WorldWideScience

Sample records for oct-measured retinal thickness

  1. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.

    Science.gov (United States)

    Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y

    2010-09-01

    To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.

  2. Do different spectral domain OCT hardwares measure the same? Comparison of retinal thickness using third-party software

    DEFF Research Database (Denmark)

    Sander, Birgit; Ahmad Al-Abiji, Hajer; Kofod, Mads

    2015-01-01

    Purpose Spectral-domain optical coherence tomographies (OCTs) from different companies do not give identical retinal thicknesses. The purpose of this study was to evaluate if differences in thickness when using a spectral domain Cirrus OCT or a Heidelberg Spectralis are due to hardware difference...

  3. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.

    Science.gov (United States)

    Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N

    2005-02-01

    To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.

  4. Increased-resolution OCT thickness mapping of the human macula: a statistically based registration.

    Science.gov (United States)

    Bernardes, Rui; Santos, Torcato; Cunha-Vaz, José

    2008-05-01

    To describe the development of a technique that enhances spatial resolution of retinal thickness maps of the Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA). A retinal thickness atlas (RT-atlas) template was calculated, and a macular coordinate system was established, to pursue this objective. The RT-atlas was developed from principal component analysis of retinal thickness analyzer (RTA) maps acquired from healthy volunteers. The Stratus OCT radial thickness measurements were registered on the RT-atlas, from which an improved macular thickness map was calculated. Thereafter, Stratus OCT circular scans were registered on the previously calculated map to enhance spatial resolution. The developed technique was applied to Stratus OCT thickness data from healthy volunteers and from patients with diabetic retinopathy (DR) or age-related macular degeneration (AMD). Results showed that for normal, or close to normal, macular thickness maps from healthy volunteers and patients with DR, this technique can be an important aid in determining retinal thickness. Efforts are under way to improve the registration of retinal thickness data in patients with AMD. The developed technique enhances the evaluation of data acquired by the Stratus OCT, helping the detection of early retinal thickness abnormalities. Moreover, a normative database of retinal thickness measurements gained from this technique, as referenced to the macular coordinate system, can be created without errors induced by missed fixation and eye tilt.

  5. MEASUREMENT OF RNFL THICKNESS USING OCT IMAGES FOR GLAUCOMA DETECTION

    Directory of Open Access Journals (Sweden)

    Dhivyabharathi

    2013-08-01

    Full Text Available The thickness of retinal nerve fiber layer (RNFL is one of the pompous parameters for assessing the disease, Glaucoma. A substantial amount of vision can be lost before the patient becomes aware of any defect. Optical Coherence Tomography (OCT provides enhanced depth and clarity of viewing tissues with high resolution compared with other medical imaging devices. It examines the living tissue non-invasively. This paper presents an automatic method to find the thickness of RNFL using OCT images. The proposed algorithm first extracts all the layers present in the OCT image by texture segmentation using Gabor filter method and an algorithm is then developed to segment the RNFL. The thickness measurement of RNFL is automatically displayed based on pixel calculation. The calculated thickness values are compared with the original values obtained from hospital. The result shows that the proposed algorithm is efficient in segmenting the region of interest without manual intervention. The effectiveness of the proposed method is proved statistically by the performance analysis.

  6. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  7. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    Science.gov (United States)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  8. Comparison and interchangeability of macular thickness measured with Cirrus OCT and Stratus OCT in myopic eyes

    Directory of Open Access Journals (Sweden)

    Geng Wang

    2015-12-01

    Full Text Available AIM: To investigate the difference of macular thickness measurements between stratus optical coherence tomography (OCT and Cirrus OCT (Carl Zeiss Meditec, Dublin, CA, USA in the same myopic patient and to develop a conversion equation to interchange macular thickness obtained with these two OCT devices. METHODS: Eighty-nine healthy Chinese adults with spherical equivalent (SE ranging from -1.13 D to -9.63 D were recruited. The macular thickness was measured by Cirrus OCT and Stratus OCT. The correlation between macular thickness and axial length and the agreement between two OCT measurements were evaluated. A formula was generated to interchange macular thickness obtained with two OCT devices. RESULTS: Average macular thickness measured with Stratus OCT (r=-0.280, P=0.008 and Cirrus OCT (r=-0.224, P=0.034 were found to be negatively correlated with axial length. No statistically significant correlation was found between axial length and central subfield macular thickness (CMT measured with Stratus OCT (r=0.191, P=0.073 and Cirrus OCT (r=0.169, P=0.113. The mean CMT measured with Cirrus OCT was 53.63±7.94 μm thicker than with Stratus OCT. The formula CMTCirrus OCT=78.328+0.874×CMTStratus OCT was generated to interchange macular thickness obtained with two OCT devices. CONCLUSION: Macular thickness measured with Cirrus OCT were thicker than with Stratus OCT in myopic eyes. A formula can be used to interchange macular thickness measured with two OCT devices in myopic eyes. Studies with different OCT devices and larger samples are warranted to enable the comparison of macular values measured with different OCT devices.

  9. Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations.

    Science.gov (United States)

    Garcia-Martin, Elena; Pinilla, Isabel; Sancho, Eva; Almarcegui, Carmen; Dolz, Isabel; Rodriguez-Mena, Diego; Fuertes, Isabel; Cuenca, Nicolas

    2012-09-01

    To evaluate the ability of time-domain and Fourier-domain optical coherence tomographies (OCTs) to detect macular and retinal nerve fiber layer atrophies in retinitis pigmentosa (RP). To test the intrasession reproducibility using three OCT instruments (Stratus, Cirrus, and Spectralis). Eighty eyes of 80 subjects (40 RP patients and 40 healthy subjects) underwent a visual field examination, together with 3 macular scans and 3 optic disk evaluations by the same experienced examiner using 3 OCT instruments. Differences between healthy and RP eyes were compared. The relationship between measurements with each OCT instrument was evaluated. Repeatability was studied by intraclass correlation coefficients and coefficients of variation. Macular and retinal nerve fiber layer atrophies were detected in RP patients for all OCT parameters. Macular and retinal nerve fiber layer thicknesses, as determined by the different OCTs, were correlated but significantly different (P < 0.05). Reproducibility was moderately high using Stratus, good using Cirrus and Spectralis, and excellent using the Tru-track technology of Spectralis. In RP eyes, measurements showed higher variability compared with healthy eyes. Differences in thickness measurements existed between OCT instruments, despite there being a high degree of correlation. Fourier-domain OCT can be considered a valid and repeatability technique to detect retinal nerve fiber layer atrophy in RP patients.

  10. Correlation between SD-OCT, immunocytochemistry and functional findings in a pigmented animal model of retinal degeneration

    Directory of Open Access Journals (Sweden)

    Nicolás eCuenca

    2014-12-01

    Full Text Available Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa. The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz. Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer, and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.

  11. Impacts of age and sex on retinal layer thicknesses measured by spectral domain optical coherence tomography with Spectralis.

    Science.gov (United States)

    Nieves-Moreno, María; Martínez-de-la-Casa, José M; Morales-Fernández, Laura; Sánchez-Jean, Rubén; Sáenz-Francés, Federico; García-Feijoó, Julián

    2018-01-01

    To examine differences in individual retinal layer thicknesses measured by spectral domain optical coherence tomography (SD-OCT) (Spectralis®) produced with age and according to sex. Cross-sectional, observational study. The study was conducted in 297 eyes of 297 healthy subjects aged 18 to 87 years. In one randomly selected eye of each participant the volume and mean thicknesses of the different macular layers were measured by SD-OCT using the instrument's macular segmentation software. Volume and mean thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigmentary epithelium (RPE) and photoreceptor layer (PR). Retinal thickness was reduced by 0.24 μm for every one year of age. Age adjusted linear regression analysis revealed mean GCL, IPL, ONL and PR thickness reductions and a mean OPL thickness increase with age. Women had significantly lower mean GCL, IPL, INL, ONL and PR thicknesses and volumes and a significantly greater mRNFL volume than men. The thickness of most retinal layers varies both with age and according to sex. Longitudinal studies are needed to determine the rate of layer thinning produced with age.

  12. Retinal nerve fiber layer analysis with scanning laser polarimetry and RTVue-OCT in patients of retinitis pigmentosa.

    Science.gov (United States)

    Xue, Kang; Wang, Min; Chen, Junyi; Huang, Xin; Xu, Gezhi

    2013-01-01

    To measure the thickness of the retinal nerve fiber layer (RNFL) of patients with retinitis pigmentosa (RP) and that of normal controls by scanning laser polarimetry with enhanced corneal compensation (GDxECC) and RTVue-optical coherence tomography (OCT). Fifty-two eyes of 26 patients were included. All patients underwent complete ophthalmological examinations and testing with GDxECC. Twenty-eight of 52 eyes of RP patients underwent RTVue-OCT measurements. A group of 50 eyes of 25 normal subjects (controls) was also included. GDxECC measured RNFL thickness in the peripapillary area in all subjects as well as temporal-superior-nasal-inferior-temporal (TSNIT) parameters, including TSNIT means, superior and inferior region means, TSNIT standard deviation (SD), inter-eye symmetry and nerve fiber indicator (NFI). RTVue-OCT measured the mean, superior, inferior, temporal and nasal quadrant RNFL thickness. In RP patients and controls, TSNIT means by GDxECC were, respectively, 65.00 ± 7.35 and 55.32 ± 5.20. Mean superior quadrant thicknesses were 80.56 ± 10.93 and 69.54 ± 7.45. Mean inferior thicknesses were 80.58 ± 9.34 and 69.12 ± 7.78. SDs were 27.92 ± 5.21 and 28.23 ± 4.01. Inter-eye symmetries were 0.82 ± 0.17 and 0.87 ± 0.09. NFIs were 9.74 ± 8.73 and 16.81 ± 8.13. The differences between mean TSNIT, mean superior and mean inferior quadrant thicknesses and NFIs were statistically significant (p < 0.001). In RTVue-OCT measurements, the differences between mean, superior, inferior and temporal quadrant RNFL thicknesses were statistically significant (p = 0.0322, 0.0213, 0.0387, 0.0005). The RNFL measured by GDxECC was significantly thicker in RP patients than in controls. RNFL thickness measured by RTVue-OCT was significantly greater in RP patients than in controls in the superior, inferior and temporal regions. This contribution provides information on RNFL thickness and discusses the mechanism underlying this phenomenon. Copyright © 2012 S. Karger AG

  13. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie

    2017-01-01

    BACKGROUND: The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). METHODS: A prospective study consisting of patients...... with active nAMD enrolled in the Distance of Choroid Study at Moorfields Eye Hospital, London. Patients underwent three 12×9 mm macular raster scans using the deep range imaging (DRI) OCT-1 SS-OCT (Topcon) device in a single imaging session. Retinal and choroidal thicknesses were calculated for the ETDRS...... macular subfields. Repeatability was calculated according to methods described by Bland and Altman. RESULTS: 39 eyes of 39 patients with nAMD were included with a mean (±SD) age of 73.9 (±7.2) years. The mean (±SD) retinal thickness of the central macular subfield was 225.7 μm (±12.4 μm...

  14. Retinal oxygen saturation in relation to retinal thickness in diabetic macular edema

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Peto, Tunde; Grauslund, Jakob

    to retinal thickness in patients with diabetic macular edema (DME). Methods: We included 18 patients with DME that all had central retinal thickness (CRT) >300 µm and were free of active proliferative diabetic retinopathy. Optical coherence tomography (Topcon 3D OCT-2000 spectral domain OCT) was used...... for paracentral edema, the oxygen saturation in the upper and lower temporal arcade branches were compared to the corresponding upper and lower subfield thickness. Spearman’s rank was used to calculate correlation coefficients between CRT and retinal oximetry. Results: Median age and duration of diabetes was 59....... 92.3%, p=0.52). We found no correlation between CRT and retinal oxygen saturation, even when accounting for paracentral edema (p>0.05). Furthermore, there was no difference in retinal oxygen saturation between the macular hemisphere that was more or less affected by DME (p>0.05). Conclusion: Patients...

  15. Comparison of choroidal thickness measurements between spectral-domain OCT and swept-source OCT in normal and diseased eyes

    Directory of Open Access Journals (Sweden)

    Zafar S

    2016-11-01

    Full Text Available Sidra Zafar,1 MA Rehman Siddiqui,2,3 Rida Shahzad1 1Medical College, Aga Khan University Hospital, 2Department of Ophthalmology, Shahzad Eye Hospital, 3South City Hospital, Karachi, Pakistan Purpose: Sub-foveal choroidal thickness (SFCT is affected in many ocular diseases. The aim of this study was to compare SFCT measurements between Topcon 3D 2000 spectral-domain optical coherence tomography (SD-OCT and Topcon swept-source OCT (SS-OCT, with different laser wavelengths, in normal and diseased populations. Materials and methods: This was a prospective, cross-sectional, noninterventional study including 27 normal volunteers and 27 participants with retinal disease. OCT scans were performed sequentially and under standardized conditions using both SD-OCT and SS-OCT. The OCT scans were evaluated by two independent graders. Paired t-tests and intraclass correlation coefficients (ICCs were used to assess the statistically significant difference between SFCT measurements as measured by the two devices. Results: Mean SFCT measurements for all 54 participants were 264.9±103.1 µm using SD-OCT (range: 47–470 µm and 278.5±110.5 µm using SS-OCT (range: 56–502 µm, with an inter-device ICC of 0.850. Greater variability was noted in the diseased eyes. Inter-device ICCs were 0.870 (95% CI; 0.760–0.924 and 0.840 (95% CI; 0.654–0.930 for normal and diseased eyes, respectively. However, the difference was not statistically significant (P=0.132. Conclusion: Both machines reliably measure SFCT. Larger studies are needed to confirm these findings. Keywords: choroidal imaging, diseased, normal, SD-OCT, SS-OCT

  16. Relationship between Outer Retinal Layers Thickness and Visual Acuity in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Raymond L. M. Wong

    2015-01-01

    Full Text Available Purpose. To investigate the correlation of outer retinal layers (ORL thickness and visual acuity (VA in patients with diabetic macular edema (DME. Methods. Consecutive DME patients seen at the Retina Clinic of The University of Hong Kong were recruited for OCT assessment. The ORL thickness was defined as the distance between external limiting membrane (ELM and retinal pigment epithelium (RPE at the foveal center. The correlation between total retinal thickness, ORL thickness, and vision was calculated. Results. 78 patients with DME were recruited. The mean age was 58.1 years (±11.5 years and their mean visual acuity measured with Snellen chart was 0.51 (±0.18. The correlation coefficient between total retinal thickness and visual acuity was 0.34 (P < 0.001 whereas the correlation coefficient was 0.65 between ORL thickness and visual acuity (P < 0.001. Conclusion. ORL thickness correlates better with vision than the total retinal thickness. It is a novel OCT parameter in the assessment of DME. Moreover, it could be a potential long term visual prognostic factor for patients with DME.

  17. Comparative data on SD-OCT for the retinal nerve fiber layer and retinal macular thickness in a large cohort with Marfan syndrome.

    Science.gov (United States)

    Xu, WanWan; Kurup, Sudhi P; Fawzi, Amani A; Durbin, Mary K; Maumenee, Irene H; Mets, Marilyn B

    2017-01-01

    To report the distribution of macular and optic nerve topography in the eyes of individuals with Marfan syndrome aged 8-56 years using spectral domain optical coherence tomography (SD-OCT). Thirty-three patients with Marfan syndrome underwent a full eye examination including slit-lamp biomicroscopy, indirect ophthalmoscopy, and axial length measurement; and SD-OCT measurements of the retinal nerve fiber layer (RNFL) and macular thickness. For patients between the ages of 8 and 12 years, the average RNFL thickness is 98 ± 9 μm, the vertical cup to disc (C:D) ratio is 0.50 ± 0.10, the central subfield thickness (CST) is 274 ± 38 μm, and the macular volume is 10.3 ± 0.6 mm 3 . For patients between the ages of 13 and 17 years, the average RNFL is 86 ± 16 μm, the vertical C:D ratio is 0.35 ± 0.20, the CST is 259 ± 15 μm, and the macular volume is 10.1 ± 0.5 mm 3 . For patients 18 years or older, the average RNFL is 89 ± 12 μm, the vertical C:D ratio is 0.46 ± 0.18, the CST is 262 ± 20 μm, and the macular volume is 10.2 ± 0.4 mm 3 . When the average RNFL data are compared to a normative, age-adjusted database, 6 of 33 (18%) were thinner than the 5% limit. This study reports the distribution of SD-OCT data for patients with Marfan syndrome. Compared to a normative database, 18% of eyes with Marfan syndrome had RNFL thickness < 5% of the population.

  18. Update on visual function and choroidal-retinal thickness alterations in Parkinson's disease.

    Science.gov (United States)

    Obis, J; Satue, M; Alarcia, R; Pablo, L E; Garcia-Martin, E

    2018-05-01

    Parkinson's disease (PD) is a neurodegenerative process that affects 7.5 million people around the world. Since 2004, several studies have demonstrated changes in various retinal layers in PD using optical coherence tomography (OCT). However, there are some discrepancies in the results of those studies. Some of them have correlated retinal thickness with the severity or duration of the disease, demonstrating that OCT measurements may be an innocuous and easy biomarker for PD progression. Other studies have demonstrated visual dysfunctions since early phases of the disease. Lastly, the most recent studies that use Swept Source OCT technology, have found choroidal thickness increase in PD patients and provide new information related to the retinal degenerative process in this disease. The aim of this paper is to review the literature on OCT and PD, in order to determine the altered retinal and choroidal parameters in PD and their possible clinical usefulness, and also the visual dysfunctions with higher impact in these patients. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Relevance of Retinal Thickness Changes in the OCT Inner and Outer Rings to Predict Progression to Clinical Macular Edema

    DEFF Research Database (Denmark)

    Vujosevic, Stela; Varano, Monica; Egan, Catherine

    2015-01-01

    PURPOSE: To characterize the relevance of macular thickness changes in the inner and outer rings in the progression of macular edema in eyes/patients with diabetes type 2. METHODS: A total of 374 type 2 diabetic patients with mild nonproliferative diabetic retinopathy (ETDRS levels 20-35) were...... included in a 12-month prospective observational study to identify retinopathy progression. Retinal thickness analyses were performed in 194 eyes/patients using Cirrus SD- OCT and 166 eyes/patients using Spectralis SD-OCT. The DRCR.net classification of subclinical and clinical macular edema was used....... A composite grading of macular edema is proposed in this study. RESULTS: A total of 317 eyes/patients completed the study. SD-OCT identified clinical macular edema in 24 eyes/patients (6.7%) and subclinical macular edema in 104 eyes/patients (28.9%) at baseline. Increased thickness of the central subfield...

  20. Visual Acuity is Related to Parafoveal Retinal Thickness in Patients with Retinitis Pigmentosa and Macular Cysts

    Science.gov (United States)

    Brockhurst, Robert J.; Gaudio, Alexander R.; Berson, Eliot L.

    2008-01-01

    Purpose To quantify the prevalence and effect on visual acuity of macular cysts in a large cohort of patients with retinitis pigmentosa. Methods In 316 patients with typical forms of retinitis pigmentosa, we measured visual acuities with Early Treatment Diabetic Retinopathy Study (ETDRS) charts, detected macular cysts with optical coherence tomography (OCT), and quantified retinal thicknesses by OCT. We used the FREQ, LOGISTIC, and GENMOD procedures of SAS to evaluate possible risk factors for cyst prevalence and the MIXED procedure to quantify the relationships of visual acuity to retinal thickness measured at different locations within the macula. Results We found macular cysts in 28% of the patients, 40% of whom had cysts in only one eye. Macular cysts were seen most often in patients with dominant disease and not at all in patients with X-linked disease (p = 0.006). In eyes with macular cysts, multiple regression analysis revealed that visual acuity was inversely and independently related to retinal thickness at the foveal center (p = 0.038) and within a ring spanning an eccentricity of 5° to 10° from the foveal center (p = 0.004). Conclusions Macular cysts are a common occurrence in retinitis pigmentosa, especially among patients with dominantly-inherited disease. Visual acuity is influenced by edema in the parafovea, as well as in the fovea. PMID:18552390

  1. Retinal thickness as a marker of disease progression in longitudinal observation of patients with Wolfram syndrome.

    Science.gov (United States)

    Zmyslowska, Agnieszka; Fendler, Wojciech; Waszczykowska, Arleta; Niwald, Anna; Borowiec, Maciej; Jurowski, Piotr; Mlynarski, Wojciech

    2017-11-01

    Wolfram syndrome (WFS) is a recessively inherited monogenic form of diabetes coexisting with optic atrophy and neurodegenerative disorders with no currently recognized markers of disease progression. The aim of the study was to evaluate retinal parameters by using optical coherence tomography (OCT) in WFS patients after 2 years of follow-up and analysis of the parameters in relation to visual acuity. OCT parameters and visual acuity were measured in 12 WFS patients and 31 individuals with type 1 diabetes. Total thickness of the retinal nerve fiber layer (RNFL), average retinal thickness and total retinal volume decreased in comparison with previous OCT examination. Significant decreases were noted for RNFL (average difference -17.92 µm 95% CI -30.74 to -0.10; p = 0.0157), macular average thickness (average difference -5.38 µm 95% CI -10.63 to -2.36; p = 0.0067) and total retinal volume (average difference -0.15 mm 3 95% CI -0.30 to -0.07; p = 0.0070). Central thickness remained unchanged (average difference 1.5 µm 95% CI -7.61 to 10.61; p = 0.71). Visual acuity of WFS patients showed a strong negative correlation with diabetes duration (R = -0.82; p = 0.0010). After division of WFS patients into two groups (with low-vision and blind patients), all OCT parameters except for the RNFL value were lower in blind WFS patients. OCT measures structural parameters and can precede visual acuity loss. The OCT study in WFS patients should be performed longitudinally, and serial retinal examinations may be helpful as a potential end point for future clinical trials.

  2. Ametropia, retinal anatomy, and OCT abnormality patterns in glaucoma. 1. Impacts of refractive error and interartery angle

    Science.gov (United States)

    Elze, Tobias; Baniasadi, Neda; Jin, Qingying; Wang, Hui; Wang, Mengyu

    2017-12-01

    Retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) is widely used in clinical practice to support glaucoma diagnosis. Clinicians frequently interpret peripapillary RNFLT areas marked as abnormal by OCT machines. However, presently, clinical OCT machines do not take individual retinal anatomy variation into account, and according diagnostic biases have been shown particularly for patients with ametropia. The angle between the two major temporal retinal arteries (interartery angle, IAA) is considered a fundamental retinal ametropia marker. Here, we analyze peripapillary spectral domain OCT RNFLT scans of 691 glaucoma patients and apply multivariate logistic regression to quantitatively compare the diagnostic bias of spherical equivalent (SE) of refractive error and IAA and to identify the precise retinal locations of false-positive/negative abnormality marks. Independent of glaucoma severity (visual field mean deviation), IAA/SE variations biased abnormality marks on OCT RNFLT printouts at 36.7%/22.9% of the peripapillary area, respectively. 17.2% of the biases due to SE are not explained by IAA variation, particularly in inferonasal areas. To conclude, the inclusion of SE and IAA in OCT RNFLT norms would help to increase diagnostic accuracy. Our detailed location maps may help clinicians to reduce diagnostic bias while interpreting retinal OCT scans.

  3. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    Science.gov (United States)

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  4. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  5. Comparison of Ganglion Cell and Retinal Nerve Fiber Layer Thickness in Pigment Dispersion Syndrome, Pigmentary Glaucoma, and Healthy Subjects with Spectral-domain OCT.

    Science.gov (United States)

    Arifoglu, Hasan Basri; Simavli, Huseyin; Midillioglu, Inci; Berk Ergun, Sule; Simsek, Saban

    2017-01-01

    To evaluate the ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) thickness in pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) with RTVue spectral domain optical coherence tomography (SD-OCT). A total of 102 subjects were enrolled: 29 with PDS, 18 with PG, and 55 normal subjects. Full ophthalmic examination including visual field analysis was performed. SD-OCT was used to analyze GCC superior, GCC inferior, and average RNFL thickness. To compare the discrimination capabilities, the areas under the receiver operating characteristic curves were assessed. Superior GCC, inferior GCC, and RNFL thickness values of patients with PG were statistically signicantly lower than those of patients with PDS (p  0.05). The SD-OCT-derived GCC and RNFL thickness parameters can be useful to discriminate PG from both PDS and normal subjects.

  6. Retinal degeneration in progressive supranuclear palsy measured by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Stemplewitz, Birthe; Kromer, Robert; Vettorazzi, Eik; Hidding, Ute; Frings, Andreas; Buhmann, Carsten

    2017-07-13

    This cross-sectional study compared the retinal morphology between patients with progressive supranuclear palsy (PSP) and healthy controls. (The retinal nerve fiber layer (RNFL) around the optic disc and the retina in the macular area of 22 PSP patients and 151 controls were investigated by spectral domain optical coherence tomography (SD-OCT). Additionally, the RNFL and the nerve fiber index (NFI) were measured by scanning laser polarimetry (SLP). Results of RNFL measurements with SD-OCT and SLP were compared to assess diagnostic discriminatory power. Applying OCT, PSP patients showed a smaller RNFL thickness in the inferior nasal and inferior temporal areas. The macular volume and the thickness of the majority of macular sectors were reduced compared to controls. SLP data showed a thinner RNFL thickness and an increase in the NFI in PSP patients. Sensitivity and specificity to discriminate PSP patients from controls were higher applying SLP than SD-OCT. Retinal changes did not correlate with disease duration or severity in any OCT or SLP measurement. PSP seems to be associated with reduced thickness and volume of the macula and reduction of the RNFL, independent of disease duration or severity. Retinal imaging with SD-OCT and SLP might become an additional tool in PSP diagnosis.

  7. Membrane Peeling-Induced Retinal Alterations on Intraoperative OCT in Vitreomacular Interface Disorders From the PIONEER Study.

    Science.gov (United States)

    Ehlers, Justis P; Han, Jaehong; Petkovsek, Daniel; Kaiser, Peter K; Singh, Rishi P; Srivastava, Sunil K

    2015-11-01

    To assess retinal architectural alterations that occur following membrane peeling procedures and the impact of peel technique on these alterations utilizing intraoperative optical coherence tomography (iOCT). This is a subanalysis of the prospective PIONEER iOCT study of eyes undergoing a membrane peeling for a vitreomacular interface (VMI) disorder. Intraoperative scanning was performed with a microscope-mounted OCT system. Macroarchitectural alterations (e.g., full-thickness retinal elevations) and microarchitectural alterations (e.g., relative layer thickness alterations) were analyzed. Video/iOCT correlation was performed to identify instrument-tissue manipulations resulting in macroarchitectural alterations. One hundred sixty-three eyes were included in the macroarchitectural analysis. Instrumentation utilized for membrane peeling included forceps alone for 73 eyes (45%), combined diamond-dusted membrane scraper (DDMS) and forceps for 87 eyes (53%), and other techniques in three eyes (2%). Focal retinal elevations were identified in 45 of 163 eyes (28%). Video/iOCT correlation identified 69% of alterations involved forceps compared to 26% due to DDMS. Sixteen percent of retinal alterations persisted 1 month following surgery. The microarchitectural analysis included 134 eyes. Immediately following membrane peeling, there was a significant increase in the ellipsoid zone to retinal pigment epithelium height (+20%, P peeling for VMI conditions. Differences in surgical instruments may impact these architectural alterations.

  8. Multicenter reliability of semiautomatic retinal layer segmentation using OCT

    Science.gov (United States)

    Oberwahrenbrock, Timm; Traber, Ghislaine L.; Lukas, Sebastian; Gabilondo, Iñigo; Nolan, Rachel; Songster, Christopher; Balk, Lisanne; Petzold, Axel; Paul, Friedemann; Villoslada, Pablo; Brandt, Alexander U.; Green, Ari J.

    2018-01-01

    Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL. PMID:29552598

  9. Ametropia, retinal anatomy, and OCT abnormality patterns in glaucoma. 2. Impacts of optic nerve head parameters

    Science.gov (United States)

    Baniasadi, Neda; Wang, Mengyu; Wang, Hui; Jin, Qingying; Elze, Tobias

    2017-12-01

    Clinicians use retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) as an adjunct to glaucoma diagnosis. Ametropia is accompanied by changes to the optic nerve head (ONH), which may affect how OCT machines mark RNFLT measurements as abnormal. These changes in abnormality patterns may bias glaucoma diagnosis. Here, we investigate the relationship between OCT abnormality patterns and the following ONH-related and ametropia-associated parameters on 421 eyes of glaucoma patients: optic disc tilt and torsion, central retinal vessel trunk location (CRVTL), and nasal and temporal retinal curvature adjacent to ONH, quantified as nasal/temporal slopes of the inner limiting membrane. We applied multivariate logistic regression with abnormality marks as regressands to 40,401 locations of the peripapillary region and generated spatial maps of locations of false positive/negative abnormality marks independent of glaucoma severity. Effects of torsion and temporal slope were negligible. The effect of tilt could be explained by covariation with ametropia. For CRVTL/nasal slope, abnormality pattern shifts at 7.2%/23.5% of the peripapillary region were detected, respectively, independent of glaucoma severity and ametropia. Therefore, CRVTL and nasal curvature should be included in OCT RNFLT norms. Our spatial location maps may aid clinicians to improve diagnostic accuracy.

  10. Choroidal Thickness Analysis in Patients with Usher Syndrome Type 2 Using EDI OCT

    OpenAIRE

    Colombo, L.; Sala, B.; Montesano, G.; Pierrottet, C.; De Cillà, S.; Maltese, P.; Bertelli, M.; Rossetti, L.

    2015-01-01

    To portray Usher Syndrome type 2, analyzing choroidal thickness and comparing data reported in published literature on RP and healthy subjects. Methods. 20 eyes of 10 patients with clinical signs and genetic diagnosis of Usher Syndrome type 2. Each patient underwent a complete ophthalmologic examination including Best Corrected Visual Acuity (BCVA), intraocular pressure (IOP), axial length (AL), automated visual field (VF), and EDI OCT. Both retinal and choroidal measures were measured. Stati...

  11. Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians

    Directory of Open Access Journals (Sweden)

    Bindu Appukuttan

    2014-01-01

    Full Text Available Aim: To provide the normative data of macular and retinal nerve fiber layer (RNFL thickness in Indians using spectral domain OCT (Spectralis OCT, Heidelberg Engineering, Germany and to evaluate the effects of age, gender, and refraction on these parameters. Design: Observational, cross-sectional study. Materials and Methods: The eyes of 105 healthy patients aged between 20-75 years, with no ocular disease and best corrected visual acuity of 20/20, were scanned using standard scanning protocols by a single examiner. Exclusion criteria included glaucoma, retinal diseases, diabetes, history of prior intraocular surgery or laser treatment. The mean macular and RNFL thickness were recorded, and the effects of age, gender, and refraction on these parameters were evaluated. This data was compared with published literature on Caucasians to assess the ethnic variations of these parameters. Results: The normal central foveal thickness in healthy Indian eyes measured using Spectralis OCT was 260.1 ± 18.19 ΅m. The nasal inner quadrant showed maximum retinal thickness (338.88 ± 18.17 ΅m.The mean RNFL thickness was 101.43 ± 8.63 ΅m with maximum thickness in the inferior quadrant. The central foveal thickness showed a gender-based difference (P = 0.005 but did not correlate significantly with age (P = 0.134, whereas the parafoveal, perifoveal thickness, macular volume, and RNFL thickness showed significant negative correlation with age. Conclusions: Our study provides the normative database for Indians on Spectralis OCT. It also suggests that age should be considered while interpreting the macular thickness and RNFL, whereas gender should also be given consideration in central foveal thickness.

  12. Reproducibility of retinal nerve fiber layer thickness measures using eye tracking in children with nonglaucomatous optic neuropathy.

    Science.gov (United States)

    Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Packer, Roger J; Avery, Robert A

    2015-01-01

    To determine the intra- and intervisit reproducibility of circumpapillary retinal nerve fiber layer (RNFL) thickness measures using eye tracking-assisted spectral-domain optical coherence tomography (SD OCT) in children with nonglaucomatous optic neuropathy. Prospective longitudinal study. Circumpapillary RNFL thickness measures were acquired with SD OCT using the eye-tracking feature at 2 separate study visits. Children with normal and abnormal vision (visual acuity ≥ 0.2 logMAR above normal and/or visual field loss) who demonstrated clinical and radiographic stability were enrolled. Intra- and intervisit reproducibility was calculated for the global average and 9 anatomic sectors by calculating the coefficient of variation and intraclass correlation coefficient. Forty-two subjects (median age 8.6 years, range 3.9-18.2 years) met inclusion criteria and contributed 62 study eyes. Both the abnormal and normal vision cohort demonstrated the lowest intravisit coefficient of variation for the global RNFL thickness. Intervisit reproducibility remained good for those with normal and abnormal vision, although small but statistically significant increases in the coefficient of variation were observed for multiple anatomic sectors in both cohorts. The magnitude of visual acuity loss was significantly associated with the global (ß = 0.026, P < .01) and temporal sector coefficient of variation (ß = 0.099, P < .01). SD OCT with eye tracking demonstrates highly reproducible RNFL thickness measures. Subjects with vision loss demonstrate greater intra- and intervisit variability than those with normal vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Correlation of structure and function of the macula in patients with retinitis pigmentosa.

    Science.gov (United States)

    Battu, R; Khanna, A; Hegde, B; Berendschot, T T J M; Grover, S; Schouten, J S A G

    2015-07-01

    To correlate the structure of the macula, as measured by spectral-domain optical coherence tomography (SD-OCT) and function, as measured by microperimetry (MAIA) in patients with retinitis pigmentosa (RP) and relatively good visual acuity. Prospective, cross-sectional, non-intervention study. Patients with RP. Thirty patients with RP and good central visual acuity were identified. Each patient underwent SD-OCT of the macula and microperimetry. The images were overlaid using the custom-designed software. The retinal sensitivity by microperimetry was correlated with corresponding retinal thickness, as measured by the SD-OCT. ELM, COST, and IS/OS junction were scored as intact, disrupted, or absent. Comparing the retinal sensitivity on the MAIA with various measurements on the SD-OCT. The retinal sensitivity on the MAIA showed a significant correlation with total retinal thickness and outer retinal thickness on the SD-OCT. There was no association with either the inner retinal thickness or the choroidal thickness. ORT showed a statistically significant correlation with the anatomical classification of ELM (r=-0.76, Pmacula in patients with RP. These studies are important to establish surrogate markers that can be used as end points for various tests in future therapeutic clinical trials.

  14. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy

    Directory of Open Access Journals (Sweden)

    Moura Frederico

    2010-01-01

    Full Text Available Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL measurements using optical coherence tomography (OCT scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.

  15. Ultra-Widefield Steering-Based SD-OCT Imaging of the Retinal Periphery

    Science.gov (United States)

    Choudhry, Netan; Golding, John; Manry, Matthew W.; Rao, Rajesh C.

    2016-01-01

    Objective To describe the spectral-domain optical coherence tomography (SD-OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Design Observational study. Participants 68 patients (68 eyes) with 19 peripheral retinal features. Main Outcome Measures SD-OCT-based structural features. Methods Nineteen peripheral retinal features including: vortex vein, congenital hypertrophy of the retinal pigment epithelium (CHRPE), pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment (RRD), typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen were identified by peripheral clinical examination. Near infrared (NIR) scanning laser ophthalmoscopy (SLO) images and SD-OCT of these entities were registered to UWF color photographs. Results SD-OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, RPE loss or hypertrophy were seen in several entities including CHRPE, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision-threatening pathologies

  16. Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies.

    Directory of Open Access Journals (Sweden)

    Pearse A Keane

    Full Text Available To describe an approach to the use of optical coherence tomography (OCT imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness.In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon. Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL. This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion.67,321 participants (134,642 eyes in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days.We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.

  17. Retinal changes in diabetic patients without diabetic retinopathy.

    Science.gov (United States)

    Dumitrescu, Alina Gabriela; Istrate, Sinziana Luminita; Iancu, Raluca Claudia; Guta, Oana Maria; Ciuluvica, Radu; Voinea, Liliana

    2017-01-01

    The purpose of this study was to measure retinal vessel caliber and to examine early changes in macular thickness using optical coherence tomography (OCT). We evaluated to what extend vascular caliber and macular thickness differed between patients with type 2 diabetes mellitus without diabetic retinopathy compared with healthy individuals. 26 diabetic patients without diabetic retinopathy and 26 normal participants without any retinal and optic nerve diseases underwent ophthalmic examination, fundus photography, and OCT imaging. Temporal inferior retinal vessel diameters were measured using OCT. Also, we measured macular thickness in nine ETDRS subfields using Cirrus OCT. The mean age in the diabetic group was 61.5 years and in the control group, 55.5 years. Wider retinal arterioles and venules were found in patients with diabetes compared with healthy subjects (120 µm versus 96 µm, pdiabetes mellitus, central macular thickness was significantly thinner than that of control eyes (243.5 µm versus 269.9 µm, p value diabetes without diabetic retinopathy.

  18. Elevated serum IGF-1 level enhances retinal and choroidal thickness in untreated acromegaly patients.

    Science.gov (United States)

    Zhang, Xia; Ma, Jin; Wang, Yuhan; Li, Lüe; Gao, Lu; Guo, Xiaopeng; Xing, Bing; Zhong, Yong

    2018-03-01

    1) To compare the retinal, choroidal, Haller's layer, and Sattler's/choriocapillaris thicknesses of untreated acromegaly patients without chiasm compression or diabetes mellitus and healthy controls. 2) To evaluate the correlations of retinal and choroidal thicknesses with serum growth hormone (GH) and insulin-like growth factor 1 (IGF) burden. This prospective, case-control study included 27 untreated acromegaly patients and 27 sex-matched and age-matched controls. Subfoveal choroidal, Haller's layer and Sattler's/choriocapillaris thicknesses were determined by enhanced-depth imaging optical coherence tomography (EDI-OCT). Foveal and macular retinal thicknesses were determined with SD-OCT. GH and IGF-1 burdens were defined as the product of disease duration and treatment-naïve serum GH and IGF-1 levels. Compared with healthy controls, patients with acromegaly exhibited significantly increased foveal retinal (p = 0.003), subfoveal choroidal (p IGF-1 level (p = 0.03) and IGF-1 burden (p = 0.009). No significant correlations were detected between choroidal thickness and GH burden (p = 0.44). Retinal thickness was not significantly correlated with any factor. The choroidal thickness of acromegaly patients was greater than that of healthy controls and was significantly correlated with disease duration, IGF-1 level and IGF-1 burden, indicating that excessive serum IGF-1 and its exposure time have a combined effect on choroidal thickness.

  19. Age, Sex, and Ethnic Variations in Inner and Outer Retinal and Choroidal Thickness on Spectral-Domain Optical Coherence Tomography.

    Science.gov (United States)

    Bafiq, Rinoza; Mathew, Raeba; Pearce, Elizabeth; Abdel-Hey, Ahmed; Richardson, Matthew; Bailey, Thomas; Sivaprasad, Sobha

    2015-11-01

    To evaluate age, sex, and ethnic variations in inner and outer retinal and choroidal thickness and foveal pit, using spectral-domain optical coherence tomography (SD OCT). Single-center observational cross-sectional study. Ninety randomly selected, healthy individuals of white, black, and South Asian origin underwent SD OCT raster and enhanced depth imaging scan. Manual measurements of inner and outer retinal thickness and choroidal thickness up to 3 mm nasal and temporal to the fovea were performed. The age, sex, and ethnic differences in these parameters were analyzed. The mean inner retinal thickness was lower by approximately 12 μm in black subjects across the central retina compared to white subjects (P ethnic groups but the temporal choroid was significantly thinner in black subjects (P < .05). The choroid showed an age-related decline in thickness of 2 μm per year of age of the subjects. Interethnic differences include wider fovea, lower central foveal thickness, and thinner inner retina in eyes of black subjects compared to their white and South Asian counterparts. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Choroidal thickness measurements with optical coherence tomography in branch retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Muge Coban-Karatas

    2016-05-01

    Full Text Available AIM: To evaluate central macular thickness (CMT and mean choroidal thickness (MCT in eyes with branch retinal vein occlusion (BRVO, before and after ranibizumab treatment using spectral domain-optical coherence tomography (SD-OCT. METHODS: Forty-two patients with unilateral BRVO and macular edema were included in this study. There were 25 men and 17 women. Using SD-OCT, choroidal thickness was measured at 500 µm intervals up to 1500 µm temporal and nasal to the fovea. MCT was calculated based on the average of the 7 locations. All the eyes with BRVO were treated with intravitreal ranibizumab (0.5 mg/0.05 mL. Comparisons between the BRVO and fellow eyes were analyzed using Mann-Whitney U test. Pre-injection and post-injection measurements were analyzed using Wilcoxon test and repeated measure analysis. RESULTS: At baseline, there was a significant difference between the BRVO and fellow eyes in MCT [BRVO eyes 245 (165-330 µm, fellow eyes 229 (157-327 µm] and CMT [BRVO eyes 463 (266-899 µm, fellow eyes 235 (148-378 µm (P=0.041, 0.0001, respectively]. Following treatment, CMT [295 (141-558 µm] and MCT [229 (157-329 µm] decreased significantly compared to the baseline measurements (P=0.001, 0.006, respectively. Also BCVA (logMAR improved significantly (P=0.0001 in the BRVO eyes following treatment. After treatment CMT [BRVO eyes 295 (141-558 µm, fellow eyes 234 (157-351 µm] and MCT [BRVO eyes 229 (157-329 µm, fellow eyes 233 (162-286 µm] values did not reveal any significant difference in BRVO eyes and fellow eyes (P=0.051, 0.824, respectively. CONCLUSION: In eyes with BRVO, CMT and MCT values are greater than the fellow eyes, and decrease significantly following ranibizumab injection.

  1. Spectral-domain Optical Coherence Tomography Retinal and Choroidal Thickness Metric Repeatability in Age-related Macular Degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie

    2016-01-01

    : Enrolled patients underwent repeated SDOCT imaging using the Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany). A single technician certified for clinical trials took 3 macular volume scans. Retinal thicknesses were calculated for each of the 9 Early Treatment Diabetic Retinopathy Study (ETDRS...... was 34.7 μm (95% CI 33.7-35.7 μm). CONCLUSIONS: This study suggests that a change of greater than 31 μm in Spectralis SDOCT-derived retinal thickness measurement of the central macular subfield and 35 μm in subfoveal choroidal thickness is necessary to detect true clinical change associated with disease...

  2. Retinal Layers Measurements following Silicone Oil Tamponade for Retinal Detachment Surgery.

    Science.gov (United States)

    Jurišić, Darija; Geber, Mia Zorić; Ćavar, Ivan; Utrobičić, Dobrila Karlica

    2017-12-19

    This study aimed to investigate the influence of silicone oil on the retinal nerve fiber layer (RNFL) thickness in patients with primary rhegmatogenous retinal detachment who underwent vitreoretinal surgery. The study included 47 patients (eyes), who underwent a pars plana vitrectomy with the silicone oil tamponade. The control group included unoperated eye of all participants. Spectral-domain optical coherence tomography (SD-OCT) was used for the measurements of peripapilar and macular RNFL thickness. The average peripapillary RNFL thickness was significantly higher in the silicone oil filled eyes during endotamponade and after its removal. The eyes with elevated IOP had less thickening of the RNFL in comparison to the eyes with normal IOP. Central macular thickness and macular volume were decreased in the silicone oil filled eyes in comparison to the control eyes. In conclusion, silicone oil caused peripapilar RNFL thickening in the vitrectomized eyes during endotamponade and after silicone oil removal.

  3. Decreased Retinal Thickness in Type 1 Diabetic Children with Signs of Nonproliferative Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    P. Ruiz-Ocaña

    2018-01-01

    Full Text Available The retina functions as a neurovascular unit. How early vascular alterations affect neuronal layers remains controversial; early vascular failure could lead to edema increasing retinal thicknesses, but alternatively neuronal loss could lead to reduced retinal thickness. Objective. To evaluate retinal thickness in a cohort of pediatric patients with type 1 diabetes mellitus (PwT1DM and to analyze differences according to the presence or absence of nonproliferative diabetic retinopathy (NPDR, poor metabolic control, and diabetes duration. Patients and Methods. We performed retinographies and optical coherence tomography (OCT (TOPCON 3D1000® to PwT1DM followed at our center and healthy controls. Measurements of the control group served to calculate reference values. Results. 59 PwT1DM (age 12.51 ± 2.59 and 22 healthy controls (age 10.66 ± 2.51 volunteered. Only two PwT1DM, both adolescents with poor metabolic control, presented NPRD. Both showed decreased thicknesses and retinal volumes. The odds ratio of having decreased retinal thickness when signs of NPDR were present was 11.72 (95% IC 1.16–118.28; p=0.036. Conclusions. PwT1DM with NPDR have increased odds of decreased retinal thicknesses and volumes. Whether these changes are reversible by improving metabolic control or not remains to be elucidated.

  4. Structural analysis of retinal photoreceptor ellipsoid zone and postreceptor retinal layer associated with visual acuity in patients with retinitis pigmentosa by ganglion cell analysis combined with OCT imaging

    Science.gov (United States)

    Liu, Guodong; Li, Hui; Liu, Xiaoqiang; Xu, Ding; Wang, Fang

    2016-01-01

    Abstract The aim of this study was to examine changes in photoreceptor ellipsoid zone (EZ) and postreceptor retinal layer in retinitis pigmentosa (RP) patients by ganglion cell analysis (GCA) combined with optical coherence tomography (OCT) imaging to evaluate the structure–function relationships between retinal layer changes and best corrected visual acuity (BCVA). Sixty-eight eyes of 35 patients with RP and 65 eyes of 35 normal controls were analyzed in the study. The average length of EZ was 911.1 ± 208.8 μm in RP patients, which was shortened with the progression of the disease on the OCT images. The average ganglion cell–inner plexiform layer thickness (GCIPLT) was 54.7 ± 18.9 μm in RP patients, while in normal controls it was 85.6 ± 6.8 μm. The GCIPLT in all quarters became significantly thinner along with outer retinal thinning. There was a significantly positive correlation between BCVA and EZ (r = −0.7622, P retinal layer changes from a new perspective in RP patients, which suggests that EZ and GCIPLT obtained by GCA combined with OCT imaging are the direct and valid indicators to diagnosis and predict the pathological process of RP. PMID:28033301

  5. Retinal layer measurements after successful macula-off retinal detachment repair using optical coherence tomography.

    Science.gov (United States)

    Menke, Marcel N; Kowal, Jens H; Dufour, Pascal; Wolf-Schnurrbusch, Ute E; Ceklic, Lala; Framme, Carsten; Wolf, Sebastian

    2014-09-04

    Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Quantitative analysis of macular retinal thickness and macular volume in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Ying Zhao

    2017-12-01

    Full Text Available AIM: To evaluate and characterize the macular thickness and macular volume in patients of different stages of diabetic retinopathy with special-domain optical coherence tomography(SD-OCT. METHODS: Totally 40 patients(78 eyeswith diabetic retinopathy were recruited in the study from January 2016 to January 2017 in our hospital. According to the international clinical classification of diabetic retinopathy, 20 cases(40 eyeswere categorized as non-proliferative diabetic retinopathy(NPDRgroup and 20 cases proliferative diabetic retinopathy(PDRgroup(38 eyes. All subjects were examined and analyzed with Early Treatment Diabetic Retinopathy Study(ETDRSsubfields, which were embedded in HS(Haag-Streitwith diameter of 1, 3 and 6mm.The changes of retinal thickness and volume of the macular center were measured. RESULTS: The thickness of macular foveolar in NPDR group and PDR group were 252.57±31.36μm, 362.47±20.81μm. The retinal thickness of inner superior subfield(ISMand inner nasal subfield(INMwere the thickest; that of inner inferior subfield(IIMwas next to ISM and INM, and that of inner temporal subfield was the thinnest. Of the outer subfields, the retinal thickness of outer superior subfield(OSMwas the thickest; that of outer nasal subfield(ONMwas next to OSM, and that of outer temporal subfield(OTMand outer inferior subfield(OIMwas the thinnest. The value of macular central concave thickness and retinal thickness in each quadrant of the NPDR group were less than those of the PDR group, the difference was statistically significant(P3, 0.28±0.16mm3, the upper and nasal sides of the middle part of the partition were the largest, the inferior and the temporal side were the smallest. The nasal side of the outer loop was the largest, the upper was the second, the temporal side and the inferior were the smallest. The volume of macular central fovea and the retinal volume in each quadrant of the NPDR group were smaller than those of the PDR group, the

  7. Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections

    Science.gov (United States)

    Messinger, Jeffrey D.; Sloan, Kenneth R.; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F.

    2011-01-01

    Purpose. To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL] and inner plexiform [IPL] layers and outer plexiform [OPL] and outer nuclear [ONL] layers). Methods. In 0.8-μm-thick, macula-wide sections through the foveola of 18 donors (age range, 40–92 years), 21 layers were measured at 25 locations by a trained observer and validated by a second observer. Tissue volume changes were assessed by comparing total retinal thickness in ex vivo OCT and in sections. Results. Median tissue shrinkage was 14.5% overall and 29% in the fovea. Histologic laminar boundaries resembled those in SD-OCT scans, but the shapes of the foveolar OPL and ONL differed. Histologic GCL, IPL, and OPLHenle were thickest at 0.8. to 1, 1.5, and 0.4 mm eccentricity, respectively. ONL was thickest in an inward bulge at the foveal center. At 1 mm eccentricity, GCL, INL, and OPLHenle represented 17.3% to 21.1%, 18.0% to 18.5%, and 14.2% to 16.6% of total retinal thickness, respectively. In donors ≥70 years of age, the RPE and choroid were 17.1% and 29.6% thinner and OPLHenle was 20.8% thicker than in donors macula were generated. Newer OCT systems can separate GCL from IPL and OPLHenle from ONL, with good agreement for the proportion of retinal thickness occupied by OPLHenle in OCT and histology. The thickening of OPLHenle in older eyes may reflect Müller cell hypertrophy associated with rod loss. PMID:21421869

  8. Ratiometric analysis of optical coherence tomography-measured in vivo retinal layer thicknesses for the detection of early diabetic retinopathy.

    Science.gov (United States)

    Bhaduri, Basanta; Shelton, Ryan L; Nolan, Ryan M; Hendren, Lucas; Almasov, Alexandra; Labriola, Leanne T; Boppart, Stephen A

    2017-11-01

    Influence of diabetes mellitus (DM) and diabetic retinopathy (DR) on parafoveal retinal thicknesses and their ratios was evaluated. Six retinal layer boundaries were segmented from spectral-domain optical coherence tomography images using open-source software. Five study groups: (1) healthy control (HC) subjects, and subjects with (2) controlled DM, (3) uncontrolled DM, (4) controlled DR and (5) uncontrolled DR, were identified. The one-way analyses of variance (ANOVA) between adjacent study groups (i. e. 1 with 2, 2 with 3, etc) indicated differences in retinal thicknesses and ratios. Overall retinal thickness, ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness, and their combination (GCL+ IPL), appeared to be significantly less in the uncontrolled DM group when compared to controlled DM and controlled DR groups. Although the combination of nerve fiber layer (NFL) and GCL, and IPL thicknesses were not different, their ratio, (NFL+GCL)/IPL, was found to be significantly higher in the controlled DM group compared to the HC group. Comparisons of the controlled DR group with the controlled DM group, and with the uncontrolled DR group, do not show any differences in the layer thicknesses, though several significant ratios were obtained. Ratiometric analysis may provide more sensitive parameters for detecting changes in DR. Picture: A representative segmented OCT image of the human retina is shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Hata, Masayuki; Miyamoto, Kazuaki; Oishi, Akio; Kimura, Yugo; Nakagawa, Satoko; Horii, Takahiro; Yoshimura, Nagahisa

    2014-01-01

    The retinal nerve fiber layer thickness (RNFLT) in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (OCT). Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation) and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE), ten eyes with optic neuritis (ON), and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION) at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT) and OCT (OCT-RNFLT) measurements among different etiologies were investigated. No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01) or ON (P=0.02) patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001) or ON (P=0.001) patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01) and ON (P<0.01) patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026). The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001) patients. In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss.

  10. Choroidal Thickness Analysis in Patients with Usher Syndrome Type 2 Using EDI OCT.

    Science.gov (United States)

    Colombo, L; Sala, B; Montesano, G; Pierrottet, C; De Cillà, S; Maltese, P; Bertelli, M; Rossetti, L

    2015-01-01

    To portray Usher Syndrome type 2, analyzing choroidal thickness and comparing data reported in published literature on RP and healthy subjects. Methods. 20 eyes of 10 patients with clinical signs and genetic diagnosis of Usher Syndrome type 2. Each patient underwent a complete ophthalmologic examination including Best Corrected Visual Acuity (BCVA), intraocular pressure (IOP), axial length (AL), automated visual field (VF), and EDI OCT. Both retinal and choroidal measures were measured. Statistical analysis was performed to correlate choroidal thickness with age, BCVA, IOP, AL, VF, and RT. Comparison with data about healthy people and nonsyndromic RP patients was performed. Results. Mean subfoveal choroidal thickness (SFCT) was 248.21 ± 79.88 microns. SFCT was statistically significant correlated with age (correlation coefficient -0.7248179, p patients (p = 0.2138). Conclusions. Our study demonstrated in vivo choroidal thickness reduction in patients with Usher Syndrome type 2. These data are important for the comprehension of mechanisms of disease and for the evaluation of therapeutic approaches.

  11. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-11-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Eye Institute, Athens, Greece; 2New York University Medical School, New York, NY, USA Background: The purpose of this study was to compare and correlate central corneal thickness in healthy, nonoperated eyes with three advanced anterior-segment imaging systems: a high-resolution Scheimpflug tomography camera (Oculyzer II, a spectral-domain anterior-segment optical coherence tomography (AS-OCT system, and a high-frequency ultrasound biomicroscopy (HF-UBM system. Methods: Fifty eyes randomly selected from 50 patients were included in the study. Inclusion criteria were healthy, nonoperated eyes examined consecutively by the same examiner. Corneal imaging was performed by three different methods, ie, Oculyzer II, spectral-domain AS-OCT, and FH-UBM. Central corneal thickness measurements were compared using scatter diagrams, Bland-Altman plots (with bias and 95% confidence intervals, and two-paired analysis. Results: The coefficient of determination (r2 between the Oculyzer II and AS-OCT measurements was 0.895. Likewise, the coefficient was 0.893 between the Oculyzer II and HF-UBM and 0.830 between the AS-OCT and HF-UBM. The trend line coefficients of linearity were 0.925 between the Oculyzer II and the AS-OCT, 1.006 between the Oculyzer II and HF-UBM, and 0.841 between the AS-OCT and HF-UBM. The differences in average corneal thickness between the three pairs of CCT measurements were –6.86 µm between the Oculyzer II and HF-UBM, –12.20 µm between the AS-OCT and Oculyzer II, and +19.06 µm between the HF-UBM and AS-OCT. Conclusion: The three methods used for corneal thickness measurement are highly correlated. Compared with the Scheimplug and ultrasound devices, the AS-OCT appears to report a more accurate, but overally thinner corneal pachymetry. Keywords: anterior eye segment, high-frequency ultrasound biomicroscopy, optical coherence tomography, high-resolution Pentacam

  12. Retinal Layer Abnormalities as Biomarkers of Schizophrenia.

    Science.gov (United States)

    Samani, Niraj N; Proudlock, Frank A; Siram, Vasantha; Suraweera, Chathurie; Hutchinson, Claire; Nelson, Christopher P; Al-Uzri, Mohammed; Gottlob, Irene

    2018-06-06

    Schizophrenia is associated with several brain deficits, as well as visual processing deficits, but clinically useful biomarkers are elusive. We hypothesized that retinal layer changes, noninvasively visualized using spectral-domain optical coherence tomography (SD-OCT), may represent a possible "window" to these abnormalities. A Leica EnvisuTM SD-OCT device was used to obtain high-resolution central foveal B-scans in both eyes of 35 patients with schizophrenia and 50 demographically matched controls. Manual retinal layer segmentation was performed to acquire individual and combined layer thickness measurements in 3 macular regions. Contrast sensitivity was measured at 3 spatial frequencies in a subgroup of each cohort. Differences were compared using adjusted linear models and significantly different layer measures in patients underwent Spearman Rank correlations with contrast sensitivity, quantified symptoms severity, disease duration, and antipsychotic medication dose. Total retinal and photoreceptor complex thickness was reduced in all regions in patients (P layer (P layer (P layer thickness (R = -.47, P = .005). Our novel findings demonstrate considerable retinal layer abnormalities in schizophrenia that are related to clinical features and visual function. With time, SD-OCT could provide easily-measurable biomarkers to facilitate clinical assessment and further our understanding of the disease.

  13. Influence of cataract surgery on optical coherence tomography and neurophysiology measurements in patients with retinitis pigmentosa.

    Science.gov (United States)

    Garcia-Martin, Elena; Rodriguez-Mena, Diego; Dolz, Isabel; Almarcegui, Carmen; Gil-Arribas, Laura; Bambo, Maria P; Larrosa, Jose M; Polo, Vicente; Pablo, Luis E

    2013-08-01

    To evaluate the effect of uncomplicated cataract phacoemulsification on the measurements of visual evoked potentials (VEP), pattern electroretinogram (PERG), and macular and retinal nerve fiber layer (RNFL) using 2 spectral-domain optical coherence tomography (OCT) instruments, the Cirrus OCT (Carl Zeiss Meditech) and Spectralis OCT (Heidelberg Engineering), in patients with retinitis pigmentosa (RP), and to assess the reliability of the OCT measurements before and after cataract surgery. Observational cross-sectional study. Thirty-five eyes of 35 patients with RP (20 men and 15 women, 45-66 years) who underwent cataract phacoemulsification were studied. At 1 month before and 1 month after surgery, visual acuity, VEP, PERG, and 3 repetitions of scans using the RNFL and macular analysis protocols of the Cirrus and Spectralis OCT instruments were performed. The differences in measurements between the 2 visits were analyzed. Repeatability of OCT measurements was evaluated by calculating the coefficients of variation. VEP amplitude, RNFL thicknesses provided by Cirrus and Spectralis, and macular measurements provided by Cirrus OCT differed between the 2 visits. VEP latency, PERG measurements, and macular thicknesses provided by the Spectralis OCT before surgery did not differ significantly from those after surgery. The OCT repeatability was better after surgery, with lower coefficients of variation for scans performed after surgical removal of the cataract. The nuclear, cortical, and posterior subcapsular types of cataracts did not show different repeatability. The presence of cataracts affects VEP amplitude, RNFL, and macular measurements performed with OCT in eyes with RP. Image repeatability significantly improves after cataract phacoemulsification. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Retinal layer location of increased retinal thickness in eyes with subclinical and clinical macular edema in diabetes type 2

    DEFF Research Database (Denmark)

    Bandello, Francesco; Tejerina, Amparo Navea; Vujosevic, Stela

    2015-01-01

    PURPOSE: To identify the retinal layer predominantly affected in eyes with subclinical and clinical macular edema in diabetes type 2. METHODS: A cohort of 194 type 2 diabetic eyes/patients with mild nonproliferative diabetic retinopathy (ETDRS levels 20/35) were examined with Cirrus spectral......-domain optical coherence tomography (OCT) at the baseline visit (ClinicalTrials.gov identifier: NCT01145599). Automated segmentation of the retinal layers of the eyes with subclinical and clinical macular edema was compared with a sample of 31 eyes from diabetic patients with normal OCT and an age......-matched control group of 58 healthy eyes. RESULTS: From the 194 eyes in the study, 62 had subclinical macular edema and 12 had clinical macular edema. The highest increases in retinal thickness (RT) were found in the inner nuclear layer (INL; 33.6% in subclinical macular edema and 81.8% in clinical macular edema...

  15. Optic Nerve Head and Retinal Nerve Fiber Layer Differences Between Caribbean Black and African American Patients as Measured by Spectral Domain OCT.

    Science.gov (United States)

    Rao, Rohini; Dhrami-Gavazi, Elona; Al-Aswad, Lama; Ciarleglio, Adam; Cioffi, George A; Blumberg, Dana M

    2015-01-01

    There are well-established differences in optic nerve morphology between patients of African and European descent. Spectral domain optical coherence tomography (OCT) scanning has demonstrated these differences with respect to optic disc area (DA), average cup-disc ratio, cup volume, and nerve fiber layer thickness. However, the term "African descent" describes a heterogenous group with considerable variability. This study evaluates differences in optic nerve and retinal nerve fiber layer (RNFL) parameters as measured by Cirrus HD-OCT between Caribbean black and African American patients. A total of 25 African American subjects and 25 Caribbean black subjects with normal ocular examinations were consecutively recruited to this study. All patients received imaging of the optic nerve and nerve fiber layer with Cirrus HD-OCT. Optic nerve and RNFL parameters were evaluated for statistically significant differences using a t test. A mixed effect model for correlated data was then created to adjust outcome variables for (1) repeated measures and (2) optic nerve size. Two one-sided t tests were then utilized to determine equivalence. After adjustment for DA, RNFL thickness, cup volume, DA, inferior nerve fiber layer, and vertical cup-disc ratio demonstrated statistically significant equivalence between the 2 groups (P value fiber layer quadrant was significantly different between the 2 groups and may merit further investigation. Findings of this study suggest that optic nerve and RNFL morphology is markedly similar between Caribbean blacks and African Americans once adjusted for optic nerve size but cannot be considered equivalent in all measures, particularly in the superior nerve fiber layer.

  16. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  17. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations.

    Science.gov (United States)

    Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V

    2016-04-01

    We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.

  18. Agreement of Two Different Spectral Domain Optical Coherence Tomography Instruments for Retinal Nerve Fiber Layer Measurements

    Directory of Open Access Journals (Sweden)

    Hooshang Faghihi

    2014-01-01

    Full Text Available Purpose: To determine the agreement between Spectralis and Cirrus spectral domain optical coherence tomography (SD-OCT measurements of peripapillary retinal nerve fiber layer (RNFL thickness. Methods: Suspected or confirmed cases of glaucoma who met the inclusion criteria underwent peripapillary RNFL thickness measurement using both the Spectralis and Cirrus on the same day within a few minutes. Results: Measurements were performed on 103 eyes of 103 patients with mean age of 50.4±17.7 years. Mean RNFL thickness was 89.22±15.87 versus 84.54±13.68 μm using Spectralis and Cirrus, respectively. The difference between measurements and the average of paired measurements with the two devices showed a significant linear relationship. Bland-Altman plots demonstrated that Spectralis thickness values were systematically larger than that of Cirrus. Conclusion: Spectralis OCT generates higher peripapillary RNFL thickness readings as compared to Cirrus OCT; this should be kept in mind when values obtained with different instruments are compared during follow-up.

  19. Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients.

    Science.gov (United States)

    Mayer, Markus A; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2010-11-08

    Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.

  20. Retinal nerve fiber layer thickness map determined from optical coherence tomography images

    NARCIS (Netherlands)

    Mujat, M.; Chan, R. C.; Cense, B.; Park, B.H.; Joo, C.; Akkin, T.; Chen, TC; de Boer, JF

    2005-01-01

    We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth

  1. Comparative studies of RNFL thickness measured by OCT with global index of visual fields in patients with ocular hypertension and early open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Sergios Taliantzis

    2009-06-01

    Full Text Available Sergios Taliantzis, Dimitris Papaconstantinou, Chrysanthi Koutsandrea, Michalis Moschos, Michalis Apostolopoulos, Gerasimos GeorgopoulosAthens University Medical School, Department of Ophthalmology, Athens, GreecePurpose: To compare the functional changes in visual fields with optical coherence tomography (OCT findings in patients with ocular hypertension, open angle glaucoma, and suspected glaucoma. In addition, our purpose is to evaluate the correlation of global indices with the structural glaucomatous defect, to assess their statistical importance in all the groups of our study, and to estimate their validity to the clinical practice.Methods: One hundred sixty nine eyes (140 patients were enrolled. The patients were classified in three groups. Group 1 consisted of 54 eyes with ocular hypertension, group 2 of 42 eyes with preperimetric glaucoma, and group 3 of 73 eyes with chronic open angle glaucoma. All of them underwent ophthalmic examination according to a prefixed protocol, OCT exam (Stratus 3000 for retinal nerve fiber layer (RNFL thickness measurement with fast RNFL thickness protocol and visual fields (VF examination with Octopus perimeter (G2 program, central 30–2 threshold strategy. Pearson correlation was calculated between RNFL thickness and global index of VF.Results: A moderate correlation between RNFL thickness and indices mean sensitivity (MS, mean defect (MD and loss variance (LV of VF (0.547, -0.582, -0.527, respectively; P < 0.001 was observed for all patients. Correlations of the ocular hypertension and preperimetric groups are weak. Correlation of RNFL thickness with global indices becomes stronger as the structural alterations become deeper in OCT exam. Correlation of RNFL thickness with the global index of VF, in respective segments around optic disk was also calculated and was found significant in the nasal, inferior, superior, and temporal segments.Conclusion: RNFL average thickness is not a reliable index for early

  2. Correlation between peripapillary retinal nerve fiber layer thickness and fundus autofluorescence in primary open-angle glaucoma

    Directory of Open Access Journals (Sweden)

    Reznicek L

    2013-09-01

    Full Text Available Lukas Reznicek,* Florian Seidensticker,* Thomas Mann, Irene Hübert, Alexandra Buerger, Christos Haritoglou, Aljoscha S Neubauer, Anselm Kampik, Christoph Hirneiss, Marcus Kernt Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany *These authors contributed equally to this work Purpose: To investigate the relationship between retinal nerve fiber layer (RNFL thickness and retinal pigment epithelium alterations in patients with advanced glaucomatous visual field defects. Methods: A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma and advanced glaucomatous visual field defects were included in this study. All study participants underwent a full ophthalmic examination followed by visual field testing with standard automated perimetry as well as spectral-domain optical coherence tomography (SD-OCT for peripapillary RNFL thickness and Optos wide-field fundus autofluorescence (FAF images. A pattern grid with corresponding locations between functional visual field sectors and structural peripapillary RNFL thickness was aligned to the FAF images at corresponding location. Mean FAF intensity (range: 0 = black and 255 = white of each evaluated sector (superotemporal, temporal, inferotemporal, inferonasal, nasal, superonasal was correlated with the corresponding peripapillary RNFL thickness obtained with SD-OCT. Results: Correlation analyses between sectoral RNFL thickness and standardized FAF intensity in the corresponding topographic retina segments revealed partly significant correlations with correlation coefficients ranging between 0.004 and 0.376 and were statistically significant in the temporal inferior central field (r = 0.324, P = 0.036 and the nasal field (r = 0.376, P = 0.014. Conclusion: Retinal pigment epithelium abnormalities correlate with corresponding peripapillary RNFL damage, especially in the temporal inferior sector of patients with advanced glaucomatous visual field defects. A

  3. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.

    Directory of Open Access Journals (Sweden)

    Eun Kyoung Kim

    Full Text Available To evaluate the changes of retinal nerve fiber layer (RNFL, ganglion cell layer (GCL, inner plexiform layer (IPL, and ganglion cell-inner plexiform layer (GCIPL thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT in macular region of glaucoma patients.In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS values were measured using 24-2 standard automated perimetry (SAP.RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001. Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001. In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness.Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.

  4. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.

    Science.gov (United States)

    Kim, Eun Kyoung; Park, Hae-Young Lopilly; Park, Chan Kee

    2017-01-01

    To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24-2 standard automated perimetry (SAP). RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.

  5. Inner neural retina loss in central retinal artery occlusion.

    Science.gov (United States)

    Ikeda, Fumiko; Kishi, Shoji

    2010-09-01

    To report morphologic retinal changes and visual outcomes in acute and chronic central retinal artery occlusion (CRAO). We reviewed ten eyes of ten patients with CRAO (age, 65.3 ± 10.2 years) and measured retinal thicknesses at the central fovea and the perifovea using optical coherence tomography (OCT) over 8 ± 4 months. During the acute phase (within 10 days), the mean inner retinal thicknesses were 148% and 139% of normal values at 1 mm nasal and temporal to the fovea. They decreased to 22% and 11% of normal inner retinal thickness during the chronic phase (3 months or later). The retinal thickness at the perifovea decreased linearly until 3 months but was stable during the chronic phase. In contrast, the foveal thickness increased slightly in the acute phase but was equivalent to the normal level during the chronic phase. As a result of inner retinal atrophy, the foveal pit was shallow during the chronic phase. The final visual acuity was correlated positively with retinal thickness at the perifovea during the chronic CRAO phase. OCT showed that inner retinal necrosis with early swelling and late atrophy occurred in CRAO. The fovea and outer retina appeared to be excluded from ischemic change. The residual inner retina at the perifovea determined the final visual outcomes.

  6. Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients

    Science.gov (United States)

    Lang, Andrew; Carass, Aaron; Bittner, Ava K.; Ying, Howard S.; Prince, Jerry L.

    2017-03-01

    Three dimensional segmentation of macular optical coherence tomography (OCT) data of subjects with retinitis pigmentosa (RP) is a challenging problem due to the disappearance of the photoreceptor layers, which causes algorithms developed for segmentation of healthy data to perform poorly on RP patients. In this work, we present enhancements to a previously developed graph-based OCT segmentation pipeline to enable processing of RP data. The algorithm segments eight retinal layers in RP data by relaxing constraints on the thickness and smoothness of each layer learned from healthy data. Following from prior work, a random forest classifier is first trained on the RP data to estimate boundary probabilities, which are used by a graph search algorithm to find the optimal set of nine surfaces that fit the data. Due to the intensity disparity between normal layers of healthy controls and layers in various stages of degeneration in RP patients, an additional intensity normalization step is introduced. Leave-one-out validation on data acquired from nine subjects showed an average overall boundary error of 4.22 μm as compared to 6.02 μm using the original algorithm.

  7. Ability of spectral domain optical coherence tomography peripapillary retinal nerve fiber layer thickness measurements to identify early glaucoma

    Directory of Open Access Journals (Sweden)

    Tarannum Mansoori

    2011-01-01

    Full Text Available Purpose : To evaluate the ability of spectral domain optical coherence tomography (OCT peripapillary retinal nerve fiber layer thickness (RNFLT parameters to distinguish normal eyes from those with early glaucoma in Asian Indian eyes. Design : Observational cross-sectional study. Materials and Methods : One hundred and seventy eight eyes (83 glaucoma patients and 95 age matched healthy subjects of subjects more than 40 years of age were included in the study. All subjects underwent RNFLT measurement with spectral OCT/ scanning laser ophthalmoscope (SLO after dilatation. Sensitivity, specificity and area under the receiving operating characteristic curve (AROC were calculated for various OCT peripapillary RNFL parameters. Results: The mean RNFLT in healthy subjects and patients with early glaucoma were 105.7 ± 5.1 μm and 90.7 ± 7.5 μm, respectively. The largest AROC was found for 12 o′clock- hour (0.98, average (0.96 and superior quadrant RNFLT (0.9. When target specificity was set at ≥ 90% and ≥ 80%, the parameters with highest sensitivity were 12 o′clock -hour (91.6%, average RNFLT (85.3% and 12 o′ clock- hour (96.8 %, average RNFLT (94.7% respectively. Conclusion : Our study showed good ability of spectral OCT/ SLO to differentiate normal eyes from patients with early glaucoma and hence it may serve as an useful adjunct for early diagnosis of glaucoma.

  8. Choroidal Thickness Analysis in Patients with Usher Syndrome Type 2 Using EDI OCT

    Directory of Open Access Journals (Sweden)

    L. Colombo

    2015-01-01

    Full Text Available To portray Usher Syndrome type 2, analyzing choroidal thickness and comparing data reported in published literature on RP and healthy subjects. Methods. 20 eyes of 10 patients with clinical signs and genetic diagnosis of Usher Syndrome type 2. Each patient underwent a complete ophthalmologic examination including Best Corrected Visual Acuity (BCVA, intraocular pressure (IOP, axial length (AL, automated visual field (VF, and EDI OCT. Both retinal and choroidal measures were measured. Statistical analysis was performed to correlate choroidal thickness with age, BCVA, IOP, AL, VF, and RT. Comparison with data about healthy people and nonsyndromic RP patients was performed. Results. Mean subfoveal choroidal thickness (SFCT was 248.21±79.88 microns. SFCT was statistically significant correlated with age (correlation coefficient −0.7248179, p<0.01. No statistically significant correlation was found between SFCT and BCVA, IOP, AL, VF, and RT. SFCT was reduced if compared to healthy subjects (p<0.01. No difference was found when compared to choroidal thickness from nonsyndromic RP patients (p=0.2138. Conclusions. Our study demonstrated in vivo choroidal thickness reduction in patients with Usher Syndrome type 2. These data are important for the comprehension of mechanisms of disease and for the evaluation of therapeutic approaches.

  9. Retinal sensitivity and choroidal thickness in high myopia.

    Science.gov (United States)

    Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose

    2015-03-01

    To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.

  10. Optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy in retinal nerve fiber layer measurements of glaucoma patients.

    Science.gov (United States)

    Fanihagh, Farsad; Kremmer, Stephan; Anastassiou, Gerasimos; Schallenberg, Maurice

    2015-01-01

    To determine the correlations and strength of association between different imaging systems in analyzing the retinal nerve fiber layer (RNFL) of glaucoma patients: optical coherence tomography (OCT), scanning laser polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO). 114 eyes of patients with moderate open angle glaucoma underwent spectral domain OCT (Topcon SD-OCT 2000 and Zeiss Cirrus HD-OCT), SLP (GDx VCC and GDx Pro) and CSLO (Heidelberg Retina Tomograph, HRT 3). Correlation coefficients were calculated between the structural parameters yielded by these examinations. The quantitative relationship between the measured RNFL thickness globally and for the four regions (superior, inferior, nasal, temporal) were evaluated with different regression models for all used imaging systems. The strongest correlation of RNFL measurements was found between devices using the same technology like GDx VCC and GDx Pro as well as Topcon OCT and Cirrus OCT. In glaucoma patients, the strongest associations (R²) were found between RNFL measurements of the two optical coherence tomography devices Topcon OCT and Cirrus OCT (R² = 0.513) and between GDx VCC and GDx Pro (R² = 0.451). The results of the OCTs and GDX Pro also had a strong quantitative relationship (Topcon OCT R² = 0.339 and Cirrus OCT R² = 0.347). GDx VCC and the OCTs showed a mild to moderate association (Topcon OCT R² = 0.207 and Cirrus OCT R² = 0.258). The confocal scanning laser ophthalmoscopy (HRT 3) had the lowest association to all other devices (Topcon OCT R² = 0.254, Cirrus OCT R² = 0.158, GDx Pro R² = 0.086 and GDx VCC R² = 0.1). The measurements of the RNFL in glaucoma patients reveal a high correlation of OCT and GDx devices because OCTs can measure all major retinal layers and SLP can detect nerve fibers allowing a comparison between the results of this devices. However, CSLO by means of HRT topography can only measure height values of the retinal surface but it cannot distinguish

  11. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc.

    Science.gov (United States)

    Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae

    2014-02-20

    To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.

  12. Comparison of peripapillary choroidal thickness measurements via spectral domain optical coherence tomography with and without enhanced depth imaging.

    Science.gov (United States)

    Ayyildiz, Onder; Kucukevcilioglu, Murat; Ozge, Gokhan; Koylu, Mehmet Talay; Ozgonul, Cem; Gokce, Gokcen; Mumcuoglu, Tarkan; Durukan, Ali Hakan; Mutlu, Fatih Mehmet

    2016-05-01

    To compare peripapillary choroidal thickness (PP-CT) measurements using a spectral domain optical coherence tomography (SD-OCT) device with and without enhanced depth imaging (EDI). Sixty healthy subjects aged from 18 to 40 years were included in this study. PP-CTs were measured in the right eyes by manual segmentation via SD-OCT both with and without EDI. The intraclass correlation coefficient (ICC) for each technique and comparison of PP-CT measurements between two techniques were evaluated. The correlation between retinal nerve fiber layer (RNFL) thickness and PP-CT was also explored on images of SD-OCT without EDI. The PP-CT measurements of 55 subjects were evaluated. The ICC was 0.999 (95% CI: 0.998-1.0, p  0.05). Additionally, there was no correlation between RNFL thickness and PP-CT (r = -0.109; p = 0.335). The PP-CT measurements via SD-OCT without EDI were consistent with the measurements via SD-OCT with EDI. Ophthalmologists who do not have access to EDI technology can use images of SD-OCT without EDI to measure the peripapillary choroid for research purposes. However, thicker peripapillary choroids cannot be measured using this technique and require further modifications or newer technologies, such as SD-OCT with EDI.

  13. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  14. Reproducibility of disc and macula optical coherence tomography using the Canon OCT-HS100 as compared with the Zeiss Cirrus HD-OCT.

    Science.gov (United States)

    Brautaset, Rune; Birkeldh, Ulrika; Rosén, Rebecka; Ramsay, Marika Wahlberg; Nilsson, Maria

    2014-01-01

    In a clinical setting, the usefulness of optical coherence tomography (OCT) is strongly dependent on reproducibility of the measurement. The aim of the present study was to evaluate macula and optic disc measurement reproducibility with the new spectral-domain OCT (SD-OCT) from Canon (Canon OCT-HS100) and to compare reproducibility and obtained measurements with the Zeiss Cirrus HD-OCT. Macula and optic disc parameters from the right eyes of 31 subjects were obtained twice with both instruments. Interoperator reproducibility was evaluated by use of the coefficient of repeatability (CR), and the obtained measurements were compared between the instruments. No difference in interoperator reproducibility could be found when comparing the 2 instruments and reproducibility ranged from 3.94% to 12.77% for optic disc parameters and from 1.19% to 3.54% for macula parameters. The lowest reproducibility was found for cup volume and vertical cup/disc ratio with both instruments. For all macula and retinal nerve fiber layer (RNFL) thickness measurements, there was a statistical difference when comparing the 2 instruments, except for RFNL measurements of the superior quadrant, with the Canon OCT-HS100 always evaluating the thickness to be thicker; however, the 2 instruments correlated well. The Canon OCT-HS100 is a reproducible instrument that matches the Zeiss Cirrus HD-OCT well. It remains to be evaluated how sensitive the Canon OCT-HS100 is to detect small subtle changes in optic disc parameters and macular nerve fiber layer thickness. Furthermore, due to the differences in thickness estimation, it is important to emphasize that SD-OCTs are not interchangeable.

  15. Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT.

    Science.gov (United States)

    Kim, Young Kook; Ha, Ahnul; Lee, Won June; Jeoung, Jin Wook; Park, Ki Ho

    2017-12-01

    To introduce the measurement method of optic disc cup surface depth using spectral-domain optical coherence tomography (SD-OCT) and then evaluate the rates of cup surface depression at 3 different stages of glaucoma. We retrospectively identified 52 eyes with preperimetric glaucoma, 56 with mild-or-moderate glaucoma and 50 with severe glaucoma and followed them for at least 48 months. Eyes were imaged using SD-OCT (Cirrus HD-OCT) at 12-month intervals. The mean cup surface depth was calculated using the following formula: Cup volume/(disc area×average cup-to-disc ratio)-200 μm. The rates of mean cup surface depression (μm/y) were significantly greater in mild-or-moderate glaucoma (-7.96±1.03) than in preperimetric (-3.11±0.61) and severe glaucoma (-0.70±0.12; all Pcup surface depression (%/y) were significantly greater than those of average of retinal nerve fiber layer (RNFL) thinning (%/y) in preperimetric glaucoma (-1.64±0.12 vs. -1.11±0.07; Pcup surface depth changed slower than did average RNFL thickness (-0.64±0.06 vs. -0.75±0.08%/y; Pcup surface depth changed faster than did the RNFL thickness. These results signify the possibility that SD-OCT-based estimation of cup surface depth might be useful for monitoring of glaucoma development and progression.

  16. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    Science.gov (United States)

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  17. Posterior pole asymmetry analysis and retinal thickness measurements in young relatives of glaucoma patients

    Directory of Open Access Journals (Sweden)

    Gökhan Pekel

    2015-08-01

    Full Text Available The presence of a family history of glaucoma is a known risk factor for primary open-angle glaucoma (POAG in middle-aged and older individuals. In this study, our aim was to demonstrate possible early glaucomatous alterations in young first- and second-degree relatives of POAG patients by spectral-domain optical coherence tomography. A total of 104 participants (52 relatives of POAG patients and 52 healthy individuals were recruited in this cross-sectional study. All the participants were between 17 years and 45 years of age. All eyes underwent testing with spectral-domain optical coherence tomography. Peripapillary retinal nerve fiber layer thickness, hemifield macular thickness, macular ganglion cell complex thickness, posterior pole asymmetry analysis, and retinal arteriolar caliber measurements were taken for comparison between the study and control groups. The mean peripapillary retinal nerve fiber layer thickness was 104.9 ± 8.8 μm in the study group and 105.6 ± 7.4 μm in the control group (p = 0.68. Although whole macular thickness measurements were higher in the control group when compared with the study group (p = 0.008, the macular ganglion cell complex thickness was similar in both groups (p = 0.87. The posterior pole asymmetry analysis revealed no statistically significant difference between the groups in the aspect of consecutive black squares (p = 0.79. The mean retinal arteriolar caliber was 85.9 ± 4.8 μm in the study group and 86.0 ± 5.0 μm in the control group (p = 0.90. In conclusion, young relatives of POAG patients do not show characteristic glaucomatous damage when compared with the controls.

  18. Variations in retinal nerve fiber layer measurements on optical coherence tomography after implantation of trifocal intraocular lens.

    Science.gov (United States)

    García-Bella, Javier; Martínez de la Casa, José M; Talavero González, Paula; Fernández-Vigo, José I; Valcarce Rial, Laura; García-Feijóo, Julián

    2018-01-01

    To establish the changes produced after implantation of a trifocal intraocular lens (IOL) on retinal nerve fiber layer measurements performed with Fourier-domain optical coherence tomography (OCT). This prospective study included 100 eyes of 50 patients with bilateral cataract in surgical range, no other associated ocular involvement, refractive errors between +5 and -5 spherical diopters, and less than 1.5 D of corneal astigmatism. The eyes were operated by phacoemulsification with implantation of 2 different trifocal IOLs (FineVision and AT LISA tri 839MP) in randomized equal groups. Cirrus OCT and Spectralis OCT were performed before surgery and 3 months later. Both analyzed the thickness of the nerve fiber layer and thickness divided by quadrants (6 in case of Spectralis and 4 in case of Cirrus HD). The mean age of patients was 67.5 ± 5.8 years. The global nerve fiber layer thickness measured with Spectralis OCT was 96.77 μm before surgery and 99.55 μm after. With Cirrus OCT, the global thickness was 85.29 μm before surgery and 89.77 μm after. Statistically significant differences in global thickness measurements between preimplantation and postimplantation of the IOL were found with both OCT in the 2 groups. Statistically significant differences were also found in temporal and superior quadrants. The implantation of a diffractive trifocal IOL alters the results of the optic nerve fiber layer on Fourier-domain OCT in these patients, which should be taken into account in the posterior study of these patients.

  19. New Normative Database of Inner Macular Layer Thickness Measured by Spectralis OCT Used as Reference Standard for Glaucoma Detection.

    Science.gov (United States)

    Nieves-Moreno, María; Martínez-de-la-Casa, José M; Bambo, María P; Morales-Fernández, Laura; Van Keer, Karel; Vandewalle, Evelien; Stalmans, Ingeborg; García-Feijoó, Julián

    2018-02-01

    This study examines the capacity to detect glaucoma of inner macular layer thickness measured by spectral-domain optical coherence tomography (SD-OCT) using a new normative database as the reference standard. Participants ( N = 148) were recruited from Leuven (Belgium) and Zaragoza (Spain): 74 patients with early/moderate glaucoma and 74 age-matched healthy controls. One eye was randomly selected for a macular scan using the Spectralis SD-OCT. The variables measured with the instrument's segmentation software were: macular nerve fiber layer (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) volume and thickness along with circumpapillary RNFL thickness (cpRNFL). The new normative database of macular variables was used to define the cutoff of normality as the fifth percentile by age group. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of each macular measurement and of cpRNFL were used to distinguish between patients and controls. Overall sensitivity and specificity to detect early-moderate glaucoma were 42.2% and 88.9% for mRNFL, 42.4% and 95.6% for GCL, 42.2% and 94.5% for IPL, and 53% and 94.6% for RNFL, respectively. The best macular variable to discriminate between the two groups of subjects was outer temporal GCL thickness as indicated by an AUROC of 0.903. This variable performed similarly to mean cpRNFL thickness (AUROC = 0.845; P = 0.29). Using our normative database as reference, the diagnostic power of inner macular layer thickness proved comparable to that of peripapillary RNFL thickness. Spectralis SD-OCT, cpRNFL thickness, and individual macular inner layer thicknesses show comparable diagnostic capacity for glaucoma and RNFL, GCL, and IPL thickness may be useful as an alternative diagnostic test when the measure of cpRNFL shows artifacts.

  20. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®)

    Science.gov (United States)

    Kim, David Y.; Silverman, Ronald H.; Chan, R.V. Paul; Khanifar, Aziz A.; Rondeau, Mark; Lloyd, Harriet; Schlegel, Peter; Coleman, D. Jackson

    2011-01-01

    Objective To demonstrate anatomic and physiologic changes in the human choroid following systemic sildenafil citrate (ViagraR) using enhanced depth imaging spectral domain-optical coherence tomography (EDI-OCT) and swept-scan high frequency digital ultrasound. Methods Seven healthy male subjects (mean age 32.7 years) were evaluated at baseline and two hours after ingesting 50 mg of sildenafil. Swept-scan high frequency digital ultrasound and EDI-OCT were utilized to measure choroidal perfusion and thickness, respectively. Results were read by masked observers. The Wilcoxon signed-rank test and t-test were used to analyze differences in choroidal flow and thickness at baseline and two hours after ingestion of sildenafil. Results Two hours following sildenafil, increased choroidal perfusion was observed in 11 of 12 eyes measured by swept-scan high frequency digital ultrasound. The mean increase was 3.46 (±2.00) times baseline with a range of 0.47 to 7.80 times baseline (p=0.004). Increased choroidal thickness was observed in 12 of 12 eyes measured with EDI-OCT. The average choroidal thickness increased by 11.6% temporal to the fovea, 9.3% nasal to the fovea, and 10.7% underneath the fovea (p<0.001 for all values). Conclusions Choroidal perfusion and thickness both increase in response to systemic sildenafil. These changes could secondarily affect retinal function, explain previously reported clinical symptoms, and potentially be a useful adjunct for treatment of ocular diseases that would benefit from increased choroidal blood flow. PMID:22974308

  2. Optical coherence tomography study of retinal changes in normal aging and after ischemia.

    Science.gov (United States)

    Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce

    2015-05-01

    Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.

  3. OCT as a convenient tool to assess the quality and application of organotypic retinal samples

    Science.gov (United States)

    Gater, Rachel; Khoshnaw, Nicholas; Nguyen, Dan; El Haj, Alicia J.; Yang, Ying

    2016-03-01

    Eye diseases such as macular degeneration and glaucoma have profound consequences on the quality of human life. Without treatment, these diseases can lead to loss of sight. To develop better treatments for retinal diseases, including cell therapies and drug intervention, establishment of an efficient and reproducible 3D native retinal tissue system, enabled over a prolonged culture duration, will be valuable. The retina is a complex tissue, consisting of ten layers with a different density and cellular composition to each. Uniquely, as a light transmitting tissue, retinal refraction of light differs among the layers, forming a good basis to use optical coherence tomography (OCT) in assessing the layered structure of the retina and its change during the culture and treatments. In this study, we develop a new methodology to generate retinal organotypic tissues and compare two substrates: filter paper and collagen hydrogel, to culture the organotypic tissue. Freshly slaughtered pig eyes have been obtained for use in this study. The layered morphology of intact organotypic retinal tissue cultured on two different substrates has been examined by spectral domain OCT. The viability of the tissues has been examined by live/dead fluorescence dye kit to cross validate the OCT images. For the first time, it is demonstrated that the use of a collagen hydrogel supports the viability of retinal organotypic tissue, capable of prolonged culture up to 2 weeks. OCT is a convenient tool for appraising the quality and application of organotypic retinal samples and is important in the development of current organotypic models.

  4. Accuracy of Cirrus HD-OCT and Topcon SP-3000P for measuring central corneal thickness.

    Science.gov (United States)

    Calvo-Sanz, Jorge A; Ruiz-Alcocer, Javier; Sánchez-Tena, Miguel A

    2017-02-18

    To compare and analyze the interchangeability of three measuring systems, each based on a different technique, for central corneal thickness (CCT) analysis. CCT measurements were measured using optical coherence tomography (OCT), non-contact specular microscopy (NCSM), and ultrasonic pachymetry (USP) in 60 eyes of 60 healthy patients with a mean age of 66.5±15.0 years and a mean spherical equivalent of 0.43±1.14 D. Analysis of variations in measurement concordance and correlation among the three different methods were performed. Comparison of CCT measurements were done using Bland-Altman plots (with bias and 95% confidence intervals), intraclass correlation coefficient (ICC), and paired t-student analysis. Mean CCT values were: 549.20±26.91μm for USP (range 503-618μm), 514.20±27.49μm for NCSM (range 456-586μm) and 542.80±25.56μm for OCT (range 486-605μm). CCT values obtained with NCMS were significantly lower than those obtained with OCT and USP methods. NCMS CCT value was 36.08±10.72μm lower than USP value (p<0.05), and NCMS CCT value was 7.88±8.86μm lower than OCT value (p<0.05). ICC between USP-NCSM pair was 0.488 and 0.909 between USP-OCT pair. OCT and UPS offered highly comparable results, whereas NCSM offered lower mean CCT values compared to the other two methods. Therefore, NCSM should not be considered a reliable method for measuring CCT and should rather be considered for assessing longitudinal changes in the same patient. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  5. A framework for classification and segmentation of branch retinal artery occlusion in SD-OCT

    Science.gov (United States)

    Guo, Jingyun; Shi, Fei; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2016-03-01

    Branch retinal artery occlusion (BRAO) is an ocular emergency which could lead to blindness. Quantitative analysis of BRAO region in the retina is very needed to assessment of the severity of retinal ischemia. In this paper, a fully automatic framework was proposed to classify and segment BRAO based on 3D spectral-domain optical coherence tomography (SD-OCT) images. To the best of our knowledge, this is the first automatic 3D BRAO segmentation framework. First, a support vector machine (SVM) based classifier is designed to differentiate BRAO into acute phase and chronic phase, and the two types are segmented separately. To segment BRAO in chronic phase, a threshold-based method is proposed based on the thickness of inner retina. While for segmenting BRAO in acute phase, a two-step segmentation is performed, which includes the bayesian posterior probability based initialization and the graph-search-graph-cut based segmentation. The proposed method was tested on SD-OCT images of 23 patients (12 of acute and 11 of chronic phase) using leave-one-out strategy. The overall classification accuracy of SVM classifier was 87.0%, and the TPVF and FPVF for acute phase were 91.1%, 5.5%; for chronic phase were 90.5%, 8.7%, respectively.

  6. Factors Associated with the Retinal Nerve Fiber Layer Loss after Acute Primary Angle Closure: A Prospective EDI-OCT Study.

    Directory of Open Access Journals (Sweden)

    Eun Ji Lee

    Full Text Available To determine the factors associated with retinal nerve fiber layer (RNFL loss in eyes with acute primary angle-closure (APAC, particularly focusing on the influence of the change in the anterior lamina cribrosa surface depth (LCD.After the initial presentation, 30 eyes with unilateral APAC were followed up at the following specific time points over a 12-month period: 1 week, 1~2 months, 2~3 months, 5~6 months, and 11~12 months. These follow-ups involved intraocular pressure measurements, enhanced depth-imaging spectral-domain optical coherence tomography (SD-OCT scanning of the optic disc, and measurements of the circumpapillary RNFL thickness. The prelaminar tissue thickness (PLT and LCD were determined in the SD-OCT images obtained at each follow-up visit.Repeated measures analysis of variance revealed a significant pattern of decrease in the global RNFL thickness, PLT, and LCD (all p<0.001. The global RNFL thickness decreased continuously throughout the follow-up period, while the PLT decreased until 5~6 months and did not change thereafter. The LCD reduced until 2~3 months and then also remained steady. Multivariable regression analysis revealed that symptoms with a longer duration before receiving laser peripheral iridotomy (LI (p = 0.049 and a larger LCD reduction (p = 0.034 were significant factors associated with the conversion to an abnormal RNFL thickness defined using OCT normative data.Early short-term decreases in the PLT and LCD and overall long-term decrease in the peripapillary RNFL were observed during a 12-month follow-up after an APAC episode. A longer duration of symptoms before receiving LI treatment and larger LCD reduction during follow-up were associated with the progressive RNFL loss. The LCD reduction may indicate a prior presence of significant pressure-induced stress that had been imposed on the optic nerve head at the time of APAC episode. Glaucomatous progression should be suspected in eyes showing LCD reduction

  7. Association of ABO blood groups and Rh factor with retinal and choroidal thickness.

    Science.gov (United States)

    Teberik, Kuddusi; Eski, Mehmet Tahir

    2018-06-01

    To evaluate if ABO blood group and Rh factor have an effect on retinal and choroidal thickness. This study was designed prospectively. Retinal nerve fiber layer, retinal, and choroidal thicknesses were measured with spectral-domain optical coherence tomography. Retinal and choroidal thickness measurements (one subfoveal, three temporal, and three nasal) were obtained at 500-μm intervals up to 1500 μm with the caliper system. In this study, 109 male and 151 female, 260 individuals in total were included. There were 125 subjects in group A, 29 in group B, 34 in group AB, and 72 in group O. Rh factor was positive in 194 subjects and negative in 66. There was no significant difference between the groups regarding age (p = 0.667). The groups did not show any statistical difference in retinal nerve fiber layer thickness. There was significant difference found for mean retinal thickness at temporal 1000 μm when four groups were compared (p = 0.037). No statistically significant difference was detected for the remaining retinal and choroidal sectoral regions. The groups did not statistically significantly differ concerning Rh factor (p > 0.05). Although we found a significant difference in retinal thickness in the temporal retina between group B with group A and group O, we suggest that both blood group and Rh factor have no effect on retinal and choroidal thickness.

  8. The structure and function of the macula in patients with advanced retinitis pigmentosa.

    Science.gov (United States)

    Vámos, Rita; Tátrai, Erika; Németh, János; Holder, Graham E; DeBuc, Delia Cabrera; Somfai, Gábor Márk

    2011-10-28

    To assess the structure and function of the macula in advanced retinitis pigmentosa (RP). Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes. The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls. The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure.

  9. The Structure and Function of the Macula in Patients with Advanced Retinitis Pigmentosa

    Science.gov (United States)

    Vámos, Rita; Tátrai, Erika; Németh, János; Holder, Graham E.; DeBuc, Delia Cabrera

    2011-01-01

    Purpose. To assess the structure and function of the macula in advanced retinitis pigmentosa (RP). Methods. Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes. Results. The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls. Conclusions. The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure. PMID:21948552

  10. [Macula analysis by spectral domain OCT in rhegmatogenous retinal detachment surgery].

    Science.gov (United States)

    Zghal, I; Zgolli, H; Fekih, O; Chebbi, A; Bouguila, H; Nacef, L

    2015-03-01

    Despite surgical reattachment of retinal layers, postoperative functional outcomes after rhegmatogenous retinal detachment (RRD) may be limited. This can be explained by microstructural changes in the macula inherent to the pathology itself as well as the surgery. To evaluate the various changes in the macula by OCT pre- and postoperatively, and correlate them with functional and clinical outcomes in patients with RRD. To establish pre- and postoperative prognostic factors. This was a prospective study of 50 eyes of 50 patients operated for RDD. Each patient underwent a complete clinical examination and macular OCT using the Heidelberg Spectralis; preoperatively and then successively at 7 days, 1 month, 3 months and 6 months after RRD surgery. Preoperative tomographic results revealed an average height of submacular fluid of 742 ± 345 μm. Ninety-six percent of patients exhibited thickening of photoreceptor outer segments (PROS), 62% an outer layer undulation, 60% cystic cavities in the outer and/or inner nuclear layers (ONL, INL), 36% disruptions of the external limiting membrane (ELM) and 64% disruption of the IS/OS junction. Postoperatively, 24% of patients had persistent submacular fluid. The average thickness of the central fovea, the ONL, the IS/OS junction and the PROS were 172 ± 51.3 μm, 88.4 ± 30.9 μm, 11.36 ± 5.4 μm and 19.54 ± 13.1 μm respectively. Postoperative disruptions of the ELM, the IS/OS junction and Verhoeff's membrane (VM) were present in 24%, 60% and 82% of patients respectively. The preoperative tomographic risk factors for poor visual outcome were: submacular fluid height > 800 μm (P<0.001), disruptions of the MLE and/or IS/OS junction (P<0.001), as well as cystic cavities in the ENL and/or INL (P=0.002). Postoperative risk factors were: thinning of the fovea (≤ 250 μm), central fovea (≤ 160 μm), ONL (≤ 90 μm), IS/OS junction (≤ 10 μm) and PROS (≤ 18 μm) layers (P<0.001), as well as a discontinuous or absent

  11. Peripapillary retinal nerve fiber layer and choroidal thickness in cirrhosis patients

    Directory of Open Access Journals (Sweden)

    M.Orcun Akdemir

    2015-12-01

    Full Text Available ABSTRACT Purpose: To evaluate the effect of cirrhosis on peripapillary retinal nerve fiber layer and choroidal thickness with enhanced depth imaging optical coherence tomography. Methods: This cross sectional, single center study was undertaken at Bulent Ecevit University Ophthalmology department with the participation of internal medicine, Gastroenterology department. Patients who were treated with the diagnosis of cirrhosis (n=75 were examined in the ophthalmology clinic. Age and sex matched patients (n=50 who were healthy and met the inclusion, exclusion criteria were included in the study. Complete ophthalmological examination included visual acuity with Snellen chart, intraocular pressure measurement with applanation tonometry, biomicroscopy of anterior and posterior segments, gonioscopy, axial length measurement, visual field examination, peripapillary retinal nerve fiber layer, central macular and subfoveal choroidal thickness measurements. Results: The difference between intraocular pressure values was not statistically significant between cirrhosis and control group (p=0.843. However, mean peripapillary retinal nerve fiber layer thickness was significantly thinner in cirrhosis group in all regions (p<0.001 and subfoveal choroidal thickness was significantly thinner in cirrhosis group also (p<0.001. Moreover, central macular thickness of cirrhosis group was significantly thicker than the control group (p=0.001. Conclusion: Peripapillary retinal nerve fiber layer and subfoveal choroidal thickness was significantly thinner in cirrhosis patients.

  12. Evaluation of retinal nerve fiber layer thickness and choroidal thickness in pseudoexfoliative glaucoma and pseudoexfoliative syndrome.

    Science.gov (United States)

    Ozge, Gokhan; Koylu, Mehmet Talay; Mumcuoglu, Tarkan; Gundogan, Fatih Cakir; Ozgonul, Cem; Ayyildiz, Onder; Kucukevcilioglu, Murat

    2016-05-01

    To compare retinal nerve fiber layer thickness (RNFLT) and choroidal thickness (ChT) measurements in eyes with pseudoexfoliative (PEX) glaucoma, PEX syndrome and healthy control eyes. Eighteen patients with PEX glaucoma in one eye and PEX syndrome in the fellow eye were included. The right eyes of thirty-nine age- and sex-matched healthy subjects were included as control group. All participants underwent a detailed biomicroscopic and funduscopic examination. RNFLT and ChT measurements were performed with a commercially available spectral-domain optical coherence tomography (SD-OCT). ChT measurements were performed by using enhanced depth imaging (EDI) mode. Patients with PEX underwent diurnal IOP measurements with 4-hour intervals before inclusion in the study. RNFLT results included the average measurement and 6 quadrants (temporal, inferotemporal, inferonasal, nasal, superonasal and supero-temporal). ChT measurements were performed in the subfoveal region and around the fovea (500µm and 1500 µm nasal and temporal to the fovea), as well as around the optic disc (average peripapillary and eight quadrants in the peripapillary region (temporal, inferotemporal, inferior, inferonasal, nasal, superonasal, superior, supero-temporal)). RNFLT in all quadrants and average thickness were significantly lower in PEX glaucoma eyes compared to PEX syndrome eyes and healthy control eyes (p0.05) except the inferotemporal quadrant. ChT measurements were similar between groups (p>0.05). Thinning of the RNFL in association with unchanged ChT may mean that the presence of PEX material is a much more significant risk factor than choroidal changes in the progression of PEX syndrome to PEX glaucoma.

  13. Comparisons of retinal nerve fiber layer thickness changes after macular hole surgery

    Directory of Open Access Journals (Sweden)

    Nelson Chamma Capelanes

    Full Text Available ABSTRACT Purpose: To compare postoperative changes in retinal nerve fiber layer thickness in patients with macular holes treated with vitrectomy with Brilliant Blue-assisted internal limiting membrane peeling. Methods: Twenty-two eyes of 20 patients with macular holes were studied. Each eye was selected to undergo Brilliant Blue-assisted internal limiting membrane peeling. The circumferential retinal nerve fiber layer thickness was determined using spectral domain optical coherence tomography preoperatively and 2 months postoperatively. Mean overall and sectoral retinal nerve fiber layer thicknesses were obtained for each patient. Results: There was no statistically significant difference (p≥0.05 between the pre- and post-treatment measurements in relation to each CFN variable, i.e., on average, pre-treatment measures were the same as post-treatment measures. Furthermore, despite the differences between the pre- and post-treatment measures always being positive (pre-post >0, they are not statistically significant. Conclusions: This study showed no significant decrease in retinal nerve fiber layer thickness measurements after macular holes surgery, regardless of age or sex.

  14. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    Science.gov (United States)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  15. Quantification of retinal nerve fiber layer thickness using spectral domain optical coherence tomography in normal Indian population

    Directory of Open Access Journals (Sweden)

    Tarannum Mansoori

    2012-01-01

    Full Text Available The purpose of this study was to measure peripapillary retinal nerve fiber layer thickness (RNFLT using spectral domain optical coherence tomography (SD-OCT in normal Indian eyes, for which, 210 normal volunteers were recruited. One eye of each subject underwent RNFL scanning at 3.4 mm circle diameter around optic nerve using SD OCT. The data were analyzed to determine RNFLT in the sample population and its variation with age and gender. The average peripapillary RNFLT was 114.03 ± 9.59 μm. There was no effect of gender on RNFLT parameters. Age had significant negative correlation with average (P = 0.005, superior (P = 0.04, temporal (P = 0.049, and nasal quadrants (P = 0.01 RNFLT. Inferior quadrant RNFLT also had a negative correlation with age, but it was not statistically significant (P = 0.15.

  16. Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Nihat Sayin

    2015-01-01

    Full Text Available Purpose: To measure the choroidal thickness (CT after dynamic exercise by using enhanced depth imaging optical coherence tomography (EDI-OCT. Materials and Methods: A total of 19 healthy participants performed 10 min of low-impact, moderate-intensity exercise (i.e., riding a bicycle ergometer and were examined with EDI-OCT. Each participant was scanned before exercise and afterward at 5 min and 15 min. CT measurement was taken at the fovea and 1000 μ away from the fovea in the nasal, temporal, superior, and inferior regions. Retinal thickness, intraocular pressure, ocular perfusion pressure (OPP, heart rate, and mean blood pressure (mBP were also measured. Results: A significant increase occurred in OPP and mBP at 5 min and 15 min following exercise (P ˂ 0.05. The mean subfoveal CT at baseline was 344.00 ± 64.71 μm compared to 370.63 ± 66.87 μm at 5 min and 345.31 ± 63.58 μm at 15 min after exercise. CT measurements at all locations significantly increased at 5 min following exercise compared to the baseline (P ˂ 0.001, while measurements at 15 min following exercise did not significant differ compared to the baseline (P ˃ 0.05. There was no significant difference in retinal thickness at any location before and at 5 min and 15 min following exercise (P ˃ 0.05. Conclusion: Findings revealed that dynamic exercise causes a significant increase in CT for at least 5 min following exercise.

  17. Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm.

    Science.gov (United States)

    Mohler, Kathrin J; Draxinger, Wolfgang; Klein, Thomas; Kolb, Jan Philip; Wieser, Wolfgang; Haritoglou, Christos; Kampik, Anselm; Fujimoto, James G; Neubauer, Aljoscha S; Huber, Robert; Wolf, Armin

    2015-10-01

    To demonstrate ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s for choroidal imaging in normal and diseased eyes over a ∼60° field of view. To investigate and correlate wide-field three-dimensional (3D) choroidal thickness (ChT) and vascular patterns using ChT maps and coregistered high-definition en face images extracted from a single densely sampled Megahertz-OCT (MHz-OCT) dataset. High-definition, ∼60° wide-field 3D datasets consisting of 2088 × 1024 A-scans were acquired using a 1.68 MHz prototype SS-OCT system at 1050 nm based on a Fourier-domain mode-locked laser. Nine subjects (nine eyes) with various chorioretinal diseases or without ocular pathology are presented. Coregistered ChT maps, choroidal summation maps, and depth-resolved en face images referenced to either the retinal pigment epithelium or the choroidal-scleral interface were generated using manual segmentation. Wide-field ChT maps showed a large inter- and intraindividual variance in peripheral and central ChT. In only four of the nine eyes, the location with the largest ChT was coincident with the fovea. The anatomy of the large lumen vessels of the outer choroid seems to play a major role in determining the global ChT pattern. Focal ChT changes with large thickness gradients were observed in some eyes. Different ChT and vascular patterns could be visualized over ∼60° in patients for the first time using OCT. Due to focal ChT changes, a high density of thickness measurements may be favorable. High-definition depth-resolved en face images are complementary to cross sections and thickness maps and enhance the interpretation of different ChT patterns.

  18. Normative data set identifying properties of the macula across age groups: integration of visual function and retinal structure with microperimetry and spectral-domain optical coherence tomography.

    Science.gov (United States)

    Sabates, Felix N; Vincent, Ryan D; Koulen, Peter; Sabates, Nelson R; Gallimore, Gary

    2011-01-01

    A normative database of functional and structural parameters of the macula from normal subjects was established to identify reference points for the diagnosis of patients with macular disease using microperimetry and scanning laser ophthalmoscope/spectral-domain optical coherence tomography (SD-OCT). This was a community-based, prospective, cross-sectional study of 169 eyes from subjects aged 21 years to 85 years with best-corrected visual acuity of 20/25 or better and without any ocular disease. Full-threshold macular microperimetry combined with the acquisition of structural parameters of the macula with scanning laser ophthalmoscope/SD-OCT was recorded (SD-OCT/scanning laser ophthalmoscope with add-on Microperimetry module; OPKO). Fixation, central, subfield, and mean retinal thickness were acquired together with macular sensitivity function. Thickness and sensitivity as primary outcome measures were mapped and superimposed correlating topographically differentiated macular thickness with sensitivity. Statistical evaluation was performed with age, gender, and ethnicity as covariates. Subfield and mean retinal thickness and sensitivity were measured with macular microperimetry combined with SD-OCT and differentiated by macular topography and subjects' age, gender, and ethnicity. Mean retinal sensitivity and thickness were calculated for 169 healthy eyes (mean age, 48 ± 17 years). A statistically significant decrease in sensitivity was found only in the age group of participants ≥ 70 years and in peripheral portions of the macula in individuals aged ≥60 years and was more pronounced in the area surrounding the fovea than in the center of the macula, while retinal thickness did not change with age. No statistically significant differences in the primary outcome measures or their correlations were found when using gender or ethnicity as a covariate. A database for normal macular thickness and sensitivity was generated with a combined microperimetry SD-OCT

  19. Comparison of choroidal thickness using swept-source and spectral-domain optical coherence tomography in normal Indian eyes.

    Science.gov (United States)

    Narendran, Siddharth; Manayath, George; Venkatapathy, Narendran

    2018-01-01

    Choroidal thickness measurements are reported to differ between spectral-domain optical coherence tomography (SD-OCT) and swept-source OCT (SS-OCT). The aim of this study was to assess the comparability of choroidal thickness measurements using SS-OCT and SD-OCT devices among normal participants. This was a prospective study of 31 (62 eyes) normal participants. Choroidal imaging was performed sequentially with the Spectralis OCT (SD-OCT) and the deep range imaging OCT (DRI OCT-1) (SS-OCT) using standardized imaging protocols. The subfoveal choroidal thickness (SFChT) was measured manually by two masked retinal specialists. Paired t -tests and intraclass correlation coefficients (ICCs) were used to compare the measurements. The mean SFChT was 319.5 μm and 325.3 μm for DRI OCT-1 and Spectralis OCT, respectively ( P = 0.001), with a mean difference of 5.9 with ICC of 0.97. The mean difference in choroidal thickness between the OCT devices was larger among eyes with choroidal thickness > 350 μm compared with eyes with thinner choroids (8.0 μm vs. 4.7 μm). SFChT measurements are comparable between DRI OCT-1 and Spectralis OCT. The variability between the devices increases in thicker choroids.

  20. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Naghizadeh, Farzaneh; Garas, Anita; Vargha, Péter; Holló, Gábor

    2014-01-01

    To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P0.05) was found for the control eyes. Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.

  1. THICKNESS OF THE MACULA, RETINAL NERVE FIBER LAYER, AND GANGLION CELL-INNER PLEXIFORM LAYER IN THE AGE-RELATED MACULAR DEGENERATION: The Repeatability Study of Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul

    2018-02-01

    To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.

  2. Correlation between the optical coherence tomography and electroretinogram in retinal vein occlusion macular edema

    Directory of Open Access Journals (Sweden)

    Ya Xu

    2014-11-01

    Full Text Available AIM: To evaluate the correlation between retinal thickness and photopic flash electroretinogram(ERGparameters(Cone a-wave, Cone b-wave, and 30Hz flickerin patients with central retinal vein occlusion(CRVOand macular edema. METHODS: A total of 25 patients(25 CRVO eyes and 25 unaffected fellow eyeswith CRVO underwent the examination of optical coherence tomography(OCTand photopic falsh ERG. The amplitude and implicit time of the ERG parameters were extracted from the ERG traces. Retinal thicknesses were measured by OCT in nine macular subfields. Then the correlations between ERG parameters and macular morphological parameters were analyzed. RESULTS: The Cone b-wave and 30Hz flicker implicit time were correlated with macular retinal thickness in seven out of nine subfields, excluding the temporal subfields. CONCLUSION: The retinal thickness of the macular edema may be associated with inner retinal function in CRVO patients.

  3. Implementations of three OCT angiography (OCTA) methods with 1.7 MHz A-scan rate OCT system on imaging of human retinal and choroidal vasculature

    Science.gov (United States)

    Poddar, Raju; Werner, John S.

    2018-06-01

    We present noninvasive depth-resolved imaging of human retinal and choroidal microcirculation with an ultrahigh-speed (1.7 MHz A-scans/s), Fourier-domain mode locked (FDML) swept-source optical coherence tomography (SS-OCT) system having a central wavelength of 1065 nm. Three OCT angiography (OCTA) motion based contrast methods, namely phase variance (PV), amplitude decorrelation (AD) and Joint Spectral and Time domain OCT (STdOCT) were implemented. The OCTA imaging was performed with a field of view of 16° (5 mm × 5 mm) and 30° (9 mm × 9 mm), on the retina. A qualitative comparison of images obtained with all three OCTA methods is demonstrated using the same eye of a healthy volunteer. Different parameters, namely acquisition time, scanning area, and scanning density, are discussed. The phase-variance OCTA (PV-OCTA) method produced relatively better results than the other two. Different features regarding the retinal and choroidal vessels are described in different subjects.

  4. Ganglion cell-inner plexiform layer and retinal nerve fibre layer changes within the macula in retinitis pigmentosa: a spectral domain optical coherence tomography study.

    Science.gov (United States)

    Yoon, Chang Ki; Yu, Hyeong Gon

    2018-03-01

    To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Short-term effects of intravitreal dexamethasone implant (OZURDEX® on choroidal thickness in patients with naive branch retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Hasan Basri Arifoglu

    Full Text Available ABSTRACT Purpose: The objective of this study was to evaluate subfoveal choroidal thickness (SFCT using enhanced depth imaging optical coherence tomography (EDI-OCT in patients with naïve branch retinal vein occlusion (BRVO before and after intravitreal dexamethasone implant (Ozurdex® injection. Methods: Thirty-nine patients with unilateral BRVO and 35 healthy subjects were included in this prospective study. Choroidal thickness was evaluated by EDI-OCT at baseline and 1 month after dexamethasone implant. Results: The mean SFCT measured in 39 patients with BRVO was 299.41 ± 55.86 µm, significantly greater than that in contralateral eyes (283.76 ± 57.44 µm; p=0.009 and control eyes (276.14 ± 39.06 µm; p=0.044. The mean SFCT after the treatment was 279.64 ± 50.96 µm, significantly thinner than that before intravitreal dexamethasone therapy (p=0.004. Conclusions: SFCT in treatment-naive BRVO eyes was significantly greater than that in contralateral eyes and healthy eyes and decreased significantly after intravitreal dexamethasone implantation.

  6. Retinal toxicity related to hydroxychloroquine in patients with systemic lupus erythematosus and rheumatoid arthritis.

    Science.gov (United States)

    Telek, Hande Husniye; Yesilirmak, Nilufer; Sungur, Gulten; Ozdemir, Yaprak; Yesil, Nesibe Karahan; Ornek, Firdevs

    2017-12-01

    To compare the retinal toxicity due to hydroxychloroquine (HCQ) use in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) using multifocal electroretinography (mfERG), fundus autofluorescence (FAF) and optical coherence tomography (OCT). Patients who were using HCQ due to SLE and RA, and healthy subjects evaluated in this study. Central foveal thickness (CFT), inner-outer segment (IS-OS) junction irregularity, retinal nerve fiber layer thickness, mfERG and FAF measurements were performed to evaluate retinal toxicity. Study included 35 eyes of 35 SLE patients, 40 eyes of 40 RA patients and 20 eyes of 20 healthy subjects. In SLE group, retinal abnormality was found in three eyes with mfERG, in one eye with FAF and in four eyes with OCT. In RA group, retinal abnormality was found in 10 eyes with mfERG, in five eyes with FAF and in nine eyes with OCT. A statistically significant difference was found with respect to mfERG between "eyes with abnormal responses and without abnormal responses" and "eyes with abnormal responses and controls" (p < 0.05). A statistically significant difference was found with respect to CFT between "eyes with IS-OS junction irregularities and without IS-OS junction irregularities" and "eyes with/without IS-OS junction irregularities and controls" (p < 0.05). The use of HCQ seems to cause retinal toxicity more often in RA patients compared to SLE patients. For the early detection of retinal changes, OCT and mfERG can be used as screening tools due to their higher sensitivity rates compared to other tests.

  7. Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy.

    Science.gov (United States)

    Schütze, Christopher; Ahlers, Christian; Sacu, Stefan; Mylonas, Georgios; Sayegh, Ramzi; Golbaz, Isabelle; Matt, Gerlinde; Stock, Géraldine; Schmidt-Erfurth, Ursula

    2011-05-01

    Investigating segmentation procedures and morphological findings in time domain (TD) and current spectral domain (SD) optical coherence tomography (OCT) devices in patients with geographic atrophy (GA). Fifty eyes of 46 patients with GA secondary to AMD and 15 control eyes were examined in this prospective noninterventional comparative case series. All patients underwent Stratus (model 3000), Cirrus (Carl Zeiss Meditec), Spectralis (Spectralis HRA+OCT; Heidelberg Engineering) and 3D-OCT-1000 (Topcon). Automated segmentation analyses were compared. An overlay of scanning laser ophthalmoscope (SLO) and three-dimensional retinal thickness (RT) maps were used to investigate whether areas of retinal thinning correspond to areas of retinal pigment epithelium (RPE) atrophy. Geographic atrophy areas identified in SLO scans were significantly larger than areas of retinal thinning in RT maps. No convincing topographic correlation could be found between areas of retinal thinning and actual GA size as identified in SLO and fundus photography. Spectralis OCT showed significantly more mild and severe segmentation errors than 3D and Cirrus OCT. This study showed substantial limitations in identifying zones of GA reliably when using automatic segmentation procedures in current SD-OCT devices. This limitation should be addressed to visualize and document RPE loss realistically in a frequent disease like GA. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  8. SD OCT Features of Macula and Silicon Oil–Retinal Interface in Eyes Status Post Vitrectomy for RRD

    Directory of Open Access Journals (Sweden)

    Manish Nagpal

    2015-03-01

    Full Text Available Aim: To objectively document findings at the Silicon oil-Retinal interface, macular status and tamponade effect in Silicon Oil (SO filled eyes using SD OCT. Methods: 104 eyes of 104 patients underwent SD OCT examination, horizontal and vertical macular scans, in silicone oil filled eyes which underwent silicone oil injection post vitrectomy for rhegmatogenous retinal detachment. Findings were divided into 3 Groups; Group A: Findings at silicon oil retinal interface, Group B: Macular pathology and Group C: Tamponade effect. Group C was further divided into two groups; Group 1: Complete tamponade and Group 2: Incomplete tamponade. Results: Group A: subsilicon epiretinal membranes N = 17 (16.3%, emulsified silicon oil N = 16 (15.4% Group B: foveal thickening N = 22 (21.2%, foveal thinning N = 6 (5.7%, subfoveal fluid N = 8 (7.6%, macular hole N = 2 (1.9%; Group C: Incomplete tamponade was noted in N = 12 (11.5%, complete tamponade N = 92 (88.5%.10 out of 104 eyes (9.6% had recurrent retinal detachment post silicon oil removal. 8 of these eyes had complete tamponade and 2 had incomplete tamponade. Conclusion: SD OCT is a useful tool to assess the SO–Retina interface, tamponade effect and macular pathology in SO filled eyes. There is lesser incidence of redetachment with incomplete tamponade in OCT.

  9. The Impact of Lens Opacity on SD-OCT Retinal Nerve Fiber Layer and Bruch's Membrane Opening Measurements Using the Anatomical Positioning System (APS).

    Science.gov (United States)

    Mauschitz, Matthias M; Roth, Felix; Holz, Frank G; Breteler, Monique M B; Finger, Robert P

    2017-05-01

    To evaluate the impact of lens opacity on retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening (BMO) measurements. Fifty-nine randomly selected patients without any other relevant ocular pathology undergoing elective routine cataract surgery in two specialized eye clinics were enrolled. RNFLT, BMO area, and BMO minimum rim width (BMO-MRW) were assessed with the Heidelberg Engineering Spectralis OCT using the anatomical positioning system (APS) prior to and 1 day after cataract surgery using a ring scan at different eccentricities of the disc (3.5, 4.1 and 4.7 mm). Lens opacity was quantified using densitometry based on Scheimpflug images (Oculus Pentacam AXL). RNFLT, BMO area, and BMO-MRW were virtually identical before and following removal of the cataractous lens. This held when assessed overall, within the six sectors for the 3.5-mm scan, or at any other eccentricity. Baseline RNFLT was not associated with lens opacity. Using the APS, RNFLT remained unchanged following cataract surgery, contrary to results reported by previous studies. Our results imply that the APS may have contributed to more precise spectral-domain optical coherence measurements, minimizing the influence of cataract on RNFLT and BMO assessments in our cohort.

  10. Scanning laser polarimetry and spectral domain optical coherence tomography for the detection of retinal changes in Parkinson's disease.

    Science.gov (United States)

    Stemplewitz, Birthe; Keserü, Matthias; Bittersohl, Diana; Buhmann, Carsten; Skevas, Christos; Richard, Gisbert; Hassenstein, Andrea

    2015-12-01

    Whether retinal degeneration is part of the degenerative processes in patients with Parkinson's disease (PD) is still unclear. This cross-sectional study was undertaken to compare the retinal morphology of patients with PD and healthy controls using spectral domain optical coherence tomography (SD-OCT) and scanning laser polarimetry (SLP). Both eyes of patients with PD (n = 108) and healthy controls (n = 165) were examined using SD-OCT and SLP on the same day. Data on the thickness of the retinal nerve fibre layer (RNFL) of all quadrants and the macular area were acquired by OCT (Cirrus, Zeiss). The SLP device (Glaucoma diagnostics (GDx), Zeiss) measured the RNFL and calculated the nerve fibre index (NFI). All patients and probands were checked for concomitant ocular disorders by an ophthalmologist. Visual acuity, intraocular pressure (IOP), objective refraction and the anterior and posterior segment were assessed. Patients with PD showed a reduced macular volume and a reduced central subfield thickness in OCT examinations. The RNFL in the different quadrants did not differ significantly from that of controls. SLP data showed a reduced average RNFL thickness, a decreased thickness of the inferior quadrant and an increase of the NFI in patients with PD. PD may be associated with reduced thickness and volume of the macula and a reduced thickness of the RNFL in the inferior quadrant of the retina. Investigations using SD-OCT and SLP revealed distinct but significant differences between patients with PD and healthy controls. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    Science.gov (United States)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  12. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis).

    Science.gov (United States)

    Grover, Sandeep; Murthy, Ravi K; Brar, Vikram S; Chalam, Kakarla V

    2009-08-01

    To establish normative data for the macular thickness by spectral-domain optical coherence tomography (SD-OCT) in subjects with no known retinal disease. Prospective, observational study in an academic institutional setting. Fifty subjects (age range, 20 to 84 years) with no known retinal disease, best-corrected visual acuity 20/20, and normal intraocular pressure were enrolled. The subjects were divided into 3 age groups: group 1 included subjects 20 to 40 years of age; group 2 included subjects 41 to 60 years of age; and group 3 included subjects 61 years of age and older. All subjects underwent a complete ophthalmologic examination to rule out any retinal diseases or glaucoma. All the OCT scans were performed by a single operator, and data obtained from the right eyes were analyzed by default, unless the right eye did not meet the inclusion criteria, and then data from left eyes were analyzed (n = 4). Central point thickness (CPT) and retinal thickness (RT) in 9 Early Treatment Diabetic Retinopathy Study (ETDRS) subfields, including central subfield (CSF), were analyzed. Statistical analyses were carried out using the analysis of variance. Overall, the mean CPT was 227.3 +/- 23.2 microm, and mean CSF was 270.2 +/- 22.5 microm. Among the ETDRS subfields, the outer nasal quadrant had the maximum thickness (mean +/- standard deviation, 339.5 +/- 16.9 microm). The RT did not show significant difference with age (P = .62) or with gender (P = .1). However, there was a suggestion of significant difference in RT of Black subjects as compared with White subjects (P = .007) in the present study. Normative values for macular thickness in otherwise healthy eyes were measured to be 227.3 microm (CPT) and 270.2 microm (CSF) using commercially available Spectralis SD-OCT. Based on the data, the present study proposes the guidelines for normal CSF thickness to be 315 microm for future studies using macular thickness measurements with Spectralis SD-OCT (Heidelberg Engineering

  13. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    International Nuclear Information System (INIS)

    Arinilhaq; Widita, R

    2016-01-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis. (paper)

  14. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    Science.gov (United States)

    Arinilhaq; Widita, R.

    2016-03-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis.

  15. Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness

    Science.gov (United States)

    Wang, Mengyu; Elze, Tobias; Li, Dian; Baniasadi, Neda; Wirkner, Kerstin; Kirsten, Toralf; Thiery, Joachim; Loeffler, Markus; Engel, Christoph; Rauscher, Franziska G.

    2017-12-01

    Optical coherence tomography (OCT) manufacturers graphically present circumpapillary retinal nerve fiber layer thickness (cpRNFLT) together with normative limits to support clinicians in diagnosing ophthalmic diseases. The impact of age on cpRNFLT is typically implemented by linear models. cpRNFLT is strongly location-specific, whereas previously published norms are typically restricted to coarse sectors and based on small populations. Furthermore, OCT devices neglect impacts of lens or eye size on the diameter of the cpRNFLT scan circle so that the diameter substantially varies over different eyes. We investigate the impact of age and scan diameter reported by Spectralis spectral-domain OCT on cpRNFLT in 5646 subjects with healthy eyes. We provide cpRNFLT by age and diameter at 768 angular locations. Age/diameter were significantly related to cpRNFLT on 89%/92% of the circle, respectively (pointwise linear regression), and to shifts in cpRNFLT peak locations. For subjects from age 42.1 onward but not below, increasing age significantly decreased scan diameter (r=-0.28, p<0.001), which suggests that pathological cpRNFLT thinning over time may be underestimated in elderly compared to younger subjects, as scan diameter decrease correlated with cpRNFLT increase. Our detailed numerical results may help to generate various correction models to improve diagnosing and monitoring optic neuropathies.

  16. Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes.

    Science.gov (United States)

    Pazos, Marta; Dyrda, Agnieszka Anna; Biarnés, Marc; Gómez, Alicia; Martín, Carlos; Mora, Clara; Fatti, Gianluca; Antón, Alfonso

    2017-08-01

    To evaluate the accuracy of the macular retinal layer segmentation software of the Spectralis spectral-domain (SD) optical coherence tomography (OCT) device (Heidelberg Engineering, Inc., Heidelberg, Germany) to discriminate between healthy and early glaucoma (EG) eyes. Prospective, cross-sectional study. Forty EG eyes and 40 healthy controls were included. All participants were examined using the standard posterior pole and the peripapillary retinal nerve fiber layer (pRNFL) protocols of the Spectralis OCT device. Using an Early Treatment Diagnostic Retinopathy Study circle at the macular level, the automated retinal segmentation software was applied to determine thicknesses of the following parameters: total retinal thickness, inner retinal layer (IRL), macular retinal nerve fiber layer (mRNFL), macular ganglion cell layer (mGCL), macular inner plexiform layer (mIPL), macular inner nuclear layer (mINL), macular outer plexiform layer (mOPL), macular outer nuclear layer (mONL), photoreceptors (PR), and retinal pigmentary epithelium (RPE). The ganglion cell complex (GCC) was determined by adding the mRNFL, mGCL, and mIPL parameters and the ganglion cell layer-inner plexiform layer (mGCL-IPL) was determined by combining the mGCL and mIPL parameters. Thickness of each layer was compared between the groups, and the layer and sector with the best area under the receiver operating characteristic curve (AUC) were identified. Comparison of pRNFL, IRL, mRNFL, mGCL, mIPL, mGCC, mGCL-IPL, mINL, mOPL, mONL, PR, and RPE parameters and total retinal thicknesses between groups for the different areas and their corresponding AUCs. Peripapillary RNFL was significantly thinner in the EG group globally and in all 6 sectors assessed (P < 0.0005). For the macular variables, retinal thickness was significantly reduced in the EG group for total retinal thickness, mIRL, mRNFL, mGCL, and mIPL. The 2 best isolated parameters to discriminate between the 2 groups were pRNFL (AUC, 0.956) and

  17. Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Gao, LiYan; Liu, Ying; Li, XiaoHong; Bai, QuanHao; Liu, Ping

    2015-01-01

    We investigated possible abnormalities in the retinal nerve fiber layer (RNFL) and macula lutea of patients diagnosed with Alzheimer's disease (AD) and mild cognitive impairment (MCI) and tested for any correlation with the severity of dementia. A total of 72 subjects, comprising 25 AD patients, 26 MCI patients and 21 healthy individuals (controls) were enrolled in this study. The thickness of the RNFL and volume of the macula lutea was determined using optical coherence tomography (OCT). When compared with controls, we found statistically significant thinning of the RNFL in AD patients at all clock-hour positions except 12:00, and nasal quadrant, 2:00, 3:00 and 4:00. After adjusting several risk factors, the average thickness of the RNFL was reduced in MCI patients compared to AD patients, with specific reductions at inferior quadrant, 5:00 and 6:00. Compared to controls, MCI patients showed a significant decrease in RNFL thickness only in the temporal quadrant, 8:00, 9:00 and 10:00. We found significant reduction in the volume of the macula lutea both in AD and MCI patients. Finally, we could not establish any correlation between patient Mini-Mental State Examination (MMSE) scores (an estimation of the severity of cognitive impairment) and any OCT parameter. Retinal degeneration in AD and MCI patients results in decreased thickness of the RNFL, and reduced macular volume in AD and MCI patients. However, there seems to be no correlation between these changes and the severity of dementia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  19. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  20. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  1. Reflectivity and thickness analysis of epiretinal membranes using spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ajay E. Kuriyan

    2016-01-01

    Full Text Available AIM: To compare thickness and reflectivity spectral domain optical coherence tomography (SD-OCT findings in patients with idiopathic epiretinal membranes (ERMs, before and after ERM peeling surgery, with normal controls. METHODS: A retrospective study analyzed SD-OCTs of eyes with ERMs undergoing ERM peeling surgery by one surgeon from 2008 to 2010 and normal control eyes. SD-OCTs were analyzed using a customized algorithm to measure reflectivity and thickness. The relationship between the SD-OCT findings and best corrected visual acuity (BCVA outcomes was also studied. RESULTS: Thirty-four ERM eyes and 12 normal eyes were identified. Preoperative eyes had high reflectivity and thickness of the group of layers from the internal limiting membrane (ILM to the retinal pigment epithelium (RPE and the group of layers from the ILM to the external limiting membrane (ELM. The values of reflectivity of these two groups of layers decreased postoperatively, but were still higher than normal eyes. In contrast, preoperative eyes had lower reflectivity of two 10×15 pixel regions of interest (ROIs incorporating: 1 ELM + outer nuclear layer (ONL and 2 photoreceptor layer (PRL + RPE, compared to controls. The values of reflectivity of these ROIs increased postoperatively, but were still lower than normal controls. A larger improvement in BCVA postoperatively was correlated with a greater degree of abnormal preoperative reflectivity and thickness findings. CONCLUSION: Quantitative differences in reflectivity and thickness between preoperative, postoperative, and normal SD-OCTs allow assessment of changes in the retina secondary to ERM. Our study identified hyperreflective inner retina changes and hyporeflective outer retina changes in patients with ERMs. SD-OCT quantitative measures of reflectivity and/or thickness of specific groups of retinal layers and/or ROIs correlate with improvement in BCVA.

  2. Prospective Study on Retinal Nerve Fibre Layer Thickness Changes in Isolated Unilateral Retrobulbar Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Gordon S. K. Yau

    2013-01-01

    Full Text Available Purpose. To investigate the retinal nerve fibre layer (RNFL thickness after unilateral acute optic neuritis using optical coherence tomography (OCT. Patients and Methods. This prospective cohort study recruited consecutive patients with a first episode of isolated, unilateral acute optic neuritis. RNFL thickness and visual acuity (VA of the attack and normal fellow eye were measured at presentation and 3 months in both the treatment and nontreatment groups. Results. 11 subjects received systemic steroids and 9 were treated conservatively. The baseline RNFL thickness was similar in the attack and fellow eye (P≥0.4. At 3 months, the attack eye had a thinner temporal (P=0.02 and average (P=0.05 RNFL compared to the fellow eye. At 3 months, the attack eye had significant RNFL thinning in the 4 quadrants and average thickness (P≤0.0002 compared to baseline. The RNFL thickness between the treatment and nontreatment groups was similar at baseline and 3 months (P≥0.1. Treatment offered better VA at 3 months (0.1 ± 0.2 versus 0.3 ± 0.2 LogMAR, P=0.04. Conclusion. Generalized RNFL thinning occurred at 3 months after a first episode of acute optic neuritis most significantly in the temporal quadrant and average thickness. Visual improvement with treatment was independent of RNFL thickness.

  3. Retinal nerve fiber layer thickness measured by optical coherence tomography in Chinese teenagers aged from 13 years old to 18 years old

    Directory of Open Access Journals (Sweden)

    Yu-Ming Zhang

    2014-04-01

    Full Text Available AIM: To establish a reference range of retinal nerve fiber layer(RNFLthickness by optical coherence tomography(OCTin Chinese teenagers aged from 13 to 18 years old, and investigate its relationship with age, eye side, gender, and ethnic group.METHODS: A total of 402 eyes from 201 normal Chinese aged from 13 to 18 years old were recruited for this study. Optic disk with 3.4mm diameter circle in different global average, quadrant and part-time bit retinal nerve fiber layer thickness(RNFLTwas measured by RNFL thickness average analysis program. Their RNFLT at different part-time bit, quadrant and global average RNFLT around the disc were measured by OCT with 3.4mm diameter circle, using the RNFL thickness average analysis program. The data was analyzed with SPSS statistical 19.0. The influences of several factors(such as age, eye side, gender, and ethnic groupon RNFLT were also analyzed.RESULTS: The global average RNFLT at 13, 14, 15, 16, 17, 18 years old was 108.32±9.42μm, 109.23±9.67μm, 110.36±11.14μm, 111.27±10.21μm, 109.23±9.67μm, 112.11±8.83μm respectively. RNFLT of right eyes was 109.82±8.93μm and of left eyes was 110.33±9.89μm. All of the male's average RNFLT was 110.14±10.02μm, and all of the female's average RNFLT was 109.96±11.22μm. The average RNFLT of Han nationality was 110.22±9.31μm and of non-Han nationality was 109.87±8.65μm. The average RNFLT of all was 110.02±9.87μm, the RNFLT at the superior, nasal, inferior and temporal quadrant was 146.56 ±18.88μm, 76.49±13.28μm, 136.64±16.29μm, 82.01±12.55μm respectively. There was no significant difference in gender, eye side, and ethnic group(all PCONCLUSION: This study has established a normal standard reference of RNFLT and its related indexes by OCT in Chinese teenagers aged 13-18 years old. Gender, age, eye side, and ethnic group have no effect on their RNFLT, which has significant difference with adult's data. And for the diagnosis and follow-up of

  4. Noninvasive Imaging of Retinal Morphology and Microvasculature in Obese Mice Using Optical Coherence Tomography and Optical Microangiography

    Science.gov (United States)

    Zhi, Zhongwei; Chao, Jennifer R.; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K.

    2014-01-01

    Purpose. To evaluate early diabetes-induced changes in retinal thickness and microvasculature in a type 2 diabetic mouse model by using optical coherence tomography (OCT)/optical microangiography (OMAG). Methods. Twenty-two-week-old obese (OB) BTBR mice (n = 10) and wild-type (WT) control mice (n = 10) were imaged. Three-dimensional (3D) data volumes were captured with spectral domain OCT using an ultrahigh-sensitive OMAG scanning protocol for 3D volumetric angiography of the retina and dense A-scan protocol for measurement of the total retinal blood flow (RBF) rate. The thicknesses of the nerve fiber layer (NFL) and that of the NFL to the inner plexiform layer (IPL) were measured and compared between OB and WT mice. The linear capillary densities within intermediate and deep capillary layers were determined by the number of capillaries crossing a 500-μm line. The RBF rate was evaluated using an en face Doppler approach. These quantitative measurements were compared between OB and WT mice. Results. The retinal thickness of the NFL to IPL was significantly reduced in OB mice (P < 0.01) compared to that in WT mice, whereas the NFL thickness between the two was unchanged. 3D depth-resolved OMAG angiography revealed the first in vivo 3D model of mouse retinal microcirculation. Although no obvious differences in capillary vessel densities of the intermediate and deep capillary layers were detected between normal and OB mice, the total RBF rate was significantly lower (P < 0.05) in OB mice than in WT mice. Conclusions. We conclude that OB BTBR mice have significantly reduced NFL–IPL thicknesses and total RBF rates compared with those of WT mice, as imaged by OCT/OMAG. OMAG provides an unprecedented capability for high-resolution depth-resolved imaging of mouse retinal vessels and blood flow that may play a pivotal role in providing a noninvasive method for detecting early microvascular changes in patients with diabetic retinopathy. PMID:24458155

  5. Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.

    2014-01-01

    Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773

  6. STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA

    Science.gov (United States)

    LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2009-01-01

    Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660

  7. Association of OCT-Derived Drusen Measurements with AMD-Associated Genotypic SNPs in the Amish Population

    OpenAIRE

    Chavali, Venkata Ramana Murthy; Diniz, Bruno; Huang, Jiayan; Ying, Gui-Shuang; Sadda, SriniVas R.; Stambolian, Dwight

    2015-01-01

    Purpose: To investigate the association of optical coherence tomography (OCT)-derived drusen measures in Amish age-related macular degeneration (AMD) patients with known loci for macular degeneration. Methods: Members of the Old Order Amish community in Pennsylvania ages 50 and older were assessed for drusen area, volume and regions of retinal pigment epithelium (RPE) atrophy using a Cirrus High-Definition OCT. Measurements were obtained in the macula region within a central circle (CC) of 3...

  8. Retinal Nerve Fiber Layer Thickness Changes in the Pseudoexfoliation Syndrome: A Meta-Analysis of Case-Control Studies.

    Science.gov (United States)

    Yu, Ji-Guo; Huang, Qing; Zhou, Xiao-Fang; Ding, Yi; Li, Jing; Xiang, Yi

    2018-01-01

    To evaluate and compare changes in retinal nerve fiber layer (RNFL) thickness in patients with the pseudoexfoliation syndrome (PXS) and healthy controls. Case-control studies were selected through an electronic search of the Cochrane Controlled Trials Register, PubMed, and Embase. Results were reviewed to ensure that the included studies met prespecified inclusion/exclusion criteria, and the quality of each study was assessed using the Newcastle-Ottawa Scale. All included studies measured average and 4-quadrant (temporal, superior, nasal, and inferior) RNFL thickness using optical coherence tomography (OCT). For the continuous outcomes, we calculated the weighted mean difference (WMD) and 95% confidence intervals (CIs). Eight case-control studies were included in this meta-analysis involving 225 eyes of PXS patients and 208 eyes of healthy controls in total. Statistical analysis revealed that the average RNFL thickness in PXS patients was significantly reduced compared to healthy controls (WMD = -6.91, 95% CI: -9.99 to -3.82, p < 0.0001). Additionally, differences in RNFL thickness in the superior quadrant (WMD = -10.68, 95% CI: -16.40 to -4.95, p = 0.0003), inferior quadrant (WMD = -8.20, 95% CI: -10.85 to -5.55, p < 0.00001), nasal quadrant (WMD = -3.05, 95% CI: -5.21 to -0.90, p = 0.005), and temporal quadrant (WMD = -6.39, 95% CI: -9.98 to -2.80, p = 0.0005) were all significant between the two groups. These results suggest that it is important to evaluate RNFL thickness and the optic nerve head through OCT in patients with PXS in order to determine early glaucomatous damage and start timely intervention prior to visual field loss. © 2017 S. Karger AG, Basel.

  9. Retinal thinning after internal limiting membrane peeling for idiopathic macular hole.

    Science.gov (United States)

    Imamura, Yutaka; Ishida, Masahiro

    2018-03-01

    To determine the changes in retinal thickness and whether they correlate with the size of the macular hole (MH) after vitrectomy with internal limiting membrane peeling. Retrospective, interventional case series METHODS: Consecutive patients with an MH and undergoing pars plana vitrectomy with internal limiting membrane peeling were studied. The retinal thicknesses in the inner 4 sectors as defined by the Early Treatment of Diabetic Retinopathy Study were measured using spectral-domain optical coherence tomography (SD-OCT) before and at 2 weeks and 1, 3, 6, and 12 months after the surgery. The basal and minimum diameters of the MHs were measured. The correlations between the retinal thicknesses and the size of the MH were determined. Thirty-three eyes of 32 consecutive patients (18 women; mean age, 64.2 ± 8.8 years) with an MH were studied. Thirteen eyes had a stage-2 MH; 12 eyes, a stage-3 MH; and 8 eyes, a stage-4 MH. The mean retinal thickness in the temporal sector was 362.8 ± 29.9 µm preoperatively, 337.9 ± 20.6 µm at 2 weeks postoperatively, and 307.6 ± 20.2 µm at 12 months postoperatively (P peeling.

  10. Asymmetry of Peak Thicknesses between the Superior and Inferior Retinal Nerve Fiber Layers for Early Glaucoma Detection: A Simple Screening Method.

    Science.gov (United States)

    Bae, Hyoung Won; Lee, Sang Yeop; Kim, Sangah; Park, Chan Keum; Lee, Kwanghyun; Kim, Chan Yun; Seong, Gong Je

    2018-01-01

    To assess whether the asymmetry in the peripapillary retinal nerve fiber layer (pRNFL) thickness between superior and inferior hemispheres on optical coherence tomography (OCT) is useful for early detection of glaucoma. The patient population consisted of Training set (a total of 60 subjects with early glaucoma and 59 normal subjects) and Validation set (30 subjects with early glaucoma and 30 normal subjects). Two kinds of ratios were employed to measure the asymmetry between the superior and inferior pRNFL thickness using OCT. One was the ratio of the superior to inferior peak thicknesses (peak pRNFL thickness ratio; PTR), and the other was the ratio of the superior to inferior average thickness (average pRNFL thickness ratio; ATR). The diagnostic abilities of the PTR and ATR were compared to the color code classification in OCT. Using the optimal cut-off values of the PTR and ATR obtained from the Training set, the two ratios were independently validated for diagnostic capability. For the Training set, the sensitivities/specificities of the PTR, ATR, quadrants color code classification, and clock-hour color code classification were 81.7%/93.2%, 71.7%/74.6%, 75.0%/93.2%, and 75.0%/79.7%, respectively. The PTR showed a better diagnostic performance for early glaucoma detection than the ATR and the clock-hour color code classification in terms of areas under the receiver operating characteristic curves (AUCs) (0.898, 0.765, and 0.773, respectively). For the Validation set, the PTR also showed the best sensitivity and AUC. The PTR is a simple method with considerable diagnostic ability for early glaucoma detection. It can, therefore, be widely used as a new screening method for early glaucoma. © Copyright: Yonsei University College of Medicine 2018

  11. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements.

    Science.gov (United States)

    Pollet-Villard, Frédéric; Chiquet, Christophe; Romanet, Jean-Paul; Noel, Christian; Aptel, Florent

    2014-05-02

    To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.

  12. Macular and peripapillary retinal nerve fiber layer thickness in children with hyperopic anisometropic amblyopia

    Directory of Open Access Journals (Sweden)

    Shuang-Qing Wu

    2013-02-01

    Full Text Available AIM:To compare the retinal nerve fiber layer (RNFL thickness and macular thickness in the amblyopic eye with that in the sound eye of children with hyperopic anisometropic amblyopia using optical coherence tomography (OCT.METHODS: A prospective, nonrandom, intraindividual comparative cohort study includes 72 children with hyperopic anisometropic amblyopia in a single center. Macular thickness, macular foveola thickness, and peripapillary RNFL thickness were compared between the amblyopia eyes and the contralateral sound eyes.RESULTS:There were 38 male and 34 female patients, with a mean age as 9.7±1.9 years (range, 5–16 years. Hyperopic was +3.62±1.16D (range +2.00D to +6.50D in the amblyopic eyes, which was significantly higher in the control eyes with +0.76±0.90D (range 0D to +2.00D (P P = 0.02. The mean macular foveola thickness was significantly thicker in the amblyopic eyes than the contralateral sound eyes (181.4±14.2µm vs 175.2±13.3µm, P CONCLUSION:Eyes with hyperopic anisometropic amblyopia are found thicker macular foveola and peripapillary RNFL than the contralateral eyes in children.

  13. Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Sangeetha Srinivasan

    2017-10-01

    Conclusions: The GCC FLV can differentiate individuals with diabetic neuropathy from healthy controls, while the inferior RNFL thickness is able to differentiate those with greater degrees of neuropathy from those with mild or no neuropathy, both with an acceptable level of accuracy. Optical coherence tomography represents a non-invasive technology that aids in detection of retinal structural changes in patients with established diabetic neuropathy. Further refinement of the technique and the analytical approaches may be required to identify patients with minimal neuropathy.

  14. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    Science.gov (United States)

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  15. Relationship between the Retinal Nerve Fibre Layer (RNFL parameters and Visual field loss in established glaucoma patients in South Indian population

    Directory of Open Access Journals (Sweden)

    Elangovan Suma, Puri K Sanjeev

    2013-10-01

    Full Text Available Purpose: Optical coherence tomography (OCT and Scanning LASER polarimetry (GDX-VCC are newer techniques to analyse retinal nerve fibre loss in glaucoma. This study aims to evaluate the relationship between the Retinal Nerve Fibre Layer(RNFL parameters measured using Stratus-OCT and GDx-VCC and visual field loss by Octopus interzeag perimetry in established glaucoma patients in South Indian Population. Materials and methods: Prospectively planned cross sectional study of 67 eyes of 34 established glaucoma patients on medical management. The mean age of patients was 46.911 years (SD+13.531. A complete ophthalmic examination, automated perimetry with octopus interzeag 1-2-3 perimeter, retinal nerve fibre analysis with GDx VCC and Stratus OCT was done. The differences between the mean RNFL parameters in the presence or absence of field defects were evaluated. Results: The data analysed were mean deviation, loss variance, OCT total average nerve fibre thickness, GDX VCC- TSNIT average and Nerve fibre indicator (NFI.The data were split into two subgroups on the basis of presence or absence of visual field defect and analysed. The difference between the mean value of NFI between the subgroups was highly significant with a p value < 0.01.The OCT parameter Total average nerve fiber layer thickness differed significantly between the two subgroups (p value <0.05. The mean GDx TSNIT average did not differ significantly between the two subgroups. Conclusion: The total average nerve fibre thickness by OCT correlated better with visual field loss than the GDX TSNIT average .Among the GDx parameters, the NFI was found to be a better indicator of visual field damage than the average thickness.

  16. Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images

    Directory of Open Access Journals (Sweden)

    Pachiyappan Arulmozhivarman

    2012-06-01

    Full Text Available Abstract We describe a system for the automated diagnosis of diabetic retinopathy and glaucoma using fundus and optical coherence tomography (OCT images. Automatic screening will help the doctors to quickly identify the condition of the patient in a more accurate way. The macular abnormalities caused due to diabetic retinopathy can be detected by applying morphological operations, filters and thresholds on the fundus images of the patient. Early detection of glaucoma is done by estimating the Retinal Nerve Fiber Layer (RNFL thickness from the OCT images of the patient. The RNFL thickness estimation involves the use of active contours based deformable snake algorithm for segmentation of the anterior and posterior boundaries of the retinal nerve fiber layer. The algorithm was tested on a set of 89 fundus images of which 85 were found to have at least mild retinopathy and OCT images of 31 patients out of which 13 were found to be glaucomatous. The accuracy for optical disk detection is found to be 97.75%. The proposed system therefore is accurate, reliable and robust and can be realized.

  17. Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images.

    Science.gov (United States)

    Ji, Zexuan; Chen, Qiang; Niu, Sijie; Leng, Theodore; Rubin, Daniel L

    2018-01-01

    To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. An automatic GA segmentation method for SD-OCT images based on the deep network was constructed. The structure of the deep network was composed of five layers, including one input layer, three hidden layers, and one output layer. During the training phase, the labeled A-scans with 1024 features were directly fed into the network as the input layer to obtain the deep representations. Then a soft-max classifier was trained to determine the label of each individual pixel. Finally, a voting decision strategy was used to refine the segmentation results among 10 trained models. Two image data sets with GA were used to evaluate the model. For the first dataset, our algorithm obtained a mean overlap ratio (OR) 86.94% ± 8.75%, absolute area difference (AAD) 11.49% ± 11.50%, and correlation coefficients (CC) 0.9857; for the second dataset, the mean OR, AAD, and CC of the proposed method were 81.66% ± 10.93%, 8.30% ± 9.09%, and 0.9952, respectively. The proposed algorithm was capable of improving over 5% and 10% segmentation accuracy, respectively, when compared with several state-of-the-art algorithms on two data sets. Without retinal layer segmentation, the proposed algorithm could produce higher segmentation accuracy and was more stable when compared with state-of-the-art methods that relied on retinal layer segmentation results. Our model may provide reliable GA segmentations from SD-OCT images and be useful in the clinical diagnosis of advanced nonexudative AMD. Based on the deep neural networks, this study presents an accurate GA segmentation method for SD-OCT images without using any retinal layer segmentation results, and may contribute to improved understanding of advanced nonexudative AMD.

  18. Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome.

    Science.gov (United States)

    Aleman, T S; Duncan, J L; Bieber, M L; de Castro, E; Marks, D A; Gardner, L M; Steinberg, J D; Cideciyan, A V; Maguire, M G; Jacobson, S G

    2001-07-01

    To determine macular pigment (MP) in patients with inherited retinal degeneration and the response of MP and vision to supplementation of lutein. Patients with retinitis pigmentosa (RP) or Usher syndrome and normal subjects had MP optical density profiles measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity, and retinal thickness (by optical coherence tomography [OCT]) were quantified. The effects on MP and central vision of 6 months of lutein supplementation at 20 mg/d were determined. MP density in the patients as a group did not differ from normal. Among patients with lower MP, there was a higher percentage of females, smokers, and light-colored irides. Disease expression tended to be more severe in patients with lower MP. Inner retinal thickness by OCT correlated positively with MP density in the patients. After supplementation, all participants showed an increase in serum lutein. Only approximately half the patients showed a statistically significant increase in MP. Retinal nonresponders had slightly greater disease severity but were otherwise not distinguishable from responders. Central vision was unchanged after supplementation. Factors previously associated with lower or higher MP density in normal subjects showed similar associations in RP and Usher syndrome. In addition, MP in patients may be affected by stage of retinal disease, especially that leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in many but not all patients. There was no change in central vision after 6 months of lutein supplementation, but long-term influences on the natural history of these retinal degenerations require further study.

  19. Early simultaneous fundus autofluorescence and optical coherence tomography features after pars plana vitrectomy for primary rhegmatogenous retinal detachment.

    Science.gov (United States)

    Dell'Omo, Roberto; Mura, Marco; Lesnik Oberstein, Sarit Y; Bijl, Heico; Tan, H Stevie

    2012-04-01

    To describe fundus autofluorescence and optical coherence tomography (OCT) features of the macula after pars plana vitrectomy for rhegmatogenous retinal detachment. Thirty-three eyes of 33 consecutive patients with repaired rhegmatogenous retinal detachment with or without the involvement of the macula were prospectively investigated with simultaneous fundus autofluorescence and OCT imaging using the Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany) within a few weeks after the operation. Fundus autofluorescence imaging of the macula showed lines of increased and decreased autofluorescence in 19 cases (57.6%). On OCT, these lines corresponded to the following abnormalities: outer retinal folds, inner retinal folds, and skip reflectivity abnormalities of the photoreceptor inner segment/outer segment band. Other OCT findings, not related to abnormal lines on fundus autofluorescence, consisted of disruption of photoreceptor inner segment/outer segment band and collection of intraretinal or subretinal fluid. The presence of outer retinal folds significantly related to metamorphopsia but did not relate to poor postoperative visual acuity. Partial-thickness retinal folds occur commonly after vitrectomy for rhegmatogenous retinal detachment repair and may represent an important anatomical substrate for postoperative metamorphopsia. Fundus autofluorescence and OCT are both sensitive techniques for the detection of these abnormalities.

  20. Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell Layer in the Epiretinal Membrane: The Repeatability Study of Optical Coherence Tomography.

    Science.gov (United States)

    Lee, Haeng-Jin; Kim, Min-Su; Jo, Young-Joon; Kim, Jung-Yeul

    2015-07-01

    To analyze the repeatability of measurements of the thicknesses of the macula, retinal nerve fiber layer (RNFL), and ganglion cell inner plexiform layer (GCIPL) using spectral-domain optical coherence tomography (SD-OCT) in the epiretinal membrane (ERM). The prospective study analyzed patients who visited our retinal clinic from June 2013 to January 2014. An experienced examiner measured the thicknesses twice using macular cube 512 × 128 and optic disc cube 200 × 200 scans. The repeatability of the thicknesses of the macula, RNFL, and GCIPL were compared using the intraclass correlation coefficient (ICC) of two groups based on the central macular thickness (group A, ≤ 450 μm; group B, > 450 μm). A total of 88 patients were analyzed. The average thicknesses of the central macula, RNFL, and GCIPL were 256.5, 96.6, and 84.4 μm, respectively, in the normal fellow eye and 412.3, 94.6, and 56.7 μm in the affected eye. The ICCs of the central macula, RNFL, and GCIPL were 0.995, 0.994, and 0.996, respectively, for the normal fellow eye and 0.991, 0.973, and 0.881 for the affected eye. The average thicknesses of the central macula, RNFL, and GCIPL in group A were 360.9, 93.5, and 63.4 μm, respectively, and the ICCs were 0.997, 0.987, and 0.995. The thicknesses in group B were 489.5, 96.2, and 46.6 μm, respectively, and the ICCs were 0.910, 0.942, and 0.603, significantly lower repeatability compared with group A (P macula.

  1. Findings of Optical Coherence Tomography of Retinal Nerve Fiber Layer in Two Common Types of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Gholamali Yousefipour

    2016-06-01

    Full Text Available Multiple sclerosis (MS is the most prevalent disease caused by the inflammatory demyelinating process that causes progressive nervous system degeneration over the time. Optical Coherence Tomography (OCT is a non-invasive optical imaging technology, which can measure the thickness of retinal nerve fiber layer as well as the diameter of the macula. The purpose of the study is evaluation OCT findings in two common types of multiple sclerosis. For doing the cross-sectional study, 63 patients with two prevalent types of multiple sclerosis (35 patients with Relapse Remitting Multiple Sclerosis (RRMS and 28 patients with Secondary Progressive Multiple Sclerosis (SPMS were evaluated for 6 months. Exclusion criteria of the study were a history of optic neuritis, suffering from diabetes mellitus, hypertension, ocular disease, and the presence of other neurologic degenerative diseases. Then, the thickness of retinal nerve fiber layer (RNFL, as well as thickness and volume of the macula, were measured in the patients using OCT technology. The disability rate of patients was evaluated according to Expanded Disability Status Scale (EDSS. Finally, data was analyzed by means of SPSS software. Overall, 35 patients with RRMS (with mean age of 32.37+10.01, average disease period of 3.81+3.42 and mean EDSS of 1.84+0.45 and 28 patients with SPMS (with mean age of 39.21+9.33, average disease period of 11.32+5.87 and mean EDSS of 5.12+1.46 were assessed and compared in terms of retinal nerve fiber layer and size and thickness of macula. In all of these sections, the thicknesses were smaller in SPMS patients than patients with RRMS. But, there was a significant difference in total thickness (81.82µm versus 96.03µm with P=0.04 and thickness of temporal sector (54.5 µm versus 69.34 µm with P=0.04 of retinal nerve fiber layer and macular size at the superior sector of external ring (1.48 mm³ versus 1.58 mm³ with P=0.03, and nasal sector of external ring surrounding

  2. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus.

    Science.gov (United States)

    Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D

    2017-11-01

    Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy

  3. Increase in average foveal thickness after internal limiting membrane peeling

    Directory of Open Access Journals (Sweden)

    Kumagai K

    2017-04-01

    Full Text Available Kazuyuki Kumagai,1 Mariko Furukawa,1 Tetsuyuki Suetsugu,1 Nobuchika Ogino2 1Department of Ophthalmology, Kami-iida Daiichi General Hospital, 2Department of Ophthalmology, Nishigaki Eye Clinic, Aichi, Japan Purpose: To report the findings in three cases in which the average foveal thickness was increased after a thin epiretinal membrane (ERM was removed by vitrectomy with internal limiting membrane (ILM peeling.Methods: The foveal contour was normal preoperatively in all eyes. All cases underwent successful phacovitrectomy with ILM peeling for a thin ERM. The optical coherence tomography (OCT images were examined before and after the surgery. The changes in the average foveal (1 mm thickness and the foveal areas within 500 µm from the foveal center were measured. The postoperative changes in the inner and outer retinal areas determined from the cross-sectional OCT images were analyzed.Results: The average foveal thickness and the inner and outer foveal areas increased significantly after the surgery in each of the three cases. The percentage increase in the average foveal thickness relative to the baseline thickness was 26% in Case 1, 29% in Case 2, and 31% in Case 3. The percentage increase in the foveal inner retinal area was 71% in Case 1, 113% in Case 2, and 110% in Case 3, and the percentage increase in foveal outer retinal area was 8% in Case 1, 13% in Case 2, and 18% in Case 3.Conclusion: The increase in the average foveal thickness and the inner and outer foveal areas suggests that a centripetal movement of the inner and outer retinal layers toward the foveal center probably occurred due to the ILM peeling. Keywords: internal limiting membrane, optical coherence tomography, average foveal thickness, epiretinal membrane, vitrectomy

  4. Relationship between full-thickness macular hole and retinal break/lattice degeneration.

    Science.gov (United States)

    Zhang, Jinglin; Li, Yonghao; Zhao, Xiujuan; Cai, Yu; Yu, Xiling; Lu, Lin

    2015-12-01

    The purpose is to investigate the relationship between full-thickness macular hole (MH) and retinal break (RB) and/or lattice degeneration. Patients diagnosed as full-thickness MH and referred to Dr. Lin Lu from January 2009 to December 2013 were evaluated. All patients underwent general ophthalmologic examinations, fundus examination and optical coherence tomography (OCT). The RB and/or lattice degeneration were recorded. Totally 183 eyes of 167 patients were included. The sex ratio of men to women was 1:2.88. A total of 17 eyes were pseudophakic and 166 eyes were phakic. RB and/or lattice degeneration were found in 62 eyes (33.88%). The prevalence of RB and/or lattice degeneration was similar between men and women (P = 0.344 > 0.05). There was no statistical difference between the pseudophakic eyes and phakic eyes (P = 0.138 > 0.05). All of the RB and/or lattice degeneration were located near or anterior to the equator. The inferior quadrants and the vertical meridian were affected more often than the superior quadrants and the horizontal meridian. We identified a high incidence of RB/lattice degeneration in cases of full-thickness MH. Carefully examination of the peripheral retina and prophylactic treatment of RB and/or lattice degeneration are critical.

  5. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available BACKGROUND: Optical coherence tomography (OCT is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis, retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical

  6. Outer Retinal and Choroidal Evaluation in Multiple Evanescent White Dot Syndrome (MEWDS): An Enhanced Depth Imaging Optical Coherence Tomography Study.

    Science.gov (United States)

    Fiore, Tito; Iaccheri, Barbara; Cerquaglia, Alessio; Lupidi, Marco; Torroni, Giovanni; Fruttini, Daniela; Cagini, Carlo

    2018-01-01

    To perform an analysis of optical coherence tomography (OCT) abnormalities in patients with MEWDS, during the acute and recovery stages, using enhanced depth imaging-OCT (EDI-OCT). A retrospective case series of five patients with MEWDS was included. EDI-OCT imaging was evaluated to detect retinal and choroidal features. In the acute phase, focal impairment of the ellipsoid zone and external limiting membrane, hyperreflective dots in the inner choroid, and full-thickness increase of the choroidal profile were observed in the affected eye; disappearance of these findings and restoration of the choroidal thickness (p = 0.046) was appreciated in the recovery phase. No OCT abnormalities were assessed in the unaffected eye. EDI-OCT revealed transient outer retinal layer changes and inner choroidal hyperreflective dots. A transient increased thickness of the whole choroid was also identified. This might confirm a short-lasting inflammatory involvement of the whole choroidal tissue in the active phase of MEWDS.

  7. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment.

    Science.gov (United States)

    Purtskhvanidze, Konstantine; Hillenkamp, Jost; Tode, Jan; Junge, Olaf; Hedderich, Jürgen; Roider, Johann; Treumer, Felix

    2017-01-01

    To evaluate retinal layer thickness with optical coherence tomography (OCT) in eyes with macula-off retinal detachment after silicone oil (SiO) or gas endotamponade. Cross-sectional study of 40 eyes with macula-off rhegmatogenous retinal detachment that underwent vitrectomy. 20 eyes received SiO tamponade and 20 matched eyes received gas. 33 healthy fellow eyes served as controls. Macular spectral domain OCT was performed with automated layer detection in the 5 inner subfields of the Early Treatment Diabetic Retinopathy Study (ETDRS) map. Comparing the SiO group with the gas group, the ganglion cell layer showed a significant thinning in all fields of the inner ring of the ETDRS map, the inner plexiform layer in the nasal, superior and temporal quadrants, and the outer plexiform layer in the nasal quadrant. Inner retinal layers in the fovea/parafovea were significantly thinner in the SiO group. Prospective studies are warranted to further elucidate possible retinal adverse effects of SiO tamponade. © 2017 S. Karger AG, Basel.

  8. Assessment of Open-Angle Glaucoma Peripapillary and Macular Choroidal Thickness Using Swept-Source Optical Coherence Tomography (SS-OCT.

    Directory of Open Access Journals (Sweden)

    Yong Ju Song

    Full Text Available To compare peripapillary and macular choroidal thickness (PCT and MCT between open-angle glaucoma (OAG and normal controls using swept-source optical coherence tomography (SS-OCT, and to evaluate global and localized relationships between choroidal thickness and various factors in OAG, also using SS-OCT.In this cross-sectional comparative study, 134 OAG patients and 73 normal controls were examined. PCT (global, 12 clock-hour sectors, MCT (global, six sectors were measured by SS-OCT. The difference in choroidal thickness between the OAG patients and the normal controls was analyzed. The relationships between choroidal thickness and various factors including age, sex, spherical equivalent (SE, axial length (AXL, central corneal thickness (CCT, intraocular pressure (IOP, peripapillary retinal nerve fiber layer thickness (pRNFLT, visual field mean deviation (MD, ganglion cell-inner plexiform layer thickness (GCIPLT, and disc area were analyzed by univariate and multivariate linear regression. Global and regional analyses were performed in 12 segments of the peripapillary circle and in six sectors of the macula.There were significant differences in global PCT and MCT between the OAG patients and the normal controls (115.22±41.17 vs. 138.89±44.70, P<0.001, (184.36±57.15 vs. 209.25±61.11, P = 0.004. The difference in global PCT remained, both after adjusting for age, AXL (117.08±3.45 vs. 135.47±4.70, P = 0.002 and also after adjusting for age, AXL, disc area (117.46±3.46 vs. 135.67±4.67, P = 0.002. But the difference in global MCT did not remain after adjusting for age, AXL, SE (188.18±4.46 vs. 202.25±6.08, P = 0.066. PCT showed significant differences between the groups in all of the 12 clock-hour sectors. These differences remained after adjusting for age, AXL and for age, AXL, disc area, with the exception of the 10 o'clock (o/c sector. MCT in six sectors showed differences between the two groups, but they did not remain after adjusting

  9. Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity

    Directory of Open Access Journals (Sweden)

    Olachi J. Mezu-Ndubuisi

    2017-01-01

    Full Text Available Background. Retinopathy of prematurity (ROP is a condition of abnormal retinal vascular development (RVD in premature infants. Fluorescein angiography (FA has depicted phases (early, mid, late, and mature of RVD in oxygen-induced retinopathy (OIR mice. We sought to establish the relationship between retinal structural and vascular changes using simultaneous FA and spectral domain optical coherence tomography (SD-OCT. Method. 63 mice were exposed to 77% oxygen at postnatal day 7 (P7 for 5 days, while 63 mice remained in room air (RA. Total retinal thickness (TRT, inner retinal thickness (IRT, and outer retinal thickness (ORT were calculated at early (P19, mid (P24, late (P32, and mature (P47 phases of RVD. Results. TRT was reduced in OIR (162.66 ± 17.75 μm, n=13 compared to RA mice at P19 (197.57 ± 3.49 μm, n=14, P24, P32, and P49 (P0.05. IRT was reduced in OIR (71.60 ± 17.14 μm compared to RA (103.07 ± 3.47 μm mice at P19 and all ages (P<0.0001. Conclusion. We have shown the spatial and temporal relationship between retinal structure and vascular development in OIR. Significant inner retinal thinning in OIR mice persisted despite revascularization of the capillary network; further studies will elucidate its functional implications in ROP.

  10. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  11. Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans.

    Science.gov (United States)

    Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P

    2015-04-01

    To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.

  12. Segmentation error and macular thickness measurements obtained with spectral-domain optical coherence tomography devices in neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Moosang Kim

    2013-01-01

    Full Text Available Purpose: To evaluate frequency and severity of segmentation errors of two spectral-domain optical coherence tomography (SD-OCT devices and error effect on central macular thickness (CMT measurements. Materials and Methods: Twenty-seven eyes of 25 patients with neovascular age-related macular degeneration, examined using the Cirrus HD-OCT and Spectralis HRA + OCT, were retrospectively reviewed. Macular cube 512 × 128 and 5-line raster scans were performed with the Cirrus and 512 × 25 volume scans with the Spectralis. Frequency and severity of segmentation errors were compared between scans. Results: Segmentation error frequency was 47.4% (baseline, 40.7% (1 month, 40.7% (2 months, and 48.1% (6 months for the Cirrus, and 59.3%, 62.2%, 57.8%, and 63.7%, respectively, for the Spectralis, differing significantly between devices at all examinations (P < 0.05, except at baseline. Average error score was 1.21 ± 1.65 (baseline, 0.79 ± 1.18 (1 month, 0.74 ± 1.12 (2 months, and 0.96 ± 1.11 (6 months for the Cirrus, and 1.73 ± 1.50, 1.54 ± 1.35, 1.38 ± 1.40, and 1.49 ± 1.30, respectively, for the Spectralis, differing significantly at 1 month and 2 months (P < 0.02. Automated and manual CMT measurements by the Spectralis were larger than those by the Cirrus. Conclusions: The Cirrus HD-OCT had a lower frequency and severity of segmentation error than the Spectralis HRA + OCT. SD-OCT error should be considered when evaluating retinal thickness.

  13. Retinal nerve fiber layer thickness in glaucomatous Nepalese eyes and its relation with visual field sensitivity

    Directory of Open Access Journals (Sweden)

    Safal Khanal

    2014-10-01

    Conclusion: The RNFL thickness measurements with SD-OCT are lower in glaucomatous eyes as compared to age-matched GS and normal eyes in the Nepalese population. A high resolution SD-OCT could aid significantly in the early diagnosis of glaucoma in Nepal.

  14. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices.

    Science.gov (United States)

    Pinto, Luciano Moreira; Costa, Elaine Fiod; Melo, Luiz Alberto S; Gross, Paula Blasco; Sato, Eduardo Toshio; Almeida, Andrea Pereira; Maia, Andre; Paranhos, Augusto

    2014-04-10

    We examined the structure-function relationship between two perimetric tests, the frequency doubling technology (FDT) matrix and standard automated perimetry (SAP), and two optical coherence tomography (OCT) devices (time-domain and spectral-domain). This cross-sectional study included 97 eyes from 29 healthy individuals, and 68 individuals with early, moderate, or advanced primary open-angle glaucoma. The correlations between overall and sectorial parameters of retinal nerve fiber layer thickness (RNFL) measured with Stratus and Spectralis OCT, and the visual field sensitivity obtained with FDT matrix and SAP were assessed. The relationship also was evaluated using a previously described linear model. The correlation coefficients for the threshold sensitivity measured with SAP and Stratus OCT ranged from 0.44 to 0.79, and those for Spectralis OCT ranged from 0.30 to 0.75. Regarding FDT matrix, the correlation ranged from 0.40 to 0.79 with Stratus OCT and from 0.39 to 0.79 with Spectralis OCT. Stronger correlations were found in the overall measurements and the arcuate sectors for both visual fields and OCT devices. A linear relationship was observed between FDT matrix sensitivity and the OCT devices. The previously described linear model fit the data from SAP and the OCT devices well, particularly in the inferotemporal sector. The FDT matrix and SAP visual sensitivities were related strongly to the RNFL thickness measured with the Stratus and Spectralis OCT devices, particularly in the overall and arcuate sectors. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images.

    Science.gov (United States)

    Chiu, Stephanie J; Izatt, Joseph A; O'Connell, Rachelle V; Winter, Katrina P; Toth, Cynthia A; Farsiu, Sina

    2012-01-05

    To automatically segment retinal spectral domain optical coherence tomography (SD-OCT) images of eyes with age-related macular degeneration (AMD) and various levels of image quality to advance the study of retinal pigment epithelium (RPE)+drusen complex (RPEDC) volume changes indicative of AMD progression. A general segmentation framework based on graph theory and dynamic programming was used to segment three retinal boundaries in SD-OCT images of eyes with drusen and geographic atrophy (GA). A validation study for eyes with nonneovascular AMD was conducted, forming subgroups based on scan quality and presence of GA. To test for accuracy, the layer thickness results from two certified graders were compared against automatic segmentation results for 220 B-scans across 20 patients. For reproducibility, automatic layer volumes were compared that were generated from 0° versus 90° scans in five volumes with drusen. The mean differences in the measured thicknesses of the total retina and RPEDC layers were 4.2 ± 2.8 and 3.2 ± 2.6 μm for automatic versus manual segmentation. When the 0° and 90° datasets were compared, the mean differences in the calculated total retina and RPEDC volumes were 0.28% ± 0.28% and 1.60% ± 1.57%, respectively. The average segmentation time per image was 1.7 seconds automatically versus 3.5 minutes manually. The automatic algorithm accurately and reproducibly segmented three retinal boundaries in images containing drusen and GA. This automatic approach can reduce time and labor costs and yield objective measurements that potentially reveal quantitative RPE changes in longitudinal clinical AMD studies. (ClinicalTrials.gov number, NCT00734487.).

  16. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    Science.gov (United States)

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  17. Full-Thickness Retinochoroidal Incision in the Management of Central Retinal Vein Occlusion

    Directory of Open Access Journals (Sweden)

    San-Ni Chen

    2015-01-01

    Full Text Available Purpose. To evaluate the clinical outcomes in patients with central retinal vein occlusion (CRVO treated with full-thickness retinochoroidal incisions and to compare whether there is difference in treatment response in ischemic and nonischemic CRVO. Methods. Retrospective study of patients of CRVO receiving full-thickness retinochoroidal incisions in Changhua Christian Hospital. Fluorescein angiography (FA, slit-lamp biomicroscopy, indirect funduscopy, best corrected visual acuity, and central macular thickness (CMT measured by optical coherence tomography were performed pre- and postoperatively. Patients were divided into an ischemic and nonischemic group according to the findings of FA. Patients were followed up for at least 1 year. Results. Twenty-eight eyes (14 ischemic and 14 nonischemic CRVO were included. Functional retinochoroidal venous anastomosis (RCVA was achieved in 48 of the 65 retinochoroidal incisions (73.8%. Central macular thickness (CMT and retinal hemorrhage decreased significantly after the surgery. Significant visual gain was observed postoperatively in the nonischemic group, but not in the ischemic group. Postoperative complications included vitreous hemorrhage (17.8%, neovascular glaucoma (7.1%, and preretinal fibrovasular membrane (10.7%, all of which were in the ischemic group. Conclusions. RCVA formation induced by retinochoroidal incisions could improve venous flow, and decrease CMT and retinal hemorrhage. However, only eyes with nonischemic CRVO showed visual improvement.

  18. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT.

    Science.gov (United States)

    Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P

    2009-05-01

    To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).

  19. [Choroidal thickness after scleral buckling surgery in macula-off rhegmatogenous retinal detachment].

    Science.gov (United States)

    Akkoyun, I; Pınarcı, E Y; Yesilirmak, N; Yılmaz, G

    2014-10-01

    Enhanced depth imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid. Information on alterations in choroidal thickness (CT) after scleral buckling surgery (SBS) is rare. The medical charts of 122 patients (122 eyes) who underwent SBS for macula-off rhegmatogenous retinal detachment (RRD) were retrospectively analyzed. Patients with a follow-up ≥ 6 months were included. Postoperative EDI-OCT images concerning CT were evaluated 1 week, 1 month and 6 months postoperatively in 4 groups: group 1 cerclage + cryopexy (n = 39 eyes), group 2 cerclage + cryopexy + sponge (n = 28 eyes), group 3 SBS + subretinal fluid drainage (SRD) (n = 25 eyes) and group 4 SBS + sponge + SRD (n = 30 eyes). Subfoveal CT was compared between the groups and with the non-operated fellow eye. Subfoveal CT in groups 1, 2, 3 and 4 was thicker 1 week postoperatively. There were no significant differences between the groups or when comparing the operated eye with the fellow eye 1 and 6 months postoperatively. There were no differences in subfoveal CT 1 and 6 months after SBS between the eye with macula-off RRD and the fellow eye. The use of a sponge or SRD induced no differences concerning subfoveal CT.

  20. Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients

    Directory of Open Access Journals (Sweden)

    Alfonso Antón

    2009-01-01

    Full Text Available Alfonso Antón1,2,3, Marta Castany1,2, Marta Pazos-Lopez1,2, Ruben Cuadrado3, Ana Flores3, Miguel Castilla11Hospital de la Esperanza-Hospital del Mar (IMAS, Barcelona, Spain; 2Institut Català de la Retina (ICR, Barcelona, Spain. Glaucoma Department; 3Instituto Universitario de Oftalmobiología Aplicada (IOBA, Universidad de Valladolid, Valladolid, EspañaPurpose: To assess the reproducibility of retinal nerve fiber layer (RNFL measurements and the variability of the probabilistic classification algorithm in normal, hypertensive and glaucomatous eyes using Stratus optical coherence tomography (OCT.Methods: Forty-nine eyes (13 normal, 17 ocular hypertensive [OHT] and 19 glaucomatous of 49 subjects were included in this study. RNFL was determined with Stratus OCT using the standard protocol RNFL thickness 3.4. Three different images of each eye were taken consecutively during the same session. To evaluate OCT reproducibility, coefficient of variation (COV and intraclass correlation coefficient (ICC were calculated for average thickness (AvgT, superior average thickness (Savg, and inferior average thickness (Iavg parameters. The variability of the results of the probabilistic classification algorithm, based on the OCT normative database, was also analyzed. The percentage of eyes with changes in the category assigned was calculated for each group.Results: The 50th percentile of COV was 2.96%, 4.00%, and 4.31% for AvgT, Savg, and Iavg, respectively. Glaucoma group presented the largest COV for all three parameters (3.87%, 5.55%, 7.82%. ICC were greater than 0.75 for almost all measures (except from the inferior thickness parameter in the normal group; ICC = 0.64, 95% CI 0.334–0.857. Regarding the probabilistic classification algorithm for the three parameters (AvgT, Savg, Iavg, the percentage of eyes without color-code category changes among the three images was as follows: normal group, 100%, 84.6% and 92%; OHT group, 89.5%, 52.7%, 79%; and

  1. Polarization sensitive optical coherence tomography at 1060 nm for retinal imaging

    International Nuclear Information System (INIS)

    Torzicky, T.

    2014-01-01

    kHz). All three configurations were used for test imaging in healthy human volunteers and the set-up with best performance for clinical imaging was developed further. A further goal of this work was to develop a novel algorithm for automated segmentation of the choroidal thickness based on PS-OCT data. For that purpose already existing algorithms for segmenting the RPE based on DOPU values were used for defining the anterior border of the choroid while a novel algorithm was developed for defining the choroid-sclera interface based on birefringence data. A small study in healthy human volunteers was performed, where the reproducibility of the thickness measurements based on PS-OCT data was tested. In a last step the suitability of the developed set-up for imaging in patients with different retinal diseases was examined. (author) [de

  2. Research progress on the measurement of human lens thickness in vivo

    Directory of Open Access Journals (Sweden)

    Yu-Huan Yang

    2017-05-01

    Full Text Available The precise measurement in lens thickness in vivo, provides great application value for intraocular accommodation and ametropia development mechanism research. And it has great clinical significance for the diagnosis and treatment of glaucoma and cataract. Currently, many ultrasonic methods and optical methods are used in measuring lens thickness. The measurement principles, advantages, disadvantages and the accuracy of the instruments are summarized in this paper. Among these methods, Orbscan II, Pentacam, Lenstar and AS-OCT can be used to measure lens thickness instead of A-scan. More important is the fact that UL-OCT can dynamically monitor the change of the lens thickness with intraocular accommodation. Choosing an instrument with higher measuring accuracy to examine the lens thickness, can provide more accurate and convincing lens thickness data for clinical and scientific research.

  3. Application of OCT in traumatic macular hole

    Directory of Open Access Journals (Sweden)

    Wen-Li Fu

    2017-12-01

    Full Text Available AIM: To observe the application of optical coherence tomography(OCTin the diseases of traumatic macular hole. METHODS: Twenty-five eyes of 23 patients with traumatic macular hole from January 2015 to January 2017 were enrolled in this study, including 9 eyes treated without surgeries, 16 eyes with surgeries. The image features were analyzed using OCT from ZEISS. RESULTS: The OCT characteristics in patients with traumatic macular hole were partial or full-thickness disappearance of the neuro-epithelium. Posterior vitreous detachment was not seen in the traumatic macular hole. OCT examination revealed that 4 eyes had partial detachment of macular hole and 21 eyes had full thickness detachment. Of the twenty-one eyes, 4 eyes had simple macular hole, 10 eyes had macular full-layer division with peripheral nerve epithelium edema, 7 eyes had the macular full-layer hole with the neuro-epithelium localized detachment. In the 25 eyes, 9 eyes did not undergo the surgery, of which 7 eyes were self-healing; 16 eyes were surgically treated. Postoperative OCT showed the macular structure were normal in 12 eyes with the visual acuity improved 3 lines; retinal nerve epithelium were thinning in 4 eyes, visual acuities were not significant improved after surgery. CONCLUSION: OCT examination is necessary for the diagnosis and treatment of traumatic macular hole.

  4. Normal central retinal function and structure preserved in retinitis pigmentosa.

    Science.gov (United States)

    Jacobson, Samuel G; Roman, Alejandro J; Aleman, Tomas S; Sumaroka, Alexander; Herrera, Waldo; Windsor, Elizabeth A M; Atkinson, Lori A; Schwartz, Sharon B; Steinberg, Janet D; Cideciyan, Artur V

    2010-02-01

    To determine whether normal function and structure, as recently found in forms of Usher syndrome, also occur in a population of patients with nonsyndromic retinitis pigmentosa (RP). Patients with simplex, multiplex, or autosomal recessive RP (n = 238; ages 9-82 years) were studied with static chromatic perimetry. A subset was evaluated with optical coherence tomography (OCT). Co-localized visual sensitivity and photoreceptor nuclear layer thickness were measured across the central retina to establish the relationship of function and structure. Comparisons were made to patients with Usher syndrome (n = 83, ages 10-69 years). Cross-sectional psychophysical data identified patients with RP who had normal rod- and cone-mediated function in the central retina. There were two other patterns with greater dysfunction, and longitudinal data confirmed that progression can occur from normal rod and cone function to cone-only central islands. The retinal extent of normal laminar architecture by OCT corresponded to the extent of normal visual function in patients with RP. Central retinal preservation of normal function and structure did not show a relationship with age or retained peripheral function. Usher syndrome results were like those in nonsyndromic RP. Regional disease variation is a well-known finding in RP. Unexpected was the observation that patients with presumed recessive RP can have regions with functionally and structurally normal retina. Such patients will require special consideration in future clinical trials of either focal or systemic treatment. Whether there is a common molecular mechanism shared by forms of RP with normal regions of retina warrants further study.

  5. Automated choroid segmentation based on gradual intensity distance in HD-OCT images.

    Science.gov (United States)

    Chen, Qiang; Fan, Wen; Niu, Sijie; Shi, Jiajia; Shen, Honglie; Yuan, Songtao

    2015-04-06

    The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch's membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.

  6. Choroidal thickness and biometric markers for the screening of lacquer cracks in patients with high myopia.

    Directory of Open Access Journals (Sweden)

    Nan-Kai Wang

    Full Text Available OBJECTIVES: Validation of choroidal thickness and other biometrics measured by spectral domain optical coherence tomography (SD-OCT in predicting lacquer cracks formation in highly myopic eyes. METHODS: Patients with a refractive error worse than -8 diopters and moderate myopic maculopathy were recruited into two groups based on the presence or absence of lacquer cracks (36 eyes without and 33 eyes with lacquer cracks. Choroidal thickness, refractive error, and axial length were measured and subjected to receiver operating characteristic curve analysis to identify the optimal cutoff values at predicting lacquer crack formation. The width of the retinal pigment epithelium (RPE, RPE to the inner segment/outer segment line, RPE to the external limiting membrane were also measured and compared to the subfoveal choroidal thickness to assess their relationships as potential markers of lacquer crack formation. RESULTS: Lacquer crack is associated with decreased choroidal thickness, lower best-corrected visual acuity, longer axial length and higher refractive errors. Choroidal thickness has the strongest association with lacquer crack formation versus axial length and refractive error. In eyes with lacquer cracks, stellate lacquer cracks are associated with thinner choroidal thickness compared to eyes with linear lacquer cracks. Subfoveal choroidal thickness less than the width of the retinal pigment epithelium to the inner segment/outer segment line is also associated with lacquer crack formation (sensitivity 78.8%, specificity 88.3%, and accuracy 81.2%. CONCLUSIONS: This study suggests that choroidal thickness and other SD-OCT measurements could be employed clinically to predict the development and severity of lacquer cracks in patients with high myopia.

  7. The Effect of LASIK Procedure on Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Maja Zivkovic

    2017-01-01

    Full Text Available Purpose. To evaluate the effect of applied suction during microkeratome-assisted laser in situ keratomileusis (LASIK procedure on peripapillary retinal nerve fiber layer (RNFL thickness as well as macular ganglion cell-inner plexiform layer (GC-IPL thickness. Methods. 89 patients (124 eyes with established myopia range from −3.0 to −8.0 diopters and no associated ocular diseases were included in this study. RNFL and GC-IPL thickness measurements were performed by spectral domain optical coherence tomography (SD OCT one day before LASIK and at 1 and 6 months postoperatively. Results. Mean RNFL thickness prior to LASIK was 93.86±12.17 μm while the first month and the sixth month postoperatively were 94.01±12.04 μm and 94.46±12.27 μm, respectively. Comparing results, there is no significant difference between baseline, one month, and six months postoperatively for mean RNFL (p>0.05. Mean GC-IPL thickness was 81.70±7.47 μm preoperatively with no significant difference during the follow-up period (82.03±7.69 μm versus 81.84±7.64 μm; p>0.05. Conclusion. RNFL and GC-IPL complex thickness remained unaffected following LASIK intervention.

  8. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy.

    Science.gov (United States)

    Shin, Ji Soo; Lee, Young Hoon

    2017-12-01

    The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society

  9. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    Science.gov (United States)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  10. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    Science.gov (United States)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  11. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  12. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Tomomi Higashide

    Full Text Available To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects.The thickness of retinal layers {retinal nerve fiber layer (RNFL, ganglion cell layer plus inner plexiform layer (GCLIPL, RNFL plus GCLIPL (ganglion cell complex, GCC, total retina, total retina minus GCC (outer retina} were measured by macular scans (RS-3000, NIDEK in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters with or without magnification correction. For each layer thickness, a semipartial correlation (sr was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index.Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13 regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33 and a negative sr with GCLIPL (sr2, 0.22 to 0.31, GCC (sr2, 0.03 to 0.17, total retina (sr2, 0.07 to 0.17 and outer retina (sr2, 0.16 to 0.29 in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction.The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  13. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa

    2016-01-01

    To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  14. Foveal and parafoveal retinal thickness in healthy pregnant women in their last trimester

    Directory of Open Access Journals (Sweden)

    Demir M

    2011-09-01

    Full Text Available Mehmet Demir, Ersin Oba, Efe Can, Mahmut Odabasi, Semra Tiryaki, Erhan Ozdal, Hakan SensozEye Clinic, Sisli Etfal Training and Research Hospital, Istanbul, TurkeyPurpose: The inspection of foveal and parafoveal thickness in healthy pregnant women in the last trimester.Materials and methods: This study included 40 healthy pregnant women in their last trimester (study group: 40 women, 80 eyes and 37 nonpregnant women (control group: 37 women, 74 eyes. Visual acuity, intraocular pressure, slit lamp examination of anterior and posterior segments, and visual field examination with automated perimetry were performed in both groups. Foveal and parafoveal thickness in the four quadrants (upper, nasal, temporal, and inferior parafoveal and peripapillary retinal nerve fiber layer were measured by optical coherence tomography. There were no systemic or ocular problems in either group. Findings were analyzed with statistical software. A P value <0.05 was considered statistically significant.Results: Mean foveal and parafoveal thicknesses in the study group were: foveal 236.12 ± 27.28 µm, upper quadrant 321.31 ± 12.28 µm, temporal quadrant 307.0 ± 12.05 µm, inferior quadrant 317.0 ± 10.58 µm, and nasal quadrant 313.62 ± 14.51 µm. Mean foveal and parafoveal thicknesses in the control group were: foveal 224.62 ± 21.19 µm, upper quadrant 311.62 ± 12.71 µm, temporal quadrant 296.87 ± 13.78 µm, inferior quadrant 305.43 ± 13.25 µm, and nasal quadrant 304.93 ± 13.44 µm. Mean retinal nerve fiber layer thicknesses in the study and control group were 110 ± 12.4 µm and 108 ± 13.1 µm, respectively.Conclusion: Mean retinal thickness in pregnant women was higher than control group in all measurements. Statistically significant difference in thickness was only found in upper, temporal, and inferior parafoveal areas.Keywords: pregnancy, last trimester, foveal and parafoveal thickness, optical coherence tomography

  15. Structure and Function Relationship of Activated Retinal Glia in Primary Open-Angle Glaucoma Patients

    Directory of Open Access Journals (Sweden)

    Christoph Nützi

    2017-01-01

    Full Text Available Purpose. To evaluate clinically activated retinal astrocytes and Müller cells (ARAM regarding retinal sensitivity and retinal nerve fiber layer (RNFL thickness in primary open-angle glaucoma (POAG. Methods. Central visual field (VF; i.e., retinal sensitivity was measured with a custom-made macular pattern by microperimetry and correlated with the presence (ARAM+ or absence (ARAM− of ARAM on red-free fundus photography and with the corresponding RNFL by optical coherence tomography (OCT. Results. In the eyes of POAG patients, ARAM+ had overall a significantly lower retinal sensitivity (ARAM+: 7.34 dB, ARAM−: 11.9 dB; p<0.001 and lower RNFL thickness in the inferior peripapillary quadrants compared to ARAM− (RNFL superior: ARAM+ 74.2 μm, ARAM− 77.5 μm; RNFL temporal: ARAM+ 46.8 μm, ARAM− 53.0 μm, p<0.001; and RNFL inferior: ARAM+ 63.2 μm, ARAM− 73.1 μm, p<0.001. Within the same eye, ARAM+ showed a lower retinal sensitivity compared to ARAM− ([ARAM− (11.13 dB] − [ARAM+ (9.56 dB = 1.57 dB; p=0.25. The proportion of ARAM+ per eye correlated strongly with reduced retinal light sensitivity (p=0.02, corresponding lower peripapillary RNFL thickness (p=0.02, and lower RNFL temporal quadrant thickness (p<0.01, but not with greater age (p=0.45. Conclusion. ARAM was more frequently identified in the eyes with a lower retinal sensitivity and peripapillary RNFL thickness and may be a clinical sign in the macula for an advanced stage of POAG.

  16. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    Science.gov (United States)

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  17. Retinal layer segmentation in multiple sclerosis

    DEFF Research Database (Denmark)

    Petzold, Axel; Balcer, Laura J; Calabresi, Peter A

    2017-01-01

    BACKGROUND: Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal...... layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. METHODS: In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people...... with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified...

  18. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    Science.gov (United States)

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  19. INTERNAL LIMITING MEMBRANE PEELING-DEPENDENT RETINAL STRUCTURAL CHANGES AFTER VITRECTOMY IN RHEGMATOGENOUS RETINAL DETACHMENT.

    Science.gov (United States)

    Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Koyanagi, Yoshito; Murakami, Yusuke; Takeda, Atsunobu; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro

    2018-03-01

    To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used 3-dimensional optical coherence tomography (3D-OCT) in rhegmatogenous retinal detachment cases. The 68 eyes from 67 patients with rhegmatogenous retinal detachment were studied, including 35 detached macula cases (51%) and 33 attached macula cases. Internal limiting membrane peeling was performed with fine forceps after brilliant blue G staining. The 3D-OCT images were obtained with volume-rendering technologies from cross-sectional OCT images. The 3D-OCT detected 45 eyes (66%) with ILM peeling-dependent retinal changes, including dissociated optic nerve fiber layer appearance, dimple sign, temporal macular thinning, ILM peeling area thinning, or forceps-related retinal thinning. The ILM peeled area was detectable in only 9 eyes with 3D-OCT, whereas it was undetectable in other 59 eyes. The dissociated optic nerve fiber layer appearance was detected in 8 of the total cases (12%), and dimple signs were observed in 14 cases (21%). Forceps-related thinning was also noted in eight cases (24%) of attached macula cases and in four cases (11%) of detached macula cases. No postoperative macular pucker was noted in the observational period. The 3D-OCT clearly revealed spatial and time-dependent retinal changes after ILM peeling. The changes occurred in 2 months and remained thereafter.

  20. Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Balaratnasingam, Chandrakumar; Inoue, Maiko; Ahn, Seungjun; McCann, Jesse; Dhrami-Gavazi, Elona; Yannuzzi, Lawrence A; Freund, K Bailey

    2016-11-01

    To determine if the area of the foveal avascular zone (FAZ) is correlated with visual acuity (VA) in diabetic retinopathy (DR) and retinal vein occlusion (RVO). Cross-sectional study. Ninety-five eyes of 66 subjects with DR (65 eyes), branch retinal vein occlusion (19 eyes), and central retinal vein occlusion (11 eyes). Structural optical coherence tomography (OCT; Spectralis, Heidelberg Engineering) and OCT angiography (OCTA; Avanti, Optovue RTVue XR) data from a single visit were analyzed. FAZ area, point thickness of central fovea, central 1-mm subfield thickness, the occurrence of intraretinal cysts, ellipsoid zone disruption, and disorganization of retinal inner layers (DRIL) length were measured. VA was also recorded. Correlations between FAZ area and VA were explored using regression models. Main outcome measure was VA. Mean age was 62.9±13.2 years. There was no difference in demographic and OCT-derived anatomic measurements between branch retinal vein occlusion and central retinal vein occlusion groups (all P ≥ 0.058); therefore, data from the 2 groups were pooled together to a single RVO group for further statistical comparisons. Univariate and multiple regression analysis showed that the area of the FAZ was significantly correlated with VA in DR and RVO (all P ≤ 0.003). The relationship between FAZ area and VA varied with age (P = 0.026) such that for a constant FAZ area, an increase in patient age was associated with poorer vision (rise in logarithm of the minimum angle of resolution visual acuity). Disruption of the ellipsoid zone was significantly correlated with VA in univariate and multiple regression analysis (both P < 0.001). Occurrence of intraretinal cysts, DRIL length, and lens status were significantly correlated with VA in the univariate regression analysis (P ≤ 0.018) but not the multiple regression analysis (P ≥ 0.210). Remaining variables evaluated in this study were not predictive of VA (all P ≥ 0.225). The area of the FAZ is

  1. Evolving trends in primary retinal detachment repair: microincisional vitrectomy and the role of OCT.

    Science.gov (United States)

    Williams, Patrick D; Hariprasad, Seenu M

    2014-01-01

    Retinal detachment repair continues to evolve toward less invasive techniques that can safely, efficiently, and consistently provide optimal outcomes. In fact, 53% of U.S. respondents to the American Society of Retinal Specialists 2013 Preferences and Trends Survey said they would perform a vitrectomy without scleral buckle to treat a retinal detachment with a superior tear, while 25% would perform pneumatic retinopexy, and 21% would use a scleral buckle with or without vitrectomy.11 Compared to in 2005, many more surgeons prefer vitrectomy-only repair, whereas fewer prefer scleral buckle. Interestingly, preferences toward pneumatic retinopexy have slightly declined, which may reflect increased confidence in vitrectomy surgery to repair a detached retina safely and efficiently as an alternative. Even complex detachments can be treated in a minimally invasive fashion with the improvements in instrumentation, trocars, and oil infusion. While trends will likely continue toward minimal invasiveness, some form of scleral buckle, vitrectomy, and pneumatic retinopexy will all persist as treatment options. OCT advancements may allow for individualized discussions of visual prognosis and surgical decision making without the need for any invasive testing.

  2. Association of OCT derived drusen measurements with AMD associated-genotypic SNPs in Amish population.

    Science.gov (United States)

    Chavali, Venkata Ramana Murthy; Diniz, Bruno; Huang, Jiayan; Ying, Gui-Shuang; Sadda, SriniVas R; Stambolian, Dwight

    To investigate the association of OCT derived drusen measures in Amish age-related macular degeneration (AMD) patients with known loci for macular degeneration. Members of the Old Order Amish community in Pennsylvania ages 50 and older were assessed for drusen area, volume and regions of retinal pigment epithelium (RPE) atrophy using a Cirrus High- Definition-OCT. Measurements were obtained in the macula region within a central circle (CC) of 3 mm diameter and a surrounding perifoveal ring (PR) of 3 to 5 mm diameter using the Cirrus OCT RPE analysis software. Other demographic information including age, gender and smoking status were collected. Study subjects were further genotyped to determine their risk for the AMD associated SNPs in SYN3, LIPC, ARMS2, C3, CFB, CETP, CFI and CFH genes using TaqMan genotyping assays. The association of genotypes with OCT measures were assessed using linear trend p-values calculated from univariate and multivariate generalized linear models. 432 eyes were included in the analysis. Multivariate analysis (adjusted by age, gender and smoking status) confirmed the known significant association between AMD and macular drusen with the number of CFH risk alleles for drusen area (area increased 0.12 mm 2 for a risk allele increase, pAmish AMD population.

  3. Perimetric measurements with flicker-defined form stimulation in comparison with conventional perimetry and retinal nerve fiber measurements.

    Science.gov (United States)

    Horn, Folkert K; Tornow, Ralf P; Jünemann, Anselm G; Laemmer, Robert; Kremers, Jan

    2014-04-11

    We compared the results of flicker-defined form (FDF) perimetry with standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) thickness measurements using spectral domain optical coherence tomography (OCT). A total of 64 healthy subjects, 45 ocular hypertensive patients, and 97 "early" open-angle glaucoma (OAG) patients participated in this study. Definition of glaucoma was based exclusively on glaucomatous optic disc appearance. All subjects underwent FDF perimetry, SAP, and peripapillary measurements of the RNFL thickness. The FDF perimetry and SAP were performed at identical test locations (G1 protocol). Exclusion criteria were subjects younger than 34 years, SAP mean defect (SAP MD) > 5 dB, eye diseases other than glaucoma, or nonreliable FDF measurements. The correlations between the perimetric data on one hand and RNFL thicknesses on the other hand were analyzed statistically. The age-corrected sensitivity values and the local results from the controls were used to determine FDF mean defect (FDF MD). The FDF perimetry and SAP showed high concordance in this cohort of experienced patients (MD values, R = -0.69, P < 0.001). Of a total of 42 OAG patients with abnormal SAP MD, 38 also displayed abnormal FDF MD. However, FDF MD was abnormal in 28 of 55 OAG patients with normal SAP MD. The FDF MD was significantly (R = -0.61, P < 0.001) correlated with RNFL thickness with a (nonsignificantly) larger correlation coefficient than conventional SAP MD (R = -0.48, P < 0.001). The FDF perimetry is able to uncover functional changes concurrent with the changes in RNFL thickness. The FDF perimetry may be an efficient functional test to detect early glaucomatous nerve atrophy. (ClinicalTrials.gov number, NCT00494923.).

  4. Semiautomated segmentation and analysis of retinal layers in three-dimensional spectral-domain optical coherence tomography images of patients with atrophic age-related macular degeneration.

    Science.gov (United States)

    Hu, Zhihong; Shi, Yue; Nandanan, Kiran; Sadda, Srinivas R

    2017-01-01

    Historically, regular drusen and geographic atrophy (GA) have been recognized as the hallmarks of nonneovascular age-related macular degeneration (AMD). Recent imaging developments have revealed another distinct nonneovascular AMD phenotype, reticular pseudodrusen (RPD). We develop an approach to semiautomatically quantify retinal surfaces associated with various AMD lesions (i.e., regular drusen, RPD, and GA) in spectral domain (SD) optical coherence tomography (OCT) images. More specifically, a graph-based algorithm was used to segment multiple retinal layers in SD-OCT volumes. Varying surface feasibility constraints based on the presegmentation were applied on the double-surface graph search to refine the surface segmentation. The thicknesses of these layers and their correlation with retinal functional measurements, including microperimetry (MP) sensitivity and visual acuity (VA), were investigated. The photoreceptor outer segment layer demonstrated significant thinning with a reduction in MP sensitivity and VA score when atrophic AMD lesions were present. Regular drusen and RPD were separately segmented on SD-OCT images to allow their characteristics and distribution to be studied separately. The mean thickness of regular drusen was found to significantly correlate with the VA score. RPD appeared to be distributed evenly throughout the macula and regular drusen appeared to be more concentrated centrally.

  5. Avaliação da espessura da camada de fibras nervosas da retina e mácula em pacientes com ambliopia Thickness of the retinal nerve fiber layer, macular thickness, in patients with amblyopia

    Directory of Open Access Journals (Sweden)

    Juliana Mitre

    2010-02-01

    Full Text Available OBJETIVO: Avaliar a espessura da camada de fibras nervosas da retina em olhos amblíopes e comparar com olhos normais e certificar se há correlação com a redução da acuidade visual. Além disso, este estudo se propõe avaliar a eficácia e eficiência em uma série de casos do protótipo de um equipamento nacional de magnificação para leitura. MÉTODOS: Participaram deste estudo 30 pacientes na faixa etária entre 9 e 80 anos (17 do sexo masculino. Foi desenvolvido um aparelho portátil, patenteado pela Unifesp (PI#020050145260, com um sistema de captura de imagens acoplado a um monitor de 5,6 polegadas proporcionando um aumento de 15 x. Foram analisadas a eficácia da acuidade visual e a eficiência de leitura após a utilização do protótipo proposto. RESULTADOS: Seis pacientes (20% apresentaram AV 8M, 12 pacientes (40% apresentaram AV 6M, 7 pacientes (23,3% apresentaram 5 M, 5 pacientes (16,7% apresentaram 4M. A média de acuidade visual antes da utilização do SLP medida pela tabela LHNV-1 logMAR foi de 5,75M e após a utilização 100% dos pacientes atingiram a eficácia de AV J1. CONCLUSÃO: O protótipo do SLP mostrou-se um recurso alternativo no processo de inclusão social das pessoas com baixa visão com diferentes níveis de resíduo visual. Também pode proporcionar incentivo psicológico, permitir conforto, mobilidade e independência àqueles que necessitam de uma leitura mais prolongada e maior distância de trabalho.OBJECTIVE: To compare the thickness of the retinal nerve fiber layer (RNFLand the macular thickness of the amblyopic eye with those of the non-amblyopic eye in patients with unilateral amblyopia using optical coherence tomography (OCT. METHODS: OCT was performed for13 patients with unilateral amblyopia who had no neurologic disease. Nine male andfour female patients, whose ages ranged from 23 to 63 years, were enrolled in the study. The RNFL thickness average analysis program was used to evaluate mean

  6. Diabetic retinal pigment epitheliopathy: fundus autofluorescence and spectral-domain optical coherence tomography findings.

    Science.gov (United States)

    Kang, Eui Chun; Seo, Yuri; Byeon, Suk Ho

    2016-10-01

    To describe the characteristics of an unfamiliar disease entity, diabetic retinal pigment epitheliopathy (DRPE), using fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT). This retrospective study included 17 eyes from 10 proliferative diabetic retinopathy (PDR) patients with granular hypo-autofluorescence and/or variable hyper-autofluorescence on FAF (DRPE group) and 17 eyes from 10 age- and sex-matched PDR patients without abnormal autofluorescence (PDR group). Eyes with diabetic macular edema were excluded. Visual acuity (VA), retinal thickness (RT), and choroidal thickness (CT) were compared between the groups. Eyes in the DRPE group had worse logMAR VA than eyes in the PDR group (0.369 ± 0.266 vs. 0.185 ± 0.119; P = 0.026). The thickness of the retinal pigment epithelium plus the inner segment/outer segment of the photoreceptors was reduced to a greater degree in the DRPE group than the PDR group (P retina showed no differences between the two groups. CT was significantly thicker in the DRPE group than in the PDR group (329.00 ± 33.76 vs. 225.62 ± 37.47 μm; P retina, and thicker choroid in comparison with eyes with PDR. Alterations of autofluorescence on FAF and changes in the outer retinal thickness and CT on SD-OCT can be helpful for differentiating DRPE in patients with PDR.

  7. Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT.

    Science.gov (United States)

    Aaker, Grant D; Gracia, Luis; Myung, Jane S; Borcherding, Vanessa; Banfelder, Jason R; D'Amico, Donald J; Kiss, Szilárd

    2011-07-01

    Despite advances in optical coherence tomography (OCT), three-dimensional (3D) renderings of OCT images remain limited to scanning consecutive two-dimensional (2D) OCT slices. The authors describe a method of reconstructing 2D OCT data for 3D retinal analysis and visualization in a Computer Assisted Virtual Environment (CAVE). Using customized signal processing software, raw data from 2D slice-based spectral-domain OCT images were rendered into high-resolution 3D images for segmentation and quantification analysis. Reconstructed OCT images were projected onto a four-walled space and viewed through stereoscopic glasses, resulting in a virtual reality perception of the retina. These 3D retinal renderings offer a novel method for segmentation and isolation of volumetric images. The ability to manipulate the images in a virtual reality environment allows visualization of complex spatial relationships that may aid our understanding of retinal pathology. More importantly, these 3D retinal renderings can be viewed, manipulated, and analyzed on traditional 2D monitors independent of the CAVE. Copyright 2011, SLACK Incorporated.

  8. Influence of corneal power on circumpapillary retinal nerve fiber layer and optic nerve head measurements by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    2017-09-01

    Full Text Available AIM: To evaluate the influence of corneal power on circumpapillary retinal nerve fiber layer (cpRNFL and optic nerve head (ONH measurements by spectral-domain optical coherence tomography (SD-OCT. METHODS: Twenty-five eyes of 25 healthy participants (mean age 23.6±3.6y were imaged by SD-OCT using horizontal raster scans. Disposable soft contact lenses of different powers (from −11 to +5 diopters including 0 diopter were worn to induce 2-diopter changes in corneal power. Differences in the cpRNFL and ONH measurements per diopter of change in corneal power were analyzed. RESULTS: As corneal power increased by 1 diopter, total and quadrant cpRNFL thicknesses, except for the nasal sector, decreased by −0.19 to −0.32 μm (P<0.01. Furthermore, the disc, cup, and rim areas decreased by −0.017, −0.007, and −0.015 mm2, respectively (P<0.001; the cup and rim volumes decreased by −0.0013 and −0.006 mm3, respectively (P<0.01; and the vertical and horizontal disc diameters decreased by −0.006 and −0.007 mm, respectively (P<0.001. CONCLUSION: For more precise OCT imaging, the ocular magnification should be corrected by considering both the axial length and corneal power. However, the effect of corneal power changes on cpRNFL thickness and ONH topography are small when compare with those of the axial length.

  9. User-guided segmentation for volumetric retinal optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  10. Retinal ganglion cell-inner plexiform and nerve fiber layers in neuromyelitis optica.

    Science.gov (United States)

    Hu, Sai-Jing; Lu, Pei-Rong

    2018-01-01

    To determine the thickness of the retinal ganglion cell-inner plexiform layer (GCIPL) and the retinal nerve fiber layer (RNFL) in patients with neuromyelitis optica (NMO). We conducted a cross-sectional study that included 30 NMO patients with a total of 60 eyes. Based on the presence or absence of optic neuritis (ON), subjects were divided into either the NMO-ON group (30 eyes) or the NMO-ON contra group (10 eyes). A detailed ophthalmologic examination was performed for each group; subsequently, the GCIPL and the RNFL were measured using high-definition optical coherence tomography (OCT). In the NMO-ON group, the mean GCIPL thickness was 69.28±21.12 µm, the minimum GCIPL thickness was 66.02±10.02 µm, and the RNFL thickness were 109.33±11.23, 110.47±3.10, 64.92±12.71 and 71.21±50.22 µm in the superior, inferior, temporal and nasal quadrants, respectively. In the NMO-ON contra group, the mean GCIPL thickness was 85.12±17.09 µm, the minimum GCIPL thickness was 25.39±25.1 µm, and the RNFL thicknesses were 148.33±23.22, 126.36±23.45, 82.21±22.30 and 83.36±31.28 µm in the superior, inferior, temporal and nasal quadrants, respectively. In the control group, the mean GCIPL thickness was 86.98±22.37 µm, the minimum GCIPL thickness was 85.28±10.75 µm, and the RNFL thicknesses were 150.22±22.73, 154.79±60.23, 82.33±7.01 and 85.62±13.81 µm in the superior, inferior, temporal and nasal quadrants, respectively. The GCIPL and RNFL were thinner in the NMO-ON contra group than in the control group ( P deviation (MD) and corrected pattern standard deviation (PSD) in the NMO-ON group ( P <0.05). The thickness of the GCIPL and RNFL, as measured using OCT, may indicate optic nerve damage in patients with NMO.

  11. LONG-TERM SD-OCT/SLO IMAGING OF NEURORETINA AND RETINAL PIGMENT EPITHELIUM AFTER SUB-THRESHOLD INFRARED LASER TREATMENT OF DRUSEN

    Science.gov (United States)

    MOJANA, FRANCESCA; BRAR, MANPREET; CHENG, LINGYUN; BARTSCH, DIRK-UWE G.; FREEMAN, WILLIAM R.

    2012-01-01

    PURPOSE To determine the long-term effect of sub-threshold diode laser treatment for drusen in patients with non-exudative age-related macular degeneration (AMD) with spectral domain optical coherence tomography combined with simultaneous scanning laser ophthalmoscope (SD-OCT/SLO). METHODS 8 eyes of 4 consecutive AMD patients with bilateral drusen previously treated with sub-threshold diode laser were imaged with SD-OCT/SLO. Abnormalities in the outer retina layers reflectivity as seen with SD-OCT/SLO were retrospectively analyzed and compared with color fundus pictures and autofluorescence images (AF) acquired immediately before and after the laser treatment. RESULTS A focal discrete disruptions in the reflectivity of the outer retinal layers was noted in 29% of the laser lesions. The junction in between the inner and outer segment of the photoreceptor was more frequently affected, with associated focal damage of the outer nuclear layer. Defects of the RPE were occasionally detected. These changes did not correspond to threshold burns on color fundus photography, but corresponded to focal areas of increased AF in the majority of the cases. CONCLUSIONS Sub-threshold diode laser treatment causes long-term disruption of the retinal photoreceptor layer as analyzed by SD-OCT/SLO. The concept that sub-threshold laser treatment can achieve a selected RPE effect without damage to rods and cones may be flawed. PMID:21157398

  12. Retinal nerve fiber layer in primary open-angle glaucoma with high myopia determined by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Wang, Xiao-en; Wang, Xiao-yu; Gu, Yang-shun; Huang, Zhu

    2013-01-01

    Fundus changes associated with high myopia (HM) may mask those associated with primary open-angle glaucoma (POAG). This study aim to determine the characteristics of RNFL thickness changes in patients with both POAG and HM and compare these to changes in patients with only HM. The diagnostic capabilities of both OCT and GDxVCC in this subset of patients are also evaluated. Twenty-two eyes with POAG and HM (spherical equivalent (SE) between -6.0 and -12.0 D) were evaluated, and 22 eyes with HM were used for comparison. Characteristic retinal nerve fiber layer (RNFL) thickness profiles in patients with POAG and HM were examined using optical coherence tomography (OCT) and scanning laser polarimetry with variable corneal compensation (GDxVCC), and the diagnostic capabilities of these imaging modalities were compared. RNFL parameters evaluated included superior average (Savg-GDx), inferior average (Iavg-GDx), temporal-superior-nasal- inferior-temporal (TSNIT) average, and nerve fiber indicator (NFI) on GDxVCC and superior average (Savg-OCT), inferior average (Iavg-OCT), nasal average (Navg-OCT), temporal average (Tavg-OCT), and average thickness (AvgThick-OCT) on OCT (fast RNFL scan). Visual field testing was performed and defects were evaluated using mean defect (MD) and pattern standard deviation (PSD). The RNFL parameters (P < 0.05) significantly different between groups included Savg-GDx, Iavg-GDx, TSNIT average, NFI, Savg-OCT, Iavg-OCT, Tavg-OCT, and AvgThick-OCT. Significant correlations existed between TSNIT average and AvgThick-OCT (r = 0.778), TSNIT average and MD (r = 0.749), AvgThick-OCT and MD (r = 0.647), TSNIT average and PSD (r = -0.756), and AvgThick-OCT and PSD (r = -0.784). The area under the receiver operating characteristic curve (AUROC) values of TSNIT average, Savg-GDx, Iavg-GDx, NFI, Savg-OCT, Iavg-OCT, Navg-OCT, Tavg-OCT, and AvgThick-OCT were 0.947, 0.962, 0.973, 0.994, 0.909, 0.917, 0.511, 0.906, and 0.913, respectively. The NFI AUROC was the

  13. Changes in retinal nerve fiber layer thickness after spinal surgery in the prone position: a prospective study

    Directory of Open Access Journals (Sweden)

    Baran Gencer

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Changes in ocular perfusion play an important role in the pathogenesis of ischemic optic neuropathy. Ocular perfusion pressure is equal to mean arterial pressure minus intraocular pressure. The aim of this study was to evaluate the changes in the intraocular pressure and the retinal nerve fiber layer thickness in patients undergoing spinal surgery in the prone position. METHODS: This prospective study included 30 patients undergoing spinal surgery. Retinal nerve fiber layer thickness were measured one day before and after the surgery by using optical coherence tomography. Intraocular pressure was measured by tonopen six times at different position and time-duration: supine position (baseline; 10 min after intubation (Supine 1; 10 (Prone 1, 60 (Prone 2, 120 (Prone 3 min after prone position; and just after postoperative supine position (Supine 2. RESULTS: Our study involved 10 male and 20 female patients with the median age of 57 years. When postoperative retinal nerve fiber layer thickness measurements were compared with preoperative values, a statistically significant thinning was observed in inferior and nasal quadrants (p = 0.009 and p = 0.003, respectively. We observed a statistically significant intraocular pressure decrease in Supine 1 and an increase in both Prone 2 and Prone 3 when compared to the baseline. Mean arterial pressure and ocular perfusion pressure were found to be significantly lower in Prone 1, Prone 2 and Prone 3, when compared with the baseline. CONCLUSIONS: Our study has shown increase in intraocular pressure during spinal surgery in prone position. A statistically significant retinal nerve fiber layer thickness thinning was seen in inferior and nasal quadrants one day after the spinal surgery.

  14. Thickness related textural properties of retinal nerve fiber layer in color fundus images.

    Science.gov (United States)

    Odstrcilik, Jan; Kolar, Radim; Tornow, Ralf-Peter; Jan, Jiri; Budai, Attila; Mayer, Markus; Vodakova, Martina; Laemmer, Robert; Lamos, Martin; Kuna, Zdenek; Gazarek, Jiri; Kubena, Tomas; Cernosek, Pavel; Ronzhina, Marina

    2014-09-01

    Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema.

    Science.gov (United States)

    Forooghian, Farzin; Cukras, Catherine; Meyerle, Catherine B; Chew, Emily Y; Wong, Wai T

    2008-10-01

    To evaluate macular thickness and volume measurements and their intrasession repeatability in two optical coherence tomography (OCT) systems: the Stratus OCT, a time domain system, and the Cirrus HD-OCT, a spectral domain system (both by Carl Zeiss Meditec, Inc., Dublin, CA), in the context of diabetic macular edema (DME). Thirty-three eyes of 33 diabetic patients with clinically significant macular edema (CSME) were scanned in a single session by a single operator on both OCT systems. Macular thickness measurements of nine standard macular subfields and total macular volume were obtained and analyzed. Bland-Altman plots were constructed to assess agreement in macular measurements. Intraclass correlation coefficients (ICCs), coefficients of repeatability (CR(W)), and coefficients of variation (CV(W)) were used to assess intrasession repeatability. Macular thickness in nine retinal subfields and macular volume were significantly higher in the Cirrus HD-OCT system compared with the Stratus OCT system. Subfield thickness and total volume measurements, respectively, were 30 to 55 microm and 3.2 mm(3) greater for the Cirrus HD-OCT system compared with the Stratus OCT system. Both Stratus OCT and Cirrus HD-OCT systems demonstrated high intrasession repeatability, with overlapping ranges for CR(W), CV(W), and ICC. Repeatability measures (CR(W) and CV(W)) differed significantly between systems in only one of nine subfields (outer temporal subfield). Absolute measures of macular thickness and volume in patients with DME differed significantly in magnitude between the Stratus OCT and Cirrus HD-OCT systems. However, both OCT systems demonstrated high intrasessional repeatability. Although the two systems may not be used interchangeably, they appear equally reliable in generating macular measurements for clinical practice and research.

  16. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis.

    Science.gov (United States)

    Petzold, Axel; Balcer, Laura J; Calabresi, Peter A; Costello, Fiona; Frohman, Teresa C; Frohman, Elliot M; Martinez-Lapiscina, Elena H; Green, Ari J; Kardon, Randy; Outteryck, Olivier; Paul, Friedemann; Schippling, Sven; Vermersch, Patrik; Villoslada, Pablo; Balk, Lisanne J

    2017-10-01

    Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified data on eyes into healthy controls, multiple-sclerosis-associated optic neuritis (MSON), and multiple sclerosis without optic neuritis (MSNON). We assessed thickness of the retinal layers and we rated individual layer segmentation performance by random effects meta-analysis for MSON eyes versus control eyes, MSNON eyes versus control eyes, and MSNON eyes versus MSON eyes. We excluded relevant sources of bias by funnel plots. Of 25 497 records identified, 110 articles were eligible and 40 reported data (in total 5776 eyes from patients with multiple sclerosis [1667 MSON eyes and 4109 MSNON eyes] and 1697 eyes from healthy controls) that met published OCT quality control criteria and were suitable for meta-analysis. Compared with control eyes, the peripapillary retinal nerve fibre layer (RNFL) showed thinning in MSON eyes (mean difference -20·10 μm, 95% CI -22·76 to -17·44; pmultiple sclerosis and control eyes were found in the peripapillary RNFL and macular GCIPL. Inflammatory disease activity might be captured by the INL. Because of the consistency, robustness, and large effect size, we

  17. Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma.

    Science.gov (United States)

    Di Staso, Silvio; Agnifili, Luca; Di Staso, Federico; Climastone, Hilary; Ciancaglini, Marco; Scuderi, Gian Luca

    2018-03-01

    This study was performed to test the diagnostic capability of the minimum rim width compared to peripapillary retinal nerve fiber layer thickness in patients with glaucoma. A case control, observer masked study, was conducted. Minimum rim width and retinal nerve fiber layer thickness were assessed using the patient-specific axis traced between fovea-to-Bruch's membrane opening center axis. For both minimum rim width and retinal nerve fiber layer thickness, the regionalization in six sectors (nasal, superior-nasal, superior-temporal, temporal, inferior-temporal, and inferior-nasal) was analyzed. Eyes with at least one sector with value below the 5% or 1% normative limit of the optical coherence tomography normative database were classified as glaucomatous. The area under the receiver operator characteristic curve, the accuracy, sensitivity, specificity, and predictive positive and negative values were calculated for both minimum rim width and retinal nerve fiber layer thickness. A total of 118 eyes of 118 Caucasian subjects (80 eyes with open-angle glaucoma and 38 control eyes) were enrolled in the study. Accuracy, sensitivity, and specificity were 79.7%, 77.5%, and 84.2%, respectively, for minimum rim width and 84.7%, 82.5%, and 89.5% for retinal nerve fiber layer thickness. The positive predictive values were 0.91% and 0.94% for minimum rim width and retinal nerve fiber layer thickness, respectively, whereas the negative predictive values were 0.64% and 0.70%. The area under the receiver operator characteristic curve was 0.892 for minimum rim width and 0.938 for retinal nerve fiber layer thickness. Our results indicated that the sector analysis based on Bruch's membrane opening and fovea to disk alignment is able to detect glaucomatous defects, and that Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness showed equivalent diagnostic ability.

  18. Polarisation-sensitive OCT is useful for evaluating retinal pigment epithelial lesions in patients with neovascular AMD.

    Science.gov (United States)

    Schütze, Christopher; Teleky, Katharina; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2016-03-01

    To examine the reproducibility of lesion dimensions of the retinal pigment epithelium (RPE) in neovascular age-related macular degeneration (AMD) with polarisation-sensitive optical coherence tomography (PS-OCT), specifically imaging the RPE. Twenty-six patients (28 eyes) with neovascular AMD were included in this study, and examined by a PS-OCT prototype. Each patient was scanned five times at a 1-day visit. The PS-OCT B-scan located closest to the macular centre presenting with RPE atrophy was identified, and the longitudinal diameter of the lesion was quantified manually using AutoCAD 2008. This procedure was followed for the identical B-scan position in all five scans per eye and patient. Reproducibility of qualitative changes in PS-OCT was evaluated. Interobserver variability was assessed. Results were compared with intensity-based spectral-domain OCT (SD-OCT) imaging. Mean variability of all atrophy lesion dimensions was 0.10 mm (SD±=0.06 mm). Coefficient of variation (SD±/mean) was 0.06 on average (SD±=0.03). Interobserver variability assessment showed a mean difference of 0.02 mm across all patients regarding RPE lesion size evaluation (paired t test: p=0.38). Spearman correlation coefficient was r=0.98, p<0.001. Results revealed a good overall reproducibility of ∼90%. PS-OCT specifically detected the RPE in all eyes compared with conventional intensity-based SD-OCT that was not capable to clearly identify RPE atrophy in 25 eyes (89.3%, p<0.01). PS-OCT offers good reproducibility of RPE atrophy assessment in neovascular AMD, and may be suitable for precise RPE evaluation in clinical practice. PS-OCT unambiguously identifies RPE changes in choroidal neovascularisation compared with intensity-based SD-OCT that does not identify the RPE status reliably. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. OCT-Based Quantification and Classification of Optic Disc Structure in Glaucoma Patients.

    Directory of Open Access Journals (Sweden)

    Naoko Takada

    Full Text Available To objectively classify the optic discs of open-angle glaucoma (OAG patients into Nicolela's four disc types, i.e., focal ischemic (FI, myopic (MY, senile sclerotic (SS, and generalized enlargement (GE, with swept-source optical coherence tomography (SS-OCT.This study enrolled 113 eyes of 113 OAG patients (mean age: 62.5 ± 12.6; Humphrey field analyzer-measured mean deviation: -9.4 ± 7.3 dB. Newly developed software was used to quantify a total of 20 optic disc parameters in SS-OCT (DRI OCT-1, TOPCON images of the optic disc. The most suitable reference plane (RP above the plane of Bruch's membrane opening was determined by comparing, at various RP heights, the SS-OCT-measured rim parameters and spectral-domain OCT-measured circumpapillary retinal nerve fiber layer thickness (cpRNFLT, with Pearson's correlation analysis. To obtain a discriminant formula for disc type classification, a training group of 72 eyes of 72 OAG patients and a validation group of 60 eyes of 60 OAG patients were set up.Correlation with cpRNFLT differed with disc type and RP height, but overall, a height of 120 μm minimized the influence of disc type. Six parameters were most significant for disc type discrimination: disc angle (horizontal, average cup depth, cup/disc ratio, rim-decentering ratio, average rim/disc ratio (upper and lower nasal. Classifying the validation group with these parameters returned an identification rate of 80.0% and a Cohen's Kappa of 0.73.Our new, objective SS-OCT-based method enabled us to classify glaucomatous optic discs with high reproducibility and accuracy.

  20. Simultaneous segmentation of retinal surfaces and microcystic macular edema in SDOCT volumes

    Science.gov (United States)

    Antony, Bhavna J.; Lang, Andrew; Swingle, Emily K.; Al-Louzi, Omar; Carass, Aaron; Solomon, Sharon; Calabresi, Peter A.; Saidha, Shiv; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality that has begun to find widespread use in retinal imaging for the detection of a variety of ocular diseases. In addition to structural changes in the form of altered retinal layer thicknesses, pathological conditions may also cause the formation of edema within the retina. In multiple sclerosis, for instance, the nerve fiber and ganglion cell layers are known to thin. Additionally, the formation of pseudocysts called microcystic macular edema (MME) have also been observed in the eyes of about 5% of MS patients, and its presence has been shown to be correlated with disease severity. Previously, we proposed separate algorithms for the segmentation of retinal layers and MME, but since MME mainly occurs within specific regions of the retina, a simultaneous approach is advantageous. In this work, we propose an automated globally optimal graph-theoretic approach that simultaneously segments the retinal layers and the MME in volumetric OCT scans. SD-OCT scans from one eye of 12 MS patients with known MME and 8 healthy controls were acquired and the pseudocysts manually traced. The overall precision and recall of the pseudocyst detection was found to be 86.0% and 79.5%, respectively.

  1. Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern.

    Science.gov (United States)

    Hoesl, Laura Maria; Tornow, Ralf P; Schrems, Wolfgang A; Horn, Folkert K; Mardin, Christian Y; Kruse, Friedrich E; Juenemann, Anselm G M; Laemmer, Robert

    2013-01-01

    To investigate the impact of typical scan score (TSS) on discriminating glaucomatous and healthy eyes by scanning laser polarimetry and spectral domain optical coherence tomography (SD-OCT) in 32 peripapillary sectors. One hundred two glaucoma patients and 32 healthy controls underwent standard automated perimetry, 24-hour intraocular pressure profile, optic disc photography, GDxVCC, and SD-OCT measurements. For controls, only very typical scans (TSS=100) were accepted. Glaucoma patients were divided into 3 subgroups (very typical: TSS=100; typical: 99≥TSS≥80, atypical: TSS<80). Receiver operating characteristic curves were constructed for mean retinal nerve fiber layer values, sector data, and nerve fiber indicator (NFI). Sensitivity was estimated at ≥90% specificity to compare the discriminating ability of each imaging modality. For discrimination between healthy and glaucomatous eyes with very typical scans, the NFI and inferior sector analyses 26 to 27 demonstrated the highest sensitivity at ≥90% specificity in GDxVCC and SD-OCT, respectively. For the typical and atypical groups, sensitivity at ≥90% specificity decreased for all 32 peripapillary sectors on an average by 10.9% and 17.9% for GDxVCC and by 4.9% and 0.8% for SD-OCT. For GDxVCC, diagnostic performance of peripapillary sectors decreased with lower TSS, especially in temporosuperior and inferotemporal sectors (sensitivity at ≥90% specificity decreased by 55.3% and by 37.8% in the atypical group). Diagnostic accuracy is comparable for SD-OCT and GDxVCC if typical scans (TSS=100) are investigated. Decreasing TSS is associated with a decrease in diagnostic accuracy for discriminating healthy and glaucomatous eyes by scanning laser polarimetry. NFI is less influenced than the global or sector retinal nerve fiber layer thickness. The TSS score should be included in the standard printout. Diagnostic accuracy of SD-OCT is barely influenced by low TSS.

  2. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

    Science.gov (United States)

    Virgili, Gianni; Menchini, Francesca; Casazza, Giovanni; Hogg, Ruth; Das, Radha R; Wang, Xue; Michelessi, Manuele

    2015-01-07

    Citation Index - Science (CPCI-S) (January 1990 to June 2013), BIOSIS Previews (January 1969 to June 2013), MEDION and the Aggressive Research Intelligence Facility database (ARIF). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 25 June 2013. We checked bibliographies of relevant studies for additional references. We selected studies that assessed the diagnostic accuracy of any OCT model for detecting DMO or CSMO in patients with DR who were referred to eye clinics. Diabetic macular oedema and CSMO were diagnosed by means of fundus biomicroscopy by ophthalmologists or stereophotography by ophthalmologists or other trained personnel. Three authors independently extracted data on study characteristics and measures of accuracy. We assessed data using random-effects hierarchical sROC meta-analysis models. We included 10 studies (830 participants, 1387 eyes), published between 1998 and 2012. Prevalence of CSMO was 19% to 65% (median 50%) in nine studies with CSMO as the target condition. Study quality was often unclear or at high risk of bias for QUADAS 2 items, specifically regarding study population selection and the exclusion of participants with poor quality images. Applicablity was unclear in all studies since professionals referring patients and results of prior testing were not reported. There was a specific 'unit of analysis' issue because both eyes of the majority of participants were included in the analyses as if they were independent.In nine studies providing data on CSMO (759 participants, 1303 eyes), pooled sensitivity was 0.78 (95% confidence interval (CI) 0.72 to 0.83) and specificity was 0.86 (95% CI 0.76 to 0.93). The median central retinal thickness cut-off we selected for data extraction was 250 µm (range 230 µm to 300 µm). Central CSMO was the target condition in all but two studies and thus our results cannot be applied to non-central CSMO.Data from three studies

  3. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Browning DJ

    2016-12-01

    Full Text Available David J Browning, Omar S Punjabi, Chong Lee Department of Ophthalmology, Charlotte Eye, Ear, Nose and Throat Associates, P.A., Charlotte, NC, USA Purpose: To determine the relationship between different spectral domain optical coherence tomography (SD-OCT signs of retinal ischemia in acute central retinal vein occlusion (CRVO and whether they predict anterior segment neovascularization (ASNV.Design: Retrospective, observational study.Subjects: Thirty-nine consecutive patients with acute CRVO and 12 months of follow-up.Methods: We graded baseline SD-OCTs for increased reflectivity of the inner retina, loss of definition of inner retinal layers, presence of a prominent middle-limiting membrane (p-MLM sign, and presence of paracentral acute middle maculopathy (PAMM. Graders were masked with respect to all clinical information.Results: The intraclass correlation coefficients (ICCs of grading–regrading by graders 1 and 2 were 0.8104, 95% confidence interval (CI (0.6686, 0.8956, and 0.7986, 95% CI (0.6475, 0.8892, respectively. The intragrader coefficients of repeatability (COR for graders 1 and 2 were 0.94 and 0.92, respectively. The ICC of graders 1 compared with 2 was 0.8039, 95% CI (0.6544, 0.8916. The intergrader COR was 0.80. SD-OCT grades of baseline ischemia were not associated with baseline visual acuity (VA, central subfield mean thickness (CSMT, or relative afferent pupillary defect; 12-month VA, CSMT, change in VA, change in CSMT, number of antivascular endothelial growth factor injections or corticosteroid injections, or proportion of eyes developing ASNV. SD-OCT grades of ischemia did not correlate with the proportion of eyes having the p-MLM sign or PAMM. PAMM and p-MLM are milder signs of ischemia than increased reflectivity of the inner retinal layers. Eyes with PAMM can evolve, losing PAMM and gaining the p-MLM sign.Conclusion: Grading of ischemia from SD-OCT in acute CRVO was repeatable within graders and reproducible across

  4. Change of Retinal Nerve Layer Thickness in Non-Arteritic Anterior Ischemic Optic Neuropathy Revealed by Fourier Domain Optical Coherence Tomography.

    Science.gov (United States)

    Han, Mei; Zhao, Chen; Han, Quan-Hong; Xie, Shiyong; Li, Yan

    2016-08-01

    To examine the changes of non-arteritic anterior ischemic optic neuropathy (NAION) by serial morphometry using Fourier domain optical coherence tomography (FD-OCT). Retrospective study in patients with newly diagnosed NAION (n=33, all unilateral) and controls (n=75 unilateral NAION patients with full contralateral eye vision) who underwent FD-OCT of the optic disk, optic nerve head (ONH), and macula within 1 week of onset and again 1, 3, 6, and 12 months later. The patients showed no improvement in vision during follow-up. Within 1 week of onset, all NAION eyes exhibited severe ONH fiber crowding and peripapillary retinal nerve fiber layer (RNFL) edema. Four had subretinal fluid accumulation and 12 had posterior vitreous detachment (PVD) at the optic disc surface. Ganglion cell complex (GCC) and RNFL thicknesses were reduced at 1 and 3 months (p < 0.05), with no deterioration thereafter. Initial RNFL/GCC contraction magnitude in the superior hemisphere correlated with the severity of inferior visual field deficits. NAION progression is characterized by an initial phase of accelerated RNFL and GCC deterioration. These results reveal that the kinetic change of neural retina in NAION and may have implication on the time window for treatment of NAION. FD-OCT is useful in the evaluation of NAION.

  5. Why choroid vessels appear dark in clinical OCT images

    Science.gov (United States)

    Kirby, Mitchell A.; Li, Chenxi; Choi, Woo June; Gregori, Giovanni; Rosenfeld, Philip; Wang, Ruikang

    2018-02-01

    With the onset of clinically available spectral domain (SD-OCT) and swept source (SS-OCT) systems, clinicians are now easily able to recognize sub retinal microstructure and vascularization in the choroidal and scleral regions. As the bloodrich choroid supplies nutrients to the upper retinal layers, the ability to monitor choroid function accurately is of vital importance for clinical assessment of retinal health. However, the physical appearance of the choroid blood vessels (darker under a healthy Retinal Pigmented Epithelium (RPE) compared to regions displaying an RPE atrophic lesion) has led to confusion within the OCT ophthalmic community. The differences in appearance between each region in the OCT image may be interpreted as different vascular patterns when the vascular networks are in fact very similar. To explain this circumstance, we simulate light scattering phenomena in the RPE and Choroid complexes using the finite difference time domain (FDTD) method. The simulation results are then used to describe and validate imaging features in a controlled multi-layered tissue phantom designed to replicate human RPE, choroid, and whole blood microstructure. Essentially, the results indicate that the strength of the OCT signal from choroidal vasculature is dependent on the health and function of the RPE, and may not necessarily directly reflect the health and function of the choroidal vasculature.

  6. Parafoveal retinal cone mosaic imaging in children with ultra-compact switchable SLO/OCT handheld probe (Conference Presentation)

    Science.gov (United States)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore B.; Toth, Cynthia A.; Farsiu, Sina; Izatt, Joseph A.

    2016-03-01

    In vivo photoreceptor imaging has enhanced the way vision scientists and ophthalmologists understand the retinal structure, function, and etiology of numerous retinal pathologies. However, the complexity and large footprint of current systems capable of resolving photoreceptors has limited imaging to patients who are able to sit in an upright position and fixate for several minutes. Unfortunately, this excludes an important fraction of patients including bedridden patients, small children, and infants. Here, we show that our dual-modality, high-resolution handheld probe with a weight of only 94 g is capable of visualizing photoreceptors in supine children. Our device utilizes a microelectromechanical systems (MEMS) scanner and a novel telescope design to achieve over an order of magnitude reduction in size compared to similar systems. The probe has a 7° field of view and a lateral resolution of 8 µm. The optical coherence tomography (OCT) system has an axial resolution of 7 µm and a sensitivity of 101 dB. High definition scanning laser ophthalmoscopy (SLO) and OCT images were acquired from children ranging from 14 months to 12 years of age with and without pathology during examination under anesthesia in the operating room. Parafoveal cone imaging was shown using the SLO arm of this device without adaptive optics using a 3° FOV for the first time in children under 4 years old. This work lays the foundation for pediatric research, which will improve understanding of retinal development, maldevelopment and early onset of diseases at the cellular level during the beginning stages of human growth.

  7. Autofluorescence Imaging and Spectral-Domain Optical Coherence Tomography in Incomplete Congenital Stationary Night Blindness and Comparison with Retinitis Pigmentosa

    Science.gov (United States)

    CHEN, ROYCE W. S.; GREENBERG, JONATHAN P.; LAZOW, MARGOT A.; RAMACHANDRAN, RITHU; LIMA, LUIZ H.; HWANG, JOHN C.; SCHUBERT, CARL; BRAUNSTEIN, ALEXANDRA; ALLIKMETS, RANDO; TSANG, STEPHEN H.

    2015-01-01

    PURPOSE To test the hypothesis that the evaluation of retinal structure can have diagnostic value in differentiating between incomplete congenital stationary night blindness (CSNB2) and retinitis pigmentosa (RP). To compare retinal thickness differences between patients with CSNB2 and myopic controls. DESIGN Prospective cross-sectional study. METHODS Ten eyes of 5 patients diagnosed with CSNB2 (4 X-linked recessive, 1 autosomal recessive) and 6 eyes of 3 patients with RP (2 autosomal dominant, 1 autosomal recessive) were evaluated with spectral-domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF). Diagnoses of CSNB2 and RP were confirmed by full-field electroretinography (ERG). Manual segmentation of retinal layers, aided by a computer program, was performed by 2 professional segmenters on SD OCT images of all CSNB2 patients and 4 age-similar, normal myopic controls. Seven patients were screened for mutations with congenital stationary night blindness and RP genotyping arrays. RESULTS Patients with CSNB2 had specific findings on SD OCT and FAF that were distinct from those found in RP. CSNB2 patients showed qualitatively normal SD OCT results with preserved photoreceptor inner segment/outer segment junction, whereas this junction was lost in RP patients. In addition, CSNB2 patients had normal FAF images, whereas patients with RP demonstrated a ring of increased autofluorescence around the macula. On SD OCT segmentation, the inner and outer retinal layers of both X-linked recessive and autosomal recessive CSNB2 patients were thinner compared with those of normal myopic controls, with means generally outside of normal 95% confidence intervals. The only layers that demonstrated similar thickness between CSNB2 patients and the controls were the retinal nerve fiber layer and, temporal to the fovea, the combined outer segment layer and retinal pigment epithelium. A proband and his 2 affected brothers from a family segregating X-linked recessive

  8. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression.

    Science.gov (United States)

    Rohani, Mohammad; Meysamie, Alipasha; Zamani, Babak; Sowlat, Mohammad Mahdi; Akhoundi, Fahimeh Haji

    2018-04-30

    To assess RNFL thickness in ALS patients and compare it to healthy controls, and to detect possible correlations between RNFL thickness in ALS patients and disease severity and duration. Study population consisted of ALS patients and age- and sex-matched controls. We used the revised ALS functional rating scale (ALSFRS-R) as a measure of disease severity. RNFL thickness in the four quadrants were measured with a spectral domain OCT (Topcon 3D, 2015). We evaluated 20 ALS patients (40 eyes) and 25 healthy matched controls. Average RNFL thickness in ALS patients was significantly reduced compared to controls (102.57 ± 13.46 compared to 97.11 ± 10.76, p 0.04). There was a significant positive correlation between the functional abilities of the patients based on the ALSFRS-R and average RNFL thickness and also RNFL thickness in most quadrants. A linear regression analysis proved that this correlation was independent of age. In ALS patients, RNFL thickness in the nasal quadrant of the left eyes was significantly reduced compared to the corresponding quadrant in the right eyes even after adjustment for multiplicity (85.80 ± 23.20 compared to 96.80 ± 16.96, p = 0.008). RNFL thickness in ALS patients is reduced compared to healthy controls. OCT probably could serve as a marker of neurodegeneration and progression of the disease in ALS patients. RNFL thickness is different among the right and left eyes of ALS patients pointing to the fact that asymmetric CNS involvement in ALS is not confined to the motor system.

  9. Retinal ganglion cell-inner plexiform and nerve fiber layers in neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Sai-Jing Hu

    2018-01-01

    Full Text Available AIM: To determine the thickness of the retinal ganglion cell-inner plexiform layer (GCIPL and the retinal nerve fiber layer (RNFL in patients with neuromyelitis optica (NMO. METHODS: We conducted a cross-sectional study that included 30 NMO patients with a total of 60 eyes. Based on the presence or absence of optic neuritis (ON, subjects were divided into either the NMO-ON group (30 eyes or the NMO-ON contra group (10 eyes. A detailed ophthalmologic examination was performed for each group; subsequently, the GCIPL and the RNFL were measured using high-definition optical coherence tomography (OCT. RESULTS: In the NMO-ON group, the mean GCIPL thickness was 69.28±21.12 μm, the minimum GCIPL thickness was 66.02±10.02 μm, and the RNFL thickness were 109.33±11.23, 110.47±3.10, 64.92±12.71 and 71.21±50.22 μm in the superior, inferior, temporal and nasal quadrants, respectively. In the NMO-ON contra group, the mean GCIPL thickness was 85.12±17.09 μm, the minimum GCIPL thickness was 25.39±25.1 μm, and the RNFL thicknesses were 148.33±23.22, 126.36±23.45, 82.21±22.30 and 83.36±31.28 μm in the superior, inferior, temporal and nasal quadrants, respectively. In the control group, the mean GCIPL thickness was 86.98±22.37 μm, the minimum GCIPL thickness was 85.28±10.75 μm, and the RNFL thicknesses were 150.22±22.73, 154.79±60.23, 82.33±7.01 and 85.62±13.81 μm in the superior, inferior, temporal and nasal quadrants, respectively. The GCIPL and RNFL were thinner in the NMO-ON contra group than in the control group (P<0.05; additionally, the RNFL was thinner in the inferior quadrant in the NMO-ON group than in the control group (P<0.05. Significant correlations were observed between the GCIPL and RNFL thickness measurements as well as between thickness measurements and the two visual field parameters of mean deviation (MD and corrected pattern standard deviation (PSD in the NMO-ON group (P<0.05. CONCLUSION: The thickness of the GCIPL

  10. Effect of Reduced Meal Frequency during Ramadan Fasting on Retinal and Choroidal Thickness.

    Science.gov (United States)

    Ersan, Ismail; Tufan, Hasan Ali; Arikan, Sedat; Kara, Selcuk; Gencer, Baran; Hondur, Ahmet Murat

    2017-01-01

    To evaluate the effects of Ramadan fasting on central foveal thickness (CFT) and subfoveal choroidal thickness (SFCT) in healthy individuals using enhanced depth imaging optical coherence tomography (EDI-OCT). The EDI-OCT scans of 42 healthy individuals obtained after about 12 hours of fasting on at least the twenty-first consecutive day of fasting were compared to scans of the same patients taken one month after the last day they had fasted. CFT values were similar for both time periods (p > 0.05). The SFCT was significantly higher after consecutive fasting days towards the end of Ramadan, compared to the SFCT after one month of no fasting (one month after Ramadan ended) (p Ramadan fasting may lead to a significant increase in subfoveal choroidal thickness without affecting the central foveal thickness.

  11. Optimizing visualization in enhanced depth imaging OCT in healthy subjects and patients with retinal pigment epithelial detachment

    Directory of Open Access Journals (Sweden)

    Kampik A

    2012-11-01

    Full Text Available Lukas Reznicek, Efstathios Vounotrypidis, Florian Seidensticker, Karsten Kortuem, Anselm Kampik, Aljoscha S Neubauer, Armin WolfDepartment of Ophthalmology, Ludwig Maximilians University Muenchen, Munich, GermanyBackground: This study’s objective was to optimize the visualization of three different spectral-domain optical coherence tomography (SD-OCT display modalities and evaluate enhanced depth imaging (EDI by comparing the maximum depth of assessment in conventional versus inverted cross-sectional OCT images in healthy subjects and in patients with retinal pigment epithelial detachment (PED.Methods: Cross-sectional SD-OCT conventional and inverted images were obtained with the HRA2 (Heidelberg Retina Angiograph II, Heidelberg Engineering, Heidelberg, Germany. Horizontal as well as vertical sections in three different display modes were blinded for evaluation by three independent, experienced graders for maximal imaging depth of the deep ocular fundus layers.Results: The mean imaging depth as measured from the inner segment/outer segment (IS/OS to the outer choroid of all 14 healthy subjects was 197 ± 44 µm vs 263 ± 56 µm for conventional vs EDI scans: in black/white mode, it was significantly lower (P < 0.001 than in white/black mode (249 ± 42 µm vs 337 ± 71 µm and color/heat mode (254 ± 48 µm vs 354 ± 73 µm. The mean imaging depth of all 14 study eyes with PED was 240 ± 78 µm vs 345 ± 100 µm for conventional vs EDI scans in black/white mode, and was significantly lower (P < 0.001 than in white/black mode (393 ± 104 µm vs 464 ± 126 µm and in color/heat mode (373 ± 106 µm vs 453 ± 114 µm. In each display modality of healthy subjects and of patients with PED, EDI scans showed a significantly higher imaging depth than the corresponding conventional scans.Conclusion: White/black and color/heat modes allow increased imaging depth, compared to black/white mode using both conventional or EDI OCT scans in healthy subjects or

  12. Correlation between glycemic control and peripapillary retinal nerve fiber layer thickness in Saudi type II diabetics

    Directory of Open Access Journals (Sweden)

    Fahmy RM

    2018-03-01

    Full Text Available Rania M Fahmy,1,2 Ramesa S Bhat,3 Manar Al-Mutairi,4 Feda S Aljaser,5 Afaf El-Ansary4 1Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; 2Department of Ophthalmology, Faculty of Medicine, Cairo University, Giza, Egypt; 3Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia; 4Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia; 5Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia Objective: To evaluate the effect of diabetes mellitus (DM, diabetic retinopathy, and degree of glycemic control (glycosylated hemoglobin [HbA1c] on peripapillary retinal nerve fiber layer thickness (RNFLT using optical coherence tomography.Methods: The study included 126 eyes of healthy controls (n=32 and diabetics patients (n=31, whose ages ranged from 40 to 70 years. The diabetic group was divided into: Subgroup 1: with HbA1c <7% and Subgroup 2: with HbA1c ≥7%. All patients underwent full ophthalmic examination. HbA1c level was obtained with the A1cNow+ system and the peripapillary RNFLT was measured using 3D-OCT 2000 Topcon (360-degree circular scan with 3.4 mm diameter centered on optic disc.Results: The obtained data demonstrates significant decrease in peripapillary RNFLT in superior and inferior quadrants of the right eye (p=0.000 and p=0.039, respectively, and in superior quadrant of the left eye (p=0.002 with impairment of glycemic control. Pearson’s correlation test showed significant negative correlation of RNFLT with HbA1c in the superior quadrant in both eyes.Conclusion: Impairment of glycemic control affects the peripapillary RNFLT mainly in the superior quadrant. This thickness also tends to decrease with long-standing DM, use of DM medications, and development of diabetic retinopathy. The measurement of peripapillary RNFLT

  13. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Science.gov (United States)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  14. Long-Term Protection of Genetically Ablated Rabbit Retinal Degeneration by Sustained Transscleral Unoprostone Delivery.

    Science.gov (United States)

    Nagai, Nobuhiro; Koyanagi, Eri; Izumida, Yasuko; Liu, Junjun; Katsuyama, Aya; Kaji, Hirokazu; Nishizawa, Matsuhiko; Osumi, Noriko; Kondo, Mineo; Terasaki, Hiroko; Mashima, Yukihiko; Nakazawa, Toru; Abe, Toshiaki

    2016-12-01

    To evaluate the long-term protective effects of transscleral unoprostone (UNO) against retinal degeneration in transgenic (Tg) rabbits (Pro347Leu rhodopsin mutation). The UNO release devices (URDs) were implanted into the sclerae of Tg rabbits and ERG, optical coherence tomography (OCT), and ophthalmic examinations were conducted for 40 weeks. Unoprostone metabolites in retina, choroid/RPE, aqueous humor, and plasma from wild-type (Wt) rabbits were measured using liquid chromatography-tandem mass spectrometry. In situ hybridization and immunohistochemistry evaluated the retinal distribution of big potassium (BK) channels, and RT-PCR evaluated the expressions of BK channels and m-opsin at 1 week after URD treatment. The URD released UNO at a rate of 10.2 ±1.0 μg/d, and the release rate and amount of UNO decreased during 32 weeks. Higher ERG amplitudes were observed in the URD-treated Tg rabbits compared with the placebo-URD, or nontreated controls. At 24 weeks after implantation into the URD-treated Tg rabbits, OCT images showed preservation of retinal thickness, and histologic examinations (44 weeks) showed greater thickness of outer nuclear layers. Unoprostone was detected in the retina, choroid, and plasma of Wt rabbits. Retina/plasma ratio of UNO levels were 38.0 vs. 0.68 ng UNO*hour/mL in the URD-treated group versus control (topical UNO), respectively. Big potassium channels were observed in cone, cone ON-bipolar, and rod bipolar cells. Reverse-transcriptase PCR demonstrated BK channels and m-opsins increased in URD-treated eyes. In Tg rabbits, URD use slowed the decline of retinal function for more than 32 weeks, and therefore provides a promising tool for long-term treatment of RP.

  15. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  16. Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section.

    Science.gov (United States)

    Vupparaboina, Kiran Kumar; Nizampatnam, Srinath; Chhablani, Jay; Richhariya, Ashutosh; Jana, Soumya

    2015-12-01

    A variety of vision ailments are indicated by anomalies in the choroid layer of the posterior visual section. Consequently, choroidal thickness and volume measurements, usually performed by experts based on optical coherence tomography (OCT) images, have assumed diagnostic significance. Now, to save precious expert time, it has become imperative to develop automated methods. To this end, one requires choroid outer boundary (COB) detection as a crucial step, where difficulty arises as the COB divides the choroidal granularity and the scleral uniformity only notionally, without marked brightness variation. In this backdrop, we measure the structural dissimilarity between choroid and sclera by structural similarity (SSIM) index, and hence estimate the COB by thresholding. Subsequently, smooth COB estimates, mimicking manual delineation, are obtained using tensor voting. On five datasets, each consisting of 97 adult OCT B-scans, automated and manual segmentation results agree visually. We also demonstrate close statistical match (greater than 99.6% correlation) between choroidal thickness distributions obtained algorithmically and manually. Further, quantitative superiority of our method is established over existing results by respective factors of 27.67% and 76.04% in two quotient measures defined relative to observer repeatability. Finally, automated choroidal volume estimation, being attempted for the first time, also yields results in close agreement with that of manual methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of Hydroxychloroquine on the Retinal Layers: A Quantitative Evaluation with Spectral-Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hasim Uslu

    2016-01-01

    Full Text Available Purpose. To evaluate the effect of hydroxychloroquine on retinal pigment epithelium- (RPE- Bruch’s membrane complex, photoreceptor outer segment, and macular ganglion cell-inner plexiform layer (GCIPL thicknesses using spectral-domain optical coherence tomography (SD-OCT. Methods. In this prospective case-control study, 51 eyes of 51 hydroxychloroquine patients and 30 eyes of 30 healthy subjects were included. High-quality images were obtained using a Cirrus HD-OCT with 5-line raster mode; the photoreceptor inner segment (IS and outer segment (OS, sum of the segments (IS + OS, and RPE-Bruch’s membrane complex were analyzed. Results. The thicknesses of the IS + OS and OS layers were significantly lower in the hydroxychloroquine subjects compared to the control subjects (P<0.05. RPE-Bruch’s membrane complex thicknesses were significantly higher in the hydroxychloroquine subjects than for those of the control subjects (P<0.05. The minimum and temporal-inferior macular GCIPL thicknesses were significantly different between the patients with hydroxychloroquine use and the control subjects (P=0.04 and P=0.03, resp.. Conclusions. The foveal photoreceptor OS thinning, loss of GCIPL, and RPE-Bruch’s membrane thickening were detected in patients with hydroxychloroquine therapy. This quantitative approach using SD-OCT images may have important implications to use as an early indicator of retinal toxicity without any visible signs of hydroxychloroquine retinopathy.

  18. Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo

    2014-01-01

    Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…

  19. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    Science.gov (United States)

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  20. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  1. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Baumann, Bernhard; Gotzinger, Erich; Pircher, Michael; Sattmann, Harald; Schuutze, Christopher; Schlanitz, Ferdinand; Ahlers, Christian; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K

    2010-01-01

    We present polarization-sensitive optical coherence tomography (PS-OCT) for quantitative assessment of retinal pathologies in age-related macular degeneration (AMD). On the basis of the polarization scrambling characteristics of the retinal pigment epithelium, novel segmentation algorithms were developed that allow one to segment pathologic features such as drusen and atrophic zones in dry AMD as well as to determine their dimensions. Results from measurements in the eyes of AMD patients prove the ability of PS-OCT for quantitative imaging based on the retinal features polarizing properties. Repeatability measurements were performed in retinas diagnosed with drusen and geographic atrophy in order to evaluate the performance of the described methods. PS-OCT appears as a promising imaging modality for three-dimensional retinal imaging and ranging with additional contrast based on the structures' tissue-inherent polarization properties.

  2. Quantification of retinal layer thickness changes in acute macular neuroretinopathy

    DEFF Research Database (Denmark)

    Munk, Marion R.; Beck, Marco; Kolb, Simone

    2017-01-01

    Purpose To quantitatively evaluate retinal layer thickness changes in acute macular neuroretinopathy (AMN). Methods AMN areas were identified using near-infrared reflectance (NIR) images. Intraretinal layer segmentation using Heidelberg software was performed. The inbuilt ETDRS -grid was moved on...

  3. [Retinal imaging of the macula and optic disc in neurodegenerative diseases].

    Science.gov (United States)

    Turski, G N; Schmitz-Valckenberg, S; Holz, F G; Finger, R P

    2017-02-01

    Due to current demographic trends, the prevalence of mild cognitive impairment and dementia is expected to increase considerably. For potential new therapies it is important to identify patients at risk as early as possible. Currently, there is no population-based screening. Therefore, identification of biomarkers that will help screen the population at risk is urgently needed. Thus, a literature review on retinal pathology in neurodegenerative diseases was performed. PubMed was searched for studies published up to August 2016 using the following keywords: "mild cognitive impairment", "dementia", "eye", "ocular biomarkers", "OCT" and "OCT angiography". Relevant publications were selected and summarized qualitatively. Multiple studies using noninvasive in vivo optical coherence tomography (OCT) imaging showed nonspecific retinal pathological changes in patients with neurodegenerative diseases such as mild cognitive impairment, Alzheimer's and Parkinson's disease. Pathological changes in macular volume, optic nerve fiber layer thickness and the ganglion cell complex were observed. However, based on available evidence, no ocular biomarkers for neurodegeneration which could be integrated in routine clinical diagnostics have been identified. The potential use of OCT in the early diagnostic workup and monitoring of progression of neurodegenerative diseases needs to be further explored in longitudinal studies with large cohorts.

  4. Retinal micropseudocysts in diabetic retinopathy: prospective functional and anatomic evaluation.

    Science.gov (United States)

    Forte, Raimondo; Cennamo, Gilda; Finelli, Maria Luisa; Bonavolontà, Paola; Greco, Giovanni Maria; de Crecchio, Giuseppe

    2012-01-01

    To evaluate the prevalence, progression and functional predictive value of retinal micropseudocysts (MPCs) in diabetic patients. Prospective controlled observational study. From among all the type 2 diabetic patients evaluated during a period of 5 months between September 2009 and January 2010, we enrolled all patients with retinal MPCs at spectral-domain scanning laser ophthalmoscope/optical coherence tomography (SD-SLO/OCT) not previously treated for diabetic retinopathy. Forty diabetic patients without MPCs served as the control group. Best-corrected visual acuity (BCVA), central retinal thickness (CRT), macular sensitivity and stability of fixation at SD-SLO/OCT microperimetry were measured monthly for 12 months. 22/156 patients with type 2 diabetes (14.1%, 32 eyes) met the inclusion criteria. The 95% confidence interval for the prevalence estimate of MPCs was 12.3-16.6%. Mean BCVA, CRT and central retinal sensitivity at baseline were 77.53 ± 2.2 Early Treatment Diabetic Retinopathy Study letters, 242.31 ± 31.0 µm and 15.95 ± 0.61 dB, respectively. Fixation was stable in all cases. Compared to the control group, eyes with MPCs had similar BCVA but greater CRT (p = 0.01) and reduced macular sensitivity (p = 0.001) at baseline and at each follow-up visit. Over time, CRT remained stable in eyes with MPCs, whereas macular sensitivity progressively decreased. MPCs in diabetic retinopathy are associated, temporally or causally, with a progressive reduction of macular sensitivity despite a stable BCVA, CRT and fixation. Copyright © 2011 S. Karger AG, Basel.

  5. Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions

    Directory of Open Access Journals (Sweden)

    Raeba Mathew

    2010-10-01

    Full Text Available Raeba Mathew, Evangelia Papavasileiou, Sobha SivaprasadLaser and Retinal Research Unit, Department of Ophthalmology, King’s College Hospital, Denmark Hill, London, UKBackground: The purpose of this study is to illustrate the fundus autofluorescence and high-definition optical coherence tomography (HD-OCT features of acute and long-standing retinal artery occlusions.Design: Retrospective case series.Participants: Patients with acute and chronic retinal and cilioretinal artery occlusions are included in this series.Methods: A detailed clinical examination, color fundus photographs, autofluorescence, and HD-OCT of the subjects were performed.Results: HD-OCT demonstrates the localized and well-demarcated thickening of the inner retina in the acute phase of arterial occlusions that correlates with the areas of blocked autofluorescence caused by the cloudy swelling of the retina. The areas of blocked autofluorescence disappear with chronicity of the disease and this corresponds to the thinning of the inner retinal layers on HD-OCT.Conclusion: Heidelberg OCT and autofluorescence are useful tools to assess retinal arterial occlusions especially in subjects with unexplained visual field loss.Keywords: autofluorescence, high definition OCT, retinal artery occlusion

  6. Assessment of Retinal and Choroidal Measurements in Chinese School-Age Children with Cirrus-HD Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available To evaluate retinal thickness (RT, retinal volume (RV and choroidal thickness (ChT in Chinese children using Cirrus-HD optical coherence tomography (OCT, and assess their associations with spherical equivalent (SE, age and gender.This was a prospective study that recruited 193 healthy Chinese children (193 eyes with no ophthalmic disease history between December 2012 and December 2013. RT and RV were acquired using OCT. Subfoveal ChT (SFCT and ChT1-mm and 2-mm temporal, nasal, superior and inferior to the fovea were measured manually.RT in the inner temporal and nasal regionsdiffered significantly between refraction groups (both P<0.05. Significant differences were also found inSFCT andChT 1- and 2-mm inferior to the fovea (all P<0.05. RT differed significantly between males and females in the outer superior region in the emmetropia group (P<0.05. ChT differed significantly between males and females 2-mm temporal to the fovea in the emmetropia group (P<0.05, and 1-mm temporal to the fovea in the mild myopia group (P<0.05. SE correlated positively with RT in the inner temporal (r = 0.230,nasal (r = 0.252 and inferior (r = 0.149 regions (all P<0.05. Age correlated positively with foveolar (r = 0.169, total macular (r = 0.202, inner temporal (r = 0.237, inner nasal (r = 0.248, inner superior (r = 0.378 and inner inferior (r = 0.345 region thicknesses, and with RV (r = 0.207(all P<0.05. SE correlated positively with SFCT (r = 0.195, and with ChT1-mm temporal (r = 0.167, 1- and 2-mm nasal (r = 0.144 and r = 0.162, 2-mm superior (r = 0.175, and 1- and 2-mm inferior (r = 0.207 and r = 0.238 to the fovea (all P<0.05. Age had no significant association with ChT.SE, age and gender did not influence macular RT and ChT in most regions, and correlations of RT with age and ChT with SE were weak.

  7. En face OCT in Stargardt disease.

    Science.gov (United States)

    Sodi, Andrea; Mucciolo, Dario Pasquale; Cipollini, Francesca; Murro, Vittoria; Caporossi, Orsola; Virgili, Gianni; Rizzo, Stanislao

    2016-09-01

    To evaluate the structural features of the macular region by enface OCT imaging in patients with clinical diagnosis of Stargardt disease, confirmed by the detection of ABCA4 mutations. Thirty-two STGD patients were included in the study for a total of 64 eyes. All patients received a comprehensive ophthalmological examination, color fundus photography, fundus auto-fluorescence imaging and OCT. Five OCT scans were considered: ILM and RPE scans (both automatically obtained from the instrument), above-RPE slab, photoreceptor slab and sub-RPE slab (these last three manually obtained). ILM scans showed evident radial folds on the retinal surface in 8/64 eyes (12.5 %). In 6 of the 7 patients, these vitreo-retinal interface abnormalities were unilateral. The photoreceptor slab showed some macular alterations ranging from dis-homogeneous, hypo-reflective abnormalities (7/64 eyes, 11 %) to a homogeneous, well-defined, roundish, hypo-reflective area (17/64 eyes, 27 %) in all the eyes. The sub-RPE slab showed a centrally evident, hyper-reflective abnormality in 58/64 eyes (90.6 %). Superimposing the sub-RPE slab over the images corresponding to the photoreceptor slab, the area of the photoreceptor atrophy sharply exceeded that of the RPE atrophy (44/46 eyes, 96 %). Enface OCT proved to be a clinically useful tool for the management of STGD patients, illustrating in vivo the structural abnormalities of the different retinal layers.

  8. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis

    DEFF Research Database (Denmark)

    Kallenbach, K; Simonsen, Helle Juhl; Sander, B

    2010-01-01

    included 41 patients with unilateral optic neuritis and 19 healthy volunteers. All patients were evaluated and examined within 28 days of onset of symptoms. The peripapillary retinal nerve fiber layer thickness (RNFLT), an objective quantitative measure of optic nerve head edema, was measured by optical...... coherence tomography and the length and location of the inflammatory optic nerve lesion were evaluated using MRI. RESULTS: Ophthalmoscopically, 34% of the patients had papillitis. The retinal nerve fiber layer in affected eyes (mean 123.1 microm) was higher during the acute phase than that of fellow eyes......BACKGROUND: Acute optic neuritis occurs with and without papillitis. The presence of papillitis has previously been thought to imply an anterior location of the neuritis, but imaging studies seeking to test this hypothesis have been inconclusive. METHODS: This prospective observational cohort study...

  9. [Choroidal thickness assessment with SD-OCT in high myopia with dome-shaped macula].

    Science.gov (United States)

    Chebil, A; Ben Achour, B; Chaker, N; Jedidi, L; Mghaieth, F; El Matri, L

    2014-03-01

    To measure macular choroidal thickness (CT) using spectral-domain optical coherence tomography (SD-OCT) in highly myopic eyes with dome-shaped macula (DSM), and to investigate whether the choroid is thicker in these eyes compared to highly myopic eyes without MB. A cross-sectional study of 200 eyes was performed between January 2010 and June 2012. Twenty-four highly myopic eyes (12%) had a dome-shaped macula. All patients underwent a complete ophthalmological examination, SD-OCT (TOPCON 2000), and B-scan ultrasonography. OCT scans were analyzed in 7 sections, and subfoveal CT was measured manually between the Bruch's membrane and the internal aspect of the sclera. The 20 eyes with isolated dome-shaped macular were paired by age and axial length (AL) with 20 eyes without macular involvement. In the subgroup with isolated MB, the mean subfoveal CT was 101.86 μm (± 21.35 μm). A statistically significant negative correlation was found between CT and AL (r=-0.623, P=0.0001). The regression equation demonstrated a decrease of 8.3 μm per mm of AL. In the subgroup without MB, matched with the subgroup with MB by age (P=0.591), and AL (P=0.815), the mean subfoveal CT was 89.54 μm (± 20.12 μm). The comparison between the two subgroups found a statistically significant difference in subfoveal CT (Pmacula compared to highly myopic eyes without dome-shaped macula. These findings suggest that abnormalities of the choroid may play a role in the pathogenesis of dome-shaped macula. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Purpose. To assess the ability of optical coherence tomography-angiography (OCT-A to show and analyze retinal vascular patterns and the choroidal neovascularization (CNV in retinal vascular diseases. Methods. Seven eyes of seven consecutive patients with retinal vascular diseases were examined. Two healthy subjects served as controls. All eyes were scanned with the SD-OCT XR Avanti (Optovue Inc, Fremont CA, USA. Split spectrum amplitude decorrelation angiography algorithm was used to identify the blood flow within the tissue. Fluorescein angiography (FA and indocyanine green angiography (ICGA with Spectralis HRA + OCT (Heidelberg Engineering GmbH were performed. Results. In healthy subjects OCT-A visualized major macular vessels and detailed capillary networks around the foveal avascular zone. Patients were affected with myopic CNV (2 eyes, age-related macular degeneration related (2, branch retinal vein occlusion (BRVO (2, and branch retinal artery occlusion (BRAO (1. OCT-A images provided distinct vascular patterns, distinguishing perfused and nonperfused areas in BRVO and BRAO and recognizing the presence, location, and size of CNV. Conclusions. OCT-A provides detailed images of retinal vascular plexuses and quantitative data of pathologic structures. Further studies are warranted to define the role of OCT-A in the assessment of retinovascular diseases, with respect to conventional FA and ICG-A.

  11. ASSOCIATIONS BETWEEN MACULAR EDEMA AND CIRCULATORY STATUS IN EYES WITH RETINAL VEIN OCCLUSION: An Adaptive Optics Scanning Laser Ophthalmoscopy Study.

    Science.gov (United States)

    Iida, Yuto; Muraoka, Yuki; Uji, Akihito; Ooto, Sotaro; Murakami, Tomoaki; Suzuma, Kiyoshi; Tsujikawa, Akitaka; Arichika, Shigeta; Takahashi, Ayako; Miwa, Yuko; Yoshimura, Nagahisa

    2017-10-01

    To investigate associations between parafoveal microcirculatory status and foveal pathomorphology in eyes with macular edema (ME) secondary to retinal vein occlusion (RVO). Ten consecutive patients (10 eyes) with acute retinal vein occlusion were enrolled, 9 eyes of which received intravitreal ranibizumab (IVR) injections. Foveal morphologic changes were examined via optical coherence tomography (OCT), and parafoveal circulatory status was assessed via adaptive optics scanning laser ophthalmoscopy (AO-SLO). The mean parafoveal aggregated erythrocyte velocity (AEV) measured by adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion was 0.99 ± 0.43 mm/second at baseline, which was significantly lower than that of age-matched healthy subjects (1.41 ± 0.28 mm/second, P = 0.042). The longitudinal adaptive optics scanning laser ophthalmoscopy examinations of each patient showed that parafoveal AEV was strongly inversely correlated with optical coherence tomography-measured central foveal thickness (CFT) over the entire observation period. Using parafoveal AEV and central foveal thickness measurements obtained at the first and second examinations, we investigated associations between differences in parafoveal AEV and central foveal thickness, which were significantly and highly correlated (r = -0.84, P = 0.002). Using adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion macular edema, we could quantitatively evaluate the parafoveal AEV. A reduction or an increase in parafoveal AEV may be a clinical marker for the resolution or development/progression of macular edema respectively.

  12. A comparative study on OCT before and after the operation for vitreomacular traction syndrome

    Directory of Open Access Journals (Sweden)

    Shu-Qi Song

    2017-07-01

    Full Text Available AIM: To make a contrast and then analyze the difference of optical coherence tomography(OCTbefore and after vitreomacular traction syndrome(VTSwas performed. METHODS: The clinical date of 11 evaluable eyes of 11 patients with VTS who were diagnosed by OCT and underwent 25G vitreous surgery from January 2013 to January 2014 were retrospectively analyzed. Patients were followed up for an average of 6mo, to observe the visual acuity and OCT examination of the patient before and after operation. We compared the changes of retinal thickness and local morphology before and after operation.RESULTS: After vitreous retraction, 6 eyes improved, 2 eyes do not improve. One eye received macular membrane traction, in the operation the macular epiretinal membrane peeling, retrial membrane stripping and the triamcinolone acetonide intravitreal injection were given, but after the operation, the vision does not improve. Two eyes received vitreous combined with retinal macular membrane traction. In the operation, macular epiretinal membrane stripping was given, after the operation, visual acuity improved. The proportion of those with visual acuity of 0.1 or more increased from 46% before to 73% after the operation. Before operations, the mean central macular thickness was 619.27±195.13μm, 239.12±143.84μm after, which decreased significantly(PCONCLUSION: Vitrectomy can effectively relieve the vitreous traction of the macula, and can prevent further decline in visual acuity and reduce macular edema as well as improve the visual acuity of some patients. So, OCT has important guiding significance on the diagnosis and prognosis of this group.

  13. Retinal nerve fiber and optic disc morphology using spectral-domain optical coherence tomography in scleroderma patients.

    Science.gov (United States)

    Sahin-Atik, Sevinc; Koc, Feray; Akin-Sari, Sirin; Ozmen, Mustafa

    2017-05-11

    To evaluate the optic nerve head parameters and peripapillary retinal nerve fiber layer using spectral-domain optical coherence tomography (SD-OCT) in a systemic sclerosis (SSc) cohort and age-matched controls to determine whether SSc patients have an increased risk of normal-tension glaucoma (NTG). We examined 30 patients (3 male, 27 female) with SSc and 28 age- and sex-matched controls. Retinal nerve fiber and optic disc morphology were evaluated using Cirrus SD-OCT. Optic disc morphology measurements including disc area, rim area, average and vertical cup/disc (C/D) ratio, and cup volume were not significantly different between the study groups. The average and 4-quadrant retinal nerve fiber layer (RNFL) measurements of the C/D >0.3 subgroups were not significantly different in the patients and controls. These values were also similar for the C/D >0.5 subgroups except that the average inferior quadrant RNFL thickness of the right eyes in the patient subgroup was significantly thinner than in the control subgroup (p<0.05). Our SSc cohort had relatively shorter disease duration but increased prevalence of early glaucomatous damage signs. Our findings indicate that SSc is a risk factor for developing normal-tension glaucoma. Further studies combined with visual field evaluation are necessary to identify the long-term glaucomatous effects of SSc.

  14. Changes in Retinal and Choroidal Vascular Blood Flow after Oral Sildenafil: An Optical Coherence Tomography Angiography Study

    Directory of Open Access Journals (Sweden)

    David Berrones

    2017-01-01

    Full Text Available Purpose. To describe changes in the retina and choroidal flow by optical coherence tomography angiography (OCT-A after a single dose of oral sildenafil. Method. A case-control study. Patients in the study group received 50 mg of oral sildenafil. Patients in the control group received a sham pill. Retinal and choroidal images were obtained at baseline (before pill ingestion and 1 hour after ingestion. Central macular and choroidal thickness, choroidal and outer retina flow, and the retinal and choroidal vascular density were compared using a Mann-Whitney U test. Results. Twenty eyes were enrolled into the study group and 10 eyes in the control group. There was a significant difference in central choroidal thickness and outer retina blood flow between groups after 1 hour of sildenafil ingestion (p<0.01. There were no differences in central macular thickness, choroidal flow, and retinal vascular density among groups. Conclusions. A single dose of oral sildenafil increases choroidal thickness, probably due to sildenafil-induced vasodilation.

  15. Optical Coherence Tomography Study of Experimental Anterior Ischemic Optic Neuropathy and Histologic Confirmation

    Science.gov (United States)

    Ho, Joyce K.; Stanford, Madison P.; Shariati, Mohammad A.; Dalal, Roopa; Liao, Yaping Joyce

    2013-01-01

    Purpose. The optic nerve is part of the central nervous system, and interruption of this pathway due to ischemia typically results in optic atrophy and loss of retinal ganglion cells. In this study, we assessed in vivo retinal changes following murine anterior ischemic optic neuropathy (AION) by using spectral-domain optical coherence tomography (SD-OCT) and compared these anatomic measurements to that of histology. Methods. We induced ischemia at the optic disc via laser-activated photochemical thrombosis, performed serial SD-OCT and manual segmentation of the retinal layers to measure the ganglion cell complex (GCC) and total retinal thickness, and correlated these measurements with that of histology. Results. There was impaired perfusion and leakage at the optic disc on fluorescein angiography immediately after AION and severe swelling and distortion of the peripapillary retina on day-1. We used SD-OCT to quantify the changes in retinal thickness following experimental AION, which revealed significant thickening of the GCC on day-1 after ischemia followed by gradual thinning that plateaued by week-3. Thickness of the peripapillary sensory retina was also increased on day-1 and thinned chronically. This pattern of acute retinal swelling and chronic thinning on SD-OCT correlated well with changes seen in histology and corresponded to loss of retinal ganglion layer cells after ischemia. Conclusions. This was a serial SD-OCT quantification of acute and chronic changes following experimental AION, which revealed changes in the GCC similar to that of human AION, but over a time frame of weeks rather than months. PMID:23887804

  16. Optical Coherence Tomography of Retinal Degeneration in Royal College of Surgeons Rats and Its Correlation with Morphology and Electroretinography.

    Directory of Open Access Journals (Sweden)

    Kobu Adachi

    Full Text Available To evaluate the correlation between optical coherence tomography (OCT and the histological, ultrastructural and electroretinography (ERG findings of retinal degeneration in Royal College of Surgeons (RCS-/- rats.Using OCT, we qualitatively and quantitatively observed the continual retinal degeneration in RCS-/- rats, from postnatal (PN day 17 until PN day 111. These findings were compared with the corresponding histological, electron microscopic, and ERG findings. We also compared them to OCT findings in wild type RCS+/+ rats, which were used as controls.After PN day 17, the hyperreflective band at the apical side of the photoreceptor layer became blurred. The inner segment (IS ellipsoid zone then became obscured, and the photoreceptor IS and outer segment (OS layers became diffusely hyperreflective after PN day 21. These changes correlated with histological and electron microscopic findings showing extracellular lamellar material that accumulated in the photoreceptor OS layer. After PN day 26, the outer nuclear layer became significantly thinner (P < 0.01 and hyperreflective compared with that in the controls; conversely, the photoreceptor IS and OS layers, as well as the inner retinal layers, became significantly thicker (P < 0.001 and P = 0.05, respectively. The apical hyperreflective band, as well as the IS ellipsoid zone, gradually disappeared between PN day 20 and PN day 30; concurrently, the ERG a- and b-wave amplitudes deteriorated. In contrast, the thicknesses of the combined retinal pigment epithelium and choroid did not differ significantly between RCS-/- and RCS+/+ rats.Our results suggest that OCT demonstrates histologically validated photoreceptor degeneration in RCS rats, and that OCT findings partly correlate with ERG findings. We propose that OCT is a less invasive and useful method for evaluating photoreceptor degeneration in animal models of retinitis pigmentosa.

  17. Optical coherence tomography detection of characteristic retinal nerve fiber layer thinning in nasal hypoplasia of the optic disc.

    Science.gov (United States)

    Haruta, M; Kodama, R; Yamakawa, R

    2017-12-01

    PurposeTo determine the clinical usefulness of optical coherence tomography (OCT) for detecting thinning of the retinal nerve fiber layer (RNFL) in eyes with nasal hypoplasia of the optic discs (NHOD).Patients and methodsThe medical records of five patients (eight eyes) with NHOD were reviewed. The ratio of the disc-macula distance to the disc diameter (DM/DD) and the disc ovality ratio of the minimal to maximal DD were assessed using fundus photographs. The RNFL thicknesses of the temporal, superior, nasal, and inferior quadrants were evaluated using OCT quadrant maps.ResultsAll eight eyes had temporal visual field defects that respected the vertical meridians that needed to be differentiated from those related to chiasmal compression. The mean DM/DD ratio was 3.1 and the mean disc ovality ratio was 0.81. The mean RNFL thicknesses of the temporal, superior, nasal, and inferior quadrants were 90.3, 103.1, 34.8, and 112.8 microns, respectively.ConclusionSmall optic discs and tilted discs might be associated with NHOD. Measurement of the RNFL thickness around the optic disc using OCT scans clearly visualized the characteristic RNFL thinning of the nasal quadrants corresponding to the temporal sector visual field defects in eyes with NHOD. OCT confirmed the presence of NHOD and might differentiate eyes with NHOD from those with chiasmal compression.

  18. Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years.

    Science.gov (United States)

    Garcia-Martin, Elena; Ara, Jose R; Martin, Jesus; Almarcegui, Carmen; Dolz, Isabel; Vilades, Elisa; Gil-Arribas, Laura; Fernandez, Francisco J; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2017-05-01

    To quantify retinal nerve fiber layer (RNFL) changes in patients with multiple sclerosis (MS) and healthy controls with a 5-year follow-up and to analyze correlations between disability progression and RNFL degeneration. Observational and longitudinal study. One hundred patients with relapsing-remitting MS and 50 healthy controls. All participants underwent a complete ophthalmic and electrophysiologic exploration and were re-evaluated annually for 5 years. Visual acuity (Snellen chart), color vision (Ishihara pseudoisochromatic plates), visual field examination, optical coherence tomography (OCT), scanning laser polarimetry (SLP), and visual evoked potentials. Expanded Disability Status Scale (EDSS) scores, disease duration, treatments, prior optic neuritis episodes, and quality of life (QOL; based on the 54-item Multiple Sclerosis Quality of Life Scale score). Optical coherence tomography (OCT) revealed changes in all RNFL thicknesses in both groups. In the MS group, changes were detected in average thickness and in the mean deviation using the GDx-VCC nerve fiber analyzer (Laser Diagnostic Technologies, San Diego, CA) and in the P100 latency of visual evoked potentials; no changes were detected in visual acuity, color vision, or visual fields. Optical coherence tomography showed greater differences in the inferior and temporal RNFL thicknesses in both groups. In MS patients only, OCT revealed a moderate correlation between the increase in EDSS and temporal and superior RNFL thinning. Temporal RNFL thinning based on OCT results was correlated moderately with decreased QOL. Multiple sclerosis patients exhibit a progressive axonal loss in the optic nerve fiber layer. Retinal nerve fiber layer thinning based on OCT results is a useful marker for assessing MS progression and correlates with increased disability and reduced QOL. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. Localized Retinal Nerve Fiber Layer Defects in Red-free Photographs Versus En Face Structural Optical Coherence Tomography Images.

    Science.gov (United States)

    Jung, Jae Hoon; Park, Ji-Hye; Yoo, Chungkwon; Kim, Yong Yeon

    2018-03-01

    The purpose of this article is to compare the locations of localized retinal nerve fiber layer (RNFL) defects in red-free fundus photographs and optical coherence tomography (OCT) en face images. We performed a retrospective, comparative study on 46 eyes from 46 glaucoma patients with localized RNFL defects observed in red-free fundus photographs. En face structural images were obtained in the superficial and whole retinal layers using OCT and were overlaid on the corresponding red-free fundus photographs. The proximal/distal angular locations and angular width of each RNFL defect in red-free photos (red-free defects) and in en face structural images (en face defects) were compared. In the superficial retinal layer, there were no significant differences between red-free and en face defects on the proximal/distal angular location and angular width. In the whole retinal layer, the degree of the distal angular location of the en face defects was significantly larger than that of the red-free defects (71.85±18.26 vs. 70.87±17.90 degrees, P=0.003). The correlations of clinical variables with the differences in angular parameters between red-free and en face defects were not significant in the superficial retinal layer. The average RNFL thickness was negatively correlated with the difference in the distal angular location in the whole retinal layer (Pearson correlation coefficient=-0.401, P=0.006). Localized RNFL defects detected in OCT en face structural images of the superficial retinal layer showed high topographic correlation with defects detected in red-free photographs. OCT en face structural images in the superficial layer may be an alternative to red-free fundus photography for the identification of localized RNFL defects in glaucomatous eyes.

  20. Optical coherence tomography in a patient with chloroquine-induced maculopathy

    Directory of Open Access Journals (Sweden)

    Korah Sanita

    2008-01-01

    Full Text Available We herein report the optical coherence tomography (OCT findings in a case of chloroquine-induced macular toxicity, which to our knowledge, has so far not been reported. A 53-year-old lady on chloroquine for treatment of rheumatoid arthritis developed decrease in vision 36 months after initiation of the treatment. Clinical examination revealed evidence of retinal pigment epithelial (RPE disturbances. Humphrey field analyzer (HFA, fundus fluorescein angiography (FFA and OCT for retinal thickness and volume measurements at the parafoveal region were done. The HFA revealed bilateral superior paracentral scotomas, FFA demonstrated RPE loss and OCT revealed anatomical evidence of loss of ganglion cell layers, causing marked thinning of the macula and parafoveal region. Parafoveal retinal thickness and volume measurements may be early evidence of chloroquine toxicity, and OCT measurements as a part of chloroquine toxicity screening may be useful in early detection of chloroquine maculopathy.

  1. In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound

    DEFF Research Database (Denmark)

    Mogensen, Mette; Nürnberg, B.M.; Forman, J.L.

    2009-01-01

    was measured with a colorimeter. Results OCT presented narrower limits of agreement than HFUS. Both methods overestimated thickness but OCT was significantly less biased (0Æ392 mm vs. 0Æ713 mm). No relation between OCT penetration depth and skin colour was found. Conclusions OCT appears more precise and less...

  2. Clinical application of optical coherence tomography in combination with functional diagnostics: advantages and limitations for diagnosis and assessment of therapy outcome in central serous chorioretinopathy.

    Science.gov (United States)

    Schliesser, Joshua A; Gallimore, Gary; Kunjukunju, Nancy; Sabates, Nelson R; Koulen, Peter; Sabates, Felix N

    2014-01-01

    While identifying functional and structural parameters of the retina in central serous chorioretinopathy (CSCR) patients, this study investigated how an optical coherence tomography (OCT)-based diagnosis can be significantly supplemented with functional diagnostic tools and to what degree the determination of disease severity and therapy outcome can benefit from diagnostics complementary to OCT. CSCR patients were evaluated prospectively with microperimetry (MP) and spectral domain optical coherence tomography (SD-OCT) to determine retinal sensitivity function and retinal thickness as outcome measures along with measures of visual acuity (VA). Patients received clinical care that involved focal laser photocoagulation or pharmacotherapy targeting inflammation and neovascularization. Correlation of clinical parameters with a focus on functional parameters, VA, and mean retinal sensitivity, as well as on the structural parameter mean retinal thickness, showed that functional measures were similar in diagnostic power. A moderate correlation was found between OCT data and the standard functional assessment of VA; however, a strong correlation between OCT and MP data showed that diagnostic measures cannot always be used interchangeably, but that complementary use is of higher clinical value. The study indicates that integrating SD-OCT with MP provides a more complete diagnosis with high clinical relevance for complex, difficult to quantify diseases such as CSCR.

  3. Evolution of Outer Retinal Folds Occurring after Vitrectomy for Retinal Detachment Repair

    NARCIS (Netherlands)

    Dell'Omo, Roberto; Tan, H. Stevie; Schlingemann, Reinier O.; Bijl, Heico M.; Lesnik Oberstein, Sarit Y.; Barca, Francesco; Mura, Marco

    2012-01-01

    PURPOSE. To assess the evolution of outer retinal folds (ORFs) occurring after repair of rhegmatogenous retinal detachment (RRD) using spectral domain-optical coherence tomography (sd-OCT) and fundus autofluorescence (FAF), and to discuss their pathogenesis. METHODS. Twenty patients were operated on

  4. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Tsironi Evangelia E

    2012-10-01

    Full Text Available Abstract Background Visual dysfunction is common in Parkinson’s disease (PD. It remains, however, unknown whether it is related to structural alterations of the retina. The aim of this study is to compare visual field (VF findings and circumpapillary retinal nerve fiber layer (RNFL thickness in a series of PD patients and normal controls, in order to assess possible retinal anatomical changes and/or functional damage associated with PD. Methods PD patients and controls were recruited and underwent VF testing with static automated perimetry and RNFL examination with optical coherence tomography (OCT. Cognitive performance using Mini Mental State Examination (MMSE, PD staging using modified Hoehn and Yahr (H-Y scale and duration of the disease was recorded in PD patients. Results One randomly selected eye from each of 24 patients and 24 age-matched controls was included. OCT RNFL thickness analysis revealed no difference in the inferior, superior, nasal or temporal sectors between the groups. The average peripapillary RNFL was also similar in the two groups. However, perimetric indices of generalized sensitivity loss (mean deviation and localized scotomas (pattern standard deviation were worse in patients with PD compared to controls (p  Conclusion PD patients may demonstrate glaucomatous-like perimetric defects even in the absence of decreased RNFL thickness.

  5. Paradoxical thinning of the retinal nerve fiber layer after reversal of cupping: A case report of primary infantile glaucoma

    Directory of Open Access Journals (Sweden)

    Ta Chen Chang

    2016-01-01

    Full Text Available The circumpapillary retinal nerve fiber layer (RNFL thickness was assessed by spectral domain optical coherent tomography (SD-OCT before and after surgical reduction of intraocular pressure in an eye with primary infantile glaucoma. In this case, a postoperative reduction of cupping and a subsequent increase in neuroretinal rim area is associated with a paradoxical thinning of the RNFL. This is the first-known characterization of cupping reversal using SD-OCT.

  6. In vivo sectional imaging of the retinal periphery using conventional optical coherence tomography systems

    Directory of Open Access Journals (Sweden)

    Abhishek Kothari

    2012-01-01

    Full Text Available Optical coherence tomography (OCT has transformed macular disease practices. This report describes the use of conventional OCT systems for peripheral retinal imaging. Thirty-six eyes with peripheral retinal pathology underwent imaging with conventional OCT systems. In vivo sectional imaging of lattice degeneration, snail-track degeneration, and paving-stone degeneration was performed. Differences were noted between phenotypes of lattice degeneration. Several findings previously unreported in histopathology studies were encountered. Certain anatomic features were seen that could conceivably explain clinical and intraoperative behavior of peripheral lesions. Peripheral OCT imaging helped elucidate clinically ambiguous situations such as retinal breaks, subclinical retinal detachment, retinoschisis, choroidal nevus, and metastasis. Limitations of such scanning included end-gaze nystagmus and far peripheral lesions. This first of its kind study demonstrates the feasibility of peripheral retinal OCT imaging and expands the spectrum of indications for which OCT scanning may be clinically useful.

  7. In vivo sectional imaging of the retinal periphery using conventional optical coherence tomography systems.

    Science.gov (United States)

    Kothari, Abhishek; Narendran, V; Saravanan, V R

    2012-01-01

    Optical coherence tomography (OCT) has transformed macular disease practices. This report describes the use of conventional OCT systems for peripheral retinal imaging. Thirty-six eyes with peripheral retinal pathology underwent imaging with conventional OCT systems. In vivo sectional imaging of lattice degeneration, snail-track degeneration, and paving-stone degeneration was performed. Differences were noted between phenotypes of lattice degeneration. Several findings previously unreported in histopathology studies were encountered. Certain anatomic features were seen that could conceivably explain clinical and intraoperative behavior of peripheral lesions. Peripheral OCT imaging helped elucidate clinically ambiguous situations such as retinal breaks, subclinical retinal detachment, retinoschisis, choroidal nevus, and metastasis. Limitations of such scanning included end-gaze nystagmus and far peripheral lesions. This first of its kind study demonstrates the feasibility of peripheral retinal OCT imaging and expands the spectrum of indications for which OCT scanning may be clinically useful.

  8. Comparison of Optical Coherence Tomography and Scanning Laser Polarimetry Measurements in Patients with Multiple Sclerosis

    Science.gov (United States)

    Quelly, Amanda; Cheng, Han; Laron, Michal; Schiffman, Jade S.; Tang, Rosa A.

    2010-01-01

    Purpose To compare optical coherence tomography (OCT) and scanning laser polarimetry (GDx) measurements of the retinal nerve fiber layer (RNFL) in multiple sclerosis (MS) patients with and without optic neuritis (ON). Methods OCT and GDx were performed on 68 MS patients. Qualifying eyes were divided into two groups: 51 eyes with an ON history ≥ 6 months prior (ON eyes), and 65 eyes with no history of ON (non-ON eyes). Several GDx and OCT parameters and criteria were used to define an eye as abnormal, for example, GDx nerve fiber indicator (NFI) above 20 or 30, OCT average RNFL thickness and GDx temporal-superior-nasal-inferior-temporal average (TSNIT) below 5% or 1% of the instruments’ normative database. Agreement between OCT and GDx parameters was reported as percent of observed agreement, along with the AC1 statistic. Linear regression analyses were used to examine the relationship between OCT average RNFL thickness and GDx NFI and TSNIT. Results All OCT and GDx measurements showed significantly more RNFL damage in ON than in non-ON eyes. Agreement between OCT and GDx parameters ranged from 69–90% (AC1 0.37–0.81) in ON eyes, and 52–91% (AC1 = 0.21–0.90) in non-ON eyes. Best agreement was observed between OCT average RNFL thickness (P 30) in ON eyes (90%, AC1 = 0.81), and between OCT average RNFL thickness (P < 0.01) and GDx TSNIT average (P < 0.01) in non-ON eyes (91%, AC1 = 0.90). In ON eyes, the OCT average RNFL thickness showed good linear correlation with NFI (R2 = 0.69, P < 0.0001) and TSNIT (R2 = 0.55, P < 0.0001). Conclusions OCT and GDx show good agreement and can be useful in detecting RNFL loss in MS/ON eyes. PMID:20495500

  9. [Features associated with retinal thickness extension in diabetic macular oedema].

    Science.gov (United States)

    Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila

    2015-01-01

    Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity 0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  10. OCT angiography and Color Doppler Imaging in the study of hemoperfusion in the retina and optic nerve in POAG

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2016-01-01

    Full Text Available Purpose: To evaluate the hemoperfusion of Optic Nerve Disk (OND, peripapillary and macular areas, and retrobulbar blood flow in patients with primary open-angle glaucoma using optical coherence tomography with angiography (OCT-A and Сolor Doppler Imaging (CDI.Patients and Methods: 65 eyes of patients with primary open angle glaucoma (POAG and 22 eyes of age-matched healthy subjects were examined using the SD-OCT-А (RtVue xR Avanti with the AngioVue software. Retinal Thickness and Angio Flow Density (AFD were measured. AFD Disc and Peripapillary Flow Density were measured in OND and in peripapillary area. AFD Retina were evaluated in Macula inсluding Fovea- and Parafovea regions (superficial and deep of the inner retinal layers. Ophthalmic Artery (OA, Central Retinal Artery (CRA, Posterior short Ciliary Arteries (PCA, Central Retinal Vein (CRV and Vortex Vein (VV were measured by CDI. Statistical analysis was performed using SPSS version 21 and MASS library of language R. The value of each diagnostic indicator (z-value was calculated with the Wilcoxon-Mann-Whitney test and the area under the receiver operating characteristic curve (AUC.Results: Both OCT-A and CDI indicators were reduced in glaucoma compared to healthy eyes. The following indicators had the largest AUC and diagnostic value (z-value to discriminate the early glaucoma from normal eyes: AFD Retina Superficial Whole En Face (z = 3,83, p<0,0001; AUC 0,8 (0,69‑0,90, AFD Retina Deep Whole En Face (z = 3,31, p = 0,0007; AUC 0,76 (0,64‑0,88, Peripapillary Vessel Density (z = 3,2, p = 0,001; AUC 0,75 (0,63‑0,87, end-diastolic flow velocity in AO (z = 3,03, p = 0,002; AUC 0,74 (0,61‑0,86 and in TPCA (z = 2,78, p = 0,005; AUC 0,72 (0,58‑0,86; and to discriminate the early glaucoma from the advanced and far advanced stages: AFD Disc Peripapillary Inferior Temporalis (z = 5,61, p<0,0001; AUC 0,94 (0,86‑1,0 and the mean flow velocity in the CRA (z = 4,16, p<0

  11. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping

    KAUST Repository

    Fortunato, Luca

    2017-01-13

    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  12. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available To investigate macular ganglion cell-inner plexiform layer (mGCIPL thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL defects on stereophotographs.112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS and the African Descent and Glaucoma Evaluation Study (ADAGES subjects had standard automated perimetry (SAP, optical coherence tomography (OCT imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs.47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001 and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000. The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior mGCIPL was thinnest in the same hemiretina in 26 eyes (90%. Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001 and inferior mGCIPL (P = 0.030 compared to glaucomatous eyes without a visible RNFL defect.The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect.

  13. Macular thickness and volume after uncomplicated phacoemulsification surgery evaluated by optical coherence tomography. A one-year follow-up.

    Science.gov (United States)

    Kecik, Dariusz; Makowiec-Tabernacka, Marta; Golebiewska, Joanna; Moneta-Wielgos, Joanna; Kasprzak, Jan

    2009-01-01

    To evaluate changes in the macular thickness and volume using optical coherence tomography in patients after phacoemulsification and intracapsular implantation of a foldable intraocular lens. The study included 82 patients (37 males and 45 females) after phacoemulsification and intracapsular implantaion of the same type of a foldable intraocular lens, without any other eye disease. Phacoemulsification was performed with an INFINITI machine. In all patients, macular thickness and volume were measured with an optical coherence tomograph (Stratus OCT) using the Fast Macular Thickness Map. The OCT evaluation was performed on days 1, 7, 30 and 90 postoperatively. In 58 patients (71%), it was additionally performed at 12 months after surgery and in 52 patients (63%) the macular parameters in the healthy and operated eyes were compared. A statistically significant increase in the minimal retinal thickness was observed on days 30 (p<0.0005) and 90 (p<0.005) postoperatively compared to post-operative day 1. A statistically significant increase in the foveal volume was seen on days 30 (p<0.00005) and 90 (p<0.0005). A statistically significant increase in the volume of the entire macula was found on days 7, 30 and 90 (p<0.00005). Uncomplicated cataract phacoemulsification is followed by increases in the central retinal thickness, foveal volume and volume of the entire macula on days 30 and 90 and at 12 months postoperatively. Further observation of patients is required to confirm whether the macular parameters will return to their values on day 1 postoperatively and if so, when this will occur.

  14. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    Science.gov (United States)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses

  15. Normative Database and Color-code Agreement of Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-inner Plexiform Layer Thickness in a Vietnamese Population.

    Science.gov (United States)

    Perez, Claudio I; Chansangpetch, Sunee; Thai, Andy; Nguyen, Anh-Hien; Nguyen, Anwell; Mora, Marta; Nguyen, Ngoc; Lin, Shan C

    2018-06-05

    Evaluate the distribution and the color probability codes of the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thickness in a healthy Vietnamese population and compare them with the original color-codes provided by the Cirrus spectral domain OCT. Cross-sectional study. We recruited non-glaucomatous Vietnamese subjects and constructed a normative database for peripapillary RNFL and macular GCIPL thickness. The probability color-codes for each decade of age were calculated. We evaluated the agreement with Kappa coefficient (κ) between OCT color probability codes with Cirrus built-in original normative database and the Vietnamese normative database. 149 eyes of 149 subjects were included. The mean age of enrollees was 60.77 (±11.09) years, with a mean spherical equivalent of +0.65 (±1.58) D and mean axial length of 23.4 (±0.87) mm. Average RNFL thickness was 97.86 (±9.19) microns and average macular GCIPL was 82.49 (±6.09) microns. Agreement between original and adjusted normative database for RNFL was fair for average and inferior quadrant (κ=0.25 and 0.2, respectively); and good for other quadrants (range: κ=0.63-0.73). For macular GCIPL κ agreement ranged between 0.39 and 0.69. After adjusting with the normative Vietnamese database, the percent of yellow and red color-codes increased significantly for peripapillary RNFL thickness. Vietnamese population has a thicker RNFL in comparison with Cirrus normative database. This leads to a poor color-code agreement in average and inferior quadrant between the original and adjusted database. These findings should encourage to create a peripapillary RNFL normative database for each ethnicity.

  16. [OCT and neovascular glaucoma].

    Science.gov (United States)

    Bellotti, A; Labbé, A; Fayol, N; El Mahtoufi, A; Baudouin, C

    2007-06-01

    Neovascular glaucoma is a chronic and sight-threatening disease. Four different grades have been described. Anterior chamber optical coherence tomography (OCT) is a new imaging technique allowing the visualization of the anterior segment. The purpose of our study was to describe the appearance of the different neovascular glaucoma grades with the OCT in order to refine the clinical analysis of this disease. Eleven patients (nine men and two women) with different grades of neovascular glaucoma were analyzed in this study. Neovascular glaucoma complicated central retinal vein occlusion in seven patients and diabetic retinopathy in four patients. All patients had bilateral biomicroscopical examination and OCT analysis. OCT images and clinical examination were then compared. No modifications could be observed using OCT in patients with grade 1 neovascular glaucoma. For grade 2, a slightly hyper-reflective linear iris secondary to neovascularization was observed. For grade 3, OCT images showed a thickened hyper-reflective iridocorneal angle with possible iridocorneal synechiae. For grade 4, the iridocorneal angle was closed and associated with iris contraction and uveae ectropion. OCT is a new promising technique for the precise analysis of different grades of neovascular glaucoma. It certainly helps in the management of such cases.

  17. Clinical analysis of retinal nerve fiber layer thickness and macular fovea in hyperopia children with anisometropia amblyopia

    Directory of Open Access Journals (Sweden)

    Fei-Fei Li

    2017-10-01

    Full Text Available AIM:To analyze the clinical significance of axial length, diopter and retinal nerve fiber layer thickness in hyperopia children with anisometropia amblyopia. METHODS: From January 2015 to January 2017 in our hospital for treatment, 103 cases, all unilateral, were diagnosed as hyperopia anisometropia amblyopia. The eyes with amblyopia were as experimental group(103 eyes, another normal eye as control group(103 eyes. We took the detection with axial length, refraction, foveal thickness, corrected visual acuity, diopter and the average thickness of retinal nerve fiber layer. RESULTS: Differences in axial length and diopter and corrected visual acuity were statistically significant between the two groups(PP>0.05. There was statistical significance difference on the foveal thickness(PP>0.05. The positive correlation between diopter with nerve fiber layer thickness of foveal and around the optic disc were no statistically significant difference(P>0.05. CONCLUSION: Retinal thickness of the fovea in the eye with hyperopic anisometropia amblyopia were thicker than those in normal eyes; the nerve fiber layer of around the optic disc was not significantly different between the amblyopic eyes and contralateral eyes. The refraction and axial length had no significant correlation with optic nerve fiber layer and macular foveal thickness.

  18. Evaluation of OCT on retinopathy induced by tunicamycin in rats

    Directory of Open Access Journals (Sweden)

    Bo-Yi Zhang

    2017-07-01

    Full Text Available AIM:To evaluate the morphological and functional changes of retinas induced by treatment of tunicamycin with optical coherence tomography(OCTin rats. METHODS:Totally 60 SD rats were randomly divided into 3 groups(20 in each group, 0.5mg/kg(in low dose group, 1.5mg/kg(in high dose grouptunicamycin were injected into vitreous cavity and saline(9g/L NaClwere injected in the same dose as a control group. Changes of retinas were observed by OCT on the 1,7 and 14d after treatment of tunicamycin. Then the rats were sacrificed, retinas were taken out and embedded by the paraffin, tissue sections and the HE staining were performed. RESULTS:OCT results suggested that tunicamycin played damage effects on retinal morphology and structure which appeared a time- and dose- dependent. Fundus photography results suggested that 2wk after tunicamycin treatments, with the gradually changing of tunicamycin concentration, peripheral retinal and macular region became pale color gradually, edema occurred in optic disk, retinal vessels appeared thinner in the high dose group, optic nerve came out atrophy. Fluorescein angiography confirmed that tunicamycin injection in vitreous cavity 2wk later, retinal vessels injury occurred, resulted in leaking of intravascular contrast agent from peripheral to the central part of the retinas. Electrophysiological data showed that retinal electrogram occurred disorder induced by tunicamycin, such as the amplitude of a wave, b wave decreased gradually, even closed to zero, which was very different from control significantly(PCONCLUSION: Clinical retinal diseases could be simulated by retinal damage animal model induced by tunicamycin treatment. OCT detection offered real-time images of the retinal cross-section, which provided a helpful non-invasive method for detecting and evaluating the retinal damages.

  19. Retinal Endovascular Surgery with Tissue Plasminogen Activator Injection for Central Retinal Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Yuta Takata

    2018-06-01

    Full Text Available Purpose: To report 2 cases of central retinal artery occlusion (CRAO who underwent retinal endovascular surgery with injection of tissue plasminogen activator (tPA into the retinal artery and showed a remarkable improvement in visual acuity and retinal circulation. Methods: Standard 25-G vitrectomy was performed under local anesthesia. Simultaneously, tPA (80,000 units/mL solution was injected into the retinal artery of the optic disc for 2–3 min using a microneedle. Changes in visual acuity, fundus photography, optical coherence tomography (OCT, fluorescein angiography, and laser speckle flowgraphy (LSFG results were examined. Results: Both cases could be treated within 12 h after the onset of CRAO. Case 1 was a 47-year-old woman. Her visual acuity improved from counting fingers before operation to 0.08 logMAR 1 month after the surgery. However, thinning of the retina at the macula was observed by OCT. Case 2 was a 70-year-old man. His visual acuity improved from counting fingers to 0.1 logMAR 2 months after the surgery. Both fluorescein angiography and LSFG showed improvement in retinal circulation after the surgery in case 2. Conclusions: Retinal endovascular surgery with injection of tPA into the retinal artery was feasible and may be a way to improve visual acuity and retinal circulation when performed in the acute phase of CRAO.

  20. Quality control for retinal OCT in multiple sclerosis

    DEFF Research Database (Denmark)

    Schippling, S; Balk, Lj; Costello, F

    2015-01-01

    to provide guidance on the use of validated quality control (QC) criteria for the use of OCT in MS research and clinical trials. METHODS: A prospective multi-centre (n = 13) study. Peripapillary ring scan QC rating of an OCT training set (n = 50) was followed by a test set (n = 50). Inter-rater agreement...

  1. Influence of age-related macular degeneration on macular thickness measurement made with fourier-domain optical coherence tomography.

    Science.gov (United States)

    Garas, Anita; Papp, András; Holló, Gábor

    2013-03-01

    To evaluate the influence of age-related macular degeneration (AMD) on macular thickness measurement made with Fourier-domain optical coherence tomography (RTVue-OCT) to detect glaucoma. : One nonglaucomatous eye of 79 white persons was imaged. This comprised 25 healthy eyes, 19 eyes with early/intermediate AMD (geographic atrophy excluded), 16 eyes with subfoveal choroidal neovascularization (CNV), and 19 CNV eyes after intravitreal antiangiogenic treatment [CNV-antivascular endothelial growth factor (VEGF)]. Compared with the age-matched controls, no difference in any nerve fiber layer and optic disc parameter was seen for any AMD group. No macular retinal segmentation error was detected in the control group. Localized inner retinal image segmentation errors topographically related to AMD were detected in 8 eyes with drusen (42.1%), all 16 CNV eyes (100%) and 17 eyes in the CNV-anti-VEGF group (89.5%; χ test, P0.05). In contrast, all pattern-based ganglion cell complex (GCC) parameters were significantly higher (more abnormal) in the CNV and CNV-anti-VEGF group than in the control eyes (Mann-Whitney test, Bonferroni correction, P<0.001). For GCC focal loss volume, the only pattern-based parameter classified by the software, the frequency of "borderline" and "outside normal limits" classifications was significantly greater in each AMD group than in the control group (χ test, Bonferroni correction, P ≤0.03). In nonglaucomatous eyes, AMD significantly influences the pattern-based inner macular thickness parameters of the RTVue optical coherence tomograph and the software-provided classification of GCC focal loss volume, for detection of glaucoma.

  2. Long-term changes of macular retinal thickness after idiopathic macular hole surgery

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2014-12-01

    Full Text Available AIM:To determine the changes of regional macular retinal thickness(RTwith spectral domain optical coherence tomography(SD-OCTafter successful pars plana vitrectomy(PPVsurgery with inner limiting membrane(ILMpeeling in patients with idiopathic macular hole.METHODS:A non-randomized retrospective case study on 17 patients(17 eyeswho were hospitalized between March 1, 2011 and June 30, 2013. All 17 eyes had been diagnosed with idiopathic macular hole and thereafter underwent 25G-PPV surgeries performed by the same surgeon with ILM peeling and short-term gas tamponade. In the 6mo-plus follow-up after surgery, these eyes were found to have successful closure in the macular hole. The macular RT of the nine areas in the Early Treatment Diabetic Retinopathy Study was measured by SD-OCT. All patients were applied by SD-OCT with linear scan of the macular. At least four examinations on the operated eye were conducted in contrast to the other normal eye: before the surgery, 3~5wk after the surgery(stage A, 2~3mo after the surgery(stage B, and >6mo after the surgery(stage C.RESULTS:In stage A, the macular RT of operated eyes in the areas of C, IS, II, IN, OS, OI, ON(263.00±39.48, 313.92±18.35, 311.00±18.02, 335.67±19.91, 280.83±33.74, 269.92±23.32, 307.00±28.40were significantly thicker than the corresponding areas of the normal fellow eyes(220.51±23.94, 292.08±21.93, 282.50±20.30, 288.33±20.76, 251.25±17.60, 247.75±21.48, 265.17±24.76μm(PP>0.01. In Stage B, the macular RT in the areas of II, IN, OS(335.67±19.20,319.75±19.20, 273.50±16.89μmwere significantly thicker than the corresponding areas of the normal fellow eyes(286.33±20.46, 293.42±17.64, 252.50±16.32μm(PP> 0.01. In Stage C, the macular RT of operated eyes with the areas of IN(321.17±19.71μmwere significantly thicker than the corresponding areas of the normal fellow eyes(296.25±19.57μm(PP>0.01. Moreover, the macular RT of operated eyes in the areas of ON, IT(307.00±28

  3. An Evaluation of Peripapillary Retinal Nerve Fiber Layer Thickness in Children With Epilepsy Receiving Treatment of Valproic Acid.

    Science.gov (United States)

    Dereci, Selim; Koca, Tuğba; Akçam, Mustafa; Türkyilmaz, Kemal

    2015-07-01

    We investigated the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of valproic acid later in life. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].

    Science.gov (United States)

    Poli, M; Colange, J; Goutagny, B; Sellem, E

    2017-09-01

    Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  6. Dental OCT

    Science.gov (United States)

    Wilder-Smith, Petra; Otis, Linda; Zhang, Jun; Chen, Zhongping

    This chapter describes the applications of OCT for imaging in vivo dental and oral tissue. The oral cavity is a diverse environment that includes oral mucosa, gingival tissues, teeth and their supporting structures. Because OCT can image both hard and soft tissues of the oral cavity at high resolution, it offers the unique capacity to identity dental disease before destructive changes have progressed. OCT images depict clinically important anatomical features such as the location of soft tissue attachments, morphological changes in gingival tissue, tooth decay, enamel thickness and decay, as well as the structural integrity of dental restorations. OCT imaging allows for earlier intervention than is possible with current diagnostic modalities.

  7. Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Jeong, In Hye; Kim, Ho Jin; Kim, Nam-Hee; Jeong, Kyoung Sook; Park, Choul Yong

    2016-07-01

    Foveal thickness may be a more sensitive indicator of primary retinal pathology than retinal nerve fiber layer thickness since the fovea contains no or sparse retinal nerve fiber layer, which coalesces into axons of the optic nerve. To our knowledge, few quantitative in vivo studies have investigated foveal thickness. By using optical coherence tomography, we measured foveal thickness to evaluate intrinsic retinal pathology. Seventy-two neuromyelitis optica spectrum disorder patients (99 eyes with optic neuritis and 45 eyes without optic neuritis) and 34 age-matched controls were included. Foveal thinning was observed both in eyes with non-optic neuritis (185.1 µm, p optica spectrum disorder, foveal thickness correlated with 2.5 % low contrast visual acuity, while retinal nerve fiber layer thickness correlated with high or low contrast visual acuity, extended disability status scale, and disease duration. In this study, we observed foveal thinning irrespective of optic neuritis; thus, we believe that subclinical primary retinal pathology, prior to retinal nerve fiber layer thinning, may exist in neuromyelitis optica spectrum disorder.

  8. Analysis the macular ganglion cell complex thickness in monocular strabismic amblyopia patients by Fourier-domain OCT

    Directory of Open Access Journals (Sweden)

    Hong-Wei Deng

    2014-11-01

    Full Text Available AIM: To detect the macular ganglion cell complex thickness in monocular strabismus amblyopia patients, in order to explore the relationship between the degree of amblyopia and retinal ganglion cell complex thickness, and found out whether there is abnormal macular ganglion cell structure in strabismic amblyopia. METHODS: Using a fourier-domain optical coherence tomography(FD-OCTinstrument iVue®(Optovue Inc, Fremont, CA, Macular ganglion cell complex(mGCCthickness was measured and statistical the relation rate with the best vision acuity correction was compared Gman among 26 patients(52 eyesincluded in this study. RESULTS: The mean thickness of the mGCC in macular was investigated into three parts: centrial, inner circle(3mmand outer circle(6mm. The mean thicknesses of mGCC in central, inner and outer circle was 50.74±21.51μm, 101.4±8.51μm, 114.2±9.455μm in the strabismic amblyopia eyes(SAE, and 43.79±11.92μm,92.47±25.01μm, 113.3±12.88μm in the contralateral sound eyes(CSErespectively. There was no statistically significant difference among the eyes(P>0.05. But the best corrected vision acuity had a good correlation rate between mGcc thicknesses, which was better relative for the lower part than the upper part.CONCLUSION:There is a relationship between the amblyopia vision acuity and the mGCC thickness. Although there has not statistically significant difference of the mGCC thickness compared with the SAE and CSE. To measure the macular center mGCC thickness in clinic may understand the degree of amblyopia.

  9. Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT.

    Directory of Open Access Journals (Sweden)

    Rayan A Alshareef

    Full Text Available To determine the frequency of different types of spectral domain optical coherence tomography (SD-OCT scan artifacts and errors in ganglion cell algorithm (GCA in healthy eyes.Infrared image, color-coded map and each of the 128 horizontal b-scans acquired in the macular ganglion cell-inner plexiform layer scans using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA macular cube 512 × 128 protocol in 30 healthy normal eyes were evaluated. The frequency and pattern of each artifact was determined. Deviation of the segmentation line was classified into mild (less than 10 microns, moderate (10-50 microns and severe (more than 50 microns. Each deviation, if present, was noted as upward or downward deviation. Each artifact was further described as per location on the scan and zones in the total scan area.A total of 1029 (26.8% out of total 3840 scans had scan errors. The most common scan error was segmentation error (100%, followed by degraded images (6.70%, blink artifacts (0.09% and out of register artifacts (3.3%. Misidentification of the inner retinal layers was most frequent (62%. Upward Deviation of the segmentation line (47.91% and severe deviation (40.3% were more often noted. Artifacts were mostly located in the central scan area (16.8%. The average number of scans with artifacts per eye was 34.3% and was not related to signal strength on Spearman correlation (p = 0.36.This study reveals that image artifacts and scan errors in SD-OCT GCA analysis are common and frequently involve segmentation errors. These errors may affect inner retinal thickness measurements in a clinically significant manner. Careful review of scans for artifacts is important when using this feature of SD-OCT device.

  10. Influence of atypical retardation pattern on the peripapillary retinal nerve fibre distribution assessed by scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Schrems, W A; Laemmer, R; Hoesl, L M; Horn, F K; Mardin, C Y; Kruse, F E; Tornow, R P

    2011-10-01

    To investigate the influence of atypical retardation pattern (ARP) on the distribution of peripapillary retinal nerve fibre layer (RNFL) thickness measured with scanning laser polarimetry in healthy individuals and to compare these results with RNFL thickness from spectral domain optical coherence tomography (OCT) in the same subjects. 120 healthy subjects were investigated in this study. All volunteers received detailed ophthalmological examination, GDx variable corneal compensation (VCC) and Spectralis-OCT. The subjects were divided into four subgroups according to their typical scan score (TSS): very typical with TSS=100, typical with 99 ≥ TSS ≥ 91, less typical with 90 ≥ TSS ≥ 81 and atypical with TSS ≤ 80. Deviations from very typical normal values were calculated for 32 sectors for each group. There was a systematic variation of the RNFL thickness deviation around the optic nerve head in the atypical group for the GDxVCC results. The highest percentage deviation of about 96% appeared temporal with decreasing deviation towards the superior and inferior sectors, and nasal sectors exhibited a deviation of 30%. Percentage deviations from very typical RNFL values decreased with increasing TSS. No systematic variation could be found if the RNFL thickness deviation between different TSS-groups was compared with the OCT results. The ARP has a major impact on the peripapillary RNFL distribution assessed by GDx VCC; thus, the TSS should be included in the standard printout.

  11. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery.

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I; Izatt, Joseph A; Toth, Cynthia A

    2016-07-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.

  12. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    International Nuclear Information System (INIS)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-01-01

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  13. Systemic and Ocular Determinants of Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in the European Eye Epidemiology (E3) Population.

    Science.gov (United States)

    Mauschitz, Matthias M; Bonnemaijer, Pieter W M; Diers, Kersten; Rauscher, Franziska G; Elze, Tobias; Engel, Christoph; Loeffler, Markus; Colijn, Johanna Maria; Ikram, M Arfan; Vingerling, Johannes R; Williams, Katie M; Hammond, Christopher J; Creuzot-Garcher, Catherine; Bron, Alain M; Silva, Rufino; Nunes, Sandrina; Delcourt, Cécile; Cougnard-Grégoire, Audrey; Holz, Frank G; Klaver, Caroline C W; Breteler, Monique M B; Finger, Robert P

    2018-04-28

    To investigate systemic and ocular determinants of peripapillary retinal nerve fiber layer thickness (pRNFLT) in the European population. Cross-sectional meta-analysis. A total of 16 084 European adults from 8 cohort studies (mean age range, 56.9±12.3-82.1±4.2 years) of the European Eye Epidemiology (E3) consortium. We examined associations with pRNFLT measured by spectral-domain OCT in each study using multivariable linear regression and pooled results using random effects meta-analysis. Determinants of pRNFLT. Mean pRNFLT ranged from 86.8±21.4 μm in the Rotterdam Study I to 104.7±12.5 μm in the Rotterdam Study III. We found the following factors to be associated with reduced pRNFLT: Older age (β = -0.38 μm/year; 95% confidence interval [CI], -0.57 to -0.18), higher intraocular pressure (IOP) (β = -0.36 μm/mmHg; 95% CI, -0.56 to -0.15), visual impairment (β = -5.50 μm; 95% CI, -9.37 to -1.64), and history of systemic hypertension (β = -0.54 μm; 95% CI, -1.01 to -0.07) and stroke (β = -1.94 μm; 95% CI, -3.17 to -0.72). A suggestive, albeit nonsignificant, association was observed for dementia (β = -3.11 μm; 95% CI, -6.22 to 0.01). Higher pRNFLT was associated with more hyperopic spherical equivalent (β = 1.39 μm/diopter; 95% CI, 1.19-1.59) and smoking (β = 1.53 μm; 95% CI, 1.00-2.06 for current smokers compared with never-smokers). In addition to previously described determinants such as age and refraction, we found that systemic vascular and neurovascular diseases were associated with reduced pRNFLT. These may be of clinical relevance, especially in glaucoma monitoring of patients with newly occurring vascular comorbidities. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  15. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    Science.gov (United States)

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  16. Morphological features of choroidal metastases: An OCT analysis

    Directory of Open Access Journals (Sweden)

    Ludovico Iannetti

    2013-01-01

    Full Text Available The morphological characteristics and retinal changes of chroidal metastases using Spectral Domain OCT are described in a case with primary lung adenocarcinoma and secondary choroidal involvement.

  17. Phase sensitive multichannel OCT

    International Nuclear Information System (INIS)

    Trasischker, W.

    2015-01-01

    velocity vector can be reconstructed without the need for additional information on its orientation from structural data. The developed system is demonstrated for in vitro and in vivo imaging. For the latter, the retinal blood ow in a venous bifurcation of a healthy human volunteer was analyzed. Second, a single mode (SM) ber based PS-OCT system operating with light centered around 1040 nm is presented. The longer wavelength provides a deeper penetration into biological samples. The SM ber design requires the use of polarization control units at various positions along the ber based system. These provide a circular polarization state at the sample but also control the polarization state throughout the system. Using SM bers in combination with a predened polarization state at the sample reduces polarization dependent artifacts and forms a less complex alternative to SM approaches using multiplexing, sequential illumination or polarization maintaining bers. The arrangement and alignment of the polarization control units is explained and validated by calibration measurements. Furthermore, imaging results obtained from healthy human volunteers are presented. This thesis is composed around two articles published in peer reviewed journals. Furthermore, the underlying basic principles are explained. (author) [de

  18. Relationship Between Visual Acuity and Retinal Thickness During Anti-Vascular Endothelial Growth Factor Therapy for Retinal Diseases.

    Science.gov (United States)

    Ou, William C; Brown, David M; Payne, John F; Wykoff, Charles C

    2017-08-01

    To investigate the relationship between best-corrected visual acuity (BCVA) and central retinal thickness (CRT) in eyes receiving ranibizumab for 3 common retinal diseases. Retrospective analysis of clinical trial data. Early Treatment Diabetic Retinopathy Study BCVA and spectral-domain optical coherence tomography-measured CRT of 387 eyes of 345 patients enrolled in 6 prospective clinical trials for management of neovascular age-related macular degeneration (AMD), diabetic macular edema (DME), and retinal vein occlusion (RVO) were evaluated by Pearson correlation and linear regression. At baseline, there was a small correlation between BCVA and CRT in pooled AMD trial data (r = -0.24). A medium correlation was identified in pooled DME trial data (r = -0.42). No correlation was found in pooled RVO trial data. At month 12, no correlation was found between changes from baseline in BCVA and CRT in pooled AMD trial data. Medium correlations were identified in both pooled DME (r = -0.45) and pooled RVO (r = -0.35) trial data at month 12. Changes in BCVA and CRT associated with edema recurrence upon transition from monthly to pro re nata (PRN) dosing were correlated in AMD (r = -0.27) and RVO (r = -0.72) trials, but not in DME trial data. DME demonstrated a convincing relationship between BCVA and CRT. Correlations appear to be more complex in AMD and RVO. At the inflection point between monthly and PRN dosing, when recurrence of edema is anticipated in many patients, CRT appears strongly correlated with loss of BCVA in RVO. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Analysis of Macular and Retinal Nerve Fiber Layer Thickness in Children with Refractory Amblyopia after Femtosecond Laser-assisted Laser In situ Keratomileusis: A Retrospective Study.

    Science.gov (United States)

    Zhao, Peng-Fei; Zhou, Yue-Hua; Zhang, Jing; Wei, Wen-Bin

    2017-09-20

    Localized macular edema and retinal nerve fiber layer (RNFL) thinning have been reported shortly after laser in situ keratomileusis (LASIK) in adults. However, it is still unclear how LASIK affects the retina of children. This study aimed to investigate the macular retina and RNFL thickness in children with refractive amblyopia who underwent femtosecond laser-assisted LASIK (FS-LASIK). In this study, we included 56 eyes of 32 patients with refractive amblyopia who underwent FS-LASIK in our hospital from January 2012 to December 2016. Foveal (foveal center retinal, parafoveal retinal, and perifoveal), macular inner retinal (superior and inferior), and peripapillary RNFL thicknesses (superior, inferior, temporal, and nasal) were measured using Fourier-domain optical coherence tomography before surgery and 1 day, 3 days, and 1 week after surgery. We divided these patients into three groups based on their refractive error: High myopic group with 22 eyes (equivalent sphere, >6.00 D), mild myopic group with 19 eyes (equivalent sphere, 0-6.00 D), and hyperopic group with 15 eyes (equivalent sphere, >+0.50 D). We compared the macular retina and RNFL thickness before and after LASIK. A paired simple t-test was used for data analysis. One week after surgery, the visual acuity for all 56 eyes of the 32 patients reached their preoperative best-corrected vision. Visual acuity improved two lines or better for 31% of the patients. The residual refractive errors in 89% of the patients were within ±0.5 D. In the high myopic group, the foveal center retinal and parafoveal retinal thicknesses were thicker 1 day and 3 days after surgery than before surgery (t = 2.689, P = 0.012; t = 2.383, P = 0.018, respectively); no significant difference was found 1 week after surgery (P > 0.05). The foveal center retinal and parafoveal retinal thicknesses were greater 1 day after surgery than they were before surgery (P = 0.000 and P = 0.005, respectively) in the mild myopic and hyperopic groups

  20. Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly.

    Science.gov (United States)

    Şahin, Muhammed; Şahin, Alparslan; Kılınç, Faruk; Yüksel, Harun; Özkurt, Zeynep Gürsel; Türkcü, Fatih Mehmet; Pekkolay, Zafer; Soylu, Hikmet; Çaça, İhsan

    2017-06-01

    Increased secretion of growth hormone and insulin-like growth factor-1 in acromegaly has various effects on multiple organs. However, the ocular effects of acromegaly have yet to be investigated in detail. The aim of the present study was to compare retina ganglion cell/inner plexiform layer (GCIPL) and peripapillary nerve fiber layer thickness (pRNFL) between patients with acromegaly and healthy control subjects using spectral domain optical coherence tomography (SD-OCT). This cross-sectional, comparative study included 18 patients with acromegaly and 20 control subjects. All participants underwent SD-OCT to measure pRNFL (in the seven peripapillary areas), GCIPL (in the nine ETDRS areas), and central macular thickness (CMT). Visual field (VF) examinations were performed using a Humphrey field analyzer in acromegalic patients. Measurements were compared between patients with acromegaly and control subjects. A total of 33 eyes of 18 patients with acromegaly and 40 eyes of 20 control subjects met the inclusion criteria of the present study. The overall calculated average pRNFL thickness was significantly lower in patients with acromegaly than in control subjects (P = 0.01), with pRNFL thickness significantly lower in the temporal superior and temporal inferior quadrants. Contrary to our expectations, pRNFL thickness in the nasal quadrant was similar between acromegalic and control subjects. The mean overall pRNFL thickness and superonasal, nasal, inferonasal, and inferotemporal quadrant pRNFL thicknesses were found to correlate with the mean deviation (MD) according to Spearman's correlation. However, other quadrants were not correlated with VF sensitivity. No significant difference in CMT values was observed (P = 0.6). GCIPL thickness was significantly lower in all quadrants of the inner and outer macula, except for central and inferior outer quadrants, in the acromegaly group than that in the control group (P acromegaly compared with that in control subjects

  1. Semi-automatic geographic atrophy segmentation for SD-OCT images

    OpenAIRE

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L.

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in wh...

  2. Reproducibility of corneal, macular and retinal nerve fiber layer ...

    African Journals Online (AJOL)

    side the limits of a consulting room.5. Reproducibility of ... examination, intraocular pressure and corneal thickness ... All OCT measurements were taken between 2 and 5 pm ..... CAS-OCT, Slit-lamp OCT, RTVue-100) have shown ICC.

  3. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.

    Science.gov (United States)

    Choudhry, Netan; Golding, John; Manry, Matthew W; Rao, Rajesh C

    2016-06-01

    To describe the spectral-domain optical coherence tomography (SD OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Observational study. A total of 68 patients (68 eyes) with 19 peripheral retinal features. Spectral-domain OCT-based structural features. Nineteen peripheral retinal features, including vortex vein, congenital hypertrophy of the retinal pigment epithelium, pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment, typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen, were identified by peripheral clinical examination. Near-infrared scanning laser ophthalmoscopy images and SD OCT of these entities were registered to UWF color photographs. Spectral-domain OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, retinal pigment epithelium loss, or hypertrophy was seen in several entities, including congenital hypertrophy of the retinal pigment epithelium, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice, and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision

  4. Semi-automatic geographic atrophy segmentation for SD-OCT images.

    Science.gov (United States)

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

  5. Visual field defects and retinal nerve fiber imaging in patients with obstructive sleep apnea syndrome and in healthy controls.

    Science.gov (United States)

    Casas, Paula; Ascaso, Francisco J; Vicente, Eugenio; Tejero-Garcés, Gloria; Adiego, María I; Cristóbal, José A

    2018-03-02

    To assess the retinal sensitivity in obstructive sleep apnea hypopnea syndrome (OSAHS) patients evaluated with standard automated perimetry (SAP). And to correlate the functional SAP results with structural parameters obtained with optical coherence tomography (OCT). This prospective, observational, case-control study consisted of 63 eyes of 63 OSAHS patients (mean age 51.7 ± 12.7 years, best corrected visual acuity ≥20/25, refractive error less than three spherical or two cylindrical diopters, and intraocular pressure < 21 mmHg) who were enrolled and compared with 38 eyes of 38 age-matched controls. Peripapillary retinal nerve fiber layer (RNFL) thickness was measured by Stratus OCT and SAP sensitivities and indices were explored with Humphrey Field Analyzer perimeter. Correlations between functional and structural parameters were calculated, as well as the relationship between ophthalmologic and systemic indices in OSAHS patients. OSAHS patients showed a significant reduction of the sensitivity for superior visual field division (p = 0.034, t-student test). When dividing the OSAHS group in accordance with the severity of the disease, nasal peripapillary RNFL thickness was significantly lower in severe OSAHS than that in controls and mild-moderate cases (p = 0.031 and p = 0.016 respectively, Mann-Whitney U test). There were no differences between groups for SAP parameters. We found no correlation between structural and functional variables. The central visual field sensitivity of the SAP revealed a poor Pearson correlation with the apnea-hipopnea index (0.284, p = 0.024). Retinal sensitivity show minor differences between healthy subjects and OSAHS. Functional deterioration in OSAHS patients is not easy to demonstrate with visual field examination.

  6. Investigation of changes in fractal dimension from layered retinal structures of healthy and diabetic eyes with optical coherence tomography

    Science.gov (United States)

    Gao, Wei; Zakharov, Valery P.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Kornilin, Dmitry V.

    2015-07-01

    Optical coherence tomography (OCT) is usually employed for the measurement of retinal thickness characterizing the structural changes of tissue. However, fractal dimension (FD) could also character the structural changes of tissue. Therefore, fractal dimension changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in fractal dimension from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (Controls, n = 74 eyes). Fractal dimension was calculated using the differentiate box counting methodology. We evaluated the usefulness of quantifying fractal dimension of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject intereye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of fractal dimension to discriminate between the eyes of DM, MDR and healthy eyes. Significant decreases of fractal dimension were observed in all layers in the MDR eyes compared with controls except in the inner nuclear layer (INL). Significant decreases of fractal dimension were also observed in all layers in the MDR eyes compared with DM eyes. The highest area under receiver operating characteristic curve (AUROC) values estimated for fractal dimension were observed for the outer plexiform layer (OPL) and outer segment photoreceptors (OS) when comparing MDR eyes with controls. The highest AUROC value estimated for fractal dimension were also observed for the retinal nerve fiber layer (RNFL) and OS when comparing MDR eyes with DM eyes. Our results suggest that fractal dimension of the intraretinal layers may provide useful

  7. Lens thickness assessment: anterior segment optical coherence tomography versus A-scan ultrasonography

    Directory of Open Access Journals (Sweden)

    Nikoo Hamzeh

    2015-12-01

    Full Text Available AIM: To assess lens thickness measurements with anterior segment-optical coherence tomography (AS-OCT in comparison with A-scan ultrasonography (A-scan US. METHODS: There were 218 adult subjects (218 eyes aged 59.2±9.2y enrolled in this prospective cross-sectional study. Forty-three eyes had open angles and 175 eyes had narrow angles. Routine ophthalmic exam was performed and nuclear opacity was graded using the Lens Opacities Classification System III (LOCS III. Lens thickness was measured by AS-OCT (Visante OCT, Carl Zeiss Meditec, Dublin, CA, USA. The highest quality image was selected for each eye and lens thickness was calculated using ImageJ software. Lens thickness was also measured by A-scan US. RESULTS: Interclass correlations showed a value of 99.7% for intra-visit measurements and 95.3% for inter-visit measurements. The mean lens thickness measured by AS-OCT was not significantly different from that of A-scan US (4.861±0.404 vs 4.866±0.351 mm, P=0.74. Lens thickness values obtained from the two instruments were highly correlated overall (Pearson correlation coefficient=0.81, P<0.001, and in all LOCS III specific subgroups except in grade 5 of nuclear opacity. Bland-Altman analysis revealed a 95% limit of agreement from -0.45 to 0.46 mm. Lens thickness difference between the two instruments became smaller as the lens thickness increased and AS-OCT yielded smaller values than A-scan US in thicker lens (β=-0.29, P<0.001 CONCLUSION: AS-OCT-derived lens thickness measurement is valid and comparable to the results obtained by A-scan US. It can be used as a reliable noncontact method for measuring lens thickness in adults with or without significant cataract.

  8. In vivo retinal optical coherence tomography at 1030 nm with enhanced penetration into the choroid

    Science.gov (United States)

    Unterhuber, A.; Povazay, B.; Hermann, B.; Sattmann, H.; Michels, S.; Sacu, S.; Ahlers, C.; Scholda, C.; Chavez-Pirson, A.; Schmidt-Erfurth, U.; Fercher, Adolf F.; Drexler, W.

    2005-08-01

    In vivo retinal imaging with ~ 8 μm axial resolution at 1030 nm is demonstrated for the first time, enabling enhanced penetration into the choroid. A new high power, broad bandwidth light source based on amplified spontaneous emission (NP Photonics, λc = 1030 nm, Δλ= 50 nm, Pout = 25 mW) has been interfaced to a time domain ophthalmic OCT system. In vivo retinal OCT tomograms performed at 800 nm are compared to those achieved at 1030 nm. Retinal OCT at longer wavelengths, e.g. 1030 nm significantly improves the visualization of the retinal pigment epithelium/choriocapillaris/choroid interface and might therefore provide new insight into choroidal/choriocapillary changes in age-related macular degeneration and other diseases of the retinal pigment epithelium (RPE)-choroid complex. 1030 nm OCT could also become a valuable tool in monitoring treatment effects on the choroids as in Verteporfin therapy.

  9. Evaluation of RNFL thickness and serum cytokine levels after retinal photocoagulation combined with intravitreous Conbercept injection treatment of diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Luo Na

    2016-01-01

    Objective:To evaluate the effect of retinal photocoagulation combined with intravitreous Conbercept injection in RNFL thickness, serum cytokine levels and other aspects of diabetic retinopathy.Methods:A total of 92 patients with diabetic retinopathy (126 eyes) who received inpatient treatment in our hospital from December, 2013 to December 2015 were included in the study and divided into observation group 46 cases (62 eyes) and control group 46 cases (64 eyes) according to random number table, control group received retinal photocoagulation therapy alone, observation group received retinal photocoagulation combined with intravitreous Conbercept injection treatment, and then differences in RNFL thickness, hemodynamic indexes, serum levels of cytokines and others were compared between two groups after treatment.Results: Average RNFL thickness of inner optic disc top, bottom, bitamporal and nasal ring area as well as the average full-cycle 360° RNFL thickness of observation group after treatment was less than those of control group; PSV and EDV values of CRA were higher than those of control group while RI value was lower than that of control group, and PSV, EDV and RI values of CRV were lower than those of control group; serumβ2-GPⅠ, Hcy, VEGF and SDF-1 levels were lower than those of control group while C-peptide and APN levels were higher than those of control group.Conclusion: Retinal photocoagulation combined with intravitreous Conbercept injection can significantly reduce the RNFL thickness of the patients with diabetic retinopathy and optimize the retinal hemodynamic status, and helps to improve patients’ overall conditions.

  10. Peripapillary Retinal Nerve Fiber Measurement with Spectral-Domain Optical Coherence Tomography in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Simon K. Law

    2017-12-01

    Full Text Available Purpose: To evaluate the relationship between the peripapillary retinal nerve fiber layer (RNFL measurements with Spectral-domain Optical Coherence Tomography (OCT and Age-related macular degeneration (AMD. Methods: Patients >60 years of age without glaucoma or record of intraocular pressure >21 mmHg and no systemic or intraocular diseases or treatment or surgical intervention that affected the RNFL underwent OCT measurement of the RNFL. The severity of AMD was staged with the Clinical Age-Related Maculopathy Staging System. The relationship between RNFL measurements and AMD stages of one eye per patient was analyzed. Results: Eighty-six eyes (46 patients with AMD and no glaucoma or other exclusion criteria received OCT RNFL measurements. Nine eyes (10.5% were excluded because of distorted peripapillary anatomy from exudative AMD (7 eyes or failure of the RNFL segmentation algorithm (2 eyes. Mean age ± S.D. of the 43 patients analyzed was 81.2 ± 7.3 years. The mean stage ± S.D. of AMD of the 77 eyes was 3.77 ± 1.05. Higher stages of AMD were statistically significantly associated with lower average RNFL and inferior sector RNFL (p = 0.049, 0 0015, respectively. The association of inferior sector RNFL and AMD stage remained statistically significant after adjusting for age. Conclusions: Spectral domain OCT is generally useful in measuring the peripapillary RNFL in eyes with different stages of AMD. Higher stage of AMD is associated with thinner peripapillary RNFL, which may masquerade as early glaucomatous damage.

  11. Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Bruce A Berkowitz

    Full Text Available Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema.In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control, whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, 'water mobility' were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes, and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls, MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats.Diabetic male Sprague Dawley rats demonstrate a persistent and diffuse retinal edema in vivo, providing, for the first time, an important model for investigating its pathogenesis and treatment. These studies also validate MRI as a powerful approach for investigating mechanisms of diabetic retinal edema in future experimental and clinical investigations.

  12. Association of OCT-Derived Drusen Measurements with AMD-Associated Genotypic SNPs in the Amish Population

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Murthy Chavali

    2015-02-01

    Full Text Available Purpose: To investigate the association of optical coherence tomography (OCT-derived drusen measures in Amish age-related macular degeneration (AMD patients with known loci for macular degeneration. Methods: Members of the Old Order Amish community in Pennsylvania ages 50 and older were assessed for drusen area, volume and regions of retinal pigment epithelium (RPE atrophy using a Cirrus High-Definition OCT. Measurements were obtained in the macula region within a central circle (CC of 3 mm in diameter and a surrounding perifoveal ring (PR of 3 to 5 mm in diameter using the Cirrus OCT RPE analysis software. Other demographic information, including age, gender and smoking status, were collected. Study subjects were further genotyped to determine their risk for the AMD-associated SNPs in the SYN3, LIPC, ARMS2, C3, CFB, CETP, CFI and CFH genes using TaqMan genotyping assays. The association of genotypes with OCT measures were assessed using linear trend p-values calculated from univariate and multivariate generalized linear models. Results: 432 eyes were included in the analysis. Multivariate analysis (adjusted by age, gender and smoking status confirmed the known significant association between AMD and macular drusen with the number of CFH risk alleles for the drusen area (the area increased 0.12 mm2 for a risk allele increase, p < 0.01, drusen volume (the volume increased 0.01 mm3 for a risk allele increase, p ≤ 0.05 and the area of RPE atrophy (the area increased 0.43 mm2 for a risk allele increase, p = 0.003. SYN3 risk allele G is significantly associated with larger area PR (the area increased 0.09 mm2 for a risk allele increase, p = 0.03 and larger drusen volume in the central circle (the volume increased 0.01 mm3 for a risk allele increase, p = 0.04. Conclusion: Among the genotyped SNPs tested, the CFH risk genotype appears to play a major role in determining the drusen phenotype in the Amish AMD population.

  13. Fundus Autofluorescence and Optical Coherence Tomography Findings in Branch Retinal Vein Occlusion

    Directory of Open Access Journals (Sweden)

    Tetsuju Sekiryu

    2012-01-01

    Full Text Available Purpose. To describe the findings of fundus autofluorescence (FAF and optical coherence tomography (OCT in patients with branch retinal vein occlusion (BRVO. Methods. In this institutional, retrospective, observational case series, FAF was evaluated in 65 eyes with BRVO in 64 consecutive patients and compared with visual acuity, OCT findings, and other clinical observations. Results. Five types of autofluorescence appeared during the course of BRVO: (1 petaloid-shaped hyperautofluorescence in the area of macular edema and (2 hyperautofluorescence coincident with yellow subretinal deposits. (3 Diffuse hyperautofluorescence appeared within the area of serous retinal detachment (SRD and OCT showed precipitates on the undersurface of the retina in 5/5 of these eyes (100%. (4 The area of vein occlusion showed diffuse hyperautofluorescence after resolution of the retinal bleeding. (5 Hard exudates exhibited hyper- or hypoautofluorescence. OCT indicated that most of the hard exudates with hyperautofluorescence were located on the retinal pigment epithelium. Conclusions. Hyperautofluorescence associated with subretinal fluid or hard exudate appeared in the subretinal space. This type of hyperautofluorescence may be attributed to blood cell or macrophages. FAF and OCT are noninvasive modalities that provide additional information regarding macular edema due to BRVO.

  14. Effects of Vitrectomy on Recurrent Macular Edema due to Branch Retinal Vein Occlusion after Intravitreal Injection of Bevacizumab

    Directory of Open Access Journals (Sweden)

    Tatsuya Yunoki

    2013-01-01

    Full Text Available Purpose. To evaluate the effects of pars plana vitrectomy (PPV on recurrent macular edema due to branch retinal vein occlusion (BRVO after intravitreal injections of bevacizumab (IVB. Methods. This retrospective study included 22 eyes of 22 patients who underwent single or multiple IVB injections for macular edema due to BRVO and showed a recurrence of macular edema. All patients then underwent PPV and were followed up for more than 6 months after the surgery with examinations of best corrected visual acuity (BCVA and optical coherence tomography (OCT. OCT parameters were central macular thickness (CMT and average retinal thickness in a 1-mm-diameter circular region at the fovea (MRT. Results. Mean BCVA, CRT, and MRT were significantly improved from the baseline after PPV. Greater improvement of BCVA, CRT, and MRT was obtained after 1 month of IVB than after 6 months of PPV. No eyes showed worsening of macular edema after the surgery. Conclusion. PPV improved BCVA and recurrent macular edema due to BRVO, but PPV that was less effective than IVB had been in the same patients. PPV may be one of the treatment options for recurrent macular edema due to BRVO after IVB.

  15. Are All Retinal Nerve Fiber Layer Defects on Optic Coherence Tomography Glaucomatous?

    Science.gov (United States)

    Gür Güngör, Sirel; Ahmet, Akman

    2017-10-01

    In this study, we investigated the patients who were referred to our clinic with a prediagnosis of glaucoma based on retinal nerve fiber layer (RNFL) defects on optic coherence tomography (OCT) but were determined to have nonglaucomatous RNLF defects upon detailed examination. The ophthalmic examination notes, OCT images, Heidelberg retinal tomography (HRT) II and fundus photographs of 357 patients were retrospectively evaluated. Final diagnoses of these patients were investigated. Of the 357 patients, 216 (60.5%) were diagnosed as open angle glaucoma, 33 (9.2%) as low-tension glaucoma, 39 (10.9%) as pre-perimetric glaucoma. The ophthalmic examinations of 14 patients (3.9%) were normal and there were no RNFL defects in OCT examinations after dilatation. In 39 patients (10.9%), the ophthalmic and optic disc examinations were completely normal and no etiologic factor explaining RNFL defects was found. Twenty-two eyes of 16 patients (4.5%) were included in this study (the mean age was 53.8±11.5 years; 9 men and 7 women). After detailed questioning of the medical history and systemic and neurologic examinations, a diagnosis of ischemic optic neuropathy was made in 11 eyes (10 patients) (2.8%), optic neuritis in 3 eyes (2 patients) (0.6%), optic disc drusen in 4 eyes (2 patients) (0.6%), pseudotumor cerebri in 2 eyes (1 patient) (0.3%), and cerebral palsy in 2 eyes (1 patient) (0.3%). Decrease in RNFL thickness on OCT images alone may be misleading in glaucoma examination. In cases where optic disc cupping is not evident, diagnosis should not be based on OCT RNFL examinations alone, and the patient's medical history, detailed ophthalmic examination, OCT optic disc parameters, HRT, and visual field tests should all be carefully evaluated together.

  16. Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size.

    Science.gov (United States)

    Roach, William P; Cain, Clarence P; Narayan, Drew G; Noojin, Gary D; Boppart, Stephen A; Birngruber, Reginald; Fujimoto, James G; Toth, Cynthia A

    2004-01-01

    We investigate the relationship between the laser beam at the retina (spot size) and the extent of retinal injury from single ultrashort laser pulses. From previous studies it is believed that the retinal effect of single 3-ps laser pulses should vary in extent and location, depending on the occurrence of laser-induced breakdown (LIB) at the site of laser delivery. Single 3-ps pulses of 580-nm laser energy are delivered over a range of spot sizes to the retina of Macaca mulatta. The retinal response is captured sequentially with optical coherence tomography (OCT). The in vivo OCT images and the extent of pathology on final microscopic sections of the laser site are compared. With delivery of a laser pulse with peak irradiance greater than that required for LIB, OCT and light micrographs demonstrate inner retinal injury with many intraretinal and/or vitreous hemorrhages. In contrast, broad outer retinal injury with minimal to no choriocapillaris effect is seen after delivery of laser pulses to a larger retinal area (60 to 300 microm diam) when peak irradiance is less than that required for LIB. The broader lesions extend into the inner retina when higher energy delivery produces intraretinal injury. Microscopic examination of stained fixed tissues provide better resolution of retinal morphology than OCT. OCT provides less resolution but could be guided over an in vivo, visible retinal lesion for repeated sampling over time during the evolution of the lesion formation. For 3-ps visible wavelength laser pulses, varying the spot size and laser energy directly affects the extent of retinal injury. This again is believed to be partly due to the onset of LIB, as seen in previous studies. Spot-size dependence should be considered when comparing studies of retinal effects or when pursuing a specific retinal effect from ultrashort laser pulses. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  17. Detailed Morphological Changes of Foveoschisis in Patient with X-Linked Retinoschisis Detected by SD-OCT and Adaptive Optics Fundus Camera

    Directory of Open Access Journals (Sweden)

    Keiichiro Akeo

    2015-01-01

    Full Text Available Purpose. To report the morphological and functional changes associated with a regression of foveoschisis in a patient with X-linked retinoschisis (XLRS. Methods. A 42-year-old man with XLRS underwent genetic analysis and detailed ophthalmic examinations. Functional assessments included best-corrected visual acuity (BCVA, full-field electroretinograms (ERGs, and multifocal ERGs (mfERGs. Morphological assessments included fundus photography, spectral-domain optical coherence tomography (SD-OCT, and adaptive optics (AO fundus imaging. After the baseline clinical data were obtained, topical dorzolamide was applied to the patient. The patient was followed for 24 months. Results. A reported RS1 gene mutation was found (P203L in the patient. At the baseline, his decimal BCVA was 0.15 in the right and 0.3 in the left eye. Fundus photographs showed bilateral spoke wheel-appearing maculopathy. SD-OCT confirmed the foveoschisis in the left eye. The AO images of the left eye showed spoke wheel retinal folds, and the folds were thinner than those in fundus photographs. During the follow-up period, the foveal thickness in the SD-OCT images and the number of retinal folds in the AO images were reduced. Conclusions. We have presented the detailed morphological changes of foveoschisis in a patient with XLRS detected by SD-OCT and AO fundus camera. However, the findings do not indicate whether the changes were influenced by topical dorzolamide or the natural history.

  18. Ranibizumab in neovascular age-related macular degeneration: a 5-year follow-up

    Directory of Open Access Journals (Sweden)

    Cvetkova NP

    2016-06-01

    Full Text Available Nadezhda P Cvetkova, Kristina Hölldobler, Philipp Prahs, Viola Radeck, Horst Helbig, David Märker Department of Ophthalmology, University of Regensburg, Regensburg, Germany Purpose: Our aim was to evaluate an optical coherence tomography (OCT and visual acuity (VA-guided, variable-dosing regimen with intravitreal ranibizumab injection for treating patients with neovascular age-related macular degeneration (AMD from 2007 to 2012. Design: This was a retrospective clinical study of 5 years follow-up in a tertiary eye center. Patients and methods: In this study, 66 patients with neovascular AMD (mean age of 74 years, SD 8.7 years were included. We investigated the development of best-corrected visual acuity (BCVA, the number of intravitreal injections, and the central retinal thickness measured with OCT (OCT Spectralis over 5 years of intravitreal treatment. Results: The mean number of intravitreal ranibizumab injections over 5 years was 8.8. The mean BCVA before therapy was 0.4 logarithm of the minimum angle of resolution (logMAR. After 5 years of therapy, the mean BCVA was 0.6 logMAR. In all, 16% of treated patients had stable VA over 5 years and 10% of study eyes approved their VA. The mean OCT-measured central retinal thickness at the beginning of this study was 295 µm; after 5 years of treatment, the mean central retinal thickness was 315 µm. There was an increase in central retinal thickness in 47.5% of examined eyes. Conclusion: Other studies showed VA improvement in OCT-guided variable-dosing regimens. Our study revealed a moderate decrease in VA after a total mean injection number as low as 8.8 injections over 5 years. In OCT, an increase in central retinal thickness over 5 years could be observed. Probably, this is due to deficient treatment when comparing the total injection number to other treatment regimens. Anti-VEGF therapy helps to keep the VA stable for a period of time, but cannot totally stop the progression of

  19. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Science.gov (United States)

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2016-01-01

    To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQfibromyalgia exhibited significant thinning in the

  20. Evaluation of Agreement between HRT III and iVue OCT in Glaucoma and Ocular Hypertension Patients

    Directory of Open Access Journals (Sweden)

    A. Perdicchi

    2015-01-01

    Full Text Available Purpose. To determine the agreement between Moorfields Regression Analysis (MRA, Glaucoma Probability Score (GPS of Heidelberg retinal tomograph (HRT III, and peripapillary nerve fibers thickness by iVue Optical Coherence Tomography (OCT. Methods. 72 eyes with ocular hypertension or primary open angle glaucoma (POAG were included in the study: 54 eyes had normal visual fields (VF and 18 had VF damage. All subjects performed achromatic 30° VF by Octopus Program G1X dynamic strategy and were imaged with HRT III and iVue OCT. Sectorial and global MRA, GPS, and OCT parameters were used for the analysis. Kappa statistic was used to assess the agreement between methods. Results. A significant agreement between iVue OCT and GPS for the inferotemporal quadrant (κ: 0.555 was found in patients with abnormal VF. A good overall agreement between GPS and MRA was found in all the eyes tested (κ: 0.511. A good agreement between iVue OCT and MRA was shown in the superonasal (κ: 0.656 and nasal (κ: 0.627 quadrants followed by the superotemporal (κ: 0.602 and inferotemporal (κ: 0.586 sectors in all the studied eyes. Conclusion. The highest percentages of agreement were found per quadrant of the MRA and the iVue OCT confirming that in glaucoma damage starts from the temporal hemiretina.

  1. Decreased retinal sensitivity after internal limiting membrane peeling for macular hole surgery.

    Science.gov (United States)

    Tadayoni, Ramin; Svorenova, Ivana; Erginay, Ali; Gaudric, Alain; Massin, Pascale

    2012-12-01

    To compare the retinal sensitivity and frequency of microscotomas found by spectral domain optical coherence tomography (SD-OCT) combined with scanning laser ophthalmoscopy (SLO) microperimetry after idiopathic macular hole closure, in eyes that underwent internal limiting membrane (ILM) peeling and eyes that did not. This was a retrospective, non-randomised, comparative study. Combined SD-OCT and SLO microperimetry was performed in 16 consecutive eyes after closure of an idiopathic macular hole. A customised microperimetry pattern with 29 measurement points was used. The ILM was peeled in 8/16 eyes. The main outcome measure was mean retinal sensitivity. Mean retinal sensitivity (in dB) was lower after peeling: 9.80 ± 2.35 dB with peeling versus 13.19 ± 2.92 without (p=0.0209). Postoperative microscotomas were significantly more frequent after ILM peeling: 11.3 ± 6.6 points with retinal sensitivity below 10 dB in eyes that underwent peeling versus 2.9 ± 4.6 in those that did not (p=0.0093). These results suggest that ILM peeling may reduce retinal sensitivity, and significantly increase the incidence of microscotomas. Until a prospective trial confirming or not these results, it seems justified to avoid peeling the ILM when its potential benefit seems minor or unproved, and when peeling is carried out, to limit the surface peeled to the bare minimum.

  2. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael

    2014-01-01

    diameters (central retinal artery equivalent, CRAE, and central retinal vein equivalent, CRVE). Statistical analysis was corrected for age, gender, spherical equivalent refraction, axial length and mean arterial blood pressure (MABP) in a mixed model analysis. RESULTS: Retinal arteries and veins were...... ganglion cell-inner plexiform layer (GC-IPL) thickness (p = 0.0017 and p = 0.0057, respectively). CONCLUSION: Narrow retinal arteries and veins were associated not only with the severity of ADOA but with ganglion cell volume in patients with ADOA and in healthy subjects. This suggests that narrow vessels...

  3. Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform layer, and choroidal layer in migraine patients.

    Science.gov (United States)

    Tak, Ali Zeynel Abidin; Sengul, Yıldızhan; Bilak, Şemsettin

    2018-03-01

    The aim of our study is to assess retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), inner-plexiform layer (IPL), and choroidal layer in migraine patients with white matter lesion (WML) or without WML, using spectral domain optical coherence tomography (OCT). To our study, 77 migraine patients who are diagnosed with migraine in accordance to the International Classification of Headache Disorders (ICHD)-3 beta and 43 healthy control are included. In accordance to cranial MRI, migraine patients are divided into two groups as those who have white matter lesions (39 patients), and those who do not have a lesion (38 patients). OCT was performed for participants. The average age of participants was comparable. The RNFL average thickness parameter in the migraine group was significantly lower than in the control group (p layer measuring scales. The proofs showing that affected retinal nerve fiber layer are increased in migraine patients. However, it is not known whether this may affect other layers of retina, or whether there is a correlation between affected retinal structures and white matter lesions. In our study, we found thinner RNFL in migraine patients when we compared with controls but IPL, GCL, and choroid layer values were similar between each patient groups and controls. Also, all parameters were similar between patients with WML and without WML. Studies in this regard are required.

  4. Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma.

    Science.gov (United States)

    Ramm, Lisa; Jentsch, Susanne; Peters, Sven; Sauer, Lydia; Augsten, Regine; Hammer, Martin

    2016-05-01

    To investigate the interrelationship between the oxygen supply of the retina and its regulation with the severity of primary open-angle glaucoma (POAG). Central retinal artery (CRAE) and vein (CRVE) diameters and oxygen saturation of peripapillary retinal vessels in 41 patients suffering from POAG (64.1 ± 12.9 years) and 40 healthy volunteers (63.6 ± 14.1 years) were measured using the retinal vessel analyzer. All measures were taken before and during flicker light stimulation. The mean retinal nerve fiber layer thickness (RNFLT) was determined by OCT and the visual field mean defect (MD) was identified using perimetry. In glaucoma patients, CRAE (r = -0.48 p = 0.002) and CRVE (r = -0.394 p = 0.014) at baseline were inversely related to MD, while arterial and venous oxygen saturation showed no significant dependence on the severity of the damage. However, the flicker light-induced change in arterio-venous difference in oxygen saturation was correlated with the MD (r = 0.358 p = 0.027). The diameters of arteries and veins at baseline decreased with reduction of the mean RNFLT (arteries: r = 0.718 p field loss, may be explained by a reduction of the retinal metabolic demand with progressive loss of neuronal tissue in glaucoma. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker.

    Science.gov (United States)

    Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay

    2018-02-12

    There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.

  6. Discovery of a Cynomolgus Monkey Family With Retinitis Pigmentosa.

    Science.gov (United States)

    Ikeda, Yasuhiro; Nishiguchi, Koji M; Miya, Fuyuki; Shimozawa, Nobuhiro; Funatsu, Jun; Nakatake, Shunji; Fujiwara, Kohta; Tachibana, Takashi; Murakami, Yusuke; Hisatomi, Toshio; Yoshida, Shigeo; Yasutomi, Yasuhiro; Tsunoda, Tatsuhiko; Nakazawa, Toru; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2018-02-01

    To accelerate the development of new therapies, an inherited retinal degeneration model in a nonhuman primate would be useful to confirm the efficacy in preclinical studies. In this study, we describe the discovery of retinitis pigmentosa in a cynomolgus monkey (Macaca fascicularis) pedigree. First, screening with fundus photography was performed on 1443 monkeys at the Tsukuba Primate Research Center. Ophthalmic examinations, such as indirect ophthalmoscopy, ERGs using RETeval, and optic coherent tomography (OCT) measurement, were then performed to confirm diagnosis. Retinal degeneration with cystoid macular edema was observed in both eyes of one 14-year-old female monkey. In her examinations, the full-field ERGs were nonrecordable and the outer layer of the retina in the parafoveal area was not visible on OCT imaging. Moreover, less frequent pigmentary retinal anomalies also were observed in her 3-year-old nephew. His full-field ERGs were almost nonrecordable and the outer layer was not visible in the peripheral retina. His father was her cousin (the son of her mother's older brother) and his mother was her younger half-sibling sister with a different father. The hereditary nature is highly probable (autosomal recessive inheritance suspected). However, whole-exome analysis performed identified no pathogenic mutations in these monkeys.

  7. Impact of retinal pigment epithelium pathology on spectral-domain optical coherence tomography-derived macular thickness and volume metrics and their intersession repeatability.

    Science.gov (United States)

    Hanumunthadu, Daren; Wang, Jin Ping; Chen, Wei; Wong, Evan N; Chen, Yi; Morgan, William H; Patel, Praveen J; Chen, Fred K

    2017-04-01

    To determine the impact of retinal pigment epithelium (RPE) pathology on intersession repeatability of retinal thickness and volume metrics derived from Spectralis spectral-domain optical coherence tomography (Heidelberg Engineering, Heidelberg, Germany). Prospective cross-sectional single centre study. A total of 56 eyes of 56 subjects were divided into three groups: (i) normal RPE band (25 eyes); (ii) RPE elevation: macular soft drusen (13 eyes); and (iii) RPE attenuation: geographic atrophy or inherited retinal diseases (18 eyes). Each subject underwent three consecutive follow-up macular raster scans (61 B-scans at 119 μm separation) at 1-month intervals. Retinal thicknesses and volumes for each zone of the macular subfields before and after manual correction of segmentation error. Coefficients of repeatability (CR) were calculated. Mean (range) age was 57 (21-88) years. Mean central subfield thickness (CST) and total macular volume were 264 and 258 μm (P = 0.62), and 8.0 and 7.8 mm 3 (P = 0.31), before and after manual correction. Intersession CR (95% confidence interval) for CST and total macular volume were reduced from 40 (38-41) to 8.3 (8.1-8.5) and 0.62 to 0.16 mm 3 after manual correction of segmentation lines. CR for CST were 7.4, 23.5 and 66.7 μm before and 7.0, 10.9 and 7.6 μm after manual correction in groups i, ii and iii. Segmentation error in eyes with RPE disease has a significant impact on intersession repeatability of Spectralis spectral-domain optical coherence tomography macular thickness and volume metrics. Careful examination of each B-scan and manual adjustment can enhance the utility of quantitative measurement. Improved automated segmentation algorithms are needed. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  8. Relationship between macular thickness measurement and signal strength using Stratus optical coherence tomography

    OpenAIRE

    Segal, Ori; Shapira, Yinon; Gershoni, Assaf; Vainer, Igor; Nemet, Arie Y; Geffen, Noa; Mimouni, Michael

    2016-01-01

    Ori Segal,1 Yinon Shapira,2 Assaf Gershoni,1 Igor Vainer,2 Arie Y Nemet,1 Noa Geffen,1 Michael Mimouni2 1Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel and the Sackler School of Medicine, Tel Aviv University, Tel Aviv, 2Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel Purpose: To examine the relationship between signal strength and macular thickness as measured by Stratus optical coherence tomography (OCT)’s fast macular thickness protocol...

  9. [Macular thickness measured by optical coherence tomography in pseudoaphakic eyes with clear vs yellow implant].

    Science.gov (United States)

    Chamorro, E; Bonnin-Arias, C; Pérez-Carrasco, M J; Alvarez-Rementería, L; Villa-Collar, C; Armadá-Maresca, F; Sánchez-Ramos, C

    2014-04-01

    To study the use of optical coherence tomography (OCT), for measuring the macular thickness variations produced over time in elderly pseudophakic subjects implanted with a clear intraocular lens (IOL) in one eye, and a yellow IOL in the other eye. Macular thickness measurements were obtained in the 36 eyes of 18 subjects over 65 years, with cataracts surgically removed from both eyes and implanted with different absorbance (clear and yellow) IOLs in 2 separate surgeries. Stratus-OCT was used to determine the macular thickness in 2 sessions with 5 years of difference. After 5 years of follow-up, the eyes implanted with clear IOLs revealed a significant decrease in macular thickness. However, in eyes implanted with yellow IOLs the macular thickness remained stable. The mean overall decrease in macular thickness in eyes implanted with clear IOLs was 5 ± 8 μm (P=.02), and foveal thickness reduction was 10 ± 17 μm (P=.02). The macular thickness changes produced in eyes implanted with a yellow IOL differ from those with a clear IOL. These observation point to a possible protective effect of yellow IOL against the harmful effects of light in elderly pseudophakic subjects. However, studies with a longer follow-up are still needed to confirm that the protection provided by this IOL model is clinically significant. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  10. Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Müller Glia Dedifferentiation in a Murine Model of Retinal Injury.

    Science.gov (United States)

    Reyes-Aguirre, Luis I; Lamas, Monica

    2016-01-01

    Müller glia (MG) is the most abundant glial type in the vertebrate retina. Among its many functions, it is capable of responding to injury by dedifferentiating, proliferating, and differentiating into every cell types lost to damage. This regenerative ability is notoriously absent in mammals. We have previously reported that cultured mammalian MG undergoes a partial dedifferentiation, but fails to fully acquire a progenitor phenotype and differentiate into neurons. This might be explained by a mnemonic mechanism comprised by epigenetic traits, such as DNA methylation. To achieve a better understanding of this epigenetic memory, we studied the expression of pluripotency-associated genes, such as Oct4, Nanog , and Lin28 , which have been reported as necessary for regeneration in fish, at early times after NMDA-induced retinal injury in a mouse experimental model. We found that although Oct4 is expressed rapidly after damage (4 hpi), it is silenced at 24 hpi. This correlates with a significant decrease in the DNA methyltransferase Dnmt3b expression, which returns to basal levels at 24 hpi. By MS-PCR, we observed a decrease in Oct4 methylation levels at 4 and 12 hpi, before returning to a fully methylated state at 24 hpi. To demonstrate that these changes are restricted to MG, we separated these cells using a GLAST antibody coupled with magnetic beads. Finally, intravitreous administration of the DNA-methyltransferase inhibitor SGI-1027 induced Oct4 expression at 24 hpi in MG. Our results suggest that mammalian MG injury-induced dedifferentiation could be restricted by DNA methylation, which rapidly silences Oct4 expression, preventing multipotency acquisition.

  11. Interocular Symmetry in Macular Choroidal Thickness in Children

    Directory of Open Access Journals (Sweden)

    Christiane Al-Haddad

    2014-01-01

    Full Text Available Objective. To report interocular differences in choroidal thickness in children using spectral domain optical coherence tomography (SD-OCT and correlate findings with biometric data. Methods. This observational cross-sectional study included 91 (182 eyes healthy children aged 6 to 17 years with no ocular abnormality except refractive error. After a comprehensive eye exam and axial length measurement, high definition macular scans were performed using SD-OCT. Two observers manually measured the choroidal thickness at the foveal center and at 1500 µm nasally, temporally, inferiorly, and superiorly. Interocular differences were computed; correlations with age, gender, refractive error, and axial length were performed. Results. Mean age was 10.40 ± 3.17 years; mean axial length and refractive error values were similar between fellow eyes. There was excellent correlation between the two observers’ measurements. No significant interocular differences were observed at any location. There was only a trend for right eyes to have higher values in all thicknesses, except the superior thickness. Most of the choroidal thickness measurements correlated positively with spherical equivalent but not with axial length, age, or gender. Conclusion. Choroidal thickness measurements in children as performed using SD-OCT revealed a high level of interobserver agreement and consistent interocular symmetry. Values correlated positively with spherical equivalent refraction.

  12. Interocular symmetry in macular choroidal thickness in children.

    Science.gov (United States)

    Al-Haddad, Christiane; El Chaar, Lama; Antonios, Rafic; El-Dairi, Mays; Noureddin, Baha'

    2014-01-01

    Objective. To report interocular differences in choroidal thickness in children using spectral domain optical coherence tomography (SD-OCT) and correlate findings with biometric data. Methods. This observational cross-sectional study included 91 (182 eyes) healthy children aged 6 to 17 years with no ocular abnormality except refractive error. After a comprehensive eye exam and axial length measurement, high definition macular scans were performed using SD-OCT. Two observers manually measured the choroidal thickness at the foveal center and at 1500 µm nasally, temporally, inferiorly, and superiorly. Interocular differences were computed; correlations with age, gender, refractive error, and axial length were performed. Results. Mean age was 10.40 ± 3.17 years; mean axial length and refractive error values were similar between fellow eyes. There was excellent correlation between the two observers' measurements. No significant interocular differences were observed at any location. There was only a trend for right eyes to have higher values in all thicknesses, except the superior thickness. Most of the choroidal thickness measurements correlated positively with spherical equivalent but not with axial length, age, or gender. Conclusion. Choroidal thickness measurements in children as performed using SD-OCT revealed a high level of interobserver agreement and consistent interocular symmetry. Values correlated positively with spherical equivalent refraction.

  13. Comparison of bromfenac 0.09% QD to nepafenac 0.1% TID after cataract surgery: pilot evaluation of visual acuity, macular volume, and retinal thickness at a single site

    Directory of Open Access Journals (Sweden)

    Cable M

    2012-07-01

    Full Text Available Melissa CableDiscover Vision Centers, Independence, MO, USAPurpose: The purpose of this study was to investigate the clinical outcomes of bromfenac ophthalmic solution 0.09% once daily (QD and nepafenac 0.1% ophthalmic suspension three times daily following cataract extraction with posterior chamber intraocular lens implantation, specifically looking at any differences in Early Treatment Diabetic Retinopathy Study visual acuities, macular volume, and/or retinal thickness changes.Methods: Subjects were randomly assigned to receive either bromfenac (n = 10 QD or nepafenac (n = 10 three times daily. Dosing began 3 days before cataract surgery, continuing to day 21 postsurgery. In addition to the investigated nonsteroidal antiinflammatory drug regimen, all subjects received antiinfective intraoperative and postoperative standard of care. Subjects were followed at 1 day and 1, 3, and 6 weeks postoperatively. Study visit assessments included best-corrected visual acuity, biomicroscopy, summed ocular inflammation score (anterior chamber cells and flare grading, intraocular pressure measurement, adverse event recording, and concomitant medication review. Optical coherence tomography was performed at 1, 3, and 6 weeks.Results: Both treatment groups had similar baseline measurements. Outcomes for mean letters read (P = 0.318, mean change in macular volume (P = 0.665, and retinal thickness (P = 0.552 were not statistically different between the groups from baseline through week six, although independently only the bromfenac group demonstrated a statistically significant improvement in letters gained from baseline to week six (P = 0.040. In the same time period, mean macular volume and retinal thickening worsened in the nepafenac group, demonstrating a statistically significant increase (P = 0.006 at week six for macular volume when compared to baseline. One subject in the nepafenac group experienced recurrent inflammation at week six, was unmasked, and

  14. Is there a relationship between outer retinal destruction and choroidal changes in cone dystrophy?

    Directory of Open Access Journals (Sweden)

    Onder Ayyildiz

    Full Text Available ABSTRACT Purpose: The aim of the present study was to use enhanced depth imaging optical coherence tomography (EDI-OCT to investigate choroidal changes in patients with cone dystrophy (CD and to correlate these findings with clinical and electroretinography (ERG findings. Methods: This case-control study included 40 eyes of 20 patients with CD and 40 eyes of 40 age- and refraction-matched healthy individuals. Choroidal thickness (CT measurements were obtained under the foveal center and at 500 and 1,500 μm from the nasal and temporal regions to the center of the fovea, respectively. EDI-OCT and ERG data were analyzed, and the correlations of CT with the best-corrected visual acuity (BCVA and the central foveal thickness (CFT were evaluated. Results: The mean subfoveal CTs in the CD and control groups were 240.70 ± 70.78 and 356.18 ± 48.55 μm, respectively. The subfoveal CT was significantly thinner in patients with CD than in the controls (p<0.001. The patients with CD also had significantly thinner choroids than the controls at each measurement location relative to the fovea (p<0.001. The subfoveal CT in the CD group correlated with CFT (p=0.012, but no significant correlation was found between the subfoveal CT and BCVA or photopic ERG responses. Conclusions: The present study demonstrated a significant thinning of the choroid in patients with CD. EDI-OCT is a useful technique for describing the choroidal changes occurring in CD. Future studies investigating the association between choroidal changes and outer retinal destruction or the disease stage may provide a better understanding of the pathophysiology of CD.

  15. Is there a relationship between outer retinal destruction and choroidal changes in cone dystrophy?

    Science.gov (United States)

    Ayyildiz, Onder; Ozge, Gokhan; Kucukevcilioglu, Murat; Ozgonul, Cem; Mumcuoglu, Tarkan; Durukan, Ali Hakan; Mutlu, Fatih Mehmet

    2016-01-01

    The aim of the present study was to use enhanced depth imaging optical coherence tomography (EDI-OCT) to investigate choroidal changes in patients with cone dystrophy (CD) and to correlate these findings with clinical and electroretinography (ERG) findings. This case-control study included 40 eyes of 20 patients with CD and 40 eyes of 40 age- and refraction-matched healthy individuals. Choroidal thickness (CT) measurements were obtained under the foveal center and at 500 and 1,500 μm from the nasal and temporal regions to the center of the fovea, respectively. EDI-OCT and ERG data were analyzed, and the correlations of CT with the best-corrected visual acuity (BCVA) and the central foveal thickness (CFT) were evaluated. The mean subfoveal CTs in the CD and control groups were 240.70 ± 70.78 and 356.18 ± 48.55 μm, respectively. The subfoveal CT was significantly thinner in patients with CD than in the controls (p<0.001). The patients with CD also had significantly thinner choroids than the controls at each measurement location relative to the fovea (p<0.001). The subfoveal CT in the CD group correlated with CFT (p=0.012), but no significant correlation was found between the subfoveal CT and BCVA or photopic ERG responses. The present study demonstrated a significant thinning of the choroid in patients with CD. EDI-OCT is a useful technique for describing the choroidal changes occurring in CD. Future studies investigating the association between choroidal changes and outer retinal destruction or the disease stage may provide a better understanding of the pathophysiology of CD.

  16. Noninvasive Visualization and Analysis of the Human Parafoveal Capillary Network Using Swept Source OCT Optical Microangiography.

    Science.gov (United States)

    Kuehlewein, Laura; Tepelus, Tudor C; An, Lin; Durbin, Mary K; Srinivas, Sowmya; Sadda, Srinivas R

    2015-06-01

    We characterized the foveal avascular zone (FAZ) and the parafoveal capillary network in healthy subjects using swept source OCT optical microangiography (OMAG). We acquired OMAG images of the macula of 19 eyes (13 healthy individuals) using a prototype swept source laser OCT. En face images of the retinal vasculature were generated for superficial and deep inner retinal layers (SRL/DRL) in regions of interest 250 (ROI-250) and 500 (ROI-500) μm from the FAZ border. The mean area (mm2) of the FAZ was 0.304 ± 0.132 for the SRL and 0.486 ± 0.162 for the DRL (P network at different retinal layers.

  17. Imaging retinal degeneration in mice by combining Fourier domain optical coherence tomography and fluorescent scanning laser ophthalmoscopy

    Science.gov (United States)

    Hossein-Javaheri, Nima; Molday, Laurie L.; Xu, Jing; Molday, Robert S.; Sarunic, Marinko V.

    2009-02-01

    Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. Optical Coherence Tomography (OCT) is emerging as the preferred technique for non-contact sub-surface depth-resolved imaging of the retina. The high resolution cross sectional images acquired in vivo by OCT can be compared to histology to visually delineate the retinal layers. The recent demonstration of the significant sensitivity increase obtained through use of Fourier domain (FD) detection with OCT has been used to facilitate high speed scanning for volumetric reconstruction of the retina in software. The images acquired by OCT are purely structural, relying on refractive index differences in the tissue for contrast, and do not provide information on the molecular content of the sample. We have constructed a FDOCT prototype and combined it with a fluorescent Scanning Laser Ophthalmoscope (fSLO) to permit real time alignment of the field of view on the retina. The alignment of the FDOCT system to the specimen is crucial for the registration of measurements taken throughout longitudinal studies. In addition, fluorescence detection has been integrated with the SLO to enable the en face localization of a molecular contrast signal, which is important for retinal angiography, and also for detection of autofluorescence associated with some forms of retinal degeneration, for example autofluorescence lipofuscin accumulations are associated with Stargardt's Macular Dystrophy. The integrated FD OCT/fSLO system was investigated for imaging the retina of the mice in vivo.

  18. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity.

    Science.gov (United States)

    Garcia-Martin, Elena; Rodriguez-Mena, Diego; Satue, Maria; Almarcegui, Carmen; Dolz, Isabel; Alarcia, Raquel; Seral, Maria; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E

    2014-02-04

    To evaluate correlations between visual evoked potentials (VEP), pattern electroretinogram (PERG), and macular and retinal nerve fiber layer (RNFL) thickness measured by optical coherence tomography (OCT) and the severity of Parkinson disease (PD). Forty-six PD patients and 33 age and sex-matched healthy controls were enrolled, and underwent VEP, PERG, and OCT measurements of macular and RNFL thicknesses, and evaluation of PD severity using the Hoehn and Yahr scale to measure PD symptom progression, the Schwab and England Activities of Daily Living Scale (SE-ADL) to evaluate patient quality of life (QOL), and disease duration. Logistical regression was performed to analyze which measures, if any, could predict PD symptom progression or effect on QOL. Visual functional parameters (best corrected visual acuity, mean deviation of visual field, PERG positive (P) component at 50 ms -P50- and negative (N) component at 95 ms -N95- component amplitude, and PERG P50 component latency) and structural parameters (OCT measurements of RNFL and retinal thickness) were decreased in PD patients compared with healthy controls. OCT measurements were significantly negatively correlated with the Hoehn and Yahr scale, and significantly positively correlated with the SE-ADL scale. Based on logistical regression analysis, fovea thickness provided by OCT equipment predicted PD severity, and QOL and amplitude of the PERG N95 component predicted a lower SE-ADL score. Patients with greater damage in the RNFL tend to have lower QOL and more severe PD symptoms. Foveal thicknesses and the PERG N95 component provide good biomarkers for predicting QOL and disease severity.

  19. Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients.

    Science.gov (United States)

    Sarfraz, Muhammad Haroon; Mehboob, Mohammad Asim; Haq, Rana Intisar Ul

    2017-01-01

    To evaluate the correlation between Central Corneal Thickness (CCT) and Visual Field (VF) defect parameters like Mean Deviation (MD) and Pattern Standard Deviation (PSD), Cup-to-Disc Ratio (CDR) and Retinal Nerve Fibre Layer Thickness (RNFL-T) in Primary Open-Angle Glaucoma (POAG) patients. This cross sectional study was conducted at Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi from September 2015 to September 2016. Sixty eyes of 30 patients with diagnosed POAG were analysed. Correlation of CCT with other variables was studied. Mean age of study population was 43.13±7.54 years. Out of 30 patients, 19 (63.33%) were males and 11 (36.67%) were females. Mean CCT, MD, PSD, CDR and RNFL-T of study population was 528.57±25.47µm, -9.11±3.07, 6.93±2.73, 0.63±0.13 and 77.79±10.44µm respectively. There was significant correlation of CCT with MD, PSD and CDR (r=-0.52, pfield parameters like mean deviation and pattern standard deviation, as well as with cup-to-disc ratio. However, central corneal thickness had no significant relationship with retinal nerve fibre layer thickness.

  20. Spectral domain OCT versus time domain OCT in the evaluation of macular features related to wet age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Isola V

    2012-02-01

    Full Text Available Luisa Pierro1, Elena Zampedri1, Paolo Milani2, Marco Gagliardi1, Vincenzo Isola2, Alfredo Pece21Department of Ophthalmology, University Vita-Salute, Scientific Institute San Raffaele, Milano, Italy, 2Fondazione Retina 3000, Milano, ItalyBackground: The aim of this study was to compare the agreement between spectral domain optical coherence tomography (SD OCT and time domain stratus OCT (TD OCT in evaluating macular morphology alterations in wet age-related macular degeneration (AMD.Methods: This retrospective study was performed on 77 eyes of 77 patients with primary or recurring subfoveal choroidal neovascularization secondary to AMD. All patients underwent OCT examination using Zeiss Stratus OCT 3 (Carl Zeiss Meditec Inc, Dublin, CA and Opko OTI Spectral SLO/OCT (Ophthalmic Technologies Inc, Toronto, Canada. In all radial line scans, the presence of intraretinal edema (IRE, serous pigment epithelium detachment (sPED, neurosensory serous retinal detachment (NSRD, epiretinal membrane (EM, inner limiting membrane thickening (ILMT, and hard exudates (HE were evaluated. The degree of matching was quantified by Kappa measure of agreement.Results: The percentage distribution of TD OCT findings versus SD OCT findings was: IRE 36.3% versus 77.9%, sPED 57.1% versus 85.7%, NSRD 38.9% versus 53.2%, EM 10.5% versus 26.3%, ILMT 3.8% versus 32.4%, and HE 6.4% versus 54.5%. The agreement was as follows: sPED: kappa value 0.15; NSRD: kappa value 0.61; IRE: kappa value 0.18; EM: kappa value 0.41; ILMT: kappa value 0.02; HE: kappa value 0.06.Conclusion: The agreement in the evaluation of macular lesions between the two techniques is poor and depends on the lesion considered. SD OCT allows better detection of the alterations typically related to choroidal neovascularization such as IRE, PED, ILM thickening, and HE. Consequently its use should be strongly considered in patients with wet AMD.Keywords: spectral domain, OCT, time domain, macular degeneration, AMD

  1. Macular retinal ganglion cell-inner plexiform layer thickness in patients on hydroxychloroquine therapy.

    Science.gov (United States)

    Lee, Min Gyu; Kim, Sang Jin; Ham, Don-Il; Kang, Se Woong; Kee, Changwon; Lee, Jaejoon; Cha, Hoon-Suk; Koh, Eun-Mi

    2014-11-25

    We evaluated macular ganglion cell-inner plexiform layer (GC-IPL) thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with chronic exposure to hydroxychloroquine (HCQ). This study included 130 subjects, who were divided into three groups: Group 1A, 55 patients with HCQ use ≥5 years; Group 1B, 46 patients with HCQ use 1000 g), significant correlations were not observed. This study revealed that macular GC-IPL thickness did not show definite correlations with HCQ use. However, some patients, especially with HCQ retinopathy or high cumulative doses, showed thin GC-IPL. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  2. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3.

    Science.gov (United States)

    Sadda, Srinivas R; Guymer, Robyn; Holz, Frank G; Schmitz-Valckenberg, Steffen; Curcio, Christine A; Bird, Alan C; Blodi, Barbara A; Bottoni, Ferdinando; Chakravarthy, Usha; Chew, Emily Y; Csaky, Karl; Danis, Ronald P; Fleckenstein, Monika; Freund, K Bailey; Grunwald, Juan; Hoyng, Carel B; Jaffe, Glenn J; Liakopoulos, Sandra; Monés, Jordi M; Pauleikhoff, Daniel; Rosenfeld, Philip J; Sarraf, David; Spaide, Richard F; Tadayoni, Ramin; Tufail, Adnan; Wolf, Sebastian; Staurenghi, Giovanni

    2018-04-01

    To develop consensus terminology and criteria for defining atrophy based on OCT findings in the setting of age-related macular degeneration (AMD). Consensus meeting. Panel of retina specialists, image reading center experts, retinal histologists, and optics engineers. As part of the Classification of Atrophy Meetings (CAM) program, an international group of experts surveyed the existing literature, performed a masked analysis of longitudinal multimodal imaging for a series of eyes with AMD, and reviewed the results of this analysis to define areas of agreement and disagreement. Through consensus discussions at 3 meetings over 12 months, a classification system based on OCT was proposed for atrophy secondary to AMD. Specific criteria were defined to establish the presence of atrophy. A consensus classification system for atrophy and OCT-based criteria to identify atrophy. OCT was proposed as the reference standard or base imaging method to diagnose and stage atrophy. Other methods, including fundus autofluorescence, near-infrared reflectance, and color imaging, provided complementary and confirmatory information. Recognizing that photoreceptor atrophy can occur without retinal pigment epithelium (RPE) atrophy and that atrophy can undergo an evolution of different stages, 4 terms and histologic candidates were proposed: complete RPE and outer retinal atrophy (cRORA), incomplete RPE and outer retinal atrophy, complete outer retinal atrophy, and incomplete outer retinal atrophy. Specific OCT criteria to diagnose cRORA were proposed: (1) a region of hypertransmission of at least 250 μm in diameter, (2) a zone of attenuation or disruption of the RPE of at least 250 μm in diameter, (3) evidence of overlying photoreceptor degeneration, and (4) absence of scrolled RPE or other signs of an RPE tear. A classification system and criteria for OCT-defined atrophy in the setting of AMD has been proposed based on an international consensus. This classification is a more complete

  3. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  4. Retinal Vascular Fractals Correlate With Early Neurodegeneration in Patients With Type 2 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Soegaard Hansen, Rasmus; Pedersen, Knud

    2015-01-01

    . In a randomly selected eye of each patient, Fd was calculated using SIVA-Fractal, a specialized semiautomatic software. Retinal neurodegeneration was evaluated by Topcon 3D OCT-2000 spectral-domain optical coherence tomography (OCT) and by a RETI-scan multifocal ERG (mf-ERG) system in rings one to six. Level...... were 10 (42.7%), 20 (35.0%), and 35 (22.3%), respectively. Fd correlated inversely with mf-ERG implicit time of ring one (r = -0.25, P = 0.01) and present diabetic neuropathy (P = 0.02), and positively with OCT ganglion cell layer (GCL) thickness (r = 0.20, P = 0.04). In a multivariable linear...... regression model, Fd was associated with mf-ERG implicit time of ring one (coefficient -0.0021/ms, P = 0.040) and the presence of diabetic neuropathy (coefficient -0.0209 for neuropathy present versus absent, P = 0.041). Conclusions: In patients with T2DM and no or minimal DR, independent correlations were...

  5. Alterations in retinal nerve fiber layer thickness in early stages of diabetic retinopathy and potential risk factors.

    Science.gov (United States)

    Shi, Rui; Guo, Zhonglan; Wang, Feng; Li, Rong; Zhao, Lei; Lin, Rong

    2018-02-01

    To investigate the loss of retinal nerve fiber layer (RNFL) in type-2 diabetic patients with early-stage diabetic retinopathy (DR) and to identify potential risk factors accounting for these alterations. In this cross-sectional study, 158 type-2 diabetic patients were divided into three groups based on their DR status. RNFL thickness and other optic disc parameters were obtained by optical coherence tomography (OCT) and then compared among different groups. We investigated the potential association between RNFL loss and systemic risk factors for DR, including diabetes duration, body mass index (BMI), serum lipids, hemoglobin A1c (HbA1c) and albumin-creatinine ratio (ACR). One-way ANOVA was carried out to compare RNFL thickness among different groups, Pearson correlation and multivariate linear regression analysis were performed to determine potential risk factors related to RNFL thickness in these patients. There were significant differences in the average (F = 8.872, P = 0.003), superior (F = 8.769, P = 0.004), and inferior (F = 8.857, P = 0.003) RNFL thickness of both eyes among the groups, but no obvious difference in optic disc parameters was found. Diabetic duration, BMI, TG, High density lipoprotein cholesterol (HDL), HbA1c, and ACR were found negatively related to the RNFL thickness in both or single eye according to Pearson correlation analysis. After controlling for age, gender, and axis length (AL) in multivariate linear regression analysis, the diabetic duration was associated significantly with RNFL thickness of superior in both eye (right eye: p = 0.016, left eye: p = 0.024), BMI was related to the nasal quadrant of the right eye (p = 0.034), and TG was related to the inferior of the right eye (p = 0.037), HbA1c (p = 0.026) was associated significantly with the average RNFL thickness of the right eye. In addition, ACR was found negatively related to average (p = 0.042) and inferior quadrant (p = 0.014) of the left eye

  6. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  7. Retinal thickness assessed by optical coherence tomography (OCT in pseudophakic macular edema Espessura retiniana medida pela tomografia de coerência óptica (OCT no edema macular do pseudofácico

    Directory of Open Access Journals (Sweden)

    Maria Teresa Brizzi Chizzoti Bonanomi

    2006-08-01

    Full Text Available PURPOSE: To evaluate the usefulness of the optical coherence tomography (OCT retinal map in angiographic pseudophakic macular edema (ACME. METHODS: This is a prospective analysis of a group of 36 pseudophakic eyes at the fifth postoperative week, submitted to optical coherence tomography 2 macular map and fluorescein angiography on the same day and, a control group of twenty-two 20/20 vision eyes with a minimum 6-month postoperative period, submitted to optical coherence tomography 2 macular map only. Exclusion criteria were diabetes, any macular pathology and unreadable optical coherence tomography or angiogram. The angiograms were divided into three groups according to the edema intensity: Group I: level 0 (absence of angiographic pseudophakic macular edema; group II: levels 1 and 2 (incomplete and complete perifoveal angiographic pseudophakic macular edema respectively and group III: levels 3 and 4 (up to one disc diameter and greater than one disc diameter angiographic pseudophakic macular edema area respectively. The nine zones of the optical coherence tomography macular map were compared between the control and the three subgroups of the study group and, between group I and groups II and III. RESULTS: Among the 36 eyes, 23 (64% were classified as group I, 10 (28% as group II and three (8% as group III. The mean thickness of the fovea zone was 185±15 µm for the control group, 189±24 µm for group I, 213±33 µm for group II and 455±38 µm for group III. Significant differences: between group III and the control or group I for all zones (pOBJETIVO: Medir a espessura retiniana pela tomografia de coerência óptica (OCT no edema macular angiográfico do pseudofácico (ACME. MÉTODOS: Trabalho prospectivo composto de um grupo de estudo com 36 olhos pseudofácicos, entre a 4ª e a 6ª semana de pós-operatório, submetidos ao mapa macular com a tomografia de coerência óptica 2 e à angiofluoresceinografia no mesmo dia e, um grupo controle

  8. Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma.

    Science.gov (United States)

    Kucukevcilioglu, Murat; Ayyildiz, Onder; Aykas, Seckin; Gokce, Gokcen; Koylu, Mehmet Talay; Ozgonul, Cem; Ozge, Gokhan; Mumcuoglu, Tarkan; Yumusak, Erhan

    2017-02-01

    To investigate retinal nerve fiber layer thickness (RNFL-T) and peripapillary choroidal thickness (PC-T) in non-glaucomatous optic atrophy (OA) patients in comparison with unaffected and control eyes, furthermore, to compare thickness profiles with unilateral pseudoexfoliative advanced glaucoma. Thirty-three eyes with OA (Group A), 33 unaffected fellow eyes (Group B), 25 right eyes of 25 control subjects (Group C), and 15 eyes with advanced glaucoma (Group D) were enrolled. RNFL-T was measured in six regions by spectral-domain optical coherence tomography. Enhanced depth imaging optical coherence tomography was obtained to evaluate PC-T in corresponding regions. RNFL-T was significantly lower in Group A than in Groups B and C globally and at all peripapillary regions (all p temporal > nasal > inferior) profiles were almost identical to that in unaffected fellow eyes and control eyes. However, Group D showed different patterns with less regional differences in RNFL-T, and the greatest value of PC-T in nasal quadrant. Besides retinal nerve fiber layer thinning, non-glaucomatous OA is associated with choroidal thinning. The RNFL-T and PC-T profiles in advanced glaucoma eyes differed from the common patterns seen among OA eyes, unaffected fellow eyes, and control eyes.

  9. Circulating anti-retinal antibodies in response to anti-angiogenic therapy in exudative age-related macular degeneration.

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Wilańska, Joanna; Romanowska-Dixon, Bożena; Sanak, Marek

    2014-12-01

    To determine changes in anti-retinal antibodies (ARAs) during anti-VEGF therapy in patients with exudative age-related macular degeneration (AMD) and to assess the correlations between ARAs and disease activity. The study comprised 98 patients treated with intravitreal bevacizumab. The ophthalmic examination included best corrected visual acuity (BCVA), slit lamp biomicroscopy, fundoscopy, fluorescein angiography (FA), and optical coherence tomography (OCT). Serum ARAs levels were assessed by indirect immunofluorescence (IIF) on normal monkey retina substrate. These studies were repeated at 4 week intervals within 8 months of a follow-up. The sera of 50 sex- and age-matched healthy subjects were used as controls. At baseline examination, 94 (95.5%) of the 98 patients were positive for ARAs. The ARAs titres were significantly higher (p = 0.0000) than in controls. A positive correlation was found between titres of ARAs and the diameter of choroidal neovascularization (CNV) as measured by FA (p = 0.0000), and central retinal thickness (CRT) assessed by OCT (p = 0.0000). A positive correlation was also found between the diameter of CNV, CRT and the complexity of circulating ARAs. Following treatment all patients demonstrated significant decrease in ARAs levels as well as improvement of BCVA, reduction of subretinal fluid on OCT and decreased leakage on FA. Changes in serum ARAs levels occurred in parallel with clinical outcomes of anti-VEGF therapy. Treatment reduced serum levels of ARAs, with the greatest reduction occurring during the 'loading' phase. This study demonstrated that ARAs may act as a serum biomarker of the efficacy of anti-VEGF therapy. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Inner retinal thinning after Brilliant Blue G-assisted internal limiting membrane peeling for vitreoretinal interface disorders.

    Science.gov (United States)

    Ambiya, Vikas; Goud, Abhilash; Khodani, Mitali; Chhablani, Jay

    2017-04-01

    The aim of this study was to evaluate ganglion cell layer and nerve fiber layer thickness after Brilliant Blue G (BBG)-assisted internal limiting membrane (ILM) peeling for vitreomacular disorders. Retrospective analysis of spectral domain optical coherence tomography (SD-OCT) of 42 eyes of 42 patients, who underwent pars plana vitrectomy with BBG-assisted ILM peeling, was performed. Inclusion criteria were idiopathic macular hole, idiopathic vitreomacular traction, and idiopathic epiretinal membrane. Key exclusion criteria were vitreoretinal interface abnormalities secondary to any other diseases, follow-up period of less than 3 months, and any other associated retinal pathology. Average, minimum, and sectoral ganglion cell, and inner plexiform layers (GCIPL) and retinal nerve fiber layer (RNFL) parameters were collected. Changes in these parameters from baseline to 3- and 6-month visits after surgery were analyzed. At 3 months after surgery, we found a statistically significant reduction in the average GCIPL thickness (P = 0.031) and also in the superior sectors (P peeling for vitreomacular interface disorders leads to thinning of the inner retina including GCIPL and RNFL. These structural changes should be correlated with retinal function tests to explore the pros and cons of this surgical step.

  11. Six-month postoperative outcomes of intraoperative OCT-guided surgical cystotomy for refractory cystoid macular edema in diabetic eyes

    Directory of Open Access Journals (Sweden)

    Asahina Y

    2017-11-01

    Full Text Available Yuichi Asahina, Naoko Tachi, Yumi Asahina, Kayoko Yoshimura, Yoshiki Ueta, Yoshihiro Hashimoto Eye Center, Shinseikai Toyama Hospital, Imizu, Toyama, Japan Purpose: This study evaluated the outcomes of surgical cystotomy for recurrent diabetic cystoid macular edema (CME.Patients and methods: We analyzed 20 eyes with a clinical diagnosis of diabetic retinopathy and refractory CME. Release of vitreoretinal adhesion, epiretinal membrane (ERM and internal limiting membrane (ILM peeling and cystotomy guided by intraoperative optical coherence tomography (iOCT were performed in every patient. Pars plana vitrectomy was also performed in 17 patients, 11 of whom also underwent lensectomy and intraocular lens implantation. Central retinal thickness (CRT, central minimum macular thickness (CMMT, macular volume (MV and best-corrected visual acuity (BCVA were compared preoperatively and 1 and 6 months post surgery.Results: CRT, CMMT and MV significantly improved 1 and 6 months post surgery in each group (P<0.01. Significant improvements in BCVA were only observed 6 months post surgery (P<0.01. No intra- or postoperative complications were observed in all patients.Conclusion: CRT, CMMT, MV and BCVA significantly improved 6 months following surgical cystectomy. This implies that iOCT-guided cystotomy could be another treatment option for refractory CME in diabetic eyes. Keywords: diabetic retinopathy, cystoid macular edema, intraoperative OCT, cystotomy

  12. PERIPAPILLARY RETINAL NERVE FIBER THICKNESS CHANGES AFTER VITRECTOMY FOR EPIRETINAL MEMBRANE IN EYES WITH AND WITHOUT VITREOUS DETACHMENT.

    Science.gov (United States)

    Mariotti, Cesare; Nicolai, Michele; Longo, Antonio; Viti, Francesca; Bambini, Elisa; Saitta, Andrea; Pirani, Vittorio; Orsini, Emanuele; Baruffa, Daniela; Reibaldi, Michele

    2017-12-01

    To compare the changes in postoperative peripapillary retinal nerve fiber layer (p-RNFL) thickness after vitrectomy for epiretinal membrane in eyes with preexisting posterior vitreous detachment (PVD) and eyes with surgically induced PVD. This study included consecutive patients who underwent 25-gauge vitrectomy for epiretinal membrane. Eyes were divided, according to intraoperative PVD status, into a preexisting PVD group and surgically induced PVD group. Best-corrected visual acuity, p-RNFL thickness, and central retinal thickness were performed before and at 1, 3, and 6 months after surgery. One hundred and twenty eyes of 120 patients were enrolled: 64 eyes in the preexisting PVD group and 56 eyes in the surgically induced PVD group. In the preexisting PVD group at 6 months, the mean global p-RNFL thickness did not change, whereas it was reduced in the temporal sector (P = 0.034). In the surgically induced PVD group at 6 months, significant decreases were observed in global p-RNFL thickness (P = 0.027), temporal (P = 0.021), temporal inferior (P = 0.030), and nasal inferior sectors (P = 0.010). At 6 months, the two groups differed significantly in temporal (P PVD.

  13. Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex.

    Science.gov (United States)

    Bai, Da-Yong; Wang, Xu; Zhao, Jun-Yang; Li, Li; Gao, Jun; Wang, Ning-Li

    2016-05-20

    A sensitive method is required to detect retinal hamartomas in patients with tuberous sclerosis complex (TSC). The aim of the present study was to compare the color fundus photography, infrared imaging (IFG), and optical coherence tomography (OCT) in the detection rate of retinal hamartoma in patients with TSC. This study included 11 patients (22 eyes) with TSC, who underwent color fundus photography, IFG, and spectral-domain OCT to detect retinal hamartomas. TSC1 and TSC2RESULTS: The mean age of the 11 patients was 8.0 ± 2.1 years. The mean spherical equivalent was -0.55 ± 1.42 D by autorefraction with cycloplegia. In 11 patients (22 eyes), OCT, infrared fundus photography, and color fundus photography revealed 26, 18, and 9 hamartomas, respectively. The predominant hamartoma was type I (55.6%). All the hamartomas that detected by color fundus photography or IFG can be detected by OCT. Among the methods of color fundus photography, IFG, and OCT, the OCT has higher detection rate for retinal hamartoma in TSC patients; therefore, OCT might be promising for the clinical diagnosis of TSC.

  14. Fundus autofluorescence and optical coherence tomography in the management of progressive outer retinal necrosis

    Science.gov (United States)

    Yeh, Steven; Wong, Wai T.; Weichel, Eric D.; Lew, Julie C.; Chew, Emily Y.; Nussenblatt, Robert B.

    2011-01-01

    A 41 year-old female patient with acquired immune deficiency syndrome (AIDS) presented with progressive nasal visual field loss in her right eye. Ophthalmic exam revealed widespread areas of retinal opacification with hemorrhage consistent with progressive outer retinal necrosis (PORN), which was confirmed by polymerase chain reaction (PCR) for varicella zoster virus (VZV) DNA. The patient was treated with intravenous and intravitreal foscarnet and ganciclovir with a resultant improvement clinically. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging revealed progressive changes indicative of widespread retinal pigment epithelial (RPE) and outer retinal dysfunction. OCT was useful in documenting progressive changes in macular architecture during therapy including neurosensory elevation, cystoid macular edema, and severe outer retinal necrosis, at initial exam, 1 week, and 1 month follow-up. Fundus autofluorescence revealed areas of stippled, hyperfluorescence within extensive zones of hypofluorescence, which progressed during the follow-up period. These areas appeared to represent lipofuscin or its photoreactive components within larger regions of RPE loss. The combination of OCT and FAF was useful in the characterization of the RPE and retinal anatomy in this patient with PORN. PMID:20337261

  15. Outcomes in Eyes with Retinal Angiomatous Proliferation in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT).

    Science.gov (United States)

    Daniel, Ebenezer; Shaffer, James; Ying, Gui-shuang; Grunwald, Juan E; Martin, Daniel F; Jaffe, Glenn J; Maguire, Maureen G

    2016-03-01

    To compare baseline characteristics, visual acuity (VA), and morphologic outcomes between eyes with retinal angiomatous proliferation (RAP) and all other eyes among patients with neovascular age-related macular degeneration (NVAMD) treated with anti-vascular endothelial growth factor (VEGF) drugs. Prospective cohort study within the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). Patients with NVAMD. Reading center staff evaluated digital color fundus photographs, fluorescein angiography (FA) images, and optical coherence tomography (OCT) scans of eyes with NVAMD treated with either ranibizumab or bevacizumab over a 2-year period. Retinal angiomatous proliferation was identified by the intense intra-retinal leakage of fluorescein in combination with other associated features. Visual acuity; fluorescein leakage; scar; geographic atrophy (GA) on FA; retinal thickness, fluid, and subretinal hyperreflective material (SHRM) on OCT; and the number of intravitreal anti-VEGF injections at 1 and 2 years. Retinal angiomatous proliferation was present in 126 of 1183 (10.7%) study eyes at baseline. Mean VA improvement from baseline was greater (10.6 vs. 6.9 letters; P = 0.01) at 1 year, but similar at 2 years (7.8 vs. 6.2 letters; P = 0.34). At 1 year, eyes with RAP were more likely to have no fluid (46% vs. 26%; P treatment in CATT, eyes with RAP were less likely to have fluid, FA leakage, scar, and SHRM and more likely to have GA than eyes without RAP. Mean improvement in VA was similar at 2 years. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population.

    Science.gov (United States)

    Pawar, Neelam; Maheshwari, Devendra; Ravindran, Meenakshi; Ramakrishnan, Renagappa

    2017-10-01

    To determine interocular differences in the retinal nerve fiber layer (RNFL) and optic nerve head (ONH) parameters in a pediatric population using Cirrus high-definition optical coherence tomography (HD-OCT). Seventy normal Indian children aged 5-17 years presenting to the Pediatric Clinic were included in this observational cross-sectional study. All subjects underwent a comprehensive ophthalmologic examination and an evaluation of the RNFL and ONH by Cirrus HD-OCT. Differences between the right and left eyes were calculated and values were compared by means of a paired t-test. Subjects were also divided into two groups based on age (under or over 10 years of age). Interocular differences in RNFL and ONH parameters together with sex and age variations for these differences were determined. The mean age of studied pediatric population was 11.83 ± 3.3 years (range 5-17). Average RNFL thickness was 94.46 ± 8.7 μm (± SD) (range 77-111). Differences in the average RNFL between right and left eyes were not statistically significant (P = 0.060). Superior quadrant RNFL was thicker in the left eye and temporal quadrant was thicker in the right eye. Among ONH parameters, there were no statistically significant differences in any parameters, except vertical cup-disc (CD) ratio which was significant (P = 0.007). The 2.5%-97.5% limits of asymmetry were 9 μm for average RNFL, 0.14 for average CD ratio, and 0.22 for vertical CD ratio. Mean interocular RNFL thickness differences in superior, superior nasal, and temporal superior quadrants were 10.61 (P sex, while only significant differences with age were observed in 12 clock hour sector analysis, mainly in nasal inferior and inferior quadrant. We report the degree of interocular symmetry of RNFL and ONH parameters measured by Cirrus HD-OCT in a healthy pediatric population. The normal interocular RNFL asymmetry should not exceed 9 μm and vertical CD ratio beyond 0.22 should be considered for further investigations. The

  17. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma.

    Science.gov (United States)

    Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C

    2015-01-08

    To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  18. Neovascular Glaucoma Induced by Peripheral Retinal Ischemia in Neurofibromatosis Type 1: Management and Imaging Features

    Directory of Open Access Journals (Sweden)

    Francesco Pichi

    2013-04-01

    Full Text Available Purpose: To report the case of a young patient affected by neurofibromatosis 1 (NF-1 with peripheral retinal ischemia-induced neovascular glaucoma and the peculiar spectral-domain optical coherence tomography (SD-OCT features. Material and Methods: A 13-year-old boy affected by NF-1, as diagnosed according to established criteria, was referred with a diagnosis of hypertensive uveitis in his left eye. He underwent a complete ophthalmic examination and comprehensive blood work with viral and immunological tests. The case was documented with fluorescein angiography (FA and SD-OCT. When the intraocular pressure (IOP of the left eye decreased and the cornea cleared, FA revealed retinal ischemia and leakage from pathologic retinal vessels. SD-OCT revealed foveal hypoplasia secondary to the complete absence of the retinal nerve fiber layer. Results: Peripheral retinal ischemia-induced neovascular glaucoma was diagnosed. The patient underwent Ahmed valve implantation to control his IOP, and subsequent retinal photocoagulation by argon laser and intravitreal bevacizumab injection were performed to control neovascularization. Discussion: Retinal ischemia in NF-1 might lead to neovascular glaucoma: lowering of the IOP with surgical implantation of an Ahmed valve, regression of neovascularization by argon laser panretinal photocoagulation and intravitreal injection of bevacizumab can be a helpful way to control such a complication.

  19. Microscope-Integrated Intraoperative Ultrahigh-Speed Swept-Source Optical Coherence Tomography for Widefield Retinal and Anterior Segment Imaging.

    Science.gov (United States)

    Lu, Chen D; Waheed, Nadia K; Witkin, Andre; Baumal, Caroline R; Liu, Jonathan J; Potsaid, Benjamin; Joseph, Anthony; Jayaraman, Vijaysekhar; Cable, Alex; Chan, Kinpui; Duker, Jay S; Fujimoto, James G

    2018-02-01

    To demonstrate the feasibility of retinal and anterior segment intraoperative widefield imaging using an ultrahigh-speed, swept-source optical coherence tomography (SS-OCT) surgical microscope attachment. A prototype post-objective SS-OCT using a 1,050-nm wavelength, 400 kHz A-scan rate, vertical cavity surface-emitting laser (VCSEL) light source was integrated to a commercial ophthalmic surgical microscope after the objective. Each widefield OCT data set was acquired in 3 seconds (1,000 × 1,000 A-scans, 12 × 12 mm 2 for retina and 10 × 10 mm 2 for anterior segment). Intraoperative SS-OCT was performed in 20 eyes of 20 patients. In six of seven membrane peels and five of seven rhegmatogenous retinal detachment repair surgeries, widefield retinal imaging enabled evaluation pre- and postoperatively. In all seven cataract cases, anterior imaging evaluated the integrity of the posterior lens capsule. Ultrahigh-speed SS-OCT enables widefield intraoperative viewing in the posterior and anterior eye. Widefield imaging visualizes ocular structures and pathology without requiring OCT realignment. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:94-102.]. Copyright 2018, SLACK Incorporated.

  20. Evaluation of retinal nerve fiber layer thickness in vernal keratoconjunctivitis patients under long-term topical corticosteroid therapy.

    Science.gov (United States)

    Cingu, Abdullah Kursat; Cinar, Yasin; Turkcu, Fatih Mehmet; Sahinoglu-Keskek, Nedime; Sahin, Alparslan; Sahin, Muhammed; Yuksel, Harun; Caca, Ihsan

    2014-09-01

    The aim of this study was to evaluate the retinal nerve fiber layer (RNFL) thickness in vernal keratoconjunctivitis (VKC) patients who were under long-term topical corticosteroid therapy. Thirty-six eyes of 36 VKC patients with clear cornea and normal videokeratography and 40 eyes of 40 age- and gender-matched normal children were included in the study. Clinical and demographic characteristics of the patients were noted and detailed ophthalmological examination was performed. Visual acuity (VA), spherical equivalent (SE), axial length (AL) and RNFL thickness measurements were compared between the groups. To correct ocular magnification effect on RNFL, we used Littmann's formula. All VKC patients had history of topical corticosteroid use and the mean duration of the topical corticosteroid use was 23.8 ± 9.09 months. There was no significant difference between the groups in terms of intraocular pressure (IOP). VKC group had significantly worse VA, greater SE and AL and thinner mean global, superior and inferior RNFL thickness. There were significant negative correlations between the duration of topical corticosteroid use and the mean global, superior and temporal RNFL thickness in VKC group. After correction of magnification effect, VKC group still had thinner mean global, superior and inferior RNFL thickness, and significant difference between the groups in inferior RNFL thickness did not disappear. Significant RNFL thickness difference between the groups suggests a possible effect of long-term corticosteroid use in VKC patients. Because visual field (VF) analysis in pediatric patients is difficult to perform and IOP may be illusive, RNFL thickness measurements in addition to routine examinations in VKC patients may help clinicians in their practice.

  1. MULTILEVEL ISCHEMIA IN DISORGANIZATION OF THE RETINAL INNER LAYERS ON PROJECTION-RESOLVED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Onishi, Alex C; Ashraf, Mohammed; Soetikno, Brian T; Fawzi, Amani A

    2018-04-10

    To examine the relationship between ischemia and disorganization of the retinal inner layers (DRIL). Cross-sectional retrospective study of 20 patients (22 eyes) with diabetic retinopathy presenting to a tertiary academic referral center, who had DRIL on structural optical coherence tomography (OCT) using Spectralis HRA + OCT (Heidelberg Engineering, Heidelberg, Germany) and OCT angiography with XR Avanti (Optovue Inc, Fremont, CA) on the same day. Optical coherence tomography angiography images were further processed to remove flow signal projection artifacts using a software algorithm adapted from recent studies. Retinal capillary perfusion in the superficial capillary plexuses, middle capillary plexuses, and deep capillary plexuses, as well as integrity of the photoreceptor lines on OCT was compared in areas with DRIL to control areas without DRIL in the same eye. Qualitative assessment of projection-resolved OCT angiography of eyes with DRIL on structural OCT demonstrated significant perfusion deficits compared with adjacent control areas (P < 0.001). Most lesions (85.7%) showed superimposed superficial capillary plexus and/or middle capillary plexus nonperfusion in addition to deep capillary plexus nonflow. Areas of DRIL were significantly associated with photoreceptor disruption (P = 0.035) compared with adjacent DRIL-free areas. We found that DRIL is associated with multilevel retinal capillary nonperfusion, suggesting an important role for ischemia in this OCT phenotype.

  2. Changes in visual function and thickness of macula after photodynamic therapy for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Kyoko Okada

    2009-09-01

    Full Text Available Kyoko Okada, Mariko Kubota-Taniai, Masayasu Kitahashi, Takayuki Baba, Yoshinori Mitamura, Shuichi YamamotoDepartment of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, JapanPurpose: To determine the correlation between the changes in the central retinal sensitivity and the changes in the foveal thickness (FT after photodynamic therapy (PDT for age-related macular degeneration (AMD.Methods: Nineteen eyes of 19 patients with choroidal neovasularizations (CNVs secondary to AMD were studied. The pretreatment values of the central retinal sensitivity determined by Micro Perimeter 1 (MP1; Nidek Technologies, best-corrected visual acuity (BCVA, and optical coherence tomography (OCT-determined FT were compared to the postoperative values at three and six months after PDT.Results: At six months, the retinal sensitivity within the central 10° was significantly improved (P = 0.02 and the FT was significantly thinner (P = 0.016. The BCVA, however, did not change significantly (P = 0.80. The changes in the retinal sensitivities were significantly correlated with the changes in the decrease in the FT (r = -0.59, P = 0.012 within the central 10° at six months after PDT.Conclusion: Significant improvements in retinal sensitivities within the central 10° and a decrease in FT were observed even though the BCVA was not significantly improved. The measurement of retinal sensitivity by MP1 may be a better method to assess central visual function than the conventional visual acuity after PDT.Keywords: age-related macular degeneration, fundus-related microperimetry, optical coherence tomography, photodynamic therapy

  3. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Directory of Open Access Journals (Sweden)

    Elena Garcia-Martin

    Full Text Available To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT, as the retinal nerve fiber layer (RNFL is atrophied in patients with fibromyalgia compared with controls.Fibromyalgia patients (n = 116 and age-matched healthy controls (n = 144 were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis. Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ, and the European Quality of Life-5 Dimensions (EQ5D scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed.A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023, nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively. The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3

  4. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron.

    Science.gov (United States)

    Toygar, O; Riemann, C D

    2016-01-01

    PurposeTo investigate microanatomical relationships during surgical repair of macula involving retinal detachment with pars plana vitrectomy (PPV) and perfluoron (PFO) with a microscope-integrated intraoperative optical coherence tomography (iOCT) device.Patients and methodsThis consecutive case series included nine eyes of nine patients with macula involving retinal detachment operated by a single surgeon at the Cincinnati Eye Institute. All patients underwent PPV, PFO injection, endolaser, and air-fluid exchange. The macula was imaged with iOCT before PFO injection, after PFO injection, and after air-fluid exchange in all eyes.ResultsiOCT imaging was ergonomically easy to obtain in all eyes. iOCT clearly demonstrated submacular fluid (SMF) at the beginning of the surgery, macular flattening under PFO in all eyes, small residual SMF under PFO in six of nine eyes, and increased occult SMF following air-fluid exchange in all eyes.ConclusionMicroscope-integrated iOCT is a versatile and powerful imaging modality that holds a great deal of promise in the future. Its confirmation of persistent occult SMF in this small series of macular involving retinal detachment repair with PFO, may inform surgical decision making, and demonstrates a pathophysiological rationale for initial face-down positioning after retinal detachment repair.

  5. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.

    Science.gov (United States)

    Prahs, Philipp; Radeck, Viola; Mayer, Christian; Cvetkov, Yordan; Cvetkova, Nadezhda; Helbig, Horst; Märker, David

    2018-01-01

    Intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF) medications have become the standard of care for their respective indications. Optical coherence tomography (OCT) scans of the central retina provide detailed anatomical data and are widely used by clinicians in the decision-making process of anti-VEGF indication. In recent years, significant progress has been made in artificial intelligence and computer vision research. We trained a deep convolutional artificial neural network to predict treatment indication based on central retinal OCT scans without human intervention. A total of 183,402 retinal OCT B-scans acquired between 2008 and 2016 were exported from the institutional image archive of a university hospital. OCT images were cross-referenced with the electronic institutional intravitreal injection records. OCT images with a following intravitreal injection during the first 21 days after image acquisition were assigned into the 'injection' group, while the same amount of random OCT images without intravitreal injections was labeled as 'no injection'. After image preprocessing, OCT images were split in a 9:1 ratio to training and test datasets. We trained a GoogLeNet inception deep convolutional neural network and assessed its performance on the validation dataset. We calculated prediction accuracy, sensitivity, specificity, and receiver operating characteristics. The deep convolutional neural network was successfully trained on the extracted clinical data. The trained neural network classifier reached a prediction accuracy of 95.5% on the images in the validation dataset. For single retinal B-scans in the validation dataset, a sensitivity of 90.1% and a specificity of 96.2% were achieved. The area under the receiver operating characteristic curve was 0.968 on a per B-scan image basis, and 0.988 by averaging over six B-scans per examination on the validation dataset. Deep artificial neural networks show impressive performance on

  6. AUTOMATED ASSESSMENT OF EPIDERMAL THICKNESS AND VASCULAR DENSITY OF PORT WINE STAINS OCT IMAGE

    Directory of Open Access Journals (Sweden)

    CHENGMING WANG

    2014-01-01

    Full Text Available Optical coherence tomography (OCT enables in vivo imaging of port wine stains (PWS lesions. The knowledge of vascular structure and epidermal thickness (ET of PWS may aid the objective diagnosis and optimal treatment. To obtain the structural parameters more rapidly and avoid user intervention, an automated algorithm of energy map is introduced based on intensity and edge information to extract the skin surface using dynamic programming method. Subsequently, an averaged A-scan analysis is performed to obtain the mean ET and the relative intensity of dermis indicating the corresponding vascular density. This approach is currently successfully applied in clinical diagnosis and shows promising guidance and assessment of PDT treatment.

  7. Structural recovery of the detached macula after retinal detachment repair as assessed by optical coherence tomography.

    Science.gov (United States)

    Joe, Soo Geun; Kim, Yoon Jeon; Chae, Ju Byung; Yang, Sung Jae; Lee, Joo Yong; Kim, June-Gone; Yoon, Young Hee

    2013-06-01

    To investigate correlations between preoperative and postoperative foveal microstructures in patients with macula-off rhegmatogenous retinal detachment (RRD). We reviewed the records of 31 eyes from 31 patients with macula-off RRD who had undergone successful re-attachment surgery. We analyzed data obtained from complete ophthalmologic examinations and optical coherence tomography (OCT) before and 9 to 12 months after surgery. All postoperative OCT measurements were taken with spectral-domain OCT, but a subset of preoperative OCT measurements were taken with time-domain OCT. The mean duration of macular detachment was 15.5 ± 15.2 days, and mean preoperative best-corrected visual acuity (BCVA, logarithm of the minimum angle of resolution) was 1.03 ± 0.68. Preoperative visual acuity was correlated with retinal detachment height (p macula-off duration. The final BCVA was significantly correlated with integrity of the junction between the photoreceptor inner and outer segments (IS/OS) combined with the continuity of external limiting membrane (ELM) (p = 0.025). The presence of IRS and OLU on a detached macula were highly correlated with the final postoperative integrity of the IS/OS junction and the ELM (p = 0.017). Eyes preoperatively exhibiting IRS and OLU showed a higher incidence of disruption to the photoreceptor IS/OS junction and the ELM at final follow-up. Such a close correlation between preoperative and postoperative structural changes may explain why ultimate visual recovery in such eyes is poor.

  8. Cone dysfunctions in retinitis pigmentosa with retinal nerve fiber layer thickening.

    Science.gov (United States)

    Sobacı, Güngör; Ozge, Gökhan; Gündoğan, Fatih Ç

    2012-01-01

    To investigate whether or not thicker retinal nerve fiber layer (RNFL) in retinitis pigmentosa (RP) patients relates to functional abnormalities of the photoreceptors. Optical coherence tomography-based RNFL thickness was measured by Stratus-3™ (Zeiss, Basel, Switzerland) optical coherence tomography and electroretinogram (ERG) recordings made using the RETI-port(®) system (Roland, Wiesbaden, Germany) in 27 patients with retinitis pigmentosa and in 30 healthy subjects. Photopic ERG b-wave amplitude, cone ERG b-wave latency, 30 Hz flicker amplitude, and 30 Hz flicker latency had significant correlations to the RNFL-temporal (r = -0.55, P = 0.004, r = 0.68, P = 0.001, r = -0.65, P = 0.001, and r = -0.52, P = 0.007, respectively). Eyes with thicker RNFL (ten eyes) differed significantly from those with thinner RNFL (eight eyes) regarding cone ERG b-wave latency values only (P = 0.001). Thicker RNFL in patients with retinitis pigmentosa may be associated with functional abnormality of the cone system.

  9. Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.

    Science.gov (United States)

    Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A

    2018-02-01

    We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.

  10. Improving Segmentation of 3D Retina Layers Based on Graph Theory Approach for Low Quality OCT Images

    Directory of Open Access Journals (Sweden)

    Stankiewicz Agnieszka

    2016-06-01

    Full Text Available This paper presents signal processing aspects for automatic segmentation of retinal layers of the human eye. The paper draws attention to the problems that occur during the computer image processing of images obtained with the use of the Spectral Domain Optical Coherence Tomography (SD OCT. Accuracy of the retinal layer segmentation for a set of typical 3D scans with a rather low quality was shown. Some possible ways to improve quality of the final results are pointed out. The experimental studies were performed using the so-called B-scans obtained with the OCT Copernicus HR device.

  11. Influence of optic disc size on the diagnostic performance of macular ganglion cell complex and peripapillary retinal nerve fiber layer analyses in glaucoma

    Directory of Open Access Journals (Sweden)

    Cordeiro DV

    2011-09-01

    Full Text Available Daniela Valença Cordeiro1, Verônica Castro Lima1,2, Dinorah P Castro1,3, Leonardo C Castro1,3, Maria Angélica Pacheco2, Jae Min Lee2, Marcelo I Dimantas2, Tiago Santos Prata1,21Department of Ophthalmology, Federal University of São Paulo, São Paulo, 2Hospital Medicina dos Olhos, São Paulo, 3Centro Brasileiro de Especialidades Oftalmológicas, Araraquara, BrazilAim: To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC and conventional peripapillary retinal nerve fiber layer (pRNFL analyses provided by spectral domain optical coherence tomography (SD-OCT in glaucoma.Methods: Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers and pRNFL thickness measurement (3.45 mm circular scan by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm2 disc sizes were arbitrarily chosen (based on data distribution and the predicted areas under the ROC curves (AUCs and sensitivities were compared at fixed specificities for each.Results: Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872 and GCC parameters (average thickness = 0.824; P = 0.19.The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176 or average GCC thickness (0.088; P ≥ 0.56. AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm2 were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities – at

  12. Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions

    OpenAIRE

    Mathew, Raeba; Papavasileiou, Evangelia; Sivaprasad, Sobha

    2010-01-01

    Raeba Mathew, Evangelia Papavasileiou, Sobha SivaprasadLaser and Retinal Research Unit, Department of Ophthalmology, King’s College Hospital, Denmark Hill, London, UKBackground: The purpose of this study is to illustrate the fundus autofluorescence and high-definition optical coherence tomography (HD-OCT) features of acute and long-standing retinal artery occlusions.Design: Retrospective case series.Participants: Patients with acute and chronic retinal and cilioretinal artery occlus...

  13. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease.

    Science.gov (United States)

    Chen, Xi; Viehland, Christian; Carrasco-Zevallos, Oscar M; Keller, Brenton; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2017-05-01

    Intraoperative optical coherence tomography (OCT) has gained traction as an important adjunct for clinical decision making during vitreoretinal surgery, and OCT angiography (OCTA) has provided novel insights in clinical evaluation of retinal diseases. To date, these two technologies have not been applied in combination to evaluate retinal vascular disease in the operating suite. To conduct microscope-integrated, swept-source OCTA (MIOCTA) in children with retinal vascular disease. In this case report analysis, OCT imaging in pediatric patients, MIOCTA images were obtained during examination under anesthesia from a young boy with a history of idiopathic vitreous hemorrhage and a female infant with familial exudative vitreoretinopathy. Side-by-side comparison of research MIOCT angiograms and clinically indicated fluorescein angiograms. In 2 young children with retinal vascular disease, the MIOCTA images showed more detailed vascular patterns than were visible on the fluorescein angiograms although within a more posterior field of view. The MIOCTA system allowed visualization of small pathological retinal vessels in the retinal periphery that were obscured in the fluorescein angiograms by fluorescein staining from underlying, preexisting laser scars. This is the first report to date of the use of MIOCTA in the operating room for young children with retinal vascular disease. Further optimization of this system may allow noninvasive detailed evaluation of retinal vasculature during surgical procedures and in patients who could not cooperate with in-office examinations.

  14. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes

    Science.gov (United States)

    Yarmohammadi, Adeleh; Zangwill, Linda M.; Diniz-Filho, Alberto; Suh, Min Hee; Manalastas, Patricia Isabel; Fatehee, Naeem; Yousefi, Siamak; Belghith, Akram; Saunders, Luke J.; Medeiros, Felipe A.; Huang, David; Weinreb, Robert N.

    2016-01-01

    Purpose The purpose of this study was to compare retinal nerve fiber layer (RNFL) thickness and optical coherence tomography angiography (OCT-A) retinal vasculature measurements in healthy, glaucoma suspect, and glaucoma patients. Methods Two hundred sixty-one eyes of 164 healthy, glaucoma suspect, and open-angle glaucoma (OAG) participants from the Diagnostic Innovations in Glaucoma Study with good quality OCT-A images were included. Retinal vasculature information was summarized as a vessel density map and as vessel density (%), which is the proportion of flowing vessel area over the total area evaluated. Two vessel density measurements extracted from the RNFL were analyzed: (1) circumpapillary vessel density (cpVD) measured in a 750-μm-wide elliptical annulus around the disc and (2) whole image vessel density (wiVD) measured over the entire image. Areas under the receiver operating characteristic curves (AUROC) were used to evaluate diagnostic accuracy. Results Age-adjusted mean vessel density was significantly lower in OAG eyes compared with glaucoma suspects and healthy eyes. (cpVD: 55.1 ± 7%, 60.3 ± 5%, and 64.2 ± 3%, respectively; P glaucoma and healthy eyes, the age-adjusted AUROC was highest for wiVD (0.94), followed by RNFL thickness (0.92) and cpVD (0.83). The AUROCs for differentiating between healthy and glaucoma suspect eyes were highest for wiVD (0.70), followed by cpVD (0.65) and RNFL thickness (0.65). Conclusions Optical coherence tomography angiography vessel density had similar diagnostic accuracy to RNFL thickness measurements for differentiating between healthy and glaucoma eyes. These results suggest that OCT-A measurements reflect damage to tissues relevant to the pathophysiology of OAG. PMID:27409505

  15. Course of Sodium Iodate-Induced Retinal Degeneration in Albino and Pigmented Mice.

    Science.gov (United States)

    Chowers, Guy; Cohen, Matan; Marks-Ohana, Devora; Stika, Shelly; Eijzenberg, Ayala; Banin, Eyal; Obolensky, Alexey

    2017-04-01

    To characterize the course of sodium iodate (SI)-induced retinal degeneration in young adult albino and pigmented mice. Single intraperitoneal (IP) injections of SI (25, 50, and 100 mg/kg) were performed in 7- to 8-week-old BALB/c and C57Bl/6J mice. Retinal function and structure was assessed at baseline, 24 hours, 3 days, 1, 2, 3, and 4 weeks postinjection by optokinetic tracking response, ERG, optical coherence tomography (OCT), and histologic and immunohistochemical techniques. The 50 mg/kg SI dosage was selected after dose ranging due to consistent retinal effects and lack of systemic toxicity. Time-dependent deterioration in retinal function and morphology was consistently observed between 1 and 4 weeks in all measured parameters. These include reduction of ERG responses, thinning of retinal layers as observed by OCT and histology, and loss of RPE nuclei. Immunohistochemistry revealed rapid RPE disorganization with loss of tight junctions and markedly reduced expression of RPE65 and rod opsin, accompanied by mislocalization of cone opsins. Earlier time points displayed variable results, including partial recovery of visual acuity at 1 week and supranormal ERG cone responses at 24 hours, suggesting possible limitations of early intervention and assessment in the SI model. A single IP injection of 50 mg/kg SI leads to severe RPE injury followed by vision impairment, dysfunction, and loss of photoreceptors in both BALB/c and C57Bl/6J mice. This easily induced and reproducible noninherited model may serve as a useful tool for seeking and evaluating novel therapeutic modalities for the treatment of retinal degenerations caused by primary failure of the RPE.

  16. Lead Thickness Measurements

    International Nuclear Information System (INIS)

    Rucinski, R.

    1998-01-01

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  17. Optic Nerve Head and Retinal Nerve Fiber Layer Analysis in Ocular Hypertension and Early-Stage Glucoma Using Spectral-Domain Optical Coherence Tomography Copernicus

    Directory of Open Access Journals (Sweden)

    Nilgün Solmaz

    2014-01-01

    Full Text Available Objectives: Evaluation of structural alterations of the optic nerve head (ONH and the retinal nerve fiber layer (RNFL in patients with ocular hypertension (OHT and early-stage glaucoma and assessment of the discriminatory diagnostic performance of spectral-domain optical coherence tomography (SD-OCT Copernicus (Optopol Technology S.A.. Materials and Methods: This study included 59 eyes of a total of 59 patients, 29 of whom were diagnosed with OHT (Group 1 and 30 with early-stage glaucoma (Group 2. The differentiation of early-stage glaucoma and OHT was carried out on the basis of standard achromatic visual field test results. Analysis of the ONH and RNFL thickness of all cases was made using SD-OCT. Group 1 and Group 2 were compared with respect to the ONH parameters and RNFL thickness. The diagnostic sensitivity of the OCT parameters was evaluated by the area under the receiver operating characteristics curves (AUC. Results: The average, superior, inferior, and nasal RNFL thicknesses in early-stage glaucoma cases were approximately 10% (12-14 µm less compared to the OHT eyes, with differences being highly significant (p≤0.001. However, there was no statistically significant difference in the temporal RNFL thicknesses. The most sensitive parameter in the early diagnosis of glaucoma was average RNFL thickness corresponding to AUC: 0.852, followed by AUC: 0.816 and AUC: 0.773 values in superior and inferior RNFL thickness, respectively. In localized RNFL defects, the highest sensitivity corresponded to superior and superonasal quadrants (ACU: 0.805 and ACU: 0.781, respectively. There were not any statistically significant differences between the ONH morphological parameters of the two groups. Conclusion: RNFL analysis obtained using SD-OCT Copernicus is able to discriminate early-stage glaucoma eyes from those with OHT. However, ONH morphological parameters do not have the same diagnostic sensitivity. Turk J Ophthalmol 2014; 44: 35-41

  18. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    Science.gov (United States)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  19. Surgical treatment and optical coherence tomographic evaluation for accidental laser-induced full-thickness macular holes.

    Science.gov (United States)

    Qi, Y; Wang, Y; You, Q; Tsai, F; Liu, W

    2017-07-01

    PurposeTo report OCT appearance and surgical outcomes of full-thickness macular holes (MHs) accidentally caused by laser devices.Patients and methodsThis retrospective case series included 11 eyes of 11 patients with laser-induced MHs treated by pars plana vitrectomy, internal limiting membrane (ILM) peeling, and gas or silicone oil tamponade. Evaluations included a full ophthalmic examination, macular spectral-domain optical coherence tomography (SD-OCT), and fundus photography. Main outcome measures is MH closure and final visual acuity; the secondary outcome was the changes of retinal pigment epithelium and photoreceptor layer evaluated by sequential post-operative SD-OCT images.ResultsFive patients were accidentally injured by a yttrium aluminum garnet (YAG) laser and six patients by handheld laser. MH diameters ranged from 272 to 815 μm (mean, 505.5±163.0 μm) preoperatively. Best-corrected visual acuity (BCVA) improved from a mean of 0.90 logMAR (range, counting finger-8/20) preoperatively to a mean of 0.34 logMAR (range, a counting finger-20/20) postoperatively (P=0.001, t=4.521). Seven of 11 patients (63.6%) achieved a BCVA better than 10/20. Ten patients had a subfoveal hyperreflectivity and four patients had a focal choroidal depression subfoveal preoperatively. At the last follow-up, all 11 eyes demonstrated the following: closure of the macular hole, variable degrees of disruption of external limiting membrane (ELM) and outer photoreceptor ellipsoid and interdigitation bands. In 10 eyes, the disruption was in the form of focal defects in the outer retina. After surgery, the subfoveal hyperreflectivity and focal choroidal depression remained.ConclusionAccidental laser-induced full-thickness macular holes can be successfully closed with surgery. Inadvertent retinal injury from laser devices, especially handheld laser injury has occurred with increasing frequency in recent years. However, there is a paucity of data regarding these types of injuries

  20. Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Kazuko Omodaka

    Full Text Available To investigate the influence of various risk factors on thinning of the lamina cribrosa (LC, as measured with swept-source optical coherence tomography (SS-OCT; Topcon.This retrospective study comprised 150 eyes of 150 patients: 22 normal subjects, 28 preperimetric glaucoma (PPG patients, and 100 open-angle glaucoma patients. Average LC thickness was determined in a 3 x 3 mm cube scan of the optic disc, over which a 4 x 4 grid of 16 points was superimposed (interpoint distance: 175 μm, centered on the circular Bruch's membrane opening. The borders of the LC were defined as the visible limits of the LC pores. The correlation of LC thickness with Humphrey field analyzer-measured mean deviation (MD; SITA standard 24-2, circumpapillary retinal nerve fiber layer thickness (cpRNFLT, the vertical cup-to-disc (C/D ratio, and tissue mean blur rate (MBR was determined with Spearman's rank correlation coefficient. The relationship of LC thickness with age, axial length, intraocular pressure (IOP, MD, the vertical C/D ratio, central corneal thickness (CCT, and tissue MBR was determined with multiple regression analysis. Average LC thickness and the correlation between LC thickness and MD were compared in patients with the glaucomatous enlargement (GE optic disc type and those with non-GE disc types, as classified with Nicolela's method.We found that average LC thickness in the 16 grid points was significantly associated with overall LC thickness (r = 0.77, P < 0.001. The measurement time for this area was 12.4 ± 2.4 minutes. Average LC thickness in this area had a correlation coefficient of 0.57 with cpRNFLT (P < 0.001 and 0.46 (P < 0.001 with MD. Average LC thickness differed significantly between the groups (normal: 268 ± 23 μm, PPG: 248 ± 13 μm, OAG: 233 ± 20 μm. Multiple regression analysis showed that MD (β = 0.29, P = 0.013, vertical C/D ratio (β = -0.25, P = 0.020 and tissue MBR (β = 0.20, P = 0.034 were independent variables significantly

  1. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression

    Directory of Open Access Journals (Sweden)

    David B. McGuigan

    2017-07-01

    Full Text Available Mutations in the EYS (eyes shut homolog gene are a common cause of autosomal recessive (ar retinitis pigmentosa (RP. Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT, and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit, some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.

  2. Macular pigment optical density is related to serum lutein in retinitis pigmentosa

    Science.gov (United States)

    Purpose: To determine whether macular pigment optical density (MPOD) is related to the degree of cystoid macular edema (CME) in patients with retinitis pigmentosa. Methods: We measured MPOD with heterochromatic flicker photometry and central foveal retinal thickness with optical coherence tomography...

  3. Retinal pigment epithelial changes in chronic Vogt-Koyanagi-Harada disease: fundus autofluorescence and spectral domain-optical coherence tomography findings.

    Science.gov (United States)

    Vasconcelos-Santos, Daniel V; Sohn, Elliott H; Sadda, Srinivas; Rao, Narsing A

    2010-01-01

    The purpose of this study was to determine whether fundus autofluorescence (FAF) and spectral domain-optical coherence tomography (SD-OCT) imaging allow better assessment of retinal pigment epithelium and the outer retina in subjects with chronic Vogt-Koyanagi-Harada disease compared with examination and angiography alone. A cross-sectional analysis of a series of seven consecutive patients with chronic Vogt-Koyanagi-Harada disease undergoing FAF and SD-OCT was conducted. Chronic disease was defined as duration of intraocular inflammation >3 months. Color fundus photographs were correlated to FAF and SD-OCT images. The images were later correlated to fluorescein angiography and indocyanine green angiography. All patients had sunset glow fundus, which resulted in no apparent corresponding abnormality on FAF or SD-OCT. Lesions with decreased autofluorescence signal were observed in 11 eyes (85%), being associated with loss of the retinal pigment epithelium and involvement of the outer retina on SD-OCT. In 5 eyes (38%), some of these lesions were very subtle on clinical examination but easily detected by FAF. Lesions with increased autofluorescence signal were seen in 8 eyes (61.5%), showing variable involvement of the outer retina on SD-OCT and corresponding clinically to areas of retinal pigment epithelium proliferation and cystoid macular edema. Combined use of FAF and SD-OCT imaging allowed noninvasive delineation of retinal pigment epithelium/outer retina changes in patients with chronic Vogt-Koyanagi-Harada disease, which were consistent with previous histopathologic reports. Some of these changes were not apparent on clinical examination.

  4. Subfoveal choroidal thickness measured by Cirrus HD optical coherence tomography in myopia

    Directory of Open Access Journals (Sweden)

    Li-Li Chen

    2014-09-01

    Full Text Available ATM: To measure the subfoveal choroidal thickness(SFCTin myopia using Cirrus HD optical coherence tomography(OCT, and to explore the relationship between the SFCT, axial length and myopic refractive spherical equivalent.METHODS: One-hundred thirty-three eyes of 70 healthy volunteers were recruited, and were divided into emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group. SFCT were measured by Cirrus HD OCT, and the relationship between the SFCT, axial length and myopic refractive spherical equivalent were evaluated.RESULTS: 1Average SFCT was(275.91±55.74μm in normals, that in emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group were(290.03±34.82μm,(287.64±51.51μm,(274.95±56.83μm,(248.37±67.98μm; 2the SFCT of high-degree myopia group was significant thinner than that of emmetropia group(PPPCONCLUSION: the SFCT is inversely correlated with increasing axial length and myopic refractive error.

  5. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.

    Science.gov (United States)

    Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L

    2010-01-01

    The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS

  6. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Mehmet Demir

    2014-01-01

    Full Text Available Aim: The aim of the following study is to evaluate the retinal nerve fiber layer (RNFL and ganglion cell complex (GCC thickness in patients with type 2 diabetes mellitus (DM. Materials and Methods: Average, inferior, and superior values of RNFL and GCC thickness were measured in 123 patients using spectral domain optical coherence tomography. The values of participants with DM were compared to controls. Diabetic patients were collected in Groups 1, 2 and 3. Group 1 = 33 participants who had no diabetic retinopathy (DR; Group 2 = 30 participants who had mild nonproliferative DR and Group 3 = 30 participants who had moderate non-proliferative DR. The 30 healthy participants collected in Group 4. Analysis of variance test and a multiple linear regression analysis were used for statistical analysis. Results: The values of RNFL and GCC in the type 2 diabetes were thinner than controls, but this difference was not statistically significant. Conclusions: This study showed that there is a nonsignificant loss of RNFL and GCC in patients with type 2 diabetes.

  7. Glaucomatous retinal nerve fiber layer thickness loss is associated with slower reaction times under a divided attention task.

    Science.gov (United States)

    Tatham, Andrew J; Boer, Erwin R; Rosen, Peter N; Della Penna, Mauro; Meira-Freitas, Daniel; Weinreb, Robert N; Zangwill, Linda M; Medeiros, Felipe A

    2014-11-01

    To examine the relationship between glaucomatous structural damage and ability to divide attention during simulated driving. Cross-sectional observational study. Hamilton Glaucoma Center, University of California San Diego. Total of 158 subjects from the Diagnostic Innovations in Glaucoma Study, including 82 with glaucoma and 76 similarly aged controls. Ability to divide attention was investigated by measuring reaction times to peripheral stimuli (at low, medium, or high contrast) while concomitantly performing a central driving task (car following or curve negotiation). All subjects had standard automated perimetry (SAP) and optical coherence tomography was used to measure retinal nerve fiber layer (RNFL) thickness. Cognitive ability was assessed using the Montreal Cognitive Assessment and subjects completed a driving history questionnaire. Reaction times to the driving simulator divided attention task. The mean reaction times to the low-contrast stimulus were 1.05 s and 0.64 s in glaucoma and controls, respectively, during curve negotiation (P divide attention, RNFL thickness measurements provided additional information. Information from structural tests may improve our ability to determine which patients are likely to have problems performing daily activities, such as driving. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Subjective and objective screening tests for hydroxychloroquine toxicity.

    Science.gov (United States)

    Cukras, Catherine; Huynh, Nancy; Vitale, Susan; Wong, Wai T; Ferris, Fredrick L; Sieving, Paul A

    2015-02-01

    To compare subjective and objective clinical tests used in the screening for hydroxychloroquine retinal toxicity to multifocal electroretinography (mfERG) reference testing. Prospective, single-center, case control study. Fifty-seven patients with a previous or current history of hydroxychloroquine treatment of more than 5 years' duration. Participants were evaluated with a detailed medical history, dilated ophthalmologic examination, color fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain (SD) optical coherence tomography (OCT), automated visual field testing (10-2 visual field mean deviation [VFMD]), and mfERG testing. We used mfERG test parameters as a gold standard to divide participants into 2 groups: those affected by hydroxychloroquine-induced retinal toxicity and those unaffected. We assessed the association of various imaging and psychophysical variables in the affected versus the unaffected group. Fifty-seven study participants (91.2% female; mean age, 55.7±10.4 years; mean duration of hydroxychloroquine treatment, 15.0±7.5 years) were divided into affected (n = 19) and unaffected (n = 38) groups based on mfERG criteria. Mean age and duration of hydroxychloroquine treatment did not differ statistically between groups. Mean OCT retinal thickness measurements in all 9 macular subfields were significantly lower (<40 μm) in the affected group (P < 0.01 for all comparisons) compared with those in the unaffected group. Mean VFMD was 11 dB lower in the affected group (P < 0.0001). Clinical features indicative of retinal toxicity were scored for the 2 groups and were detected in 68.4% versus 0.0% using color fundus photographs, 73.3% versus 9.1% using FAF images, and 84.2% versus 0.0% on the scoring for the perifoveal loss of the photoreceptor ellipsoid zone on SD-OCT for affected and unaffected participants, respectively. Using a polynomial modeling approach, OCT inner ring retinal thickness measurements and Humphrey 10-2 VFMD were

  9. Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness.

    Science.gov (United States)

    Correa-Pérez, María E; López-Miguel, Alberto; Miranda-Anta, Silvia; Iglesias-Cortiñas, Darío; Alió, Jorge L; Maldonado, Miguel J

    2012-04-06

    This study was intended to assess the reliability of central corneal thickness (CCT) measurements using Cirrus high-definition optical coherence tomography (HD-OCT) in healthy subjects and its accuracy compared with ultrasonic pachymetry. Seventy-seven consecutive subjects were recruited for evaluating repeatability, and agreement between two examiners. To analyze repeatability, one examiner measured 77 eyes four times in succession. To study agreement between two observers, a second independently trained examiner obtained another CCT measurement. We also measured eyes in a subgroup of 20 patients using standard ultrasonic pachymetry. Within-subject standard deviation (S(w)), coefficient of variation (CV), limits of agreement (LoA), and intraclass correlation coefficient (ICC) data were obtained. For repeatability, the S(w) and precision (1.96 × S(w)) were 4.86 and 9.52 μm, respectively. Intraobserver CV was 0.89% and the ICC was 0.98 (95% confidence interval [CI], 0.97-0.99). For agreement between two examiners, the S(w) and precision were 7.58 and 14.85 μm, respectively; the CV was 1.40%. The mean difference between observers was -0.13 μm (95% CI, -1.85 to 1.58; P = 0.87). The width of the LoA was 29.64 μm. Median difference between Cirrus HD-OCT and ultrasound CCT measurements was -4.5 μm (interquartile range, -7.0-0.0; P = 0.04). Cirrus HD-OCT provides repeatable CCT measurements, good agreement between two independently trained examiners, and its systematic bias compared to ultrasonic pachymetry is clinically negligible. Therefore, research laboratories and eye clinics using Cirrus HD-OCT as a diagnostic imaging method, can also benefit from a reliable noncontact pachymeter when counseling patients with glaucoma and those undergoing corneal and refractive surgeries.

  10. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    Science.gov (United States)

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  11. Ocular coherence tomographic examination of postoperative foveal architecture after scleral buckling vs vitrectomy for macular off retinal detachment.

    LENUS (Irish Health Repository)

    Gibran, S K

    2012-02-03

    AIMS: This pilot study uses Optical Coherence Tomography (OCT) imaging to compare the difference in foveal architecture after successful retinal detachment (RD) surgery by scleral buckling or pars plana vitrectomy (PPV). METHODS: Prospective recruitment of patients with macular off RDs. Detachment surgery was undertaken by scleral buckling, external drainage, and air injection (group 1) or by PPV (group 2). Postoperatively patients had clinical examinations and OCT at 1, 3, 6, and 12 months. If abnormalities persisted, a further OCT was obtained at 18 months. RESULTS: Retinal reattachment, including clinical macular reattachment, was achieved in all cases within 24 h postoperatively. In group 1 (n=22), postoperative OCT showed persistent foveal detachment in 63% of cases (n=14) at 1 and 3 months. At 6 and 12 months, 36% (n=8) and 9% (n=2) had a persistent foveal detachment, respectively, and at 18 months, foveal detachment eventually. In group 2 (n=21), postoperative OCT showed an attached fovea in all cases; however, foveal thickening suggesting intraretinal oedema was present in all cases. The oedematous appearance of retina on OCT settled in 1-3 months. No foveal abnormality was seen at 6 and 12 months postoperatively. CONCLUSIONS: A high proportion of patients with successful retinal reattachment surgery by scleral buckling had foveal detachments postoperatively. No cases who had PPV had foveal detachments; however, transient retinal oedema was evident in all cases. The aetiology of these changes is unknown and warrants further investigation, as there is the potential of a long-term effect on vision.

  12. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry

    Directory of Open Access Journals (Sweden)

    Fabrício R. Silva

    2013-06-01

    Full Text Available PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs for glaucoma diagnosis using Spectral Domain OCT (SD-OCT and standard automated perimetry (SAP. METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP and retinal nerve fiber layer (RNFL imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California. Receiver operating characteristic (ROC curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG, Naive-Bayes (NB, Multilayer Perceptron (MLP, Radial Basis Function (RBF, Random Forest (RAN, Ensemble Selection (ENS, Classification Tree (CTREE, Ada Boost M1(ADA,Support Vector Machine Linear (SVML and Support Vector Machine Gaussian (SVMG. Areas under the receiver operating characteristic curves (aROC obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE to 0.946 (RAN.The best OCT+SAP aROC obtained with RAN (0.946 was significantly larger the best single OCT parameter (p<0.05, but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19. CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

  13. Relationship of retinal morphology and retinal sensitivity in the treatment of neovascular age-related macular degeneration using aflibercept.

    Science.gov (United States)

    Sulzbacher, Florian; Roberts, Philipp; Munk, Marion R; Kaider, Alexandra; Kroh, Maria Elisabeth; Sacu, Stefan; Schmidt-Erfurth, Ursula

    2014-12-11

    To relate the functional response to distinct morphological features of the retina during aflibercept treatment for neovascular AMD (nAMD). A total of 726 retinal locations in 22 consecutive eyes presenting with treatment-naive nAMD underwent a standardized examination with spectral-domain optical coherence tomography (SD-OCT) and topographic microperimetry (MP) at baseline, after 3 and 12 months of continuous intravitreal aflibercept therapy. The retinal sensitivity at each stimulus location was registered to the corresponding location on SD-OCT morphology. Subsequently, the microperimetric responses were evaluated with respect to the following underlying SD-OCT features: neovascular complex (NVC), subretinal fluid (SRF), intraretinal fluid (IRF), intraretinal cystoid space (IRC), serous pigment epithelium detachment (sPED), and fibrovascular pigment epithelium detachment (fPED). Baseline sensitivity was reduced to mean values of 1.8 dB in NVC, 2.2 dB in IRC, 2.8 dB in IRF, 2.6 dB in sPED, 3.6 dB in SRF, and 4.6 dB in fPED. Improvements in retinal sensitivity were most pronounced during the initial 3-month interval, when significant recovery was documented for SRF and sPED with +4.0/5.5 dB (P 0.05 for each category). Significant functional benefits following intravitreal aflibercept treatment could be detected over all defined morphological pathologies. The level of improvement varied dependent on the associated feature with the best prognosis for visual improvement in SRF and sPED and least with intraretinal fluid and particularly intraretinal cysts. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  14. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2013-01-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  15. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2014-07-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  16. Fully Automated Robust System to Detect Retinal Edema, Central Serous Chorioretinopathy, and Age Related Macular Degeneration from Optical Coherence Tomography Images

    Directory of Open Access Journals (Sweden)

    Samina Khalid

    2017-01-01

    Full Text Available Maculopathy is the excessive damage to macula that leads to blindness. It mostly occurs due to retinal edema (RE, central serous chorioretinopathy (CSCR, or age related macular degeneration (ARMD. Optical coherence tomography (OCT imaging is the latest eye testing technique that can detect these syndromes in early stages. Many researchers have used OCT images to detect retinal abnormalities. However, to the best of our knowledge, no research that presents a fully automated system to detect all of these macular syndromes is reported. This paper presents the world’s first ever decision support system to automatically detect RE, CSCR, and ARMD retinal pathologies and healthy retina from OCT images. The automated disease diagnosis in our proposed system is based on multilayered support vector machines (SVM classifier trained on 40 labeled OCT scans (10 healthy, 10 RE, 10 CSCR, and 10 ARMD. After training, SVM forms an accurate decision about the type of retinal pathology using 9 extracted features. We have tested our proposed system on 2819 OCT scans (1437 healthy, 640 RE, and 742 CSCR of 502 patients from two different datasets and our proposed system correctly diagnosed 2817/2819 subjects with the accuracy, sensitivity, and specificity ratings of 99.92%, 100%, and 99.86%, respectively.

  17. Clinical effect of photocoagulation on retinal thickness in eyes with proliferative diabetic retinopathy%糖尿病视网膜病变视网膜光凝损伤的临床观察

    Institute of Scientific and Technical Information of China (English)

    郝晓璐; 侯豹可; 李莹; 姚毅

    2015-01-01

    Objective To observe the damage and recovecry of panretinal photocoagulation (PRP) by different wavelengths of krypton laser on retina in eyes with proliferative diabetic retinopathy.Methods This was a prospective case-control study of 60 eyes (30 right eyes as krypton green laser group and 30 left eyes as krypton yellow laser group) from 30 patients diagnosed as proliferative diabetic retinopathy.They were treated with panretinal photocoagulation (PRP) by a wavelength of 532 nm of krypton green laser and a wavelength of 561 nm of krypton yellow laser respectively.Baseline and morphological changes of optical coherence tomography (OCT) were evaluated before PRP one hour,one week,two weeks,and four weeks after PRP.The thickness of laser spot on nasal optic area was recorded and compared.The thickness of the laser spot of the same eye at different time points were analyzed by using paired sample t-test,while the thickness of the laser spot of the different eyes at the same time point were analyzed by using independent sample t-test.Results Sixty eyes of 30 patients received krypton green laser and krypton yellow laser for PRP respectively.The retinal thickness before PRP was measured as baseline and compared with that at one hour,one week,two weeks,and four weeks after PRP.OCT showed morphological changes of the same eye after PRP:mean retinal thickness was increased by 8.4% at one hour,and dropped as early as one week by 9.5% while 17.1% at two weeks.It remained stable and unchanging at four weeks compared with the data at two weeks.The difference between different time points was statistically significant.No statistically significant difference was found between different eyes at the same time point.Conclusion Krypton green laser and krypton yellow laser all are effective in treating diabetic retinopathy,and there was no statistically significant difference between them in the effect of pigment epithelium layer of retina.The retinal thickness increased by 10

  18. Effect of cataract surgery on retinal nerve fiber layer thickness parameters using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita

    2010-01-01

    To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). The mean age of subjects was 57.6 +/- 11.7 years (18 males, 14 females). Mean TSNIT average thickness (microm) pre- and post-cataract surgery was 49.2 +/- 14.1 and 56.5 +/- 7.6 ( P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 +/- 15.3 and 21.6 +/- 11.8 ( P = 0.001). Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient.

  19. Structural changes of macula and optic disk of the fellow eye in patients with nonarteritic anterior ischemic optic neuropathy.

    Science.gov (United States)

    Duman, R; Yavas, G F; Veliyev, I; Dogan, M; Duman, R

    2018-05-10

    The aim was to assess the ganglion cell complex (GCC) thickness, retinal nerve fiber layer (RNFL) thickness and optic disk features in the affected eyes (AE) and unaffected fellow eyes (FE) of subjects with unilateral nonarteritic anterior ischemic optic neuropathy (NAION) and to compare with healthy control eyes (CE) using spectral domain-optical coherence tomography (SD-OCT). This study included 28 patients and age, sex and refraction-matched 28 control subjects. Mean GCC thickness and peripapillary RNFL thickness in four quadrants measured by cirrus SD-OCT were evaluated in both AE and FE of patients and CE. In addition, optic disk measurements obtained with OCT were evaluated. Mean GCC thickness was significantly lower in AE compared with both FE and CE (P optic disk cupping compared with both FE and CE (P optic disk features between the CE and FE. And significantly greater optic disk cupping in the AE compared with both FE and CE supports the acquired enlargement of cupping after the onset of NAION.

  20. Identification of Age-Related Macular Degeneration Using OCT Images

    Science.gov (United States)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  1. Inflammatory Papillitis in Uveitis: Response to Treatment and Use of Optic Nerve Optical Coherence Tomography for Monitoring.

    Science.gov (United States)

    Cho, Heeyoon; Pillai, Parvathy; Nicholson, Laura; Sobrin, Lucia

    2016-01-01

    To describe the clinical course of uveitis-associated inflammatory papillitis and evaluate the utility and reproducibility of optic nerve spectral domain optical coherence tomography (SD-OCT). Data on 22 eyes of 14 patients with uveitis-related papillitis and optic nerve imaging were reviewed. SD-OCT measure reproducibility was determined and parameters were compared in active vs. inactive uveitis. Papillitis resolution lagged behind uveitis resolution in three patients. For SD-OCT measures, the intraclass correlation coefficients were 99.1-100% and 86.9-100% for intraobserver and interobserver reproducibility, respectively. All SD-OCT optic nerve measures except inferior and nasal peripapillary retinal thicknesses were significantly higher in active vs. inactive uveitis after correction for multiple hypotheses testing. Mean optic nerve central thickness decreased from 545.1 to 362.9 µm (p = 0.01). Resolution of inflammatory papillitis can lag behind resolution of uveitis. SD-OCT assessment of papillitis is reproducible and correlates with presence vs. resolution of uveitis.

  2. Persistent submacular fluid diagnosed with Optical Coherence Tomography after successful scleral buckle surgery for macula-off retinal detachment

    Science.gov (United States)

    Kovačević, Igor; Radosavljević, Aleksandra; Kalezić, Bojan; Potić, Jelena; Damjanović, Goran; Stefanović, Ivan

    2012-01-01

    The objective of our study was to analyze the presence of persistent submacular fluid after apparently successful scleral buckle surgery for macula-off retinal detachment, using Optical Coherence Tomography (OCT), and to correlate these findings to postoperative visual acuity. Prospective study of consecutive patients hospitalized for macula-off retinal detachment, between February 2008 and April 2010, was carried out at the single referral centre for vitreoretinal surgery in Serbia. Outcomes were evaluated 1, 3, 6 and 12 months postoperatively, using OCT and best corrected visual acuity (BCVA). All 48 patients with macula-off retinal detachment had undergone clinically successful scleral buckle surgery, 3 to 30 days (mean 14.2 ± 6.9) after the onset of symptoms. Reattachment was achieved and one month later, patients were divided in two groups, according to the presence of submacular fluid assessed by OCT group A with detectable residual submacular fluid (40%) and group B without (60%). The mean BCVA one month postoperatively was significantly lower (pmacula-off retinal detachment who had undergone successful scleral buckle surgery could be explained with presence of submacular fluid, diagnosed by OCT. However, final visual outcome was favourable, due to the gradual resorption of submacular fluid in a 12-month-period. PMID:22938546

  3. Optical Coherence Tomography of Retinal Degeneration in Royal College of Surgeons Rats and Its Correlation with Morphology and Electroretinography

    Science.gov (United States)

    Yamauchi, Kodai; Mounai, Natsuki; Tanabu, Reiko; Nakazawa, Mitsuru

    2016-01-01

    Purpose To evaluate the correlation between optical coherence tomography (OCT) and the histological, ultrastructural and electroretinography (ERG) findings of retinal degeneration in Royal College of Surgeons (RCS-/-) rats. Materials and Methods Using OCT, we qualitatively and quantitatively observed the continual retinal degeneration in RCS-/- rats, from postnatal (PN) day 17 until PN day 111. These findings were compared with the corresponding histological, electron microscopic, and ERG findings. We also compared them to OCT findings in wild type RCS+/+ rats, which were used as controls. Results After PN day 17, the hyperreflective band at the apical side of the photoreceptor layer became blurred. The inner segment (IS) ellipsoid zone then became obscured, and the photoreceptor IS and outer segment (OS) layers became diffusely hyperreflective after PN day 21. These changes correlated with histological and electron microscopic findings showing extracellular lamellar material that accumulated in the photoreceptor OS layer. After PN day 26, the outer nuclear layer became significantly thinner (P RCS-/- and RCS+/+ rats. Conclusion Our results suggest that OCT demonstrates histologically validated photoreceptor degeneration in RCS rats, and that OCT findings partly correlate with ERG findings. We propose that OCT is a less invasive and useful method for evaluating photoreceptor degeneration in animal models of retinitis pigmentosa. PMID:27644042

  4. Changes in retinal nerve fiber layer thickness after spinal surgery in the prone position: a prospective study

    OpenAIRE

    Gencer, Baran; Cosar, Murat; Tufan, Hasan Ali; Kara, Selcuk; Arikan, Sedat; Akman, Tarik; Kiraz, Hasan Ali; Comez, Arzu Taskiran; Hanci, Volkan

    2015-01-01

    BACKGROUND AND OBJECTIVES: Changes in ocular perfusion play an important role in the pathogenesis of ischemic optic neuropathy. Ocular perfusion pressure is equal to mean arterial pressure minus intraocular pressure. The aim of this study was to evaluate the changes in the intraocular pressure and the retinal nerve fiber layer thickness in patients undergoing spinal surgery in the prone position. ...

  5. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    Science.gov (United States)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Retinal thickness after vitrectomy and internal limiting membrane peeling for macular hole and epiretinal membrane

    Science.gov (United States)

    Kumagai, Kazuyuki; Ogino, Nobuchika; Furukawa, Mariko; Hangai, Masanori; Kazama, Shigeyasu; Nishigaki, Shirou; Larson, Eric

    2012-01-01

    Purpose To determine the retinal thickness (RT), after vitrectomy with internal limiting membrane (ILM) peeling, for an idiopathic macular hole (MH) or an epiretinal membrane (ERM). Also, to investigate the effect of a dissociated optic nerve fiber layer (DONFL) appearance on RT. Methods A non-randomized, retrospective chart review was performed for 159 patients who had successful closure of a MH, with (n = 148), or without (n = 11), ILM peeling. Also studied were 117 patients who had successful removal of an ERM, with (n = 104), or without (n = 13), ILM peeling. The RT of the nine Early Treatment Diabetic Retinopathy Study areas was measured by spectral domain optical coherence tomography (SD-OCT). In the MH-with-ILM peeling and ERM-with-ILM peeling groups, the RT of the operated eyes was compared to the corresponding areas of normal fellow eyes. The inner temporal/inner nasal ratio (TNR) was used to assess the effect of ILM peeling on RT. The effects of DONFL appearance on RT were evaluated in only the MH-with-ILM peeling group. Results In the MH-with-ILM peeling group, the central, inner nasal, and outer nasal areas of the retina of operated eyes were significantly thicker than the corresponding areas of normal fellow eyes. In addition, the inner temporal, outer temporal, and inner superior retina was significantly thinner than in the corresponding areas of normal fellow eyes. Similar findings were observed regardless of the presence of a DONFL appearance. In the ERM-with-ILM peeling group, the retina of operated eyes was significantly thicker in all areas, except the inner and outer temporal areas. In the MH-with-ILM peeling group, the TNR was 0.86 in operated eyes, and 0.96 in fellow eyes (P peeling group, the TNR was 0.84 in operated eyes, and 0.95 in fellow eyes (P peeling group was 0.98, which was significantly greater than that of the MH-with-ILM peeling group (P peeling group was 0.98, which was significantly greater than that of ERM-with-ILM peeling

  7. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis

    DEFF Research Database (Denmark)

    Britze, Josefine; Pihl-Jensen, Gorm; Frederiksen, Jette Lautrup

    2017-01-01

    of Science and Scopus. Studies were included if they measured GCL thickness using OCT in patients with either ON, MS or clinically isolated syndrome. For the meta-analysis, we compared GCL thickness in MS patients with and without prior ON, to healthy controls. 42/252 studies were reviewed. In acute ON...

  8. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion.

    Science.gov (United States)

    Kasza, M; Balogh, Z; Biro, L; Ujhelyi, B; Damjanovich, J; Csutak, A; Várdai, J; Berta, A; Nagy, V

    2015-09-01

    We measured vascular endothelial growth factor (VEGF) levels in tear fluid and serum in patients with retinal vein occlusion (RVO). Eight patients with RVO due to secondary macular oedema were examined. VEGF levels were measured by enzyme-linked immunosorbent assay. All patients had a full ophthalmic examination (visual acuity, slit lamp biomicroscopy, perimetry, and fluorescein angiography). Central retinal thickness (CRT) was examined using optical coherence tomography (OCT). Tear and serum samples were collected and examinations were performed at diagnosis and 1 and 4 weeks later. VEGF levels in the tears of RVO eyes were significantly higher than in fellow eyes at diagnosis and after both 1 and 4 weeks (paired t test, p1 = 0.01, p2 = 0.02, p3 = 0.006). We found a weak but significant positive correlation between VEGF levels in tear fluid and serum of patients with RVO (r = 0.21), while this correlation tended to be stronger between the fellow eyes and serum levels (r = 0.33). To the best of our knowledge, we are the first to report an increased level of VEGF in the tear fluid of patients with RVO. Alterations of VEGF levels in tears may be useful for determining stages of RVO. This non-invasive and objective method may also be helpful for estimating the severity of macular oedema and efficacy of treatment.

  9. Screening for retinitis in children with probable systemic ...

    African Journals Online (AJOL)

    CMV retinitis may be prevented by timely diagnosis and treatment. This study aimed to .... retinitis are: 'a fulminant picture of retinal vasculitis and vascular sheathing with areas of yellow-white, full thickness, retinal necrosis producing retinal oedema associated ... and intravenous foscarnet as alternatives.[4] Although CMV- ...

  10. Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects.

    Science.gov (United States)

    Xin, Daiyan; Talamini, Christine L; Raza, Ali S; de Moraes, Carlos Gustavo V; Greenstein, Vivienne C; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2011-09-09

    To better understand hypodense regions (holes) that appear in the retinal nerve fiber layer (RNFL) of frequency-domain optical coherence tomography (fdOCT) scans of patients with glaucoma and glaucoma suspects. Peripapillary circle (1.7-mm radius) and cube optic disc fdOCT scans were obtained on 208 eyes from 110 patients (57.4 ± 13.2 years) with glaucomatous optic neuropathy (GON) and 45 eyes of 45 controls (48.0 ± 12.6 years) with normal results of fundus examination. Holes in the RNFL were identified independently by two observers on the circle scans. Holes were found in 33 (16%) eyes of 28 (25%) patients; they were not found in any of the control eyes. Twenty-four eyes had more than one hole. Although some holes were relatively large, others were small. In general, the holes were located adjacent to blood vessels; only three eyes had isolated holes that were not adjacent to a vessel. The holes tended to be in the regions that are thickest in healthy controls and were associated with arcuate defects in patients. Holes were not seen in the center of the temporal disc region. They were more common in the superior (25 eyes) than in the inferior (15 eyes) disc. Of the 30 eyes with holes with reliable visual fields, seven were glaucoma suspect eyes with normal visual fields. The holes in the RNFL seen in patients with GON were probably due to a local loss of RNFL fibers and can occur in the eyes of glaucoma suspects with normal visual fields.

  11. CHANGES IN CHOROIDAL THICKNESS IN AND OUTSIDE THE MACULA AFTER HEMODIALYSIS IN PATIENTS WITH END-STAGE RENAL DISEASE.

    Science.gov (United States)

    Chang, In Boem; Lee, Jeong Hyun; Kim, Jae Suk

    2017-05-01

    To evaluate changes in choroidal thickness in and outside the macula as a result of hemodialysis (HD) in patients with end-stage renal disease. Patients with end-stage renal disease treated with maintenance HD in the Dialysis Unit of Sanggye Paik Hospital, Seoul, South Korea, were included in this study. The choroidal thickness was measured in and outside the macula before and after HD (paired t-test). Choroidal thickness in the macula was measured at the foveal center and 1.5 mm temporal to the foveal center and outside the macula was measured at superior, inferior, and nasal area 3.5 mm from the optic disk margin. Peripapillary retinal nerve fiber layer thickness, intraocular pressure, central corneal thickness, and systemic parameters such as serum osmolarity and blood pressure (BP) were measured before and after HD (paired t-test). We divided patients into two groups, diabetic and nondiabetic groups to compare the changes in choroidal thickness. Patients with diabetes were subdivided into two groups: severe retinal change group and moderate retinal change group (Mann-Whitney test). Pearson's correlation test was used to evaluate the correlations between choroidal thickness and changes in serum osmolarity, BP, and body weight loss. Choroidal thickness and peripapillary retinal nerve fiber layer thickness were measured using spectral-domain optical coherence tomography. Fifty-four eyes of 31 patients with end-stage renal disease were included. After HD, the mean intraocular pressure was significantly decreased from 14.8 ± 2.5 mmHg to 13.0 ± 2.6 mmHg (P macula.

  12. Progression of transsynaptic retinal degeneration with spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Stephen G. Schwartz

    2017-04-01

    Conclusions and importance: Retrograde transsynaptic retinal degeneration may occur in patients with homonymous visual field loss caused by post-geniculate neurologic disease. This is best detected as homonymous thinning of the retina, corresponding to the pattern of visual field loss, using SD-OCT of the GCC and macula. The retinal changes occur at a variable time following the onset of neurologic disease.

  13. Relationship between intraocular pressure and angle configuration: an anterior segment OCT study.

    Science.gov (United States)

    Chong, Rachel S; Sakata, Lisandro M; Narayanaswamy, Arun K; Ho, Sue-Wei; He, Mingguang; Baskaran, Mani; Wong, Tien Yin; Perera, Shamira A; Aung, Tin

    2013-03-05

    To assess the relationship between intraocular pressure (IOP) and anterior chamber angle (ACA) configuration as assessed by gonioscopy and anterior segment optical coherence tomography (AS-OCT). A total of 2045 subjects aged 50 years and older, were recruited from a community clinic and underwent AS-OCT, Goldmann applanation tonometry, and gonioscopy. A quadrant was classified as closed on gonioscopy if the posterior trabecular meshwork could not be seen. A closed quadrant on AS-OCT was defined by the presence of any contact between the iris and angle wall anterior to the scleral spur. Customized software (Zhongshan Angle Assessment Program, Guangzhou, China) was used to measure AS-OCT parameters on AS-OCT scans, including anterior chamber depth, area, and volume; iris thickness (IT) and curvature; lens vault; angle opening distance; and trabecular-iris space area. IOP values were adjusted for age, sex, diabetes and hypertension status, body mass index, central corneal thickness, and presence of peripheral anterior synechiae. Mean age of study subjects was 63.2 ± 8.0 years, 52.6% were female, and 89.4% were Chinese. Mean IOP was 14.8 ± 2.4 mm Hg (range 826). IOP (mean ± SE) increased with number of quadrants with gonioscopic angle closure (none: 14.6 ± 0.2; one: 14.7 ± 0.3; two: 15.0 ± 0.3; three: 15.0 ± 0.3; four: 15.6 ± 0.3 mm Hg; P gonioscopy, with increasing IOP.

  14. Wolfram Sendromlu Hastalarda Optik Koherans Tomografi Bulguları

    Directory of Open Access Journals (Sweden)

    Bengü Ekinci Köktekir

    2014-05-01

    Full Text Available Objectives: To report the optical coherence tomography (OCT findings in patients with Wolfram syndrome. Materials and Methods: Four patients who fulfilled the criteria for Wolfram syndrome were recruited to the study. In all patients, OCT was performed with Stratus OCT (OCT-3, Carl Zeiss Meditec, Inc. Germany. The fast retinal nerve fiber layer (RNFL and fast macular thickness protocols were used to measure the RNFL and macular thickness, respectively. The fast optic disc protocol was used to determine the cup-to-disc ratios of the optic disc. All patients were examined with VEP (Retimax, CSO Strumenti Oftalmici, Florence, Italy. Results: In eight eyes of four patients (3 male and 1 female with a mean age of 18.5±2.08 years (range 16-21 years, RNFL, macular thickness, and cup-to-disc ratios were determined. The mean RNFL was 42.2±5.6 µm (range 34.1-49.5 µm, while the mean macular thickness and cup-to-disc ratios were 145±15 µm (range 125-160 µm and 0.79±0.07 (range 0.7-0.92, respectively. There was a moderate negative correlation between VEP latencies and macular and RNFL thicknesses (Spearman correlation coefficient was -0.23 and -0.34, respectively. Conclusions: RNFL loss and secondary optical atrophy are severe complications that may affect the visual acuity in patients with Wolfram syndrome. Retinal changes in these patients may be quantified and can be observed using OCT. (Turk J Ophthalmol 2014; 44: 212-5

  15. Retinal nerve fiber layer and ganglion cell complex thickness assessment in patients with Alzheimer disease and mild cognitive impairment. Preliminary results

    Directory of Open Access Journals (Sweden)

    A. S. Tiganov

    2014-07-01

    Full Text Available Purpose: to investigate the retinal nerve fiber layer (RNFL and the macular ganglion cell complex (GCC in patients with Alzheimer`s disease and mild cognitive impairment.Methods: this study included 10 patients (20 eyes with Alzheimer`s disease, 10 patients with mild cognitive impairment and 10 age- and sex-matched healthy controls that had no history of dementia. All the subjects underwent psychiatric examination, including the Mini-Mental State Examination (MMSE, and complete ophthalmological examination, comprising optical coherence tomography and scanning laser polarimetry.Results: there was a significant decrease in GCC thickness in patients with Alzheimer`s disease compared to the control group, global loss volume of ganglion cells was higher than in control group. there was no significant difference among the groups in terms of RNFL thickness. Weak positive correlation of GCC thickness and MMSE results was observed.Conclusion: Our data confirm the retinal involvement in Alzheimer`s disease, as reflected by loss of ganglion cells. Further studies will clear up the role and contribution of dementia in pathogenesis of optic neuropathy.

  16. Retinal characteristics during 1 year of insulin pump therapy in type 1 diabetes

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Hommel, Eva; Munch, Inger Christine

    2016-01-01

    of CSII led to an HbA1c reduction relative to continued MDI and a small increase in retinal thickness but not to early retinopathy worsening or to changes in retinal vascular, structural or functional characteristics. Longer duration of type 1 diabetes appears to be associated with lower macular venous......PURPOSE: To investigate changes in retinal metabolism, function, structure and morphology in relation to initiation of insulin pump therapy (continuous subcutaneous insulin infusion, CSII). METHODS: Visual acuity, retinopathy level, dark adaptation kinetics, retinal and subfoveal choroidal...... thickness, macular perfusion velocities, retinal vessel diameters and blood oxygen saturations were measured at baseline and after 1, 4, 16, 32 and 52 weeks in 31 patients with type 1 diabetes who started CSII and 20 patients who continued multiple daily insulin injections (MDI). RESULTS: One year of CSII...

  17. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging.

    Directory of Open Access Journals (Sweden)

    Danuta M Sampson

    Full Text Available To present en face optical coherence tomography (OCT images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities.En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO and microperimetry.Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE pathology due to segmentation error at the level of Bruch's membrane (BM. Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities.Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis.

  18. Quantification of Macular Vascular Density Using Optical Coherence Tomography Angiography and Its Relationship with Retinal Thickness in Myopic Eyes of Young Adults

    Directory of Open Access Journals (Sweden)

    Shiqi Yang

    2017-01-01

    Full Text Available Purpose. To quantify macular vascular density using optical coherence tomography angiography (OCTA and to investigate its relationship with retinal thickness in myopic eyes of young adults. Methods. In this cross-sectional study, 268 myopic eyes without pathological changes were recruited and divided into three groups: mild myopia (n=81, moderate myopia (n=117, and high myopia (n=70. Macular vascular density was quantified by OCTA and compared among three groups. Average retinal thickness, central subfield thickness, and macular ganglion cell complex (mGCC thickness were also evaluated and compared. Correlations among these variables were analyzed. Results. There was no statistical difference in superficial (62.3 ± 5.7% versus 62.7 ± 5.9% versus 63.8 ± 5.5% and deep macular vascular densities (58.3 ± 9.6% versus 59.2 ± 9.3% versus 60.9 ± 7.9% among mild-myopia, moderate-myopia, and high-myopia groups (both P>0.05. Superficial and deep macular vascular densities both had correlations with mean arterial pressure. Furthermore, superficial macular vascular density was significantly correlated with mGCC thickness. Conclusions. Varying degrees of myopia did not affect macular vascular density in young healthy adults. In addition, superficial macular vascular density, as an independent factor, was positively correlated with mGCC thickness.

  19. Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa

    Science.gov (United States)

    Kuroda, Masako; Hirami, Yasuhiko; Hata, Masayuki; Mandai, Michiko; Takahashi, Masayo; Kurimoto, Yasuo

    2014-01-01

    Background The purpose of this study was to observe the characteristic findings of spectral-domain optical coherence tomography (SD-OCT) images in the retinas of patients with retinitis pigmentosa and to evaluate their distribution patterns in the early and advanced stages of the disease. Methods A total of 184 patients (368 eyes) with retinitis pigmentosa were observed using SD-OCT. We studied the presence or absence of continuous inner/outer segment (IS/OS) lines, presence of thinning of the retinal pigment epithelium-Bruch’s membrane complex, and distribution patterns of hyperreflective foci in the inner and outer nuclear layers (INL and ONL). Results The IS/OS junction had partially disappeared in 275 eyes, which were at the early stage of retinitis pigmentosa (group X), whereas the junction had totally disappeared in 93, which were at the advanced stage of retinitis pigmentosa (group Y). Hyperreflective foci in the INL were observed in a significantly larger proportion of the eyes in group X than in group Y (90% versus 61%, Pretinitis pigmentosa and hyperreflective foci in the ONL were more frequently observed in the advanced stage. Hyperreflective foci may be indicative of changes in the retinal structure at each stage of retinitis pigmentosa. PMID:24591813

  20. Influence of optic disc size on the diagnostic performance of macular ganglion cell complex and peripapillary retinal nerve fiber layer analyses in glaucoma.

    Science.gov (United States)

    Cordeiro, Daniela Valença; Lima, Verônica Castro; Castro, Dinorah P; Castro, Leonardo C; Pacheco, Maria Angélica; Lee, Jae Min; Dimantas, Marcelo I; Prata, Tiago Santos

    2011-01-01

    To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC) and conventional peripapillary retinal nerve fiber layer (pRNFL) analyses provided by spectral domain optical coherence tomography (SD-OCT) in glaucoma. Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers) and pRNFL thickness measurement (3.45 mm circular scan) by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC) curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm(2) disc sizes were arbitrarily chosen (based on data distribution) and the predicted areas under the ROC curves (AUCs) and sensitivities were compared at fixed specificities for each. Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872) and GCC parameters (average thickness = 0.824; P = 0.19). The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176) or average GCC thickness (0.088; P ≥ 0.56). AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm(2)) were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities - at 80% specificity for average pRNFL (84.5%) and GCC thicknesses (74.5%) - were found with disc sizes fixed at 1.5 mm(2) and 2.5 mm(2). Diagnostic accuracy was similar between pRNFL and GCC thickness parameters. Although not statistically significant, there was a trend for a better diagnostic accuracy of pRNFL thickness measurement in cases of smaller discs. For GCC analysis, an inverse effect

  1. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression.

    Science.gov (United States)

    Monteiro, Mário L R; Cunha, Leonardo P; Costa-Cunha, Luciana V F; Maia, Otacílio O; Oyamada, Maria K

    2009-08-01

    To evaluate the relationship between pattern electroretinogram (PERG) amplitude, macular and retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), and visual field (VF) loss on standard automated perimetry (SAP) in eyes with temporal hemianopia from chiasmal compression. Forty-one eyes from 41 patients with permanent temporal VF defects from chiasmal compression and 41 healthy subjects underwent transient full-field and hemifield (temporal or nasal) stimulation PERG, SAP and time domain-OCT macular and RNFL thickness measurements. Comparisons were made using Student's t-test. Deviation from normal VF sensitivity for the central 18 degrees of VF was expressed in 1/Lambert units. Correlations between measurements were verified by linear regression analysis. PERG and OCT measurements were significantly lower in eyes with temporal hemianopia than in normal eyes. A significant correlation was found between VF sensitivity loss and full-field or nasal, but not temporal, hemifield PERG amplitude. Likewise a significant correlation was found between VF sensitivity loss and most OCT parameters. No significant correlation was observed between OCT and PERG parameters, except for nasal hemifield amplitude. A significant correlation was observed between several macular and RNFL thickness parameters. In patients with chiasmal compression, PERG amplitude and OCT thickness measurements were significant related to VF loss, but not to each other. OCT and PERG quantify neuronal loss differently, but both technologies are useful in understanding structure-function relationship in patients with chiasmal compression. (ClinicalTrials.gov number, NCT00553761).

  2. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning - an ultrahigh-field MR pilot study

    International Nuclear Information System (INIS)

    Sinnecker, Tim; Oberwahrenbrock, Timm; Zimmermann, Hanna; Ramien, Caren; Brandt, Alexander U.; Metz, Imke; Brueck, Wolfgang; Pfueller, Caspar F.; Doerr, Jan; Harms, Lutz; Ruprecht, Klemens; Hahn, Katrin; Niendorf, Thoralf; Paul, Friedemann; Wuerfel, Jens

    2015-01-01

    To investigate posterior visual pathway damage in multiple sclerosis using ultrahigh-field magnetic resonance imaging (MRI) at 7 Tesla (7 T), and to determine its correlation with visual disability and retinal fibre layer (RNFL) damage detectable by optic coherence tomography (OCT). We studied 7 T MRI, OCT, functional acuity contrast testing (FACT), and visually evoked potentials (VEP, n = 16) in 30 patients (including 26 relapsing-remitting MS and four clinically isolated syndrome patients) and 12 healthy controls to quantify RNFL thickness, optic radiation lesion volume, and optic radiation thickness. Optic radiation lesion volume was associated with thinning of the optic radiation (p < 0.001), delayed VEP (p = 0.031), and visual disability indicated by FACT (p = 0.020). Furthermore, we observed an inverse correlation between optic radiation lesion volume and RNFL thickness (p < 0.001), including patients without previous optic neuritis (p < 0.001). Anterior visual pathway damage, but also (subclinical) optic radiation integrity loss detectable by 7 T MRI are common findings in MS that are mutually affected. Given the association between optic radiation damage, visual impairment, and increased VEP latency in this exploratory study of a limited sample size, clinicians should be aware of acute lesions within the optic radiation in patients with (bilateral) visual disturbances. (orig.)

  3. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning - an ultrahigh-field MR pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Sinnecker, Tim [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Asklepios Fachklinikum Teupitz, Department of Neurology, Teupitz (Germany); Oberwahrenbrock, Timm; Zimmermann, Hanna; Ramien, Caren; Brandt, Alexander U. [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Metz, Imke; Brueck, Wolfgang [University Medicine Goettingen, Institute of Neuropathology, Goettingen (Germany); Pfueller, Caspar F.; Doerr, Jan [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Harms, Lutz; Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Hahn, Katrin [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Niendorf, Thoralf [Max Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F), Berlin (Germany); Charite - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F), Berlin (Germany); University Medicine Goettingen, Institute of Neuroradiology, Goettingen (Germany)

    2015-01-15

    To investigate posterior visual pathway damage in multiple sclerosis using ultrahigh-field magnetic resonance imaging (MRI) at 7 Tesla (7 T), and to determine its correlation with visual disability and retinal fibre layer (RNFL) damage detectable by optic coherence tomography (OCT). We studied 7 T MRI, OCT, functional acuity contrast testing (FACT), and visually evoked potentials (VEP, n = 16) in 30 patients (including 26 relapsing-remitting MS and four clinically isolated syndrome patients) and 12 healthy controls to quantify RNFL thickness, optic radiation lesion volume, and optic radiation thickness. Optic radiation lesion volume was associated with thinning of the optic radiation (p < 0.001), delayed VEP (p = 0.031), and visual disability indicated by FACT (p = 0.020). Furthermore, we observed an inverse correlation between optic radiation lesion volume and RNFL thickness (p < 0.001), including patients without previous optic neuritis (p < 0.001). Anterior visual pathway damage, but also (subclinical) optic radiation integrity loss detectable by 7 T MRI are common findings in MS that are mutually affected. Given the association between optic radiation damage, visual impairment, and increased VEP latency in this exploratory study of a limited sample size, clinicians should be aware of acute lesions within the optic radiation in patients with (bilateral) visual disturbances. (orig.)

  4. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Oluleye ST

    2016-08-01

    Full Text Available Sunday Tunji Oluleye,1 Bolutife Ayokunu Olusanya,1 Abiodun Moshood Adeoye2 1Department of Ophthalmology, 2Department of Medicine, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria Background: Earlier studies in Nigeria reported the rarity of retinal vascular changes in hypertensives. The aim of this study was to describe the various retinal vascular changes in the hypertensive patients of Nigeria.Patients and methods: Nine hundred and three hypertensive patients were studied. This study was approved by the ethical and research committee of the University of Ibadan and University College Hospital, Ibadan, Nigeria. Blood pressure and anthropometric measurements were measured. Cardiac echocardiography was performed on 156 patients. All patients had dilated fundoscopy and fundus photography using the Kowa portable fundus camera and an Apple iPhone with 20 D lens. Statistical analysis was done with Statistical Packages for the Social Sciences (Version 21.Results: The mean age of patients was 57 years with a male:female ratio of 1. No retinopathy was found in 556 (61.5% patients. In all, 175 (19.4% patients had features of hypertensive retinopathy. Retinal vascular occlusion was a significant finding in 121 patients (13.4%, of which branch retinal vein occlusion, 43 (4.7%, and central retinal vein occlusion, 30 (3.3%, were the most prominent ones in cases. Hemicentral retinal vein occlusion, 26 (2.9%, and central retinal artery occlusion, 17 (1.9%, were significant presentations. Other findings included nonarteritic anterior ischemic optic neuropathy in five (0.6% patients, hypertensive choroidopathy in seven (0.8% patients, and hemorrhagic choroidal detachment in five (0.6% patients. Left ventricular (LV geometry was abnormal in 85 (55.5% patients. Concentric remodeling, eccentric hypertrophy, and concentric hypertrophy were observed in 43 (27.6%, 26 (17.2%, and 15 (9.7% patients, respectively. LV

  5. OCT angiography of acute non-arteritic anterior ischemic optic neuropathy.

    Science.gov (United States)

    Rougier, M-B; Delyfer, M-N; Korobelnik, J-F

    2017-02-01

    To describe changes of the retinal peripapillary microvasculature on optical coherence tomography angiography (OCT-A) in non-arteritic anterior ischemic optic (NAION) neuropathy. Observational study of 10 patients at the acute phase of NAION. OCT-A was performed using a 3mm×3mm square centered on the optic disc (Cirrus HD-OCT with Angioplex, Carl Zeiss Meditec, Dublin, CA). A qualitative comparison was made with the healthy fellow eye of each patient. All patients had a fluorescein angiography (HRA2, Heidelberg, Germany) and a visual field examination (Octopus 101 ® , Haag-Streit, USA). In the affected eyes, OCT-A showed clear modifications in the radial peripapillary network. In all these eyes, a focal disappearance of the superficial capillary radial pattern was present, twisted and irregular. In 8 eyes, there was also a lack of vascularization in some focal areas, appearing as dark areas. No correlation was found between the topography of the vascular alteration shown on OCT-A and visual field pattern defects. OCT-A is a new imaging technology able to demonstrate easily and safely the changes in the peripapillary capillary network during the acute phase of NAION. These changes are likely related to a decrease of the prelaminar optic nerve blood flow during the acute phase of NAION. Visual field defects are not correlated with OCT-A images, suggesting that they may be due mainly to disturbances in posterior ciliary artery blood flow. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Validation of Optical Coherence Tomography against Micro-computed Tomography for Evaluation of Remaining Coronal Dentin Thickness.

    Science.gov (United States)

    Majkut, Patrycja; Sadr, Alireza; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-08-01

    Optical coherence tomography (OCT) is a noninvasive modality to obtain in-depth images of biological structures. A dental OCT system has become available for chairside application. This in vitro study hypothesized that swept-source OCT can be used to measure the remaining dentin thickness (RDT) at the roof of the dental pulp chamber during excavation of deep caries. Human molar teeth with deep occlusal caries were investigated. After obtaining 2-dimensional and 3-dimensional OCT scans using a swept-source OCT system at a 1330-nm center wavelength, RDT was evaluated by image analysis software. Microfocus x-ray computed tomographic (micro-CT) images were obtained from the same cross sections to confirm OCT findings. The smallest RDT values at the visible pulp horn were measured on OCT and micro-CT imaging and compared using the Pearson correlation. Pulpal horns and pulp chamber roof observation under OCT and micro-CT imaging resulted in comparable images that allowed the measurement of coronal dentin thickness. RDT measured by OCT showed optical values range between 140 and 2300 μm, which corresponded to the range of 92-1524 μm on micro-CT imaging. A strong correlation was found between the 2 techniques (r = 0.96, P structures during deep caries excavation. Exposure of the vital dental pulp because of the removal of very thin remaining coronal dentin can be avoided with this novel noninvasive technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Characterization of Retinal Disease Progression in a 1-Year Longitudinal Study of Eyes With Mild Nonproliferative Retinopathy in Diabetes Type 2

    DEFF Research Database (Denmark)

    Ribeiro, Luisa; Bandello, Francesco; Tejerina, Amparo Navea

    2015-01-01

    PURPOSE: To identify eyes of patients with diabetes type 2 that show progression of retinal disease within a 1-year period using noninvasive techniques. METHODS: Three hundred seventy-four type 2 diabetic patients with mild nonproliferative diabetic retinopathy (Early Treatment Diabetic Retinopathy......DR and in central retinal thickness in eyes with mild nonproliferative diabetic retinopathy and diabetes type 2 are able to identify eyes at risk of progression. These eyes/patients should be selected for inclusion in future clinical trials of drugs targeted to prevent diabetic retinopathy progression to vision...... (SD-OCT) were assessed by a central reading center at all visits and ETDRS severity level in the first and last visits. RESULTS: Three hundred thirty-one eyes/patients completed the study. Microaneurysm formation rate greater than or equal to 2 was present in 68.1% of the eyes and MA turnover greater...

  8. Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma.

    Science.gov (United States)

    Mwanza, Jean-Claude; Lee, Gary; Budenz, Donald L; Warren, Joshua L; Wall, Michael; Artes, Paul H; Callan, Thomas M; Flanagan, John G

    2018-04-01

    To independently validate the performance of the University of North Carolina Optical Coherence Tomography (UNC OCT) Index in diagnosing and predicting early glaucoma. Data of 118 normal subjects (118 eyes) and 96 subjects (96 eyes) with early glaucoma defined as visual field mean deviation (MD) greater than -4 decibels (dB), aged 40 to 80 years, and who were enrolled in the Full-Threshold Testing Size III, V, VI comparison study were used in this study. CIRRUS OCT average and quadrants' retinal nerve fiber layer (RNFL); optic disc vertical cup-to-disc ratio (VCDR), cup-to-disc area ratio, and rim area; and average, minimum, and six sectoral ganglion cell-inner plexiform layer (GCIPL) measurements were run through the UNC OCT Index algorithm. Area under the receiver operating characteristic curve (AUC) and sensitivities at 95% and 99% specificity were calculated and compared between single parameters and the UNC OCT Index. Mean age was 60.1 ± 11.0 years for normal subjects and 66.5 ± 8.1 years for glaucoma patients ( P < 0.001). MD was 0.29 ± 1.04 dB and -1.30 ± 1.35 dB in normal and glaucomatous eyes ( P < 0.001), respectively. The AUC of the UNC OCT Index was 0.96. The best single metrics when compared to the UNC OCT Index were VCDR (0.93, P = 0.054), average RNFL (0.92, P = 0.014), and minimum GCIPL (0.91, P = 0.009). The sensitivities at 95% and 99% specificity were 85.4% and 76.0% (UNC OCT Index), 71.9% and 62.5% (VCDR, all P < 0.001), 64.6% and 53.1% (average RNFL, all P < 0.001), and 66.7% and 58.3% (minimum GCIPL, all P < 0.001), respectively. The findings confirm that the UNC OCT Index may provide improved diagnostic perforce over that of single OCT parameters and may be a good tool for detection of early glaucoma. The UNC OCT Index algorithm may be incorporated easily into routine clinical practice and be useful for detecting early glaucoma.

  9. EARLY SIMULTANEOUS FUNDUS AUTOFLUORESCENCE AND OPTICAL COHERENCE TOMOGRAPHY FEATURES AFTER PARS PLANA VITRECTOMY FOR PRIMARY RHEGMATOGENOUS RETINAL DETACHMENT

    NARCIS (Netherlands)

    Dellʼomo, Roberto; Mura, Marco; Lesnik Oberstein, Sarit Y.; Bijl, Heico; Tan, H. Stevie

    2012-01-01

    Purpose: To describe fundus autofluorescence and optical coherence tomography (OCT) features of the macula after pars plana vitrectomy for rhegmatogenous retinal detachment. Methods: Thirty-three eyes of 33 consecutive patients with repaired rhegmatogenous retinal detachment with or without the

  10. Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.

    Science.gov (United States)

    Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco

    2017-08-01

    Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.

  11. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  12. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  13. Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images

    Science.gov (United States)

    Miri, Mohammad Saleh; Lee, Kyungmoo; Niemeijer, Meindert; Abràmoff, Michael D.; Kwon, Young H.; Garvin, Mona K.

    2013-03-01

    Glaucoma is one of the major causes of blindness worldwide. One important structural parameter for the diagnosis and management of glaucoma is the cup-to-disc ratio (CDR), which tends to become larger as glaucoma progresses. While approaches exist for segmenting the optic disc and cup within fundus photographs, and more recently, within spectral-domain optical coherence tomography (SD-OCT) volumes, no approaches have been reported for the simultaneous segmentation of these structures within both modalities combined. In this work, a multimodal pixel-classification approach for the segmentation of the optic disc and cup within fundus photographs and SD-OCT volumes is presented. In particular, after segmentation of other important structures (such as the retinal layers and retinal blood vessels) and fundus-to-SD-OCT image registration, features are extracted from both modalities and a k-nearest-neighbor classification approach is used to classify each pixel as cup, rim, or background. The approach is evaluated on 70 multimodal image pairs from 35 subjects in a leave-10%-out fashion (by subject). A significant improvement in classification accuracy is obtained using the multimodal approach over that obtained from the corresponding unimodal approach (97.8% versus 95.2%; p < 0:05; paired t-test).

  14. Histogram Matching Extends Acceptable Signal Strength Range on Optical Coherence Tomography Images

    Science.gov (United States)

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Sigal, Ian A.; Kagemann, Larry; Schuman, Joel S.

    2015-01-01

    Purpose. We minimized the influence of image quality variability, as measured by signal strength (SS), on optical coherence tomography (OCT) thickness measurements using the histogram matching (HM) method. Methods. We scanned 12 eyes from 12 healthy subjects with the Cirrus HD-OCT device to obtain a series of OCT images with a wide range of SS (maximal range, 1–10) at the same visit. For each eye, the histogram of an image with the highest SS (best image quality) was set as the reference. We applied HM to the images with lower SS by shaping the input histogram into the reference histogram. Retinal nerve fiber layer (RNFL) thickness was automatically measured before and after HM processing (defined as original and HM measurements), and compared to the device output (device measurements). Nonlinear mixed effects models were used to analyze the relationship between RNFL thickness and SS. In addition, the lowest tolerable SSs, which gave the RNFL thickness within the variability margin of manufacturer recommended SS range (6–10), were determined for device, original, and HM measurements. Results. The HM measurements showed less variability across a wide range of image quality than the original and device measurements (slope = 1.17 vs. 4.89 and 1.72 μm/SS, respectively). The lowest tolerable SS was successfully reduced to 4.5 after HM processing. Conclusions. The HM method successfully extended the acceptable SS range on OCT images. This would qualify more OCT images with low SS for clinical assessment, broadening the OCT application to a wider range of subjects. PMID:26066749

  15. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy.

    Science.gov (United States)

    Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M

    2016-04-01

    Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease

    Directory of Open Access Journals (Sweden)

    Jing Wu

    2016-01-01

    Full Text Available In macular spectral domain optical coherence tomography (SD-OCT volumes, detection of the foveal center is required for accurate and reproducible follow-up studies, structure function correlation, and measurement grid positioning. However, disease can cause severe obscuring or deformation of the fovea, thus presenting a major challenge in automated detection. We propose a fully automated fovea detection algorithm to extract the fovea position in SD-OCT volumes of eyes with exudative maculopathy. The fovea is classified into 3 main appearances to both specify the detection algorithm used and reduce computational complexity. Based on foveal type classification, the fovea position is computed based on retinal nerve fiber layer thickness. Mean absolute distance between system and clinical expert annotated fovea positions from a dataset comprised of 240 SD-OCT volumes was 162.3 µm in cystoid macular edema and 262 µm in nAMD. The presented method has cross-vendor functionality, while demonstrating accurate and reliable performance close to typical expert interobserver agreement. The automatically detected fovea positions may be used as landmarks for intra- and cross-patient registration and to create a joint reference frame for extraction of spatiotemporal features in “big data.” Furthermore, reliable analyses of retinal thickness, as well as retinal structure function correlation, may be facilitated.

  17. Comparison of central corneal thickness with four noncontact devices: An agreement analysis of swept-source technology

    OpenAIRE

    Erhan Ozyol; Pelin Özyol

    2017-01-01

    Purpose: The purpose of this study was to compare the central corneal thickness (CCT) measurements of four noncontact devices in healthy eyes. Materials and Methods: In a sample of 45 healthy controls, CCT was measured using an optical biometer (IOLMaster 700) based on swept-source optical coherence tomography (SS-OCT), high-resolution rotating Scheimpflug camera system (Pentacam HR), spectral-domain OCT (SD-OCT) device with an anterior segment module (Spectralis), and noncontact pachymetry (...

  18. Macular Pigment and Lutein Supplementation in ABCA4-associated Retinal Degenerations

    Science.gov (United States)

    Aleman, Tomas S.; Cideciyan, Artur V.; Windsor, Elizabeth A. M.; Schwartz, Sharon B.; Swider, Malgorzata; Chico, John D.; Sumaroka, Alexander; Pantelyat, Alexander Y.; Duncan, Keith G.; Gardner, Leigh M.; Emmons, Jessica M.; Steinberg, Janet D.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    PURPOSE To determine macular pigment (MP) optical density (OD) in patients with ABCA4-associated retinal degenerations (ABCA4-RD) and the response of MP and vision to supplementation with lutein. METHODS Stargardt disease or cone-rod dystrophy patients with foveal fixation and with known or suspected disease-causing mutations in the ABCA4 gene were included. MPOD profiles were measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity and retinal thickness were quantified. Changes in MPOD and central vision were determined in a subset of patients receiving oral supplementation with lutein for 6 months. RESULTS MPOD in patients ranged from normal to markedly abnormal. As a group, ABCA4-RD patients had reduced foveal MPOD and there was strong correlation with retinal thickness. Average foveal tissue concentration of MP, estimated by dividing MPOD by retinal thickness, was normal in patients whereas serum concentration of lutein and zeaxanthin was significantly lower than normal. After oral lutein supplementation for 6 months, 91% of the patients showed significant increases in serum lutein and 63% of the patient eyes showed a significant augmentation in MPOD. The retinal responders tended to be female, and have lower serum lutein and zeaxanthin, lower MPOD and greater retinal thickness at baseline. Responding eyes had significantly lower baseline MP concentration compared to non-responding eyes. Central vision was unchanged after the period of supplementation. CONCLUSIONS MP is strongly affected by the stage of ABCA4 disease leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in some patients. There was no change in central vision after 6 months of lutein supplementation. Long-term influences on the natural history of this supplement on macular degenerations require further study. PMID:17325179

  19. Diagnostic potential of iris cross-sectional imaging in albinism using optical coherence tomography.

    Science.gov (United States)

    Sheth, Viral; Gottlob, Irene; Mohammad, Sarim; McLean, Rebecca J; Maconachie, Gail D E; Kumar, Anil; Degg, Christopher; Proudlock, Frank A

    2013-10-01

    To characterize in vivo anatomic abnormalities of the iris in albinism compared with healthy controls using anterior segment optical coherence tomography (AS-OCT) and to explore the diagnostic potential of this technique for albinism. We also investigated the relationship between iris abnormalities and other phenotypical features of albinism. Prospective cross-sectional study. A total of 55 individuals with albinism and 45 healthy controls. We acquired 4.37×4.37-mm volumetric scans (743 A-scans, 50 B-scans) of the nasal and temporal iris in both eyes using AS-OCT (3-μm axial resolution). Iris layers were segmented and thicknesses were measured using ImageJ software. Iris transillumination grading was graded using Summers and colleagues' classification. Retinal OCT, eye movement recordings, best-corrected visual acuity (BCVA), visual evoked potential (VEP), and grading of skin and hair pigmentation were used to quantify other phenotypical features associated with albinism. Iris AS-OCT measurements included (1) total iris thickness, (2) stroma/anterior border (SAB) layer thickness, and (3) posterior epithelial layer (PEL) thickness. Correlation with other phenotypical measurements, including (1) iris transillumination grading, (2) retinal layer measurements at the fovea, (3) nystagmus intensity, (4) BCVA, (5) VEP asymmetry, (6) skin pigmentation, and (7) hair pigmentation (of head hair, lashes, and brows). The mean iris thickness was 10.7% thicker in controls (379.3 ± 44.0 μm) compared with the albinism group (342.5 ± 52.6 μm; P>0.001), SAB layers were 5.8% thicker in controls (315.1 ± 43.8 μm) compared with the albinism group (297.7 ± 50.0 μm; P=0.044), and PEL was 44.0% thicker in controls (64.1 ± 11.7 μm) compared with the albinism group (44.5 ± 13.9 μm; Palbinism. Phenotypic features of albinism, such as skin and hair pigmentation, BCVA, and nystagmus intensity, were significantly correlated to AS-OCT iris thickness measurements. We have

  20. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Morsy, Hanan A.; Thrane, Lars

    2008-01-01

    colour. Methods: OCT imaging is based on infrared light reflection/backscatter from tissue. PS-OCT detects birefringence of tissue. Imaging was performed in 12 skin regions. ET was calculated from the OCT images. Results: Normal skin has a layered structure. Layering is less pronounced in adults......Background: Optical coherence tomography (OCT) is an optical imaging technology with a potential in the non-invasive diagnosis of skin cancer. To identify skin pathologies using OCT, it is of prime importance to establish baseline morphological features of normal skin. Aims: The aim of this study...... is to describe normal skin morphology using OCT and polarization-sensitive OCT (PS-OCT), which is a way of representing birefringent tissue such as collagen in OCT images. Anatomical locations in 20 healthy volunteers were imaged, and epidermal thickness (ET) was measured and compared to age, gender and skin...

  1. Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images

    NARCIS (Netherlands)

    Lee, K.; Buitendijk, G.H.; Bogunovic, H.; Springelkamp, H.; Hofman, A.; Wahle, A.; Sonka, M.; Vingerling, J.R.; Klaver, C.C.W.; Abramoff, M.D.

    2016-01-01

    PURPOSE: To automatically identify which spectral-domain optical coherence tomography (SD-OCT) scans will provide reliable automated layer segmentations for more accurate layer thickness analyses in population studies. METHODS: Six hundred ninety macular SD-OCT image volumes (6.0 x 6.0 x 2.3 mm3)

  2. Evaluation of Retinal Changes Using Optical Coherence Tomography in a Pediatric Case of Susac Syndrome

    Directory of Open Access Journals (Sweden)

    Mehmet Kola

    2017-01-01

    Full Text Available Susac syndrome is a rare occlusive vasculopathy affecting the retina, inner ear and brain. The cause is unknown, although it generally affects young women. This syndrome can be difficult to diagnose because its signs can only be revealed by detailed examination. These signs are not always concomitant, but may appear at different times. This report describes a pediatric case who was diagnosed with Susac syndrome when retinal lesions were identified in the inactive period with the help of optical coherence tomography (OCT. The purpose of this case report is to emphasize the importance of OCT in clarifying undefined retinal changes in Susac syndrome.

  3. Selective Thinning of the Perifoveal Inner Retina as an Early Sign of Hydroxychloroquine Retinal Toxicity

    Science.gov (United States)

    Pasadhika, Sirichai; Fishman, Gerald A; Choi, Dongseok; Shahidi, Mahnaz

    2013-01-01

    Purpose To evaluate macular thickness profiles using spectral-domain optical coherence tomography (SDOCT) and image segmentation in patients with chronic exposure to hydroxychloroquine. Methods This study included 8 patients with chronic exposure to hydroxychloroquine (Group 1) and 8 controls (Group 2). Group 1 patients had no clinically-evident retinal toxicity. All subjects underwent SDOCT imaging of the macula. An image segmentation technique was used to measure thickness of 6 retinal layers at 200 µm intervals. A mixed-effects model was used for multivariate analysis. Results By measuring total retinal thickness either at the central macular (2800 µm in diameter), the perifoveal region 1200-µm-width ring surrounding the central macula), or the overall macular area (5200 µm in diameter), there were no significant differences in the thickness between Groups 1 and 2. On an image segmentation analysis, selective thinning of the inner plexiform + ganglion cell layers (p=0.021) was observed only in the perifoveal area of the patients in Group 1 compared to that of Group 2 by using the mixed-effects model analysis. Conclusions Our results suggest that chronic exposure to hydroxychloroquine is associated with thinning of the perifoveal inner retinal layers, especially in the ganglion cell and inner plexiform layers, even in the absence of functional or structural clinical changes involving the photoreceptor or retinal pigment epithelial cell layers. This may be a contributing factor as the reason most patients who have early detectable signs of drug toxicity present with paracentral or pericentral scotomas. PMID:20395978

  4. Evaluation of Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer in Primary Craniopharyngioma by Fourier-Domain Optical Coherence Tomography.

    Science.gov (United States)

    Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun

    2016-07-03

    BACKGROUND The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. MATERIAL AND METHODS Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. RESULTS The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). CONCLUSIONS GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients.

  5. Posterior Vitreous Detachment as Observed by Wide-Angle OCT Imaging.

    Science.gov (United States)

    Tsukahara, Mayuka; Mori, Keiko; Gehlbach, Peter L; Mori, Keisuke

    2018-04-06

    Posterior vitreous detachment (PVD) plays an important role in vitreoretinal interface disorders. Historically, observations of PVD using OCT have been limited to the macular region. The purpose of this study is to image the wide-angle vitreoretinal interface after PVD in normal subjects using montaged OCT images. An observational cross-sectional study. A total of 144 healthy eyes of 98 normal subjects aged 21 to 95 years (51.4±22.0 [mean ± standard deviation]). Montaged images of horizontal and vertical OCT scans through the fovea were obtained in each subject. Montaged OCT images. By using wide-angle OCT, we imaged the vitreoretinal interface from the macula to the periphery. PVD was classified into 5 stages: stage 0, no PVD (2 eyes, both aged 21 years); stage 1, peripheral PVD limited to paramacular to peripheral zones (88 eyes, mean age 38.9±16.2 years, mean ± standard deviation); stage 2, perifoveal PVD extending to the periphery (12 eyes, mean age 67.9±8.4 years); stage 3, peripapillary PVD with persistent vitreopapillary adhesion alone (7 eyes, mean age 70.9±11.9 years); stage 4, complete PVD (35 eyes, mean age 75.1±10.1 years). All stage 1 PVDs (100%) were observed in the paramacular to peripheral region where the vitreous gel adheres directly to the cortical vitreous and retinal surface. After progression to stage 2 PVD, the area of PVD extends posteriorly to the perifovea and anteriorly to the periphery. Vitreoschisis was observed in 41.2% at PVD initiation (stage 1a). Whereas prior work suggests that PVD originates in the perifoveal region and after the sixth decade, our observations demonstrate that (1) PVD first appears even in the third decade of life and gradually appears more extensively throughout life; (2) more than 40% of eyes without fundus diseases at their PVD initiation are associated with vitreoschisis; and (3) PVD is first noted primarily in the paramacular-peripheral region where vitreous gel adheres to the retinal surface and is

  6. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    Science.gov (United States)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  7. Comparison of Central Corneal Thickness Measured by Standard Ultrasound Pachymetry, Corneal Topography, Tono-Pachymetry and Anterior Segment Optical Coherence Tomography.

    Science.gov (United States)

    González-Pérez, Javier; Queiruga Piñeiro, Juan; Sánchez García, Ángelx; González Méijome, José Manuel

    2018-04-10

    To compare central corneal thickness (CCT) measured by standard ultrasound pachymetry (USP), and three non-contact devices in healthy eyes. A cross-sectional study of CCT measurement in 52 eyes of 52 healthy volunteers was done by a single examiner at Ocular Surface and Contact Lens Laboratory. Three consecutive measurements were done by standard USP, non-contact tono-pachymeter, Pentacam corneal topographer, and Anterior Segment Optical Coherence Tomography (AS-OCT). The mean values were used for assessment. The results were compared using multivariate ANOVA, linear regression, and Pearson correlation. Agreement among the devices was analyzed using mean differences and Bland-Altman analysis with 95% limits of agreement (LoA). Finally, reliability was analyzed using intraclass correlation coefficient (ICC). Mean CCT by ultrasound pachymeter, tono-pachymeter, corneal topographer and AS-OCT were 558.9 ± 31.2 µm, 525.8 ± 43.1 µm, 550.4 ± 30.5 µm, and 545.9 ± 30.5 µm respectively. There was a significant positive correlation between AS-OCT and USP (Pearson correlation = 0.957, p device, and USP. Mean CCT among USP, Pentacam and AS-OCT were comparable and had significant linear correlations. In clinical practice, these three modalities could be interchangeable in healthy patients.

  8. Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus.

    Science.gov (United States)

    Pérez-Merino, Pablo; Ortiz, Sergio; Alejandre, Nicolas; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2013-09-09

    To characterize the geometrical properties of keratoconic corneas upon intracorneal ring segments (ICRS) implantation, using custom-developed optical coherence tomography (OCT). Ten keratoconic corneas were measured pre- and post-ICRS surgery (7, 30, and 90 days). Corneal topographic and pachymetric maps were obtained from three-dimensional (3D) images acquired with OCT, provided with custom algorithms for image analysis, distortion correction, and quantification. The 3D positioning of the ICRS was also estimated longitudinally, relative to the pupil center and iris plane. Preoperatively, the average corneal radii of curvature were 7.02 ± 0.54 mm (anterior) and 5.40 ± 0.77 mm (posterior), and the minimum corneal thickness was 384 ± 60 μm. At 90 days, the average corneal radii of curvature were 7.26 ± 0.53 mm (anterior) and 5.44 ± 0.71 mm (posterior), and the minimum corneal thickness was 396 ± 46 μm. ICRS implantation produced a significant decrease of corneal power (by 1.71 ± 1.83 diopters [D] at 90 days). Corneal irregularities (defined by high order Zernike terms of the corneal elevation maps) and the corneal thickness distribution decreased in some patients and increased in others. The 3D ICRS depth matched the planned ICRS depth well (within 23.93 ± 23.49 μm). On average, ICRS showed an overall tilt of -6.8 ± 2.6° (temporal) and -2.1 ± 0.8° (superior) at 7 days. Spectral OCT (sOCT) provided with distortion correction and analysis tools, is an excellent instrument for evaluating the changes produced by ICRS in keratoconic corneas, and for analyzing the 3D ICRS position during the follow up. ICRS produced flattening on the anterior corneal surface, although the benefit for corneal surface regularization varied across patients.

  9. Curvature correction of retinal OCTs using graph-based geometry detection

    Science.gov (United States)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-05-01

    In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods.

  10. Subretinal Fluid Levels of Signal-Transduction Proteins and Apoptosis Molecules in Macula-Off Retinal Detachment Undergoing Scleral Buckle Surgery.

    Science.gov (United States)

    Carpineto, Paolo; Aharrh-Gnama, Agbeanda; Ciciarelli, Vincenzo; Borrelli, Enrico; Petti, Francesco; Aloia, Raffaella; Lamolinara, Alessia; Di Nicola, Marta; Mastropasqua, Leonardo

    2016-12-01

    To evaluate signal transduction and early apoptosis protein levels in subretinal fluid collected during scleral buckling surgery for macula-off rhegmatogenous retinal detachment (RRD). Our aim was to assess both their relation with RRD features and their influence on the posttreatment outcome. Thirty-three eyes of 33 RRD patients scheduled for scleral buckle surgery were enrolled in the study. Undiluted subretinal fluid samples were collected during surgery and analyzed via magnetic bead-based immunoassay. All patients underwent a complete ophthalmologic evaluation at baseline and at each follow-up visit (months 1, 3, and 6). Moreover, both at baseline and at the postsurgery month 6 visit, the patients were tested by means of spectral-domain optical coherence tomography (SD-OCT) in order to evaluate the average ganglion cell-inner plexiform complex thickness, as well as the photoreceptor inner segment/outer segment junction status. Patients' clinical features (retinal detachment size, detachment duration, and occurrence of proliferative vitreoretinopathy) were associated with several early apoptotic factors (caspase-8, caspase-9, and B-cell lymphoma 2 [Bcl-2]-associated death promoter [BAD]). Furthermore, both early apoptosis factors (caspase-8, Bcl-2, and p53) and signal-transduction proteins (ERK 1/2) were found to influence the postsurgery month 3 OCT characteristics. Signal-transduction proteins and early apoptosis proteins are associated with different clinical features and postsurgery outcomes.

  11. Objective perimetry using a four-channel multifocal VEP system: correlation with conventional perimetry and thickness of the retinal nerve fibre layer.

    Science.gov (United States)

    Horn, Folkert K; Kaltwasser, Christoph; Jünemann, Anselm G; Kremers, Jan; Tornow, Ralf P

    2012-04-01

    There is evidence that multifocal visual evoked potentials (VEPs) can be used as an objective tool to detect visual field loss. The aim of this study was to correlate multifocal VEP amplitudes with standard perimetry data and retinal nerve fibre layer (RNFL) thickness. Multifocal VEP recordings were performed with a four-channel electrode array using 58 stimulus fields (pattern reversal dartboard). For each field, the recording from the channel with maximal signal-to-noise ratio (SNR) was retained, resulting in an SNR optimised virtual recording. Correlation with RNFL thickness, measured with spectral domain optical coherence tomography and with standard perimetry, was performed for nerve fibre bundle related areas. The mean amplitudes in nerve fibre related areas were smaller in glaucoma patients than in normal subjects. The differences between both groups were most significant in mid-peripheral areas. Amplitudes in these areas were significantly correlated with corresponding RNFL thickness (Spearman R=0.76) and with standard perimetry (R=0.71). The multifocal VEP amplitude was correlated with perimetric visual field data and the RNFL thickness of the corresponding regions. This method of SNR optimisation is useful for extracting data from recordings and may be appropriate for objective assessment of visual function at different locations. This study has been registered at http://www.clinicaltrials.gov (NCT00494923).

  12. A simplified method to measure choroidal thickness using adaptive compensation in enhanced depth imaging optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Preeti Gupta

    Full Text Available PURPOSE: To evaluate a simplified method to measure choroidal thickness (CT using commercially available enhanced depth imaging (EDI spectral domain optical coherence tomography (SD-OCT. METHODS: We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class correlation coefficient (ICC and Bland-Altman plot analyses. RESULTS: Using adaptive compensation both the intra-grader reliability (ICC: 0.95 to 0.97 and inter-grader reliability (ICC: 0.93 to 0.97 were perfect for all five locations of CT. However, with the conventional technique of manual CT measurements using built-in callipers provided with the Heidelberg explorer software, the intra- (ICC: 0.87 to 0.94 and inter-grader reliability (ICC: 0.90 to 0.93 for all the measured locations is lower. Using adaptive compensation, the mean differences (95% limits of agreement for intra- and inter-grader sub-foveal CT measurements were -1.3 (-3.33 to 30.8 µm and -1.2 (-36.6 to 34.2 µm, respectively. CONCLUSIONS: The measurement of CT obtained from EDI SD-OCT using our simplified method was highly reliable and efficient. Our method is an easy and practical approach to improve the quality of choroidal images and the precision of CT measurement.

  13. Anterior and posterior ocular biometry in healthy Chinese subjects: data based on AS-OCT and SS-OCT.

    Directory of Open Access Journals (Sweden)

    Wenbin Huang

    Full Text Available To measure the anterior and posterior ocular biometric characteristics concurrently and to determine the relationship between the iris and choroid in healthy Chinese subjects.A total of 148 subjects (270 eyes were enrolled in this cross-section study. The anterior and posterior ocular biometric characteristics were measured simultaneously by anterior segment optical coherence tomography (AS-OCT and swept-source optical coherence tomography (SS-OCT.Compared with male eyes, female eyes had narrower anterior biometric parameters that presented with smaller anterior segment parameters [including anterior chamber depth (ACD, width (ACW, area (ACA, and volume (ACV; (all p<0.001], narrower anterior chamber angle parameters [including angle opening distance (AOD750, trabecular-iris space area (TISA750, and angle recess area (ARA; (all p<0.001], higher iris curvature (ICURV (p = 0.003, and larger lens vaults (LV (p = 0.019. These anterior ocular biometric parameters were correlated with increasing age (p<0.01. Iris thickness (IT750 and iris area (IAREA were associated with age, ACW, and pupil diameter (all p<0.05, while choroidal thickness (CT was associated with age, gender, and axial length (all p<0.05. Univariate regression analysis showed that greater CT was significantly associated with smaller IAREA (p = 0.026.Compared with male eyes, female eyes had narrower anterior biometric parameters that correlated with increasing age, which would be helpful in explaining the higher prevalence of angle closure rates in the female gender and in aging people. Increased CT might be associated with smaller iris area; however, this possibility needs to be investigated in future studies before this conclusion is made.

  14. Wide-field optical coherence tomography based microangiography for retinal imaging

    Science.gov (United States)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  15. Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography and Visual Field Defects in Standard Automated White-on-White Perimetry versus Pulsar Perimetry.

    Science.gov (United States)

    Alnawaiseh, Maged; Hömberg, Lisann; Eter, Nicole; Prokosch, Verena

    2017-01-01

    To compare the structure-function relationships between retinal nerve fiber layer thickness (RNFLT) and visual field defects measured either by standard automated perimetry (SAP) or by Pulsar perimetry (PP). 263 eyes of 143 patients were prospectively included. Depending on the RNFLT, patients were assigned to the glaucoma group (group A: RNFL score 3-6) or the control group (group B: RNFL score 0-2). Structure-function relationships between RNFLT and mean sensitivity (MS) measured by SAP and PP were analyzed. Throughout the entire group, the MS assessed by PP and SAP correlated significantly with RNFLT in all sectors. In the glaucoma group, there was no significant difference between the correlations RNFL-SAP and RNFL-PP, whereas a significant difference was found in the control group. In the control group, the correlation between structure and function based on the PP data was significantly stronger than that based on SAP.

  16. Thickening of inner retinal layers in the parafovea after bariatric surgery in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Brynskov, Troels; Laugesen, Caroline S; Floyd, Andrea K

    2016-01-01

    . METHODS: We examined 51 patients with T2D 2 weeks before and 1, 3, 6 and 12 months after bariatric surgery. Retinal thickness was measured with optical coherence tomography and automated segmentation in the fovea, parafovea and perifovea in each retinal layer. Retinal vessels were semiautomatically...... measured in a zone 0.5-1 disc diameters from the optic disc. RESULTS: The total macula thickened with a peak after 6 months in both univariate (2.7 ± 0.4 μm, p

  17. Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa.

    Science.gov (United States)

    Greenstein, Vivienne C; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E; Greenberg, Jonathan P; Tsang, Stephen H; Hood, Donald C

    2012-02-01

    To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa. Twenty-one retinitis pigmentosa patients (21 eyes) with rings/arcs and 21 normal individuals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral-domain optical coherence tomography. The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial complex and outer segment plus retinal pigment epithelial complex layers were measured. Results were compared with measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence. Disruption/loss of the inner outer segment junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in eight eyes. For 19 eyes, outer segment plus and receptor plus RPE complex thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across, and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8, and 17.0 ± 2.4 dB, respectively. Structural and functional changes can occur inside the hyperfluorescent ring/arc in retinitis pigmentosa.

  18. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements.

    Science.gov (United States)

    Ng, Calista K L; Li, Noel X; Chee, Sheena; Prabhakar, Shyam; Kolatkar, Prasanna R; Jauch, Ralf

    2012-06-01

    Several Sox-Oct transcription factor (TF) combinations have been shown to cooperate on diverse enhancers to determine cell fates. Here, we developed a method to quantify biochemically the Sox-Oct cooperation and assessed the pairing of the high-mobility group (HMG) domains of 11 Sox TFs with Oct4 on a series of composite DNA elements. This way, we clustered Sox proteins according to their dimerization preferences illustrating that Sox HMG domains evolved different propensities to cooperate with Oct4. Sox2, Sox14, Sox21 and Sox15 strongly cooperate on the canonical element but compete with Oct4 on a recently discovered compressed element. Sry also cooperates on the canonical element but binds additively to the compressed element. In contrast, Sox17 and Sox4 cooperate more strongly on the compressed than on the canonical element. Sox5 and Sox18 show some cooperation on both elements, whereas Sox8 and Sox9 compete on both elements. Testing rationally mutated Sox proteins combined with structural modeling highlights critical amino acids for differential Sox-Oct4 partnerships and demonstrates that the cooperativity correlates with the efficiency in producing induced pluripotent stem cells. Our results suggest selective Sox-Oct partnerships in genome regulation and provide a toolset to study protein cooperation on DNA.

  19. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning

    Science.gov (United States)

    Fang, Leyuan; Yang, Liumao; Li, Shutao; Rabbani, Hossein; Liu, Zhimin; Peng, Qinghua; Chen, Xiangdong

    2017-06-01

    Detection and recognition of macular lesions in optical coherence tomography (OCT) are very important for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-instance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) construct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epiretinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for the cases with multiple lesions, which better assists macular disease diagnosis and treatment.

  20. Analysis of visual appearance of retinal nerve fibers in high resolution fundus images: a study on normal subjects.

    Science.gov (United States)

    Kolar, Radim; Tornow, Ralf P; Laemmer, Robert; Odstrcilik, Jan; Mayer, Markus A; Gazarek, Jiri; Jan, Jiri; Kubena, Tomas; Cernosek, Pavel

    2013-01-01

    The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  1. Curvature correction of retinal OCTs using graph-based geometry detection

    International Nuclear Information System (INIS)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-01-01

    In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods. (paper)

  2. Size of the Optic Nerve Head and Its Relationship with the Thickness of the Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer in Patients with Primary Open Angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Nobuko Enomoto

    2015-01-01

    Full Text Available Purpose. To evaluate the relationships among the optic nerve head (ONH area, macular ganglion cell complex (mGCC thickness, circumpapillary retinal nerve fiber layer (cpRNFL thickness, and visual field defects in patients with primary open angle glaucoma (POAG. Methods. This retrospective study included 90 eyes of 90 patients with POAG. The ONH area, rim area, mGCC thickness, and cpRNFL thickness were measured using optical coherence tomography. Mean deviation (MD was measured using standard automated perimetry. The relationships among clinical factors including age, refraction, the ONH area, the rim area, the mGCC thickness, the cpRNFL thickness, and MD were evaluated using correlation coefficients and multiple regression analyses. Results. The significant correlation of the ONH area with refraction (r=0.362, P<0.001, the mGCC thickness (r=0.225, P=0.033, and the cpRNFL thickness (r=0.253, P=0.016 was found. Multiple regression analysis showed that the ONH area, rim area, and MD were selected as significant contributing factors to explain the mGCC thickness and cpRNFL thickness. No factor was selected to explain MD. Conclusions. The ONH area, in other words, the disc size itself may affect the mGCC thickness and cpRNFL thickness in POAG patients.

  3. Multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in a zebrafish model of retinal vascular occlusion and remodeling

    Science.gov (United States)

    Li, Xiaoyue; Spitz, Kathleen; Bozic, Ivan; Tao, Yuankai K.

    2018-02-01

    Neovascularization in diabetic retinopathy (DR) and age-related macular degeneration (AMD) result in severe vision-loss and are two of the leading causes of blindness. The structural, metabolic, and vascular changes underlying retinal neovascularization are unknown and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a robust ophthalmological model because its retina has comparable structure to the human retina and its fecundity and life-cycle enable development of mutant phenotypes of human pathologies. Here, we perform multimodal imaging with OCT and fluorescence confocal scanning laser ophthalmoscopy (cSLO) to identify changes in retinal structure and function in a zebrafish model of vascular leakage. Transgenic zebrafish with EGFP tagged plasma protein were imaged longitudinally at six time points over two weeks to visualize vascular perfusion changes from diethylaminobenzaldehyde (DEAB) treatment. Complementary contrast from OCT-A perfusion maps and cSLO imaging of plasma protein EGFP shows vascular occlusions posttreatment. cSLO images confirm presence of vessels despite loss of OCT-A signal. Plasma protein EGFP contrast also shows significant changes in vessel structure as compared to baseline images. OCT structural volumes show empty vessel cross-sections confirming non-perfusion. In addition, we present algorithms for automated biometric identification of OCT datasets using OCT-A vascular patterns in the presence of significant vascular perfusion changes. These results establish a framework for large-scale in vivo assays to identify novel anti-angiogenic compounds and understand the mechanisms ofneovascularization associated with retinal ocular pathologies.

  4. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    Science.gov (United States)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  5. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.

    Science.gov (United States)

    Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David

    2016-05-10

    Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.

  6. Rapid Onset of Retinal Toxicity From High-Dose Hydroxychloroquine Given for Cancer Therapy.

    Science.gov (United States)

    Leung, Loh-Shan B; Neal, Joel W; Wakelee, Heather A; Sequist, Lecia V; Marmor, Michael F

    2015-10-01

    To report rapid onset of retinal toxicity in a series of patients followed on high-dose (1000 mg daily) hydroxychloroquine during an oncologic clinical trial studying hydroxychloroquine with erlotinib for non-small cell lung cancer. Retrospective observational case series. Ophthalmic surveillance was performed on patients in a multicenter clinical trial testing high-dose (1000 mg daily) hydroxychloroquine for advanced non-small cell lung cancer. The US Food & Drug Administration-recommended screening protocol included only visual acuity testing, dilated fundus examination, Amsler grid testing, and color vision testing. In patients seen at Stanford, additional sensitive screening procedures were added at the discretion of the retinal physician: high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, Humphrey visual field (HVF) testing, and multifocal electroretinography (mfERG). Out of the 7 patients having exposure of at least 6 months, 2 developed retinal toxicity (at 11 and 17 months of exposure). Damage was identified by OCT imaging, mfERG testing, and, in 1 case, visual field testing. Fundus autofluorescence imaging remained normal. Neither patient had symptomatic visual acuity loss. These cases show that high doses of hydroxychloroquine can initiate the development of retinal toxicity within 1-2 years. Although synergy with erlotinib is theoretically possible, there are no prior reports of erlotinib-associated retinal toxicity despite over a decade of use in oncology. These results also suggest that sensitive retinal screening tests should be added to ongoing and future clinical trials involving high-dose hydroxychloroquine to improve safety monitoring and preservation of vision. Published by Elsevier Inc.

  7. Application of OCT angiography in ophthalmology

    Directory of Open Access Journals (Sweden)

    Ai-Ping Yang

    2017-11-01

    Full Text Available Optical coherence tomography angiography(OCTAis a new technology of angiography in recent years. In addition to the advantages of traditional OCT, it can observe blood flow in different retinal and choroidal segmentation slab. By using the pseudo-color, abnormal vascular structure can be distinguished from normal vascular structure of the retina. Dye injection is not needed with OCTA, which is different from fundus fluorescein angiography(FFAand indocyanine green angiography(ICGA. OCTA provides more and more accurate blood flow information. However, like other biometric technology, OCTA has its limitations and shortcomings. This review will analyze and summarize the operating principle of OCTA, its application in ophthalmology, as well as its advantages and limitations.

  8. Correlation of retinal nerve fibre layer and macular thickness with serum uric acid among type 2 diabetes mellitus.

    Science.gov (United States)

    Vinuthinee-Naidu, Munisamy-Naidu; Zunaina, Embong; Azreen-Redzal, Anuar; Nyi-Nyi, Naing

    2017-06-14

    Uric acid is a final breakdown product of purine catabolism in humans. It's a potent antioxidant and can also act as a pro-oxidant that induces oxidative stress on the vascular endothelial cells, thus mediating progression of diabetic related diseases. Various epidemiological and experimental evidence suggest that uric acid has a role in the etiology of type 2 diabetes mellitus. We conducted a cross-sectional study to evaluate the correlation of retinal nerve fibre layer (RNFL) and macular thickness with serum uric acid in type 2 diabetic patients. A cross-sectional study was conducted in the Eye Clinic, Hospital Universiti Sains Malaysia, Kelantan between the period of August 2013 till July 2015 involving type 2 diabetes mellitus patients with no diabetic retinopathy and with non-proliferative diabetic retinopathy (NPDR). An evaluation for RNFL and macular thickness was measured using Spectralis Heidelberg optical coherence tomography. Six ml of venous blood was taken for the measurement of serum uric acid and glycosylated haemoglobin (HbA1 C ). A total of 180 diabetic patients were recruited (90 patients with no diabetic retinopathy and 90 patients with NPDR) into the study. The mean level of serum uric acid for both the groups was within normal range and there was no significance difference between the two groups. Based on gender, both male and female gender showed significantly higher level of mean serum uric acid in no diabetic retinopathy group (p = 0.004 respectively). The mean serum uric acid was significantly higher in patient with HbA1 C  uric acid in both the groups. Serum uric acid showed a poor correlation with RNFL and macular thickness among type 2 diabetic patients.

  9. A Simplified Method to Measure Choroidal Thickness Using Adaptive Compensation in Enhanced Depth Imaging Optical Coherence Tomography

    Science.gov (United States)

    Gupta, Preeti; Sidhartha, Elizabeth; Girard, Michael J. A.; Mari, Jean Martial; Wong, Tien-Yin; Cheng, Ching-Yu

    2014-01-01

    Purpose To evaluate a simplified method to measure choroidal thickness (CT) using commercially available enhanced depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT). Methods We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class correlation coefficient (ICC) and Bland-Altman plot analyses. Results Using adaptive compensation both the intra-grader reliability (ICC: 0.95 to 0.97) and inter-grader reliability (ICC: 0.93 to 0.97) were perfect for all five locations of CT. However, with the conventional technique of manual CT measurements using built-in callipers provided with the Heidelberg explorer software, the intra- (ICC: 0.87 to 0.94) and inter-grader reliability (ICC: 0.90 to 0.93) for all the measured locations is lower. Using adaptive compensation, the mean differences (95% limits of agreement) for intra- and inter-grader sub-foveal CT measurements were −1.3 (−3.33 to 30.8) µm and −1.2 (−36.6 to 34.2) µm, respectively. Conclusions The measurement of CT obtained from EDI SD-OCT using our simplified method was highly reliable and efficient. Our method is an easy and practical approach to improve the quality of choroidal images and the precision of CT measurement. PMID:24797674

  10. Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography.

    Science.gov (United States)

    Ahlers, C; Simader, C; Geitzenauer, W; Stock, G; Stetson, P; Dastmalchi, S; Schmidt-Erfurth, U

    2008-02-01

    A limited number of scans compromise conventional optical coherence tomography (OCT) to track chorioretinal disease in its full extension. Failures in edge-detection algorithms falsify the results of retinal mapping even further. High-definition-OCT (HD-OCT) is based on raster scanning and was used to visualise the localisation and volume of intra- and sub-pigment-epithelial (RPE) changes in fibrovascular pigment epithelial detachments (fPED). Two different scanning patterns were evaluated. 22 eyes with fPED were imaged using a frequency-domain, high-speed prototype of the Cirrus HD-OCT. The axial resolution was 6 mum, and the scanning speed was 25 kA scans/s. Two different scanning patterns covering an area of 6 x 6 mm in the macular retina were compared. Three-dimensional topographic reconstructions and volume calculations were performed using MATLAB-based automatic segmentation software. Detailed information about layer-specific distribution of fluid accumulation and volumetric measurements can be obtained for retinal- and sub-RPE volumes. Both raster scans show a high correlation (p0.89) of measured values, that is PED volume/area, retinal volume and mean retinal thickness. Quality control of the automatic segmentation revealed reasonable results in over 90% of the examinations. Automatic segmentation allows for detailed quantitative and topographic analysis of the RPE and the overlying retina. In fPED, the 128 x 512 scanning-pattern shows mild advantages when compared with the 256 x 256 scan. Together with the ability for automatic segmentation, HD-OCT clearly improves the clinical monitoring of chorioretinal disease by adding relevant new parameters. HD-OCT is likely capable of enhancing the understanding of pathophysiology and benefits of treatment for current anti-CNV strategies in future.

  11. Intravitreal injection of ziv-aflibercept in the treatment of choroidal and retinal vascular diseases.

    Science.gov (United States)

    HodjatJalali, Kamran; Mehravaran, Shiva; Faghihi, Hooshang; Hashemi, Hassan; Kazemi, Pegah; Rastad, Hadith

    2017-09-01

    To investigate the short-term outcomes after intravitreal injection of ziv-aflibercept in the treatment of choroidal and retinal vascular diseases. Thirty-four eyes of 29 patients with age-related macular degeneration (AMD), diabetic retinopathy, and retinal vein occlusion (RVO) received a single dose intravitreal injection of 0.05 ml ziv-aflibercept (1.25 mg). Visual acuity, spectral domain optical coherence tomography (SD-OCT) activity, and possible side effects were assessed before and at 1 week and 1 month after the intervention. At 1 month after treatment, mean central macular thickness (CMT) significantly decreased from 531.09 μm to 339.5 μm ( P  < 0.001), and no signs of side effects were observed in any subject. All patients responded to treatment in terms of reduction in CMT. The improvement in visual acuity was statistically non-significant. Our findings suggest that a single dose intravitreal injection of ziv-aflibercept may have acceptable relative safety and efficacy in the treatment of patients with intraocular vascular disease. The trial was registered in the Iranian Registry of Clinical Trials (IRCT2015081723651N1).

  12. Analysis of Visual Appearance of Retinal Nerve Fibers in High Resolution Fundus Images: A Study on Normal Subjects

    Directory of Open Access Journals (Sweden)

    Radim Kolar

    2013-01-01

    Full Text Available The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL. This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  13. Non-invasive retinal imaging in mice with fluorescent Scanning Laser Ophthalmoscopy and Fourier Domain Optical Coherence Tomography

    OpenAIRE

    Hossein-Javaheri, Nima

    2010-01-01

    Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. The aim of this thesis is to develop multi-modal non-invasive imaging technology for studying retinal degeneration and gene therapy in mice. We have constructed a FD-OCT prototype and combined it with a Scanning Laser Ophthalmoscope (SLO) to permit real time alignment of the retinal field of...

  14. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats☆

    Science.gov (United States)

    Li, Guang; Garza, Bryan De La; Shih, Yen-Yu I.; Muir, Eric R.; Duong, Timothy Q.

    2013-01-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. PMID:22721720

  15. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats.

    Science.gov (United States)

    Li, Guang; De La Garza, Bryan; Shih, Yen-Yu I; Muir, Eric R; Duong, Timothy Q

    2012-08-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Optical coherence tomography findings of quinine poisoning

    Directory of Open Access Journals (Sweden)

    John Christoforidis

    2011-01-01

    Full Text Available John Christoforidis, Robert Ricketts, Theodore Loizos, Susie ChangThe Ohio State University College of Medicine, Columbus, OH, USAPurpose: To report a case of acute quinine poisoning, document acute and chronic macular changes with optical coherence tomography imaging and fluorescein angiography (FA, and to review the literature on ocular toxicity of quinine.Methods: A 32-year-old white female presented to our Emergency Department after ingesting over 7.5 g of quinine. She underwent a complete ophthalmologic examination, fluorescein angiography, Stratus time-domain optical coherence tomography (OCT, and electroretinography at 72 hours and 15 months postingestion. Stratus time-domain and Cirrus spectral-domain OCT, fundus autofluorescence, and FA were obtained at 28 months postingestion.Results: Fluorescein angiography at 72 hours postingestion revealed normal filling times and vasculature. OCT showed marked thickening of the inner retina bilaterally. At 15 and 28 months follow-up, fundus photography and fluorescein angiography demonstrated optic nerve pallor, severely attenuated retinal vessels while OCT showed inner retinal atrophy. Fundus autofluorescence did not reveal any retinal pigmentary abnormalities.Conclusions: Quinine toxicity as seen by OCT reveals increased thickness with inner retinal hyperreflectivity acutely with development of significant retinal atrophy in the long-term. Fundus autofluorescence reveals an intact retinal pigment epithelial layer at 28 months. These findings suggest that quinine poisoning may produce a direct toxic effect on the inner retina in the acute phase resulting in long-term retinal atrophy.Keywords: retinal, optical coherence tomography, quinine toxicity 

  17. High-resolution Fourier-Domain Optical Coherence Tomography and Microperimetric Findings After Macula-off Retinal Detachment Repair

    Science.gov (United States)

    Smith, Allison J.; Telander, David G.; Zawadzki, Robert J.; Choi, Stacey S.; Morse, Lawrence S.; Werner, John S.; Park, Susanna S.

    2009-01-01

    Objective To evaluate the morphologic changes in the macula of subjects with repaired macula-off retinal detachment (RD) using high-resolution Fourier-domain optical coherence tomography (FD OCT) and to perform functional correlation in a subset of patients using microperimetry (MP-1). Design Prospective observational case series. Participants Seventeen eyes from 17 subjects who had undergone anatomically successful repair for macula-off, rhegmatogenous RD at least 3 months earlier and without visually significant maculopathy on funduscopy. Methods FD OCT with axial and transverse resolution of 4.5 μm and 10 to 15 μm, respectively, was used to obtain rapid serial B-scans of the macula, which were compared with that from Stratus OCT. The FD OCT B-scans were used to create a 3-dimensional volume, from which en face C-scans were created. Among 11 patients, MP-1 was performed to correlate morphologic changes with visual function. Main Outcome Measures Stratus OCT scans, FD OCT scans, and MP-1 data. Results Stratus OCT and FD OCT images of the macula were obtained 3 to 30 months (mean 7 months) postoperatively in all eyes. Although Stratus OCT revealed photoreceptor disruption in 2 eyes (12%), FD OCT showed photoreceptor disruption in 13 eyes (76%). This difference was statistically significant (Pmacula-off RD repair is a common abnormality in the macula that is detected better with FD OCT than Stratus OCT. A good correlation between MP-1 abnormality and presence of photoreceptor disruption or subretinal fluid on FD OCT demonstrates that these anatomic abnormalities contribute to decreased visual function after successful repair. PMID:18672289

  18. Visual advantage in deaf adults linked to retinal changes.

    Directory of Open Access Journals (Sweden)

    Charlotte Codina

    Full Text Available The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14 and hearing (N = 15 adults using Optical Coherence Tomography (OCT, an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

  19. Loosely coupled level sets for retinal layers and drusen segmentation in subjects with dry age-related macular degeneration

    Science.gov (United States)

    Novosel, Jelena; Wang, Ziyuan; de Jong, Henk; Vermeer, Koenraad A.; van Vliet, Lucas J.

    2016-03-01

    Optical coherence tomography (OCT) is used to produce high-resolution three-dimensional images of the retina, which permit the investigation of retinal irregularities. In dry age-related macular degeneration (AMD), a chronic eye disease that causes central vision loss, disruptions such as drusen and changes in retinal layer thicknesses occur which could be used as biomarkers for disease monitoring and diagnosis. Due to the topology disrupting pathology, existing segmentation methods often fail. Here, we present a solution for the segmentation of retinal layers in dry AMD subjects by extending our previously presented loosely coupled level sets framework which operates on attenuation coefficients. In eyes affected by AMD, Bruch's membrane becomes visible only below the drusen and our segmentation framework is adapted to delineate such a partially discernible interface. Furthermore, the initialization stage, which tentatively segments five interfaces, is modified to accommodate the appearance of drusen. This stage is based on Dijkstra's algorithm and combines prior knowledge on the shape of the interface, gradient and attenuation coefficient in the newly proposed cost function. This prior knowledge is incorporated by varying the weights for horizontal, diagonal and vertical edges. Finally, quantitative evaluation of the accuracy shows a good agreement between manual and automated segmentation.

  20. Relation between macular morphology and treatment frequency during twelve months with ranibizumab for diabetic macular edema.

    Directory of Open Access Journals (Sweden)

    Yuki Mori

    Full Text Available To investigate whether baseline optical coherence tomography (OCT parameters can predict the treatment frequency of intravitreal ranibizumab (IVR injections during the first year in patients with diabetic macular edema (DME treated with pro re nata (PRN IVR injections.We retrospectively reviewed 68 eyes of 63 patients with center-involved DME who received IVR injections for 12 months or longer according to three monthly IVR injections followed by the PRN dosing. We measured the mean retinal thicknesses in the individual subfields of the Early Treatment Diabetic Retinopathy Study grid and evaluated the qualitative and quantitative parameters on OCT sectional images. We investigated the relationship between these OCT parameters at baseline and the number of IVR injections during the 12-month follow-up.Three loading doses were administered to 10 eyes; four to seven annualized IVR injections were administered to 34 eyes. The number of eyes that received IVR injections decreased gradually until month 6 and was almost constant from months 7 to 11. No relationships were seen between the treatment frequency and baseline systemic factors and the ophthalmic examination findings. Univariate analyses showed that the number of IVR injections during the first year was associated with the mean retinal thickness in the individual subfields and the transverse length of the disrupted external limiting membrane (ELM and ellipsoid zone of the photoreceptors. Multivariate analysis showed a significant association with the thickness in the inferior subfield alone. The treatment frequency during the 12-month follow-up was not correlated with improved visual acuity but was associated with the decrease in the central subfield thickness and disrupted ELM.The retinal thickness in the inferior subfield predicts the treatment frequency during the first year in eyes with DME treated with PRN IVR injections.

  1. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  2. Acute Retinal Pigment Epitheliitis: Spectral Domain Optical Coherence Tomography, Fluorescein Angiography, and Autofluorescence Findings

    Directory of Open Access Journals (Sweden)

    Tuğba Aydoğan

    2015-01-01

    Full Text Available A 17-year-old presented with central and paracentral scotomas in his right eye for one week. There was no remarkable medical or ocular history. Blood analyses were within normal range. At presentation both eyes’ best-corrected visual acuities were 20/20. Slit-lamp examination result was normal. Fundus examination revealed yellow-white hypopigmented areas in the macula. Fluorescein angiography (FA showed hypofluorescence surrounded by ring of hyperfluorescence. Fundus autofluorescence (FAF was slightly increased. Spectral domain optical coherence tomography (SD-OCT showed disruption of IS/OS junction with expansion of abnormal hyperreflectivity from retinal pigment epithelium to the outer nuclear layer (ONL. One month later fundus examination showed disappearance of the lesions. FA revealed transmission hyperfluorescence. FAF showed increased autofluorescence and pigment clumping. Hyperreflective band in SD-OCT disappeared. Loss of photoreceptor segment layers was observed in some of the macular lesions. The diagnosis of acute retinal pigment epitheliitis can be challenging after disappearance of fundus findings. FA, FAF, and SD-OCT are important tests for diagnosis after resolution of the disease.

  3. Multiple evanescent white dot syndrome associated with retinal vasculitis

    Directory of Open Access Journals (Sweden)

    Takahashi A

    2015-09-01

    Full Text Available Akihiro Takahashi, Wataru Saito, Yuki Hashimoto, Susumu Ishida Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan Purpose: A recent study revealed thickening of the inner retinal layers in acute stage of multiple evanescent white dot syndrome (MEWDS; however, the pathogenesis is still unknown. We report two cases with MEWDS whose funduscopy showed obvious retinal vasculitis. Methods: Case reports. Results: Healthy myopic 16- and 27-year-old women were the cases under study. In both cases, funduscopic examination revealed multiple, faint, small, subretinal white dots at the posterior pole to the midperiphery and macular granularity oculus dexter. Retinal vascular sheathing was also observed at midperiphery. Late-phase fluorescein angiography revealed leakages corresponding to the vascular sheathing. Enhanced depth imaging optical coherence tomography revealed the discontinuity of the ellipsoid zone corresponding to the white dots and increased macular choroidal thickness. One month later, these white dots and retinal sheathing spontaneously resolved in both cases. Three months later, impairments of the outer retinal morphology and the visual acuity were restored. Conclusion: These results suggest that retinal vasculitis possibly plays a role in the pathogenesis of thickened inner retinal layers in acute stage of MEWDS. Keywords: enhanced depth imaging optical coherence tomography, choroidal thickness, inner retinal layer, retinal vascular sheathing

  4. Reproducibility of Corneal Graft Thickness measurements with COLGATE in patients who have undergone DSAEK (Descemet Stripping Automated Endothelial Keratoplasty

    Directory of Open Access Journals (Sweden)

    Wong Melissa HY

    2012-08-01

    Full Text Available Abstract Background The CorneaL GrAft Thickness Evaluation (COLGATE system was recently developed to facilitate the evaluation of corneal graft thickness from OCT images. Graft thickness measurement can be a surrogate indicator for detecting graft failure or success. The purpose of this study was to determine the reproducibility of the COLGATE system in measuring DSAEK graft area between two observers. Methods This was a prospective case series in which 50 anterior segment OCT images of patients who had undergone DSAEK in either eye were analysed. Two observers (MW, AC independently obtained the image analysis for the graft area using both semi automated and automated method. One week later, each observer repeated the analysis for the same set of images. Bland-Altman analysis was performed to analyze inter and intra observer agreement. Results There was strong intraobserver correlation between the 2 semi automated readings obtained by both observers. (r = 0.936 and r = 0.962. Intraobserver ICC for observer 1 was 0.936 (95% CI 0.890 to 0.963 and 0.967 (95% CI 0.942 to 0.981 for observer 2. Likewise, there was also strong interobserver correlation (r = 0.913 and r = 0.969. The interobserver ICC for the first measurements was 0.911 (95% CI 0.849 to 0.949 and 0.968 (95% CI 0.945 to 0.982 for the second. There was statistical difference between the automatic and the semi automated readings for both observers (p = 0.006, p = 0.003. The automatic readings gave consistently higher values than the semi automated readings especially in thin grafts. Conclusion The analysis from the COLGATE programme can be reproducible between different observers. Care must be taken when interpreting the automated analysis as they tend to over estimate measurements.

  5. Retinal oximetry during treatment of retinal vein occlusion by ranibizumab in patients with high blood pressure and dyslipidemia.

    Science.gov (United States)

    Keilani, C; Halalchi, A; Wakpi Djeugue, D; Regis, A; Abada, S

    2016-12-01

    In the present study, we examined retinal vascular oxygen saturation in patients with retinal vein occlusion (RVO), high blood pressure (HBP) and dyslipidemia, before and during intravitreal vascular endothelial growth factor (VEGF) injection (ranibizumab). We retrospectively reviewed the medical records of six patients with visual acuity (VA) reduced by macular edema (ME) secondary to RVO with HBP and dyslipidemia, who underwent intravitreal anti-VEGF injection between October 2014 and February 2015 in the department of ophthalmology of François-Quesnay Hospital at Mantes-la-Jolie (France). The main inclusion criterion was the presence of RVO with ME and decreased VA. The primary endpoint was improvement of retinal venous oxygen saturation in patients with RVO before and 3 months after intravitreal ranibizumab injection. Secondary outcomes were improvement of retinal arterial oxygen saturation, improvement of best-corrected visual acuity (BCVA) on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, regression of ME measured by the central macular thickness (CMT) in nm and studying the correlation between blood pressure (BP) and retinal venous oxygen saturation before and after ranibizumab. Six eyes of six patients were included. Before treatment, the mean (standard deviation [SD]) of the retinal venous saturation (%) was 38.1±14.2. Three months after the injections, the mean (SD) of the retinal venous saturation (%) increased statistically significantly 49.2±11 (P=0.03). In this study, retinal venous oxygen saturation in patients with RVO, HBP and dyslipidemia was partially normalized during intravitreal ranibizumab treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Retinal nerve fibre layer thickness of black and Indian myopic students at the University of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Chanel Murugan

    2015-06-01

    Full Text Available Aim: To compare retinal nerve fibre layer (RNFL thickness in black and Indian myopic students at the University of KwaZulu-Natal. Method: Eighty (40 black and 40 Indian participants of both genders and aged between 19 and 24 years (mean and standard deviation: 21 ± 1.7 years were included in the study. Refractive errors were assessed with the Nidek AR-310A auto-refractor and via subjective refraction. RNFL thicknesses were then measured using the iVue-100 optical coherence tomography device. Axial lengths were measured with the Nidek US-500 A-scan ultrasound device. Data were analysed by descriptive statistics, t-tests, Pearson’s correlation coefficients and regression analysis. Results: The mean myopic spherical equivalent was significantly more negative amongst the Indian (-2.42 D ± 2.22 D than amongst the black (-1.48 D ± 1.13 D (p = 0.02 participants.The mean axial length was greater amongst the black (23.35 mm ± 0.74 mm than amongst the Indian (23.18 mm ± 0.87 mm participants but the difference was not significant. In the total sample (n = 80, the average global RNFL thickness ranged from 87 μm to 123 μm (105 μm ±9 μm. Mean global RNFL thickness was slightly greater amongst black (108 μm ± 7 μm than amongst Indian (102 μm ± 9 μm (p = 0.00 participants. Mean global RNFL thickness was similar for male (106 μm ± 7 μm and female (105 μm ± 10 μm (p = 0.79 participants.A positive and significant association between myopic spherical equivalent and global RNFL thickness was found for the total sample (r = 0.36, p = 0.00 and for Indians (r = 0.33, p = 0.04but not for the black (r = 0.25, p = 0.13 participants. There was a negative and significant correlation between axial length and global RNFL thickness amongst the Indian participants (r = -0.34, p = 0.03 but not amongst the total sample (r = -0.12, p = 0.30 or the black (r = 0.06, p = 0.73 participants. Conclusion: The findings suggest that racial differences in RNFL

  7. Correlation between Retinal Vessel Calibre and Neurodegeneration in Patients with Type 2 Diabetes Mellitus in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR)

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Soegaard Hansen, Rasmus; Simó, Rafael

    2016-01-01

    .04). In a multivariable linear regression model, CRAE was associated with macular ganglion cell layer thickness (coefficient 0.27 per micrometre, p correlated with macular retinal thickness (coefficient -0.07 per micrometre, p = 0.04) and retinal nerve fibre layer thickness at the optic disc......PURPOSE: To investigate the correlation between retinal vessel calibre and measurements of neurodegeneration in patients with type 2 diabetes (T2D) and no or early diabetic retinopathy (DR). METHODS: Baseline data on 440 patients with T2D from the EUROCONDOR clinical trial were used. DR was graded...... (coefficient 0.32 per micrometre, p

  8. Digital Integration Method (DIM): A new method for the precise correlation of OCT and fluorescein angiography

    International Nuclear Information System (INIS)

    Hassenstein, A.; Richard, G.; Inhoffen, W.; Scholz, F.

    2007-01-01

    The new integration method (DIM) provides for the first time the anatomically precise integration of the OCT-scan position into the angiogram (fluorescein angiography, FLA), using reference marker at corresponding vessel crossings. Therefore an exact correlation of angiographic and morphological pathological findings is possible und leads to a better understanding of OCT and FLA. Occult findings in FLA were the patient group which profited most. Occult leakages could gain additional information using DIM such as serous detachment of the retinal pigment epithelium (RPE) in a topography. So far it was unclear whether the same localization in the lesion was examined by FLA and OCT especially when different staff were performing and interpreting the examination. Using DIM this problem could be solved using objective markers. This technique is the requirement for follow-up examinations by OCT. Using DIM for an objective, reliable and precise correlation of OCT and FLA-findings it is now possible to provide the identical scan-position in follow-up. Therefore for follow-up in clinical studies it is mandatory to use DIM to improve the evidence-based statement of OCT and the quality of the study. (author) [de

  9. 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement

    Directory of Open Access Journals (Sweden)

    Yankui Sun

    2016-03-01

    Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.

  10. Ocular changes in primary hypothyroidism.

    Science.gov (United States)

    Ozturk, Banu T; Kerimoglu, Hurkan; Dikbas, Oguz; Pekel, Hamiyet; Gonen, Mustafa S

    2009-12-29

    To determine the ocular changes related to hypothyrodism in newly diagnosed patients without orbitopathy. Thirty-three patients diagnosed to have primary overt hypothyroidism were enrolled in the study. All subjects were assigned to underwent central corneal thickness (CCT), anterior chamber volume, depth and angle measurements with the Scheimpflug camera (Pentacam, Oculus) and cup to disc ratio (C/D), mean retinal thickness and mean retinal nerve fiber layer (RNFL) thickness measurements with optical coherence tomography (OCT) in addition to ophthalmological examination preceeding the replacement therapy and at the 1(st), 3(rd )and 6(th )months of treatment. The mean age of the patients included in the study were 40.58 +/- 1.32 years. The thyroid hormone levels return to normal levels in all patients during the follow-up period, however the mean intraocular pressure (IOP) revealed no significant change. The mean CCT was 538.05 +/- 3.85 mu initially and demonstrated no statistically significant change as the anterior chamber volume, depth and angle measurements did. The mean C/D ratio was 0.29 +/- 0.03 and the mean retinal thickness was 255.83 +/- 19.49 mu initially and the treatment did not give rise to any significant change. The mean RNFL thickness was also stable during the control visits, so no statistically significant change was encountered. Neither hypothyroidism, nor its replacement therapy gave rise to any change of IOP, CCT, anterior chamber parameters, RNFL, retinal thickness and C/D ratio.

  11. En-face optical coherence tomography angiography of neovascularization elsewhere in hemicentral retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Sogawa K

    2015-10-01

    Full Text Available Kenji Sogawa, Taiji Nagaoka, Akihiro Ishibazawa, Atsushi Takahashi, Tomofumi Tani, Akitoshi Yoshida Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan Purpose: To evaluate how the growth of neovascularization elsewhere (NVE was delineated in an eye with hemicentral retinal vein occlusion (CRVO using optical coherence tomography (OCT angiography. Patients and methods: We examined a 64-year-old man diagnosed with hemi-CRVO. The area around the occluded vein was scanned using a spectral-domain OCT device (RTVue XR Avanti. Blood flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA algorithm. Color fundus photography, fluorescein angiography (FA, and OCT angiography examinations were performed at the first visit and at 3 and 6 months postpresentation. Results: At the first visit, FA revealed delayed retinal venous filling and extensive areas of capillary nonperfusion. The patient underwent a trial of intravitreal ranibizumab injection (0.5 mg/0.05 mL for the treatment of macular edema. At 3 months postpresentation, there was no NVE around the occluded vein in the en-face SSADA image, but at 6 months, NVE appeared on the occluded veins. The en-face SSADA image showed the NVE structure in the fibrovascular membrane on the occluded vein more clearly than FA images. Conclusion: OCT angiography clearly visualized the sprouting of NVE in an eye with hemi-CRVO. New findings of the vascular structure of NVE in hemi-CRVO were revealed using the en-face SSADA algorithm. Keywords: OCT angiography, hemi-CRVO, NVE

  12. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  13. Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry

    Science.gov (United States)

    Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema

    2018-01-01

    Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196

  14. Accuracy of Corneal Thickness by Swept-Source Optical Coherence Tomography and Scheimpflug Camera in Virgin and Treated Fuchs Endothelial Dystrophy.

    Science.gov (United States)

    Arnalich-Montiel, Francisco; Ortiz-Toquero, Sara; Auladell, Clara; Couceiro, Ana

    2018-06-01

    To assess intraobserver repeatability, intersession reproducibility, and agreement of swept-source Fourier-domain optical coherence tomography (SS-OCT) and the Scheimpflug camera in measuring corneal thickness in virgin and grafted eyes with Fuchs endothelial corneal dystrophy (FECD). Thirty-six control eyes, 35 FECD eyes, 30 FECD with corneal edema eyes, 25 Descemet stripping automated endothelial keratoplasty (DSAEK) eyes, and 29 Descemet membrane endothelial keratoplasty (DMEK) eyes were included. The apical center, pupillary center, and thinnest corneal thickness were determined in 3 consecutive images and repeated 2 weeks later. Repeatability and reproducibility coefficients, intraclass correlation coefficients, and 95% limits of agreement (LOA) between measurements were calculated. Agreement between devices was assessed using Bland-Altman analysis. Corneal thickness measurements were highly reproducible and repeatable with both systems. SS-OCT showed better repeatability in all corneal locations in the normal, FECD, FECD with edema, DSAEK, and DMEK groups (coefficient of variation ≤0.60%, ≤0.36%, ≤0.43%, ≤1.09%, and ≤0.48%, respectively) than the Scheimpflug (coefficient of variation ≤1.15%, ≤0.92%, ≤1.10%, ≤1.25%, and ≤1.14%, respectively). Between-session 95% LOA for SS-OCT was less than 3% for all groups except for the FECD with edema group, being almost double using the Scheimpflug camera. Differences between instruments were statistically significant in all groups and locations (P group (P ≤ 0.51); however, SS-OCT underestimated all measurements. SS-OCT provides better reproducible and repeatable measurements of corneal thickness than those obtained with the Scheimpflug camera in patients with FECD or an endothelial transplant. Variations between examinations higher than the 95% LOA observed in our study should raise awareness of changes in the endothelial function.

  15. Quantification of retinal tangential movement in epiretinal membranes

    DEFF Research Database (Denmark)

    Kofod, Mads; la Cour, Morten

    2012-01-01

    To describe a technique of quantifying retinal vessel movement in eyes with epiretinal membrane (ERM) and correlate the retinal vessel movement with changes in best-corrected visual acuity (BCVA), central macular thickness (CMT), and patients' subjective reports about experienced symptoms (sympto...

  16. Measurement of Retinal Sensitivity on Tablet Devices in Age-Related Macular Degeneration.

    Science.gov (United States)

    Wu, Zhichao; Guymer, Robyn H; Jung, Chang J; Goh, Jonathan K; Ayton, Lauren N; Luu, Chi D; Lawson, David J; Turpin, Andrew; McKendrick, Allison M

    2015-06-01

    We compared measurements of central retinal sensitivity on a portable, low-cost tablet device to the established method of microperimetry in age-related macular degeneration (AMD). A customized test designed to measure central retinal sensitivity (within the central 1° radius) on a tablet device was developed using an open-source platform called PsyPad. A total of 30 participants with AMD were included in this study, and all participants performed a practice test on PsyPad, followed by four tests of one eye and one test of the other eye. Participants then underwent standardized microperimetry examinations in both eyes. The average test duration on PsyPad was 53.9 ± 7.5 seconds, and no significant learning effect was observed over the examinations performed ( P = 1.000). The coefficient of repeatability of central retinal sensitivity between the first two examinations on PsyPad was ±1.76 dB. The mean central retinal sensitivity was not significantly different between PsyPad (25.7 ± 0.4 dB) and microperimetry (26.1 ± 0.4 dB, P = 0.094), and the 95% limits of agreement between the two measures were between -4.12 and 4.92 dB. The measurements of central retinal sensitivity can be performed effectively using a tablet device, displaying reasonably good agreement with those obtained using the established method of microperimetry. These findings highlight the potential of tablet devices as low-cost and portable tools for developing and performing visual function measures that can be easily and widely implemented.

  17. Optical coherence tomography evaluation of retinal nerve fiber layer in longitudinally extensive transverse myelitis

    Directory of Open Access Journals (Sweden)

    Frederico C. Moura

    2011-02-01

    Full Text Available OBJECTIVE: To compare optical coherence tomography (OCT measurements on the retinal nerve fiber layer (RNFL of healthy controls and patients with longitudinally extensive transverse myelitis (LETM without previous optic neuritis. METHOD: Twenty-six eyes from 26 patients with LETM and 26 control eyes were subjected to automated perimetry and OCT for comparison of RNFL measurements. RESULTS: The mean deviation values from perimetry were significantly lower in patients with LETM than in controls (p<0.0001. RNFL measurements in the nasal quadrant and in the 3-o'clock segment were significantly smaller in LETM eyes than in controls. (p=0.04 and p=0.006, respectively. No significantly differences in other RNFL measurements were found. CONCLUSION: Patients with LETM may present localized RNFL loss, particularly on the nasal side of the optic disc, associated with slight visual field defects, even in the absence of previous episodes of optic neuritis. These findings emphasize the fact that patients with LETM may experience attacks of subclinical optic nerve damage.

  18. [SD-OCT As screening test for hydroxychloroquine retinopathy: The «flying saucer» sign].

    Science.gov (United States)

    Asensio-Sánchez, V M

    2015-07-01

    Two asymptomatic women treated with hydroxychloroquine 200mg every day for 8 and 16 years developed retinal toxicity. Patient 1 was found to have a normal fundus and autofluorescence examination. Patient 2 was found to have a completely normal fundus examination. Fluorescein angiography shows parafoveal hyperfluorescence, and autofluorescence shows a minimal decrease in signal in the same region. In both patients the SD-OCT shows disruption of the ellipsoid zone in parafoveal region («flying saucer» sign). SD-OCT findings in the retina can identify hydroxychloroquine retinopathy in asymptomatic patients. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    Science.gov (United States)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  20. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  1. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Directory of Open Access Journals (Sweden)

    Ming-Wai Poon

    Full Text Available A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs. Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2 reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%. Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs. This cell type may also have advantages in retinal pigmented epithelial differentiation.

  2. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Science.gov (United States)

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  3. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    Science.gov (United States)

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Ganglion cell loss in relation to visual disability in multiple sclerosis.

    Science.gov (United States)

    Walter, Scott D; Ishikawa, Hiroshi; Galetta, Kristin M; Sakai, Reiko E; Feller, Daniel J; Henderson, Sam B; Wilson, James A; Maguire, Maureen G; Galetta, Steven L; Frohman, Elliot; Calabresi, Peter A; Schuman, Joel S; Balcer, Laura J

    2012-06-01

    We used high-resolution spectral-domain optical coherence tomography (SD-OCT) with retinal segmentation to determine how ganglion cell loss relates to history of acute optic neuritis (ON), retinal nerve fiber layer (RNFL) thinning, visual function, and vision-related quality of life (QOL) in multiple sclerosis (MS). Cross-sectional study. A convenience sample of patients with MS (n = 122; 239 eyes) and disease-free controls (n = 31; 61 eyes). Among MS eyes, 87 had a history of ON before enrollment. The SD-OCT images were captured using Macular Cube (200×200 or 512×128) and ONH Cube 200×200 protocols. Retinal layer segmentation was performed using algorithms established for glaucoma studies. Thicknesses of the ganglion cell layer/inner plexiform layer (GCL+IPL), RNFL, outer plexiform/inner nuclear layers (OPL+INL), and outer nuclear/photoreceptor layers (ONL+PRL) were measured and compared in MS versus control eyes and MS ON versus non-ON eyes. The relation between changes in macular thickness and visual disability was also examined. The OCT measurements of GCL+IPL and RNFL thickness; high contrast visual acuity (VA); low-contrast letter acuity (LCLA) at 2.5% and 1.25% contrast; on the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and 10-Item Neuro-Ophthalmic Supplement composite score. Macular RNFL and GCL+IPL were significantly decreased in MS versus control eyes (Pvisual function and vision-specific QOL in MS, and may serve as a useful structural marker of disease. Our findings parallel those of magnetic resonance imaging studies that show gray matter disease is a marker of neurologic disability in MS. Proprietary or commercial disclosure may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. Meaning of visualizing retinal cone mosaic on adaptive optics images.

    Science.gov (United States)

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Couturier, Aude; Kulcsar, Caroline; Tadayoni, Ramin; Massin, Pascale; Gaudric, Alain

    2015-01-01

    To explore the anatomic correlation of the retinal cone mosaic on adaptive optics images. Retrospective nonconsecutive observational case series. A retrospective review of the multimodal imaging charts of 6 patients with focal alteration of the cone mosaic on adaptive optics was performed. Retinal diseases included acute posterior multifocal placoid pigment epitheliopathy (n = 1), hydroxychloroquine retinopathy (n = 1), and macular telangiectasia type 2 (n = 4). High-resolution retinal images were obtained using a flood-illumination adaptive optics camera. Images were recorded using standard imaging modalities: color and red-free fundus camera photography; infrared reflectance scanning laser ophthalmoscopy, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography (OCT) images. On OCT, in the marginal zone of the lesions, a disappearance of the interdigitation zone was observed, while the ellipsoid zone was preserved. Image recording demonstrated that such attenuation of the interdigitation zone co-localized with the disappearance of the cone mosaic on adaptive optics images. In 1 case, the restoration of the interdigitation zone paralleled that of the cone mosaic after a 2-month follow-up. Our results suggest that the interdigitation zone could contribute substantially to the reflectance of the cone photoreceptor mosaic. The absence of cones on adaptive optics images does not necessarily mean photoreceptor cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Subconjunctival sirolimus in the treatment of diabetic macular edema.

    Science.gov (United States)

    Krishnadev, Nupura; Forooghian, Farzin; Cukras, Catherine; Wong, Wai; Saligan, Leorey; Chew, Emily Y; Nussenblatt, Robert; Ferris, Frederick; Meyerle, Catherine

    2011-11-01

    Diabetic macular edema (DME) is a leading cause of blindness in the developed world. Sirolimus has been shown to inhibit the production, signaling, and activity of many growth factors relevant to the development of diabetic retinopathy. This phase I/II study assesses the safety of multiple subconjunctival sirolimus injections for the treatment of DME, with some limited efficacy data. In this phase I/II prospective, open-label pilot study, five adult participants with diabetic macular edema involving the center of the fovea and best-corrected ETDRS visual acuity score of ≤74 letters (20/32 or worse) received 20 μl (440 μg) of subconjunctival sirolimus at baseline, month 2 and every 2 months thereafter, unless there was resolution of either retinal thickening on OCT or leakage on fluorescein angiography. Main outcome measures included best-corrected visual acuity and central retinal thickness on OCT at 6 months and 1 year, as well as safety outcomes. Repeated subconjunctival sirolimus injections were well-tolerated, with no significant drug-related adverse events. There was no consistent treatment effect related to sirolimus; one participant experienced a 2-line improvement in visual acuity and 2 log unit decrease in retinal thickness at 6 months and 1 year, two remained essentially stable, one had stable visual acuity but improvement of central retinal thickness of 1 and 3 log units at 6 months and 1 year respectively, and one had a 2-line worsening of visual acuity and a 1 log unit increase in retinal thickness at 6 months and 1 year. Results in the fellow eyes with diabetic macular edema, not treated with sirolimus, were similar. Subconjunctival sirolimus appears safe to use in patients with DME. Assessment of possible treatment benefit will require a randomized trial.

  7. Comparison of topical dorzolamide and ketorolac treatment for cystoid macular edema in retinitis pigmentosa and Usher's syndrome.

    Science.gov (United States)

    Lemos Reis, Ricardo Filipe; Moreira-Gonçalves, Nuno; Estrela Silva, Sérgio E; Brandão, Elisete M; Falcão-Reis, Fernando M

    2015-01-01

    To investigate the topical effect of dorzolamide versus ketorolac on retinitis pigmentosa (RP) and Usher's syndrome (US) macular edema. Prospective, randomized and interventional study. A total of 28 eyes of 18 patients were included. Five eyes had US, 23 had RP. Fifteen eyes were allocated to ketorolac tromethamine 0.5% (4 drops daily regimen) and 13 eyes to dorzolamide hydrochloride 2% (3 drops daily regimen) treatment groups. Snellen's best-corrected visual acuity (BCVA), foveal thickness (FT) and foveal zone thickness (FZT) measured by Stratus® optical coherence tomography (OCT) were evaluated at baseline, 1, 3, 6 and 12 months after treatment. Patients assigned to ketorolac had a baseline BCVA of 0.37 ± 0.17 logMAR which improved at the end of 1 year to 0.28 ± 0.16 (p = 0.02). Three eyes (20%) of 2 patients improved by 7 letters or more. Mean FT and FZT did not change significantly during the study follow-up. After 1 year of treatment, 4 eyes (27%) of 3 patients showed an improvement of at least 16% of FT and 11% of FZT. Patients assigned to dorzolamide had a baseline BCVA of 0.48 ± 0.34 logMAR which improved in the first 6 months (0.40 ± 0.30; p = 0.01), with a decrease at 1 year (0.42 ± 0.27; p = 0.20). Seven eyes (54%) of 5 patients had an improvement of 7 letters or more. Mean FT and FZT did not change significantly either. After 1 year of treatment, 3 eyes (23%) of 2 patients showed an improvement of at least 16% on FT and 11% on FZT. RESULTS suggest that dorzolamide and ketorolac might improve visual acuity and therefore be of interest in selected cases. No relationship between retinal thickness fluctuation and visual acuity was found. Sample size was a limitation to the study. © 2014 S. Karger AG, Basel.

  8. Alteration of retinal layers in healthy subjects over 60 years of age until nonagenarians

    Directory of Open Access Journals (Sweden)

    Altay L

    2017-08-01

    Full Text Available Lebriz Altay,1 Cheryl Jahn,1 Mücella Arikan Yorgun,1 Albert Caramoy,1 Tina Schick,1 Carel B Hoyng,2 Anneke I den Hollander,2 Sascha Fauser1 1Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany; 2Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands Purpose: To assess alterations of retinal layers in healthy subjects over 60 years old. Methods: Retinal layers of 160 healthy subjects (aged 60–100 years without any retinal pathology were imaged using spectral domain optical coherence tomography. Mean thickness of retinal nerve fiber layer, ganglion cell/inner plexiform layer (GCLIPL, inner nuclear layer, outer plexiform layer/outer nuclear layer, photoreceptor complex (PR and retinal thickness (RT were measured in a 3.45 mm grid. Correlations between age and layers were estimated and linear regression equations were calculated. Different age-groups (60–69, 70–79, 80–89 years and nonagenarians, each group with 40 participants were compared. Results: Significant age-thickness correlations were observed for GCLIPL (P<0.001, r=-0.394, PR (P<0.001, r=-0.370 and RT (P<0.001, r=-0.290. A comparison between age groups 60–69 years and nonagenarians showed no significant thickness alteration of retinal nerve fiber layer (21.80±2.18 µm vs 22.82±2.97 µm, P=0.163, inner nuclear layer (37.23±3.02 µm vs 36.01±3.24 µm, P=0.07 and outer plexiform layer/outer nuclear layer (104.95±6.56 µm vs 104.23±7.59 µm, P=0.567, while GCLIPL (83.35±7.35 µm vs 74.38±9.09 µm, PR (83.03±3.31 µm vs 79.34±2.09 µm and RT (330.64±12.63 µm vs 316.83±18.35 µm showed a significant decrease (P<0.001 for all. Conclusion: Our study provides normative data of alterations of retinal layers for persons aged 60 years to nonagenarians and indicates a continuous decrease of RT, PR, and GCLIPL. This data may be useful for clinical trials investigating macular diseases in older patients

  9. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten

    2016-01-01

    Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874

  10. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis

    DEFF Research Database (Denmark)

    Martinez-Lapiscina, Elena H; Arnow, Sam; Wilson, James A

    2016-01-01

    of disability worsening in a cohort of patients with multiple sclerosis who had at least one eye without optic neuritis available. METHODS: In this multicentre, cohort study, we collected data about patients (age ≥16 years old) with clinically isolated syndrome, relapsing-remitting multiple sclerosis...... with the risk of subsequent disability worsening by use of proportional hazards models that included OCT metrics and age, disease duration, disability, presence of previous unilateral optic neuritis, and use of disease-modifying therapies as covariates. FINDINGS: 879 patients with clinically isolated syndrome...

  11. Retinal Photoreceptors and Microvascular Changes in Prediabetes Measured with Adaptive Optics (rtx1™: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Anna Zaleska-Żmijewska

    2017-01-01

    Full Text Available Background. Patients with prediabetes are at risk for diabetes, cardiovascular events, and microvascular complications. The rtx1 (Imagine Eyes, France permits early detection of changes in the retinal photoreceptors and vessels. Objective. Cone parameters and retinal microvasculature were analyzed with the rtx1 in 12 prediabetic patients and 22 healthy subjects. The analysis was based on cone density (DM, interphotoreceptor distance (SM, cone packing regularity, and retinal vessel parameters: wall thickness, lumen diameter (LD, wall-to-lumen ratio (WLR, and cross-sectional area of the vascular wall. Results. DM in the prediabetic group was not significantly lower than that in the control group (18,935 ± 1713 cells/mm2 and 19,900 ± 2375 cells/mm2, respectively; p=0.0928. The LD and WLR means differed significantly between the prediabetic and the control groups (LD 94.3 ± 10.9 versus 101.2 ± 15, p=0.022; WLR 0.29 ± 0.05 versus 0.22 ± 0.03, p<0.05. A multivariate regression analysis showed that the WLR was significantly correlated with BMI and total cholesterol. Conclusions. Abnormalities found in rtx1 examinations indicated early signs of arteriolar dysfunction, prior to impaired glucose tolerance progressing to diabetes. The rtx1 retinal image analysis offers noninvasive measurement of early changes in the vasculature that routine clinical examination cannot detect.

  12. Optical coherence tomography – current and future applications

    Science.gov (United States)

    Adhi, Mehreen; Duker, Jay S.

    2013-01-01

    Purpose of review Optical coherence tomography (OCT) has revolutionized the clinical practice of ophthalmology. It is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina, retinal nerve fiber layer and the optic nerve head. This review discusses the present applications of the commercially available spectral-domain OCT (SD-OCT) systems in the diagnosis and management of retinal diseases, with particular emphasis on choroidal imaging. Future directions of OCT technology and their potential clinical uses are discussed. Recent findings Analysis of the choroidal thickness in healthy eyes and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies has been successfully achieved using SD-OCT devices with software improvements. Future OCT innovations such as longer-wavelength OCT systems including the swept-source technology, along with Doppler OCT and en-face imaging, may improve the detection of subtle microstructural changes in chorioretinal diseases by improving imaging of the choroid. Summary Advances in OCT technology provide for better understanding of pathogenesis, improved monitoring of progression and assistance in quantifying response to treatment modalities in diseases of the posterior segment of the eye. Further improvements in both hardware and software technologies should further advance the clinician’s ability to assess and manage chorioretinal diseases. PMID:23429598

  13. Choroidal findings in dome-shaped macula in highly myopic eyes: a longitudinal study.

    Science.gov (United States)

    Viola, Francesco; Dell'Arti, Laura; Benatti, Eleonora; Invernizzi, Alessandro; Mapelli, Chiara; Ferrari, Fabio; Ratiglia, Roberto; Staurenghi, Giovanni; Barteselli, Giulio

    2015-01-01

    To describe choroidal findings in dome-shaped macula associated with high myopia using fluorescein angiography (FA), indocyanine green angiography (ICGA), and spectral-domain optical coherence tomography (SD OCT), and to elucidate the mechanism and natural course of serous retinal detachment (RD) associated with dome-shaped macula. Retrospective, observational case series. We reviewed longitudinal imaging results of 52 highly myopic eyes with dome-shaped macula. Changes on FA and ICGA were assessed. Retinal, choroidal, and scleral thicknesses and bulge height were measured on SD OCT. Serous RD was the most common abnormality associated with dome-shaped macula, detected by SD OCT in 44% of the cases with no associated choroidal neovascularization. Significant differences in the proportion of eyes with pinpoint leakage on FA (P macula was likely caused by choroidal vascular changes, similar to central serous chorioretinopathy, but specifically confined in the inward bulge of the staphyloma and secondary to excessive scleral thickening. Serous retinal detachment showed fluctuating changes over time, with alternating active and inactive stages. Angiographic findings in dome-shaped macula suggest the choroid as a target for possible treatment strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Application of Arterial Spin Labelling in Detecting Retinal Ischemia

    Directory of Open Access Journals (Sweden)

    Ehsan Vaghefi

    2017-12-01

    Full Text Available Purpose: Here, we have tried to quantify the chorioretinal blood perfusion in patients who are clinically identified to be suffering from retinal ischemia using arterial spin labelling (ASL MRI. Method: Four participants, diagnosed with retinal ischemia based on their structural OCT and angiography test, were then scanned using anatomical MRI as well as ASL. We optimized MR parameters to maximize resolution and target fixation, blinking, and breathing ques to minimize motion artifacts. Results: Participants had a maximum of ∼50 mL/100 mL/min of blood perfusion, which is below the normal values of ∼200 mL/100 mL/min. It also appeared that thinning of the choroid contributes more to the measured decreased chorioretinal perfusion, compared to slowed arterial filling time. Conclusion: Decreased chorioretinal perfusion is a multifactorial event and has been implicated in several posterior eye pathologies. Based on our current results, it seems that ischemia of the eye could be due to anatomy (tissue volume and/or functionality (arterial flow.

  15. Macular ganglion cell complex and retinal nerve fiber layer comparison in different stages of age-related macular degeneration.

    Science.gov (United States)

    Zucchiatti, Ilaria; Parodi, Maurizio Battaglia; Pierro, Luisa; Cicinelli, Maria Vittoria; Gagliardi, Marco; Castellino, Niccolò; Bandello, Francesco

    2015-09-01

    To employ optical coherence tomography (OCT) to analyze the morphologic changes in the inner retina in different categories of age-related macular degeneration (AMD). Observational cross-sectional study. Single-center study. Inclusion criteria were age over 50, diagnosis of Age-Related Eye Disease Study (AREDS) category 2 and 3, naïve neovascular AMD, and atrophic AMD. Healthy patients of similar age acted as a control group. Primary outcome measures were the changes in ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL). Secondary outcomes included modifications of rim area and cup-to-disc ratio. One hundred and thirty eyes of 130 patients were recruited: 26 eyes for AREDS category 2, 26 for AREDS category 3, 26 for neovascular AMD, 26 with atrophic AMD, and 26 controls. Mean peripapillary RNFL thickness was significantly lower in neovascular AMD, compared to controls (P = .004); peripapillary RNFL did not significantly vary among AREDS category 2 and 3 and atrophic AMD groups, compared to controls. Mean GCC thickness was higher in the control group, becoming progressively thinner up to neovascular and atrophic AMD groups (P < .0001). Rim area was significantly thinner in the neovascular AMD group compared with controls (P = .047); cup-to-disc ratio was higher in the neovascular AMD group compared with the control group (P = .047). This study demonstrates that eyes with neovascular AMD display reduced RNFL and GCC thickness. RNFL is partially spared in atrophic advanced AMD. The identification of alteration in RNFL and GCC thickness may reveal useful for future therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Automatic anterior chamber angle assessment for HD-OCT images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  17. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  18. The Distribution of Macular Thickness and Its Determinants in a Healthy Population.

    Science.gov (United States)

    Hashemi, Hassan; Khabazkhoob, Mehdi; Yekta, AbbasAli; Emamian, Mohammad Hassan; Nabovati, Payam; Fotouhi, Akbar

    2017-10-01

    To determine the distribution of macular thickness in a healthy Iranian population aged 45-69 years and its association with certain determinants. All participants underwent optometric examinations including measurement of uncorrected and corrected visual acuity, objective refraction by retinoscopy, and subjective refraction. Subsequently, all participants underwent slit-lamp biomicroscopy followed by fundus examination through direct and indirect ophthalmoscopy, and optical coherence tomography (OCT) imaging under pupil dilation. Mean central macular thickness was 255.4 µm (95% confidence interval, CI, 254.5-256.3 µm), average inner macular thickness was 316.5 µm (95% CI 315.9-317.1 µm), average outer macular thickness was 275.3 µm (95% CI 274.8-275.8 µm), and overall average thickness was 278.6 µm (95% CI 278.1-279.1 µm). A linear multiple regression model showed that all indexes were significantly larger in male participants (p < 0.001). Central macular thickness increased with age (coef = 0.25, p < 0.001) while overall, inner and outer macular thickness decreased with age (coef = -0.18, -0.15, -0.19, respectively, all p < 0.001). Central and inner macular thickness had a positive correlation (coef = 3.8, 2.6, respectively, both p < 0.001) and outer macular thickness had a negative correlation (coef = -1.6, p < 0.001) with axial length. Age, sex, refractive error, axial length, and keratometry were found to be associated with macular thickness. These factors should be taken into account when interpreting macular thickness measurements with spectral-domain OCT.

  19. Optic Disc and Retinal Nerve Fiber Layer Thickness Evaluation of the Fellow Eyes in Non-Arteritic Ischemic Optic Neuropathy

    Directory of Open Access Journals (Sweden)

    Medine Yılmaz Dağ

    2015-05-01

    Full Text Available Objectives: To examine the fellow eyes in unilateral non-arteritic ischemic optic neuropathy (NAION and to compare their optic disc parameters and peripapillary retinal nerve fiber layer (RNFL thickness with age-and refraction-matched normal controll subjects, using Heidelberg Retinal Tomograph 2 (HRT II. Materials and Methods: The fellow eyes of 40 patients with typical unilateral NAION (study group and one randomly chosen eye of 42 age-, sex-, and refraction-matched normal control subjects were enrolled in the study. Optic disc morphologic features (average disc area, cup area, rim area, disc volume, rim volume, cup/disc area ratio, cup depth and peripapillary RNFL thickness were evaluated using HRT II, a confoal scanning ophtalmoscopy. Results: In the study group, there were 26 (65% men and 14 (35% women, whereas there were 27 (64% men and 15 (36% women in the control group (Chi square test, p=0.89. Mean age of the patients in the study and control groups was 59.4±10.3 and 57.7±9.1 years, respectively (T test, p=0.72. There was not any statistically significant difference regarding mean spheric equivalent between the two groups (Mann-Whitney U-test, p=0.203. The NAION unaffected fellow eyes had significantly smaller disc areas, cup areas, cup volumes, cup-disc area ratios (vertical and lineer, and cup depths than the control eyes (Mann-Whitney U-test; p<0.05, whereas there was no significant difference in the RNFL thickness between the two. Conclusion: A comparison of the fellow eyes in patients with unilateral NAION and the control eyes showed a significant difference in optic disc parameters and the morphology of RNFL. These differences could be important in the pathogenesis of NAION and needs to have further investigated. (Turk J Ophthalmol 2015; 45: 111-114

  20. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)