Sethi, Savdeep
2009-01-01
We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.
Geometrie verstehen: statisch - kinematisch
Kroll, Ekkehard
Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Akopyan, A V
2007-01-01
The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca
2015-01-01
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
KENO-IV/CG, the combinatorial geometry version of the KENO Monte Carlo criticality safety program
International Nuclear Information System (INIS)
West, J.T.; Petrie, L.M.; Fraley, S.K.
1979-09-01
KENO-IV/CG was developed to merge the simple geometry input description utilized by combinatorial geometry with the repeating lattice feature of the original KENO geometry package. The result is a criticality code with the ability to model a complex system of repeating rectangular lattices inside a complicated three-dimensional geometry system. Furthermore, combinatorial geometry was modified to differentiate between combinatorial zones describing a particular KENO BOX to be repeated in a KENO array and those combinatorial zones describing geometry external to an array. This allows the user to maintain a simple coordinate system without any geometric conflict due to spatial overlap. Several difficult criticality design problems have been solved with the new geometry package in KENO-IV/CG, thus illustrating the power of the code to model difficult geometries with a minimum of effort
Rare earth niobate coordination polymers
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May
2018-03-01
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.
coordination polymers derived from two different bis-pyridyl-bis-am
Indian Academy of Sciences (India)
Abstract. Three new Ni(II) coordination polymers exhibiting different 1D and 2D framework structures ... separation, magnetism, ion exchange and so on.5 8 ... of the coordination geometries of metal ions, which ... Cu(II)/Co(II)/Cd(II) coordination polymers containing ..... tion, the concentration of MB and RhB (C) versus reac-.
The Generation of Three-Dimensional Body-Fitted Coordinate Systems for Viscous Flow Problems.
1982-07-01
Geometries," NASA TM X-3206, 1975. iq p] Papers Written Under The Contract 1. "Basic Differential Models For Coordinate Generation ", Z . U. A. Warsi...8217 Ii (C) (4’) p Figure 1. Coordinate Surfaces fr. I • BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION Z . U. A. WARSI* Department of Aerospace
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Critique of information geometry
International Nuclear Information System (INIS)
Skilling, John
2014-01-01
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
Emergent geometry of membranes
Energy Technology Data Exchange (ETDEWEB)
Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)
2015-11-13
In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
International Nuclear Information System (INIS)
Buescher, R.
2005-01-01
Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the
Initiation to global Finslerian geometry
Akbar-Zadeh, Hassan
2006-01-01
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p
Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates
International Nuclear Information System (INIS)
Brizard, A.
1988-09-01
A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2013-01-01
Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.
Nonperturbative quantum geometries
International Nuclear Information System (INIS)
Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara
1988-01-01
Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
GPS: Geometry, Probability, and Statistics
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
A prediction for bubbling geometries
Okuda, Takuya
2007-01-01
We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.
Molecular motion in restricted geometries
Indian Academy of Sciences (India)
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Optical geometry across the horizon
International Nuclear Information System (INIS)
Jonsson, Rickard
2006-01-01
In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework
Real symplectic formulation of local special geometry
Ferrara, Sergio; Ferrara, Sergio; Macia, Oscar
2006-01-01
We consider a formulation of local special geometry in terms of Darboux special coordinates $P^I=(p^i,q_i)$, $I=1,...,2n$. A general formula for the metric is obtained which is manifestly $\\mathbf{Sp}(2n,\\mathbb{R})$ covariant. Unlike the rigid case the metric is not given by the Hessian of the real function $S(P)$ which is the Legendre transform of the imaginary part of the holomorphic prepotential. Rather it is given by an expression that contains $S$, its Hessian and the conjugate momenta $S_I=\\frac{\\partial S}{\\partial P^I}$. Only in the one-dimensional case ($n=1$) is the real (two-dimensional) metric proportional to the Hessian with an appropriate conformal factor.
Differential geometry of curves and surfaces
Banchoff, Thomas F
2010-01-01
Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties. A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.
Explicitly computing geodetic coordinates from Cartesian coordinates
Zeng, Huaien
2013-04-01
This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.
Helliwell, John R.; Tanley, Simon W. M.; Schreurs, Antoine M. M.; Kroon - Batenburg, Louise
2016-01-01
Following the interest of L Messori and A Merlino 2016 Coordination Chemistry Reviews in the platinum ions coordination geometries in our PDB entries 4dd4 and 4dd6 we have extended our original analyses.
Complex analysis and CR geometry
Zampieri, Giuseppe
2008-01-01
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...
The geometry description markup language
International Nuclear Information System (INIS)
Chytracek, R.
2001-01-01
Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML
Complex geometry and quantum string theory
International Nuclear Information System (INIS)
Belavin, A.A.; Knizhnik, V.G.
1986-01-01
Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry
PREFACE: Algebra, Geometry, and Mathematical Physics 2010
Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.
2012-02-01
This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Differential geometry curves, surfaces, manifolds
Kohnel, Wolfgang
2002-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.
The curvature coordinate system
DEFF Research Database (Denmark)
Almegaard, Henrik
2007-01-01
The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...
Secant cumulants and toric geometry
Michalek, M.; Oeding, L.; Zwiernik, P.W.
2012-01-01
We study the secant line variety of the Segre product of projective spaces using special cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by open normal toric varieties. We prove that in cumulant coordinates its ideal is generated by binomial quadrics. We
DEFF Research Database (Denmark)
De Chiffre, Leonardo
This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceabilit...... and uncertainty during coordinate measurements, 3) Digitalisation and Reverse Engineering. This document contains a short description of each step in the exercise and schemes with room for taking notes of the results.......This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceability...
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Symplectic geometry and Fourier analysis
Wallach, Nolan R
2018-01-01
Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.
Topology and geometry for physicists
Nash, Charles
1983-01-01
Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr
Local coordination of polyvalent metal ions in molten halide mixtures
International Nuclear Information System (INIS)
Akdeniz, Z.; Tosi, M.P.
1989-07-01
Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig
Novel 3D Compression Methods for Geometry, Connectivity and Texture
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
Spectral dimension of quantum geometries
International Nuclear Information System (INIS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2014-01-01
The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)
Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.
2014-01-01
Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.
Unusual Coordination Behavior of Cr3+ in Microporous Aluminophosphates
Beale, AM; Grandjean, D; Kornatowski, J; Glatzel, P; de Groot, FMF; Weckhuysen, BM
2006-01-01
A CrAPO-5 molecular sieve has been investigated with X-ray absorption spectroscopy (EXAFS-XANES) as dehydrated material and after loading with water and ammonia to unravel the coordination geometries of Cr3+ in the framework of a microporous crystalline aluminophosphate, more particularly of the
Analytical geometry of three dimensions
McCrea, William Hunter
1947-01-01
Brief but rigorous, this text is geared toward advanced undergraduates and graduate students. It covers the coordinate system, planes and lines, spheres, homogeneous coordinates, general equations of the second degree, quadric in Cartesian coordinates, and intersection of quadrics.Mathematician, physicist, and astronomer, William H. McCrea conducted research in many areas and is best known for his work on relativity and cosmology. McCrea studied and taught at universities around the world, and this book is based on a series of his lectures.
Regional transit coordination guidebook.
2009-01-01
Constant growth in rural areas and extensive suburban development have contributed to increasingly more people needing seamless and adequate public transportation into and from nearby cities. Coordinating existing services or determining the need for...
Supercritical Airfoil Coordinates
National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...
Developmental coordination disorder
Developmental coordination disorder can lead to: Learning problems Low self-esteem resulting from poor ability at sports and teasing by other children Repeated injuries Weight gain as a result of not wanting to participate ...
Environmental Compliance Issue Coordination
An order to establish the Department of Energy (DOE) requirements for coordination of significant environmental compliance issues to ensure timely development and consistent application of Departmental environmental policy and guidance
Data Management Coordinators (DMC)
The Regional Data Management Coordinators (DMCs) were identified to serve as the primary contact for each region for all Water Quality Framework activities. They will facilitate and communicate information to the necessary individuals at the region and tra
Zlatkina, O. Yu
2018-04-01
There is a relationship between the service properties of component parts and their geometry; therefore, to predict and control the operational characteristics of parts and machines, it is necessary to measure their geometrical specifications. In modern production, a coordinate measuring machine is the advanced measuring instrument of the products geometrical specifications. The analysis of publications has shown that during the coordinate measurements the problems of choosing locating chart of parts and coordination have not been sufficiently studied. A special role in the coordination of the part is played by the coordinate axes informational content. Informational content is the sum of the degrees of freedom limited by the elementary item of a part. The coordinate planes of a rectangular coordinate system have different informational content (three, two, and one). The coordinate axes have informational content of four, two and zero. The higher the informational content of the coordinate plane or axis, the higher its priority for reading angular and linear coordinates is. The geometrical model production of the coordinate measurements object taking into account the information content of coordinate planes and coordinate axes allows us to clearly reveal the interrelationship of the coordinates of the deviations in location, sizes and deviations of their surfaces shape. The geometrical model helps to select the optimal locating chart of parts for bringing the machine coordinate system to the part coordinate system. The article presents an algorithm the model production of geometrical specifications using the example of the piston rod of a compressor.
Engineering the oxygen coordination in digital superlattices
Energy Technology Data Exchange (ETDEWEB)
Cook, Seyoung [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Andersen, Tassie K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Hong, Hawoong [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Rosenberg, Richard A. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Marks, Laurence D. [Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Fong, Dillon D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2017-12-01
The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.
The generator coordinate method in nuclear physics
International Nuclear Information System (INIS)
Giraud, B.G.
1981-01-01
The generator coordinate method is introduced as a physical description of a N-body system in a subspace of a reduced number of degrees of freedom. Special attention is placed on the identification of these special, 'collective' degrees of freedom. It is shown in particular that the method has close links with the Born-Oppenheimer approximation and also that considerations of differential geometry are useful in the theory. A set of applications is discussed and in particular the case of nuclear collisions is considered. (Author) [pt
Coordinating Work with Groupware
DEFF Research Database (Denmark)
Pors, Jens Kaaber; Simonsen, Jesper
2003-01-01
One important goal of employing groupware is to make possible complex collaboration between geographically distributed groups. This requires a dual transformation of both technology and work practice. The challenge is to reduce the complexity of the coordination work by successfully inte....... Using the CSCW framework of coordination mechanisms, we have elicited six general factors influencing the integration of the groupware application in two situations....
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Coordinate transformations and matter waves cloaking
International Nuclear Information System (INIS)
Mohammadi, G.R.; Moghaddam, A.G.; Mohammadkhani, R.
2016-01-01
Transformation method provides an efficient tool to control wave propagation inside the materials. Using the coordinate transformation approach, we study invisibility cloaks with sphere, cylinder and ellipsoid structures for electronic waves propagation. The underlying physics behind this investigation is the fact that Schrödinger equation with position dependent mass tensor and potentials has a covariant form which follows the coordinate transformation. Using this technique we obtain the exact spatial form of the mass tensor and potentials for a variety of cloaks with different shapes. - Highlights: • Invisibility cloaks for matter waves with three different geometries. • Exact analytical form of the effective mass tensor and potential. • Analogy between cloaking for quantum mechanical waves with classical electromagnetic waves. • Possible experimental realization in engineered semiconducting structures.
Laundal, K. M.; Richmond, A. D.
2017-03-01
Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.
Variable geometry Darrieus wind machine
Pytlinski, J. T.; Serrano, D.
1983-08-01
A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.
Flux compactifications and generalized geometries
International Nuclear Information System (INIS)
Grana, Mariana
2006-01-01
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry
Flux compactifications and generalized geometries
Energy Technology Data Exchange (ETDEWEB)
Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-11-07
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.
Euclidean geometry and its subgeometries
Specht, Edward John; Calkins, Keith G; Rhoads, Donald H
2015-01-01
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...
Guide to Computational Geometry Processing
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François
be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Dayside merging and cusp geometry
International Nuclear Information System (INIS)
Crooker, N.U.
1979-01-01
Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle
DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS
International Nuclear Information System (INIS)
BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.
2001-01-01
Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective
Geometry optimization of molecules within an LCGTO local-density functional approach
International Nuclear Information System (INIS)
Mintmire, J.W.
1990-01-01
We describe our implementation of geometry optimization techniques within the linear combination of Gaussian-type orbitals (LCGTO) approach to local-density functional theory. The algorithm for geometry optimization is based on the evaluation of the gradient of the total energy with respect to internal coordinates within the local-density functional scheme. We present optimization results for a range of small molecules which serve as test cases for our approach
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews
Graphical debugging of combinational geometry
International Nuclear Information System (INIS)
Burns, T.J.; Smith, M.S.
1992-01-01
A graphical debugger for combinatorial geometry being developed at Oak Ridge National Laboratory is described. The prototype debugger consists of two parts: a FORTRAN-based ''view'' generator and a Microsoft Windows application for displaying the geometry. Options and features of both modules are discussed. Examples illustrating the various options available are presented. The potential for utilizing the images produced using the debugger as a visualization tool for the output of the radiation transport codes is discussed as is the future direction of the development
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
Comparison theorems in Riemannian geometry
Cheeger, Jeff
2008-01-01
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Spatial geometry and special relativity
DEFF Research Database (Denmark)
Kneubil, Fabiana Botelho
2016-01-01
In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame......-dependent and frame-independent entities. We depart from a subject well known by students, which is the three-dimensional geometric space in order to compare, afterwards, with the treatment of four-dimensional space in the special relativity. The differences and similarities between these two subjects are also...
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Introduction to topology and geometry
Stahl, Saul
2014-01-01
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
Painleve-gullstrand-type Coordinates for the Five-dimensional Myers-Perry Black Hole
Finch, Tehani Kahi
2013-01-01
The Painleve-Gullstrand coordinates provide a convenient framework for presenting the Schwarzschild geometry because of their flat constant-time hypersurfaces, and the fact that they are free of coordinate singularities outside r=0. Generalizations of Painlev´e-Gullstrand coordinates suitable for the Kerr geometry have been presented by Doran and Nat´ario. These coordinate systems feature a time coordinate identical to the proper time of zero-angular-momentum observers that are dropped from infinity. Here, the methods of Doran and Nat´ario are extended to the five-dimensional rotating black hole found by Myers and Perry. The result is a new formulation of the Myers-Perry metric. The properties and physical significance of these new coordinates are discussed.
(Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.
Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam
2012-04-01
In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.
Classification of digital affine noncommutative geometries
Majid, Shahn; Pachoł, Anna
2018-03-01
It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."
The Idea of Order at Geometry Class.
Rishel, Thomas
The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…
Teaching Spatial Geometry in a Virtual World
DEFF Research Database (Denmark)
Förster, Klaus-Tycho
2017-01-01
Spatial geometry is one of the fundamental mathematical building blocks of any engineering education. However, it is overshadowed by planar geometry in the curriculum between playful early primary education and later analytical geometry, leaving a multi-year gap where spatial geometry is absent...
Analogical Reasoning in Geometry Education
Magdas, Ioana
2015-01-01
The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
Exploring Bundling Theory with Geometry
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
Matter in toy dynamical geometries
Konopka, T.J.
2009-01-01
One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect
Ca??adas, Mar??a C.; Molina, Marta; Gallardo, Sandra; Mart??nez-Santaolalla, Manuel J.; Pe??as, Mar??a
2010-01-01
In this work we present an activity for High School students in which various mathematical concepts of plane and spatial geometry are involved. The final objective of the proposed tasks is constructing a particular polyhedron, the cube, by using a modality of origami called modular origami.
Granular flows in constrained geometries
Murthy, Tejas; Viswanathan, Koushik
Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.
General Relativity: Geometry Meets Physics
Thomsen, Dietrick E.
1975-01-01
Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…
Learners engaging with transformation geometry
African Journals Online (AJOL)
participants engaged in investigative semi-structured interviews with the resear- chers. ... Keywords: analysis; conversions; transformation geometry; transformations; treatments .... semiotic systems of representation is not only to designate mathematical objects or to com- municate but also to ... Research design. We believe ...
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
College geometry a unified development
Kay, David C
2011-01-01
""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273
Mahaffey, Michael L.
One of a series of experimental units for children at the preschool level, this booklet deals with geometric concepts. A unit on volume and a unit on linear measurement are covered; for each unit a discussion of mathematical objectives, a list of materials needed, and a sequence of learning activities are provided. Directions are specified for the…
DEFF Research Database (Denmark)
Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...
[Binocular coordination during reading].
Bassou, L; Granié, M; Pugh, A K; Morucci, J P
1992-01-01
Is there an effect on binocular coordination during reading of oculomotor imbalance (heterophoria, strabismus and inadequate convergence) and of functional lateral characteristics (eye preference and perceptually privileged visual laterality)? Recordings of the binocular eye-movements of ten-year-old children show that oculomotor imbalances occur most often among children whose left visual perceptual channel is privileged, and that these subjects can present optomotor dissociation and manifest lack of motor coordination. Close binocular motor coordination is far from being the norm in reading. The faster reader displays saccades of differing spatial amplitude and the slower reader an oculomotor hyperactivity, especially during fixations. The recording of binocular movements in reading appears to be an excellent means of diagnosing difficulties related to visual laterality and to problems associated with oculomotor imbalance.
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
Numerically robust geometry engine for compound solid geometries
International Nuclear Information System (INIS)
Vlachoudis, V.; Sinuela-Pastor, D.
2013-01-01
Monte Carlo programs heavily rely on a fast and numerically robust solid geometry engines. However the success of solid modeling, depends on facilities for specifying and editing parameterized models through a user-friendly graphical front-end. Such a user interface has to be fast enough in order to be interactive for 2D and/or 3D displays, but at the same time numerically robust in order to display possible modeling errors at real time that could be critical for the simulation. The graphical user interface Flair for FLUKA currently employs such an engine where special emphasis has been given on being fast and numerically robust. The numerically robustness is achieved by a novel method of estimating the floating precision of the operations, which dynamically adapts all the decision operations accordingly. Moreover a predictive caching mechanism is ensuring that logical errors in the geometry description are found online, without compromising the processing time by checking all regions. (authors)
Quantifying linguistic coordination
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Tylén, Kristian
task (Bahrami et al 2010, Fusaroli et al. 2012) we extend to linguistic coordination dynamical measures of recurrence employed in the analysis of sensorimotor coordination (such as heart-rate (Konvalinka et al 2011), postural sway (Shockley 2005) and eye-movements (Dale, Richardson and Kirkham 2012......). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities...
Aspects of non-geometry in string theory
International Nuclear Information System (INIS)
Patalong, Peter
2013-01-01
This thesis investigates various manifestations of non-geometry in string theory. It utilises different frameworks to study how non-geometry appears in the target space, how non-geometry and non-geometric fluxes are interconnected, how non-geometry can be captured in effective field theories and how a possible extension of the standard string worldsheet model can accommodate non-geometric setups. The first part provides an example that non-geometry can imply non-commutativity of the closed string coordinate fields. Three T-dual frames are investigated, the three-torus with constant H-flux, the twisted torus and the torus with non-geometric flux Q. Under the assumption of dilute flux, a mode expansion and the canonical quantisation are carried out in the second case up to linear order in the flux parameter. T-duality is then used to relate the commutators of the string expansion modes to the coordinate field commutator in the non-geometric third frame. Non-commutativity is found and related to the non-geometric flux Q and the string winding, it therefore appears as an intrinsically string theoretic feature. The second part investigates non-geometry in the context of ten-dimensional effective field theories, i.e. double field theory and supergravity. A field redefinition is implemented that takes the form of a T-duality transformation, it reveals an alternative set of field variables allowing to define non-geometric fluxes Q and R in higher dimensions. The perspective of double field theory provides a geometric interpretation of those by taking into account a new type of covariant winding derivative. The perspective of the ten-dimensional supergravity allows to investigate the interplay between non-geometric field configurations and non-geometric fluxes. For the three-torus example, a well-defined action can be found, and a simple dimensional reduction makes contact to the known four-dimensional potential. It thus proves the correct uplift of Q and R to higher
Distance Adaptive Tensor Discriminative Geometry Preserving Projection for Face Recognition
Directory of Open Access Journals (Sweden)
Ziqiang Wang
2012-09-01
Full Text Available There is a growing interest in dimensionality reduction techniques for face recognition, however, the traditional dimensionality reduction algorithms often transform the input face image data into vectors before embedding. Such vectorization often ignores the underlying data structure and leads to higher computational complexity. To effectively cope with these problems, a novel dimensionality reduction algorithm termed distance adaptive tensor discriminative geometry preserving projection (DATDGPP is proposed in this paper. The key idea of DATDGPP is as follows: first, the face image data are directly encoded in high-order tensor structure so that the relationships among the face image data can be preserved; second, the data-adaptive tensor distance is adopted to model the correlation among different coordinates of tensor data; third, the transformation matrix which can preserve discrimination and local geometry information is obtained by an iteration algorithm. Experimental results on three face databases show that the proposed algorithm outperforms other representative dimensionality reduction algorithms.
Separation of attractors in 1-modulus quantum corrected special geometry
Bellucci, S; Marrani, A; Shcherbakov, A
2008-01-01
We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...
Protonated serotonin: Geometry, electronic structures and photophysical properties
Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan
2017-07-01
The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.
Differential geometry of groups in string theory
International Nuclear Information System (INIS)
Schmidke, W.B. Jr.
1990-09-01
Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs
Dimensions of Organizational Coordination
DEFF Research Database (Denmark)
Jensen, Andreas Schmidt; Aldewereld, Huib; Dignum, Virginia
2013-01-01
be supported to include organizational objectives and constraints into their reasoning processes by considering two alternatives: agent reasoning and middleware regulation. We show how agents can use an organizational specification to achieve organizational objectives by delegating and coordinating...... their activities with other agents in the society, using the GOAL agent programming language and the OperA organizational model....
Reusability of coordination programs
F. Arbab (Farhad); C.L. Blom (Kees); F.J. Burger (Freek); C.T.H. Everaars (Kees)
1996-01-01
textabstractIsolating computation and communication concerns into separate pure computation and pure coordination modules enhances modularity, understandability, and reusability of parallel and/or distributed software. This can be achieved by moving communication primitives (such as SendMessage and
[Civilian-military coordination].
de Montravel, G
2002-01-01
Current humanitarian emergencies create complex, mutidimensional situations that stimulate simultaneous responses from a wide variety of sources including governments, non-governmental organizations (NGO), United Nations agencies, and private individuals. As a result, it has become essential to establish a coherent framework in which each actor can contribute promptly and effectively to the overall effort. This is the role of the United Nations Office for the Coordination of Humanitarian Affairs. Regardless of the circumstances and level of coordination, cooperation and collaboration between humanitarian and military personnel, it is necessary to bear in mind their objectives. The purpose of humanitarian action is to reduce human suffering. The purpose of military intervention is to stop warfare. The author of this article will discuss the three major obstacles to civilian-military coordination (strategic, tactical, and operational). Operations cannot be conducted smoothly and differences cannot be ironed out without mutual respect between the two parties, an explicit definition of their respective duties and responsibilities, a clear understanding of their cultural differences, and the presence of an organization and facilities for coordination and arbitrage by a neutral referee.
Pesyna, Colin; Pundi, Krishna; Flanders, Martha
2011-03-09
The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.
Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R
2012-11-13
The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
Insulin fibrillation: The influence and coordination of Zn2+
DEFF Research Database (Denmark)
Frankær, Christian Grundahl; Sønderby, Pernille; Bang, Maria Blanner
2017-01-01
fibrils has been debated for some years. We have therefore investigated the influence and binding geometry of zinc in fibrillated insulin using extended X-ray absorption fine-structure and X-ray absorption near-edge structure spectroscopy. The results were validated with fibre diffraction, Transmission...... Electron Microscopy and Thioflavin T fluorescence measurements. It is well-known that Zn2+ ions coordinate and stabilize the hexameric forms of insulin. However, this study is the first to show that zinc indeed binds to the insulin fibrils. Furthermore, zinc influences the kinetics and the morphology...... of the fibrils. It also shows that zinc coordinates to histidine residues in an environment, which is similar to the coordination seen in the insulin R6 hexamers, where three histidine residues and a chloride ion is coordinating the zinc....
Interaction geometry: an ecological perspective.
Rolfe A. Leary
1976-01-01
A new mathematical coordinate system results from a unique combination of two frameworks long used by ecologists: the phase plane and coaction cross-tabulation. The resulting construct combines the classifying power of the cross-tabulation and discriminating power of the phase plane. It may be used for analysis and synthesis.
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in ... General Article Volume 13 Issue 10 October 2008 pp 916-928 ... Keywords. Conics; family of curves; Pascal's theorem; homogeneous coordinates; Butterfly theorem; abelian group; associativity of addition; group law.
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
Coordination failure caused by sunspots
DEFF Research Database (Denmark)
Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose
2012-01-01
on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....
Code subspaces for LLM geometries
Berenstein, David; Miller, Alexandra
2018-03-01
We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Fractal geometry and computer graphics
Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele
1992-01-01
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...
The geometry of celestial mechanics
Geiges, Hansjörg
2016-01-01
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Differential geometry and mathematical physics
Rudolph, Gerd
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Groups and Geometries : Siena Conference
Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria
1998-01-01
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...
Needle decompositions in Riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Systematics of IIB spinorial geometry
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2005-01-01
We reduce the classification of all supersymmetric backgrounds of IIB supergravity to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This extends the work of [hep-th/0503046] to IIB supergravity. We give the expressions of the Killing spinor equations on all five types of spinors. In this way, the Killing spinor equations become a linear system for the fluxes, geometry and spacetime derivatives of...
Geometry Dependence of Stellarator Turbulence
International Nuclear Information System (INIS)
Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.
2009-01-01
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes
Superbanana orbits in stellarator geometries
International Nuclear Information System (INIS)
Derr, J.A.; Shohet, J.L.
1979-04-01
The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron
Turtle geometry the Python way
Battle, S.
2014-01-01
An introduction to coding using Python’s on-screen ‘turtle’ that can be commanded with a few simple instructions including forward, backward, left and right. The turtle leaves a trace that can be used to draw geometric figures. This workshop is aimed at beginners of all ages. The aim is to learn a smattering of programming and a little bit of geometry in a fun way.
Topics in modern differential geometry
Verstraelen, Leopold
2017-01-01
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Computational geometry for reactor applications
International Nuclear Information System (INIS)
Brown, F.B.; Bischoff, F.G.
1988-01-01
Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Aspects of differential geometry II
Gilkey, Peter
2015-01-01
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...
Fuzzy Geometry of Commutative Spaces and Quantum Dynamics
International Nuclear Information System (INIS)
Mayburov, S.N.
2016-01-01
Fuzzy topology and geometry considered as the possible mathematical framework for novel quantum-mechanical formalism. In such formalism the states of massive particle m correspond to the elements of fuzzy manifold called fuzzy points. Due to the manifold weak topology, m space coordinate x acquires principal uncertainty σ_x and described by the positive, normalized density w(r-vector , t) in 3-dimensional case. It’s shown that the evolution of m state on such 3-dimensional manifold corresponds to Shroedinger dynamics of massive quantum particle
The SUSY oscillator from local geometry: Dynamics and coherent states
International Nuclear Information System (INIS)
Thienel, H.P.
1994-01-01
The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Geometry success in 20 minutes a day
LLC, LearningExpress
2014-01-01
Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr
Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)-Histidine Complexes
Weckhuysen, B.M.; Grommen, R.; Manikandan, P.; Gao, Y.; Shane, T.; Shane, J.J.; Schoonheydt, R.A.; Goldfarb, D.
2000-01-01
The coordination geometry of zeolite-encapsulated copper(II)-histidine (CuHis) complexes, prepared by ion exchange of the complexes from aqueous solutions into zeolite NaY, was determined by a combination of UV-vis-NIR diffuse reflectance spectroscopy (DRS), X-band EPR, electron-spin-echo envelope
Network geometry with flavor: From complexity to quantum geometry
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
On the Lorentz invariance of bit-string geometry
International Nuclear Information System (INIS)
Noyes, H.P.
1995-09-01
We construct the class of integer-sided triangles and tetrahedra that respectively correspond to two or three discriminately independent bit-strings. In order to specify integer coordinates in this space, we take one vertex of a regular tetrahedron whose common edge length is an even integer as the origin of a line of integer length to the open-quotes pointclose quotes and three integer distances to this open-quotes pointclose quotes from the three remaining vertices of the reference tetrahedron. This - usually chiral - integer coordinate description of bit-string geometry is possible because three discriminately independent bit-strings generate four more; the Hamming measures of these seven strings always allow this geometrical interpretation. On another occasion we intend to prove the rotational invariance of this coordinate description. By identifying the corners of these figures with the positions of recording counters whose clocks are synchronized using the Einstein convention, we define velocities in this space. This suggests that it may be possible to define boosts and discrete Lorentz transformations in a space of integer coordinates. We relate this description to our previous work on measurement accuracy and the discrete ordered calculus of Etter and Kauffman (DOC)
A Whirlwind Tour of Computational Geometry.
Graham, Ron; Yao, Frances
1990-01-01
Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)
Optimizing solar-cell grid geometry
Crossley, A. P.
1969-01-01
Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.
Improving Project Manufacturing Coordination
Directory of Open Access Journals (Sweden)
Korpivaara Ville
2014-09-01
Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.
Universal mechatronics coordinator
Muir, Patrick F.
1999-11-01
Mechatronic systems incorporate multiple actuators and sensor which must be properly coordinated to achieve the desired system functionality. Many mechatronic systems are designed as one-of-a-kind custom projects without consideration for facilitating future system or alterations and extensions to the current syste. Thus, subsequent changes to the system are slow, different, and costly. It has become apparent that manufacturing processes, and thus the mechatronics which embody them, need to be agile in order to more quickly and easily respond to changing customer demands or market pressures. To achieve agility, both the hardware and software of the system need to be designed such that the creation of new system and the alteration and extension of current system is fast and easy. This paper describes the design of a Universal Mechatronics Coordinator (UMC) which facilitates agile setup and changeover of coordination software for mechatronic systems. The UMC is capable of sequencing continuous and discrete actions that are programmed as stimulus-response pairs, as state machines, or a combination of the two. It facilitates the modular, reusable programing of continuous actions such as servo control algorithms, data collection code, and safety checking routines; and discrete actions such as reporting achieved states, and turning on/off binary devices. The UMC has been applied to the control of a z- theta assembly robot for the Minifactory project and is applicable to a spectrum of widely differing mechatronic systems.
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Magnetoelectrostatic thruster physical geometry tests
Ramsey, W. D.
1981-01-01
Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.
Programming system for analytic geometry
International Nuclear Information System (INIS)
Raymond, Jacques
1970-01-01
After having outlined the characteristics of computing centres which do not comply with engineering tasks, notably the time required by all different tasks to be performed when developing a software (assembly, compilation, link edition, loading, run), and identified constraints specific to engineering, the author identifies the characteristics a programming system should have to suit engineering tasks. He discussed existing conversational systems and their programming language, and their main drawbacks. Then, he presents a system which aims at facilitating programming and addressing problems of analytic geometry and trigonometry
The geometry of special relativity
International Nuclear Information System (INIS)
Parizet, Jean
2008-01-01
This book for students in mathematics or physics shows the interest of geometry to understand special relativity as a consequence of invariance of Maxwell equations and of constancy of the speed of light. Space-time is actually provided with a geometrical structure and a physical interpretation: at each observer are associated his own time and his own physical space in which occur events he is concerned with. This leads to a natural approach to special relativity. The Lorentz group and its algebra are then studied by using matrices and the Pauli algebra. Quaternions are also addressed
Moduli spaces in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves
Worldsheet geometries of ambitwistor string
Energy Technology Data Exchange (ETDEWEB)
Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)
2015-06-12
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
Porous media geometry and transports
Adler, Pierre
1992-01-01
The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr
Geometry of physical dispersion relations
International Nuclear Information System (INIS)
Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.
2011-01-01
To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.
Projective geometry and projective metrics
Busemann, Herbert
2005-01-01
The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio
Geometry of supersymmetric gauge theories
International Nuclear Information System (INIS)
Gieres, F.
1988-01-01
This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
An invitation to noncommutative geometry
Marcolli, Matilde
2008-01-01
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke
Trends and developments in computational geometry
Berg, de M.
1997-01-01
This paper discusses some trends and achievements in computational geometry during the past five years, with emphasis on problems related to computer graphics. Furthermore, a direction of research in computational geometry is discussed that could help in bringing the fields of computational geometry
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
"WGL," a Web Laboratory for Geometry
Quaresma, Pedro; Santos, Vanda; Maric, Milena
2018-01-01
The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…
Coordinator, Translation Services | IDRC - International ...
International Development Research Centre (IDRC) Digital Library (Canada)
The Coordinator, Translation Services coordinates the overall operations of the ... services in IDRC by acting as the main resource person for internal clients ... all operational issues in order to ensure good quality products delivered on time.
Computational geometry algorithms and applications
de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried
1997-01-01
Computational geometry emerged from the field of algorithms design and anal ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...
Tearing modes in toroidal geometry
International Nuclear Information System (INIS)
Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.
1988-01-01
The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed
Geometry of isotropic convex bodies
Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen
2014-01-01
The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Geometry of anisotropic CO outflows
International Nuclear Information System (INIS)
Liseau, R.; Sandell, G.; Helsinki Univ., Observatory, Finland)
1986-01-01
A simple geometrical model for the space motions of the bipolar high-velocity CO outflows in regions of recent, active star formation is proposed. It is assumed that the velocity field of the neutral gas component can be represented by large-scale uniform motions. From observations of the spatial distribution and from the characteristics of the line shape of the high-velocity molecular gas emission the geometry of the line-emitting regions can be inferred, i.e., the direction in space and the collimating angle of the flow. The model has been applied to regions where a check on presently obtained results is provided by independent optical determinations of the motions of Herbig-Haro objects associated with the CO flows. These two methods are in good agreement and, furthermore, the results obtained provide convincingly strong evidence for the physical association of CO outflows and Herbig-Haro objects. This also supports the common view that a young stellar central source is responsible for the active phenomena observed in its environmental neighborhood. It is noteworthy that within the framework of the model the determination of the flow geometry of the high-velocity gas from CO measurements is independent of the distance to the source and, furthermore, can be done at relatively low spatial resolution. 32 references
Canonical differential geometry of string backgrounds
International Nuclear Information System (INIS)
Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2006-01-01
String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes
Recursive Advice for Coordination
DEFF Research Database (Denmark)
Terepeta, Michal Tomasz; Nielson, Hanne Riis; Nielson, Flemming
2012-01-01
Aspect-oriented programming is a programming paradigm that is often praised for the ability to create modular software and separate cross-cutting concerns. Recently aspects have been also considered in the context of coordination languages, offering similar advantages. However, introducing aspects...... challenging. This is important since ensuring that a system does not contain errors is often equivalent to proving that some states are not reachable. In this paper we show how to solve these challenges by applying a successful technique from the area of software model checking, namely communicating pushdown...
Contact geometry and quantum mechanics
Herczeg, Gabriel; Waldron, Andrew
2018-06-01
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
Technical calculus with analytic geometry
Gersting, Judith L
2010-01-01
This well-thought-out text, filled with many special features, is designed for a two-semester course in calculus for technology students with a background in college algebra and trigonometry. The author has taken special care to make the book appealing to students by providing motivating examples, facilitating an intuitive understanding of the underlying concepts involved, and by providing much opportunity to gain proficiency in techniques and skills.Initial chapters cover functions and graphs, straight lines and conic sections, new coordinate systems, the derivative, using the derivative, in
Intrinsic Losses Based on Information Geometry and Their Applications
Directory of Open Access Journals (Sweden)
Yao Rong
2017-08-01
Full Text Available One main interest of information geometry is to study the properties of statistical models that do not depend on the coordinate systems or model parametrization; thus, it may serve as an analytic tool for intrinsic inference in statistics. In this paper, under the framework of Riemannian geometry and dual geometry, we revisit two commonly-used intrinsic losses which are respectively given by the squared Rao distance and the symmetrized Kullback–Leibler divergence (or Jeffreys divergence. For an exponential family endowed with the Fisher metric and α -connections, the two loss functions are uniformly described as the energy difference along an α -geodesic path, for some α ∈ { − 1 , 0 , 1 } . Subsequently, the two intrinsic losses are utilized to develop Bayesian analyses of covariance matrix estimation and range-spread target detection. We provide an intrinsically unbiased covariance estimator, which is verified to be asymptotically efficient in terms of the intrinsic mean square error. The decision rules deduced by the intrinsic Bayesian criterion provide a geometrical justification for the constant false alarm rate detector based on generalized likelihood ratio principle.
Hyperunified field theory and gravitational gauge-geometry duality
International Nuclear Information System (INIS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Integral Transport Theory in One-dimensional Geometries
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1966-06-15
A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.
Hyperunified field theory and gravitational gauge-geometry duality
Energy Technology Data Exchange (ETDEWEB)
Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)
2018-01-15
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Engineering the oxygen coordination in digital superlattices
Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong; Rosenberg, Richard A.; Marks, Laurence D.; Fong, Dillon D.
2017-12-01
The oxygen sublattice in complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using synchrotron X-ray scattering in combination with soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, with higher Co oxidation states increasing the valence band maximum. This work demonstrates a new strategy for engineering unique electronic structures in the transition metal oxides using short-period superlattices.
Seventeen-coordinate actinide helium complexes
Energy Technology Data Exchange (ETDEWEB)
Kaltsoyannis, Nikolas [School of Chemistry, The University of Manchester (United Kingdom)
2017-06-12
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe{sub 17}{sup 3+}, ThHe{sub 17}{sup 4+}, and PaHe{sub 17}{sup 4+} are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe{sub n}{sup 3+} (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R{sup 2}>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Threedimensional system of coordinates used at CERN
International Nuclear Information System (INIS)
Gervaise, J.; Mayoud, M.; Menant, E.
1976-01-01
This report is a complete account of the transformations and corrections necessary for geodetic quantities, whether directly measured or derived, before they can be entered into calculations involving the basic reference system used at CERN. A special type of projection (orthographic projection) has been developed, with the aim that it be the best possible for the geodetic system employed for the Super Proton Synchrotron (SPS) whilst retaining the basic possibilities provided for the Proton Synchrotron (PS) and the Intersecting Storage Rings (ISR). The coordinate system in which the geometry of particle beams is defined is necessarily Cartesian. This feature, although mathematically simple, has a number of consequences for the treatment of measurements which are physically connected with the shape of the Earth. Details of the orthographic projection, the planimetry, and the altimetry are given. (Author) [fr
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
Integrable systems, geometry, and topology
Terng, Chuu-Lian
2006-01-01
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...
Tarski Geometry Axioms. Part III
Directory of Open Access Journals (Sweden)
Coghetto Roland
2017-12-01
Full Text Available In the article, we continue the formalization of the work devoted to Tarski’s geometry - the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. After we prepared some introductory formal framework in our two previous Mizar articles, we focus on the regular translation of underlying items faithfully following the abovementioned book (our encoding covers first seven chapters. Our development utilizes also other formalization efforts of the same topic, e.g. Isabelle/HOL by Makarios, Metamath or even proof objects obtained directly from Prover9. In addition, using the native Mizar constructions (cluster registrations the propositions (“Satz” are reformulated under weaker conditions, i.e. by using fewer axioms or by proposing an alternative version that uses just another axioms (ex. Satz 2.1 or Satz 2.2.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Introduction to global variational geometry
Krupka, Demeter
2015-01-01
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Seesaw mechanism in warped geometry
International Nuclear Information System (INIS)
Huber, S.J.; Shafi, Q.
2003-09-01
We show how the seesaw mechanism for neutrino masses can be realized within a five dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M P1 .exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed. (orig.)
Seesaw mechanism in warped geometry
International Nuclear Information System (INIS)
Huber, Stephan J.; Shafi, Qaisar
2004-01-01
We show how the seesaw mechanism for neutrino masses can be realized within a five-dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M Pl exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed
Conformal geometry and quasiregular mappings
Vuorinen, Matti
1988-01-01
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...
Quantization of the Schwarzschild geometry
International Nuclear Information System (INIS)
Melas, Evangelos
2013-01-01
The conditional symmetries of the reduced Einstein-Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''.
Coordination chemistry of technetium as related to nuclear medicine
International Nuclear Information System (INIS)
Srivastava, S.C.; Richards, P.
1982-01-01
Significant advances have been made in the area of technetium coordination chemistry during the last five years. The main driving force behind this recent surge of interest in the field has been due to the practical application of technetium-99m in the rapidly growing speciality of nuclear medicine. Technetium-99 is one of the products of nuclear fission reactions, but it was the development of the molybdenum-99-technetium-99m generator about two decades ago that provided the basis for the development of radiopharmaceuticals routinely used in modern diagnostic applications. The chemistry of this element has proven to be quite rich owing to its multiple oxidation states and variable geometry. This can be attributed to its position in the middle of the periodic table. Diagnostic radiopharmaceuticals comprise predominantly III, IV and V oxidation states of Tc and involve a variety of coordination complexes. Even though the chemistry of Tc has been slow to evolve, recent synthetic advances have provided a more scientific basis for the study of a number of compounds with diverse coordination geometries and structures. Ligands with oxygen, nitrogen and sulfur donor atoms have been utilized to elucidate various aspects of the coordination chemistry of Tc. Single crystal X-ray structural analysis has been extensively used to characterize Tc complexes and thus construct a firm foundation for the study of synthetic and mechanistic aspects of the chemistry of this element. (author)
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Convection in Slab and Spheroidal Geometries
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Geometry and dynamics of a tidally deformed black hole
International Nuclear Information System (INIS)
Poisson, Eric; Vlasov, Igor
2010-01-01
The metric of a nonrotating black hole deformed by a tidal interaction is calculated and expressed as an expansion in the strength of the tidal coupling. The expansion parameter is the inverse length scale R -1 , where R is the radius of curvature of the external spacetime in which the black hole moves. The expansion begins at order R -2 , and it is carried out through order R -4 . The metric is parametrized by a number of tidal multipole moments, which specify the black hole's tidal environment. The tidal moments are freely-specifiable functions of time that are related to the Weyl tensor of the external spacetime. At order R -2 the metric involves the tidal quadrupole moments E ab and B ab . At order R -3 it involves the time derivative of the quadrupole moments and the tidal octupole moments E abc and B abc . At order R -4 the metric involves the second time derivative of the quadrupole moments, the first time derivative of the octupole moments, the tidal hexadecapole moments E abcd and B abcd , and bilinear combinations of the quadrupole moments. The metric is presented in a light-cone coordinate system that possesses a clear geometrical meaning: The advanced-time coordinate v is constant on past light cones that converge toward the black hole; the angles θ and φ are constant on the null generators of each light cone; and the radial coordinate r is an affine parameter on each generator, which decreases as the light cones converge toward the black hole. The coordinates are well-behaved on the black-hole horizon, and they are adjusted so that the coordinate description of the horizon is the same as in the Schwarzschild geometry: r=2M+O(R -5 ). At the order of accuracy maintained in this work, the horizon is a stationary null hypersurface foliated by apparent horizons; it is an isolated horizon in the sense of Ashtekar and Krishnan. As an application of our results we examine the induced geometry and dynamics of the horizon, and calculate the rate at which the
Himwich, Ed; Strand, Richard
2013-01-01
This report includes an assessment of the network performance in terms of lost observing time for the 2012 calendar year. Overall, the observing time loss was about 12.3%, which is in-line with previous years. A table of relative incidence of problems with various subsystems is presented. The most significant identified causes of loss were electronics rack problems (accounting for about 21.8% of losses), antenna reliability (18.1%), RFI (11.8%), and receiver problems (11.7%). About 14.2% of the losses occurred for unknown reasons. New antennas are under development in the USA, Germany, and Spain. There are plans for new telescopes in Norway and Sweden. Other activities of the Network Coordinator are summarized.
Chandra, Sulekh; Kumar, Umendra
2005-12-01
The paper presents the spectral analysis of cobalt(II) complexes with indoxyl thiosemicarbazone (ITSC) of general composition [CoL 2X 2] (where L = ITSC, X = Cl -, NO 3-, (1/2)SO 42-, NCS -). The geometry of the complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR, mass) studies. The various physico-chemical techniques suggested a coordination number of six (octahedral) for chloro, nitrato and thiocyanato complexes. Whereas sulfato complex was found to have five coordinate trigonal-bipyramidal geometry. All the complexes are of high spin type showing magnetic moment corresponding to three unpaired electrons.
International Nuclear Information System (INIS)
1994-01-01
In December 1992, western governors and four federal agencies established a Federal Advisory Committee to Develop On-site Innovative Technologies for Environmental Restoration and Waste Management (the DOIT Committee). The purpose of the Committee is to advise the federal government on ways to improve waste cleanup technology development and the cleanup of federal sites in the West. The Committee directed in January 1993 that information be collected from a wide range of potential stakeholders and that innovative technology candidate projects be identified, organized, set in motion, and evaluated to test new partnerships, regulatory approaches, and technologies which will lead to improve site cleanup. Five working groups were organized, one to develop broad project selection and evaluation criteria and four to focus on specific contaminant problems. A Coordinating Group comprised of working group spokesmen and federal and state representatives, was set up to plan and organize the routine functioning of these working groups. The working groups were charged with defining particular contaminant problems; identifying shortcomings in technology development, stakeholder involvement, regulatory review, and commercialization which impede the resolution of these problems; and identifying candidate sites or technologies which could serve as regional innovative demonstration projects to test new approaches to overcome the shortcomings. This report from the Coordinating Group to the DOIT Committee highlights the key findings and opportunities uncovered by these fact-finding working groups. It provides a basis from which recommendations from the DOIT Committee to the federal government can be made. It also includes observations from two public roundtables, one on commercialization and another on regulatory and institutional barriers impeding technology development and cleanup
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Second International workshop Geometry and Symbolic Computation
Walczak, Paweł; Geometry and its Applications
2014-01-01
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...
Anion-Dependent Exocyclic Mercury(II) Coordination Polymers of Bis-dithiamacrocycle
Energy Technology Data Exchange (ETDEWEB)
Siewe, Arlette Deukam; Kim, Seul Gi; Choi, Kyu Seong [Kyungnam University, Changwon (Korea, Republic of); Lee, Shim Sung [Gyeongsang National University, Jinju (Korea, Republic of)
2014-09-15
Synthesis and structural characterization of mercury(II) halides and perchlorate complexes of bis-OS{sub 2}-Synthesis and structural characterization of mercury(II) halides and perchlorate complexes of bis-OS{sub 2}- macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type [Hg(L)X{sub 2}]n (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies outside the cavity is six-coordinate with a distorted octahedral geometry, being bound to four adjacent ligands via monodentate Hg-S bonds and two remaining sites are occupied by two terminal chlorido ligands to form a fishnet-like 2D structure. When reacting with mercury(II) iodide, L afforded a 1D coordination polymer [Hg{sub 2}(L)I{sub 4}]·CHCl{sub 3}n in which each exocyclic Hg atom is four-coordinate, being bound to two sulfur donors from different ligands doubly bridging the ligand molecules in a head-to-tail mode. The coordination sphere in 3 is completed by two iodo terminal ligands, adopting a distorted tetrahedral geometry. On reacting with mercury(II) perchlorate, L forms solvent-coordinated 1D coordination polymer ([Hg{sub 2}(L)(DMF){sub 6}](ClO{sub 4}){sub 4}·2DMF)n instead of the anion-coordination. In 4, the Hg atom is five-coordinate, being bound to two sulfur donors from two different ligands doubly bridging the ligand molecules in a side-by-side mode to form a ribbon-like 1D structure.. The three remaining coordination sites in 4 are completed by three DMF molecules in a monodentate manner. Consequently, the different structures and connectivity patterns for the observed exocyclic coordination polymers depending on the anions used are influenced not only by the coordination ability of the anions but also by anion sizes macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type [Hg(L)X{sub 2}]n (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
Introduction to non-Euclidean geometry
Wolfe, Harold E
2012-01-01
One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc
Disformal transformation in Newton-Cartan geometry
Energy Technology Data Exchange (ETDEWEB)
Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)
2016-08-15
Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)
Applications of Affine and Weyl geometry
García-Río, Eduardo; Nikcevic, Stana
2013-01-01
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Latent geometry of bipartite networks
Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2017-03-01
Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
Fractal Geometry and Stochastics V
Falconer, Kenneth; Zähle, Martina
2015-01-01
This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott, Michał Rams, Pablo Shmerkin, and András Te...
Stochastic geometry in PRIZMA code
International Nuclear Information System (INIS)
Malyshkin, G. N.; Kashaeva, E. A.; Mukhamadiev, R. F.
2007-01-01
The paper describes a method used to simulate radiation transport through random media - randomly placed grains in a matrix material. The method models the medium consequently from one grain crossed by particle trajectory to another. Like in the Limited Chord Length Sampling (LCLS) method, particles in grains are tracked in the actual grain geometry, but unlike LCLS, the medium is modeled using only Matrix Chord Length Sampling (MCLS) from the exponential distribution and it is not necessary to know the grain chord length distribution. This helped us extend the method to media with randomly oriented arbitrarily shaped convex grains. Other extensions include multicomponent media - grains of several sorts, and polydisperse media - grains of different sizes. Sort and size distributions of crossed grains were obtained and an algorithm was developed for sampling grain orientations and positions. Special consideration was given to medium modeling at the boundary of the stochastic region. The method was implemented in the universal 3D Monte Carlo code PRIZMA. The paper provides calculated results for a model problem where we determine volume fractions of modeled components crossed by particle trajectories. It also demonstrates the use of biased sampling techniques implemented in PRIZMA for solving a problem of deep penetration in model random media. Described are calculations for the spectral response of a capacitor dose detector whose anode was modeled with account for its stochastic structure. (authors)
The geometry of population genetics
Akin, Ethan
1979-01-01
The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono graph I hope to show that his ideas illuminate many aspects of pop ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...
Topics in Cubic Special Geometry
Bellucci, Stefano; Roychowdhury, Raju
2011-01-01
We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...
Influence of probe geometry on pitot-probe displacement in supersonic turbulent flow
Allen, J. M.
1975-01-01
An experiment was conducted to determine the varying effects of six different probe-tip and support-shaft configurations on pitot tube displacement. The study was stimulated by discrepancies between supersonic wind-tunnel tests conducted by Wilson and Young (1949) and Allen (1972). Wilson (1973) had concluded that these discrepancies were caused by differences in probe geometry. It is shown that in fact, no major differences in profiles of streamwise velocity over streamwise velocity at boundary-layer edge vs normal coordinate over boundary-layer total thickness result from geometry. The true cause of the discrepancies, however, remains to be discovered.
Fingerprint pattern classification approach based on the coordinate geometry of singularities
CSIR Research Space (South Africa)
Msiza, IS
2009-10-01
Full Text Available of fingerprint matching, it serves to reduce the duration of the query. The fingerprint classes discussed in this document are the Central Twins (CT), Tented Arch (TA), Left Loop (LL), Right Loop (RL) and the Plain Arch (PA). The classification rules employed...
Tensors and Differential Geometry Applied to Analytic and Numerical Coordinate Generation
1981-01-01
If we now take o6 the inner multiplication of both sides of eq. (76) with g , we get a= g [ ca6 , 6 ] (78) The quantities T defined in (78) are the...299 (1974). [301 McVittie, G. C., "A Systematic Treatment of Moving Axes in Hydro- dynamics," Proc. Roy. Soc., Series A, 196, 285 (1949). [31j
Coordinates in relativistic Hamiltonian mechanics
International Nuclear Information System (INIS)
Sokolov, S.N.
1984-01-01
The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field
Noncommutative geometry and fluid dynamics
International Nuclear Information System (INIS)
Das, Praloy; Ghosh, Subir
2016-01-01
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Noncommutative geometry and fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)
2016-11-15
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Alonso, Rodrigo; Manohar, Aneesh V.
2016-01-01
The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...
Quantum groups: Geometry and applications
International Nuclear Information System (INIS)
Chu, C.S.
1996-01-01
The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge
The geometry of elementary particles
International Nuclear Information System (INIS)
Lov, T.R.
1987-01-01
A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity
Geometry and physics of branes
International Nuclear Information System (INIS)
Gal'tsov, D V
2003-01-01
The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two-dimensional conformal field
Description of SSG Geometry - phase 1
DEFF Research Database (Denmark)
Margheritini, Lucia; Kofoed, Jens Peter
The purpose of the study is to define the optimized geometry for the SSG in Svaheia, Norway and to provide the responsible for the turbines with useful information to their work.......The purpose of the study is to define the optimized geometry for the SSG in Svaheia, Norway and to provide the responsible for the turbines with useful information to their work....
Increasing insightful thinking in analytic geometry
Timmer, Mark; Verhoef, Neeltje Cornelia
Elsewhere in this issue Ferdinand Verhulst described the discussion of the interaction of analysis and geometry in the 19th century. In modern times such discussions come up again and again. As of 2014, synthetic geometry will not be part of the Dutch 'vwo - mathematics B' programme anymore.
Symposium on Differential Geometry and Differential Equations
Berger, Marcel; Bryant, Robert
1987-01-01
The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.
Curvature tensor copies in affine geometry
International Nuclear Information System (INIS)
Srivastava, P.P.
1981-01-01
The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt
Fractal geometry of high temperature superconductors
International Nuclear Information System (INIS)
Mosolov, A.B.
1989-01-01
Microstructural geometry of superconducting structural composites of Ag-Yba 2 Cu 3 O x system with a volumetric shave of silver from 0 to 60% is investigated by light and electron microscopy methods. It is ascertained that the structure of cermets investigated is characterized by fractal geometry which is sufficient for describing the electrical and mechanical properties of these materials
Quantification of variability in bedform geometry
van der Mark, C.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.
2008-01-01
We analyze the variability in bedform geometry in laboratory and field studies. Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to quantify the variability in bedform geometry.
Random geometry and Yang-Mills theory
International Nuclear Information System (INIS)
Froehlich, J.
1981-01-01
The author states various problems and discusses a very few preliminary rigorous results in a branch of mathematics and mathematical physics which one might call random (or stochastic) geometry. Furthermore, he points out why random geometry is important in the quantization of Yang-Mills theory. (Auth.)
The Geometry of the Universe: Part 2
Francis, Stephanie
2009-01-01
Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…
Poisson geometry from a Dirac perspective
Meinrenken, Eckhard
2018-03-01
We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.
An approach for management of geometry data
Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.
1980-01-01
The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.
Transformasi Geometri Rotasi Berbantuan Software Geogebra
Directory of Open Access Journals (Sweden)
Muhamad Hanafi
2018-02-01
Full Text Available Penelitian ini bertujuan untuk membantu visualisasi dan menemukan konsep pada Transformasi geometri Rotasi di titik Pusat dengan menggunakan software GeoGebra. Penelitian ini mengulas tentang Koordinat Kartesius dan Polar, dan selanjutntya Transformasi geometri Rotasi di titik Pusat .
Muhassanah, Nuraini; Sujadi, Imam; Riyadi, Riyadi
2014-01-01
The objective of this research was to describe the VIII grade students geometry skills atSMP N 16 Surakarta in the level 0 (visualization), level 1 (analysis), and level 2 (informaldeduction) van Hiele level of thinking in solving the geometry problem. This research was aqualitative research in the form of case study analyzing deeply the students geometry skill insolving the geometry problem based on van Hiele level of thingking. The subject of this researchwas nine students of VIII grade at ...
The design of geometry teaching: learning from the geometry textbooks of Godfrey and Siddons
Fujita, Taro; Jones, Keith
2002-01-01
Deciding how to teach geometry remains a demanding task with one of major arguments being about how to combine the intuitive and deductive aspects of geometry into an effective teaching design. In order to try to obtain an insight into tackling this issue, this paper reports an analysis of innovative geometry textbooks which were published in the early part of the 20th Century, a time when significant efforts were being made to improve the teaching and learning of geometry. The analysis sugge...
Physical meaning of the optical reference geometry
International Nuclear Information System (INIS)
Abramowicz, M.A.
1990-09-01
I show that contrary to a popular misconception the optical reference geometry, introduced a few years ago as a formally possible metric of a 3-space corresponding to a static spacetime, is quite satisfactory also from the physical point of view. The optical reference geometry has a clear physical meaning, as it may be constructed experimentally by measuring light round travel time between static observers. Distances and directions in the optical reference geometry are more strongly connected to experiment than distances and directions in the widely used directly projected metric (discussed e.g. in Landau and Lifshitz textbook. In addition, the optical reference geometry is more natural and convenient than the directly projected one in application to dynamics. In the optical geometry dynamical behaviour of matter is described by concepts and formulae identical to those well known in Newtonian dynamics on a given two dimensional (curved) surface. (author). 22 refs
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
Energy Technology Data Exchange (ETDEWEB)
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Machine learning spatial geometry from entanglement features
You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang
2018-02-01
Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).
Final Report: Geometry And Elementary Particle Physics
International Nuclear Information System (INIS)
Singer, Isadore M.
2008-01-01
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Special metrics and group actions in geometry
Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi
2017-01-01
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry
Mammana, M. F.; Micale, B.; Pennisi, M.
2012-01-01
We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…
Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe
2012-01-01
This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…
Coordination of Conditional Poisson Samples
Directory of Open Access Journals (Sweden)
Grafström Anton
2015-12-01
Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.
Coordination in continuously repeated games
Weeren, A.J.T.M.; Schumacher, J.M.; Engwerda, J.C.
1995-01-01
In this paper we propose a model to describe the effectiveness of coordination in a continuously repeated two-player game. We study how the choice of a decision rule by a coordinator affects the strategic behavior of the players, resulting in more or less cooperation. Our model requires the analysis
Coordinated Transportation: Problems and Promise?
Fickes, Michael
1998-01-01
Examines the legal, administrative, and logistical barriers that have prevented the wide acceptance of coordinating community and school transportation services and why these barriers may be breaking down. Two examples of successful implementation of coordinated transportation are examined: employing a single system to serve all transportation…
Bare coordination: the semantic shift
de Swart, Henriette; Le Bruyn, Bert
2014-01-01
This paper develops an analysis of the syntax-semantics interface of two types of split coordination structures. In the first type, two bare singular count nouns appear as arguments in a coordinated structure, as in bride and groom were happy. We call this the N&N construction. In the second type,
Theory for stationary nonlinear wave propagation in complex magnetic geometry
International Nuclear Information System (INIS)
Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.
1977-08-01
We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)
Gauge symmetry, T-duality and doubled geometry
Energy Technology Data Exchange (ETDEWEB)
Hull, C.M. [Imperial College London (United Kingdom). Inst. for Mathematical Sciences]|[Imperial College London (United Kingdom). Blackett Laboratory; Reid-Edwards, R.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2007-11-15
String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)
Space–time and spatial geodesic orbits in Schwarzschild geometry
Resca, Lorenzo
2018-05-01
Geodesic orbit equations in the Schwarzschild geometry of general relativity reduce to ordinary conic sections of Newtonian mechanics and gravity for material particles in the non-relativistic limit. On the contrary, geodesic orbit equations for a proper spatial submanifold of Schwarzschild metric at any given coordinate-time correspond to an unphysical gravitational repulsion in the non-relativistic limit. This demonstrates at a basic level the centrality and critical role of relativistic time and its intimate pseudo-Riemannian connection with space. Correspondingly, a commonly popularised depiction of geodesic orbits of planets as resulting from the curvature of space produced by the Sun, represented as a rubber sheet dipped in the middle by the weighing of that massive body, is mistaken and misleading for the essence of relativity, even in the non-relativistic limit.
Gauge symmetry, T-duality and doubled geometry
International Nuclear Information System (INIS)
Hull, C.M.
2007-11-01
String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)
Multipole structure and coordinate systems
International Nuclear Information System (INIS)
Burko, Lior M
2007-01-01
Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the lowest non-vanishing one.) This result is demonstrated for the case of two equal like electric charges. Specifically, an adapted coordinate system in which the potential is given by a monopole term only is explicitly found, the coefficients of all higher multipoles vanish identically. It is suggested that this result can be generalized to other potential problems, by making equal coordinate surfaces adapt to the potential problem's equipotential surfaces
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that
Uranyl(VI)-acetylacetonate coordination compounds with various N-heterocyclic ligands
International Nuclear Information System (INIS)
Kawasaki, Takeshi; Nishimura, Tatsuru; Kitazawa, Takafumi
2010-01-01
Seven uranyl(VI) complexes, [UO 2 (acac) 2 (L)] [L=4-methylpyridine (1), 4-ethylpyridine (2), 2,4-dimethylpyridine (3), (-)-nicotine (4), and imidazole (5)], [{UO 2 (acac) 2 } 2 -(4,4'-bipyridine)] (6), and [(2,2'-bipyridine) 2 H][UO 2 (acac)(NO 3 ) 2 ] (7) have been synthesized and characterized crystallographically. The coordination geometry of U has a UNO 6 pentagonal-bipyramidal coordination in 1-6, and a UO 8 hexagonal-bipyramidal coordination in 7. (author)
Geometry and physics of branes
Energy Technology Data Exchange (ETDEWEB)
Gal' tsov, D V
2003-03-21
The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two
Quantification of Porcine Vocal Fold Geometry.
Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L
2016-07-01
The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Geometry-invariant GRIN lens: finite ray tracing.
Bahrami, Mehdi; Goncharov, Alexander V
2014-11-17
The refractive index distribution of the geometry-invariant gradient refractive index lens (GIGL) model is derived as a function of Cartesian coordinates. The adjustable external geometry of the GIGL model aims to mimic the shape of the human and animal crystalline lens. The refractive index distribution is based on an adjustable power-law profile, which provides additional flexibility of the model. An analytical method for layer-by-layer finite ray tracing through the GIGL model is developed and used to calculate aberrations of the GIGL model. The result of the finite ray tracing aberrations of the GIGL model are compared to those obtained with paraxial ray tracing. The derived analytical expression for the refractive index distribution can be employed in the reconstruction processes of the eye using the conventional ray tracing methods. The layer-by-layer finite ray tracing approach would be an asset in ray tracing through a modified GIGL model, where the refractive index distribution cannot be described analytically. Using the layer-by-layer finite ray-tracing method, the potential of the GIGL model in representing continuous as well as shell-like layered structures is illustrated and the results for both cases are presented and analysed.
On the geometry of field lines in plasma flows
International Nuclear Information System (INIS)
Bagewadi, C.S.; Prasanna Kumar, K.N.
1988-01-01
Many research investigators have applied differential geometry to plasma. Intrinsic properties of fluid flows in streamline, vortex line geometries are we ll known under certain set of geometric conditions. Though this approach has yielded some interesting results but the most general properties of flows can be obtained, using eight geometric parameters ksub(s), tsub(s) θsub(ns), θsub(bs), phisub(s), Ωsub(s), div n, div b and the basic necessary conditions to be satisfied by the flow in general anholonomic co-ordinate system together with the conditions to be satisfied by the geometric parameters of triply orthogonal spatial curves of congruences. Adopting the above techniques for triply orthogonal spatial curves of congruences related to the lines of forces, Purushottam has studied the geometric properties of spatial hydromagnetic fluid flows. Again these results have been studied by him in general along the field lines. These results have been studied for plasma along field lines and the basic equations of plasma have been expressed in intrinsic decomposition forms. Furthe r complex lamellar magnetic field have been studied by introducing Lie surface. (a uthor)
Discrete quantum geometries and their effective dimension
International Nuclear Information System (INIS)
Thuerigen, Johannes
2015-01-01
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
Keep Meaning in Conversational Coordination
Directory of Open Access Journals (Sweden)
Elena Clare Cuffari
2014-12-01
Full Text Available Coordination is a widely employed term across recent quantitative and qualitative approaches to intersubjectivity, particularly approaches that give embodiment and enaction central explanatory roles. With a focus on linguistic and bodily coordination in conversational contexts, I review the operational meaning of coordination in recent empirical research and related theorizing of embodied intersubjectivity. This discussion articulates what must be involved in treating linguistic meaning as dynamic processes of coordination. The coordination approach presents languaging as a set of dynamic self-organizing processes and actions on multiple timescales and across multiple modalities that come about and work in certain domains (those jointly constructed in social, interactive, high-order sense-making. These processes go beyond meaning at the level that is available to first-person experience. I take one crucial consequence of this to be the ubiquitously moral nature of languaging with others. Languaging coordinates experience, among other levels of behavior and event. Ethical effort is called for by the automatic autonomy-influencing forces of languaging as coordination.
Sarcomere lattice geometry influences cooperative myosin binding in muscle.
Directory of Open Access Journals (Sweden)
Bertrand C W Tanner
2007-07-01
Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.
Coordinating distributed work : Exploring situated coordination with gaming-simulation
van Laere, J.
2003-01-01
Organizational work has become more and more distributed nowadays. Information and communication technologies (ICT) provide opportunities to improve coordination of distributed work, but in practice many organizations struggle with integrating new organizational structures, new work practices and
A Gyrovector Space Approach to Hyperbolic Geometry
Ungar, Abraham
2009-01-01
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. T
SABRINA, Geometry Plot Program for MCNP
International Nuclear Information System (INIS)
SEIDL, Marcus
2003-01-01
1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required
Information geometry near randomness and near independence
Arwini, Khadiga A
2008-01-01
This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.
Introduction into integral geometry and stereology
DEFF Research Database (Denmark)
Kiderlen, Markus
Statistics and Random Fields and is a self-containing introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulas and results of Blaschke-Petkantschin type. Therefore, Crofton's formula......This text is the extended version of two talks held at the Summer Academy Stochastic Geometry, Spatial Statistics and Random Fields in the Soellerhaus, Germany, in September 2009. It forms (with slight modifications) a chapter of the Springer lecture notes Lectures on Stochastic Geometry, Spatial...
Differential geometry and topology of curves
Animov, Yu
2001-01-01
Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.
Digital and discrete geometry theory and algorithms
Chen, Li
2014-01-01
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a
Fractal geometry mathematical foundations and applications
Falconer, Kenneth
2013-01-01
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applica
Fault geometry and earthquake mechanics
Directory of Open Access Journals (Sweden)
D. J. Andrews
1994-06-01
Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the
The coordinate transforming in geography information system
International Nuclear Information System (INIS)
Zhao Xiang; Chen Gang
2003-01-01
The coordinate transforming of geography information system includes two kinds of transforming, map projection and coordinate-transforming. This paper proposed a arithmetic of coordinate-transforming, it implement the transforming between the longitude-latitude coordinate and the screen coordinate and apply it in the GIS. The preferable effect was made. (authors)
Cieslinski, Jan L.; Ferapontov, Eugene V.; Kitaev, Alexander V.; Nimmo, Jonathan J. C.
2009-10-01
role in soliton theory unifying continuous, discrete and quantum integrable systems. Triply orthogonal coordinates proved to be of prime importance for the modern theory of Hamiltonian systems of hydrodynamic type and differential-geometric Poisson brackets, culminating in the construction of the rich and beautiful theory of Frobenius manifolds. The idea for this special issue developed out of the Second Workshop on Nonlinearity and Geometry, a successful conference held in the Mathematical Research and Conference Center at Będlewo, Poland, 13-19 April 2008 (http://wmii.uwm.edu.pl/˜doliwa/WNG-DD.html). However, there was an open call for papers for this issue and all contributions were peer reviewed according to the standards of the journal and taking into account their relevance to the subject of the planned issue. Among the 30 listed authors, 16 attended the conference and the remaining 14 submitted their papers in answer to this open call. The First School on Nolinearity and Geometry (`Bianchi Days') was organized by Antoni Sym and his students in 1995 at the Physics Faculty of Warsaw University, Poland. The proceedings of the workshop, edited by Daniel Wójcik and Jan Cieśliński, were published by Polish Scientific Publishers PWN (Warsaw, 1998). The Second Workshop (`Darboux Days') was organized in 2008 by Adam Doliwa and his coworkers, under the Honorary Chair of Antoni Sym, as a Banach Center Conference. Both workshops gathered around 50 participants. The purpose of these meetings was to bring together researchers with diverse backgrounds (e.g., mathematical physics and differential geometry), and to review the state of the art at the border between the two subjects: geometric inspirations in soliton theory and applications of soliton techniques in geometry. The format was designed to allow substantial time for interaction and research. The invited lectures were longer, intended to present the current trends and open problems in the fields, and to be
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Attitudes of High School Students towards Geometry
Directory of Open Access Journals (Sweden)
Esat Avcı
2014-12-01
Full Text Available In this research, attitudes of high school students towards geometry were investigated in terms of gender, grade, types of the field and school. Population of research includes students who were studying at high school in five distincs of Mersin in 2013-2014 academical year. Sample of research includes 935 students from twelve high schools. Attitude scale which was developed by Su-Özenir (2008 was used for data collection. For data analysis, mean, standart deviation, t test and ANOVA were used. A meaningful difference between students’ attitudes towards geometry and variance of gender and grade level wasn’t observed, on the other hand a meaningful difference according to field and school type is observed.Key Words: Attitudes towards geometry, high school geometry lesson, attitude scale
Geometry, structure and randomness in combinatorics
Nešetřil, Jaroslav; Pellegrini, Marco
2014-01-01
This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include: graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.
The elements of non-Euclidean geometry
Sommerville, D MY
2012-01-01
Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.
The local index formula in noncommutative geometry
International Nuclear Information System (INIS)
Higson, N.
2003-01-01
These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas
Quantum geometry of bosonic strings - revisited
International Nuclear Information System (INIS)
Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ
1999-07-01
We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)
Energy Technology Data Exchange (ETDEWEB)
Bejarano, Cecilia; Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)
10th China-Japan Geometry Conference
Miyaoka, Reiko; Tang, Zizhou; Zhang, Weiping
2016-01-01
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists. The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, sympl...
An experimental study of passive regenerator geometries
DEFF Research Database (Denmark)
Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini
2011-01-01
Active magnetic regenerative (AMR) systems are being investigated because they represent a potentially attractive alternative to vapor compression technology. The performance of these systems is dependent on the heat transfer and pressure drop performance of the regenerator geometry. Therefore th...
The geometry of René Descartes
Descartes, René
1954-01-01
The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." - John Stuart Mill.
VIII International Meeting on Lorentzian Geometry
Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics
2017-01-01
This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...
Homological mirror symmetry and tropical geometry
Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia
2014-01-01
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...
International Nuclear Information System (INIS)
Bejarano, Cecilia; Guzman, Maria Jose; Ferraro, Rafael
2015-01-01
Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)
Geometry modeling for SAM-CE Monte Carlo calculations
International Nuclear Information System (INIS)
Steinberg, H.A.; Troubetzkoy, E.S.
1980-01-01
Three geometry packages have been developed and incorporated into SAM-CE, for representing in three dimensions the transport medium. These are combinatorial geometry - a general (non-lattice) system, complex combinatorial geometry - a very general system with lattice capability, and special reactor geometry - a special purpose system for light water reactor geometries. Their different attributes are described
Who matters in coordination problems?
Czech Academy of Sciences Publication Activity Database
Sákovics, J.; Steiner, Jakub
2012-01-01
Roč. 102, č. 7 (2012), s. 3439-3461 ISSN 0002-8282 Institutional support: RVO:67985998 Keywords : coordination problem s * heterogeneous agents Subject RIV: AH - Economics Impact factor: 2.792, year: 2012
Coordination Processes in International Organisations
DEFF Research Database (Denmark)
Nedergaard, Peter
2008-01-01
The EU is not a member of the International Labour Organisation (ILO), but relatively elaborate EU coordination takes place anyway. This paper addresses two research questions: 1) How is it possible to evaluate the coordination of the EU in its specific observable configuration in the ILO?, and 2......-à-vis their principals, the Member States. The Commission is the leading agent in the phase leading up to the Conference; the Presidency then takes over. On the one hand, due to the Treaty obligations and their interpretations by the Court of Justice, both the Presidency and the Commission are kept within tight limits...... by the principals. On the other hand, both before and during the Conference, the Member States accept the so-called discursive coordination of the Commission, which seems to be of great (but often neglected) importance. Owing to the organisational set-up in which coordination takes place, the EU is able...
Hall effect in noncommutative coordinates
International Nuclear Information System (INIS)
Dayi, Oemer F.; Jellal, Ahmed
2002-01-01
We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates
Future in actinoids coordination chemistry
International Nuclear Information System (INIS)
Kitazawa, Takafumi
2006-01-01
Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)
Geometry and quantization of moduli spaces
Andersen, Jørgen; Riera, Ignasi
2016-01-01
This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.
ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY
Enrique Gonzalo Reyes Garcia
2004-01-01
ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...
Geometry and topology of wild translation surfaces
Randecker, Anja
2016-01-01
A translation surface is a two-dimensional manifold, equipped with a translation structure. It can be obtained by considering Euclidean polygons and identifying their edges via translations. The vertices of the polygons form singularities if the translation structure can not be extended to them. We study translation surfaces with wild singularities, regarding the topology (genus and space of ends), the geometry (behavior of the singularities), and how the topology and the geometry are related.
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Perspectives in Analysis, Geometry, and Topology
Itenberg, I V; Passare, Mikael
2012-01-01
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
Coordination theory and collaboration technology
Olson, Gary M; Smith, John B
2001-01-01
The National Science Foundation funded the first Coordination Theory and Collaboration Technology initiative to look at systems that support collaborations in business and elsewhere. This book explores the global revolution in human interconnectedness. It will discuss the various collaborative workgroups and their use in technology. The initiative focuses on processes of coordination and cooperation among autonomous units in human systems, in computer and communication systems, and in hybrid organizations of both systems. This initiative is motivated by three scientific issues which have been
Path integrals in curvilinear coordinates
International Nuclear Information System (INIS)
Prokhorov, L.V.
1984-01-01
Integration limits are studied for presenting the path integral curvilinear coordinates. For spherical (and topoloqically equivalent) coordinates it is shown that in formulas involving classical action in the exponent integration over all variables should be carried out within infinite limits. Another peculiarity is associated with appearance of the operator q which provides a complete definition of the wave functions out of the physical region. arguments are given upporting the validity of the cited statament in the general case
Origin of hyperbolicity in brain-to-brain coordination networks
Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan
2018-02-01
Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.
Influence of Surface Geometry of Grating Substrate on Director in Nematic Liquid Crystal Cell
International Nuclear Information System (INIS)
Ye Wenjiang; Xing Hongyu; Yang Guochen; Zhang Zhidong; Sun Yubao; Chen Guoying; Xuan Li
2011-01-01
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z. The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage. The deepness of groove and the cell gap affect the distribution of director. For the relatively shallow groove and the relatively thick cell gap, the director is only dependent on the coordinate z. For the relatively deep groove and the relatively thin cell gap, the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface. (condensed matter: structural, mechanical, and thermal properties)
Three coordination compounds based on benzene tetracarboxylate ...
Indian Academy of Sciences (India)
YUNLONG WU
nescence, considerable attention has been focused on the construction of coordination .... measurements were performed on ground powder samples at .... Figure 2. (a) Coordination environment of Co1 ion in compound 2. (b) Coordination.
Managing interteam coordination within and between organizations
de Vries, Thomas Arend
2015-01-01
To accomplish complex tasks and effectively respond to environmental contingencies, teams must coordinate task-related issues with other teams (i.e., interteam coordination). Regrettably, interteam coordination is often complicated by misunderstandings that can arise from differences in teams’
Motor coordination uses external spatial coordinates independent of developmental vision.
Heed, Tobias; Röder, Brigitte
2014-07-01
The constraints that guide bimanual movement coordination are informative about the processing principles underlying movement planning in humans. For example, symmetry relative to the body midline benefits finger and hand movements independent of hand posture. This symmetry constraint has been interpreted to indicate that movement coordination is guided by a perceptual code. Although it has been assumed implicitly that the perceptual system at the heart of this constraint is vision, this relationship has not been tested. Here, congenitally blind and sighted participants made symmetrical and non-symmetrical (that is, parallel) bimanual tapping and finger oscillation movements. For both groups, symmetrical movements were executed more correctly than parallel movements, independent of anatomical constraints like finger homology and hand posture. For the blind, the reliance on external spatial factors in movement coordination stands in stark contrast to their use of an anatomical reference frame in perceptual processing. Thus, the externally coded symmetry constraint evident in bimanual coordination can develop in the absence of the visual system, suggesting that the visual system is not critical for the establishment of an external-spatial reference frame in movement coordination. Copyright © 2014 Elsevier B.V. All rights reserved.
Tensor calculus in polar coordinates using Jacobi polynomials
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
Physics- and engineering knowledge-based geometry repair system for robust parametric CAD geometries
Li, Dong
2012-01-01
In modern multi-objective design optimisation, an effective geometry engine is becoming an essential tool and its performance has a significant impact on the entire process. Building a parametric geometry requires difficult compromises between the conflicting goals of robustness and flexibility. The work presents a solution for improving the robustness of parametric geometry models by capturing and modelling relative engineering knowledge into a surrogate model, and deploying it automatically...
Indium local geometry in In-Sb-Te thin films using XANES and DFT calculations
Bilovol, V.; Gil Rebaza, A. V.; Mudarra Navarro, A. M.; Errico, L.; Fontana, M.; Arcondo, B.
2017-12-01
In-Sb-Te when is a thin film presents a huge difference in its electrical resistivity when transform from the amorphous (insulating) to the crystalline (conducting) phase. This property made this system one of the main phase-change materials used in the data storage industry. The change in the electrical conductivity is probably associated to a change in the bonding geometry of some of its constituents. To explore this point, we present in this work an study of the bonding geometry of In atoms in In-Sb-Te films by means of In K-edge X-ray absorption near edge structure (XANES) spectroscopy using synchrotron radiation in both as deposited (amorphous) and crystalline thin films obtained as a result of resistance (R) vs temperature (T) measurements. Comparison of the XANES spectra obtained for ternary amorphous films and binary crystalline reference films suggests that in amorphous films the bonding geometry of In atoms is tetrahedral-like. After the thermal annealing has been carried out the differences in the XANES spectra of the as deposited and the annealed films indicate that the bonding geometry of In atoms changes. Based on X-ray diffraction results and ab initio calculations in the framework of the Density Functional Theory (DFT) we show that the new coordination geometry is associated with a tendency of In atoms towards octahedral-like.
The Persistification of the ATLAS Geometry
AUTHOR|(INSPIRE)INSPIRE-00068562; The ATLAS collaboration; Bianchi, Riccardo-Maria
2016-01-01
The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the- y on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS so ware framework “Athena”, which provides the online services and the tools to retrieve the data from the database. is operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geom- etry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify and serve the geometry of HEP experiments. e new mechanism is composed by a new le format and a REST API. e new le format allows to store the whole detector description locally in a at le, and it is especially optimized to descri...
Federal interagency radiation policy coordination
International Nuclear Information System (INIS)
Young, A.L.
1984-01-01
The author discusses Federal interagency radiation policy coordination. The Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) is explained as being dedicated to the success and forward motion of enhanced radiation research and policy coordination. Both CIRRPC and the Science Panel are staffed with Federal employees. Their expertise includes many and various radiation disciplines including cytogenetics, dosimetry, epidemiology, genetics, health physics, nuclear medicine, radiology, radiation carcinogenesis, and risk assessment. Ten scientific and technical issues in their preliminary order are presented: radioepidemiological tables; de minimis radiation levels; radon progeny health effects; occupational exposure registry; measurement, recording, and control of radiation; food irradiation; use of radiation in science, industry, and medicine; nonionizing radiation; and remedial actions
An argument for VP coordination: scene-setting coordination and ...
African Journals Online (AJOL)
This article demonstrates the properties of this curious construction type and proposes the first analysis to date. It is argued that this is an instance of VP coordination and that this configuration allows the possibility of high merger of direct objects in a constrained fashion. Southern African Linguistics and Applied Language ...
Supersymmetric geometries of IIA supergravity III
International Nuclear Information System (INIS)
Gran, Ulf; Papadopoulos, George; Schultz, Christian von
2016-01-01
We find that (massive) IIA backgrounds that admit a G 2 ⋉ℝ 8 invariant Killing spinor must exhibit a null Killing vector field which leaves the Killing spinor invariant and that the rotation of the Killing vector field satisfies a certain g 2 instanton condition. This result together with those in http://dx.doi.org/10.1007/JHEP05(2014)024 and http://dx.doi.org/10.1007/JHEP12(2015)113 complete the classification of geometries of all (massive) IIA backgrounds that preserve one supersymmetry. We also explore the geometry of a class of backgrounds which admit a G 2 ⋉ℝ 8 invariant Killing spinor and where in addition an appropriate 1-form bilinear vanishes. In all cases, we express the fluxes of the theory in terms of the geometry.
Quasi-crystalline geometry for architectural structures
DEFF Research Database (Denmark)
Weizierl, Barbara; Wester, Ture
2001-01-01
Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... with fivefold symmetry in 3D space. The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dedecahedral nodes....... The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden...
Geometry and dynamics of integrable systems
Matveev, Vladimir
2016-01-01
Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...
Conference on Strings, Duality, and Geometry
Phong, Duong; Yau, Shing-Tung; Mirror Symmetry IV
2002-01-01
This book presents contributions of participants of a workshop held at the Centre de Recherches Mathématiques (CRM), University of Montréal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapi...
International conference on Algebraic and Complex Geometry
Kloosterman, Remke; Schütt, Matthias
2014-01-01
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...
Guided discovery learning in geometry learning
Khasanah, V. N.; Usodo, B.; Subanti, S.
2018-03-01
Geometry is a part of the mathematics that must be learned in school. The purpose of this research was to determine the effect of Guided Discovery Learning (GDL) toward geometry learning achievement. This research had conducted at junior high school in Sukoharjo on academic years 2016/2017. Data collection was done based on student’s work test and documentation. Hypothesis testing used two ways analysis of variance (ANOVA) with unequal cells. The results of this research that GDL gave positive effect towards mathematics learning achievement. GDL gave better mathematics learning achievement than direct learning. There was no difference of mathematics learning achievement between male and female. There was no an interaction between sex differences and learning models toward student’s mathematics learning achievement. GDL can be used to improve students’ mathematics learning achievement in geometry.
Application of Tessellation in Architectural Geometry Design
Chang, Wei
2018-06-01
Tessellation plays a significant role in architectural geometry design, which is widely used both through history of architecture and in modern architectural design with the help of computer technology. Tessellation has been found since the birth of civilization. In terms of dimensions, there are two- dimensional tessellations and three-dimensional tessellations; in terms of symmetry, there are periodic tessellations and aperiodic tessellations. Besides, some special types of tessellations such as Voronoi Tessellation and Delaunay Triangles are also included. Both Geometry and Crystallography, the latter of which is the basic theory of three-dimensional tessellations, need to be studied. In history, tessellation was applied into skins or decorations in architecture. The development of Computer technology enables tessellation to be more powerful, as seen in surface control, surface display and structure design, etc. Therefore, research on the application of tessellation in architectural geometry design is of great necessity in architecture studies.
Physical properties corresponding to vortical flow geometry
Energy Technology Data Exchange (ETDEWEB)
Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)
2014-10-01
We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.