WorldWideScience

Sample records for oceanic n2o source

  1. Oceanic N2O emissions in the 21st century

    Science.gov (United States)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2014-12-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.

  2. N2O production in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    stream_size 66 stream_content_type text/plain stream_name Nature_349_373.pdf.txt stream_source_info Nature_349_373.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 © 1991 Nature Publishing Group... © 1991 Nature Publishing Group ...

  3. Constraints on global oceanic emissions of N2O from observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Suntharalingam, Parvadha; Le Quéré, Corinne

    2018-04-01

    We estimate the global ocean N2O flux to the atmosphere and its confidence interval using a statistical method based on model perturbation simulations and their fit to a database of ΔpN2O (n = 6136). We evaluate two submodels of N2O production. The first submodel splits N2O production into oxic and hypoxic pathways following previous publications. The second submodel explicitly represents the redox transformations of N that lead to N2O production (nitrification and hypoxic denitrification) and N2O consumption (suboxic denitrification), and is presented here for the first time. We perturb both submodels by modifying the key parameters of the N2O cycling pathways (nitrification rates; NH4+ uptake; N2O yields under oxic, hypoxic and suboxic conditions) and determine a set of optimal model parameters by minimisation of a cost function against four databases of N cycle observations. Our estimate of the global oceanic N2O flux resulting from this cost function minimisation derived from observed and model ΔpN2O concentrations is 2.4 ± 0.8 and 2.5 ± 0.8 Tg N yr-1 for the two N2O submodels. These estimates suggest that the currently available observational data of surface ΔpN2O constrain the global N2O flux to a narrower range relative to the large range of results presented in the latest IPCC report.

  4. Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model

    Science.gov (United States)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2015-07-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However

  5. Constraints on global oceanic emissions of N2O from observations and models

    Directory of Open Access Journals (Sweden)

    E. T. Buitenhuis

    2018-04-01

    Full Text Available We estimate the global ocean N2O flux to the atmosphere and its confidence interval using a statistical method based on model perturbation simulations and their fit to a database of ΔpN2O (n =  6136. We evaluate two submodels of N2O production. The first submodel splits N2O production into oxic and hypoxic pathways following previous publications. The second submodel explicitly represents the redox transformations of N that lead to N2O production (nitrification and hypoxic denitrification and N2O consumption (suboxic denitrification, and is presented here for the first time. We perturb both submodels by modifying the key parameters of the N2O cycling pathways (nitrification rates; NH4+ uptake; N2O yields under oxic, hypoxic and suboxic conditions and determine a set of optimal model parameters by minimisation of a cost function against four databases of N cycle observations. Our estimate of the global oceanic N2O flux resulting from this cost function minimisation derived from observed and model ΔpN2O concentrations is 2.4 ± 0.8 and 2.5 ± 0.8 Tg N yr−1 for the two N2O submodels. These estimates suggest that the currently available observational data of surface ΔpN2O constrain the global N2O flux to a narrower range relative to the large range of results presented in the latest IPCC report.

  6. The oxygen minimum zone (OMZ) off Chile as intense source of CO 2 and N 2O

    Science.gov (United States)

    Paulmier, A.; Ruiz-Pino, D.; Garcon, V.

    2008-12-01

    The oxygen minimum zones (OMZs) are recognized as intense sources of N 2O greenhouse gas (GHG) and could also be potential sources of CO 2, the most important GHG for the present climate change. This study evaluates, for one of the most intense and shallow OMZ, the Chilean East South Pacific OMZ, the simultaneous N 2O and CO 2 fluxes at the air-sea interface. Four cruises (2000-2002) and 1 year of monitoring (21°-30°-36°S) off Chile allowed the determination of the CO 2 and N 2O concentrations at the sea surface and the analysis of fluxes variations associated with different OMZ configurations. The Chilean OMZ area can be an intense GHG oceanic local source of both N 2O and CO 2. The mean N 2O fluxes are 5-10 times higher than the maximal previous historical source in an OMZ open area as in the Pacific and Indian Oceans. For CO 2, the mean fluxes are also positive and correspond to very high oceanic sources. Even if different coupling and decoupling between N 2O and CO 2 are observed along the Chilean OMZ, 65% of the situations represent high CO 2 and/or N 2O sources. The high GHG sources are associated with coastal upwelling transport of OMZ waters rich in N 2O and probably also in CO 2, located at a shallow depth. The integrated OMZ role on GHG should be better considered to improve our understanding of the past and future atmospheric CO 2 and N 2O evolutions.

  7. Continuous flow IRMS application to CH4, MNHCS, and N2O in the atmosphere and the oceans

    International Nuclear Information System (INIS)

    Yoshida, N.; Tsunogai, U.; Toyoda, S.

    2001-01-01

    The application of CF-IRMS to measurement of methane (CH4), non-methane hydrocarbons (NMHCS), and nitrous oxide (N 2 O) is outlined and preliminary information on isotopic variations in the atmosphere and oceans is presented. Labelling of these compounds is expected to provide a robust method for tracing sources, sinks and controlling processes in the environment. (author)

  8. Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

    Science.gov (United States)

    Landolfi, A.; Somes, C. J.; Koeve, W.; Zamora, L. M.; Oschlies, A.

    2017-08-01

    There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (˜+5 Tg N y-1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.

  9. The inhibition of N2O production by ocean acidification in cold temperate and polar waters

    Science.gov (United States)

    Rees, Andrew P.; Brown, Ian J.; Jayakumar, Amal; Ward, Bess B.

    2016-05-01

    The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in January-February 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3-+HCl in order to examine the impact of short-term (48 h for N2O and between 96 and 168 h for AOA) exposure to control and elevated conditions of OA. During each experiment, triplicate incubations were performed at ambient conditions and at 3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which were targeted at CO2 partial pressures of 500, 750 and 1000 μatm. The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments. N2O production was sensitive to decreasing pHT at all stations and decreased by between 2.4% and 44% with reduced pHT values of between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of between 28% and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4+ equilibrium. The maximum reduction in N2O production at conditions projected for the end of the 21st century was estimated to be 0.82 Tg N y-1.

  10. Evidence for denitrification as main source of N2O emission from residue-amended soil

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Sørensen, Peter; Olesen, Jørgen Eivind

    2016-01-01

    -leguminous species (ryegrass). Plant material was placed in a discrete layer surrounded by soil in which the nitrate View the MathML source pool was enriched with 15N to distinguish N2O derived from denitrification and nitrification. Net N mineralisation from leguminous catch crops was significant (30–48 mg N kg−1....... Emission of N2O occurred at all moisture levels, but was higher at 50 and 60% WFPS than at 40% in soil with leguminous residues. The 15N enrichment of N2O indicated that denitrification was the dominant source independent of moisture level and residue type. We conclude that catch crop residues...... will stimulate N2O emissions via denitrification over a wide range of soil moisture conditions, but that emission levels may depend significantly on residue quality and soil moisture....

  11. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  12. [Effects of organic and inorganic fertilizers on emission and sources of N2O in vegetable soils.

    Science.gov (United States)

    Lin, Wei; Ding, Jun Jun; Li, Yu Zhong; Xu, Chun Ying; Li, Qiao Zhen; Zheng, Qian; Zhuang, Shan

    2018-05-01

    To clarify the microbial pathway of the N 2 O production and consumption under different fertilizers and provide theoretical basis for the reduction of N 2 O emission and rational management of fertilization in vegetable soils, we examined dynamics of N 2 O flux and isotope signatures under different fertilizer treatments in the vegetable soils of Beijing, by setting up four treatments (organic-acetylene, organic-nonacetylene, inorganic-acetylene, inorganic-nonacetylene) and using the stable isotope technique of natural N 2 O abundance. The results showed that the cumulative N 2 O emission from organic-acetylene group, organic-nonacetylene group, inorganic-acetylene group and inorganic-nonacetylene group was (374±37), (283±34), (458±36), (355±41) g·m -2 in cabbage growing season, respectively. N 2 O fluxes were significantly lower in treatments with organic fertilizer than those with inorganic fertilizer and significantly higher in acetylene group than nonacetylene group. The degree of N 2 O reduction were similar in both fertilizer treatments, and higher nitrification was found in inorganic fertilizer than organic fertilizer treatments. Acetylene only inhibited partial nitrification and partial N 2 O reduction at the peak of N 2 O emission. When the emission was reduced, N 2 O reduction could be completely suppressed. Therefore, the inorganic fertilizer might trigger nitrification and promote higher N 2 O emission. The high concentration of N 2 O could withstand that acetylene to inhibite N 2 O reduction. Hence, using organic fertilizers instead of some inorganic ones could effectively reduce N 2 O emission in vegetable soils of Beijing. The N 2 O concentration threshold should be considered when we identify N 2 O source by acetylene inhibition method.

  13. Influence of fertilizer nitrogen source and management practice of N2O emissions from two black chernozemic soils

    International Nuclear Information System (INIS)

    Burton, D.L.

    2008-01-01

    Nitrous oxide (N 2 O) is a major anthropogenic greenhouse gas (GHG) emitted by Canadian agricultural systems. Emissions of N 2 O are sporadic, which complicates their accurate quantification as well as the development of adequate management practices. This study was conducted to determine the relative N 2 O production potentials of various nitrogen (N) fertilizer sources and application methods used in cereal production practices in Manitoba. Wheat crops were used to examine variations in N 2 O emissions associated with N formulations applied at the same rate. Treatments included urea surface broadcast in the spring; urea subsurface bands in spring; urea subsurface bands in the fall; anhydrous ammonia subsurface bands in spring and fall; and a control plot where no N was applied. Treatments of polymer-coated urea were also applied. The treatments were established in the fall of 1999. N 2 O fluxes were measured using vented static chambers. Samples were analyzed using gas chromatography. Analysis of variance (ANOVA) was performed in order to obtain cumulative annual N 2 O emissions. Results of the study showed that N 2 O emissions associated with the use of anhydrous ammonia were no greater than emissions associated with urea. Higher N 2 O emissions were observed in fall applications of N fertilizer. The dominant factors controlling differences in N 2 O emissions between sites and years included precipitation, soil water content, and soil texture. 26 refs., 6 tabs

  14. Distinguishing sources of N2O in European grasslands by stable isotope analysis

    NARCIS (Netherlands)

    Wrage, N.; Lauf, J.; Prado, del A.; Pinto, M.; Pietrzak, S.; Yamulki, S.; Oenema, O.; Gebauer, G.

    2004-01-01

    Nitrifiers and denitrifiers are the main producers of the greenhouse gas nitrous oxide (N2O). Knowledge of the respective contributions of each of these microbial groups to N2O production is a prerequisite for the development of effective mitigation strategies for N2O. Often, the differentiation is

  15. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability.

    Science.gov (United States)

    Zhu, Xia; Burger, Martin; Doane, Timothy A; Horwath, William R

    2013-04-16

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by (15)N-(18)O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils.

  16. Elucidating source processes of N2O fluxes following grassland-to-field-conversion using isotopologue signatures of soil-emitted N2O

    Science.gov (United States)

    Roth, G.; Giesemann, A.; Well, R.; Flessa, H.

    2012-04-01

    Conversion of grassland to arable land often causes enhanced nitrous oxide (N2O) emissions to the atmosphere. This is due to the tillage of the sward and subsequent decomposition of organic matter. Prediction of such effects is uncertain so far because emissions may differ depending on site and soil conditions. The processes of N2O turnover (nitrification, production by bacterial or fungal denitrifiers, bacterial reduction to N2) are difficult to identify, however. Isotopologue signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) can be used to characterize N2O turnover processes using the known ranges of isotope effects of the various N2O pathways. We aim to evaluate the impact of grassland-to-field-conversion on N2O fluxes and the governing processes using isotopic signatures of emitted N2O. At two sites, in Kleve (North Rhine-Westphalia, Germany, conventional farming) and Trenthorst (Schleswig-Holstein, Germany, organic farming), a four times replicated plot experiment with (i) mechanical conversion (ploughing, maize), (ii) chemical conversion (broadband herbicide, maize per direct seed) and (iii) continuous grassland as reference was started in April 2010. In Trenthorst we additionally established a (iv) field with continuous maize cultivation as further reference. Over a period of two years, mineral nitrogen (Nmin) content was measured weekly on soil samples taken from 0-10 cm and 10-30 cm depth. Soil water content and N2O emissions were measured weekly as well. Gas samples were collected using a closed chamber system. Isotope ratio mass spectrometry was carried out on gas samples from selected high flux events to determine δ18O, δ15Nbulk and SP of N2O. δ18O and SP of N2O exhibited a relatively large range (32 to 72 ‰ and 6 to 34 ‰, respectively) indicating highly variable process dynamics. The data-set is grouped

  17. A novel dual-isotope labelling method for distinguishing between soil sources of N2O

    NARCIS (Netherlands)

    Wrage, N.; Groenigen, van J.W.; Oenema, O.; Baggs, E.M.

    2005-01-01

    We present a novel O-18-N-15-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-N-15-labelled ammonium nitrate. We added a new treatment with O-18-labelled water to quantify N2O

  18. Sources of N2O in organic grass-clover pastures

    OpenAIRE

    Ambus, P.

    2002-01-01

    Organic farming practises, and in particular dairy production systems based on grass-clover pastures are becoming increasingly abundant within Danish agriculture. Grass-clover pastures may provide a mitigation option to reduce grassland nitrous oxide (N2O) emissions (Velthof et al. 1998). The objectives of this work was to examine the relationship between N2O emissions and transformations of inorganic N in organically managed grass-clover pastures of different ages. Results from the projec...

  19. Dissolution and Release of Gaseous Nitrogen (N2, N2O) in the Source Region of the Yellow River

    Science.gov (United States)

    Zhang, L.; Xia, X.; Wang, J.

    2017-12-01

    Nitrogen is an important biogenic element. The migration and transformation of nitrogen in rivers is an important process affecting global nitrogen cycling and greenhouse gas emissions. However, there is a lack of research on nitrogen removal and greenhouse gas emission characteristics of high altitude rivers. In this work, the spatial and temporal variations of dissolved nitrogen (N2 and N2O) concentrations, saturation, and release flux as well as their responses to environmental factors were studied in the Yellow River source area, a typical high altitude river. The results showed that the dissolved concentrations of N2 and N2O in the rivers were 8.24-137.75 μmol.L-1 and 2.57-31.94 nmol.L-1, respectively. N2 and N2O saturation were greater than 100% for all the sampling sites, indicating that the river is a release source for atmosphere N2 and N2O. Correspondingly, the fluxes of N2 and N2O from river water to atmosphere were 24.12-1606.57 mmol (m2.d) -1 and 12.96-276.81 μmol (m2.d) -1, respectively. Generally, the dissolution concentration and release flux of N2 and N2O in July were larger than that in May. The concentrations of N2 and N2O in river water were related to the environmental factors, and the dissolved concentration of N2 in the surface water was significantly positively correlated with water temperature, NH4+-N and total inorganic nitrogen (DIN) (p<0.01). The dissolved concentration of N2O was significantly positively correlated with the content of suspended particulates, DO, and DIN (p<0.01). Thus, DIN is a key factor in the process of N2 and N2O formation. This study can help to understand the nitrogen cycling in high-altitude rivers and provide basic data for a comprehensive assessment of global river nitrogen loss. Key Words: Source Region of the Yellow River; Gaseous Nitrogen; Nitrogen loss; High altitude river

  20. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya

    2014-12-01

    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: http://doi.dx.org/10.5564/mjc.v15i0.313Mongolian Journal of Chemistry  15 (41, 2014, p4-10  

  1. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands.

    Science.gov (United States)

    Lyu, Wanlin; Huang, Lei; Xiao, Guangquan; Chen, Yucheng

    2017-12-01

    A set of constructed wetlands under two different carbon sources, namely, glucose (CW) and sodium acetate (YW), was established at a laboratory scale with influent COD/N ratios of 20:1, 10:1, 7:1, 4:1, and 0 to analyze the influence of carbon supply on nitrous oxide emissions. Results showed that the glucose systems generated higher N 2 O emissions than those of the sodium acetate systems. The higher amount of N 2 O-releasing fluxes in the CWs than in the YWs was consistent with the higher NO 2 - -N accumulation in the former than in the latter. Moreover, electron competition was tighter in the CWs and contributed to the incomplete denitrification with poor N 2 O production performance. Illumina MiSeq sequencing demonstrated that some denitrifying bacteria, such as Denitratisoma, Bacillus, and Zoogloea, were higher in the YWs than in the CWs. This result indicated that the carbon source is important in controlling N 2 O emissions in microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  2. Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method

    NARCIS (Netherlands)

    Kool, D.M.; Wrage, N.; Zechmeister-Boltenstern, S.; Pfeffer, M.; Brus, D.J.; Oenema, O.; Groenigen, van J.W.

    2010-01-01

    Nitrifier denitrification (i.e. nitrite reduction by ammonia oxidizers) is one of the biochemical pathways of nitrous oxide (N2O) production. It is increasingly suggested that this pathway may contribute substantially to N2O production in soil, the major source of this greenhouse gas. However,

  3. Uncertainties in United States agricultural N2O emissions: comparing forward model simulations to atmospheric N2O data.

    Science.gov (United States)

    Nevison, C. D.; Saikawa, E.; Dlugokencky, E. J.; Andrews, A. E.; Sweeney, C.

    2014-12-01

    Atmospheric N2O concentrations have increased from 275 ppb in the preindustrial to about 325 ppb in recent years, a ~20% increase with important implications for both anthropogenic greenhouse forcing and stratospheric ozone recovery. This increase has been driven largely by synthetic fertilizer production and other perturbations to the global nitrogen cycle associated with human agriculture. Several recent regional atmospheric inversion studies have quantified North American agricultural N2O emissions using top-down constraints based on atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. These studies have concluded that global N2O inventories such as EDGAR may be underestimating the true U.S. anthropogenic N2O source by a factor of 3 or more. However, simple back-of-the-envelope calculations show that emissions of this magnitude are difficult to reconcile with the basic constraints of the global N2O budget. Here, we explore some possible reasons why regional atmospheric inversions might overestimate the U.S. agricultural N2O source. First, the seasonality of N2O agricultural sources is not well known, but can have an important influence on inversion results, particularly when the inversions are based on data that are concentrated in the spring/summer growing season. Second, boundary conditions can strongly influence regional inversions but the boundary conditions used may not adequately account for remote influences on surface data such as the seasonal stratospheric influx of N2O-depleted air. We will present a set of forward model simulations, using the Community Land Model (CLM) and two atmospheric chemistry tracer transport models, MOZART and the Whole Atmosphere Community Climate Model (WACCM), that examine the influence of terrestrial emissions and atmospheric chemistry and dynamics on atmospheric variability in N2O at U.S. and

  4. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    Science.gov (United States)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John F.; Green, Adrian; Shelton, James

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half

  5. The Nitrous Oxide (N2O) Budget: Constraints from Atmospheric Observations and Models

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Tian, H.; Thompson, R.; Prather, M. J.

    2017-12-01

    The increasing global abundance of N2O poses a threat to human health and society over this coming century through both climate change and ozone depletion. In the sense of greenhouse gases, N2O ranks third behind CO2 and CH4. In the sense of ozone depletion, N2O stands alone. In order to identify the cause of these increases and hopefully reverse them, we need to have a thorough understanding of the sources and sinks (a.k.a. the budget) of N2O and how they can be altered. A bottom-up approach to the budget evaluates individual biogeochemical sources of N2O from the land and ocean; whereas, a top-down approach uses atmospheric observations of the variability, combined with modeling of the atmospheric chemistry and transport, to infer the magnitude of sources and sinks throughout the Earth system. This paper reviews top-down approaches using atmospheric data; a similar top-down approach can be taken with oceanic measurements of N2O, but is not covered here. Stratospheric chemistry is the predominant loss of N2O, and here we review how a merging of new measurements with stratospheric chemistry models is able to provide a constrained budget for the global N2O sink. N2O surface sources are transported and mixed throughout the atmosphere, providing positive anomalies in the N2O abundance (mole fraction of N2O with respect to dry air); while N2O-depleted air from the stratosphere provides negative anomalies. With accurate atmospheric transport models, including for stratosphere-troposphere exchange, the observed tropospheric variability in N2O is effectively a fingerprint of the location and magnitude of sources. This inverse modeling of sources is part of the top-down constraints and is reviewed here.

  6. Spatial Variations in N2O Concentration and Isotopomer Composition off the Peru Coast

    Science.gov (United States)

    Bourbonnais, A.; Letscher, R. T.; Kock, A.; Bange, H. W.; Altabet, M. A.

    2016-02-01

    Nitrous oxide (N2O) is a potent greenhouse gas and stratospheric ozone depleting substance. The ocean is an important source of N2O to the atmosphere, accounting for up to about 30% of total emissions. However, the factors controlling N2O production and consumption in oceanic environments are still not understood nor constrained. N2O is a by-product of aerobic nitrification, and is formed by two different pathways: 1) the decomposition of hydroxylamine, an intermediate during ammonium oxidation to nitrite, or 2) the reduction of nitrite to N2O (nitrifier-denitrification). N2O is also an intermediate during denitrification under anoxic conditions. In this study, we measured N2O concentrations and isotopomer ratios, as well as O2, nutrient and biogenic N2 concentrations and the isotopic compositions of nitrate, nitrite and biogenic N2 at several coastal stations during two cruises off the Peru coast (6-14°S, 75-81°W) in December 2012 and January 2013. [N2O] varied from below equilibrium values in the OMZ to up to 238 nmol L-1 at 11 m depth at one of the shallowest stations. The isotopic composition of N2O (bulk δ15N: -5 to 30‰, δ18O: 41 to 95‰, and Site Preference: -3 to 65‰) also varied widely, with important differences between stations. Our results show a strong spatial heterogeneity in the mechanisms controlling N2O production and consumption in coastal upwelling regions, which should be taken into account in oceanic N2O models. We will discuss the contributions from different N2O production processes responsible for the observed extreme N2O accumulations.

  7. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Mu, C.

    2017-12-01

    Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source, but decreasing feature-level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems, and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important non-carbon permafrost climate feedback.

  8. Using the Triple Labelling Technique to apportion N2O Emissions to Nitrification and Denitrification from different Nitrogen Sources at different Water-Filled-Pore-Spaces

    Science.gov (United States)

    Loick, Nadine; Dixon, Elizabeth R.; Repullo Ruibérriz de Torres, Miguel A.; Ciganda, Veronica; Lopez-Aizpun, Maria A.; Matthews, G. Peter; Müller, Christoph; Cardenas, Laura M.

    2017-04-01

    Nitrous oxide (N2O) is considered to be an important greenhouse gas (GHG) accounting for approximately 6% of the current global warming. The atmospheric N2O concentration has been increasing since the Industrial Revolution, with soils representing its major source, making the understanding of its sources and removal processes very important for the development of mitigation strategies. In soils N gases are mainly produced via nitrification and denitrification. It is assumed that under dry/aerobic conditions nitrification is the dominant N consuming process, while denitrification becomes dominant under wetter conditions promoting anaerobicity. Nitrification and denitrification may occur simultaneously in different microsites of the same soil but there is often uncertainty associated with which process dominates in a particular soil under specific conditions. N2O predominantly derives from incomplete denitrification of nitrate (NO3-). The existence of different pools of NO3- in soils, namely the native soil pool, and the fertiliser-added one, has been suggested through a series of laboratory incubation experiments (Meijide et al., 2010; Bergstermann et al., 2011) using the denitrification incubation system, DENIS (Cardenas et al., 2003), in which soil cores are incubated under an N-free atmosphere, allowing direct measurements of all emitted N gases (NO, N2O and N2) as well as CO2. A third pool, NO3- produced from nitrification of applied NH4+, can also be a source of N2O via denitrification and also from nitrification. In this study labelling of substrate-N with 15N is used to quantify the underlying gross N transformation rates and link them to N-emissions to identify the production and consumption pathways and temporal dynamics of N2O. In three experiments twelve soil cores each were incubated in the DENIS to measure gaseous emissions, while parallel incubations under the same conditions were set up for destructive soil sampling at 7 time points. Using the triple

  9. Biologically fixed N2 as a source for N2O production in a grass–clover mixture, measured by 15N2 (erratum i vol. 74 p. 203)

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, P.

    2006-01-01

    The contribution of biologically fixed dinitrogen (N-2) to the nitrous oxide (N2O) production in grasslands is unknown. To assess the contribution of recently fixed N-2 as a source of N2O and the transfer of fixed N from clover to companion grass, mixtures of white clover and perennial ryegrass...

  10. Year-round N2O production by benthic NOx reduction in a monomictic south-alpine lake

    Science.gov (United States)

    Freymond, C. V.; Wenk, C. B.; Frame, C. H.; Lehmann, M. F.

    2013-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas, generated through microbial nitrogen (N) turnover processes, such as nitrification, nitrifier denitrification, and denitrification. Previous studies quantifying natural sources have mainly focused on soils and the ocean, but the potential role of terrestrial water bodies in the global N2O budget has been widely neglected. Furthermore, the biogeochemical controls on the production rates and the microbial pathways that produce benthic N2O in lakes are essentially unknown. In this study, benthic N2O fluxes and the contributions of the microbial pathways that produce N2O were assessed using 15N label flow-through sediment incubations in the eutrophic, monomictic south basin of Lake Lugano in Switzerland. The sediments were a significant source of N2O throughout the year, with production rates ranging between 140 and 2605 nmol N2O h-1 m-2, and the highest observed rates coinciding with periods of water column stratification and stably anoxic conditions in the overlying bottom water. Nitrate (NO3-) reduction via denitrification was found to be the major N2O production pathway in the sediments under both oxygen-depleted and oxygen-replete conditions in the overlying water, while ammonium oxidation did not contribute significantly to the benthic N2O flux. A marked portion (up to 15%) of the total NO3- consumed by denitrification was reduced only to N2O, without complete denitrification to N2. These fluxes were highest when the bottom water had stabilized to a low-oxygen state, in contrast with the notion that stable anoxia is particularly conducive to complete denitrification without accumulation of N2O. This study provides evidence that lake sediments are a significant source of N2O to the overlying water and may produce large N2O fluxes to the atmosphere during seasonal mixing events.

  11. Measurements of the atmospheric emission of N2O from biogenic sources in general and by grassland ecosystems in particular

    NARCIS (Netherlands)

    Duyzer, J.

    1995-01-01

    The project is part of the 'Integrated N2O grassland project'. The project carried out at TNO aims to determine the atmospheric emissions of N2O from biogenic surface sources in the Netherlands. The following activities were part of the project: u ⊙ determination of

  12. Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-µm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide

    Directory of Open Access Journals (Sweden)

    Toshihiro Yoshihara

    2013-08-01

    Full Text Available This article describes a gas monitoring system for detecting nitrous oxide (N2O gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases.

  13. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide.

    Science.gov (United States)

    Tokura, Akio; Asobe, Masaki; Enbutsu, Koji; Yoshihara, Toshihiro; Hashida, Shin-nosuke; Takenouchi, Hirokazu

    2013-08-05

    This article describes a gas monitoring system for detecting nitrous oxide (N2O) gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases.

  14. Greenhouse gas (N2O emission from Portuguese estuaries

    Directory of Open Access Journals (Sweden)

    Célia Gonçalves

    2014-07-01

    Tagus, Minho and Lima estuaries are source of N2O to the atmosphere. Particularly, in Lima estuary anthropogenic N input seems to play an important role on N2O emission. However, in a global perspective N2O attained emissions represent a reduced fraction (2O yr-1, Barnes and Upstill-Goddard, 2011. Values are comparable with those registered in some Portuguese estuaries and other European less eutrophic estuaries. However, it is known that higher N2O emissions in estuaries may occur during winter and spring (Sun et al., 2014. Thus, these systems may represent on an annual basis a larger source of N2O, which can only be clarified in future studies. Only a full comprehension of the global estuarine nitrogen cycle will provide an efficient basis of scientific knowledge for sustainably management of such ecosystems and ultimately reduce N2O emissions.

  15. N2O production, a widespread trait in fungi

    Science.gov (United States)

    Maeda, Koki; Spor, Aymé; Edel-Hermann, Véronique; Heraud, Cécile; Breuil, Marie-Christine; Bizouard, Florian; Toyoda, Sakae; Yoshida, Naohiro; Steinberg, Christian; Philippot, Laurent

    2015-04-01

    N2O is a powerful greenhouse gas contributing both to global warming and ozone depletion. While fungi have been identified as a putative source of N2O, little is known about their production of this greenhouse gas. Here we investigated the N2O-producing ability of a collection of 207 fungal isolates. Seventy strains producing N2O in pure culture were identified. They were mostly species from the order Hypocreales order--particularly Fusarium oxysporum and Trichoderma spp.--and to a lesser extent species from the orders Eurotiales, Sordariales, and Chaetosphaeriales. The N2O 15N site preference (SP) values of the fungal strains ranged from 15.8‰ to 36.7‰, and we observed a significant taxa effect, with Penicillium strains displaying lower SP values than the other fungal genera. Inoculation of 15 N2O-producing strains into pre-sterilized arable, forest and grassland soils confirmed the ability of the strains to produce N2O in soil with a significant strain-by-soil effect. The copper-containing nitrite reductase gene (nirK) was amplified from 45 N2O-producing strains, and its genetic variability showed a strong congruence with the ITS phylogeny, indicating vertical inheritance of this trait. Taken together, this comprehensive set of findings should enhance our knowledge of fungi as a source of N2O in the environment.

  16. Nitrous oxide (N2O) emission from aquaculture: a review.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  17. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  18. N2O formation in combustion systems

    International Nuclear Information System (INIS)

    1989-11-01

    The objective of this project is to characterize N 2 O emissions from combustion sources emphasizing N 2 O emissions from post-combustion selective gas phase NO x reduction processes and reburning. The processes to be evaluated include ammonia, urea and cyanuric acid injection and reburning. The project includes pilot-scale testing at two facilities supported by chemical kinetic modeling. Testing will be performed on both a gas-fired plug flow combustor and a pulverized-coal fired combustor. Work performed to date has included the performance of the initial detailed chemical kinetics calculations. These calculations showed that both urea and cyanuric acid produce significant quantities of N 2 O, while NH 3 injection produced negligible amounts. These kinetics data support limited test results reported for cyanuric acid and ammonia injection. Laboratory work to evaluate the selective gas phase NO x reduction processes listed above will begin in the gas-fired facility early in CY 1990. Testing to evaluate reburning at the coal-fired facility is currently planned to be performed in parallel with the testing at the gas-fired facility. Following completion of that work, additional kinetics calculations will be performed

  19. Production of N2O in grass-clover pastures

    International Nuclear Information System (INIS)

    Carter, M.S.

    2005-09-01

    Agricultural soils are known to be a considerable source of the strong greenhouse gas nitrous oxide (N 2 O), and in soil N 2 O is mainly produced by nitrifying and denitrifying bacteria. In Denmark, grass-clover pastures are an important component of the cropping system in organic as well as conventional dairy farming, and on a European scale grass-clover mixtures represent a large part of the grazed grasslands. Biological dinitrogen (N 2 ) fixation in clover provides a major N input to these systems, but knowledge is sparse regarding the amount of fixed N 2 lost from the grasslands as N2O. Furthermore, urine patches deposited by grazing cattle are known to be hot-spots of N 2 O emission, but the mechanisms involved in the N 2 O production in urine-affected soil are very complex and not well understood. The aim of this Ph.D. project was to increase the knowledge of the biological and physical-chemical mechanisms, which control the production of N2O in grazed grass-clover pastures. Three experimental studies were conducted with the objectives of: 1: assessing the contribution of recently fixed N 2 as a source of N 2 O. 2: examining the link between N 2 O emission and carbon mineralization in urine patches. 3: investigating the effect of urine on the rates and N 2 O loss ratios of nitrification and denitrification, and evaluating the impact of the chemical conditions that arise in urine affected soil. The results revealed that only 3.2 ± 0.5 ppm of the recently fixed N 2 was emitted as N2O on a daily basis. Thus, recently fixed N released via easily degradable clover residues appears to be a minor source of N2O. Furthermore, increased N 2 O emission following urine application at rates up to 5.5 g N m -2 was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots. Finally, the increase of soil pH and ammonium following urine application led to raised nitrification rate, which appeared to be the most important factor

  20. UV-induced N2O emission from plants

    Science.gov (United States)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  1. Extreme emission of N2O from tropical wetland soil (Pantanal, South America)

    DEFF Research Database (Denmark)

    Jensen, Lars Liengård; Nielsen, Lars Peter; Revsbech, Niels Peter

    2013-01-01

    Nitrous oxide (N(2)O) is an important greenhouse gas and ozone depleter, but the global budget of N(2)O remains unbalanced. Currently, ~25% of the global N(2)O emission is ascribed to uncultivated tropical soils, but the exact locations and controlling mechanisms are not clear. Here we present...... the first study of soil N(2)O emission from the Pantanal indicating that this South American wetland may be a significant natural source of N(2)O. At three sites, we repeatedly measured in situ fluxes of N(2)O and sampled porewater nitrate [Formula: see text] during the low water season in 2008 and 2009....... In 2010, 10 sites were screened for in situ fluxes of N(2)O and soil [Formula: see text] content. The in situ fluxes of N(2)O were comparable to fluxes from heavily fertilized forests or agricultural soils. An important parameter affecting N(2)O emission rate was precipitation, inducing peak emissions...

  2. Nitrous Oxide (N2O) emissions from human waste in 1970-2050

    NARCIS (Netherlands)

    Strokal, M.; Kroeze, C.

    2014-01-01

    Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment

  3. Towards an agronomic assessment of N2O emissions: a case study for arable crops

    NARCIS (Netherlands)

    Groenigen, van J.W.; Velthof, G.L.; Oenema, O.; Groenigen, van K.J.; Kessel, van C.

    2010-01-01

    Agricultural soils are the main anthropogenic source of nitrous oxide (N2O), largely because of nitrogen (N) fertilizer use. Commonly, N2O emissions are expressed as a function of N application rate. This suggests that smaller fertilizer applications always lead to smaller N2O emissions. Here we

  4. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    Science.gov (United States)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  5. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  6. Aircraft Observations of Nitrous Oxide (N2O) in the San Joaquin Valley of California

    Science.gov (United States)

    Muto, S.; Herrera, S.; Pusede, S.

    2017-12-01

    Agriculture is the largest source of anthropogenic nitrous oxide (N2O) in the U.S. While it is generally known which processes produce N2O, there is considerable uncertainty in controls over N2O emissions. Factors that determine N2O fluxes, such as soil properties and manure management, are highly variable in space and time, and, as a result, it has proven difficult to upscale chamber-derived soil flux measurements to regional spatial scales. Aircraft observations provide a regional picture of the N2O spatial distribution, but, because N2O is very long-lived, it is challenging to attribute measured concentrations of N2O to distinct local sources, especially over areas with complex and integrated land use. This study takes advantage of a novel aircraft N2O dataset collected onboard the low-flying, slow-moving NASA C-23 Sherpa in the San Joaquin Valley (SJV) of California, a region with a variety of N2O sources, including dairies, feedlots, fertilized cropland, and industrial facilities. With these measurements, we link observed N2O enhancements to specific sources at sub-inventory spatial scales. We compare our results with area-weighted emission profiles obtained by integrating detailed emission inventory data, agricultural statistics, and GIS source mapping.

  7. N 2 O Emissions and Inorganic N Release Following Incorporation ...

    African Journals Online (AJOL)

    West African Journal of Applied Ecology ... The results from the study demonstrated that whilst there is the potential for N2O emission to be controlled through varying ratios of residue:fertiliser input, the magnitude and direction of interactions between these N sources vary between different species as a result of their ...

  8. Slowdown of N2O emissions from China's croplands

    Science.gov (United States)

    Zhou, F.; Shang, Z.; Ciais, P.; Piao, S.; Tian, H.; Saikawa, E.; Zaehle, S.; Del Grosso, S. J.; Galloway, J. N.

    2016-12-01

    To feed the increasing population, China has experienced a rapid agricultural development over past decades, accompanied by increased fertilizer consumptions in croplands, but the magnitude, trend, and causes of the associated nitrous oxide (N2O) emissions has remain unclear. The primary sources of this uncertainty are conflicting estimates of fertilizer consumption and emission factors, the latter being uncertain because of very few regional representativeness of the Nrate-flux relationships in China. Here we re-estimate China's N2O emissions from croplands using three different methods: flux upscaling technique, process-based models and atmospheric inversion, and also analyze the corresponding drivers using an attribution approach. The three methods produce similar estimates of N2O emissions in the range of 0.67 ± 0.08 to 0.62± 0.11 Tg nitrogen per year, which is 29% larger than the estimates by the Emission Database for Global Atmospheric Research (EDGAR) that is adopted by Intergovernmental Panel on Climate Change (IPCC) as the emission baseline and twofold larger than the latest Chinese national report submitted to the United Nations Framework Convention on Climate Change, but the revised trend slows down after 2005. Fertilizer N application per area is the dominant factor driving the increase in N2O emissions across most cropping regions from 1990 to 2004, but climate-induced change of emission factors has also controlled N2O flux from 2005 onwards. Our findings suggest that, as precipitation would increase in North China but decline in the South in future, EF will increasingly control China's agri. soil emissions of N2O, unless offset by larger reductions of fertilizer consumptions.

  9. Global oceanic production of nitrous oxide

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  10. Global oceanic production of nitrous oxide.

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  11. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4(+)-fertilized soil of North China.

    Science.gov (United States)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-07-08

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ(15)N(bulk), δ(18)O, and SP (intramolecular (15)N site preference)] that emitted from vegetable soil after the addition of NH4(+) fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ(15)N(bulk) and δ(18)O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4(+) fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification.

  12. High Resolution Measurements of Nitrous Oxide (N2O in the Elbe Estuary

    Directory of Open Access Journals (Sweden)

    Lisa Brase

    2017-05-01

    remains an important source of N2O to the atmosphere.

  13. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  14. [Research advances in control of N2O emission from municipal solid waste landfill sites].

    Science.gov (United States)

    Cai, Chuan-Yu; Li, Bo; Lü, Hao-Hao; Wu, Wei-Xiang

    2012-05-01

    Landfill is one of the main approaches for municipal solid waste treatment, and landfill site is a main emission source of greenhouse gases nitrous oxide (N2O) and methane (CH4). As a high-efficient trace greenhouse gas, N2O has a very high warming potential, with a warming capacity 296 times of CO2, and has a long-term stability in atmosphere, giving greater damage to the ozone layer. Aiming at the researches in the control of N2O emission from municipal solid waste landfill sites, this paper summarized the characteristics and related affecting factors of the N2O emission from the landfill sites, and put forward a series of the measures adaptable to the N2O emission control of present municipal solid waste landfill sites in China. Some further research focuses on the control of N2O emission from the landfill sites were also presented.

  15. Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils

    NARCIS (Netherlands)

    Mosquera Losada, J.; Hol, J.M.G.; Rappoldt, C.; Dolfing, J.

    2007-01-01

    Soil compaction stimulates the emission of nitrous oxide (N2O) and methane (CH4) from agricultural soils. N2O and CH4 are potent greenhouse gases, with a global warming potential respectively 296 times and 23 times greater than CO2.. Agricultural soils are an important source of N2O. Hence there is

  16. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson , G.P. (UAF Pakistan); (UC); (Hubei); (MSU)

    2017-06-05

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  17. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2 O hotspots.

    Science.gov (United States)

    Storer, Kate; Coggan, Aisha; Ineson, Phil; Hodge, Angela

    2017-12-05

    Nitrous oxide (N 2 O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N 2 O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N 2 O production was measured both before and after addition of ammonium and nitrate. In both experiments, N 2 O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N 2 O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N 2 O was produced following nitrate application to either AMF treatment. Thus, the main N 2 O source in this system appeared to be via nitrification, and the production of N 2 O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N 2 O production. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Nitrous oxide (N2O). Emission inventory and options for control in the Netherlands

    NARCIS (Netherlands)

    Kroeze C; LAE

    1994-01-01

    This study was initiated to overview current knowledge on nitrous oxide (N2O). The report reviews atmospheric behaviour of N2O, global sources and sinks, Dutch emissions in 1990, options to reduce emissions, and past and future emissions. Despite the uncertainties involved, it is likely that without

  19. Optimal estimation of regional N2O emissions using a three-dimensional global model

    Science.gov (United States)

    Huang, J.; Golombek, A.; Prinn, R.

    2004-12-01

    In this study, we use the MATCH (Model of Atmospheric Transport and Chemistry) model and Kalman filtering techniques to optimally estimate N2O emissions from seven source regions around the globe. The MATCH model was used with NCEP assimilated winds at T62 resolution (192 longitude by 94 latitude surface grid, and 28 vertical levels) from July 1st 1996 to December 31st 2000. The average concentrations of N2O in the lowest four layers of the model were then compared with the monthly mean observations from six national/global networks (AGAGE, CMDL (HATS), CMDL (CCGG), CSIRO, CSIR and NIES), at 48 surface sites. A 12-month-running-mean smoother was applied to both the model results and the observations, due to the fact that the model was not able to reproduce the very small observed seasonal variations. The Kalman filter was then used to solve for the time-averaged regional emissions of N2O for January 1st 1997 to June 30th 2000. The inversions assume that the model stratospheric destruction rates, which lead to a global N2O lifetime of 130 years, are correct. It also assumes normalized emission spatial distributions from each region based on previous studies. We conclude that the global N2O emission flux is about 16.2 TgN/yr, with {34.9±1.7%} from South America and Africa, {34.6±1.5%} from South Asia, {13.9±1.5%} from China/Japan/South East Asia, {8.0±1.9%} from all oceans, {6.4±1.1%} from North America and North and West Asia, {2.6±0.4%} from Europe, and {0.9±0.7%} from New Zealand and Australia. The errors here include the measurement standard deviation, calibration differences among the six groups, grid volume/measurement site mis-match errors estimated from the model, and a procedure to account approximately for the modeling errors.

  20. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  1. Indirect N2O emission due to atmospheric N deposition for the Netherlands

    International Nuclear Information System (INIS)

    Denier van der Gon, H.; Bleeker, A.

    2005-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas produced in soils and aquatic systems. The UNFCCC requires participants to report 'indirect' N2O emissions, following from agricultural N losses to ground- and surface water and N deposition on (other) ecosystems due to agricultural sources. Indirect N2O emission due to atmospheric N deposition is presently not reported by the Netherlands. In this paper, we quantify the consequences of various tiers to estimate indirect N2O due to deposition for a country with a high agricultural N use and discuss the reliability and potential errors in the IPCC methodology. A literature review suggests that the current IPCC default emission factor for indirect N2O from N deposition is underestimated by a factor 2. Moreover, considering anthropogenic N emissions from agriculture only and not from e.g., traffic and industry, results in further underestimation of indirect N2O emissions. We calculated indirect N2O emissions due to Dutch anthropogenic N emissions to air by using official Dutch N emission data as input in an atmospheric transport and deposition model in combination with land use databases. Next, land use-specific emission factors were used to estimate the indirect N2O emission. This revealed that (1) for some countries, like the Netherlands, most agricultural N emitted will be deposited on agricultural soils, not on natural ecosystems and, (2) indirect N2O emissions are at least 20% higher because more specific emission factors can be applied that are higher than the IPCC default. The results suggest that indirect N2O emission due to deposition is underestimated in current N2O budgets

  2. The denitrification paradox: The role of O2 in sediment N2O production

    Science.gov (United States)

    Barnes, Jonathan; Upstill-Goddard, Robert C.

    2018-01-01

    production in Tyne sediments. Highest N2O production occurred under sub-oxic headspace (∼1.2 O2%) incubations. Anoxic sediments where HD was isolated acted as periodic N2O sinks or relatively small sources of N2O. Our experimental approach thus gives valuable insight into the O2 effect on N2O fluxes from intertidal sediments.

  3. Investigation of nitrous oxide (N2O) abatement technologies. 2; Asanka chisso (N2O) no teigen taisaku ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Emission amount of nitrous oxide (N2O) from anthropogenic sources is analyzed, and reduction effects by the abatement technologies are evaluated. The concentration of nitrous oxide in the atmosphere continues to increase and emissions from agricultural and ecosystem sources are drawing particular attention. For the emission of N2O in Japan, 8.28 Gg-N2O per year is emitted from fossil fuel combustion facilities, 6.95 from waste incineration facilities, 22.5 from transportation vehicles including automobiles, 26.7 from the chemical industry including establishments engaged in adipic acid production, 2.1 from sewage treatment facilities including septic tanks, 6.3 from farmland, and 7.1 from livestock excrement. For the N2O abatement technologies for different sources, fuel improvement, high temperature combustion, acceleration of reduction decomposition reaction, and development of catalysts are significant for the combustion technologies. In connection with N2O discharged in the process of adipic acid production, major businesses have internationally committed to up to 99% abatement of the N2O emissions by 1998. With regard to wastewater and sewage treatment facilities and septic tanks, improvement in COD/NO-N ratio, retention period, pH level, and reduction process is pointed out. 204 refs., 70 figs., 53 tabs.

  4. Monitoring N2O Production Using a cNOR Modeled Active Site

    Science.gov (United States)

    Griffiths, Z. G.; Hegg, E. L.; Finders, C.; Haslun, J. A.

    2017-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas with a 100-year global warming potential 265-296 times greater than carbon dioxide (CO2). It is the leading contributor to ozone depletion and can persist in the stratosphere for approximately 114 years. Hence, understanding the sources of atmospheric N2O emissions is critical to remediating the effects of climate change. Agricultural activities are the largest contributor to N2O emissions in the U.S. with microbial nitrification and denitrification as the dominating soil processes. The enzyme cytochrome c nitric oxide reductase (cNOR) is involved in bacterial denitrification. It is often difficult to study the enzymes involved in biotic N2O production, hence, model enzymes are a useful tool. The enzyme I107EFeBMb, a sperm whale myoglobin derivative, models the active site of cNOR and was used to simulate the anaerobic reduction of NO to N2O by cNOR. Dithionite was used to induce the catalytic activity of I107EFeBMb by reducing the enzyme. However, dithionite is a strong reductant that is capable of reducing NO to N2O directly. Therefore, the dithionite-enzyme mixture was passed through a size-exclusion column to isolate the reduced enzyme. This reduced and purified enzyme was then utilized to investigate N2O production from NO. This project will provide both an enzymatic and abiotic model to study N2O production.

  5. Effects of cover crops incorporation and nitrogen fertilization on N2O and CO2 emissions

    Science.gov (United States)

    Kandel, T. P.; Gowda, P. H.; Northup, B. K.; DuPont, J.; Somenahally, A. C.; Rocateli, A.

    2017-12-01

    In this study, we measured N2O and CO2 fluxes from plots planted to hairy vetch (winter cover crop) and broadleaf vetch (spring cover crop) as N sources for the following crabgrass (summer forage crop) in El Reno, Oklahoma, USA. Comparisons also included 0 and 60 kg ha-1 mineral N fertilizer supplied as dry urea. No significant N2O fluxes were observed during rapid growing periods of cover crops (March-April, 2017), however, large fluxes were observed after hairy vetch incorporation. Immediately after the hairy vetch biomass incorporation, large rainfall events were recorded. The fluxes subsided gradually with drying soil condition but were enhanced after every consecutive rainfall events. A rainfall induced flux measuring up to 8.2 kg N2O ha-1 day-1 was observed after 26 days of biomass incorporation. In total, 29 kg N2O ha-1 (18 kg N ha-1) was emitted within a month after biomass incorporation from hairy vetch plots. Growth of broadleaf vetch was poor and N2O fluxes were also lower. Similarly, plots fertilized with 60 kg N ha-1 had significant fluxes of N2O but the magnitude was much lower than the hairy vetch plots. Dynamics of N2O and CO fluxes correlated strongly. The results thus indicated that although cover crops may provide many environmental/agronomic benefits such as N fixation, soil carbon built-up, weed suppression and erosion control, high N2O emissions may dwarf these benefits.

  6. Tidal and spatial variability of nitrous oxide (N2O) in Sado estuary (Portugal)

    Science.gov (United States)

    Gonçalves, Célia; Brogueira, Maria José; Nogueira, Marta

    2015-12-01

    The estimate of the nitrous oxide (N2O) fluxes is fundamental to assess its impact on global warming. The tidal and spatial variability of N2O and the air-sea fluxes in the Sado estuary in July/August 2007 are examined. Measurements of N2O and other relevant environmental parameters (temperature, salinity, dissolved oxygen and dissolved inorganic nitrogen - nitrate plus nitrite and ammonium) were recorded during two diurnal tidal cycles performed in the Bay and Marateca region and along the estuary during ebb, at spring tide. N2O presented tidal and spatial variability and varied spatially from 5.0 nmol L-1 in Marateca region to 12.5 nmol L-1 in Sado river input. Although the Sado river may constitute a considerable N2O source to the estuary, the respective chemical signal discharge was rapidly lost in the main body of the estuary due to the low river flow during the sampling period. N2O varied with tide similarly between 5.2 nmol L-1 (Marateca) and 10.0 nmol L-1 (Sado Bay), with the maximum value reached two hours after flooding period. The influence of N2O enriched upwelled seawater (˜10.0 nmol L-1) was well visible in the estuary mouth and apparently represented an important contribution of N2O in the main body of Sado estuary. Despite the high water column oxygen saturation in most of Sado estuary, nitrification did not seem a relevant process for N2O production, probably as the concentration of the substrate, NH4+, was not adequate for this process to occur. Most of the estuary functioned as a N2O source, and only Marateca zone has acted as N2O sink. The N2O emission from Sado estuary was estimated to be 3.7 Mg N-N2O yr-1 (FC96) (4.4 Mg N-N2O yr-1, FRC01). These results have implications for future sampling and scaling strategies for estimating greenhouse gases (GHGs) fluxes in tidal ecosystems.

  7. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    Science.gov (United States)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  8. Microhabitat Effects on N2O Emissions from Floodplain Soils under Controlled Conditions

    Science.gov (United States)

    Ley, Martin; Lehmann, Moritz F.; Niklaus, Pascal A.; Kuhn, Thomas; Luster, Jörg

    2016-04-01

    Semi-terrestrial soils such as floodplain soils are considered to be potential hotspots of nitrous oxide (N2O) emissions. The quantitative assessment of N2O release from these hotspots under field conditions, and of the microbial pathways that underlie net N2O production (ammonium oxidation, nitrifier-denitrification, and denitrification) is challenging because of their high spatial and temporal variability. The production and consumption of N2O appears to be linked to the presence or absence of micro-niches, providing specific conditions that may be favorable to either of the relevant microbial pathways. Flood events have been shown to trigger moments of enhanced N2O emission through a close coupling of niches with high and low oxygen availabilities. This coupling might be modulated by microhabitat effects related to soil aggregate formation, root soil interactions and the degradation of organic matter accumulations. In order to assess how these factors can modulate N2O production and consumption under simulated flooding/drying conditions, we have set up a mesocosm experiment with N-rich floodplain soils comprising different combinations of soil aggregate size classes and inert matrix material. These model soils were either planted with basket willow (Salix viminalis L.), mixed with leaf litter, or left untreated. Throughout a simulated flood event, we repeatedly measured the net N2O production rate. In addition, soil water content, redox potential, as well as C and N substrate availability were monitored. In order to gain insight into the sources of, and biogeochemical controls on N2O production, we also measured the bulk δ15N signature of the produced N2O, as well as its intramolecular 15N site preference (SP). In this presentation we focus on a period of enhanced N2O emission during the drying phase after 48 hrs of flooding. We will discuss the observed emission patterns in the context of possible treatment effects. Soils with large aggregates showed a

  9. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2013-03-01

    Full Text Available Subtropical forests in southern China have received chronically large amounts of atmogenic nitrogen (N, causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O. We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH ~ 4 at Tieshanping (Chongqing, SW China and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hillslope (HS and a hydrologically connected, terraced groundwater discharge zone (GDZ in the valley bottom. High emission rates of up to 1800 μg N2O-N m−2 h−1 were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than on HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature (ST and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3− in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3− decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.54 and 0.43 g N2O-N m−2 yr−1 for a year with a wet and a dry summer, respectively are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8–10% of the annual atmogenic N deposition, suggesting that forests on acid soils in southern China are an important, hitherto overlooked component of the anthropogenic N2O budget.

  10. N2O emission from plant surfaces - light stimulated and a global phenomenon.

    Science.gov (United States)

    Mikkelsen, Teis; Bruhn, Dan; Ambus, Per

    2017-04-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed. Literature: Mikkelsen TN, Bruhn D & Ambus P. (2016). Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth. Progress in Botany, DOI 10.1007/124_2016_10. Bruhn D, Albert KR, Mikkelsen TN & Ambus P. (2014). UV-induced N2O emission from plants. Atmospheric Environment 99, 206-214.

  11. QCL N2O data final MayAugust2016

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset consists of daily measurements of N2O, N2O isotopic abundance and site preference, and CO2 flux. Data are presented as a daily averages of 10 second...

  12. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    Science.gov (United States)

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  13. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations

    Science.gov (United States)

    Battaglia, G.; Joos, F.

    2018-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5) scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5 (±1σ range: 3.0 to 6.1) Tg N yr-1, where 4.5% stems from denitrification. Modeled denitrification is 65.1 (40.9 to 91.6) Tg N yr-1, well within current estimates. For high GHG forcing, N2O production decreases by 7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales, marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight coupling between the marine carbon cycle, O2, N2O, and climate.

  14. Surface water and atmospheric CO2 and N2O data set in the world-wide ocean from multiple cruises from 1977-11-07 to 1990-04-16 (NODC Accession 0000072)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and chemical data were collected using bottle and gas chromatograph casts from NOAA Ship Malcolm Baldrige and other platforms in the Atlantic and Pacific...

  15. N2O emission from organic barley cultivation as affected by green manure management

    Directory of Open Access Journals (Sweden)

    P. Dörsch

    2012-07-01

    Full Text Available Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM. Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and return as biogas residue to a subsequent barley crop. Grass-clover ley had small but significantly higher N2O emissions as compared with a non-fertilised cereal reference during the year of green manure (GM production in 2009. Mulching of herbage induced significantly more N2O emission (+0.37 kg N2O-N ha−1 throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM and sown with barley, resulting in generally higher N2O emissions than during the previous year. Application of biogas residue (60 kg NH4+-N + 50 kg organic N ha−1 before sowing did not increase emissions neither when applied to previous ley plots nor when applied to previously unfertilised cereal plots. Ley management (mulching vs. removing biomass in 2009 had no effect on N2O emissions during barley production in 2010. In general, GM ley (mulched or harvested increased N2O emissions relative to a cereal reference with low mineral N fertilisation (80 kg N ha−1. Based on measurements covering the growing season 2010, organic cereal production emitted 95 g N2O-N kg−1 N yield in barley grain, which was substantially higher than in the cereal reference treatment with 80 kg mineral N fertilisation (47 g N2O-N kg−1 N yield in barley grain.

  16. Comprehensive effects of a sedge plant on CH4 and N2O emissions in an estuarine marsh

    Science.gov (United States)

    Li, Yangjie; Wang, Dongqi; Chen, Zhenlou; Hu, Hong

    2018-05-01

    Although there have been numerous studies focusing on plants' roles in methane (CH4) emissions, the influencing mechanism of wetland plants on nitrous oxide (N2O) emissions has rarely been studied. Here, we test whether wetland plants also play an important role in N2O emissions. Gas fluxes were determined using the in situ static flux chamber technique. We also carried out pore-water extractions, sedge removal experiments and tests of N2O transportation. The brackish marsh acted as a net source of both CH4 and N2O. However, sedge plants played the opposite role in CH4 and N2O emissions. The removal of the sedges led to reduced CH4 emissions and increased accumulation of CH4 inside the sediment. Apart from being a conduit for CH4 transport, the sedges made a greater contribution to CH4 oxidation than CH4 production. The sedges exerted inhibitory effects on the release of N2O. The N2O was barely detectable inside the sediment in both vegetated and vegetation-removed plots. The denitrification measurements and nitrogen addition (the addition rates were equal to 0.028, 0.056 and 0.112 g m-2) experiments suggest that denitrification associated with N2O production occurred mainly in the surface sediment layer. The vascular sedge could transport atmospheric N2O downward into the rhizosphere. The rhizospheric sediment, together with the vascular sedge, became an effective sink of atmospheric N2O.

  17. Effects of Corn Straw Returning and Nitrogen Fertilizer Application Methods on N2O Emission from Wheat Growing Season

    Directory of Open Access Journals (Sweden)

    XU Yu

    2015-12-01

    Full Text Available Based on a wheat field experiment, the effect of four treatments such as no-straw returning (SN, straw returning (SR, control release fertilizer application(SRC and nitrogen drilling(SRR on N2O emission was studied using the static chamber method and the gas chromatographic technique. The results indicated that the wheat field was the sources of N2O emission. The N2O emission peaks followed each time of fertilizer application and irrigation, and usually continued for 1~2 weeks. N2O emissions accounted for more than 40% of total emissions during the N2O emission peak. The amount of N2O emission during three growing stage of wheat from high to low was arranged in turn pre-wintering period, post-wintering period and wintering period. N2O emission could be increased by straw returning. Compared with SN, N2O emission could be enhanced by 48.6% under SR. Both SRC and SRR could decrease the N2O emission, increase wheat yield and economic benefit, especially the latter. Nitrogen drilling is a good method for yield increment and N2O abatement.

  18. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  19. Microbial CH4 and N2O consumption in acidic wetlands

    Directory of Open Access Journals (Sweden)

    Steffen eKolb

    2012-03-01

    Full Text Available Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH4, and nitrous oxide (N2O. Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH4 is consumed in sub soil by aerobic methanotrophs at anoxic–oxic interfaces (e.g., tissues of Sphagnum mosses, rhizosphere of vascular plant roots. Methylocystis-related species are likely candidates that are involved in the consumption of atmospheric CH4 in acidic wetlands. Oxygen availability regulates the activity of methanotrophs of acidic wetlands. Other parameters impacting on the methanotroph-mediated CH4 consumption have not been systematically evaluated. N2O is produced and consumed by microbial denitrification, thus rendering acidic wetlands as temporary sources or sinks for N2O. Denitrifier communities in such ecosystems are diverse, and largely uncultured and/or new, and environmental factors that control their consumption activity are unresolved. Analyses of the composition of N2O reductase genes in acidic wetlands suggest that acid-tolerant Proteobacteria have the potential to mediate N2O consumption in such soils. Thus, the fragmented current state of knowledge raises open questions concerning methanotrophs and dentrifiers that consume atmospheric CH4 and N2O in acidic wetlands.

  20. N2O emission under fluidized bed combustion condition

    International Nuclear Information System (INIS)

    Shen, B.X.; Yao, Q.; Mi, T.; Liu, D.C.; Feng, B.; Winter, Franz

    2003-01-01

    In this paper, many rules about N 2 O and NO x emission under fluidized bed combustion conditions were found by experiments. The research results indicate that CaO, CaSO 4 , Fe 2 O 3 and char have important influence on decomposition of N 2 O; co-combustion of coal and biomass are effective measures to low N 2 O and NO x emission

  1. NOx and N2O emission control with catalyst's

    International Nuclear Information System (INIS)

    Hiltunen, M.

    1994-01-01

    Due to the increasingly stringent emission regulations, new technologies are needed to be developed for improving emission control in circulating fluidized-bed boilers. The objective of this project is to test the concept of using catalysts for NO x and N 2 O emission control. N 2 O emission is in the range of 30 - 100 ppm from fluidized bed combustors burning coal. Since it is a greenhouse gas an effective means of controlling N 2 O emission is needed

  2. Stratospheric concentrations of N2O in July 1975

    International Nuclear Information System (INIS)

    Krey, P.W.; Lagomarsino, R.J.; Schonberg, M.

    1977-01-01

    The first measurement of the hemispheric distribution of N 2 O concentrations in the lower stratosphere of the Northern Hemisphere is reported for July 1975. This distribution is similar to those of CCl 3 F and SF 6 , although N 2 O is more stable in the stratosphere than either of the other trace gases. The inventory of N 2 O in the stratosphere of the Northern Hemisphere in July 1975 against which future observations can be compared is 136 Tg

  3. Greenhouse effect gases sources and sinks (CO2, CH4, N2O) in grasslands and reduction strategies. Greenhouse effect gases prairies. Final report of the second part of the project. April 2004

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2004-04-01

    The project 'GES-Prairies' (Greenhouse Gases - Grasslands) had two main objectives: 1. To measure more accurately the fluxes of CO 2 , CH 4 and N 2 O of French grasslands and determine the greenhouse gas (GHG) balance of these areas. 2. To calculate the net GHG emissions of cattle production farms and finally to propose and evaluate some management scenarios leading to a reduction of GHG emissions. This project deals with three different spatial scales: the field scale, the farm scale and finally, the regional scale. At the field scale, during two years, fluxes of CO 2 , CH 4 and N 2 O were measured in a mid-mountain permanent grassland, previously managed intensively by cutting and grazing (Laqueuille, Auvergne, France). Results from the first complete year of measurements show that the extensification process (reduction of the stocking rate and stopping N fertilization) allows to stock more carbon in the ecosystem. At the farm scale, We developed a model (FARMSIM, coupled to PASIM) able to simulate the GHG balance of a livestock farm. FARMSIM has been tested with data obtained from a mixed livestock farm in Lorraine (dairy and meat production, annual average stocking rate = 1.3 LU ha -1 ) of 100 ha (including 76 ha of grasslands and 21 of annual crops). The results indicate a net emission of 175 t equivalent C-CO 2 for this farm. If expressed per unit of product, it represents 1.34 t equivalent C-CO 2 per LU and per year or 0.54 kg CO 2 per kg of milk and per year. At the regional scale/. The PASIM model has been used to simulate the European grasslands with a spatial resolution of 1' (about 200 * 200 km). For each grid cell, a sensibility analysis allowed to determine the N application which correspond to 30% of the N application that would maximize the annual yield of the pasture. Simulation runs on mixed systems (combining grazing and cutting) show that almost one half of the grassland area is, on average, used for cutting. These simulations predict N 2 O

  4. An automated setup to measure paleoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    NARCIS (Netherlands)

    Sperlich, P.; Buizert, C.; Jenk, T.M.; Sapart, C.J.; Prokopiou, M.; Röckmann, T.; Blunier, T.

    2013-01-01

    Air bubbles in ice core samples represent the only opportunity to study the isotopic variability of paleoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup

  5. Fungi regulate response of N2O production to warming and grazing in a Tibetan grassland

    Science.gov (United States)

    Zhong, Lei; Wang, Shiping; Xu, Xingliang; Wang, Yanfen; Rui, Yichao; Zhou, Xiaoqi; Shen, Qinhua; Wang, Jinzhi; Jiang, Lili; Luo, Caiyun; Gu, Tianbao; Ma, Wenchao; Chen, Guanyi

    2018-03-01

    Lack of understanding of the effects of warming and winter grazing on soil fungal contribution to nitrous oxide (N2O) production has limited our ability to predict N2O fluxes under changes in climate and land use management, because soil fungi play an important role in driving terrestrial N cycling. Here, we examined the effects of 10 years' warming and winter grazing on soil N2O emissions potential in an alpine meadow. Our results showed that soil bacteria and fungi contributed 46 % and 54 % to nitrification, and 37 % and 63 % to denitrification, respectively. Neither warming nor winter grazing affected the activity of enzymes responsible for overall nitrification and denitrification. However, warming significantly increased the enzyme activity of bacterial nitrification and denitrification to 53 % and 55 %, respectively. Warming significantly decreased enzyme activity of fungal nitrification and denitrification to 47 % and 45 %, respectively, while winter grazing had no such effect. We conclude that soil fungi could be the main source for N2O production potential in the Tibetan alpine grasslands. Warming and winter grazing may not affect the potential for soil N2O production potential, but climate warming can alter biotic pathways responsible for N2O production. These findings indicate that characterizing how fungal nitrification/denitrification contributes to N2O production, as well as how it responds to environmental and land use changes, can advance our understanding of N cycling. Therefore, our results provide some new insights about ecological controls on N2O production and lead to refine greenhouse gas flux models.

  6. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    Science.gov (United States)

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Soil biochar amendment shapes the composition of N_2O-reducing microbial communities

    International Nuclear Information System (INIS)

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H.; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N_2O) emissions. N_2O is a potent greenhouse gas. The main sources of N_2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N_2O emission mitigation and the abundance and activity of N_2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described ‘atypical’ nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N_2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N_2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N_2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. - Highlights: • Biochar promoted anaerobic, alkalinity-adapted, and polymer-degrading microbial taxa. • Biochar fostered the development of distinct N_2O-reducing microbial taxa. • Taxonomic shifts among N_2O-reducing microbes might explain lower N_2O emissions.

  8. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?

    Science.gov (United States)

    Chen, Guihua; Kolb, Lauren; Cavigelli, Michel A; Weil, Ray R; Hooks, Cerruti R R

    2018-03-15

    Nitrous oxide (N 2 O) is an important greenhouse gas and a catalyst of stratospheric ozone decay. Agricultural soils are the source of 75% of anthropogenic N 2 O emissions globally. Recently, significant attention has been directed at examining effects of conservation tillage on carbon sequestration in agricultural systems. However, limited knowledge is available regarding how these practices impact N 2 O emissions, especially for organic vegetable production systems. In this context, a three-year study was conducted in a well-drained sandy loam field transitioning to organic vegetable production in the Mid-Atlantic coastal plain of USA to investigate impacts of conservation tillage [strip till (ST) and no-till (NT)] and conventional tillage (CT) [with black plastic mulch (CT-BP) and bare-ground (CT-BG)] on N 2 O emissions. Each year, a winter cover crop mixture (forage radish: Raphanus sativus var. longipinnatus, crimson clover: Trifolium incarnatum L., and rye: Secale cereale L.) was grown and flail-mowed in the spring. Nearly 80% of annual N 2 O-nitrogen (N) emissions occurred during the vegetable growing season for all treatments. Annual N 2 O-N emissions were greater in CT-BP than in ST and NT, and greater in CT-BG than in NT, but not different between CT-BG and CT-BP, ST and NT, or CT-BG and ST. Conventional tillage promoted N mineralization and plastic mulch increased soil temperature, which contributed to greater N 2 O-N fluxes. Though water filled porosity in NT was higher and correlated well with N 2 O-N fluxes, annual N 2 O-N emissions were lowest in NT suggesting a lack of substrates for nitrification and denitrification processes. Crop yield was lowest in NT in Year 1 and CT-BP in Year 3 but yield-scaled N 2 O-N emissions were consistently greatest in CT-BP and lowest in NT each year. Our results suggest that for coarse-textured soils in the coastal plain with winter cover crops, conservation tillage practices may reduce N 2 O emissions in organic

  9. Options and potentials to mitigate N2O emissions from wheat and maize fields in China: a meta-analysis

    Science.gov (United States)

    Sun, W.; Li, X.

    2017-12-01

    Upland croplands are the main source of N2O emission. Mitigation of N2O emissions from upland croplands will greatly contribute to an overall reduction of greenhouse gases from agriculture. We performed a meta-analysis to investigate the mitigation options and potential of N2O emissions from wheat and maize fields in China. Results showed that application of inhibitors in wheat and maize fields reduced36‒46% of the N2O emissions with an increase in crop yield. Cutting the application rates of nitrogen fertilizers by no more than 30% could reduce N2O emissions by 10‒18%without crop yield loss. Applications of slow (controlled-) release fertilizer fertilizers and incorporations of crop residues can significantly mitigate N2O emission from wheat fields, but this mitigation is not statistically significant in maize fields. The gross N2O emission could be reduced by 9.3‒13.9Gg N2O-N per wheat season and 10.5‒23.2 Gg N2O-N per maize season when different mitigation options are put into practices. The mitigation potential (MP) in wheat cultivation is particularly notable for Henan, Shandong, Hebei and Anhui Province, contributing 53% to the total MP in wheat fields. Heilongjiang, Jilin, Shandong, Hebei and Henan Province showed high MP in maize cultivation, accounting for approximately 50% of the total MP in maize fields.

  10. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts

    Indian Academy of Sciences (India)

    N2O is a potent greenhouse gas.2 About 40% of global. N2O emissions are a result of human activities. Major sources are agriculture, transportation, combustion of fossil fuels and industries involved in preparation of adipic aid, nitric acid, etc. Apart from these, many natural processes like nitrogen cycle and breakdown.

  11. Upwelling intensity modulates N2O concentrations over the western Indian shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Sudheesh, V.; Gupta, G.V.M.; Sudharma, K.V.; Naik, H.; Shenoy, D.M.; Sudhakar, M.; Naqvi, S.W.A.

    Pacific Ocean (off central Chile and Peru) have been identified as ‘‘hot spots’’ of N2O production with N2O saturations up to 8250% and 2426–12,244%, respectively [Naqvi et al., 2005; Cornejo et al., 2007; Ar�evalo-Mart�ınez et al., 2015]. The N2O flux per... Peru. (ETSP) 7.6–986 27–1825 Ar�evalo-Mart�ınez et al. [2015] Off central Chile (ETSP) 6.7–59 245 (30 m) 29.8–195 Cornejo et al. [2007] 5.1–30.1 206 (40 m) 27.7–42.9 Farias et al. [2009] Oman shelf 9.7–24.7 48.8 (50 m) N.G. Naqvi et al. [2010] Eastern...

  12. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  13. Nitrous Oxide (N2O) Emissions from Vehicles

    International Nuclear Information System (INIS)

    Becker, K.H.; Kurtenbach, R.; Lorzer, J.C.; Wiesen, P.; Jensen, T.; Wallington, T.J.

    2000-01-01

    N2O is an important greenhouse gas and accurate emission data are required to assess its impact on global climate. It is well established that automobiles, particularly those equipped with 3-way catalysts, emit N2O. However, the vehicle contribution to the global N2O budget is uncertain. We report results of N2O emission measurements performed in a road tunnel in Germany and using a chassis dynamometer system in the USA. We estimate that the global vehicle fleet emits (0.12±0.06) Tg yr-1 of N2O. From the emission factor (g N2O/g CO2) determined an annual N2O emission of (0.12±0.06) Tg yr-1 of N2O (0.08±0.04 Tg N yr-1) for the global vehicle fleet has been estimated which represents 1-4% of the atmospheric growth rate of this species. 9 refs

  14. Investigation of dissolved N2O production processes during wastewater treatment system in Ulaanbaatar

    Directory of Open Access Journals (Sweden)

    Tumendelger A

    2017-02-01

    Full Text Available Nitrous oxide (N2O is an increasing greenhouse gas in the troposphere and a potential destroyer of stratospheric ozone layer. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrifcation processes in WWTP. These major processes can be distinguished by isotopocule analysis. In order to reveal production mechanisms of N2O in a standard wastewater treatment, we made water sampling at the central WWTP in Ulaanbaatar. The water samples collected from seven stations including biological reaction tanks were measured for concentration and isotopocule ratios of dissolved N2O and other inorganic nitrogen. Dissolved N2O concentration was extremely higher than that expected under atmospheric equilibrium (about 9 nmol/l at all stations, indicating that this system is a potential source of N2O. It showed a gradual increase with the progress of biological reaction and the highest concentration (335.7 nmol/l was observed at station N5-4 of the aeration tank when the DO was 5.7 mg/l. Nitrification by nitrifying bacteria could actively occur by the concentration of NH4+ decreased whereas NO2- and NO3- showed a temporal and monotonic increase, respectively, under high DO concentration. Although the reported values of site preference (SP of N2O, the difference in 15N/14N ratio between central (α and terminal (β nitrogen, produced via NO2- reduction (SP(ND, including both nitrifier and denitrifier denitrification, and NH2OH oxidation (SP(HO ranged from -10.7‰ to 0‰ and 31.4‰ to 36.3‰, respectively, the observed SP at aeration tank was close to SP(ND rather than SP(HO. It was ranged from 0.4‰ to 13.3‰ when N2O concentration was high, implying that the NO2- reduction made a greater contribution to N2O production. Slightly elevated SP (13.3‰ only at

  15. N2O Emission from energy crop fields

    International Nuclear Information System (INIS)

    Joergensen, B.J.; Nyholm Joergensen, R.

    1996-03-01

    The interest in N 2 O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N 2 O per unit mass is about 320 times greater than CO 2 . The contribution of N 2 O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N 2 O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N 2 O from the soil per produced energy unit. The aims of this study were to assess the annual N 2 O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N 2 O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N 2 O emission from the soils, a section with development of the technique for N 2 O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N 2 O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N 2 O ha -1 yr -1 . This amount corresponds to 960 kg CO 2 ha -1 yr -1 compared to a total CO 2 reduction of 10 to 19 tons CO 2 ha -1 yr -1 using the energy crops as substitution for fossil fuels. An efficient way to reduce the N 2 O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO 2 reduction per unit dry matter. Following the guidelines for good agricultural practice concerning the

  16. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system.

    Science.gov (United States)

    Domeignoz-Horta, Luiz A; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Bizouard, Florian; Léonard, Joël; Philippot, Laurent

    2015-01-01

    Agriculture is the main source of terrestrial emissions of N2O, a potent greenhouse gas and the main cause of ozone layer depletion. The reduction of N2O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only biological process known to eliminate this greenhouse gas. Recent studies showed that a previously unknown clade of N2O-reducers was related to the capacity of the soil to act as an N2O sink, opening the way for new strategies to mitigate emissions. Here, we investigated whether the agricultural practices could differently influence the two N2O reducer clades with consequences for denitrification end-products. The abundance of N2O-reducers and producers was quantified by real-time PCR, and the diversity of both nosZ clades was determined by 454 pyrosequencing. Potential N2O production and potential denitrification activity were used to calculate the denitrification gaseous end-product ratio. Overall, the results showed limited differences between management practices but there were significant differences between cropping systems in both the abundance and structure of the nosZII community, as well as in the [rN2O/r(N2O+N2)] ratio. More limited differences were observed in the nosZI community, suggesting that the newly identified nosZII clade is more sensitive than nosZI to environmental changes. Potential denitrification activity and potential N2O production were explained mainly by the soil properties while the diversity of the nosZII clade on its own explained 26% of the denitrification end-product ratio, which highlights the importance of understanding the ecology of this newly identified clade of N2O reducers for mitigation strategies.

  17. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production

    Science.gov (United States)

    Anex, R. P.; Francis Clar, J.

    2015-12-01

    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  18. Global distribution of N2O emissions from aquatic systems : natural emissions and anthropogenic effects

    NARCIS (Netherlands)

    Seitzinger, S.P.; Styles, R.V.; Kroeze, C.

    2000-01-01

    Context Abstract: Atmospheric concentrations of nitrous oxide, a greenhouse gas, are increasing due to human activities. Our analysis suggests that a third of global anthropogenic N2O emission is from aquatic sources (rivers, estuaries, continental shelves) and the terrestrial sources comprise the

  19. UV-induced N2O emission from plants

    DEFF Research Database (Denmark)

    Bruhn, Dan; Albert, Kristian Rost; Mikkelsen, Teis Nørgaard

    2014-01-01

    investigate for the fi rst time N 2 O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted fi eld site measurements to investigate N 2 O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory...... magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N 2 O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process...

  20. Measuring and modeling of soil N2O emissions - How well are we doing?

    Science.gov (United States)

    Butterbach-Bahl, K.; Ralf, K.; Werner, C.; Wolf, B.

    2017-12-01

    Microbial processes in soils are the primarily source of atmospheric N2O. Fertilizer use to boost food and feed production of agricultural systems as well as nitrogen deposition to natural and semi-natural ecosystems due to emissions of NOx and NH3 from agriculture and energy production and re-deposition to terrestrial ecosystems has likely nearly doubled the pre-industrial source strength of soils for atmospheric N2O. Quantifying soil emissions and identifying mitigation options is becoming a major focus in the climate debate as N2O emissions from agricultural soils are a major contributor to the greenhouse gas footprint of agricultural systems, with agriculture incl. land use change contributing up to 30% to total anthropogenic GHG emissions. The increasing number of annual datasets show that soil emissions a) are largely depended on soil N availability and thus e.g. fertilizer application, b) vary with management (e.g. timing of fertilization, residue management, tillage), c) depend on soil properties such as organic matter content and pH, e) are affected by plant N uptake, and e) are controlled by environmental factors such as moisture and temperature regimes. It is remarkable that the magnitude of annual emissions is largely controlled by short-term N2O pulses occurring due to fertilization, wetting and drying or freezing and thawing of soils. All of this contributes to a notorious variability of soil N2O emissions in space and time. Overcoming this variability for quantification of source strengths and identifying tangible mitigation options requires targeted measuring approaches as well as the translation of our knowledge on mechanisms underlying emissions into process oriented models, which finally might be used for upscaling and scenario studies. This paper aims at reviewing current knowledge on measurements, modelling and upscaling of soil N2O emissions, thereby identifying short comes and uncertainties of the various approaches and fields for future

  1. Emission of N2O from production of energy crops

    International Nuclear Information System (INIS)

    Lind, A.M.; Joergensen, U.; Maag, M.

    1995-01-01

    The contribution of N 2 O (nitrous oxide) to the greenhouse effect has been increasing during the latest years. The increase in the contribution from N 2 O is partly caused by increasing emission from soil, mainly due to human activity, and partly as a result of an increasing radiatively greenhouse effect as relative to CO 2 according to general recalculations and reevaluation. The contribution from agriculture is directly from cultivated soil as well as indirectly (production of fertilizer and food). Formation of N 2 O in soil is mainly dependent on variations in content of soil water, oxygen state, and on availability of organic matter. Soil type and cropping are also important. The factors are interrelated, and their influence on the two N 2 O-forming processes, nitrification and denitrification, are very fluctuating resulting in large variations (spatial and temporal) for measurements of the emission in field. In the present paper, the state of knowledge is given for the emission of nitrous oxide from cultivated soil as well as from different types of natural ecosystems. Significant differences between N 2 O-emission from different annual crops cannot be expected. Based on Danish measurements of N 2 O-emission (spring barley, winter wheat and spring rape) the net displacement of CO 2 is calculated. The deduction of N 2 O varied from being double as high as the deduction for the production dependent CO 2 -emission to a lot less than that. There was a marked influence of the yields of the specific crops in the actual measuring years on the relative effect of the N 2 O deduction on the net-displacement of CO 2 . (EG)

  2. Improving and disaggregating N_2O emission factors for ruminant excreta on temperate pasture soils

    International Nuclear Information System (INIS)

    Krol, D.J.; Carolan, R.; Minet, E.; McGeough, K.L.; Watson, C.J.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G.

    2016-01-01

    Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N_2O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N_2O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N_2O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N_2O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (− 0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N_2O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type. - Highlights: • N_2O emissions were measured from cattle excreta applied to pasture. • N_2O was universally higher from urine compared with dung. • N_2O was driven by rainfall, temperature and soil moisture deficit. • Emission

  3. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    Science.gov (United States)

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors

    Directory of Open Access Journals (Sweden)

    F. S. Zhang

    2011-10-01

    Full Text Available Nitrous oxide (N2O is a long-lived greenhouse gas with a large radiation intensity and it is emitted mainly from agricultural land. Accurate estimates of total direct N2O emissions from croplands on a country scale are important for global budgets of anthropogenic sources of N2O emissions and for the development of effective mitigation strategies. The objectives of this study were to re-estimate direct N2O emissions using localized emission factors and a database of measurements from Chinese croplands. We obtained N2O emission factors for paddy fields (0.41 ± 0.04% and uplands (1.05 ± 0.02% from a normalization process through cube root transformation of the original data. After comparing the results of normalization from the original values, Logarithmic and cube root transformations were used because the frequency of the original data was not normally distributed. Direct N2O emissions from Chinese croplands from 1980 to 2007 were estimated using IPCC (2006 guidelines combined with separate localized emission factors for paddy fields and upland areas. Direct N2O emissions from paddy fields showed little change, increasing by 10.5% with an annual rate of increase of 0.4% from 32.3 Gg N2O-N in 1980 to 35.7 Gg N2O-N in 2007. In contrast, emissions from uplands changed dramatically, increasing by 308% with an annual rate of 11% from 68.0 Gg N2O-N in 1980 to 278 Gg N2O-N in 2007. Total direct N2O emissions from Chinese croplands increased by 213% with an annual rate of 7.6% from 100 Gg N2O-N in 1980 to 313 Gg N2O-N in 2007, and were determined mainly by upland emissions (accounting for 67.8–88.6% of total emissions from 1980 to 2007. Synthetic N fertilizers played a major role in N2O emissions from agricultural land, and the magnitude of the contributions to total direct N2O emissions made by different amendments was synthetic N fertilizer > manure > straw, representing about 78, 15, and 6% of total direct N2O emissions, respectively, between

  5. Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis

    Science.gov (United States)

    Toyoda, Sakae; Yano, Midori; Nishimura, Sei-Ichi; Akiyama, Hiroko; Hayakawa, Atsushi; Koba, Keisuke; Sudo, Shigeto; Yagi, Kazuyuki; Makabe, Akiko; Tobari, Yoshifumi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Yamada, Keita; Yoshida, Naohiro

    2011-06-01

    Isotopomer ratios of N2O (bulk nitrogen and oxygen isotope ratios, δ15Nbulk and δ18O, and intramolecular 15N site preference, SP) are useful parameters that characterize sources of this greenhouse gas and also provide insight into production and consumption mechanisms. We measured isotopomer ratios of N2O emitted from typical Japanese agricultural soils (Fluvisols and Andisols) planted with rice, wheat, soybean, and vegetables, and treated with synthetic (urea or ammonium) and organic (poultry manure) fertilizers. The results were analyzed using a previously reported isotopomeric N2O signature produced by nitrifying/denitrifying bacteria and a characteristic relationship between δ15Nbulk and SP during N2O reduction by denitrifying bacteria. Relative contributions from nitrification (hydroxylamine oxidation) and denitrification (nitrite reduction) to gross N2O production deduced from the analysis depended on soil type and fertilizer. The contribution from nitrification was relatively high (40%-70%) in Andisols amended with synthetic ammonium fertilizer, while denitrification was dominant (50%-90%) in the same soils amended with poultry manure during the period when N2O production occurred in the surface layer. This information on production processes is in accordance with that obtained from flux/concentration analysis of N2O and soil inorganic nitrogen. However, isotopomer analysis further revealed that partial reduction of N2O was pronounced in high-bulk density, alluvial soil (Fluvisol) compared to low-bulk density, volcanic ash soil (Andisol), and that the observed difference in N2O flux between normal and pelleted manure could have resulted from a similar mechanism with different rates of gross production and gross consumption. The isotopomeric analysis is based on data from pure culture bacteria and would be improved by further studies on in situ biological processes in soils including those by fungi. When flux/concentration-weighted average isotopomer

  6. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens

    Science.gov (United States)

    Akiyama, Hiroko; Hoshino, Yuko Takada; Itakura, Manabu; Shimomura, Yumi; Wang, Yong; Yamamoto, Akinori; Tago, Kanako; Nakajima, Yasuhiro; Minamisawa, Kiwamu; Hayatsu, Masahito

    2016-09-01

    Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens. Here, we show that N2O emission can be reduced at the field scale by inoculation with a mixed culture of indigenous nosZ+ strains of B. diazoefficiens USDA110 group isolated from Japanese agricultural fields. Our results also suggested that nodule nitrogen is the main source of N2O production during nodule decomposition. Isolating nosZ+ strains from local soybean fields would be more applicable and feasible for many soybean-producing countries than generating mutants.

  7. Isotopologue fractionation during N(2)O production by fungal denitrification.

    Science.gov (United States)

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  8. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil

    International Nuclear Information System (INIS)

    Signor, D; Cerri, C E P; Conant, R

    2013-01-01

    Among the main greenhouse gases (CO 2 , CH 4 and N 2 O), N 2 O has the highest global warming potential. N 2 O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N 2 O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (São Paulo state) and Goianésia (Goiás state). In Piracicaba, N 2 O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha −1 of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianésia, N 2 O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha −1 . This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N 2 O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies. (letter)

  9. Budget of N2O emissions at the watershed scale: role of land cover and topography (the Orgeval basin, France

    Directory of Open Access Journals (Sweden)

    G. Billen

    2012-03-01

    Full Text Available Agricultural basins are the major source of N2O emissions, with arable land accounting for half of the biogenic emissions worldwide. Moreover, N2O emission strongly depends on the position of agricultural land in relation with topographical gradients, as footslope soils are often more prone to denitrification. The estimation of land surface area occupied by agricultural soils depends on the available spatial input information and resolution. Surface areas of grassland, forest and arable lands were estimated for the Orgeval sub-basin using two cover representations: the pan European CORINE Land Cover 2006 database (CLC 2006 and a combination of two databases produced by the IAU IDF (Institut d'Aménagement et d'Urbanisme de la Région d'Île-de-France, the MOS (Mode d'Occupation des Sols combined with the ECOMOS 2000 (a land-use classification. In this study, we have analyzed how different land-cover representations influence and introduce errors into the results of regional N2O emissions inventories. A further introduction of the topography concept was used to better identify the critical zones for N2O emissions, a crucial issue to better adapt the strategies of N2O emissions mitigation. Overall, we observed that a refinement of the land-cover database led to a 5 % decrease in the estimation of N2O emissions, while the integration of the topography decreased the estimation of N2O emissions up to 25 %.

  10. Market Analysis DeN2O. Market potential for reduction of N2O emissions at nitric acid facilities

    International Nuclear Information System (INIS)

    Smit, A.W.; Gent, M.M.C.; Van den Brink, R.W.

    2001-05-01

    ECN has developed a technique for the removal of nitrous oxide (N2O) from the tail gases of a nitric acid plant. The aim of this project was to make an assessment of the market opportunities of this technique. To this end a study was made of the relevant international regulations and agreements on the field of climate policy. The formulation of an international greenhouse gas policy and concomitant flexible mechanisms is a prerequisite for the market introduction of any N2O abatement technique. The available techniques and techniques in development for N2O abatement in the nitric acid industry are described and the strengths and weaknesses are given. Furthermore, the costs per ton CO2 equivalents removed are estimated. Direct decomposition of N2O (either in the NH3 combustion reactor or downstream the absorber) are the most cost efficient techniques. Finally, the number and sizes of nitric acid plants in Europe and the developments in the fertiliser market are described. The current difficult fertiliser market makes the nitric acid producers reluctant to invest in N2O abatement technologies

  11. Mitigating climate change through the understanding of Nitrous Oxide (N2O) consumption processes in peat lands

    Science.gov (United States)

    Akrami, N.; Barker, X. Z.; Horwath, W. R.

    2017-12-01

    Nitrous Oxide (N2O) with global warming potential of 298 over a 100-year horizon is one of the most potent green house gases. In the United States, agriculture share to N2O emissions is over 70%. Peat lands, however, are being considered as both sources and sinks of greenhouse gases. N2O emissions are a product of both production and consumption processes. However, there is still a lack of understanding of N2O consumption processes in soils. In this work, the potential of re-wetted peat lands planted to rice in Sacramento-San Joaquin Delta, California, to act as a potential sink for N2O is being evaluated. Four peat land soils with 1%, 5%, 11% and 23% of organic carbon have been anaerobically incubated with different water contents (15%, 30%, 50%, 75% and 100% of their water holding capacity). 15N-N2O gas has been injected to the headspace of experiment jars and the production and consumption rate of 15N-N2O, 15N-N2 and production rate of Carbon Dioxide (CO2) and Methane (CH4) along with dissolved Nitrate (NO3-), Nitrite (NO2-), Ammonium (NH4+), Iron (II) and Iron (III) concentration has been quantified. Our results show promising N2O consumption rates under high carbon content and relatively high water content treatments. This research introduces organic carbon and water content as two major criteria in N2O consumption processes in peat lands that make it a potential hotspot for climate changes mitigation through adopting effective management practices to decrease greenhouse gas emissions.

  12. Controlling factors of nitrous oxide (N2O) emissions at the field-scale in an agricultural slope

    Science.gov (United States)

    Vilain, Guillaume; Garnier, Josette; Tallec, Gaëlle; Tournebize, Julien; Cellier, Pierre; Flipo, Nicolas

    2010-05-01

    Agricultural practices widely contribute to the atmospheric nitrous oxide (N2O) concentration increase and are the major source of N2O which account for 24% of the global annual emission (IPCC, 2007). Soil nitrification and denitrification are the microbial processes responsible for the production of N2O, which also depends on soil characteristics and management. Besides their control by various factors, such as climate, soil conditions and management (content of NO3- and NH4+, soil water content, presence of degradable organic material…), the role of topography is less known although it can play an important role on N2O emissions (Izaurralde et al., 2004). Due to the scarcity of data on N2O direct vs. indirect emission rate from agriculture in the Seine Basin (Garnier et al., 2009), one of the objectives of the study conducted here was to determine the N2O emission rates of the various land use representative for the Seine Basin, in order to better assess the direct N2O emissions, and to explore controlling factor such as meteorology, topography, soil properties and crop successions. The main objective of this study was at the same time to characterize N2O fluxes variability along a transect from an agricultural plateau to a river and to analyze the influence of landscape position on these emissions. We conducted this study in the Orgeval catchment (Seine basin, France; between 48°47' and 48°55' N, and 03°00' and 03°55' E) from May 2008 to August 2009 on two agricultural fields cropped with wheat, barley, oats, corn. N2O fluxes were monitored from weekly to bimonthly using static manual chambers placed along the chosen transect in five different landscape positions from the plateau to the River. This study has shown that soil moisture (expressed as Water Filled Pore Space) and NO3- soil concentrations explained most of the N2O flux variability during the sampling period. Most of N2O was emitted directly after N fertilization application during a relatively

  13. Edge effects on N2O, NO and CH4 fluxes in two temperate forests.

    Science.gov (United States)

    Remy, Elyn; Gasche, Rainer; Kiese, Ralf; Wuyts, Karen; Verheyen, Kris; Boeckx, Pascal

    2017-01-01

    Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, such as the climate relevant trace gases nitrous oxide (N 2 O), nitric oxide (NO) and methane (CH 4 ). Forest edges, which catch more atmospheric deposition, have become important features in European landscapes and elsewhere. Here, we implemented a fully automated measuring system, comprising static and dynamic measuring chambers determining N 2 O, NO and CH 4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. nigra) forest in northern Belgium. Each forest was monitored during a 2-week measurement campaign with continuous measurements every 2h. NO emissions were 9-fold higher than N 2 O emissions. The fluxes of NO and CH 4 differed between forest edge and interior, but not for N 2 O. This edge effect was more pronounced in the oak than in the pine forest. In the oak forest, edges emitted less NO (on average 60%) and took up more CH 4 (on average 177%). This suggests that landscape structure can play a role in the atmospheric budgets of these climate relevant trace gases. Soil moisture variation between forest edge and interior was a key variable explaining the magnitude of NO and CH 4 fluxes in our measurement campaign. To better understand the environmental impact of N and C trace gas fluxes from forest edges, additional and long-term measurements in other forest edges are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Saks, N.S.

    1996-01-01

    We have combined thermally stimulated-current (TSC) and capacitance endash voltage (C endash V) measurements to estimate oxide, interface, and effective border trap densities in 6 endash 23 nm thermal, N 2 O, and N 2 O-nitrided oxides exposed to ionizing radiation or high-field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high-field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation-induced hole and interface trap generation efficiencies (0.1%endash 1%) in the best N 2 O and N 2 O-nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO 2 ) x-ray irradiation or ∼10 mC/cm 2 constant current Fowler endash Nordheim injection, effective border trap densities as high as ∼5x10 11 cm -2 are inferred from C endash V hysteresis. These measurements suggest irradiation and high-field stress cause similar border trap energy distributions. In each case, even higher densities of compensating trapped electrons in the oxides (up to 2x10 12 cm -2 ) are inferred from combined TSC and C endash V measurements. These trapped electrons prevent conventional C endash V methods from providing accurate estimates of the total oxide trap charge density in many irradiation or high-field stress studies. Fewer compensating electrons per trapped hole (∼26%±5%) are found for irradiation of N 2 O and N 2 O-nitrided oxides than for thermal oxides (∼46%±7%). (Abstract Truncated)

  15. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    Science.gov (United States)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  16. Nitrous oxide in fresh water systems: An estimate for the yield of atmospheric N2O associated with disposal of human waste

    Science.gov (United States)

    Kaplan, W. A.; Elkins, J. W.; Kolb, C. E.; Mcelroy, M. B.; Wofsy, S. C.; Duran, A. P.

    1977-01-01

    The N2O content of waters in the Potomac and Merrimack Rivers was measured on a number of occasions over the period April to July 1977. The concentrations of dissolved N2O exceeded those which would apply in equilibrium with air by factors ranging from about 46 in the Potomac to 1.2 in the Merrimack. Highest concentrations of dissolved N2O were associated with sewage discharges from the vicinity of Washington, D. C., and analysis indicates a relatively high yield, 1.3 to 11%, for prompt conversion of waste nitrogen to N2O. Measurements of dissolved N2O in fresh water ponds near Boston demonstrated that aquatic systems provide both strong sources and sinks for atmospheric N2O.

  17. Rapid nitrous oxide cycling in the suboxic ocean

    Science.gov (United States)

    Babbin, Andrew R.; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B.

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  18. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.

    Science.gov (United States)

    Zumft, Walter G; Kroneck, Peter M H

    2007-01-01

    N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of

  19. TransCom N2O model inter-comparison, Part II : Atmospheric inversion estimates of N2O emissions

    NARCIS (Netherlands)

    Thompson, R. L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P. K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R. G.; Weiss, R. F.; O'Doherty, S.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Vermeulen, A.; Tohjima, Y.; Jordan, A.; Haszpra, L.; Steinbacher, M.; Van Der Laan, S.; Aalto, T.; Meinhardt, F.; Popa, Maria Elena; Moncrieff, J.; Bousquet, P.

    2014-01-01

    This study examines N2O emission estimates from 5 different atmospheric inversion frameworks. The 5 frameworks differ in the choice of atmospheric transport model, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation dataset. The mean

  20. TransCom N2O model inter-comparison - Part 2 : Atmospheric inversion estimates of N2O emissions

    NARCIS (Netherlands)

    Thompson, R. L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P. K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R. G.; Weiss, R. F.; O'Doherty, S.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Vermeulen, A.; Tohjima, Y.; Jordan, A.; Haszpra, L.; Steinbacher, M.; Van Der Laan, S.; Aalto, T.; Meinhardt, F.; Popa, Maria Elena|info:eu-repo/dai/nl/375806407; Moncrieff, J.; Bousquet, P.

    2014-01-01

    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation

  1. Effect of temperate climate tree species on gross ammonification, gross nitrification and N2O formation

    Science.gov (United States)

    Brüggemann, N.; Rosenkranz, P.; Papen, H.; Butterbach-Bahl, K.

    2003-04-01

    Microbial nitrogen turnover processes in the soil, like ammonification, nitrification and denitrification, play an important role in the formation of nitrous oxide (N2O): (i) ammonification, because it releases nitrogen from organic material in the form of ammonium (NH4+), which in turn can serve as substrate for nitrification; (ii) nitrification itself (i.e. the turnover of NH4+ to nitrate, NO3-), during which nitric oxide (NO) and N2O can be released as by-products at varying ratios; (iii) denitrification, in which NO3- serves as electron acceptor and is converted to molecular nitrogen (N2) via NO and N2O as intermediates, that can also be partially lost to the atmosphere. Temperate forest soils are a substantial source of atmospheric N2O contributing up to 10% to the total atmospheric N2O budget. However, this figure is afflicted with a huge uncertainty due to a number of factors governing the soil N2O formation, consumption, release and uptake, which are not fully understood at present. To one of these factors belongs the influence of the tree species on nitrogen turnover processes in the soil and the formation of N trace gases related with them. The aim of the present work was to analyse this tree species effect for the temperate climate region. For this purpose the effect of five different temperate tree species, having the same age and growing on the same soil in direct vicinity to each other, on gross ammonification and gross nitrification as well as on N2O formation was investigated. The trees (common beech, Fagus sylvatica; pedunculate oak, Quercus robur; Norway spruce, Picea abies; Japanese larch, Larix leptolepis; mountain pine, Pinus mugo) were part of a species trial in Western Jutland, Denmark, established in 1965 on a former sandy heathland. Samples from the soil under these five tree species were taken in spring and in summer 2002, respectively, differentiating between organic layer and mineral soil. The gross rates of ammonification as well of

  2. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures

    International Nuclear Information System (INIS)

    Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gagnon, B.; Bertrand, N.

    2008-01-01

    Nitrous oxide (N 2 O) emissions from loamy and clay soils fertilized with liquid or solid dairy cattle manures and synthetic nitrogen (N) fertilizers were measured in this study in order to determine if the use of manure for silage maize production increased N 2 O emissions when compared with the application of N-based fertilizers. Manures and ammonium nitrate were applied on the soil surface and sampled. Silage corn was then planted over a period of 2 years between 2002 and 2003. Soil-surface fluxes of N 2 O were measured using non-flow through, non-steady-state chambers. Measurements were taken weekly over the study period, and all air samples were analyzed using gas chromatography. Soil temperature and moisture levels were also recorded. One-way analysis of variance (ANOVA) analyses were used to examine the effects of manure type on soil N 2 O concentrations; soil-surface N 2 O fluxes; soil mineral N content; soil temperature; and soil water content. Results of the study showed that between 60 and 90 per cent of N 2 O emissions occurred during the first 40 days of fertilizer application. The fertilization of the silage corn crop with dairy cattle manure resulted in N 2 O emissions greater than, or equal to, soils amended with synthetic N. Maize yields were also lower in the manured fields. No difference in N 2 O emissions was observed between the liquid and the solid manures. It was concluded that the main source of N 2 0 was nitrification in the loamy soils, and denitrification in clay soils. 41 refs., 4 tabs., 5 figs

  3. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    Science.gov (United States)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  4. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate f...

  5. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment

    International Nuclear Information System (INIS)

    Hobson, A.M.; Frederickson, J.; Dise, N.B.

    2005-01-01

    Methane (CH 4 ) and nitrous oxide (N 2 O) are included in the six greenhouse gases listed in the Kyoto protocol that require emission reduction. To meet reduced emission targets, governments need to first quantify their contribution to global warming. Composting has been identified as an important source of CH 4 and N 2 O. With increasing divergence of biodegradable waste from landfill into the composting sector, it is important to quantify emissions of CH 4 and N 2 O from all forms of composting and from all stages. This study focuses on the final phase of a two stage composting process and compares the generation and emission of CH 4 and N 2 O associated with two differing composting methods: mechanically turned windrow and vermicomposting. The first stage was in-vessel pre-treatment. Source-segregated household waste was first pre-composted for seven days using an in-vessel system. The second stage of composting involved forming half of the pre-composted material into a windrow and applying half to vermicomposting beds. The duration of this stage was 85 days and CH 4 and N 2 O emissions were monitored throughout for both systems. Waste samples were regularly subjected to respirometry analysis and both processes were found to be equally effective at stabilising the organic matter content. The mechanically turned windrow system was characterised by emissions of CH 4 and to a much lesser extent N 2 O. However, the vermicomposting system emitted significant fluxes of N 2 O and only trace amounts of CH 4 . In-vessel pre-treatment removed considerable amounts of available C and N prior to the second stage of composting. This had the effect of reducing emissions of CH 4 and N 2 O from the second stage compared to emissions from fresh waste found in other studies. The characteristics of each of the two composting processes are discussed in detail. Very different mechanisms for emission of CH 4 and N 2 O are proposed for each system. For the windrow system, development

  6. Nitrous Oxide (N2O) Emissions from California based on 2010 CalNex Airborne Measurements

    Science.gov (United States)

    Xiang, B.; Miller, S.; Kort, E. A.; Santoni, G. W.; Daube, B.; Commane, R.; Angevine, W. M.; Ryerson, T. B.; Trainer, M.; Andrews, A. E.; Nehrkorn, T.; Tian, H.; Wofsy, S. C.

    2012-12-01

    Nitrous oxide (N2O) is an important gas for climate and for stratospheric chemistry, with an atmospheric lifetime exceeding 100 years. Global concentrations have increased steadily since the 18th century, apparently due to human-associated emissions, principally from application of nitrogen fertilizers. However, quantitative studies of agricultural emissions at large spatial scales are lacking, inhibited by the difficulty of measuring small enhancements of atmospheric concentrations. Here we derive regional emission rates for N2O in the Central Valley of California, based on analysis of in-situ airborne atmospheric observations collected using a quantum cascade laser spectrometer. The data were obtained on board the NOAA P-3 research aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) program in May and June, 2010. We coupled WRF (Weather Research and Forecasting) model to STILT (Stochastic Time-Inverted Lagrangian Transport) to link our in-situ observations to surface emissions, and then used a variety of statistical methods to identify source areas and to extract optimized emission rates from the inversion. Our results support the view that fertilizer application is the largest source of N2O in the Central Valley. But the spatial distribution of derived surface emissions, based on California land use and activity maps, was very different than indicated in the leading emissions inventory (EDGAR 4.0), and our estimated total emission flux of N2O for California during the study period was 3 - 4 times larger than EDGAR and other inventories.

  7. Production of N2O5 and ClNO2 through Nocturnal Processing of Biomass-Burning Aerosol.

    Science.gov (United States)

    Ahern, Adam T; Goldberger, Lexie; Jahl, Lydia; Thornton, Joel; Sullivan, Ryan C

    2018-01-16

    Biomass burning is a source of both particulate chloride and nitrogen oxides, two important precursors for the formation of nitryl chloride (ClNO 2 ), a source of atmospheric oxidants that is poorly prescribed in atmospheric models. We investigated the ability of biomass burning to produce N 2 O 5 (g) and ClNO 2 (g) through nocturnal chemistry using authentic biomass-burning emissions in a smog chamber. There was a positive relationship between the amount of ClNO 2 formed and the total amount of particulate chloride emitted and with the chloride fraction of nonrefractory particle mass. In every fuel tested, dinitrogen pentoxide (N 2 O 5 ) formed quickly, following the addition of ozone to the smoke aerosol, and ClNO 2 (g) production promptly followed. At atmospherically relevant relative humidities, the particulate chloride in the biomass-burning aerosol was rapidly but incompletely displaced, likely by the nitric acid produced largely by the heterogeneous uptake of N 2 O 5 (g). Despite this chloride acid displacement, the biomass-burning aerosol still converted on the order of 10% of reacted N 2 O 5 (g) into ClNO 2 (g). These experiments directly confirm that biomass burning is a potentially significant source of atmospheric N 2 O 5 and ClNO 2 to the atmosphere.

  8. N2O isotopomers and N2:N2O ratio as indicators of denitrification in ecosystems

    International Nuclear Information System (INIS)

    Mander, Ülo; Zaman, Mohammad

    2015-01-01

    The world is experiencing climate change and variability due to increased greenhouse gas (GHG) emissions. The main GHG’s of concern are nitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ). Agriculture contributes approximately 14% of the world’s GHG emissions. Nitrous oxide is one of the key GHG and ozone (O 3 ) depleting gas, constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N 2 O has a 310- and 16-fold greater global warming potential than each of CO 2 and CH 4 , respectively, over a 100-year period. Nitrous oxide can be produced through both chemical and biochemical pathways. They occur during denitrification (the stepwise conversion of nitrate (NO 3 - ) to nitrogen gas (N 2 ) and during nitrification by ammonia-oxidizing archea (bacteria) during the oxidation of hydroxylamine (NH 2 OH) to nitrite (NO 2 - ) which is then reduced to N 2 O and N 2 by nitrifier denitrification or heterotrophic denitrification

  9. Improving estimates of N2O emissions for western and central Europe using a Bayesian inversion approach

    Science.gov (United States)

    Thompson, R. L.; Gerbig, C.; Roedenbeck, C.; Heimann, M.

    2009-04-01

    The nitrous oxide (N2O) mixing ratio has been increasing in the atmosphere since the industrial revolution, from 270 ppb in 1750 to 320 ppb in 2007 with a steady growth rate of around 0.26% since the early 1980's. The increase in N2O is worrisome for two main reasons. First, it is a greenhouse gas; this means that its atmospheric increase translates to an enhancement in radiative forcing of 0.16 ± 0.02 Wm-2 making it currently the fourth most important long-lived greenhouse gas and is predicted to soon overtake CFC's to become the third most important. Second, it plays an important role in stratospheric ozone chemistry. Human activities are the primary cause of the atmospheric N2O increase. The largest anthropogenic source of N2O is from the use of N-fertilizers in agriculture but fossil fuel combustion and industrial processes, such as adipic and nitric acid production, are also important. We present a Bayesian inversion approach for estimating N2O fluxes over central and western Europe using high frequency in-situ concentration data from the Ochsenkopf tall tower (50 °01′N, 11 °48′, 1022 masl). For the inversion, we employ a Lagrangian-type transport model, STILT, which provides source-receptor relationships at 10 km using ECMWF meteorological data. The a priori flux estimates used were from IER, for anthropogenic, and GEIA, for natural fluxes. N2O fluxes were retrieved monthly at 2 x 2 degree spatial resolution for 2007. The retrieved N2O fluxes showed significantly more spatial heterogeneity than in the a priori field and considerable seasonal variability. The timing of peak emissions was different for different regions but in general the months with the strongest emissions were May and August. Overall, the retrieved flux (anthropogenic and natural) was lower than in the a priori field.

  10. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  11. N2O emissions from an intermittently aerated semi-aerobic aged refuse bioreactor: Combined effect of COD and NH4+-N in influent leachate.

    Science.gov (United States)

    Li, Weihua; Sun, Yingjie; Bian, Rongxing; Wang, Huawei; Zhang, Dalei

    2017-11-01

    The carbon-nitrogen ratio (COD/NH 4 + -N) is an important factor affecting nitrification and denitrification in wastewater treatment; this factor also influences nitrous oxide (N 2 O) emissions. This study investigated two simulated intermittently aerated semi-aerobic aged refuse bioreactors (SAARB) filled with 8-year old aged refuse (AR). The research analyzed how differences in and the combination of influent COD and NH 4 + -N impact N 2 O emissions in leachate treatment. Experimental results showed that N 2 O emissions increased as the influent COD/NH 4 + -N decreased. The influent COD had a greater effect on N 2 O emissions than NH 4 + -N at the same influent ratios of COD/NH 4 + -N (2.7 and 8.0, respectively). The maximum N 2 O emission accounted for 8.82±2.65% of the total nitrogen removed from the influent leachate; the maximum level occurred when the COD was 2000mg/L. An analysis of differences in influent carbon sources at the same COD/NH 4 + -N ratios concluded that the availability of biodegradable carbon substrates (i.e. glucose) is an important factor affecting N 2 O emissions. At a low influent COD/NH 4 + -N ratio (2.7), the N 2 O conversion rate was greater when there were more biodegradable carbon substrates. Although the SAARB included the N 2 O generation and reduction processes, N 2 O reduction mainly occurred later in the process, after leachate recirculation. The maximum N 2 O emission rate occurred in the first hour of single-period (24h) experiments, as leachate contacted the surface AR. In practical SAARB applications, N 2 O emissions may be reduced by measures such as reducing the initial recirculation loading of NH 4 + -N substrates, adding a later supplement of biodegradable carbon substrates, and/or prolonging hydraulic retention time (HRT) of influent leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  13. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions

    Science.gov (United States)

    Lugato, Emanuele; Leip, Adrian; Jones, Arwyn

    2018-03-01

    International initiatives such as the `4 per 1000' are promoting enhanced carbon (C) sequestration in agricultural soils as a way to mitigate greenhouse gas emissions1. However, changes in soil organic C turnover feed back into the nitrogen (N) cycle2, meaning that variation in soil nitrous oxide (N2O) emissions may offset or enhance C sequestration actions3. Here we use a biogeochemistry model on approximately 8,000 soil sampling locations in the European Union4 to quantify the net CO2 equivalent (CO2e) fluxes associated with representative C-mitigating agricultural practices. Practices based on integrated crop residue retention and lower soil disturbance are found to not increase N2O emissions as long as C accumulation continues (until around 2040), thereafter leading to a moderate C sequestration offset mostly below 47% by 2100. The introduction of N-fixing cover crops allowed higher C accumulation over the initial 20 years, but this gain was progressively offset by higher N2O emissions over time. By 2060, around half of the sites became a net source of greenhouse gases. We conclude that significant CO2 mitigation can be achieved in the initial 20-30 years of any C management scheme, but after that N inputs should be controlled through appropriate management.

  14. Laboratory and field studies on a new sensor for dissolved N2O.

    Science.gov (United States)

    Thaler, Klemens M; Niessner, Reinhard; Haisch, Christoph

    2017-08-01

    Nitrous oxide (N 2 O) is a strong greenhouse gas, whose atmospheric concentration has been continuously increasing for more than 200 years. One major source is wastewater treatment plants (WWTPs), where N 2 O emissions should either be minimized or pushed to levels where exploitation in biogas combustion engines becomes efficient. Both these strategies require online control of the N 2 O concentrations in the liquid as well as in the gas phase. For this purpose, we propose a system for membrane extraction of the gas from the liquid phase, which then allows for a subsequent gas-phase analysis, which we perform by photoacoustic spectroscopy. We compare different theoretical calculations of the extraction efficiency, based either on a straightforward mathematical model or on a finite element simulation. The comparison of results with measurements produced on a well-defined model system shows good accordance. Based on the outcome, a field probe was developed and tested on a WWTP, yielding results comparable to the one achieved by GC reference analysis. Graphical abstract Gas extraction from liquids, e.g. from a wastewater treatment plant, for online gas monitoring.

  15. Progress in the analysis and interpretation of N2O isotopes: Potential and future challenges

    Science.gov (United States)

    Mohn, Joachim; Tuzson, Béla; Zellweger, Christoph; Harris, Eliza; Ibraim, Erkan; Yu, Longfei; Emmenegger, Lukas

    2017-04-01

    In recent years, research on nitrous oxide (N2O) stable isotopes has significantly advanced, addressing an increasing number of research questions in biogeochemical and atmospheric sciences [1]. An important milestone was the development of quantum cascade laser based spectroscopic devices [2], which are inherently specific for structural isomers (15N14N16O vs. 14N15N16O) and capable to collect real-time data with high temporal resolution, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. In combination with automated preconcentration, optical isotope ratio spectroscopy (OIRS) has been applied to disentangle source processes in suburban, rural and pristine environments [e.g. 3, 4]. Within the European Metrology Research Programme (EMRP) ENV52 project "Metrology for high-impact greenhouse gases (HIGHGAS)", the quality of N2O stable isotope analysis by OIRS, the comparability between laboratories, and the traceability to the international isotope ratio scales have been addressed. An inter-laboratory comparison between eleven IRMS and OIRS laboratories, organised within HIGHGAS, indicated limited comparability for 15N site preference, i.e. the difference between 15N abundance in central (N*NO) and end (*NNO) position [5]. In addition, the accuracy of the NH4NO3 decomposition reaction, which provides the link between 15N site preference and the international 15N/14N scale, was found to be limited by non-quantitative NH4NO3 decomposition in combination with substantially different isotope enrichment factors for both nitrogen atoms [6]. Results of the HIGHGAS project indicate that the following research tasks have to be completed to foster research on N2O isotopes: 1) develop improved techniques to link the 15N and 18O abundance and the 15N site preference in N2O to the international stable isotope ratio scales; 2) provide N2O reference materials, pure and diluted in an air matrix, to improve inter-laboratory compatibility. These tasks

  16. An automated GC-C-GC-IRMS setup to measure palaeoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    Directory of Open Access Journals (Sweden)

    P. Sperlich

    2013-08-01

    Full Text Available Air bubbles in ice core samples represent the only opportunity to study the mixing ratio and isotopic variability of palaeoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup to measure δ13C-CH4, δ15N-N2O and δ18O-N2O isotope ratios in one ice core sample and with one single IRMS instrument, with a precision of 0.09, 0.6 and 0.7‰, respectively, as determined on 0.6–1.6 nmol CH4 and 0.25–0.6 nmol N2O. The isotope ratios are referenced to the VPDB scale (δ13C-CH4, the N2-air scale (δ15N-N2O and the VSMOW scale (δ18O-N2O. Ice core samples of 200–500 g are melted while the air is constantly extracted to minimize gas dissolution. A helium carrier gas flow transports the sample through the analytical system. We introduce a new gold catalyst to oxidize CO to CO2 in the air sample. CH4 and N2O are then separated from N2, O2, Ar and CO2 before they get pre-concentrated and separated by gas chromatography. A combustion unit is required for δ13C-CH4 analysis, which is equipped with a constant oxygen supply as well as a post-combustion trap and a post-combustion GC column (GC-C-GC-IRMS. The post-combustion trap and the second GC column in the GC-C-GC-IRMS combination prevent Kr and N2O interferences during the isotopic analysis of CH4-derived CO2. These steps increase the time for δ13C-CH4 measurements, which is used to measure δ15N-N2O and δ18O-N2O first and then δ13C-CH4. The analytical time is adjusted to ensure stable conditions in the ion source before each sample gas enters the IRMS, thereby improving the precision achieved for measurements of CH4 and N2O on the same IRMS. The precision of our measurements is comparable to or better than that of recently published systems. Our setup is calibrated by analysing multiple reference gases that were injected over bubble-free ice samples. We show

  17. TSUNAMIGENIC SOURCES IN THE INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    B. K. Rastogi

    2008-01-01

    Full Text Available Based on an assessment of the repeat periods of great earthquakes from past seismicity, convergence rates and paleoseismological results, possible future source zones of tsunami generating earthquakes in the Indian Ocean (possible seismic gap areas are identified along subduction zones and zones of compression. Central Sumatra, Java, Makran coast, Indus Delta, Kutch-Saurashtra, Bangladesh and southern Myanmar are identified as possible source zones of earthquakes in near future which might cause tsunamis in the Indian Ocean, and in particular, that could affect India. The Sunda Arc (covering Sumatra and Java subduction zone, situated on the eastern side of the Indian Ocean, is one of the most active plate margins in the world that generates frequent great earthquakes, volcanic eruptions and tsunamis. The Andaman- Nicobar group of islands is also a seismically active zone that generates frequent earthquakes. However, northern Sumatra and Andaman-Nicobar regions are assessed to be probably free from great earthquakes (M!8.0 for a few decades due to occurrence of 2004 Mw 9.3 and 2005 Mw 8.7 earthquakes. The Krakatau volcanic eruptions have caused large tsunamis in the past. This volcano and a few others situated on the ocean bed can cause large tsunamis in the future. List of past tsunamis generated due to earthquakes/volcanic eruptions that affected the Indian region and vicinity in the Indian Ocean are also presented.

  18. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo

    2012-01-01

    during mid-summer when the WL was at its seasonally lowest counterbalancing ~6.4% of the total annual net N2O emission budget. Main surface emission periods of N2O were observed when the water level and associated peaks in subsurface N2O concentrations were gradually decreasing to soil depths down to 40...... production and consumption capacities where >500 nmol N2O cm-3 were sequentially produced and consumed in less than 24 hrs. It is concluded that a higher future frequency of flooding induced N2O emissions will have a very limited effect on the net annual N2O emission budget as long as NO3- availability...

  19. Validation of ACE-FTS N2O measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2008-08-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE, also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS, is measuring volume mixing ratio (VMR profiles of nitrous oxide (N2O from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs. Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within ±10 ppbv. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km are within ±5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations

  20. Tall tower landscape scale N2O flux measurements in a Danish agricultural and urban, coastal area

    Science.gov (United States)

    Ibrom, Andreas; Lequy, Émeline; Loubet, Benjamin; Pilegaard, Kim; Ambus, Per

    2015-04-01

    Both technical and natural processes emit the greenhouse gas nitrous oxide (N2O) into the atmosphere. The abundant use of nitrogen (N) as fertiliser increases the concentration of reactive nitrogen (Nr) in the atmosphere, the hydrosphere and in the biosphere, i.e. in terrestrial and aquatic ecosystems. Surplus Nr is distributed across linkages to other spheres until most of it is emitted to the atmosphere as NO, N2O or N2. A complete estimate of the effects from human activities on N2O emissions must therefore include all emissions, the direct emissions and the indirect emissions that happen in interlinked spheres. For this it is necessary to assess the fluxes at least at the landscape scale. The episodic nature and the large spatial variability make it difficult to estimate the direct and indirect emissions in a landscape. Modelling requires not only to include the highly variable microbial processes in the ecosystems that produce N2O but as well the accurate simulation of lateral Nr fluxes and their effects on N2O fluxes in places remote from the primary Nr sources. In this context tall tower N2O flux measurements are particularly useful as they integrate over larger areas and can be run, continuously without disturbing the fluxes. On the other hand these measurements can be difficult to interpret due to difficulties to measure the small concentration fluctuations in the atmosphere at small flux rates and to accurately attribute the measured flux at the tower to the area that generates the flux, i.e. the source area. The Technical University of Denmark (DTU) has established eddy covariance N2O flux measurements on a 125 m tall tower at its Risø Campus as part of the EU research infrastructure project the 'Integrated non-CO2 Greenhouse gas Observing System' (InGOS). The eddy covariance system consisted of a N2O/CO quantum cascade laser, Los Gatos, Mountain View, CA, USA and a 3D sonic anemometer (USA-1), Metek, Elmshorn, Germany. The Risø peninsula lies at the

  1. Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition

    NARCIS (Netherlands)

    Li, G.; Pidko, E.A.; Filot, I.A.W.; Santen, van R.A.; Li, Can; Hensen, E.J.M.

    2013-01-01

    The reactivity of mononuclear and binuclear iron-containing complexes in ZSM-5 zeolite for catalytic N2O decomposition has been investigated by periodic DFT calculations and microkinetic modeling. On mononuclear sites, the activation of a first N2O molecule is favorable. The rate of catalytic N2O

  2. Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale

    NARCIS (Netherlands)

    Nol, L.; Heuvelink, G.B.M.; Veldkamp, A.; Vries, de W.; Kros, J.

    2010-01-01

    Nitrous oxide (N2O) emission from agricultural land is an important component of the total annual greenhouse gas (GHG) budget. In addition, uncertainties associated with agricultural N2O emissions are large. The goals of this work were (i) to quantify the uncertainties of modelled N2O emissions

  3. The interaction between silver and N2O in relation to the oxidative dehydrogenation of methanol

    NARCIS (Netherlands)

    Lefferts, Leonardus; van Ommen, J.G.; Ross, J.R.H.

    1988-01-01

    The interaction of N2O with pure silver at temperatures up to 900 °C has been studied using temperature-programmed reduction and desorption; the interaction is compared with that of oxygen with silver. The effect of addition of N2O, as well as of the complete replacement of oxygen by N2O, on the

  4. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    Science.gov (United States)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014

  5. When the Sun's Away, N2O5 Comes Out to Play: An Updated Analysis of Ambient N2O5 Heterogeneous Chemistry

    Science.gov (United States)

    McDuffie, E. E.; Brown, S. S.

    2017-12-01

    The heterogeneous chemistry of N2O5 impacts the budget of tropospheric oxidants, which directly controls air quality at Earth's surface. The reaction between gas-phase N2O5 and aerosol particles occurs largely at night, and is therefore more important during the less-intensively-studied winter season. Though N2O5-aerosol interactions are vital for the accurate understanding and simulation of tropospheric chemistry and air quality, many uncertainties persist in our understanding of how various environmental factors influence the reaction rate and probability. Quantitative and accurate evaluation of these factors directly improves the predictive capabilities of atmospheric models, used to inform mitigation strategies for wintertime air pollution. In an update to last year's presentation, The Wintertime Fate of N2O5: Observations and Box Model Analysis for the 2015 WINTER Aircraft Campaign, this presentation will focus on recent field results regarding new information about N2O5 heterogeneous chemistry and future research directions.

  6. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system.

    Science.gov (United States)

    Toyoda, Sakae; Suzuki, Yuuri; Hattori, Shohei; Yamada, Keita; Fujii, Ayako; Yoshida, Naohiro; Kouno, Rina; Murayama, Kouki; Shiomi, Hiroshi

    2011-02-01

    Wastewater treatment processes are believed to be anthropogenic sources of nitrous oxide (N(2)O) and methane (CH(4)). However, few studies have examined the mechanisms and controlling factors in production of these greenhouse gases in complex bacterial systems. To elucidate production and consumption mechanisms of N(2)O and CH(4) in microbial consortia during wastewater treatment and to characterize human waste sources, we measured their concentrations and isotopomer ratios (elemental isotope ratios and site-specific N isotope ratios in asymmetric molecules of NNO) in water and gas samples collected by an advanced treatment system in Tokyo. Although the estimated emissions of N(2)O and CH(4) from the system were found to be lower than those from the typical treatment systems reported before, water in biological reaction tanks was supersaturated with both gases. The concentration of N(2)O, produced mainly by nitrifier-denitrification as indicated by isotopomer ratios, was highest in the oxic tank (ca. 4000% saturation). The dissolved CH(4) concentration was highest in in-flow water (ca. 3000% saturation). It decreased gradually during treatment. Its carbon isotope ratio indicated that the decrease resulted from bacterial CH(4) oxidation and that microbial CH(4) production can occur in anaerobic and settling tanks.

  7. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots

    International Nuclear Information System (INIS)

    Heuvel, R.N. van den; Hefting, M.M.; Tan, N.C.G.; Jetten, M.S.M.; Verhoeven, J.T.A.

    2009-01-01

    Chronically nitrate-loaded riparian buffer zones show high N 2 O emissions. Often, a large part of the N 2 O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N 2 O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N 2 O emissions. In this study the N 2 O emission variability was investigated at different spatial scales. Therefore N 2 O emissions from three 32 m 2 grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m 2 , 0.018 m 2 and 0.0013 m 2 ) at plots with different levels of N 2 O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N 2 O production, but nitrate addition failed to increase total denitrification or net N 2 O production. N 2 O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N 2 O emission rates

  8. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    Science.gov (United States)

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  9. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...... in the combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...

  10. A consilience model to describe N2O production during biological N removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Smets, Barth F.

    2016-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, is produced during biological nitrogen conversion in wastewater treatment operations. Complex mechanisms underlie N2O production by autotrophic and heterotrophic organisms, which continue to be unravelled. Mathematical models that describe nitric oxide...... (NO) and N2O dynamics have been proposed. Here, a first comprehensive model that considers all relevant NO and N2O production and consumption mechanisms is proposed. The model describes autotrophic NO production by ammonia oxidizing bacteria associated with ammonia oxidation and with nitrite reduction......, followed by NO reduction to N2O. It also considers NO and N2O as intermediates in heterotrophic denitrification in a 4-step model. Three biological NO and N2O production pathways are accounted for, improving the capabilities of existing models while not increasing their complexity. Abiotic contributions...

  11. Investigation of the N2O emission strength in the U. S. Corn Belt

    Science.gov (United States)

    Fu, Congsheng; Lee, Xuhui; Griffis, Timothy J.; Dlugokencky, Edward J.; Andrews, Arlyn E.

    2017-09-01

    Nitrous oxide (N2O) has a high global warming potential and depletes stratospheric ozone. The U. S. Corn Belt plays an important role in the global anthropogenic N2O budget. To date, studies on local surface N2O emissions and the atmospheric N2O budget have commonly used Lagrangian models. In the present study, we used an Eulerian model - Weather Research and Forecasting Chemistry (WRF-Chem) model to investigate the relationships between N2O emissions in the Corn Belt and observed atmospheric N2O mixing ratios. We derived a simple equation to relate the emission strengths to atmospheric N2O mixing ratios, and used the derived equation and hourly atmospheric N2O measurements at the KCMP tall tower in Minnesota to constrain agricultural N2O emissions. The modeled spatial patterns of atmospheric N2O were evaluated against discrete observations at multiple tall towers in the NOAA flask network. After optimization of the surface flux, the model reproduced reasonably well the hourly N2O mixing ratios monitored at the KCMP tower. Agricultural N2O emissions in the EDGAR42 database needed to be scaled up by 19.0 to 28.1 fold to represent the true emissions in the Corn Belt for June 1-20, 2010 - a peak emission period. Optimized mean N2O emissions were 3.00-4.38, 1.52-2.08, 0.61-0.81 and 0.56-0.75 nmol m- 2 s- 1 for June 1-20, August 1-20, October 1-20 and December 1-20, 2010, respectively. The simulated spatial patterns of atmospheric N2O mixing ratios after optimization were in good agreement with the NOAA discrete observations during the strong emission peak in June. Such spatial patterns suggest that the underestimate of emissions using IPCC (Inter-governmental Panel on Climate Change) inventory methodology is not dependent on tower measurement location.

  12. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

    Science.gov (United States)

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-01-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  13. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad, California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker

    2004-01-01

    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2, N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  14. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    Science.gov (United States)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when

  15. Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget

    Science.gov (United States)

    Tian, H.

    2017-12-01

    The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.

  16. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  17. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model

    Directory of Open Access Journals (Sweden)

    C. Lu

    2010-09-01

    Full Text Available Continental-scale estimations of terrestrial methane (CH4 and nitrous oxide (N2O fluxes over a long time period are crucial to accurately assess the global balance of greenhouse gases and enhance our understanding and prediction of global climate change and terrestrial ecosystem feedbacks. Using a process-based global biogeochemical model, the Dynamic Land Ecosystem Model (DLEM, we quantified simultaneously CH4 and N2O fluxes in North America's terrestrial ecosystems from 1979 to 2008. During the past 30 years, approximately 14.69 ± 1.64 T g C a−1 (1 T g = 1012 g of CH4, and 1.94 ± 0.1 T g N a−1 of N2O were released from terrestrial ecosystems in North America. At the country level, both the US and Canada acted as CH4 sources to the atmosphere, but Mexico mainly oxidized and consumed CH4 from the atmosphere. Wetlands in North America contributed predominantly to the regional CH4 source, while all other ecosystems acted as sinks for atmospheric CH4, of which forests accounted for 36.8%. Regarding N2O emission in North America, the US, Canada, and Mexico contributed 56.19%, 18.23%, and 25.58%, respectively, to the continental source over the past 30 years. Forests and croplands were the two ecosystems that contributed most to continental N2O emission. The inter-annual variations of CH4 and N2O fluxes in North America were mainly attributed to year-to-year climatic variability. While only annual precipitation was found to have a significant effect on annual CH4 flux, both mean annual temperature and annual precipitation were significantly correlated to annual N2O flux. The regional estimates and spatiotemporal patterns of terrestrial ecosystem CH4 and N2O fluxes in North America generated in this study provide useful information for global change research and policy making.

  18. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    Science.gov (United States)

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2017-12-01

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N 2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N 2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N 2 O production under conditions of high inorganic ammonia (NH 3 ) input, but result mainly from the activity of AOA when NH 3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N 2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N 2 O production. In unamended soils, ammonia oxidation and N 2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N 2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N 2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N 2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N 2 O emissions from fertilised agricultural soils. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  20. Source of radioactivity in the ocean environment

    International Nuclear Information System (INIS)

    Solomon, K.A.

    1988-01-01

    This paper summarizes both natural and man-made radioactivity in the marine environment. Radioactivity occurs naturally in both the sea water and in the ocean sediment. Radioactivity in the sea water is fairly uniform geographically and is dominated by the naturally occurring isotope 40/K (potassium-40). Unlike sea water, sediment radiation levels vary with sediment type and location. The primary source of natural radiation in the sediment results from deposition of insoluble thorium isotopes formed by the decay of water-soluble uranium. Man-made sources of radioactivity arise from, in descending order of importance: - sinking of two U.S. and two Soviet nuclear submarines; fallout from nuclear weapons testing; dumping of primarily British and Americal low-level nuclear waste; and dumping of reprocessing plant radiated effluents from the British Windscale facility and other European and Indian reprocessing facilities. 1 table

  1. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer

    2013-09-01

    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  2. Effect of watershed urbanization on N2O emissions from the Chongqing metropolitan river network, China

    Science.gov (United States)

    He, Yixin; Wang, Xiaofeng; Chen, Huai; Yuan, Xingzhong; Wu, Ning; Zhang, Yuewei; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Zhou, Lilei

    2017-12-01

    Watershed urbanization, an integrated anthropogenic perturbation, is another considerable global concern in addition to that of global warming and may significantly enrich the N loadings of watersheds, which then greatly influences the nitrous oxide (N2O) production and fluxes of these aquatic systems. However, little is known about the N2O dynamics in human-dominated metropolitan river networks. In this study, we present the temporal and spatial variations in N2O saturation and emission in the Chongqing metropolitan river network, which is undergoing intensified urbanization. The N2O saturation and fluxes at 84 sampling sites ranged from 126% to 10536% and from 4.5 to 1566.8 μmol N2O m-2 d-1, with means of 1780% and 261 μmol N2O m-2 d-1. The riverine N2O saturation and fluxes increased along with the urbanization gradient and urbanization rate, with disproportionately higher values in urban rivers due to the N2O-rich sewage inputs and enriched in situ N substrates. We found a clear seasonal pattern of N2O saturation, which was co-regulated by both water temperature and precipitation. Regression analysis indicated that the N substrates and dissolved oxygen (DO) that controlled nitrogen metabolism acted as good predictors of the N2O emissions of urban river networks. Particularly, phosphorus (P) and hydromorphological factors (water velocity, river size and bottom substrate) had stronger relationships with the N2O saturation and could also be used to predict the N2O emission hotspots in regions with rapid urbanization. In addition, the default emission factors (EF5-r) used in the Intergovernmental Panel on Climate Change (IPCC) methodology may need revision given the differences among the physical and chemical factors in different rivers, especially urban rivers.

  3. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N2O emissions

    Science.gov (United States)

    Papen, Hans; Butterbach-Bahl, Klaus

    1999-08-01

    results demonstrate the need for long-term measurements over several years for more precise estimates of annual N2O losses from forest ecosystems. On the basis of our results we conclude that the importance of temperate and boreal forests for the global N2O source strength may have been significantly underestimated in the past and that these forests contribute most likely ≫1.0 Tg N2O N.

  4. Quantification of nitrous oxide (N2O) emissions and soluble microbial product (SMP) production by a modified AOB-NOB-N2O-SMP model.

    Science.gov (United States)

    Kim, MinJeong; Wu, Guangxue; Yoo, ChangKyoo

    2017-03-01

    A modified AOB-NOB-N 2 O-SMP model able to quantify nitrous oxide (N 2 O) emissions and soluble microbial product (SMP) production during wastewater treatment is proposed. The modified AOB-NOB-N 2 O-SMP model takes into account: (1) two-step nitrification by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), (2) N 2 O production by AOB denitrification under oxygen-limited conditions and (3) SMP production by microbial growth and endogenous respiration. Validity of the modified model is demonstrated by comparing the simulation results with experimental data from lab-scale sequencing batch reactors (SBRs). To reliably implement the modified model, a model calibration that adjusts model parameters to fit the model outputs to the experimental data is conducted. The results of this study showed that the modeling accuracy of the modified AOB-NOB-N 2 O-SMP model increases by 19.7% (NH 4 ), 51.0% (NO 2 ), 57.8% (N 2 O) and 16.7% (SMP) compared to the conventional model which does not consider the two-step nitrification and SMP production by microbial endogenous respiration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. N2O emission from plant surfaces – light stimulated and a global phenomenon

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2017-01-01

    for the first time N2O emission fromterrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurementsto investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and withoutUV-screening. Further laboratory tests were conducted...... with a range of species to study the controls and possibleloci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c.20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a ratherhigh activation energy indicative...

  6. Simple control strategy for mitigating N2O emissions in phase isolated full-scale WWTPs

    DEFF Research Database (Denmark)

    Ekström, Sara Elisabet Margareta; Vangsgaard, Anna Katrine; Lemaire, Romain

    2017-01-01

    removal processes relying on nitrification and denitrification are known to produce N2O. A one year long-term study of N2O production and emissions was performed at Lynetten, Denmark’s largest WWTP. Nitrification and denitrification takes place by alternating process conditions as well as influent....... Nitrification phases were identified to produce and emit most of the N2O. High production and emissions were also associated with the afternoon loading peaks at the WWTP. During denitrification phases N2O was produced initially but consumed consequently. An effective control strategy was implemented, whereby N2...

  7. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?

    Directory of Open Access Journals (Sweden)

    L. A. Codispoti

    2001-12-01

    Full Text Available New data force us to raise previous estimates of oceanic denitrification. Our revised estimate of ~ 450 Tg N yr-1 (Tg = 1012 g produces an oceanic fixed N budget with a large deficit (~ 200 Tg N yr-1 that can be explained only by positing an ocean that has deviated far from a steady-state, the need for a major upwards revision of fixed N inputs, particularly nitrogen fixation, or both. Oceanic denitrification can be significantly altered by small re-distributions of carbon and dissolved oxygen. Since fixed N is a limiting nutrient, uncompensated changes in denitrification affect the ocean´s ability to sequester atmospheric CO2 via the "biological pump". We have also had to modify our concepts of the oceanic N2O regime to take better account of the extremely high N2O saturations that can arise in productive, low oxygen waters. Recent results from the western Indian Shelf during a period when hypoxic, suboxic and anoxic waters were present produced a maximum surface N2O saturation of > 8000%, a likely consequence of "stop and go" denitrification. The sensitivity of N2O production and consumption to small changes in the oceanic dissolved oxygen distribution and to the "spin-up" phase of denitrification suggests that the oceanic source term for N2O could change rapidly.

  8. Distribution of N2O in the Baltic Sea during transition from anoxic to oxic conditions

    Directory of Open Access Journals (Sweden)

    S. Walter

    2006-01-01

    Full Text Available In January 2003, a major inflow of cold and oxygen-rich North Sea Water terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to investigate the role of North Sea Water inflow in the production of nitrous oxide (N2O, we measured dissolved and atmospheric N2O at 26 stations in the southern and central Baltic Sea in October 2003. At the time of our cruise, water renewal had proceeded to the eastern Gotland Basin, whereas the western Gotland Basin was still unaffected by the inflow. The deep water renewal was detectable in the distributions of temperature, salinity, and oxygen concentrations as well as in the distribution of the N2O concentrations: Shallow stations in the Kiel Bight and Pomeranian Bight were well-ventilated with uniform N2O concentrations near equilibrium throughout the water column. In contrast, stations in the deep basins, such as the Bornholm and the Gotland Deep, showed a clear stratification with deep water affected by North Sea Water. Inflowing North Sea Water led to changed environmental conditions, especially enhanced oxygen (O2 or declining hydrogen sulphide (H2S concentrations, thus, affecting the conditions for the production of N2O. Pattern of N2O profiles and correlations with parameters like oxygen and nitrate differed between the basins. Because of the positive correlation between ΔN2O and AOU in oxic waters the dominant production pathway seems to be nitrification rather than denitrification. Advection of N2O by North Sea Water was found to be of minor importance. A rough budget revealed a significant surplus of in situ produced N2O after the inflow. However, due to the permanent halocline, it can be assumed that the N2O produced does not reach the atmosphere. Hydrographic aspects therefore are decisive factors determining the final release of N2O produced to the atmosphere.

  9. Closed-loop 15N measurement of N2O and its isotopomers for real-time greenhouse gas tracing

    Science.gov (United States)

    Slaets, Johanna; Mayr, Leopold; Heiling, Maria; Zaman, Mohammad; Resch, Christian; Weltin, Georg; Gruber, Roman; Dercon, Gerd

    2016-04-01

    Quantifying sources of nitrous oxide is essential to improve understanding of the global N cycle and to develop climate-smart agriculture, as N2O has a global warming potential 300 times higher than CO2. The isotopic signature and the intramolecular distribution (site preference) of 15N are powerful tools to trace N2O, but the application of these methods is limited as conventional methods cannot provide continuous and in situ data. Here we present a method for closed-loop, real time monitoring of the N2O flux, the isotopic signature and the intramolecular distribution of 15N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The developed method was applied to a fertilizer inhibitor experiment, in which N2O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched urea-N (100 kg urea-N/ha), the same fertilizer combined with the nitrification inhibitor nitrapyrin (375 g/100 kg urea), and control cores. Monitoring the isotopic signature makes it possible to distinguish emissions from soil and fertilizer. Characterization of site preference could additionally provide a tool to identify different microbial processes leading to N2O emissions. Furthermore, the closed-loop approach enables direct measurement on site and does not require removal of CO2 and H2O. Results showed that 75% of total N2O emissions (total=11 346 μg N2O-N/m2) in the fertilized cores originated from fertilizer, while only 55% of total emissions (total=2 450 μg N2ON/m2) stemmed from fertilizer for the cores treated with nitrapyrin. In the controls, N2O derived from soil was only 40% of the size of the corresponding pool from the fertilized cores, pointing towards a priming effect on the microbial community from the fertilizer and demonstrating the bias that could be introduced by relying on non-treated cores to estimate soil emission rates, rather than using the isotopic signature. The site preference increased linearly

  10. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim

    1996-01-01

    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed qua...

  11. Decomposition and reduction of N2O over Limestone under FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Vaaben, Rikke

    1997-01-01

    The addition of limestone for sulfur retention in FBC has in many cases been observed to influence the emission of N2O. The catalytic activity of N2O over calcined Stevns Chalk for decomposition of N2O in a laboratory fixed bed quartz reactor was measured. It was found that calcined Stevns Chalk...... is a very active catalyst for N2O decomposition in an inert atmosphere, and the presence of 3 vol% CO increased the rate of N2O destruction by a factor of 5 due to the catalytic reduction of N2O by CO. The activity decreased with increasing CO2 concentration, and uncalcined or recarbonated limestone had...... negligible activity. Sulfation of the calcined limestone under oxidizing conditions lowered the activity, however sulfidation under reducing conditions showed that CaS is an active catalyst for the reduction of N2O by CO. Without CO present a gas solid reaction between N2O and CaS takes place and SO2...

  12. Residual sleepiness after N2O sedation: a randomized control trial [ISRCTN88442975

    Directory of Open Access Journals (Sweden)

    Lichtor J Lance

    2004-05-01

    Full Text Available Abstract Background Nitrous oxide (N2O provides sedation for procedures that result in constant low-intensity pain. How long do individuals remain sleepy after receiving N2O? We hypothesized that drug effects would be apparent for an hour or more. Methods This was a randomized, double blind controlled study. On three separate occasions, volunteers (N = 12 received 100% oxygen or 20% or 40% N2O for 30 min. Dependent measures included the multiple sleep latency test (MSLT, a Drug Effects/Liking questionnaire, visual analogue scales, and five psychomotor tests. Repeated measures analysis of variance was performed with drug and time as factors. Results During inhalation, drug effects were apparent based on the questionnaire, visual analogue scales, and psychomotor tests. Three hours after inhaling 100% oxygen or 20% N2O, subjects were sleepier than if they breathed 40% N2O. No other drug effects were apparent 1 hour after inhalation ceased. Patients did not demonstrate increased sleepiness after N2O inhalation. Conclusion We found no evidence for increased sleepiness greater than 1 hour after N2O inhalation. Our study suggests that long-term effects of N2O are not significant.

  13. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  14. Estimation of N2O emission factors for soils depending on environmental conditions and crop management

    NARCIS (Netherlands)

    Lesschen, J.P.; Velthof, G.L.

    2009-01-01

    Nitrous oxide (N2O) contributes 8% to anthropogenic global warming, of which about one third are direct emissions of agricultural soils. These N2O emissions are often estimated using the default IPCC 2006 emission factor of 1% of the amount of N applied for mineral fertilizer, manure and crop

  15. A novel fuzzy-logic control strategy minimizing N2O emissions

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Gernaey, Krist; Sin, Gürkan

    2017-01-01

    is useful for those plants having AOB denitrification as the main N2O producing process. However, in treatment plants having incomplete NH2OH oxidation as the main N2O producing pathway, a cascade controller configuration adapting the oxygen supply to respect only the effluent ammonium concentration limits...

  16. Application of the DNDC model to predict emissions of N2O from Irish agriculture

    DEFF Research Database (Denmark)

    Abdalla, M.; Wattenbach, M.; Smith, P.

    2009-01-01

    temperature as the main determinant of N2O flux, an increase in mean daily air temperature of 1.5 °C resulting in almost a 65% increase in the annual cumulative flux. This is interesting as with future global warming, N2O flux from the soil will have a strong positive feedback. It can be concluded that DNDC...

  17. [Effects of diurnal warming on soil N2O emission in soybean field].

    Science.gov (United States)

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  18. Towards an optimal experimental design for N2O model calibration during biological nitrogen removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Valverde Pérez, Borja; Plósz, Benedek G.

    Process models describing nitrous oxide (N2O) production during biological nitrogen removal allow for the development of mitigation strategies of this potent greenhouse gas. N2O is an intermediate of nitrogen removal, hence its prediction is negatively affected by the uncertainty associated to it...... of strategies to minimize the carbon footprint of wastewater treatment plants....

  19. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter?

    Science.gov (United States)

    Brauman, Alain; Majeed, Muhammad Zeeshan; Buatois, Bruno; Robert, Alain; Pablo, Anne-Laure; Miambi, Edouard

    2015-01-01

    In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O). Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d(-1) (g dry wt.)(-1) for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d(-1) (g dry wt.)(-1) for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d(-1) (g dry wt.)(-1). Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA) and denitrifying (nirK, nirS, nosZ) gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.

  1. Nitrous Oxide (N2O Emissions by Termites: Does the Feeding Guild Matter?

    Directory of Open Access Journals (Sweden)

    Alain Brauman

    Full Text Available In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O. Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d(-1 (g dry wt.(-1 for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d(-1 (g dry wt.(-1 for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d(-1 (g dry wt.(-1. Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA and denitrifying (nirK, nirS, nosZ gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.

  2. Stable isotope ratios of the atmospheric CH4, CO2 and N2O in Tokai-mura

    International Nuclear Information System (INIS)

    Porntepkasemsan, Boonsom; Andoh, Mariko A.; Amano, Hikaru

    2000-11-01

    This report presents the results and interpretation of stable isotope ratios of the atmospheric CH 4 , CO 2 and N 2 O from a variety of sources in Tokai-mura. The seasonal changes of δ 13 CH 4 , δ 13 CO 2 and δ 15 N 2 O were determined under in-situ conditions in four sampling sites and one control site. Such measurements are expected to provide a useful means of estimating the transport mechanisms of the three trace gases in the environment. These isotopic signatures were analyzed by Isotope Ratio Mass Spectrometer (IRMS, Micromass Isoprime). Our data showed the significant seasonal fluctuation in the Hosoura rice paddy during the entire growing season in 1999. Possible causes for the variation are postulated. Additional measurements on soil properties and on organic δ 13 C in rice plant are suggested. Cited outstanding original papers are summarized in the references. (author)

  3. Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems

    DEFF Research Database (Denmark)

    Karhu, Kristiina; Dannenmann, M.; Kitzler, B.

    2015-01-01

    on climate change. However, the potential importance of indirect GHG emissions due to changes in soil biological and chemical properties after fire is less well known. Increased soil mineral nitrogen (N) concentrations after fire pose a risk for increased emissions of gaseous N, but studies on the post......-fire N2O production and soil N turnover rates (mineralization, nitrification, microbial immobilization, denitrification) are still rare. We determined N2O production, rates of N turnover and pathways for N2O production from the soil of burned and unburned plots of a Macchia shrubland in central Spain...... using a 15N labelling approach. Measurements were initiated before the controlled burning and continued for up to half a year after fire. Fire markedly increased the risk of N2O emissions from soil through denitrification (N2O production rate was 3 to ≈30 times higher in burned soils compared to control...

  4. N2O production dynamics in nitrifying/denitrifying activated sludge under defined environmental conditions

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Jensen, Marlene Mark; Petersen, Morten S.

    contributor to global warming and the destruction of the ozone layer. The present study makes use of unique datasets collected during controlled batch tests with activated sludge biomass to test and calibrate a pseudo-mechanistic model that predicts N2O production by nitrifying and heterotrophic bacteria....... The proposed model described successfully the observed N2O production dynamics and confirmed that the availability of ammonia, low dissolved oxygen and nitrite accumulation were the main factors triggering N2O production. Nitrifier-denitrification was proposed as the main pathway catalyzing the conversion...... that a minor portion of the N2O produced was actually released to the gas phase. This work represents a step further in the use and calibration of process models to control and understand better N2O production and emissions during conventional wastewater treatment....

  5. Phosphorus addition mitigates N2O and CH4 emissions in N-saturated subtropical forest, SW China

    Directory of Open Access Journals (Sweden)

    L. Yu

    2017-06-01

    Full Text Available Chronically elevated nitrogen (N deposition has led to severe nutrient imbalance in forest soils. Particularly in tropical and subtropical forest ecosystems, increasing N loading has aggravated phosphorus (P limitation of biomass production, and has resulted in elevated emissions of nitrous oxide (N2O and reduced uptake of methane (CH4, both of which are important greenhouse gases. Yet, the interactions of N and P and their effects on greenhouse gas emissions remain elusive. Here, we report N2O and CH4 emissions together with soil N and P data for a period of 18 months following a single P addition (79 kg P ha−1, as NaH2PO4 powder to an N-saturated, Masson pine-dominated forest soil at TieShanPing (TSP, Chongqing, south-western (SW China. We observed a significant decline in both nitrate (NO3− concentrations in soil water (5 and 20 cm depths and in soil N2O emissions, following P application. We hypothesise that enhanced N uptake by plants in response to P addition, resulted in less available NO3− for denitrification. By contrast to most other forest ecosystems, TSP is a net source of CH4. P addition significantly decreased CH4 emissions and turned the soil from a net source into a net sink. Based on our observation and previous studies in South America and China, we believe that P addition relieves N inhibition of CH4 oxidation. Within the 1.5 years after P addition, no significant increase of forest growth was observed and P stimulation of forest N uptake by understorey vegetation remains to be confirmed. Our study indicates that P fertilisation of N-saturated, subtropical forest soils may mitigate N2O and CH4 emissions, in addition to alleviating nutrient imbalances and reducing losses of N through NO3− leaching.

  6. Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete River Estuary (SW Spain)

    International Nuclear Information System (INIS)

    Burgos, M.; Sierra, A.; Ortega, T.; Forja, J.M.

    2015-01-01

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Dissolved concentrations of CH 4 and N 2 O have been measured seasonally during 2013 in the Guadalete River Estuary, which flows into the Cadiz Bay (southwestern Spanish coast). It has been intensely contaminated since 1970. Currently it receives wastewater effluents from cities and direct discharges from nearby agriculture crop. Eight sampling stations have been established along 18 km of the estuary. CH 4 and N 2 O were measured using a gas chromatograph connected to an equilibration system. Additional parameters such as organic matter, dissolved oxygen, nutrients and chlorophyll were determinate as well, in order to understand the relationship between physicochemical and biological processes. Gas concentrations increased from the River mouth toward the inner part, closer to the wastewater treatment plant discharge. Values varied widely within 21.8 and 3483.4 nM for CH 4 and between 9.7 and 147.6 nM for N 2 O. Greenhouse gas seasonal variations were large influenced by the precipitation regime, masking the temperature influence. The Guadatete Estuary acted as a greenhouse gas source along the year, with mean fluxes of 495.7 μmol m −2 d −1 and 92.8 μmol m −2 d −1 for CH 4 and N 2 O, respectively. - Highlights: • The estuary acts as a source of atmospheric methane and nitrous oxide. • Anthropogenic inputs affect the distribution of the greenhouse gases. • Dissolved gases presented an important longitudinal gradient. • Seasonal variations highly depended on the precipitation regimen

  7. Nitrous oxide and methane in the Atlantic Ocean between 50°N and 52°S: Latitudinal distribution and sea-to-air flux

    Science.gov (United States)

    Forster, Grant; Upstill-Goddard, Rob C.; Gist, Niki; Robinson, Carol; Uher, Gunther; Woodward, E. Malcolm S.

    2009-07-01

    We discuss nitrous oxide (N 2O) and methane (CH 4) distributions in 49 vertical profiles covering the upper ˜300 m of the water column along two ˜13,500 km transects between ˜50°N and ˜52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N 2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH 4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined "plume" of exceptionally high N 2O concentrations coincident with very low levels of CH 4, located between ˜23.5°N and ˜23.5°S; this feature reflects the upwelling of deep waters containing N 2O derived from nitrification, as identified by an analysis of N 2O, apparent oxygen utilization (AOU) and NO 3-, and presumably depleted in CH 4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to ˜42% of the Atlantic Ocean surface area were in the range 0.40-0.68 Tg N 2O yr -1 and 0.81-1.43 Tg CH 4 yr -1. Based on contemporary estimates of the global ocean source strengths of atmospheric N 2O and CH 4, the Atlantic Ocean could account for ˜6-15% and 4-13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N 2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH 4 than previously thought.

  8. Are Isotopologue Signatures of N2O from Bacterial Denitrifiers Indicative of NOR Type?

    Science.gov (United States)

    Well, R.; Braker, G.; Giesemann, A.; Flessa, H.

    2010-12-01

    Nitrous oxide (N2O) fluxes from soils result from its production by nitrification and denitrification and reduction during denitrification. The structure of the denitrifying microbial community contributes to the control of net N2O fluxes. Although molecular techniques are promising for identifying the active community of N2O producers, there are few data until now because methods to explore gene expression of N2O production are laborious and disregard regulation of activity at the enzyme level. The isotopologue signatures of N2O including δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) have been used to estimate the contribution of partial processes to net N2O fluxes to the atmosphere. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotopic signatures of N2O precursors and isotopologue fractionation factors (ɛ) of all processes of N2O production and consumption. In contrast to δ18O and δ15Nbulk, SP is independent of precursor signatures and hence is a promising parameter here. It is assumed that SP of produced N2O is almost exclusively controlled by the enzymatic isotope effects of NO reductases (NOR). These enzymes are known to be structurally different between certain classes of N2O producers with each class causing different isotope effects (Schmidt et al., 2004). The NH2OH-to-N2O step of nitrifiers and the NO3-to-N2O step of fungal denitrifiers are associated with large site-specific 15N effects with SP of 33 to 37 ‰ (Sutka et al., 2006, 2008) while the few tested species of gram-negative bacterial denitrifiers (cNOR group) exhibited low SP of -5 to 0‰ (Sutka et al., 2006; Toyoda et al., 2005). The aim of our study was to determine site-specific fractionation factors of the NO3-to-N2O step (ɛSP) for several species of denitrifiers representing each of the known NOR-types of bacteria, i.e. cNOR, q

  9. Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations

    Science.gov (United States)

    Reading, Michael J.; Santos, Isaac R.; Maher, Damien T.; Jeffrey, Luke C.; Tait, Douglas R.

    2017-07-01

    The oceans are a major source of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. However, little information is available on how estuaries and the coastal ocean may contribute to N2O budgets, and on the drivers of N2O in aquatic environments. This study utilised five time series stations along the freshwater to marine continuum in a sub-tropical estuary in Australia (Coffs Creek, Australia). Each time series station captured N2O, radon (222Rn, a natural submarine groundwater discharge tracer), dissolved nitrogen, and dissolved organic carbon (DOC) concentrations for a minimum of 25 h. The use of automated time series observations enabled spatial and tidal-scale variability of N2O to be captured. Groundwater was highly enriched in N2O (up to 306 nM) compared to the receiving surface water. Dissolved N2O supersaturation as high as 386% (27.4 nM) was observed in the upstream freshwater and brackish water areas which represented only a small (∼13%) proportion of the total estuary area. A large area of N2O undersaturation (as low as 53% or 3.9 nM) was observed in the mangrove-dominated lower estuary. This undersaturated area likely resulted from N2O consumption due to nitrate/nitrite (NOx) limitation in mangrove sediments subject to shallow porewater exchange. Overall, the estuary was a minor source of N2O to the atmosphere as the lower mangrove-dominated estuary sink of N2O counteracted groundwater-dominated source of N2O in the upper estuary. Average area-weighted N2O fluxes at the water-air interface approached zero (0.2-0.7 μmol m-2 d-1, depending on piston velocity model used), and were much lower than nitrogen-rich Northern Hemisphere estuaries that are considered large sources of N2O to the atmosphere. This study revealed a temporally and spatially diverse estuary, with areas of N2O production and consumption related to oxygen and total dissolved nitrogen availability, submarine groundwater discharge, and uptake within mangroves.

  10. Protocol development for continuous nitrogen-15 measurement of N2O and its isotopomers for real-time greenhouse gas tracing

    International Nuclear Information System (INIS)

    Slaets, J.; Mayr, L.; Heiling, M.; Zaman, M.; Resch, C.; Weltin, G.; Gruber, R.; Dercon, G.

    2016-01-01

    Quantifying sources of nitrous oxide (N2O) (soil-N and applied N) is essential to improve our understanding of the global N cycle and to develop climate-smart agriculture, as N 2 O has a global warming potential that is 300 times higher than that of CO 2 . The isotopic signature and the intramolecular distribution (site preference) of 15 N are powerful tools to identify N 2 O sources. We have developed a protocol for continuous (closedloop), real time measurement of the N 2 O flux, the isotopic signature and the intramolecular distribution of 15 N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The method was applied in a fertilizer inhibitor experiment, in which N 2 O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched 15 N labelled urea (5 atom %) applied at a rate equivalent to 100 kg N/ha), 15 N labelled urea with the nitrification inhibitor (NI) nitrapyrin (375 g/100 kg urea), and controls (no fertilizer or NI).

  11. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system.

    Science.gov (United States)

    Paudel, Shukra Raj; Choi, Ohkyung; Khanal, Samir Kumar; Chandran, Kartik; Kim, Sungpyo; Lee, Jae Woo

    2015-06-15

    This study examines the effects of temperature on nitrous oxide (N2O) emissions in a bench-scale intensive aquaculture system rearing Koi fish. The water temperature varied from 15 to 24 °C at interval of 3 °C. Both volumetric and specific rate for nitrification and denitrification declined as the temperature decreased. The concentrations of ammonia and nitrite, however, were lower than the inhibitory level for Koi fish regardless of temperature. The effects of temperature on N2O emissions were significant, with the emission rate and emission factor increasing from 1.11 to 1.82 mg N2O-N/d and 0.49 to 0.94 mg N2O-N/kg fish as the temperature decreased from 24 to 15 °C. A global map of N2O emission from aquaculture was established by using the N2O emission factor depending on temperature. This study demonstrates that N2O emission from aquaculture is strongly dependent on regional water temperatures as well as on fish production. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Simple radiosensitizing of hypoxic tumor tissues by N2O/Br(-) mixture.

    Science.gov (United States)

    Billik, P

    2015-07-01

    The radiosensitization model of hypoxic tumor tissues based on the N2O/Br(-) mixture is described. The well-documented radiolysis of water in the presence of N2O and Br(-) ions at a low concentration supports this model. An aqueous solution saturated with N2O gas during the radiolysis generates OH radicals in a large extent. In N2O/Br- media at pHBr2 is formed. Br2 hydrolyzes in an aqueous solution to form a very reactive hypobromous (HOBr) acid. Such process is described by the following chemical reaction: H2O + Br(-) + N2O + ionizing radiation (IR) --> HOBr + OH(-). In vivo formed HOBr as a long-lived product with a high biological activity induces the hypoxic tumor cell damage via many unique mechanisms. A local application or inhalation of an N2O-O2 mixture before or during the radiotherapy to enhance the saturation of tissues with N2O is a key prerequisite. Since the extracellular concentration of Br(-) ions is very low (0.02-0.05 mM), an oral or local application of NaBr should be used to shift the extracellular concentration of Br(-) ions to the mM region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An experimental technique for the direct measurement of N2O5 reactivity on ambient particles

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2009-06-01

    Full Text Available An experimental approach for the direct measurement of trace gas reactivity on ambient aerosol particles has been developed. The method utilizes a newly designed entrained aerosol flow reactor coupled to a custom-built chemical ionization mass spectrometer. The experimental method is described via application to the measurement of the N2O5 reaction probability, γ (N2O5. Laboratory investigations on well characterized aerosol particles show that measurements of γ (N2O5 observed with this technique are in agreement with previous observations, using conventional flow tube methods, to within ±20% at atmospherically relevant particle surface area concentrations (0–1000 μm2 cm−3. Uncertainty in the measured γ (N2O5 is discussed in the context of fluctuations in potential ambient biases (e.g., temperature, relative humidity and trace gas loadings. Under ambient operating conditions we estimate a single-point uncertainty in γ (N2O5 that ranges between ± (1.3×10-2 + 0.2×γ (N2O5, and ± (1.3×10-3 + 0.2×γ (N2O5 for particle surface area concentrations of 100 to 1000 μm2 cm−3, respectively. Examples from both laboratory investigations and field observations are included alongside discussion of future applications for the reactivity measurement and optimal deployment locations and conditions.

  14. Contribution of vehicle exhaust to the global N2O budget

    International Nuclear Information System (INIS)

    Becker, K.H.; Loerzer, J.C.; Kurtenbach, R.; Wiesen, P.; Jensen, T.E.; Wallington, T.J.

    2000-01-01

    Assessment of the impact of vehicle emissions on the global environment requires accurate data concerning nitrous oxide (N 2 O) emissions. We report herein 'real world' N 2 O emissions from road vehicles in a tunnel in Wuppertal, Germany, together with 'laboratory' emission measurements conducted at the Ford Motor Company using a chassis dynamometer with a standard driving cycle for 26 different cars and trucks. Consistent results were obtained from both approaches suggesting that a good approximation of the average emission factor (g N 2 O/g CO 2 )=(4±2) x 10 -5 . This corresponds to an emission rate of 11-5 mg N 2 O/km for vehicles with fuel economies of 12-6 1/100 km (20-40 miles/US gallon). N 2 O emissions from vehicles have a global warming impact, which is 1-2% of that of the CO 2 emissions from vehicles. We estimate an annual emission of (0.12±0.06) Tg yr -1 of N 2 O (0.08±0.04 Tg N yr -1 ) from the global vehicle fleet which represents 1-4% of the atmospheric growth rate of this species. These results update and supersede our previous study of N 2 O emissions from vehicles. (author)

  15. Measurements of N2O and CH4 from the aerated composting of food waste

    International Nuclear Information System (INIS)

    He, Y.; Sun, T.; Inamori, Y.; Mizuochi, M.; Kong, H.; Iwami, N.

    2000-01-01

    Emissions of N 2 O and CH 4 from an aerated composting system were investigated using small-scale simulated reactors. The results show relatively high emissions of N 2 O at the beginning of composting, in proportion to the application amount of food waste. After 2 days, the N 2 O emission decreased to 0.53 ppmv on average, near to the background level in the atmosphere (0.45 ppmv). The addition of composted cattle manure increased N 2 O emissions not only at the beginning of composting, but also during the later period and resulted in two peak emission curves. Good correlation was observed between the N 2 O concentration at the air outlet and NO 2 - concentration in waste, suggesting a generation pathway for N 2 O from NO 2 - to N 2 O. Methane was only detected in treatments containing composted cattle manure. The high emission of methane illustrates the involvement of anoxic/anaerobic microorganisms with the addition of composted manure. The result suggests the existence of anoxic or anaerobic microsite inside the waste particles even though ventilation was employed during the composting process

  16. The N2O activation by Rh5 clusters. A quantum chemistry study.

    Science.gov (United States)

    Olvera-Neria, Oscar; Avilés, Roberto; Francisco-Rodríguez, Héctor; Bertin, Virineya; García-Cruz, Raúl; González-Torres, Julio César; Poulain, Enrique

    2015-04-01

    Nitrous oxide (N2O) is a by-product of exhaust pipe gases treatment produced by motor vehicles. Therefore, the N2O reduction to N2 is necessary to meet the actual environmental legislation. The N2O adsorption and dissociation assisted by the square-based pyramidal Rh5 cluster was investigated using the density functional theory and the zero-order regular approximation (ZORA). The Rh5 sextet ground state is the most active in N2O dissociation, though the quartet and octet states are also active because they are degenerate. The Rh5 cluster spontaneously activates the N2─O cleavage, and the reaction is highly exothermic ca. -75 kcal mol(-1). The N2─O breaking is obtained for the geometrical arrangement that maximizes the overlap and electron transfers between the N2O and Rh5 frontier orbitals. The Rh5 high activity is due to the Rh 3d orbitals are located between the N2O HOMO and LUMO orbitals, which makes possible the interactions between them. In particular, the O 2p states strongly interact with Rh 3d orbitals, which finally weaken the N2─O bond. The electron transfer is from the Rh5 HOMO orbital to the N2O antibonding orbital.

  17. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  18. The 2017 Fertilizer Emissions Airborne Study (FEAST): Quantifying N2O emissions from croplands and fertilizer plants in the Mississippi River Valley.

    Science.gov (United States)

    Kort, E. A.; Gvakharia, A.; Smith, M. L.; Conley, S.; Frauhammer, K.

    2017-12-01

    Nitrous Oxide (N2O) is a crucial atmospheric trace gas that drives 21st century stratospheric ozone depletion and substantively impacts climate. Anthropogenic emissions drive the global imbalance and annual growth of N2O, and the dominant anthropogenic source is fertilizer production and application, both of which have large uncertainties. In this presentation we will discuss the FEAST campaign, a study designed to demonstrate new approaches to quantify N2O emissions from fertilizer production and usage with aircraft measurements. In the FEAST campaign we deployed new instrumentation along with experienced flight sensors onboard the Scientific Aviation Mooney aircraft to make 40 hours of continuous 1Hz measurements of N2O, CO2, CO, H2O, CH4, O3, T, and winds. The Mississippi River Valley provided an optimal target as this location includes significant fertilizer production facilities as well as large cropland areas (dominated by corn, soy, rice, and cotton) with substantive fertilizer application. By leveraging our payload and unique airborne capabilities we directly observe and quantify N2O emissions from individual fertilizer production facilities (as well as CO2 and CH4 emissions from these same facilities). We are also able to quantify N2O fluxes from large cropland areas ( 100's km) employing a mass balance approach, a first for N2O, and will show results highlighting differences between crop types and amounts of applied fertilizer. The ability to quantify fluxes of croplands at 100km scale enables new understanding of processes controlling emissions at spatial scales that has eluded prior studies that either rely on extrapolation of small (flux chamber, towers), or work on 1,000+ km spatial scales (regional-global inversions from atmospheric measurements).

  19. Persistence of deeply sourced iron in the Pacific Ocean.

    Science.gov (United States)

    Horner, Tristan J; Williams, Helen M; Hein, James R; Saito, Mak A; Burton, Kevin W; Halliday, Alex N; Nielsen, Sune G

    2015-02-03

    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.

  20. Functional diversity of soil invertebrates: a potential tool to explain N2O emission?

    Science.gov (United States)

    Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem

    2017-04-01

    Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, Pstructural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.

  1. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    Science.gov (United States)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  2. Emissions of N2O from peat soils under different cropping systems

    Science.gov (United States)

    Norberg, Lisbet; Berglund, Örjan; Berglund, Kerstin

    2016-04-01

    Drainage of peatlands for agriculture use leads to an increase in nitrogen turnover rate causing emissions of N2O to the atmosphere. Agriculture contributes to a substantial part of the anthropogenic emissions of N2O therefore mitigation options for the farmers are important. Here we present a field study with the aim to investigate if the choice of cropping system can mitigate the emission of N2O from cultivated organic soils. The sites used in the study represent fen peat soils with a range of different soil properties located in different parts of southern Sweden. All sites are on active farms with good drainage. N2O emissions from the soil under two different crops grown on the same field, with the same soil type, drainage intensity and weather conditions, are compared by gas sampling. The crops included are oat, barley, carrot, potato and grassland. Three or four sampling occasions during the growing season in 2010 were carried out with static chambers. The N2O emission is calculated from the linear increase of gas concentration in the chamber headspace during the incubation time of 40 minutes. Parallel to the gas sampling soil temperature and soil moisture are measured and some soil properties determined. The result from the gas sampling and measurements show no significant difference in seasonal average N2O emission between the compared crops at any site. There are significant differences in N2O emissions between the compared crops at some of the single sampling occasions but the result vary and no crop can be pointed out as a mitigation option. The seasonal average N2O emissions varies from 16±17 to 1319±1971 μg N2O/m2/h with peaks up to 3317 μg N2O/m2/h. The N2O emission rate from peat soils are determined by other factors than the type of crops grown on the field. The emission rates vary during the season and especially between sites. Although all sites are fen peat soil the soil properties are different, e.g. carbon content varies between 27-43% and

  3. Inverse modelling estimates of N2O surface emissions and stratospheric losses using a global dataset

    Science.gov (United States)

    Thompson, R. L.; Bousquet, P.; Chevallier, F.; Dlugokencky, E. J.; Vermeulen, A. T.; Aalto, T.; Haszpra, L.; Meinhardt, F.; O'Doherty, S.; Moncrieff, J. B.; Popa, M.; Steinbacher, M.; Jordan, A.; Schuck, T. J.; Brenninkmeijer, C. A.; Wofsy, S. C.; Kort, E. A.

    2010-12-01

    Nitrous oxide (N2O) levels have been steadily increasing in the atmosphere over the past few decades at a rate of approximately 0.3% per year. This trend is of major concern as N2O is both a long-lived Greenhouse Gas (GHG) and an Ozone Depleting Substance (ODS), as it is a precursor of NO and NO2, which catalytically destroy ozone in the stratosphere. Recently, N2O emissions have been recognised as the most important ODS emissions and are now of greater importance than emissions of CFC's. The growth in atmospheric N2O is predominantly due to the enhancement of surface emissions by human activities. Most notably, the intensification and proliferation of agriculture since the mid-19th century, which has been accompanied by the increased input of reactive nitrogen to soils and has resulted in significant perturbations to the natural N-cycle and emissions of N2O. There exist two approaches for estimating N2O emissions, the so-called 'bottom-up' and 'top-down' approaches. Top-down approaches, based on the inversion of atmospheric measurements, require an estimate of the loss of N2O via photolysis and oxidation in the stratosphere. Uncertainties in the loss magnitude contribute uncertainties of 15 to 20% to the global annual surface emissions, complicating direct comparisons between bottom-up and top-down estimates. In this study, we present a novel inversion framework for the simultaneous optimization of N2O surface emissions and the magnitude of the loss, which avoids errors in the emissions due to incorrect assumptions about the lifetime of N2O. We use a Bayesian inversion with a variational formulation (based on 4D-Var) in order to handle very large datasets. N2O fluxes are retrieved at 4-weekly resolution over a global domain with a spatial resolution of 3.75° x 2.5° longitude by latitude. The efficacy of the simultaneous optimization of emissions and losses is tested using a global synthetic dataset, which mimics the available atmospheric data. Lastly, using real

  4. A New High-Resolution N2O Emission Inventory for China in 2008

    Science.gov (United States)

    Shang, Z.; Zhou, F.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P. A.; He, C.; Li, B.; Wang, R.; Wang, X.; Peng, S.; Zeng, Z.; Chen, H.; Ying, N.; Hou, X.; Xu, P.

    2014-12-01

    The amount and geographic distribution of N2O emissions over China remain largely uncertain. Most of existing emission inventories use uniform emission factors (EFs) and the associated parameters and apply spatial proxies to downscale national or provincial data, resulting in the introduction of spatial bias. In this study, county-level and 0.1° × 0.1° gridded anthropogenic N2O emission inventories for China (PKU-N2O) in 2008 are developed based on high-resolution activity data and regional EFs and parameters. These new estimates are compared with estimates from EDGAR v4.2, GAINS-China, National Development and Reform Commission of China (NDRC), and with two sensitivity tests: one that uses high-resolution activity data but the default IPCC methodology (S1) and the other that uses regional EFs and parameters but starts from coarser-resolution activity data. The total N2O emissions are 2150 GgN2O/yr (interquartile range from 1174 to 2787 GgN2O/yr). Agriculture contributes 64% of the total, followed by energy (17%), indirect emissions (12%), wastes (5%), industry (2.8%), and wildfires (0.2%). Our national emission total is 17% greater than that of the EDGAR v4.2 global product sampled over China and is also greater than the GAINS-China, NDRC, and S1 estimates by 10%, 50%, and 17%, respectively. We also found that using uniform EFs and parameters or starting from national/provincial data causes systematic spatial biases compared to PKU-N2O. In addition, the considerable differences between the relative contributions of the six sectors across the six Agro-Climate Zones primarily reflect the different distributions of industrial activities and land use. Eastern China (8.7% area of China) is the largest contributor of N2O emissions and accounts for nearly 25% of the total. Spatial analysis also shows nonlinear relationships between N2O emission intensities and urbanization. Per-capita and per-GDP N2O emissions increase gradually with an increase in the urban

  5. Measurements of N2O emissions at the landscape scale

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Cellier, P.; Bertolini, T.

    2011-01-01

    Nitrous oxide emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape near Bjerringbro, Denmark, to investigate the main sources of variations...

  6. Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2009-05-01

    Full Text Available We report a new method for the simultaneous in situ detection of nitryl chloride (ClNO2 and dinitrogen pentoxide (N2O5 using chemical ionization mass spectrometry (CIMS. The technique relies on the formation and detection of iodide ion-molecule clusters, I(ClNO2− and I(N2O5−. The novel N2O5 detection scheme is direct. It does not suffer from high and variable chemical interferences, which are associated with the typical method of nitrate anion detection. We address the role of water vapor, CDC electric field strength, and instrument zero determinations, which influence the overall sensitivity and detection limit of this method. For both species, the method demonstrates high sensitivity (>1 Hz/pptv, precision (~10% for 100 pptv in 1 s, and accuracy (~20%, the latter ultimately determined by the nitrogen dioxide (NO2 cylinder calibration standard and characterization of inlet effects. For the typically low background signals (S/N ratios of 2 for 1 pptv in 60 s averages, but uncertainty associated with the instrumental zero currently leads to an ultimate detection limit of ~5 pptv for both species. We validate our approach for the simultaneous in situ measurement of ClNO2 and N2O5 while on board the R/V Knorr as part of the ICEALOT 2008 Field Campaign.

  7. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  8. Mitigating N2O emissions from clover residues by 3,4-dimethylpyrazole phosphate (DMPP) without adverse effects on the earthworm Lumbricus terrestris

    DEFF Research Database (Denmark)

    Kong, Xianwang; Duan, YunFeng; Schramm, Andreas

    2017-01-01

    in a 28-d mesocosm experiment, where DMPP spraying prior to tillage was simulated. Above-ground parts of 15N-labelled clover residues were treated with DMPP and either placed at 10 cm depth to simulate ploughing (PL), or mixed with soil at 0–10 cm depth to simulate rotovation (RO). Earthworms (Lumbricus...... terrestris) were introduced to study their role in residue decomposition and N2O emissions. Fluxes and isotopic composition of N2O were determined with dynamic chambers using laser spectroscopy. A gradual increase in 15N-enrichment of N2O indicated that denitrification was the main source. DMPP reduced...... cumulative N2O emissions in PL from 241 to 146 mg N m−2; the reduction in RO was smaller, from 103 to 94 mg N m−2, and not significant, possibly due to higher oxygen and soil NO3− availability. After 28 d incubation, on average > 90% of the earthworms were recovered, and in vivo N2O production from L...

  9. Mass spectrometric determination of partial electron impact ionization cross sections of No, No2, and N2O from threshold up to 180 eV

    International Nuclear Information System (INIS)

    Kim, Y. B.

    1982-01-01

    Electron impact ionization of nitric oxide (NO), nitrogen dioxide (NO 2 ) and nitrous oxide (N 2 O) has been studied as a function of electron energy up to 180 eV with a double focussing mass spectrometer Varian MAT CH5 and an improved Nier type electron impact ion source. Relative partial ionization cross sections were measured for the processes NO + + 2e, NO ++ + 3e, and NO 2 + e -> NO + 2 + 2e, NO ++ + 3e and N 2 O + e -> N 2 O + + 2e. An accurate measurement of the cross section ratios q(NO 2+ /NO)/q(NO + /NO) and q(NO 2 2 /NO 2 )/q(NO + 2 /NO 2 ) has been made. Relative cross section functions were calibrated absolutely with two different normalization methods. Moreover, both metastable and collision induced dissociations of N 2 O + were studied quantitatively using the technique of decoupling the acceleration and deflection electric fields. Using the n- th root extrapolation the following ionization potentials have been derived from the cross section functions near threshold: NO + (X 1 Σ + ); NO ++ ; NO + 2 ; NO 2 ++ ; N 2 O + (X 2 π). These results are compared with previous measurements and theoretical calculations, where available. Part of the results presented have been already published in seven papers by the author. (Author)

  10. The role of cellular catalase on the radiosensitization of bacterial vegetative cells by N2O

    International Nuclear Information System (INIS)

    Watanabe, H.; Takehisa, M.

    1983-01-01

    The radiosensitizing effect of N 2 O on eight strains of bacteria was measured in dilute suspensions. The dose-modifying factors (DMF) of N 2 O on M. radiodurans R 1 , P. radiora O-1, M. lysodeikticus and B. pumilus E601 (vegetative cells) were 3.4, 2.9, 2.4 and 1.7, respectively. But P. radiora RP-C, P. fluorescens B3-1, E. coli B/r and E. coli K-12 were hardly sensitized by N 2 O. From measurements of catalase activity of each bacterium, it was found that the DMF increases with increased catalase activity, suggesting that cellular catalase promotes the sensitizing action of N 2 O. (author)

  11. European-scale modelling of groundwater denitrification and associated N2O production

    KAUST Repository

    Keuskamp, J.A.

    2012-06-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2O production is expected. Predicted N leaching (16% of the N inputs) and N 2O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. © 2012 Elsevier Ltd. All rights reserved.

  12. Human ECG Changes During Prolonged Hyperbaric Exposures Breathing N2-O2 Mixtures

    National Research Council Canada - National Science Library

    Wilson, James M; Kligfield, Paul D; Adams, George M; Harvey, Claude; Schaefer, Karl E

    1976-01-01

    In an effort to determine whether hyperbaric exposures while breathing N2-O2 mixtures have an effect on cardiac depolarization and repolarization, electrocardiograms of 10 divers participating in four...

  13. MLS/Aura Level 2 Nitrous Oxide (N2O) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitrous oxide derived from radiances measured primarily by the 640 GHz radiometer (Band 12)...

  14. Brief and vigorous N2O production by soil at spring thaw

    DEFF Research Database (Denmark)

    Christensen, Søren; Tiedje, James M.

    1990-01-01

    In an acid sandy loam soil (pH 3.8), field production of N2O was two orders of magnitude higher at thaw in the spring than at any time during the rest of the year. Soil thaw in midwinter did not result in any increase in N2O flux. Soil water content remained at, or above field capacity during...... measurements; nitrate was added in excess. This effect could be reproduced in the laboratory: thawing soil cores at controlled temperature, nitrate and moisture yielded a large flush of N2O compared to an unfrozen control. The results indicate the importance of microbial N2O production during thaw for total...

  15. N2 O A greenhouse gas released from the combustion of coals in fluidized beds

    International Nuclear Information System (INIS)

    Boavida, D.; Lobo, L. S.; Gulyurtlu, I.; Cabrita, I.

    1996-01-01

    This paper discusses the results of the experimental work investigating the formation of N-2 O and NO during fluidized bed combustion of coals, and of chars and volatiles produced from the pyrolysis of these coals. Ammonia (N H 3 ) and hydrogen cyanide (HCN) are shown to play important roles as gas phase precursors of both NO and N 2 O. The conversion of fuel-N through N H 3 and HCN to N 2 O and NO was studied using a fluidized bed combustor in the temperature range between 973 K and 1273 K, for two different coals. The results suggest that the principal contribution to N 2 O emission Originated from volatile-N, however, char-N could also have an important role, depending upon the temperature. 1 fig., 8 tabs

  16. NOx, N2O and SO2 emissions from pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Korpela, T.; Lu, Y.

    1996-01-01

    This project continues the analysis of available data from the experimental work at the Otaniemi PFBC test rig using various solid fuels. The study concentrates on the emission and control of NO x N 2 O, and SO 2 under pressurized conditions. The aim of the study is to prepare the database from the available data and make empirical correlations for estimating nitrogen oxide emissions and sulfur capture from PFBC as a function of significant operating parameters and fuel properties. As the first generation of an empirical model, multiple linear regression was developed for predicting NO x , N 2 O and SO 2 emissions from PFBC. These correlations may facilitate preliminary FBC design by estimating NO x , N 2 O and SO 2 emissions. On the basis of statistical inference, the operating conditions employed and the fuel properties selected in the correlations may lend insight into the mechanisms of the formation and destruction of NO x , N 2 O and SO 2 . (author)

  17. European-scale modelling of groundwater denitrification and associated N2O production

    KAUST Repository

    Keuskamp, J.A.; van Drecht, G.; Bouwman, A.F.

    2012-01-01

    of nitrate outflow from groundwater to surface water and production of N 2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil

  18. Impact of the heatwave in 2003 on the summer CH4 and N2O budget of a spruce forest ecosystem: A four-year comparison

    Science.gov (United States)

    Lamers, M.; Fiedler, S.; Jungkunst, H. F.; Stahr, K.; Streck, T.

    2009-04-01

    Both CH4 and N2O reduction and oxidation are highly sensitive to variation in soil moisture. Significant changes of net CH4 and total N2O fluxes from soils can therefore be expected to accompany redistribution for precipitation in the course of climate change where more extreme events are predicted for the future. The extreme summer drought in 2003 offered the unique opportunity to study the impact of such events on the emission of greenhouse gases, such as methane or nitrous oxide, under field conditions. The main objective of the present study was to evaluate the impact of the summer drought in 2003 on the net methane and nitrous oxide budget of a spruce forest ecosystem (South-West Germany) with large variation in soil drainage. During the summers of 2000-2004 we measured net CH4 and N2O fluxes (bi)-weekly using the closed-chamber technique for six different soil types ranging from well-aerated Cambisols to poorly drained Gleysols and a wet Histosol. With regard to CH4 the extreme summer draught (1) did not elevate net CH4-sink function of soils, but (2) highly reduced net CH4-source strength and (3) reversed the net CH4 source of the investigated catchment into a sink. In all four summers investigated, net ecosystem exchange of CH4 was found only in the hydromorphic soils but not in the dominant well-aerated soils. This highlighted the key role of hydromorphic soils for the investigated pedodiverse system. With regard to N2O the summer draught in 2003 significantly reduced N2O emissions at least for the Humic Gleysol and the Sapric Histosol and hence markedly reduced the net N2O source strength of the investigated ecosystem.

  19. Effects of crop management, soil type, and climate on N2O emissions from Austrian Soils

    Science.gov (United States)

    Zechmeister-Boltenstern, Sophie; Sigmund, Elisabeth; Kasper, Martina; Kitzler, Barbara; Haas, Edwin; Wandl, Michael; Strauss, Peter; Poetzelsberger, Elisabeth; Dersch, Georg; Winiwarter, Wilfried; Amon, Barbara

    2015-04-01

    Within the project FarmClim ("Farming for a better climate") we assessed recent N2O emissions from two selected regions in Austria. Our aim was to deepen the understanding of Austrian N2O fluxes regarding region specific properties. Currently, N2O emissions are estimated with the IPCC default emission factor which only considers the amount of N-input as an influencing factor for N2O emissions. We evaluated the IPCC default emission factor for its validity under spatially distinct environmental conditions. For this two regions for modeling with LandscapeDNDC have been identified in this project. The benefit of using LandscapeDNDC is the detailed illustration of microbial processes in the soil. Required input data to run the model included daily climate data, vegetation properties, soil characteristics and land management. The analysis of present agricultural practices was basis for assessing the hot spots and hot moments of nitrogen emissions on a regional scale. During our work with LandscapeDNDC we were able to adapt specific model algorithms to Austrian agricultural conditions. The model revealed a strong dependency of N2O emissions on soil type. We could estimate how strongly soil texture affects N2O emissions. Based on detailed soil maps with high spatial resolution we calculated region specific contribution to N2O emissions. Accordingly we differentiated regions with deviating gas fluxes compared to the predictions by the IPCC inventory methodology. Taking region specific management practices into account (tillage, irrigation, residuals) calculation of crop rotation (fallow, catch crop, winter wheat, barley, winter barley, sugar beet, corn, potato, onion and rapeseed) resulted in N2O emissions differing by a factor of 30 depending on preceding crop and climate. A maximum of 2% of N fertilizer input was emitted as N2O. Residual N in the soil was a major factor stimulating N2O emissions. Interannual variability was affected by varying N-deposition even in case

  20. The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms.

    Science.gov (United States)

    Horn, Marcus A; Schramm, Andreas; Drake, Harold L

    2003-03-01

    The in vivo production of nitrous oxide (N(2)O) by earthworms is due to their gut microbiota, and it is hypothesized that the microenvironment of the gut activates ingested N(2)O-producing soil bacteria. In situ measurement of N(2)O and O(2) with microsensors demonstrated that the earthworm gut is anoxic and the site of N(2)O production. The gut had a pH of 6.9 and an average water content of approximately 50%. The water content within the gut decreased from the anterior end to the posterior end. In contrast, the concentration of N(2)O increased from the anterior end to the mid-gut region and then decreased along the posterior part of the gut. Compared to the soil in which worms lived and fed, the gut of the earthworm was highly enriched in total carbon, organic carbon, and total nitrogen and had a C/N ratio of 7 (compared to a C/N ratio of 12 in soil). The aqueous phase of gut contents contained up to 80 mM glucose and numerous compounds that were indicative of anaerobic metabolism, including up to 9 mM formate, 8 mM acetate, 3 mM lactate, and 2 mM succinate. Compared to the soil contents, nitrite and ammonium were enriched in the gut up to 10- and 100-fold, respectively. The production of N(2)O by soil was induced when the gut environment was simulated in anoxic microcosms for 24 h (the approximate time for passage of soil through the earthworm). Anoxia, high osmolarity, nitrite, and nitrate were the dominant factors that stimulated the production of N(2)O. Supplemental organic carbon had a very minimal stimulatory effect on the production of N(2)O, and addition of buffer or ammonium had essentially no effect on the initial N(2)O production rates. However, a combination of supplements yielded rates greater than that obtained mathematically for single supplements, suggesting that the maximum rates observed were due to synergistic effects of supplements. Collectively, these results indicate that the special microenvironment of the earthworm gut is ideally suited

  1. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    Science.gov (United States)

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants

  2. Rotational excitation of linear triatomic molecules: Ar, Kr + N2O, CO2

    International Nuclear Information System (INIS)

    Farrar, J.M.; Parson, J.M.; Lee, Y.T.

    1974-01-01

    Rotational excitation of N 2 O and CO 2 in collisions with Ar and Kr has been studied by crossing two supersonic molecular beams and detecting scattered products with a mass spectrometer. Measurement of the time of flight spectrum of the products as a function of laboratory scattering angle theta indicates that the inelasticity is concentrated in the forward direction in the center of mass system. Difference between CO 2 and N 2 O are discussed briefly

  3. Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants.

    Science.gov (United States)

    Ni, Bing-Jie; Ye, Liu; Law, Yingyu; Byers, Craig; Yuan, Zhiguo

    2013-07-16

    Mathematical modeling of N2O emissions is of great importance toward understanding the whole environmental impact of wastewater treatment systems. However, information on modeling of N2O emissions from full-scale wastewater treatment plants (WWTP) is still sparse. In this work, a mathematical model based on currently known or hypothesized metabolic pathways for N2O productions by heterotrophic denitrifiers and ammonia-oxidizing bacteria (AOB) is developed and calibrated to describe the N2O emissions from full-scale WWTPs. The model described well the dynamic ammonium, nitrite, nitrate, dissolved oxygen (DO) and N2O data collected from both an open oxidation ditch (OD) system with surface aerators and a sequencing batch reactor (SBR) system with bubbling aeration. The obtained kinetic parameters for N2O production are found to be reasonable as the 95% confidence regions of the estimates are all small with mean values approximately at the center. The model is further validated with independent data sets collected from the same two WWTPs. This is the first time that mathematical modeling of N2O emissions is conducted successfully for full-scale WWTPs. While clearly showing that the NH2OH related pathways could well explain N2O production and emission in the two full-scale plants studied, the modeling results do not prove the dominance of the NH2OH pathways in these plants, nor rule out the possibility of AOB denitrification being a potentially dominating pathway in other WWTPs that are designed or operated differently.

  4. Tillage effects on N2O emission from soils under corn and soybeans in eastern Canada

    International Nuclear Information System (INIS)

    Gregorich, E.G.; St-Georges, P.; McKim, U.F.; Chan, C.; Rochette, P.

    2008-01-01

    New research has suggested that no-till agricultural practices will result in higher levels of nitrous oxide (N 2 O) emissions due to increased levels of denitrification. This study was evaluated and compared N 2 O emissions from tilled and no-till soils. Data used in the study were comprised of more than 1500 flux measurements of N 2 O taken between April and October over a period of 3 years at a site in Ottawa, Ontario. Soybean and corn crop rotations were used. Treatment effects of tillage, crop, and time of season on N 2 O fluxes were assessed using analysis of variance (ANOVA) methods. The study evaluated the responses of tillage during periods when soil temperatures were above 0 degrees C. Results of the studies demonstrated that fertilization management practices contributed to the higher N 2 O emissions observed in soils planted with corn when compared with soils planted with soybeans. Biological nitrogen (N) fixation in soybeans did not contribute to annual N 2 O emissions, and the effects of tillage on N 2 O emissions varied from year to year. The tilled soils typically had better aeration, higher temperatures, and lower water content than no-till soils. N 2 O emissions from no-till soils were lower than rates observed in tilled soils in 2 of the 3 years studied. Higher emissions observed in no-till soils were attributed to timing and the method of fertilizer placement. It was concluded that further studies are needed to develop methods of improving N use efficiency within tillage systems. 30 refs., 5 tabs., 2 figs

  5. [Effects of different fertilization measures on N2O emission in oil sunflower field in irrigation area of upper Yellow River].

    Science.gov (United States)

    Chen, Zhe; Chen, Yuan-yuan; Gao, Ji; Liu, Ru-liang; Yang, Zheng-li; Zhang, Ai-ping

    2015-01-01

    Agricultural soil has become the largest anthropogenic source of atmospheric nitrous oxide (N20). To estimate the impacts of long-term combined application of organic and inorganic fertilizers on N20 emission in a typical winter wheat-oil sunflower cropping system in the Ningxia irrigation area, we measured N20 fluxes using the static opaque chamber-gas chromatograph method and monitored the seasonal dynamics of related factors. Our results showed that nitrogen addition in the previous crop field significantly stimulated N2O emissions during the following oil-sunflower cultivation, and the mean fluxes of N300-OM, N240-OM1/2, N300 and N240 were (34.16 ± 9.72), (39.69 ±10.70), (27.75 ±9.57) and (26.30 ± 8.52) µg . m-2 . h-1, respectively, which were 4.09, 4.75, 3.32 and 3.15 times of the control groups. The total cumulative N2O emissions of fertilizer treatments in growing season was as high as 796.7 to 1242.5 g . hm-2, which was 2.99 to 4.67 times of the control groups. During the growing season, the rates of N2O emission in each month organic and inorganic fertlizers combined treatments were similar at high levels. N2O emission in chemical fertilizer treatments gradually decreased, and the main period of N2O emission occurred at the beginning of growing season. Taking July for example, N2O emission accounted for 41.3% to 41. 8% of total cumulative amount. The amounts of N20 emission under organic and inorganic fertilizers combined treatments were significantly higher than under chemical fertilizer treatments. The N2O emissions were not significantly different between conventional and optimized applications of nitrogen fertilizer under the same fertilizing method, either between N300-OM and N240-OM1/2, or between N300 and N240. On account of the drought, N2O emission in each treatment was mainly affected by soil moisture. N2O emission had a significant positive correlation with soil ammonium nitrogen content under combined applications of organic and inorganic

  6. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  7. A novel fuzzy-logic control strategy minimizing N2O emissions.

    Science.gov (United States)

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2017-10-15

    A novel control strategy for achieving low N 2 O emissions and low effluent NH 4 + concentration is here proposed. The control strategy uses the measurements of ammonium and nitrate concentrations in inlet and outlet of the aerobic zone of a wastewater treatment plant to calculate a ratio indicating the balance among the microbial groups. More specifically, the ratio will indicate if there is a complete nitrification. In case nitrification is not complete, the controller will adjust the aeration level of the plant in order to inhibit the production of N 2 O from AOB and HB denitrification. The controller was implemented using the fuzzy logic approach. It was comprehensively tested for different model structures and different sets of model parameters with regards to its ability of mitigating N 2 O emissions for future applications in real wastewater treatment plants. It is concluded that the control strategy is useful for those plants having AOB denitrification as the main N 2 O producing process. However, in treatment plants having incomplete NH 2 OH oxidation as the main N 2 O producing pathway, a cascade controller configuration adapting the oxygen supply to respect only the effluent ammonium concentration limits was found to be more effective to ensure low N 2 O emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Experimental assessment of N2O background fluxes in grassland systems

    International Nuclear Information System (INIS)

    Neftel, Albrecht; Flechard, Chris; Ammann, Christof; Conen, Franz; Emmenegger, Lukas; Zeyer, Kerstin

    2007-01-01

    In the absence of, or between, fertilization events in agricultural systems, soils are generally assumed to emit N 2 O at a small rate, often described as the 'background' flux. In contrast, net uptake of N 2 O by soil has been observed in many field studies, but has not gained much attention. Observations of net uptake of N 2 O form a large fraction (about half) of all individual flux measurements in a long-term time series at our temperate fertilized grassland site. Individual uptake fluxes from chamber measurements are often not statistically significant but mean values integrated over longer time periods from days to weeks do show a clear uptake. An analysis of semi-continuous chamber flux data in conjunction with continuous measurements of the N 2 O concentration in the soil profile and eddy covariance measurements suggests that gross production and gross consumption of N 2 O are of the same order, and as consequence only a minor fraction of N 2 O molecules produced in the soil reaches the atmosphere

  9. Effect of CO on NO and N2O conversions in nonthermal argon plasma

    International Nuclear Information System (INIS)

    Zhao Guibing; Argyle, Morris D.; Radosz, Maciej

    2006-01-01

    200-600 ppm of CO inhibit NO conversion in nonthermal Ar plasma, but do not produce N 2 O. However, 1.01% of CO has no effect on NO conversion, but produces N 2 O. In general, N 2 O conversion in Ar plasma decreases with increasing CO concentration. These experimental results cannot be explained by charge transfer reactions of Ar + . Selectivity analysis of all excited states of Ar possibly contributing to NO x conversion without and with CO suggests that only Ar( 3 P 2 ) contributes to NO x conversion and CO dissociation. A kinetic model of 43 reactions is required to model NO conversion or N 2 O conversion in Ar without CO, whereas 81 reactions are required to model NO conversion and N 2 O conversion in Ar with CO. At constant gas pressure, a single set of model parameters can predict NO conversion or N 2 O conversion without and with CO. All experimental results can be explained using a reaction mechanism in which excited neutral states of Ar are the only active species, which supports the conclusion that cations have a negligible impact on these nonthermal plasma reactions

  10. European-scale modelling of groundwater denitrification and associated N2O production

    International Nuclear Information System (INIS)

    Keuskamp, J.A.; Drecht, G. van; Bouwman, A.F.

    2012-01-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2 O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2 O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2 O production is expected. Predicted N leaching (16% of the N inputs) and N 2 O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. - Highlights: ► Groundwater denitrification and N 2 O production was modelled at the European scale. ► In large parts of Europe no groundwater denitrification is expected. ► N leaching and N 2 O emission in Europe are much less than the IPCC default values. - European groundwater denitrification is spatially variable, and associated nitrous oxide production is much less than based on the IPCC default estimate.

  11. Prediction of N2O emission from local information with Random Forest

    International Nuclear Information System (INIS)

    Philibert, Aurore; Loyce, Chantal; Makowski, David

    2013-01-01

    Nitrous oxide is a potent greenhouse gas, with a global warming potential 298 times greater than that of CO 2 . In agricultural soils, N 2 O emissions are influenced by a large number of environmental characteristics and crop management techniques that are not systematically reported in experiments. Random Forest (RF) is a machine learning method that can handle missing data and ranks input variables on the basis of their importance. We aimed to predict N 2 O emission on the basis of local information, to rank environmental and crop management variables according to their influence on N 2 O emission, and to compare the performances of RF with several regression models. RF outperformed the regression models for predictive purposes, and this approach led to the identification of three important input variables: N fertilization, type of crop, and experiment duration. This method could be used in the future for prediction of N 2 O emissions from local information. -- Highlights: ► Random Forest gave more accurate N 2 O predictions than regression. ► Missing data were well handled by Random Forest. ► The most important factors were nitrogen rate, type of crop and experiment duration. -- Random Forest, a machine learning method, outperformed the regression models for predicting N 2 O emissions and led to the identification of three important input variables

  12. Effect of sulfation on the surface activity of CaO for N2O decomposition

    International Nuclear Information System (INIS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping

    2015-01-01

    Graphical abstract: - Highlights: • Sulfation of CaO (1 0 0) surface greatly deactivates its surface activity for N 2 O decomposition. • An increase of sulfation degree leads to a decrease of CaO surface activity for N 2 O decomposition. • Sulfation from CaSO 3 into CaSO 4 is the crucial step for deactivating the surface activity for N 2 O decomposition. • The electronic interaction CaO (1 0 0)/CaSO 4 (0 0 1) interface is limited to the bottom layer of CaSO 4 (0 0 1) and the top layer of CaO (1 0 0). • CaSO 4 (0 0 1) and (0 1 0) surfaces show negligible catalytic ability for N 2 O decomposition. - Abstract: Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N 2 O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N 2 O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N 2 O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO 2 or SO 3 molecule forms stable local CaSO 3 or CaSO 4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SO x and the surface O anion. The formed local CaSO 3 increases the barrier energy of N 2 O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO 4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO 3 into CaSO 4 is therefore the crucial step for deactivating the surface activity for N 2 O decomposition. Completely sulfated CaSO 4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO 4 for N 2 O decomposition.

  13. Automated CO2, CH4 and N2O Fluxes from Tree Stems and Soils: Magnitudes, Temporal Patterns and Drivers

    Science.gov (United States)

    Barba, J.; Poyatos, R.; Vargas, R.

    2017-12-01

    The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem

  14. Background CH4 and N2O fluxes in low-input short rotation coppice

    Science.gov (United States)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  15. MLS/Aura Near-Real-Time L2 Nitrous Oxide (N2O) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O_NRT is the EOS Aura Microwave Limb Sounder (MLS) Near-Real-Time (NRT) product for nitrous oxide (N2O). This product contains daily N2O profiles taken from the...

  16. Yield-scaled N2O emissions in a winter wheat - summer corn double-cropping system

    NARCIS (Netherlands)

    Qin, S.; Wang, Y.; Hu, C.; Oenema, O.; Li, X.; Zhang, Y.; Dong, W.

    2012-01-01

    Emissions of nitrous oxide (N2O) from agricultural soils contribute to global warming and stratospheric ozone depletion. Applications of fertilizer nitrogen (N) increase N2O emission, but also increase agricultural production. Here, we report on the responses of crop yield, N2O emission and

  17. N2O4 as a working substance for a spacecraft power plant

    International Nuclear Information System (INIS)

    Popyrin, L.S.; Starostenko, N.N.; Starostenko, V.I.

    1975-01-01

    A gas turbine cycle on dissociating nitrogen tetroxide (N 2 O 4 ) as working medium is considered. Nitrogen tetroxide has a number of properties advantageous in this respect. A direct cycle power plant is considered. A fast reactor with a gas coolant is an energy source. Some versions of a power plant have been analysed for the gas temperature at the turbine inlet ranging from 1170 to 1470 K. The cycle efficiency is found to increase considerably with the working medium temperature rise at the turbine inlet only to 1380-1400 K. To determine the efficiency of the plants of this type, they are compared to identical designs of gas and gas-liquid cycles on alkali metals, inert gases and dissociating phosphorus. Theoretical and experimental data show that the turbine with nitrogen tetroxide as working medium is more compact in comparison to that with inert gases. Small specific surfaces of the radiator, small size of the turbine and thermal process equipment, and high efficiency are evidence of the advisability of using the plant of the type considered as on-board power plant of a space ship

  18. Active species in a large volume N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Kutasi, K; Pintassilgo, C D; Loureiro, J; Coelho, P J

    2007-01-01

    A large volume post-discharge reactor placed downstream from a flowing N 2 -O 2 microwave discharge is modelled using a three-dimensional hydrodynamic model. The density distributions of the most populated active species present in the reactor-O( 3 P), O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ), NO(X 2 Π), NO(A 2 Σ + ), NO(B 2 Π), NO 2 (X), O 3 , O 2 (X 3 Σ g - ) and N( 4 S)-are calculated and the main source and loss processes for each species are identified for two discharge conditions: (i) p = 2 Torr, f = 2450 MHz, and (ii) p = 8 Torr, f = 915 MHz; in the case of a N 2 -2%O 2 mixture composition and gas flow rate of 2 x 10 3 sccm. The modification of the species relative densities by changing the oxygen percentage in the initial gas mixture composition, in the 0.2%-5% range, are presented. The possible tuning of the species concentrations in the reactor by changing the size of the connecting afterglow tube between the active discharge and the large post-discharge reactor is investigated as well

  19. Sunflower N2O emissions under two different water regimes in Mediterranean climate

    Science.gov (United States)

    Monaco, Eugenia; Vitale, Luca; Di Tommasi, Paul; Tedeschi, Anna; Tosca, Maurizio; Magliulo, Vincenzo

    2017-04-01

    Human activities are altering the atmospheric greenhouse gases (GHGs) concentration with negative effects on global climate and environment. Cropland represents about 12 % of earth's surface and largely contribute to GHGs production, in particular N2O, due to a massive use of nitrogen fertilization. In particular, agriculture and intensive livestock farming may significantly affect biogeochemical cycles included nitrogen cycle. However, it is often difficult to predict the total amount of fluxes caused by agricultural management, which impact on both the whole agro-ecosystem. The objective of the experiment was to evaluate soil N2O fluxes under two different irrigation managements. The experimental trial was conducted in a farm in surrounding of Naples, southern Italy. The crop monitored was sunflower for biomass uses. Two irrigation levels were performed: returning 100% (optimal irrigation) and 50% (deficit irrigation) of soil field capacity for the layer 0.0-0.50 m. 314 Kg ha-1 of urea fertilizer was supplied in two times: at sowing and 40 days later. Before sowing, six autochambers were inserted 3 cm into the soil and connected to a gas chromatograph and a scanning apparatus. A program for chambers' management was implemented to monitor soil N2O fluxes measured different times of the day. Biometric parameters such as LAI, root depth, above- and below-ground biomass were monitored during the experiment. Results shows that soil N2O fluxes were affected by irrigation regime; in particular, the deficit irrigation determined lower N2O fluxes compared to optimal irrigation but the total biomass production and yield were comparable between the two water regimes. So low input farm management could be take in account to reduce the total N2O emission and maintain at the same time high productivity level in terms of biomass and yield. Keywords: N2O fluxes, Irrigation schedule, sunflower

  20. Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada.

    Science.gov (United States)

    Abalos, Diego; Smith, Ward N; Grant, Brian B; Drury, Craig F; MacKell, Sarah; Wagner-Riddle, Claudia

    2016-12-15

    Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N 2 O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N 2 O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N 2 O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N 2 O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N 2 O emissions by c. 10%; urease inhibitors had no effect on either N 2 O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha -1 ) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N 2 O mitigation from agricultural soils in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  2. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-an; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13% in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54% when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions.

  3. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  4. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    Science.gov (United States)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be

  5. Temporal trends in N2O flux dynamics in a Danish wetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Struwe, Sten; Elberling, Bo

    2012-01-01

    in subsurface N2O and O2 concentrations, water level (WL), light intensity as well as mineral-N availability. Weekly concentration profiles showed that seasonal variations in N2O concentrations were directly linked to the position of the WL and O2 availability at the capillary fringe above the WL. N2O flux....... Complex interactions between seasonal changes in O2 and mineral-N availability following near-surface WL fluctuations in combination with plant-mediated gas transport by P. arundinacea controlled the subsurface N2O concentrations and gas transport mechanisms responsible for N2O fluxes across the soil......–atmosphere interface. Results demonstrate the necessity for addressing this high temporal variability and potential plant transport of N2O in future studies of net N2O exchange across the soil–atmosphere interface....

  6. Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2012-11-01

    Full Text Available N2O5 detection in the atmosphere has been accomplished using techniques which have been developed during the last decade. Most techniques use a heated inlet to thermally decompose N2O5 to NO3, which can be detected by either cavity based absorption at 662 nm or by laser-induced fluorescence. In summer 2007, a large set of instruments, which were capable of measuring NO3 mixing ratios, were simultaneously deployed in the atmosphere simulation chamber SAPHIR in Jülich, Germany. Some of these instruments measured N2O5 mixing ratios either simultaneously or alternatively. Experiments focused on the investigation of potential interferences from, e.g., water vapour or aerosol and on the investigation of the oxidation of biogenic volatile organic compounds by NO3. The comparison of N2O5 mixing ratios shows an excellent agreement between measurements of instruments applying different techniques (3 cavity ring-down (CRDS instruments, 2 laser-induced fluorescence (LIF instruments. Datasets are highly correlated as indicated by the square of the linear correlation coefficients, R2, which values were larger than 0.96 for the entire datasets. N2O5 mixing ratios well agree within the combined accuracy of measurements. Slopes of the linear regression range between 0.87 and 1.26 and intercepts are negligible. The most critical aspect of N2O5 measurements by cavity ring-down instruments is the determination of the inlet and filter transmission efficiency. Measurements here show that the N2O5 inlet transmission efficiency can decrease in the presence of high aerosol loads, and that frequent filter/inlet changing is necessary to quantitatively sample N2O5 in some environments. The analysis of data also demonstrates that a general correction for degrading filter transmission is not applicable for all conditions encountered during this campaign. Besides the effect of a gradual degradation of the inlet transmission efficiency aerosol exposure, no other interference

  7. Detection mechanism and characteristics of ZnO-based N2O sensors operating with photons

    Science.gov (United States)

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Youn, C. J.; Hong, K. J.

    2013-11-01

    N2O sensors made with ZnO-based ZnCdO films were grown on Pyrex substrates by using the RF co-sputtering method. The structure of the N2O sensor was electrode/sensor/glass/illuminant. The mechanism of the photo-assisted oxidation and reduction process on the surface of the N2O sensors was investigated using light from a UV lamp and violet light emitting diode (LED). For photon exposure wavelengths of 365 and 405 nm, the sensitivity of the ZnO-based ZnCdO sensors was measured. From these measurements, the values of the sensitivity of the sensors with x = 0, 0.01, and 0.05 were found to be S = 1.44, 1.39, and 1.33 under LED light with a wavelength of 405 nm, respectively. These sensitivities were compared to those of SnO2 and WO3 materials measured at operating temperatures of 300-600 °C. Also, under exposure with UV light, the response times were observed to be 130 to 270 sec. These response times were slightly slower than that for the traditional method of thermal heating. However, they indicate that the described photon exposure method for N2O detection can replace the conventional heating mode. Consequently, we demonstrated that portable N2O sensors for room-temperature operation could be fabricated without thermal heating.

  8. Effect of fertilizer nitrogen management on N2O emissions in commercial corn fields

    International Nuclear Information System (INIS)

    Zebarth, B.J.; Rochette, P.; Burton, D.L.; Price, M.

    2008-01-01

    Corn crops receive higher fertilizer nitrogen (N) application rates than many other crops. Pre-sidedress soil nitrate tests (PSNT) are used to determine how much fertilizer N is applied at the sidedress of corn crops, and can provide an opportunity to reduce fertilizer N application rates and delay the timing of fertilizer N applications which contribute to nitrous oxide (N 2 O) emissions into the atmosphere. This study examined how the rate and time of fertilizer N application influence N 2 O emissions in corn crops grown in alluvial soils in Atlantic Canada. Starter fertilizer was applied at 45 and 59 kg N per hectare (ha) in 2004 and 2005. Treatments included the application of 75 or 150 kg N per ha banded at a sidedress, and 150 kg N per ha broadcast at the emergence of the crops. Soil mineral N content was measured using a soil core method. Cumulative N 2 O emissions were calculated using a linear interpolation method between sampling dates. Results showed that delays in fertilizer application to the sidedress, and reductions in fertilizer N application reduced nitrate (NO 3 ) intensity but had no impact on cumulative N 2 O emissions. It was concluded that further research is needed to understand controls on denitrification and N 2 O emissions. 28 refs., 2 tabs., 3 figs

  9. Phase coexistence and exchange-bias effect in LiM n2O4 nanorods

    Science.gov (United States)

    Zhang, X. K.; Yuan, J. J.; Xie, Y. M.; Yu, Y.; Kuang, F. G.; Yu, H. J.; Zhu, X. R.; Shen, H.

    2018-03-01

    In this paper, the magnetic properties of LiM n2O4 nanorods with an average diameter of ˜100 nm and length of ˜1 μ m are investigated. The temperature dependences of dc and ac susceptibility measurements show that LiM n2O4 nanorods experience multiple magnetic phase transitions upon cooling, i.e., paramagnetic (PM), antiferromagnetic (AFM), canted antiferromagnetic (CAFM), and cluster spin glass (SG). The coexistence between a long-range ordered AFM phase due to a M n4 +-M n4 + interaction and a cluster SG phase originating from frozen AFM clusters at low temperature in LiM n2O4 nanorods is elucidated. Field-cooled hysteresis loops (FC loops) and magnetic training effect (TE) measurements confirm the presence of an exchange-bias (EB) effect in LiM n2O4 nanorods below the Néel temperature (TN˜60 K ) . Furthermore, by analyzing the TE, we conclude that the observed EB effect originates completely from an exchange coupling interaction at the interface between the AFM and cluster SG states. A phenomenological model based on phase coexistence is proposed to interpret the origin of the EB effect below 60 K in the present compound. In turn, the appearance of the EB effect further supports the coexistence of AFM order along with a cluster SG state in LiM n2O4 nanorods.

  10. Effect of atmosphere on the fabrication of Si2N2O matrix composites

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-03-01

    Full Text Available Si2N2O matrix composites were fabricated by solid/gas reaction in air or N2 atmosphere. The effects of atmosphere on the phase and microstructure of the composites were investigated. The reaction mechanism of Si2N2O system was discussed by analysing the variation of the Gibbs free energy with temperature. The effect of N2 and air on sintering of Si2N2O matrix composites was discussed in relation to observed kinetics and thermodynamic calculations. The results showed that gradient structure of Si2N2O matrix composites were obtained in N2 atmosphere. While high N2 concentration was useful for the formation of the pure β-Si3N4 ceramics, low N2 concentration was proposed to form the pure Si2N2O ceramics. However, in the air atmosphere, structure of the Si3N4/SiO2 composites is homogeneous without the gradient structure appearing. Its composition is a little different as the O2 concentration changes.

  11. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China

    Science.gov (United States)

    Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.

    2006-01-01

    The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.

  12. Fluxes of N2O and CH4 from forest and grassland lysimeter soils in response to simulated climate change

    Science.gov (United States)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2015-04-01

    terms of CH4, the forest soil exhibits a consistent uptake. Climate change conditions almost doubled the CH4 sink strength from -0.14 to -0.27 g C m-2 year-1. In contrast, the grassland soil was a net source of CH4 which appeared to be mainly related to emission peaks responding to organic fertilization and periods with high soil moisture. However, the net source strength was so far not significantly affected by simulated climate change. In conclusion, our preliminary results provide evidence that climate change will considerably affect N2O emissions from both soils as well as CH4 uptake by the forest soil. However, comparatively small fluxes of both trace gases suggest that N2O and CH4 fluxes of the investigated soils will be of minor importance for the net greenhouse gas balance of our sites. Our data further highlight the need for long-term flux measurements, in particular to account for the impact of short-term events and interannual variability.

  13. Long Path Quantum Cascade Laser Based Sensor for Environment Sensing/Ambient Detection of CH4 and N2O

    Science.gov (United States)

    Castillo, P. C.; Sydoryk, I.; Gross, B.; Moshary, F.

    2013-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are long-lived greenhouse gases in the atmosphere with significant global warming effects. These gases also are known to be produced in a number of anthropogenic settings such as manure management systems, which releases substantial GHGs and is mandated by the EPA to provide continuous monitoring. In addition, natural gas leaks in urban areas is another source of strong spatially inhomogeneous methane emissions Most open path methods for quantitative detection of trace gases utilize either Fourier Transform Spectrometer (FTIR) or near-IR differential optical absorption spectroscopy (DOAS). Although, FTIR is suitable for ambient air monitoring measurement of more abundant gases such as CO2 and H20 etc., the lack of spectral resolution makes the retrieval of weaker absorbing features such as N20 more difficult. On the other hand, conventional DOAS systems can be large and impractical. As an alternative, we illustrate a robust portable quantum cascade laser (QCL) approach for simultaneous detection of CH4 and N2O. In particular, gas spectra were recorded by ultrafast pulse intensity (thermal) chirp tuning over the 1299 - 1300cm-1 spectral window. Etalon measurements insure stable tuning was obtained. To deal with multiple species, a LSQ spectral fitting approach was used which accounted for both the overlapping trace gases , background water vapor as well as detector drift and calibration. In summary, ambient concentrations of CH4 with and N2O with accuracy < 1% was obtained on the order of 5ms using optical paths of 500 m path length. In addition, unattended long term operation was demonstrated and validations using other sensors when possible were shown to be consistent. The system accuracy is limited by systemic errors, which are still being explored.

  14. Catalytic Decomposition of N2O over Cu–Zn/ZnAl2O4 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaoying Zheng

    2017-05-01

    Full Text Available The catalytic decomposition of N2O was investigated over Cu-Zn/ZnAl2O4 catalysts in the temperature range of 400–650 °C Catalytic samples have been prepared by wet impregnation method. Prepared catalysts were characterized using several techniques like BET surface area, X-ray diffraction (XRD, and Scanning electron microscopy (SEM. The Cu-Zn/ZnAl2O4 showed higher catalytic performance along with long term stability during N2O decomposition. The Cu-Zn/ZnAl2O4 catalysts yielded 100% N2O conversion at 650 °C. The Cu-Zn/ZnAl2O4 catalysts are promising for decrease this strong greenhouse gas in the chemical industry.

  15. Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O

    Science.gov (United States)

    Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.

    2017-01-01

    Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.

  16. Manure distribution as a predictor of N2O emissions from soil

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Baral, Khagendra Raj; Arthur, Emmanuel

    2016-01-01

    Predicting nitrous oxide (N2O) emissions from manure-amended soil remains a challenge. One reason may be that spatial heterogeneity in distribution of manure is not accounted for in models of N2O emission, but experimental results suggest that both manure and soil properties affect the distribution...... of manure constituents after field application in a systematic way. Key to predicting the fate of labile carbon (C) and nitrogen (N) in manure is to acknowledge that the liquid phase, and a corresponding fraction of labile C and N, is partly absorbed by the bulk soil in response to the water potential...... gradient, and partly retained by particulate manure organic matter. Therefore, boundary conditions for subsequent transformations of C and N may be better described as two separate compartments. In this study, N2O emissions were determined in a 42-day experiment that included two soils (7.5% and 17% clay...

  17. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments

    International Nuclear Information System (INIS)

    Yin, Guoyu; Hou, Lijun; Liu, Min; Zheng, Yanling; Li, Xiaofei; Lin, Xianbiao; Gao, Juan; Jiang, Xiaofen

    2016-01-01

    Nitrate overload is an important driver of water pollution in most estuarine and coastal ecosystems, and thus nitrate reduction processes have attracted considerable attention. Antibiotics contamination is also an emerging environmental problem in estuarine and coastal regions as a result of growing production and usage of antibiotics. However, the effects of antibiotics on nitrate reduction remain unclear in these aquatic ecosystems. In this study, continuous-flow experiments were conducted to examine the effects of thiamphenicol (TAP, a common chloramphenicol antibiotic) on nitrate reduction and greenhouse gas N 2 O release. Functional genes involved in nitrogen transformation were also quantified to explore the microbial mechanisms of the TAP influence. Production of N 2 were observed to be inhibited by TAP treatment, which implied the inhibition effect of TAP on nitrate reduction processes. As intermediate products of nitrogen transformation processes, nitrite and N 2 O were observed to accumulate during the incubation. Different TAP inhibition effects on related functional genes may be the microbial mechanism for the changes of nutrient fluxes, N 2 fluxes and N 2 O release rates. These results indicate that the antibiotics residues in estuarine and coastal ecosystems may contribute to nitrate retention and N 2 O release, which could be a major factor responsible for eutrophication and greenhouse effects. - Highlights: • Production of N 2 are inhibited by the TAP treatment. • Accumulation of nitrite and N 2 O is stimulated by TAP treatment. • Different TAP effects on functional genes may be the microbial mechanism. - TAP inhibits the production of N 2 and stimulates the accumulation of nitrite and N 2 O due to its different inhibition effects on functional genes.

  18. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems.

    Science.gov (United States)

    Marques, Ricardo; Rodriguez-Caballero, A; Oehmen, Adrian; Pijuan, Maite

    2016-08-01

    Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Emission behaviors of nitrous oxide from automobiles. 4th Report. Aging effect of three way catalyst on N2O mass emissions; Jidosha kara haishutsusareru asanka chisso (N2O) no haishutsu kyodo ni kansuru kenkyu. 4. Sangen shokubai no rekka ga N2O haishutsuryo ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Koike, N; Suzuki, H; Odaka, M [Traffic Safety and Nuisance Research Institute, Tokyo (Japan)

    1997-10-01

    Several kind of three way catalysts with different metal compositions have been developed for trial and their N2O formation behaviors before and after the durability tests have been observed. Then by comparing the N2O formation behavior between new and durability tested catalysts, N2O increase mechanism with aging has been experimentally analyzed. As results, A catalyst temperature at peak N2O formation will sift to higher side by the aging and enters in the range that is the higher percentage in use during test cycle driving. Then this is the main cause of increase in total N2O emission. 4 refs., 10 figs., 2 tabs.

  20. No effect of cropping system on the greenhouse gas N2O

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Chirinda, N.

    2009-01-01

    Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce.......Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce....

  1. Modeling of Chemical Reactions in Afterburning for the Reduction of N2O

    DEFF Research Database (Denmark)

    Gustavsson, Lennart; Glarborg, Peter; Leckner, Bo

    1996-01-01

    Full scale tests in a 12 MW fluidized bed combustor on reduction of N2O by secondary fuel injection are analyzed in terms a model that involves a detailed reaction mechanism for the gas phase chemistry as well as a description of gas-solid reactions.......Full scale tests in a 12 MW fluidized bed combustor on reduction of N2O by secondary fuel injection are analyzed in terms a model that involves a detailed reaction mechanism for the gas phase chemistry as well as a description of gas-solid reactions....

  2. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2 O emissions.

    Science.gov (United States)

    Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing

    2018-02-01

    Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly

  3. Greenhouse Gas (CO2 AND N2O Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O desde Suelos

    Directory of Open Access Journals (Sweden)

    Cristina Muñoz

    2010-09-01

    Full Text Available In agricultural activities, the main greenhouse gases (GHG are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.En actividades agrícolas los principales gases de efecto invernadero (GHG son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas.

  4. Emissions estimates based on ambient N2O concentrations measured at a 200m high tower in the Netherlands 1995-1997

    International Nuclear Information System (INIS)

    Hensen, A.; Dieguez Villar, A; Vermeulen, A.T.

    2000-01-01

    In the period 1995 to 1997 the N2O concentration in ambient air at 200 m height was measured at the 200 m tower in Cabauw in the center of the Netherlands. These measurements were carried out simultaneously with CO2 and CH4 measurements. In this paper the time series for the different trace gas species are compared for the year 1995. This comparison shows the different nature of N2O as compared to the two more abundant trace gases, methane (CH4) and carbon dioxide (CO2). The diffuse character of the main N2O source in our region, the agricultural soils, in combination with the relatively poor resolution of the measurements as compared to the resolution of the CO2 and CH4 data, makes a detailed evaluation of the emissions impossible. Alternatively a simple calculation is proposed to evaluate the N2O emission for a region up to about 200 km upwind of the measurement location. This calculation uses the sudden increase in concentration that is observed after the break-up of a nocturnal inversion layer. The results of 26 nights show an emission level of 31 ±13 kton N/year. This level is lower compared to the emission level of 47.4 kton N/year that is reported for 1996 for the Netherlands using bottom up inventories. 4 refs

  5. Explaining the doubling of N2 O emissions under elevated CO2 in the Giessen FACE via in-field 15 N tracing.

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Brenzinger, Kristof; Keidel, Lisa; Braker, Gesche; Marhan, Sven; Clough, Tim J; Müller, Christoph

    2018-03-23

    Rising atmospheric CO 2 concentrations are expected to increase nitrous oxide (N 2 O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N 2 O emission increases under elevated atmospheric CO 2 (eCO 2 ), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO 2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO 2 , +20% relative to ambient concentrations (aCO 2 ), for 15 years. We applied in the field an ammonium-nitrate fertilizer solution, in which either ammonium (NH4+) or nitrate (NO3-) was labelled with 15 N. The simultaneous gross N transformation rates were analysed with a 15 N tracing model and a solver method. The results confirmed that after 15 years of eCO 2 the N 2 O emissions under eCO 2 were still more than twofold higher than under aCO 2 . The tracing model results indicated that plant uptake of NH4+ did not differ between treatments, but uptake of NO3- was significantly reduced under eCO 2 . However, the NH4+ and NO3- availability increased slightly under eCO 2 . The N 2 O isotopic signature indicated that under eCO 2 the sources of the additional emissions, 8,407 μg N 2 O-N/m 2 during the first 58 days after labelling, were associated with NO3- reduction (+2.0%), NH4+ oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO 2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N 2 O:N 2 emission ratio, explains the doubling of N 2 O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may

  6. Estimating North American N2O emissions and the N fertilizer yield fraction using the Carbon Tracker-Lagrange regional inversion framework

    Science.gov (United States)

    Nevison, C. D.; Andrews, A. E.; Thoning, K. W.; Dlugokencky, E. J.; Sweeney, C.; Saikawa, E.; Miller, S. M.; Benmergui, J. S.; Fischer, M. L.

    2017-12-01

    North American nitrous oxide (N2O) emissions of 1.5 ± 0.2 Tg N/yr over 2008-2013 are estimated using the Carbon Tracker-Lagrange (CT-L) regional inversion framework. The estimated N2O emissions are largely consistent with the EDGAR global inventory and with the results of global atmospheric inversions, but offer more spatial and temporal detail and improved uncertainty quantification over North America. Emissions are strongest from the Midwestern corn/soybean belt, which accounts for about one fourth of the total North American N2O source. The emissions are maximum in spring/early summer, consistent with a nitrogen fertilizer-driven source, but also show a late winter spike suggestive of freeze-thaw effects. Interannual variability in emissions across the primary months of fertilizer application is positively correlated to mean soil moisture and precipitation. The inversion results, in combination with gridded N fertilizer datasets, are used to estimate the fraction of synthetic N fertilizer that is released as N2O. The estimated N2O flux from the Midwestern corn/soybean belt and the more northerly U.S./Canadian wheat belt corresponds to 3.6-4.5% and 1.4-3.5%, respectively, of total synthetic + organic N fertilizer applied to those regions. Consideration of additional N inputs from soybean N2 fixation reduces the N2O yield from the Midwestern corn/soybean belt to 2-2.6% of total N inputs. Figure 1. Posterior N2O flux integrated over the central Midwestern Corn/Soybean belt (38° to 43°N, 102° to 80°W, in grids where 5% or more of land area was planted in corn and/or soybean). Cases 1 (red) and 2 (blue) are defined based on different covariance matrix parameters, representing alternative scenarios of tighter prior/looser model-data mismatch and looser prior/tighter model-data mismatch. Both cases use a standard prior derived from a coarser resolution global inversion. Triangles show the approximate day when soil temperature climbs above 0°C and drops below 10

  7. Nitrous Oxide (N2O production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    Directory of Open Access Journals (Sweden)

    B. Guieysse

    2013-10-01

    Full Text Available Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO, the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38–10.1 kg N2O-N ha−1 yr−1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions. These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  8. Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge.

    Science.gov (United States)

    Velho, V F; Magnus, B S; Daudt, G C; Xavier, J A; Guimarães, L B; Costa, R H R

    2017-12-01

    N 2 O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N 2 O production was 2.06 mg L -1 during the anoxic phase, with N 2 O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N 2 O production (1.08 mgN 2 O-N L -1 ) and consumption (up to 0.05 mgN 2 O-N L -1 ), resulted in the lowest remaining dissolved N 2 O (0.03 mgN 2 O-N L -1 ), stripping the minimum N 2 O gas (0.018 mgN 2 O-N L -1 ). Conversely, the carbon supply shortage, under low C/N ratios, increased N 2 O emission (0.040 mgN 2 O-N L -1 ), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N 2 O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.

  9. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    Science.gov (United States)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( multiple N-cycling processes are modulating the isotopic nitrate composition over the shelf off central Chile during spring and summer. N removal processes in this coastal system appear to be related to the availability and distribution of oxygen and particles, which are a source of organic matter and the fuel for the production of other electron donors (i.e. ammonium) and acceptors (i.e. nitrate and nitrite) after its remineralization. These results highlight the links between several pathways involved in N loss. They also establish that different mechanisms supported by alternative N substrates are responsible for substantial accumulation of N2O, which are frequently observed as hotspots in the

  10. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  11. Nitrous Oxide (N2O) Emissions from Waste and Biomass to Energy Plants

    Czech Academy of Sciences Publication Activity Database

    Fernandez-Gutierrez, M.-J.; Baxter, D.; Hunter, Ch.; Svoboda, Karel

    2005-01-01

    Roč. 23, č. 2 (2005), s. 133-147 ISSN 0734-242X Institutional research plan: CEZ:AV0Z40720504 Keywords : N2O * waste * incineration Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 0.396, year: 2005

  12. Mitigation of nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs) using calcium.

    Science.gov (United States)

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2014-12-01

    Nitrous oxide (N2O) is a significant anthropogenic greenhouse gases (AnGHGs) emitted from biological nutrient removal (BNR) processes. In this study, N2O production from denitrifying fluidized bed bioreactors (DFBBR) was reduced using calcium (Ca2+) dosage. The DFBBRs were operated on a synthetic municipal wastewater at four different calcium concentrations ranging from the typical municipal wastewater Ca2+ concentration (60 mg Ca2+/L) to 240 mg Ca2+/L at two different COD/N ratios. N2O emission rates, extracellular polymeric substances (EPS), water quality parameters, and microscopic images were monitored regularly in both phases. Calcium concentrations played a significant role in biofilm morphology with the detachment rates for R120Ca, R180Ca, and R240Ca 75% lower than for R60Ca, respectively. The N2O conversion rate at the typical municipal wastewater Ca2+ concentration (R60Ca) was about 0.53% of the influent nitrogen loading as compared with 0.34%, 0.42%, and 0.41% for R120Ca, R180Ca, and R240Ca, respectively corresponding to 21-36% reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. N2O Decomposition over Cu–Zn/γ–Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Runhu Zhang

    2016-12-01

    Full Text Available Cu–Zn/γ–Al2O3 catalysts were prepared by the impregnation method. Catalytic activity was evaluated for N2O decomposition in a fixed bed reactor. The fresh and used catalysts were characterized by several techniques such as BET surface area, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The Cu–Zn/γ–Al2O3 catalysts exhibit high activity and stability for N2O decomposition in mixtures simulating real gas from adipic acid production, containing N2O, O2, NO, CO2, and CO. Over the Cu–Zn/γ–Al2O3 catalysts, 100% of N2O conversion was obtained at about 601 °C at a gas hourly space velocity (GHSV of 7200 h−1. Cu–Zn/γ–Al2O3 catalysts also exhibited considerably good durability, and no obvious activity loss was observed in the 100 h stability test. The Cu–Zn/γ–Al2O3 catalysts are promising for the abatement of this powerful greenhouse gas in the chemical industry, particularly in adipic acid production.

  14. Interactions between microbial-feeding and predatory soil fauna trigger N2O emissions

    NARCIS (Netherlands)

    Thakur, M.P.; Groenigen, van J.W.; Kuiper, I.; Deyn, de G.B.

    2014-01-01

    Recent research has shown that microbial-feeding invertebrate soil fauna species can significantly contribute to N2O emissions. However, in soil food webs microbial-feeding soil fauna interact with each other and with their predators, which affects microbial activity. To date we lack empirical tests

  15. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690 ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide s * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.369, year: 2016

  16. Instream Large Wood: Dentrification Hotspots With Low N2O Production

    Science.gov (United States)

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and nitrous oxide (N2O) production. We examined the effects of woody an...

  17. Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems

    Science.gov (United States)

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...

  18. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  19. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120 ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  20. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  1. Effects of Carbon and Cover Crop Residues on N2O and N2 Emissions

    Science.gov (United States)

    Burger, M.; Cooperman, Y.; Horwath, W. R.

    2016-12-01

    In Mediterranean climate, nitrous oxide emissions occurring with the first rainfall after the dry summer season can contribute up to 50% of agricultural systems' total annual emissions, but the drivers of these emissions have not been clearly identified, and there are only few measurements of atmospheric nitrogen (N2) production (denitrification) during these events. In lab incubations, we investigated N2O and N2 production, gross ammonification and nitrification, and microbial N immobilization with wet-up in soil from a vineyard that was previously fallow or where cover crop residue had been incorporated the previous spring. Before the first rainfall, we measured 120 mg dissolved organic carbon (DOC-C) kg-1 soil in the 0-5 cm layer of this vineyard, and after the rain 10 mg DOC-C kg-1, while nitrate levels before the rain were cover cropped soil. The N2O/N2 production was 2, 7, 9, and 86% in fallow, legume-grass mixture, rye, and legume cover cropped soil. The N2O/N2 ratio tended to increase with lower DOC (post-rain) levels in the soil. The results suggest that accumulated carbon in dry surface soil is the main driving factor of N2O and N2 emissions through denitrification with the first rainfall after prolonged dry periods.

  2. Inhibition of denitrification and N2O emission by urine-derived benzoic and hippuric acid

    NARCIS (Netherlands)

    Groenigen, van J.W.; Palermo, V.; Kool, D.M.; Kuikman, P.J.

    2006-01-01

    Hippuric acid (HA) in cattle urine acts as a natural inhibitor of soil N2O emissions. As HA concentration varies with diet, we determined critical HA levels. We also tested the hypothesis that the inhibition occurs because the HA breakdown product benzoic acid (BA) inhibits denitrification rates.

  3. DFT calculations on N2O decomposition by binuclear Fe complexes in Fe/ZSM-5

    NARCIS (Netherlands)

    Yakovlev, A.L.; Zhidomirov, G.M.; Santen, van R.A.

    2001-01-01

    N2O decomposition catalyzed by oxidized Fe clusters localized in the micropores of Fe/ZSM-5 has been studied using the DFT approach and a binuclear cluster model of the active site. Three different reaction routes were found, depending on temperature and water pressure. The results show that below

  4. Contribution of N2O to the greenhouse gas balance of first-generation biofuels

    NARCIS (Netherlands)

    Smeets, E.W.M.; Bouwman, A.F.; Stehfest, E.; Vuuren, van P.; Posthuma, A.

    2009-01-01

    n this study, we analyze the impact of fertilizer- and manure-induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels (also taking account of other GHG emissions during the

  5. Kinetics of Heterogeneous NO and N2O Reduction at FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Nielsen, Jannik Steen

    1999-01-01

    of the combustion chamber and adding secondary air in the top or in the cyclone. The change in reaction pathways for N2O and NO formation and reduction is very complex, and the catalytic activity of the solid material in the boiler may vary with the air staging. Samples of solids taken from large scale tests...

  6. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  7. Diet effects on urine composition of cattle and N2O emissions.

    Science.gov (United States)

    Dijkstra, J; Oenema, O; van Groenigen, J W; Spek, J W; van Vuuren, A M; Bannink, A

    2013-06-01

    Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of

  8. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  9. Characteristics of N2O production and hydroxylamine variation in short-cut nitrification SBR process.

    Science.gov (United States)

    Hu, Bo; Ye, Junhong; Zhao, Jianqiang; Ding, Xiaoqian; Yang, Liwei; Tian, Xiaolei

    2018-01-01

    In order to study the characteristics of nitrous oxide (N 2 O) production and hydroxylamine (NH 2 OH) variation under oxic conditions, concentrations of NH 2 OH and N 2 O were simultaneously monitored in a short-cut nitrification sequencing batch reactor (SBR) operated with different influent ammonia concentrations. In the short-cut nitrification process, N 2 O production was increased with the increasing of ammonia concentration in influent. The maximum concentrations of dissolved N 2 O-N in the reactor were 0.11 mg/L and 0.52 mg/L when ammonia concentrations in the influent were 50 mg/L and 70 mg/L respectively. Under the low and medium ammonia load phases, the concentrations of NH 2 OH-N in the reactor were remained at a low level which fluctuated around 0.06 mg/L in a small range, and did not change with the variation of influent NH 4 + -N concentration. Based on the determination results, the half-saturation of NH 2 OH in the biochemical conversion process of NH 2 OH to NO 2 - -N was very small, and the value of 0.05 mg NH 2 OH-N/L proposed in the published literature was accurate. NH 2 OH is an important intermediate in the nitrification process, and the direct determination of NH 2 OH in the nitrification process was beneficial for revealing the kinetic process of NH 2 OH production and consumption as well as the effects of NH 2 OH on N 2 O production in the nitrification process.

  10. N2O-reducing activity of soil amended with organic and inorganic enrichments under flooded conditions

    Directory of Open Access Journals (Sweden)

    Alicja Księżopolska

    Full Text Available ABSTRACT Changes, apparent after investigation, in the physical and chemical properties in soil, as a result of organic and inorganic enrichments under flooded conditions, influence the growth of denitrifiers. The aim of this study was to determine the effect of the addition of manure (8 kg m−2 (M, clay (50 kg m−2 (CL and lime (1.12 kg m−2 (Ca on the N2O-reducing activity (N2O-RA of sandy loam soil (clay content - 24 % in 0-20 cm, during NO3 reduction under flooding. The soil samples were taken from field plots after 3 years of enrichment with grass cultivation. The enrichments had a distinct effect on the N2O-RA and N2O-released, due to the change in pH, the porosity, and the sorptive properties of the soil. The pH had the greatest impact on the N2O-RA of the soil and ranged from 4.9 to 7.6. For actual denitrification to N2O-realized (aD-N2O, the maximum N2O-releasing (mcN2O-releasing followed the order: 1.36 for the M-treatment, 6.39 for the M+CL+Ca-treatment, 7.79 for the c-soil and 8.69 N2O-N mg kg−1 for the M+CL-treatment. For actual denitrification (aD, the mcN2O-releasing was followed the order: 10.37 for the M-treatment, 10.49 for the control soil, 14.60 for the M+CL+Ca-treatment and 20.00 N2O-N mg kg−1 for the M+CL-treatment. The N2O-RA of the soil samples increased as pH increased. The average N2O/N2+N2O ratio and the N2O-RA of the soil samples increased in the following order: M+CL, control soil, M+CL+Ca, M-enrichments. The addition of enrichments did not pose a threat to the environment due to increased N2O emissions, but as regards conserving NO3− in the soil, the addition of clay distinctly increased the complete denitrification process.

  11. Geographic Inventory Framework (GiF) for estimating N2O and CH4 emissions from agriculture in the province of Alberta, Canada

    Science.gov (United States)

    Dimitrov, D. D.; Wang, J.

    2016-12-01

    A Geographic Information Framework (GiF) has been created to estimate and map agricultural N2O and CH4 emissions of the province of Alberta, Canada. The GiF consists of a modelling component, a GIS component, and application software to communicate between the model, database and census data. For compatibility, GiF follows the IPCC Tier 1 method and contains census data for animal populations, crop areas, and farms for the main IPCC animal and plant types (dairy cows, cattle cows, pigs, sheep, poultry, other animals, grasses, legumes, other crops), and estimated N2O and CH4 emissions from manure management, enteric fermentation, direct soil emissions (with applied manure, synthetic fertilizer, crop residue degradation, biological fixation) and indirect soil emissions (with atmospheric deposition and leaching). Methane emissions from enteric fermentation (609.24 Gg) prevailed over those from manure (44.99 Gg), and nitrous oxide emission from manure (22.01 Gg) prevailed over those from soil (17.73 Gg), with cattle cows emitting most N2O and CH4, followed by plant N2O emissions, and pigs and dairy cows CH4 emissions. The GIS maps showed discernible pattern of N2O and CH4 emissions increasing from North and West to the central Alberta and then slightly declining to South and East, which could be useful to address various mitigation strategies. The framework allows easy replacement of Tier 1 emission factors by Tire 2 or 3 ones from process-based models. Future applying of the latter will allow accounting for CO2 source/sink strength of agricultural ecosystems, hence their complete GHG balance affected by soil, water, and climate.

  12. Application of Primary Abatement Technology for Reduction of N2O Emmision in Petrokemija Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ćosić, L.

    2013-01-01

    Full Text Available Industrial nitric acid production by oxidation of gaseous ammonia with Ostwald procedure produces an unwanted by-product – colorless nitrous oxide, N2O. As emission of N2O represents a very serious problem due of its huge contribution to global warming, certain measures focused on its maximum reduction should be undertaken. Minimization of N2O emission in nitric acid production can be achieved in different parts of the process flow, depending on the applied available technologies. For the abatement of N2O emissions in Petrokemija's nitric acid production processes from the list of the best available technologies chosen were primary and secondary abatement technologies. The mentioned ensures reduction of N2O by use of improved selective heterogeneous catalysts in the step of gaseous ammonia oxidation. Precious metals in the shape of gauzes are used as selective heterogeneous catalyst in primary technology, while in the case of secondary technology the Fe2 O3 catalyst on Al2O3 support in the shape of spherical pellets is chosen. Shown is the application of primary technology for the abatement of N2O in both nitric acid production facilities and their comparison with classical heterogeneous catalyst and preparation for the installation of secondary selective catalyst. N2O emissions with the application of primary technology in both production facilities were reduced from 12 kg of N2O to 7 kg of N2O per ton of pure HNO3. With the primary reduction in N2O emissions the foundation was established for further reduction with the secondary technology to the final value of 0.7 kg of N2O per ton of pure HNO3, which represents mass concentration in the tail gas below 200 mg m-3 (at n. c.. With the applied technologies for the abatement of N2O emissions in Petrokemija's nitric acid production the future prescribed emission limit value will be satisfied.

  13. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Directory of Open Access Journals (Sweden)

    C. Werner

    2014-11-01

    Full Text Available Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil–atmosphere exchange of nitrous oxide (N2O, nitric oxide (NO and dinitrogen (N2 is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture under controlled soil temperatures (ST and soil moisture (SM we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2. Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (−2 h−1; 2O-N m−2 h−1 or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 μg N m−2 h−1 and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m−2 h−1 were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4–99.3% of total N lost, although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%. N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha−1 yr−1 (N2O, 0.68 kg N ha−1 yr−1 (NO and 6.65 kg N ha−1 yr−1 (N2. The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events

  14. New constraints on terrestrial and oceanic sources of atmospheric methanol

    Directory of Open Access Journals (Sweden)

    D. B. Millet

    2008-12-01

    Full Text Available We use a global 3-D chemical transport model (GEOS-Chem to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg a−1 of methanol to the atmosphere and is also a large sink (101 Tg a−1, comparable in magnitude to atmospheric oxidation by OH (88 Tg a−1. The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg a−1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51−0.61 over North America during summer. We reproduce this correlation and slope in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  15. A field robot for autonomous laser-based N2O flux measurements

    Science.gov (United States)

    Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders

    2014-05-01

    N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only

  16. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  17. N2O and CO production by electric discharge - Atmospheric implications. [Venus atmosphere simulation

    Science.gov (United States)

    Levine, J. S.; Howell, W. E.; Hughes, R. E.; Chameides, W. L.

    1979-01-01

    Enhanced levels of N2O and CO were measured in tropospheric air samples exposed to a 17,500-J laboratory discharge. These enhanced levels correspond to an N2O production rate of about 4 trillion molecules/J and a CO production rate of about 10 to the 14th molecules/J. The CO measurements suggest that the primary region of chemical production in the discharge is the shocked air surrounding the lightning channel, as opposed to the slower-cooling inner core. Additional experiments in a simulated Venus atmosphere (CO2 - 95%, N2 - 5%, at one atmosphere) indicate an enhancement of CO from less than 0.1 ppm prior to the laboratory discharge to more than 2000 ppm after the discharge. Comparison with theoretical calculations appears to confirm the ability of a shock-wave/thermochemical model to predict the rate of production of trace species by an electrical discharge.

  18. Steam bubble growth in the bulk of overheated N2O4-NO chemically reacting solution

    International Nuclear Information System (INIS)

    Nemtsev, V.A.; Cherkashin, A.M.

    1989-01-01

    A mathematical model and numerical investigation of the vapour bubble growth that begins from the bubble critical size at the positive radius fluctuation during the initial moment in the bulk of the overheated N 2 O 4 -NO liquid solution are presented. The mathematical model has been stated under the following assumptions: the movement of a bubble wall and surrounding liquid is spherically symmetrical; thermal parameters in the bubble are distributed uniformly; the vapour phase follows the ideal gas law; heat transfer is not affected by the compressibility of liquid; if dissolution of light components is determined by Henry's law, then Hertz-Knudsen's equation determines the velocity of phase transition for a N 2 O 4 component. The mathematical model presented can be applied to another fluids, including chemically reacting ones

  19. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    Science.gov (United States)

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  20. Photocatalytic Decomposition of N2O on Ag-TiO2

    Czech Academy of Sciences Publication Activity Database

    Kočí, K.; Krejčíková, Simona; Šolcová, Olga; Obalová, L.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 134-137 ISSN 0920-5861. [International Symposium on Nitrogen Oxides Emission Abatement. Zakopane, 04.09.2011-07.09.2011] R&D Projects: GA ČR GA104/09/0694 Institutional support: RVO:67985858 Keywords : photocatalytic decomposition * N2O * Ag doping * TiO2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  1. Role of active oxygen and NOx species in N2O decomposition over Fe-ferrierite

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Tabor, Edyta; Nováková, Jana; Sathu, Naveen Kumar; Závěta, K.

    2012-01-01

    Roč. 289, MAY 2012 (2012), s. 164-170 ISSN 0021-9517 R&D Projects: GA AV ČR KAN100400702; GA ČR GA203/09/1627; GA ČR GAP106/11/0624 Institutional research plan: CEZ:AV0Z40400503 Keywords : N2O decomposition * iron ferrierite * active oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.787, year: 2012

  2. N2O Decomposition over Fe-Ferrierite: Primary and Secondary Reactions with Reducing Agents

    Czech Academy of Sciences Publication Activity Database

    Nováková, Jana; Sobalík, Zdeněk

    2009-01-01

    Roč. 127, 1-2 (2009), s. 95-100 ISSN 1011-372X R&D Projects: GA AV ČR 1ET400400413; GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : N2O decomposition * reactivity of surface species * Fe-ferrierite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.021, year: 2009

  3. K‑Doped Co−Mn−Al Mixed Oxide Catalyst for N2O Abatement from\

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Karásková, K.; Kovanda, F.; Jirátová, Květa; Šrámek, J.; Kustrovski, P.; Kotarba, A.; Chromčáková, Ž.; Kočí, K.; Obalová, L.

    2016-01-01

    Roč. 55, č. 26 (2016), s. 7076-7084 ISSN 0888-5885 R&D Projects: GA ČR GA14-13750S; GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide * N2O decomposition * HNO3 pilot plant Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.843, year: 2016

  4. High temperature performance and stability of Fe-FER catalyst for N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Sádovská, Galina; Tabor, Edyta; Sazama, Petr; Lhotka, M.; Bernauer, M.; Sobalík, Zdeněk

    2017-01-01

    Roč. 89, JAN 2017 (2017), s. 133-137 ISSN 1566-7367 R&D Projects: GA ČR(CZ) GA14-10251S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388955 Keywords : High temperature N2O decomposition * FER * Iron Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.330, year: 2016

  5. Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    Science.gov (United States)

    Gütlein, Adrian; Gerschlauer, Friederike; Kikoti, Imani; Kiese, Ralf

    2018-03-01

    In this study, we quantify the impacts of climate and land use on soil N 2 O and CH 4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N 2 O and CH 4 respectively. N 2 O emissions correlated positively with soil moisture and total soil nitrogen content. CH 4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N 2 O emissions of tropical montane forests were generally low (<1.2 kg N ha -1  year -1 ), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha -1  year -1 ). Forest soils with well-aerated litter layers were a significant sink for atmospheric CH 4 (up to 4 kg C ha -1  year -1 ) regardless of low mean annual temperatures at higher elevations. Land-use intensification significantly increased the soil N 2 O source strength and significantly decreased the soil CH 4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non-CO 2 GHG emissions following land-use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N 2 O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and

  6. Wastes Management Can Minimize CH4 and N2O Emissions from Wetlands in Indonesia

    Directory of Open Access Journals (Sweden)

    Abdul Hadi

    2015-07-01

    Full Text Available Paddy (Oriza sativa L. and Oil palm (Elaeis guineensis Jack are two important crops and are potential to produce wastes which may lead to huge greenhouse gas emissions if they are not managed properly.  Open burning and conventional composting are commonly practiced by farmers and/or planters to managed agricultural wastes in Indonesia.  A series of research has been carried out  to elucidate (1 the reductions of CH4 and N2O due to incertion of a catalitic converter on burning kiln, (2 the best composting technique of oil palm field wastes, and (3 the effects of oil palm field wastes compost application in oil palm fields and of paddy field wastes biochar in integrated oil palm-paddy fields.  The results showed that CH4 and N2O emissions from paddy field wastes (i.e., rice straw or rice husk was lower than that from oil palm empty fruit bunch (EFB.  Furthermore, insertion of a catalytic converter into pyrolysis installation reduced the CO2, CH4 and N2O emissions from paddy field wastes as much as 14.5, 17.8 and 11.1%, respectively.  Incorporation of EFB compost did not increase greenhouse gas emission from oil palm fields. These results suggest that biochar and EFB compost can be practiced to manage agricultural wastes in Indonesia.

  7. Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle

    International Nuclear Information System (INIS)

    Sarkar, Jahar

    2010-01-01

    Thermodynamic analyses and simultaneous optimizations of cycle pressure ratio and flow split fraction to get maximum efficiency of N 2 O recompression Brayton cycle have been performed to study the effects of various operating conditions and component performances. The energetic as well as exergetic performance comparison with its counterpart recompression CO 2 cycle is presented as well. Optimization shows that the optimum minimum cycle pressure is close to pseudo-critical pressure for supercritical cycle, whereas saturation pressure corresponding to minimum cycle temperature for condensation cycle. Results show that the maximum thermal efficiency increases with decrease in minimum cycle temperature and increase in both maximum cycle pressure and temperature. Influence of turbine performance on cycle efficiency is more compared to that of compressors, HTR (high temperature recuperator) and LTR (low temperature recuperator). Comparison shows that N 2 O gives better thermal efficiency (maximum deviation of 1.2%) as well as second law efficiency compared to CO 2 for studied operating conditions. Component wise irreversibility distribution shows the similar trends for both working fluids. Present study reveals that N 2 O is a potential option for the recompression power cycle.

  8. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  9. Inhibition effect of zinc in wastewater on the N2O emission from coastal loam soils.

    Science.gov (United States)

    Huang, Yan; Ou, Danyun; Chen, Shunyang; Chen, Bin; Liu, Wenhua; Bai, Renao; Chen, Guangcheng

    2017-03-15

    The effects of zinc (Zn) on nitrous oxide (N 2 O) fluxes from coastal loam soil and the abundances of soil nitrifier and denitrifier were studied in a tidal microcosm receiving livestock wastewater with different Zn levels. Soil N 2 O emission significantly increased due to discharge of wastewater rich in ammonia (NH 4 + -N) while the continuous measurements of gas flux showed a durative reduction in N 2 O flux by high Zn input (40mgL -1 ) during the low tide period. Soil inorganic nitrogen concentrations increased at the end of the experiment and even more soil NH 4 + -N was measured in the high-Zn-level treatment, indicating an inhibition of ammonia oxidation by Zn input. Quantitative PCR of soil amoA, narG and nirK genes encoding ammonia monooxygenase, nitrate reductase and nitrite reductase, respectively, showed that the microbial abundances involved in these metabolisms were neither affected by wastewater discharge nor Zn contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. NOx, N2O and SO2 emissions from pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Korpela, T.; Lu Yong

    1995-01-01

    This project continues the analysis of available data from the experimental work at the Otaniemi PFBC test rig, including LIEKKI project 4-1a and 4- 4 during the past years. The study concentrates on the effects of the operating parameters on gas emissions, such as NO x , N 2 O and SO 2 , under pressurized conditions. The aim of the study is to prepare the database from the available data and make empirical correlations for estimating nitrogen oxides and sulphur dioxide emissions from PFBC as a function of significant operating parameters and fuel properties. The major aspect in this work is that the correlations, in general, are also available for existing data in the literature. These correlations may facilitate preliminary FBC design by estimating NO x , N 2 O and SO 2 emissions based on the fuel selected and the operating conditions employed. In addition, the fuel properties selected in the correlations on the basis of statistical inference may lend insight into the mechanisms of the formation and destruction of NO x , N 2 O and SO 2 Therefore, the results are expected to be valuable for energy producers, FBC boiler manufacturers. (author)

  11. N2O from a SNCR process for NOx reduction at Piombino power station

    International Nuclear Information System (INIS)

    Tarli, R.; Bertacchi, S.; Bianchi, G.

    1995-01-01

    ENEL (the main electricity company in Italy) and NALCO FUEL TECH performed a SNCR process demonstration at Piombino unit 4 (320 MWe oil fired boiler) during 1991. The process, called NO x OUT, was based on injection of aqueous solution of urea in the upper furnace region and in the superheater cavity. The main objective was to evaluate the effectiveness of NO x OUT Process for reducing NO x emissions under 200 mg/Nm 3 at full load. The unit was operating in the BOOS configuration, with baseline NO x ranging from 380 to 600 mg/Nm 3 emissions, depending on burners arrangement and GR fan flow rate. N 2 O measure was performed during the test, N 2 O was found to be about 90 mg/Nm 3 at full load (320 MWe), in the best configuration for NO x abatement final result NO x 234 mg/Nm 3 ); N 2 O emission was increasing with the effectiveness of the process. The previously mentioned results, in addition to more detailed information about NO x OUT process, boiler configuration and test program are reported in the presentation. (orig.)

  12. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil

    NARCIS (Netherlands)

    Cayuela, M.L.; Jeffery, S.L.; Zwieten, van L.

    2015-01-01

    A previously published meta-analysis of biochar impacts on soil N2O emissions by Cayuela et al. (2014) found a “grand mean” reduction in N2O emissions of 54 ± 6% following biochar application to soil. Here we update this analysis to include 26 additional manuscripts bringing the total to 56

  13. Effects of clover density on N2O emissions and plant-soil N transfers in a fertilised upland pasture

    DEFF Research Database (Denmark)

    Klumpp, Katja; Bloor, Juliette M. G.; Ambus, Per

    2011-01-01

    regression analysis revealed that water-filled pore space (WFPS) and clover dry mass were the main factors driving cumulative N2O emissions in the high clover treatment, whereas variation in cumulated N2O emissions in the low clover treatment was best explained by WFPS and grass mass. We hypothesize...

  14. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil

    Science.gov (United States)

    Yang, Liuqing; Zhang, Xiaojun; Ju, Xiaotang

    2017-02-01

    The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this ‘hotspot’ region.

  15. Evaluation of the Agronomic Impacts on Yield-Scaled N2O Emission from Wheat and Maize Fields in China

    Directory of Open Access Journals (Sweden)

    Wenling Gao

    2017-07-01

    Full Text Available Contemporary crop production faces dual challenges of increasing crop yield while simultaneously reducing greenhouse gas emission. An integrated evaluation of the mitigation potential of yield-scaled nitrous oxide (N2O emission by adjusting cropping practices can benefit the innovation of climate smart cropping. This study conducted a meta-analysis to assess the impact of cropping systems and soil management practices on area- and yield-scaled N2O emissions during wheat and maize growing seasons in China. Results showed that the yield-scaled N2O emissions of winter wheat-upland crops rotation and single spring maize systems were respectively 64.6% and 40.2% lower than that of winter wheat-rice and summer maize-upland crops rotation systems. Compared to conventional N fertilizer, application of nitrification inhibitors and controlled-release fertilizers significantly decreased yield-scaled N2O emission by 41.7% and 22.0%, respectively. Crop straw returning showed no significant impacts on area- and yield-scaled N2O emissions. The effect of manure on yield-scaled N2O emission highly depended on its application mode. No tillage significantly increased the yield-scaled N2O emission as compared to conventional tillage. The above findings demonstrate that there is great potential to increase wheat and maize yields with lower N2O emissions through innovative cropping technique in China.

  16. Evaluating four N2O emission algorithms in RZWQM2 in response to N rate on an irrigated corn field

    Science.gov (United States)

    Nitrous oxide (N2O) emissions from agricultural soils are major contributors to greenhouse gases. Correctly assessing the effects of the interactions between agricultural practices and environmental factors on N2O emissions is required for better crop and nitrogen (N) management. We used an enhanced...

  17. Evaluation and adjustment of description of denitrification in the DailyDayCent and COUP models based on N2 and N2O laboratory incubation system measurements

    Science.gov (United States)

    Grosz, Balázs; Well, Reinhard; Dannenmann, Michael; Dechow, René; Kitzler, Barbara; Michel, Kerstin; Reent Köster, Jan

    2017-04-01

    Denitrification is an anaerobic key process by microbes where the NO3- is step-by-step reduced and emitted as NO, N2O and finally N2 gas from the soil. The accurate knowledge of the reduction of nitrate (NO3-) and nitrite (NO2-) to N2O and molecular N2 is important because the N2O fraction is further reduced to N2 and constitutes the main emission source of this greenhouse gas from agricultural soils. Hence, our understanding and ability to quantify soil denitrification is crucial for mitigating nitrogen fertilizer loss as well as for reducing N2O emissions. Models can be an important tool to predict mitigation effects and help to develop climate smart mitigation strategies. Ideally, commonly used biogeochemical models could provide adequate predictions of denitrification processes of agricultural soils but often simplified process descriptions and inadequate model parameters prevent models from simulating adequate fluxes of N2 and N2O on field scale. Model development and parametrization often suffers from limited availability of empirical data describing denitrification processes in agricultural soils. While in many studies N2O emissions are used to develop and train models, detailed measurements on NO, N2O, N2 fluxes and concentrations and related soil conditions are necessary to develop and test adequate model algorithms. Composition of denitrifying communities, coinciding effects of management and local conditions on the development of denitrification hotspots are highly variable in space and time. To address this issue the coordinated research unit „Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" was initiated to more closely investigate N-fluxes caused by denitrification in response to environmental effects, soil properties and microbial communities. Data suitable to validate denitrification models are still scarce due to previous technical and/or methodical limitations of measuring N2 fluxes, but large

  18. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Science.gov (United States)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events compared to the total annual emissions was found to be of importance for NO emissions

  19. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    DEFF Research Database (Denmark)

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combination of the use of microsensors, stable isotope techniques, KCl extractions and modelling. This study...... within the soil. The magnitude of the emissions are, not surprisingly, positively correlated with the soil NO3− concentration but also negatively correlated with liming (neutral pH). The redox potential of the soil is found to influence N2O accumulation as the production and consumption of N2O occurs...... in narrow redox windows where the redox range levels are negatively correlated with the pH. This study highlights the potential importance of N2O bursts associated with flooding and infers that annual N2O emission estimates for tilled agricultural soils that are temporarily flooded will be underestimated...

  20. Hemoglobin as a nitrite anhydrase: modeling methemoglobin-mediated N2O3 formation.

    Science.gov (United States)

    Hopmann, Kathrin H; Cardey, Bruno; Gladwin, Mark T; Kim-Shapiro, Daniel B; Ghosh, Abhik

    2011-05-27

    Nitrite has recently been recognized as a storage form of NO in blood and as playing a key role in hypoxic vasodilation. The nitrite ion is readily reduced to NO by hemoglobin in red blood cells, which, as it happens, also presents a conundrum. Given NO's enormous affinity for ferrous heme, a key question concerns how it escapes capture by hemoglobin as it diffuses out of the red cells and to the endothelium, where vasodilation takes place. Dinitrogen trioxide (N(2)O(3)) has been proposed as a vehicle that transports NO to the endothelium, where it dissociates to NO and NO(2). Although N(2)O(3) formation might be readily explained by the reaction Hb-Fe(3+)+NO(2)(-)+NO⇌Hb-Fe(2+)+N(2)O(3), the exact manner in which methemoglobin (Hb-Fe(3+)), nitrite and NO interact with one another is unclear. Both an "Hb-Fe(3+)-NO(2)(-)+NO" pathway and an "Hb-Fe(3+)-NO+NO(2)(-) " pathway have been proposed. Neither pathway has been established experimentally. Nor has there been any attempt until now to theoretically model N(2)O(3) formation, the so-called nitrite anhydrase reaction. Both pathways have been examined here in a detailed density functional theory (DFT, B3LYP/TZP) study and both have been found to be feasible based on energetics criteria. Modeling the "Hb-Fe(3+)-NO(2)(-)+NO" pathway proved complex. Not only are multiple linkage-isomeric (N- and O-coordinated) structures conceivable for methemoglobin-nitrite, multiple isomeric forms are also possible for N(2)O(3) (the lowest-energy state has an N-N-bonded nitronitrosyl structure, O(2)N-NO). We considered multiple spin states of methemoglobin-nitrite as well as ferromagnetic and antiferromagnetic coupling of the Fe(3+) and NO spins. Together, the isomerism and spin variables result in a diabolically complex combinatorial space of reaction pathways. Fortunately, transition states could be successfully calculated for the vast majority of these reaction channels, both M(S)=0 and M(S)=1. For a six-coordinate Fe(3+)-O

  1. Acoustic sources of opportunity in the marine environment - Applied to source localization and ocean sensing

    Science.gov (United States)

    Verlinden, Christopher M.

    Controlled acoustic sources have typically been used for imaging the ocean. These sources can either be used to locate objects or characterize the ocean environment. The processing involves signal extraction in the presence of ambient noise, with shipping being a major component of the latter. With the advent of the Automatic Identification System (AIS) which provides accurate locations of all large commercial vessels, these major noise sources can be converted from nuisance to beacons or sources of opportunity for the purpose of studying the ocean. The source localization method presented here is similar to traditional matched field processing, but differs in that libraries of data-derived measured replicas are used in place of modeled replicas. In order to account for differing source spectra between library and target vessels, cross-correlation functions are compared instead of comparing acoustic signals directly. The library of measured cross-correlation function replicas is extrapolated using waveguide invariant theory to fill gaps between ship tracks, fully populating the search grid with estimated replicas allowing for continuous tracking. In addition to source localization, two ocean sensing techniques are discussed in this dissertation. The feasibility of estimating ocean sound speed and temperature structure, using ship noise across a drifting volumetric array of hydrophones suspended beneath buoys, in a shallow water marine environment is investigated. Using the attenuation of acoustic energy along eigenray paths to invert for ocean properties such as temperature, salinity, and pH is also explored. In each of these cases, the theory is developed, tested using numerical simulations, and validated with data from acoustic field experiments.

  2. Can pine trees act as sources for nitrous oxide (N2O) and methane (CH4)?

    Czech Academy of Sciences Publication Activity Database

    Macháčová, Kateřina; Pihlatie, M.; Vanhatalo, A.; Halmeenmäki, E.; Aaltonen, H.; Kolari, P.; Aalto, J.; Pumpanen, J.; Pavelka, Marian; Acosta, Manuel; Urban, Otmar; Bäck, J.

    2013-01-01

    Roč. 142, č. 2013 (2013), s. 362-366. ISBN 952-5027-76-7. ISSN 0784-3496 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : methane * nitrous oxide * scots pine * transport Subject RIV: EH - Ecology, Behaviour

  3. Marine hypoxia/anoxia as a source of CH4 and N2O

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Bange, H.W.; Farias, L.; Monteiro, P.M.S.; Scranton, M.I.; Zhang, J.

    ” of the Louisiana Shelf in the northern Gulf of Mexico (Rabal- ais et al., 2007; Swarzenski et al., 2008). All natural O2- deficient aquatic environments have arguably been affected by human activities to varying degrees. Nonetheless, it is possible in most cases... to identify the dominant driver of hy- poxia. Thus, out of the systems being examined here (Fig. 1), hypoxia in the East China Sea, Chesapeake Bay, Gulf of Mexico and Tokyo Bay is largely human-induced, whereas in the remaining regions it is primarily...

  4. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  5. Historical and future land use effects on N2O and NO emissions using an ensemble modeling approach: Costa Rica's Caribbean lowlands as an example

    Science.gov (United States)

    Reiners, W. A.; Liu, S.; Gerow, K. G.; Keller, M.; Schimel, D. S.

    2002-12-01

    The humid tropical zone is a major source area for N2O and NO emissions to the atmosphere. Local emission rates vary widely with local conditions, particularly land use practices which swiftly change with expanding settlement and changing market conditions. The combination of wide variation in emission rates and rapidly changing land use make regional estimation and future prediction of biogenic trace gas emission particularly difficult. This study estimates contemporary, historical, and future N2O and NO emissions from 0.5 million ha of northeastern Costa Rica, a well-documented region in the wet tropics undergoing rapid agricultural development. Estimates were derived by linking spatially distributed environmental data with an ecosystem simulation model in an ensemble estimation approach that incorporates the variance and covariance of spatially distributed driving variables. Results include measures of variance for regional emissions. The formation and aging of pastures from forest provided most of the past temporal change in N2O and NO flux in this region; future changes will be controlled by the degree of nitrogen fertilizer application and extent of intensively managed croplands.

  6. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    Science.gov (United States)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  7. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    Science.gov (United States)

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Constraining a complex biogeochemical model for CO2 and N2O emission simulations from various land uses by model-data fusion

    Science.gov (United States)

    Houska, Tobias; Kraus, David; Kiese, Ralf; Breuer, Lutz

    2017-07-01

    This study presents the results of a combined measurement and modelling strategy to analyse N2O and CO2 emissions from adjacent arable land, forest and grassland sites in Hesse, Germany. The measured emissions reveal seasonal patterns and management effects, including fertilizer application, tillage, harvest and grazing. The measured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha-1 a-1, and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha-1 a-1 for the arable land, grassland and forest sites, respectively. An innovative model-data fusion concept based on a multicriteria evaluation (soil moisture at different depths, yield, CO2 and N2O emissions) is used to rigorously test the LandscapeDNDC biogeochemical model. The model is run in a Latin-hypercube-based uncertainty analysis framework to constrain model parameter uncertainty and derive behavioural model runs. The results indicate that the model is generally capable of predicting trace gas emissions, as evaluated with RMSE as the objective function. The model shows a reasonable performance in simulating the ecosystem C and N balances. The model-data fusion concept helps to detect remaining model errors, such as missing (e.g. freeze-thaw cycling) or incomplete model processes (e.g. respiration rates after harvest). This concept further elucidates the identification of missing model input sources (e.g. the uptake of N through shallow groundwater on grassland during the vegetation period) and uncertainty in the measured validation data (e.g. forest N2O emissions in winter months). Guidance is provided to improve the model structure and field measurements to further advance landscape-scale model predictions.

  9. High-precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O / CO2 ratio from polar ice core samples

    Directory of Open Access Journals (Sweden)

    T. K. Bauska

    2014-11-01

    Full Text Available An important constraint on mechanisms of past carbon cycle variability is provided by the stable isotopic composition of carbon in atmospheric carbon dioxide (δ13C-CO2 trapped in polar ice cores, but obtaining very precise measurements has proven to be a significant analytical challenge. Here we describe a new technique to determine the δ13C of CO2 at very high precision, as well as measuring the CO2 and N2O mixing ratios. In this method, ancient air is extracted from relatively large ice samples (~400 g with a dry-extraction "ice grater" device. The liberated air is cryogenically purified to a CO2 and N2O mixture and analyzed with a microvolume-equipped dual-inlet IRMS (Thermo MAT 253. The reproducibility of the method, based on replicate analysis of ice core samples, is 0.02‰ for δ13C-CO2 and 2 ppm and 4 ppb for the CO2 and N2O mixing ratios, respectively (1σ pooled standard deviation. Our experiments show that minimizing water vapor pressure in the extraction vessel by housing the grating apparatus in a ultralow-temperature freezer (−60 °C improves the precision and decreases the experimental blank of the method to −0.07 ± 0.04‰. We describe techniques for accurate calibration of small samples and the application of a mass-spectrometric method based on source fragmentation for reconstructing the N2O history of the atmosphere. The oxygen isotopic composition of CO2 is also investigated, confirming previous observations of oxygen exchange between gaseous CO2 and solid H2O within the ice archive. These data offer a possible constraint on oxygen isotopic fractionation during H2O and CO2 exchange below the H2O bulk melting temperature.

  10. Ionic complexation of N 2O 4 by 18-crown-6

    Science.gov (United States)

    Ricard, S.; Audet, P.; Savoie, R.

    1988-08-01

    An ionic complex has been obtained from N 2O 4 in the presence of the macrocyclic ether 18-crown-6. This crystalline compound has been shown from its Raman spectrum to have the formula NO +·crown·H(NO 3) 2-, with the nitrosonium ion closely associated with the crown ether rather than with the hydrogen dinitrate accompanying ion. This adduct decomposes readily in moist air to give the known complex (HNO 3·H 2O) 2·crown.

  11. Cobalt Oxide Catalysts on Commercial Supports for N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Klegová, A.; Pacultová, K.; Fridrichová, D.; Volodarskaja, A.; Kovanda, J.; Jirátová, Květa

    2017-01-01

    Roč. 40, č. 5 (2017), s. 981-990 ISSN 0930-7516. [International Congress of Chemical and Process Engineering CHISA 2016 /22./ and the 19th Conference PRES 2016. Prague, 27.08.2016-31.08.2016] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : N2O decomposition * cobalt oxide * shaped catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  12. Comparison of sol-gel prepared catalysts for CO oxidation and N2O decomposition reactions.

    OpenAIRE

    Euesden, Claire

    2002-01-01

    This thesis comprises analysis for two types of catalysis: CO oxidation and N2O decomposition; related by their research in sol-gel catalysis. The CO oxidation work was undertaken on behalf of Servomex plc in order to understand how their catalyst-based sensor (Tfx 1750) worked and why it failed when exposed to coal power station flue streams within its two-year guarantee period. This research will show, by means of many analytical techniques and catalytic tests: 1. A comparison of the Servom...

  13. The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest

    Science.gov (United States)

    Liu, Shurong; Herbst, Michael; Bol, Roland; Gottselig, Nina; Pütz, Thomas; Weymann, Daniel; Wiekenkamp, Inge; Vereecken, Harry; Brüggemann, Nicolas

    2016-04-01

    Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions.

  14. Climate, duration, and N placement determine N2 O emissions in reduced tillage systems: a meta-analysis.

    Science.gov (United States)

    van Kessel, Chris; Venterea, Rodney; Six, Johan; Adviento-Borbe, Maria Arlene; Linquist, Bruce; van Groenigen, Kees Jan

    2013-01-01

    No-tillage and reduced tillage (NT/RT) management practices are being promoted in agroecosystems to reduce erosion, sequester additional soil C and reduce production costs. The impact of NT/RT on N2 O emissions, however, has been variable with both increases and decreases in emissions reported. Herein, we quantitatively synthesize studies on the short- and long-term impact of NT/RT on N2 O emissions in humid and dry climatic zones with emissions expressed on both an area- and crop yield-scaled basis. A meta-analysis was conducted on 239 direct comparisons between conventional tillage (CT) and NT/RT. In contrast to earlier studies, averaged across all comparisons, NT/RT did not alter N2 O emissions compared with CT. However, NT/RT significantly reduced N2 O emissions in experiments >10 years, especially in dry climates. No significant correlation was found between soil texture and the effect of NT/RT on N2 O emissions. When fertilizer-N was placed at ≥5 cm depth, NT/RT significantly reduced area-scaled N2 O emissions, in particular under humid climatic conditions. Compared to CT under dry climatic conditions, yield-scaled N2 O increased significantly (57%) when NT/RT was implemented <10 years, but decreased significantly (27%) after ≥10 years of NT/RT. There was a significant decrease in yield-scaled N2 O emissions in humid climates when fertilizer-N was placed at ≥5 cm depth. Therefore, in humid climates, deep placement of fertilizer-N is recommended when implementing NT/RT. In addition, NT/RT practices need to be sustained for a prolonged time, particularly in dry climates, to become an effective mitigation strategy for reducing N2 O emissions. © 2012 Blackwell Publishing Ltd.

  15. A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    Science.gov (United States)

    Ruth, Albert A.; Brown, Steven S.; Dinesan, Hemanth; Dubé, William P.; Goulette, Marc; Hübler, Gerhard; Orphal, Johannes; Zahn, Andreas

    2016-04-01

    The chemistry of NO3 and N2O5 is important to the regulation of both tropospheric and stratospheric ozone. In situ detection of NO3 and N2O5 in the upper troposphere lower stratosphere (UTLS) represents a new scientific direction as the only previous measurements of these species in this region of the atmosphere has been via remote sensing techniques. Because both the sources and the sinks for NO3 and N2O5 are potentially stratified spatially, their mixing ratios, and their influence on nitrogen oxide and ozone transport and loss at night can show large variability as a function of altitude. Aircraft-based measurements of heterogeneous N2O5 uptake in the lower troposphere have uncovered a surprising degree of variability in the uptake coefficient [1], but there are no corresponding high altitude measurements.The UTLS is routinely sampled by the IAGOS-CARIBIC program (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com), a European infrastructural program with the aim of studying the chemistry and transport across this part of the atmosphere. An airfreight container with 15 different automated instruments from 8 European research partners is utilized on board a commercial Lufthansa airbus 340-600 to monitor ~ 100 atmospheric species (trace gases and aerosol parameters) in the UTLS. The instrumentation in the CARIBIC container is now to be supplemented by a new cavity ring-down device for monitoring nitrogen oxides, jointly developed by researchers from Cork (Ireland), Boulder (USA) and Karlsruhe (Germany). The compact and light-weight instrument is designed to monitor not only NO3 and N2O5, but also NO2 and O3. The detection is based on 4 high-finesse optical cavities (cavity length ~ 44 cm). Two cavities are operated at 662 nm (maximum absorption of NO3), the other two at 405 nm (maximum absorption of NO2). The inlet to one of the (662)-cavities is heated in order to thermally decompose N2O5

  16. Continuous Eddy Covariance Measurements of N2O Emissions and Controls from an Intensively Grazed Dairy Farm

    Science.gov (United States)

    Schipper, L. A.; Liang, L. L.; Wall, A.; Campbell, D.

    2017-12-01

    New Zealand's greenhouse gas (GHG) inventory is disproportionally dominated by methane and nitrous oxide which account for 54% of emissions. These GHGs are derived from pastoral agriculture that supports dairying and meat production. To date, most studies on quantifying or mitigating agricultural N2O emissions have used flux chamber measurements. Recent advances in detector technology now means that routine field-to-farm scale measurements of N2O emissions might be possible using the eddy covariance technique. In late 2016, we established an eddy covariance tower that measured N2O emissions from a dairy farm under year-round grazing. An Aerodyne quantum cascade laser (QCL) was used to measure N2O, CH4 and H2O concentration at 10 Hz and housed in a weatherproof and insulated enclosure (0.9 m ´ 1.2 m) and powered by mains power (240 VAC). The enclosure maintained a stable setpoint temperature (30±0.2°C) by using underground cooling pipes, fans and recirculating instrument heat. QCL (true 10 Hz digital) and CSAT3B sonic anemometer high frequency data are aligned using Network Time Protocol and EddyPro covariance maximisation during flux processing. Fluxes generally integrated over about 6-8 ha. Stable summertime baseline N2O fluxes (FN2O) were around 12-24 g N2O-N ha-1 d-1 (0.5-1.0 nmol N2O m-2 s-1). Grazing by cows during dry summer resulted in only modest increases in FN2O to 24-48 g N2O-N ha-1 d-1 (1.0-2.0 nmol N2O m-2 s-1). However, the first rain events after grazing resulted in large, short-lived (1-3 days) FN2O pulses reaching peaks of 144-192 g N2O-N ha-1 d-1 (6-8 nmol N2O m-2 s-1). During these elevated N2O emissions, FN2O displayed a significant diurnal signal, with peak fluxes mid-afternoon which was best explained by variation in shallow soil temperature in summer. In winter (both cooler and wetter) FN2O were not as easily explained on a daily basis but were generally greater than summer. Throughout the year, FN2O was strongly dependent on water filled

  17. Source localization in an ocean waveguide using supervised machine learning.

    Science.gov (United States)

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  18. New metallicity calibration for Seyfert 2 galaxies based on the N2O2 index

    Science.gov (United States)

    Castro, C. S.; Dors, O. L.; Cardaci, M. V.; Hägele, G. F.

    2017-05-01

    We derive a new relation between the metallicity of Seyfert 2 active galactic nuclei (AGNs) and the intensity of the narrow emission-lines ratio N2O2 = log([N II] λ6584/[O II] λ3727). The calibration of this relation was performed by determining the metallicity (Z) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the cloudy code. We find the new Z/Z⊙-N2O2 relation using the obtained metallicity values and the corresponding observational emission-line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that the narrow-line regions of Seyfert 2 galaxies exhibit a large range of metallicities (0.3 ≲ Z/Z⊙ ≲ 2.0), with a median value Z ≈ Z⊙. Regarding the possible existence of correlations between the luminosity L(Hβ), the electron density and the colour excess E(B - V) with the metallicity in this kind of objects, we do not find correlations between them.

  19. Experimental Study of the Swirling Oxidizer Flow in HTPB/N2O Hybrid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Heydari

    2017-01-01

    Full Text Available Effects of swirling oxidizer flow on the performance of a HTPB/N2O Hybrid rocket motor were studied. A hybrid propulsion laboratory has been developed, to characterize internal ballistics characteristics of swirl flow hybrid motors and to define the operating parameters, like fuel regression rate, specific impulse, and characteristics velocity and combustion efficiency. Primitive variables, like pressure, thrust, temperature, and the oxidizer mass flow rate, were logged. A modular motor with 70 mm outer diameter and variable chamber length is designed for experimental analysis. The injector module has four tangential injectors and one axial injector. Liquid nitrous oxide (N2O as an oxidizer is injected at the head of combustion chamber into the motor. The feed system uses pressurized air as the pressurant. Two sets of tests have been performed. Some tests with axial and tangential oxidizer injection and a test with axial oxidizer injection were done. The test results show that the fuel grain regression rate has been improved by applying tangential oxidizer injection at the head of the motor. Besides, it was seen that combustion efficiency of motors with the swirl flow was about 10 percent more than motors with axial flow.

  20. N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios

    Directory of Open Access Journals (Sweden)

    H. Lotze-Campen

    2012-10-01

    Full Text Available Reactive nitrogen (Nr is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.

  1. Studies on nitrogen oxides (NOx and N2O) in pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Lu Yong

    1998-01-01

    This thesis describes the experimental studies of nitrogen oxide (NO, NO 2 , N 2 O) emissions in pressurized fluidized bed combustion (PFBC). In the first part of the thesis the background and the objectives of this study are introduced. The second part summarizes the fundamental knowledge about the formation and destruction of nitrogen oxides in coal combustion, particularly in the conditions of PFBC. The instrumentation of test facilities, measurement and data analysis is described in the third part. Then the most important experimental results follow in the next parts. The forth part describes the results from a PFBC test rig and an empirical modelling for predicting the emissions of NO x and N 2 O. Finally, the fundamental work on coal combustion and fuel nitrogen conversion in a PFBC batch reactor is presented. These studies clearly confirm the potential of PFBC technology in the control nitrogen of oxide emissions. The research in the test rig was concentrated on determining the effects of process parameters on the emissions of nitrogen oxides with different fuels. Another objective was to examine the reduction of nitrogen oxides with the control methods in PFBC conditions, including ammonia injection and air staging combustion for reducing NO, and high temperature operations for reducing N 2 0. The results indicate that pressurized operation suppresses the conversion of fuel-N to nitrogen oxides and favors with employing the reduction methods for further nitrogen oxide reduction, for instance the temperature window of NO reduction with ammonia injection has been found to be widened to even lower temperature range. Maximum reductions of 80-85 % with ammonia injection and 75-80 % with air staging combustion were achieved in the conditions examined. Considerably low emissions of N 2 O ( 2 O control, and thermal decomposition proved to be the laming pathway of N 2 O destruction in PFBC. In the examined pressure range, increasing pressure causes a decrease of NO

  2. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo

    batch incubations with biofilm samples revealed a significant N2O assimilatory activity. Anoxic incubations with N-15 enriched nitrite, nitrate, or ammonium, in presence or absence of acetate revealed the following: a very high conversion of original nitrite or nitrate N to N2O over N2, no stimulatory......Combining partial nitritation with anaerobic ammonium oxidation maybe a cost- and energy-efficient alternative to remove reduced nitrogen from nitrogen rich waste streams. However, increased N2O emissions (upto several % of the incoming N flux) have been observed for reactors performing partial...... nitritation, which is likely due to the stimulatory effect of combined elevated nitrite and ammonium concentrations and reduced oxygen concentrations on nitrous oxide formation by ammonium oxidizing bacteria. Because increased N2O emission may be inherent to partial nitrification systems, we have explored how...

  3. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    Science.gov (United States)

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil.

  4. Modeling the Formation of N2O and NO2 in the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Miller, James A.; Glarborg, Peter

    1996-01-01

    A chemical kinetic model is formulated that satisfactorily predicts the NO removed and the N2O and NO2 produced by the Thermal De-NOx process over a wide range of temperatures and initial oxygen concentrations....

  5. Nitrous oxide (N(2)O) reduces postoperative opioid-induced hyperalgesia after remifentanil-propofol anaesthesia in humans.

    Science.gov (United States)

    Echevarría, G; Elgueta, F; Fierro, C; Bugedo, D; Faba, G; Iñiguez-Cuadra, R; Muñoz, H R; Cortínez, L I

    2011-12-01

    The aim of this study was to test if intraoperative administration of N(2)O during propofol-remifentanil anaesthesia prevented the onset of postoperative opioid-induced hyperalgesia (OIH). Fifty adult ASA I-II patients undergoing elective open septorhinoplasty under general anaesthesia were studied. Anaesthesia was with propofol, adjusted to bispectral index (40-50), and remifentanil (0.30 μg kg(-1) min(-1)). Patients were assigned to one of the two groups: with N(2)O (70%) and without N(2)O (100% oxygen). Mechanical pain thresholds were measured before surgery and 2 and 12-18 h after surgery. Pain measurements were performed on the arm using hand-held von Frey filaments. A non-parametric analysis of variance was used in the von Frey data analysis. P<0.05 was considered statistically significant. Baseline pain thresholds to mechanical stimuli were similar in both groups, with mean values of 69 [95% confidence interval (CI): 50.2, 95.1] g in the group without N(2)O and 71 (95% CI: 45.7, 112.1) g in the group with N(2)O. Postoperative pain scores and cumulative morphine consumption were similar between the groups. The analysis revealed a decrease in the threshold value in both groups. However, post hoc comparisons showed that at 12-18 h after surgery, the decrease in mechanical threshold was greater in the group without N(2)O than the group with N(2)O (post hoc analysis with Bonferroni's correction, P<0.05). Intraoperative 70% N(2)O administration significantly reduced postoperative OIH in patients receiving propofol-remifentanil anaesthesia.

  6. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Carbon (C sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N dynamics. Treatments included biochar addition (CHAR, NO CHAR and amendment (COMPOST, UREA, NO FERT. The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  7. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Science.gov (United States)

    Chen, Jingjing; Kim, Hyunjin; Yoo, Gayoung

    2015-01-01

    Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  8. Stress Corrosion Cracking Behavior of LD10 Aluminum Alloy in UDMH and N2O4 propellant

    Science.gov (United States)

    Zhang, Youhong; Chang, Xinlong; Liu, Wanlei

    2018-03-01

    The LD10 aluminum alloy double cantilever beam specimens were corroded under the conditions of Unsymmetric Uimethyl Hydrazine (UDMH), Dinitrogen Tetroxide (N2O4), and 3.5% NaCl environment. The crack propagation behavior of the aluminum alloy in different corrosion environment was analyzed. The stress corrosion cracking behavior of aluminum alloy in N2O4 is relatively slight and there are not evident stress corrosion phenomenons founded in UDMH.

  9. Small scale soil carbon and moisture gradients in a drained peat bog grassland and their influence on CO2, CH4 and N2O fluxes

    Science.gov (United States)

    Leiber-Sauheitl, K.; Fuß, R.; Freibauer, A.

    2012-04-01

    Due to the UNFCCC report requirements of each country on the emissions of greenhouse gases from key sources the joint research project "Organic Soils" was established in Germany. The project's objective is to improve the data set on greenhousegas emissions from organic soils in Germany. Within 12 German Project Catchments emissions from different types of organic soils, e.g. under different land uses and hydrological conditions, are measured. At the location "Großes Moor" near Gifhorn (Lower Saxony) the effects of small-scale soil organic carbon and groundwater level gradients on the GHG fluxes (CO2, CH4 and N2O) are quantified. The study area is located within a former peat bog altered by drainage and peat cutting, which is currently grassland under extensive agricultural use. The focus of the study is on the acquisition of CO2, CH4 and N2O fluxes on six sites via manual closed chambers. In order to calculate the annual CO2 exchange rate, values are interpolated on a 0.5 hour scale between measurement campaigns. In combination with continually logged meteorological parameters, such as the photosynthetic active radiation as well as air and soil temperatures, we calculate the daily CO2 ecosystem exchange of the different sites. During the 2011 campaign, CO2 was determined as the most important greenhouse gas. The groundwater table was the dominant variable influencing gas emissions. Another important factor was the vegetation composition. In detail, highest CO2 emissions occurred with a water table of 40-50 cm below ground level, temperatures above 10°C and low plant biomass amounts. Due to the more complex formation of N2O by a number of processes, each being promoted by different soil conditions, the measurement of N2O fluxes in the field was complemented by a laboratory experiment. In this, the use of stable isotope tracer techniques enabled us to quantify the contribution of single biochemical pathways to the overall formation of N2O under controlled

  10. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    Science.gov (United States)

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  11. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  12. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  13. Sterilization of E. coli bacterium in a flowing N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Villeger, S; Cousty, S; Ricard, A; Sixou, M

    2003-01-01

    Effective destruction of Escherichia coli (E. coli) bacteria has been obtained in a flowing N 2 -O 2 microwave post-discharge reactor. The sterilizing agents are the O atoms and the UV emissions of NOβ which are produced by N and O atoms recombination in the reactor. In the following plasma conditions: pressure 5 Torr, flow rate 1 L n min -1 , microwave power of 100 W in a quartz tube of 5 mm, an O atom density of 2.5x10 15 cm -3 is measured by NO titration in the post-discharge reactor with UV emission in a N 2 -(5%)O 2 gas mixture. Full destruction of 10 13 cfu ml -1 E. coli is observed after a treatment time of 25 min. (rapid communication)

  14. Mitigating CH4 and N2O emissions from intensive rice production systems in northern Vietnam

    DEFF Research Database (Denmark)

    Tariq, Azeem; Vu, Quynh Duong; Jensen, Lars Stoumann

    2017-01-01

    -growing seasons in northern Vietnam, to evaluate the effectiveness of drainage patterns on methane (CH4) and nitrous oxide (N2O) emissions under farmers’ variable conditions. Two improved drainage practices (pre-planting plus midseason [PM] drainage and early-season plus midseason [EM] drainage) were compared...... with local practices of water management (midseason drainage [M] and conventional continuous flooding (control) [C]) with full residue [F] and reduced residue [R] (local practice of residue management) incorporation. The GHG mitigation potential of water regimes was tested in two water management systems...... (efficient field water management [EWM] system and inefficient field water management [IWM] system). In EWM system, EM resulted an average 14% and 55% reduction in CH4 emissions compared to M with R and F respectively. The EM lowered the CH4 emissions by 67% and 43% compared to C in the EWM and IWM...

  15. Catalytic activity of bed materials from industrial CFB boilers for the decomposition of N2O

    International Nuclear Information System (INIS)

    Barisic, V.; Klingstedt, F.; Kilpinen, P.; Hupa, M.; Naydenov, A.; Stefanov, P.

    2005-01-01

    The correlation between the catalytic activity towards N 2 O decomposition and fuel type was studied for the bed materials sampled from the bottom bed of two industrial CFB boilers, a 12MW th and a 550MW th , burning biomass fuels and wastes, alone or as a mixture. It was found that the elemental composition of the surface of the bed material particles changed according to the composition of the ash from the parent fuel. The measured catalytic activity of the bed material samples increased with the amount of the catalytically active oxides (CaO, MgO, Fe 2 O 3 , Al 2 O 3 ). In the case of limestone addition, the activity of the bed material was influenced by both the elemental composition of the fuel, and the ratio between lime and sulfated lime

  16. Photochemical oxidation of americium(3) in bicarbonate-carbonate solutions saturated with N2O

    International Nuclear Information System (INIS)

    Shilov, V.P.; Yusov, A.B.

    1993-01-01

    The influence of UV radiation on 1.1x10 -4 mol/l Am(3) in bicarbonate-carbonate solutions of sodium and potassium saturated with N 2 O was studied by spectrographic method. In all the cases Am(4) was formed as a primary product. Initial rate of Am(4) accumulation remains stable in solutions up to HCO 3 - or HCO 3 - +CO 3 2- concentration of approximately 1.5 mol/l, but it decreases in case of their higher concentration. In solutions with pH 8.4-10 Am(4) disproportionates at a slow rate and the method suggested permits attaining practically 100% yield of it

  17. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source

    CSIR Research Space (South Africa)

    Saito, MA

    2013-09-01

    Full Text Available Low levels of the micronutrient iron limit primary production and nitrogen fixation in large areas of the global ocean. The location and magnitude of oceanic iron sources remain uncertain, however, owing to a scarcity of data, particularly...

  18. Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N(2)O) by earthworms obtained from garden and forest soils.

    Science.gov (United States)

    Matthies, C; Griesshammer, A; Schmittroth, M; Drake, H L

    1999-08-01

    Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N(2)O)-emitting garden soils emitted 0.14 to 0.87 nmol of N(2)O h(-1) g (fresh weight)(-1) under in vivo conditions. L. rubellus obtained from N(2)O-emitting forest soil also emitted N(2)O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878-1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N(2)O; however, such worms emitted N(2)O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N(2)O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N(2)O emission by earthworms accounted for approximately 33% of the N(2)O emitted by garden soils. In vivo emission of N(2)O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N(2)O. In the presence of nitrate, acetylene increased the N(2)O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N(2)O. In vivo emission of N(2)O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N(2)O emission of dissected earthworm gut sections were substantially higher than the rates of N(2)O emission of dissected worms lacking gut sections, indicating that N(2)O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N(2)O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N(2)O-emitting earthworms produced N(2)O only under anoxic conditions. Collectively, these results indicate that gut

  19. Characterization and variability of the main oceanic sources of moisture

    Science.gov (United States)

    Castillo Rodriguez, R.; Nieto, R.; Gimeno, L.; Drumond, A.

    2012-04-01

    Transport of water vapor in the atmosphere from regions of net evaporation to regions of net precipitation is an important part of the hydrological cycle. The aim of this study is to track variations of atmospheric moisture along 10-days trajectories of air masses to identify where continental regions are affected by precipitation originating from specific oceanic regions. The proceeding was based on the method developed by Stohl and James 2004, 2005, which used the Lagrangian particle dispersion model FLEXPART v8.0 and reanalysis data ERA-40 from the European Centre for Medium-Range Weather Forecast (ECMWF). These source regions, selecting according to the largest values of divergence of the vertically integrated moisture flux are: India, North and South Pacific, North and South Atlantic oceans, Mexico-Caribbean, the Mediterranean, the Arabian, the Coral and the Red seas, as well as the Agulhas (in the waters surrounding South Africa) and the Zanzibar Current regions. And they were defined based on the threshold of 750 mm/yr. We investigated the moisture sinks associated with each one of these evaporative sources for a period of 21 years (1980-2000) in a seasonal scale using correlations and the statistical mean. In addition, we characterized the influence of the El Niño-Southern Oscillation over the transport of moisture from the source regions selected with the composites technique from the month of june to the month of may over the years 1984-1985, 1988-1989, 1995-1996, 1998-1999, 1999-2000 in the Niña phase and 1982-1983, 1986-1987, 1991-1992, 1994-1995, 1997-1998 in the Niño phase.

  20. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  1. Observational Insights into N2O5 Heterogeneous Chemistry: Influencing Factors and Contribution to Wintertime Air Pollution

    Science.gov (United States)

    McDuffie, E. E.; Fibiger, D. L.; Womack, C.; Dube, W. P.; Lopez-Hilfiker, F.; Goldberger, L.; Thornton, J. A.; Shah, V.; Jaegle, L.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano Jost, P.; Jimenez, J. L.; Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    Chemical mechanisms that underlie wintertime air pollution, including tropospheric ozone and aerosol nitrate, are poorly characterized. Due to colder temperatures and fewer hours of solar radiation, nocturnal heterogeneous uptake of N2O5 plays a relatively larger role during wintertime in controlling the oxidation of NOx (=NO+NO2) and its influence on ozone and soluble nitrate. After uptake to aerosol, N2O5 can act as both a nocturnal NOx reservoir and sink depending on the partitioning between its nitric acid and photo labile, ClNO2 reaction products. In addition, N2O5 itself can act as a NOx reservoir if the aerosol uptake coefficient is small. As a result, the nocturnal fate of N2O5 dictates the amount of NOx in an air parcel and the subsequent formation of aerosol nitrate and following-day ozone. Models of winter air pollution therefore require accurate parameterization of the N2O5 uptake coefficient, as well as factors that control its magnitude and N2O5 product partitioning. There are currently only a small number of ambient N2O5 and ClNO2 observations during the winter season concurrent with measurements of relevant variables such as aerosol size distributions and composition. The Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 10 nighttime research flights with the NCAR C-130 over the eastern U.S. during February and March, 2015. The more recent Utah Wintertime Fine Particulate Study (UWFPS) conducted over 20 research flights with the NOAA twin otter aircraft during January-February 2017 in three mountain basins near and including Salt Lake City, Utah. The two campaigns were similarly instrumented and have provided the first aircraft observations of N2O5, ClNO2, and aerosol composition in the wintertime boundary layer in these urban-influenced regions. Analysis of heterogeneous chemistry under a wide range of real environmental conditions provides insight into the factors controlling the N2O5 uptake coefficient

  2. Assessment of various practices of the mitigation of N2O emissions from the arable soils of Poland

    Directory of Open Access Journals (Sweden)

    Sosulski Tomasz

    2017-03-01

    Full Text Available This review assesses the adaptability and effectiveness of the basic practices to mitigate the N2O emissions from the arable land in the climate, soil and agricultural conditions of Poland. We have analyzed the decrease in the nitrogen-based fertilization, selection of the fertilizer nitrogen forms, use of biological inhibitors of nitrogen transformation in the soil, control of the acidic soil reaction, reduction in the natural fertilizers use and afforestation of the low productive soils. The challenge evaluating the effectiveness of mitigation practices lies in the inadequacy of the national data on N2O soil emissions in particular agrotechnical conditions. In Poland, circumstances that favor intensive N2O emissions from the arable soils occur uncommonly, as shows the analysis of the literature reporting on the country climate, soil and agricultural conditions alongside the N2O emissions from soils under various cultivation conditions. Consequently, the effectiveness of mitigation practices that relies on an extensification of plant production may be insufficient. It can be assumed that, at the doses of nitrogen fitting the nutritional needs of crops, the soil N2O emissions are low and do not meaningfully differ from the emissions from untreated soils (literature data point to limited N2O emission from arable soils treated with N doses of ≤150-200 kg N·ha-1. The effectiveness of the nitrogen fertilization reduction as an N2O emissions mitigation practice is restricted to intensive farming. A universal registry of the mineral and natural fertilization use could help identify the agricultural holdings with a potential for high N2O emission and foster a targeted application of mitigation practices. It is suggested that normalization and maintenance of the optimum (i.e. close to neutral soil pH should become a more common practice of N2O emissions mitigation in Poland in view of the extent of arable soils acidification and the literature data

  3. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands

    NARCIS (Netherlands)

    Mosier, A.; Kroeze, C.

    2000-01-01

    In most soils, biogenic formation of N2O is enhanced by an increase in available mineral N through increased nitrification and denitrification. N-fertilization, therefore, directly results in additional N2O formation. In addition, these inputs may lead to indirect formation of N2O after N leaching

  4. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    International Nuclear Information System (INIS)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-01-01

    Highlights: • The reduction of N 2 O by CO molecule is investigated over Al- and Si-decorated graphene oxides (Al-/Si-GO). • The N 2 O decomposition process can take place with a negligible activation energy over both surfaces. • Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions. - Abstract: The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Al−O or Si−O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N 2 O by CO molecule. It is found that the adsorption and decomposition of N 2 O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (E ads ) and charge transfer (q CT ) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small E ads and q CT values. Therefore, at the presence of N 2 O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N 2 O molecule. Our results indicate that the N 2 O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N 2 molecule can be easily released from the surface. Then, the activated oxygen atom (O ads ) which remains over the surface reacts with the CO molecule to form the CO 2 molecule via the reaction O ads + CO → CO 2 . Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions.

  5. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    Science.gov (United States)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  6. Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions

    Science.gov (United States)

    Yang, P.; Bastviken, D.; Lai, D. Y. F.; Jin, B. S.; Mou, X. J.; Tong, C.; Yao, Y. C.

    2017-12-01

    In this study, we compared the CH4 and N2O fluxes from a tidal brackish Cyperus malaccensis marsh ecosystem and nearby shrimp ponds, converted from C. malaccensis marsh in the last 3-4 years, in the Min River estuary of southeast China over the aquaculture period of the year. Significant differences in CH4 and N2O fluxes were observed in space (between brackish marsh and shrimp ponds) and in time (between sampling occasions that were distributed over the aquaculture period). CH4 fluxes from the shrimp ponds were on an average 10-fold higher than from the brackish marsh. N2O emissions, on the other hand, were lower from the shrimp pond (25% of the emissions from the brackish marsh). Accessory data indicates that these patterns were primarily linked to water level variability and temperature (all fluxes), sediment porewater sulfate concentrations (CH4 flux) and total nitrogen concentrations (N2O flux). Our research demonstrates that the coastal marsh ecosystem converted to aquaculture ponds considerably alter emissions of CH4 and N2O and provides input to the global discussion on how to account for emissions from various types of flooded land in greenhouse gas inventories.

  7. Effect of N fertilization and tillage on nitrous oxide (N2O) loss from soil under wheat production

    Science.gov (United States)

    Bansal, Sheel; Aberle, Ezra; Teboh, Jasper; Yuja, Szilvia; Liebig, Mark; Meier, Jacob; Boyd, Alec

    2017-01-01

    Nitrous oxide (N2O-N) is one of the most important gases in the atmosphere because it is 300 times more powerful than carbon dioxide in its ability to trap heat, and is a key chemical agent of ozone depletion. The amount of N2O-N emitted from agricultural fields can be quite high, depending on the complex interplay between N fertility and residue management, plant N uptake, microbial processes, environmental conditions, and wet-up and dry-down events. High N fertilizer rates generally increase yields, but may disproportionately increase N2O-N losses due to prolonged residence time in soil when not used by the crop, and incomplete decomposition of excess N-compounds by microbes. Tillage could also affect N2O-N losses through changes in soil moisture content. Though nitrogen monoxide (NO) is one form of N lost from the soil, especially under conventional tillage, this study objective was to quantify N2O loss in wheat fields from applied urea on soil under no-till (NT) versus incorporated urea under conventional till (CT).

  8. Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2016-12-01

    Full Text Available Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR in a stoker boiler (WR 25 type. Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.

  9. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Accelerated Rates of Nitrogen Cycling and N2O Production in Salt Marsh Sediments due to Long-Term Fertilization

    Science.gov (United States)

    Peng, X.; Ji, Q.; Angell, J.; Kearns, P.; Bowen, J. L.; Ward, B. B.

    2014-12-01

    Intensified sedimentary production of nitrous oxide (N2O), one of the most potent greenhouse gases, is one of the many possible environmental consequences of elevated nitrogen (N) loading into estuarine ecosystems. This study investigates the response to over 40 years of fertilization of nitrogen removal processes in the sediments of the Great Sippewissett Marsh in Falmouth, MA. Sediment slurries were incubated (1.5 hr) with trace amounts (fertilized sediments (0.89 nmol hr-1 g-1 wet weight) was 30-fold higher than in unfertilized sediments. The ratio of N2O to N2 production was also significantly higher in fertilized sediments (2.9%) than in unfertilized sediments (1.2%). This highlights the disproportionally large effect of long-term fertilization on N2O production in salt marsh sediments. The reduced oxygen level and higher ammonium concentrations in situ probably contributed to the significant rise in N2O production as a result of long-term fertilization. When detected, anammox and coupled nitrification-denitrification accounted for 10% and 14% of the total N2 production in fertilized sediments (30.5 nmol hr-1 g-1 wet weight), respectively, whereas neither was detected in unfertilized sediments. Thus these experiments indicate that N loading has important effects on multiple N cycle processes that result in N loss and N2O production.

  11. Evaluation of CH4 and N2O Budget of Natural Ecosystems and Croplands in Asia with a Process-based Model

    Science.gov (United States)

    Ito, A.

    2017-12-01

    Terrestrial ecosystems are important sink of carbon dioxide (CO2) but significant sources of other greenhouse gases such as methane (CH4) and nitrous oxide (N2O). To resolve the role of terrestrial biosphere in the climate system, we need to quantify total greenhouse gas budget with an adequate accuracy. In addition to top-down evaluation on the basis of atmospheric measurements, model-based approach is required for integration and up-scaling of filed data and for prediction under changing environment and different management practices. Since the early 2000s, we have developed a process-based model of terrestrial biogeochemical cycles focusing on atmosphere-ecosystem exchange of trace gases: Vegetation Integrated SImulator for Trace gases (VISIT). The model includes simple and comprehensive schemes of carbon and nitrogen cycles in terrestrial ecosystems, allowing us to capture dynamic nature of greenhouse gas budget. Beginning from natural ecosystems such as temperate and tropical forests, the models is now applicable to croplands by including agricultural practices such as planting, harvest, and fertilizer input. Global simulation results have been published from several papers, but model validation and benchmarking using up-to-date observations are remained for works. The model is now applied to several practical issues such as evaluation of N2O emission from bio-fuel croplands, which are expected to accomplish the mitigation target of the Paris Agreement. We also show several topics about basic model development such as revised CH4 emission affected by dynamic water-table and refined N2O emission from nitrification.

  12. The overwhelming role of soil N2O emissions in net greenhouse gas balance of the U.S. Corn Belt: Modeling estimate of nitrogen fertilizer impacts

    Science.gov (United States)

    Lu, C.; Yu, Z.; Cao, P.; Tian, H.

    2017-12-01

    The Corn Belt of the Midwestern U.S. is one of the most productive systems in the world during the growing season, with gross primary production exceeding even that of the Amazon forests. Fueled by increased commodity prices in the late 2000s, the area in corn and soybean in the U.S. has reached record highs with most of the newly added cropland converted from grasslands, wetland, and Conservation Reserve Program land. Intensive management practices, such as fertilizer use, irrigation, tillage, residue removal etc., have been implemented following cropland expansion to maximize crop yield from converted marginal land or from more monoculture production. The Corn Belt has been recognized as one of the major contributors to carbon sinks in the U.S., partially because crop harvest and residue removal reduced soil respiration. In the meanwhile, 75% of the total N2O emission in the U.S. comes from agriculture, among which the Corn Belt is the major source due to nitrogen management, and has large potential of climate mitigation. However, it remains far from certain how intensive cropland expansion and management practices in this region have affected soil carbon accumulation and non-CO2 GHG emissions. In this study, by using a process-based land ecosystem model, Dynamic Land Ecosystem Model (DLEM), we investigated the impacts of nitrogen fertilizer use on soil carbon accumulation and direct N2O emissions across the U.S. Corn Belt. Surprisingly, we found N fertilizer-induced SOC storage continued shrinking after the 1980s while N2O emissions remains relatively constant. The N fertilizer use led to a net greenhouse gas release since 2000 in both the western and eastern Corn Belt, contributing to climate warming. This study implies an increasing importance of nitrogen management for both agricultural production and climate mitigation.

  13. Populasi dan aktivitas denitrifikasi serta emisi gas N2 O pada lahan pertanian organik, pertanian intensif, dan hutan

    Directory of Open Access Journals (Sweden)

    Dwi Agustiyani

    2012-10-01

    Full Text Available This research investigate the population and potentials denitrification activity from three different soils, organically farmed soil, intensive farmed soil and forest soil. Our objectives were to explore spatial gradients in denitrifier populations, examine whether populations density and its potential activity was related to soil chemical properties (C and N content, and determine the potential emission of gas N2O. Results indicated biological functional differences between these three different soil ecosystems. Forest soil had the highest population density of denitrifying bacteria and also had significant potential denitrifying activities. The highest potentials denitrifying activity in the soil affected to the lowest emission of N2O gas. The lowest population and potential denitrifying activity was measured in the intensive farmed soil. Those conditions might be promoted the potentials emission of N2O.

  14. Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways

    DEFF Research Database (Denmark)

    Quan, Nguyen Van; Wu, Di; Kong, Xianwang

    2017-01-01

    decomposition. Here, we applied O2 planar optode and N2O isotopomer techniques to investigate the linkage between soil O2 dynamics and N2O production pathways in soils treated with cattle slurry (treatment CS) and tested the effect of the nitrification inhibitor 3,4-dimethyl pyrazole phosphate, DMPP (treatment......Application of cattle slurry to grassland soil has environmental impacts such as ammonia volatilization and greenhouse gas emissions. The extent, however, depends on application method and soil conditions through their effects on infiltration and oxygen (O2) availability during subsequent...... CSD). Twodimensional planar optode images of soil O2 over time revealed that O2 depletion ultimately extended to 1.5 cm depth in CS, as opposed to 1.0 cm in CSD. The 15N site preference (SP) and d18O of emitted N2O varied between 11-25‰and 35e47‰, respectively, indicating a mixture of production...

  15. Nitrogen loss from high N-input vegetable fields - a) direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4+, NO3-) in soils

    Science.gov (United States)

    Pfab, H.; Ruser, R.; Palmer, I.; Fiedler, S.

    2009-04-01

    Nitrous oxide is a climate relevant trace gas. It contributes 7.9 % to the total anthropogenic greenhouse gas emission and it is also involved in stratospheric ozone depletion. Approximately 85 % of the anthropogenic N2O emissions result from agricultural activities, more than 50 % are produced during microbial N-turnover processes in soils. Especially soils with high N-input (N-fertilizer and high amount of N in plant residues) like vegetable cropped soils are assumed to cause high N2O losses. The aims of the study presented were (i) to quantify the N2O loss from a vegetable field (lettuce-cauliflower crop rotation), (ii) to calculate an emission factor for the study site in Southwest Germany and to compare this factor with the default value provided by the IPCC (2006) and (iii) to test the emission reduction potential (Ammonium Sulfate Nitrate fertilizer, ASN either by reduced N-fertilization) in comparison with common N doses used for good agricultural practice or by the use of a nitrification inhibitor (DMPP), a banded N-application (lettuce) or a depot fertilization measure (pseudo-CULTAN in order to suppress nitrification). N2O fluxes determined with the closed chamber method were highly variable in time with strongly increased flux rates after N-fertilization in combination with rainfall or irrigation measures and after the incorporation of cauliflower crop residues. Using the mean soil nitrate contents of the top soil of our investigated treatments (0-25 cm depth), we could explain approximately 60 % of the variability of the cumulative N2O losses during the vegetation period of lettuce and cauliflower. The cumulative N2O emissions ranged between 0,99 kg N2O-N ha-1 from the unfertilized control plots (vegetation period) and 6,81 kg N2O-N ha-1 from the plots with the highest N-dose. Based on the guidelines of the IPCC (2006), we calculated an emission factor around 0,9 % for the cropping season. This value is in good agreement with the default value of the

  16. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    Science.gov (United States)

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  17. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    Science.gov (United States)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-11-01

    The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Alsbnd O or Sisbnd O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N2O by CO molecule. It is found that the adsorption and decomposition of N2O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (Eads) and charge transfer (qCT) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small Eads and qCT values. Therefore, at the presence of N2O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N2O molecule. Our results indicate that the N2O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N2 molecule can be easily released from the surface. Then, the activated oxygen atom (Oads) which remains over the surface reacts with the CO molecule to form the CO2 molecule via the reaction Oads + CO → CO2. Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N2O molecule at ambient conditions.

  18. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems.

    Science.gov (United States)

    Subbarao, G V; Rao, I M; Nakahara, K; Sahrawat, K L; Ando, Y; Kawashima, T

    2013-06-01

    Agriculture and livestock production systems are two major emitters of greenhouse gases. Methane with a GWP (global warming potential) of 21, and nitrous oxide (N2O) with a GWP of 300, are largely emitted from animal production agriculture, where livestock production is based on pasture and feed grains. The principal biological processes involved in N2O emissions are nitrification and denitrification. Biological nitrification inhibition (BNI) is the natural ability of certain plant species to release nitrification inhibitors from their roots that suppress nitrifier activity, thus reducing soil nitrification and N2O emission. Recent methodological developments (e.g. bioluminescence assay to detect BNIs in plant root systems) have led to significant advances in our ability to quantify and characterize the BNI function. Synthesis and release of BNIs from plants is a highly regulated process triggered by the presence of NH4 + in the rhizosphere, which results in the inhibitor being released precisely where the majority of the soil-nitrifier population resides. Among the tropical pasture grasses, the BNI function is strongest (i.e. BNI capacity) in Brachiaria sp. Some feed-grain crops such as sorghum also have significant BNI capacity present in their root systems. The chemical identity of some of these BNIs has now been established, and their mode of inhibitory action on Nitrosomonas has been characterized. The ability of the BNI function in Brachiaria pastures to suppress N2O emissions and soil nitrification potential has been demonstrated; however, its potential role in controlling N2O emissions in agro-pastoral systems is under investigation. Here we present the current status of our understanding on how the BNI functions in Brachiaria pastures and feed-grain crops such as sorghum can be exploited both genetically and, from a production system's perspective, to develop low-nitrifying and low N2O-emitting production systems that would be economically profitable and

  19. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  20. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  1. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  2. Fourier transform infrared studies of the N2-O2 binary system

    International Nuclear Information System (INIS)

    Minenko, M.; Jodi, H.-J.

    2006-01-01

    Solid solutions (N 2 ) x (O 2 ) 1-x have been investigated by infrared absorption measurements mainly in the O 2 and N 2 stretching regions, between 60-10 K, completing former similar studies by Raman scattering. We produced thermodynamically stable samples by a careful thermal treatment, followed by cooling/heating cycles over weeks, during which we took spectra. From fingerprints in the infrared spectra we deduce phase-transition and solubility lines and suggest a refined, improved T-x % phase diagram in respect to the inconsistencies between those in the literature. The spectra of N 2 -O 2 mixtures are pretty complex, but by referring to known spectra of the pure systems N 2 or O 2 we were able to assign and interpret broad (∼100 cm - 1 ) phonon side bands to fundamentals and an electronic transition (O 2 ), depending on actual temperature and concentration. Narrow features in the spectra ( -1 ) were attributed to the vibron DOS of N 2 or O 2 , whose bandwidth, band shape, and intensity are different and characteristic for each phase. Differences between pure and mixed systems are pointed out. The matrix isolation technique (2 ppm of CO) was used to probe our mixture

  3. Modeling of NO and N2O emissions from biomass circulating fluidized bed combustors

    International Nuclear Information System (INIS)

    Liu, H.; Gibbs, B.M.

    2002-01-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N 2 O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH 3 ), hydrogen cyanide (HCN) and nitrogen (N 2 ). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH 3 and the the homogeneous reaction of NH 3 with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs

  4. PEMBUATAN AYAKAN MOLEKULER BERBASIS KARBON UNTUK PEMISAHAN N2/O2 DARI PIROLISIS RESIN PHENOL FORMALDEHYDE

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2012-02-01

    Full Text Available Proses pemisahan campuran gas dengan menggunakan carbon molecular sieve (CMS atau ayakan molekuler berbasis karbon merupakan teknologi proses pemisahan yang mulai banyak diterapkan di dalam industri kimia. Dalam penelitian ini, CMS untuk pemisahan N2 dari udara dibuat dari pirolisis bahan polimer sintetis yaitu resin phenol formaldehyde (PF. Prekursor yang berupa resin tersebut dipanaskan dalam retort pada suhu 400-950oC selama 0,5-3 jam yang disertai dengan pengaliran gas N2 ke dalam retort dengan laju 100 mL/jam. Dengan proses pirolisis, atom-atom non-karbon penyusun bahan polimer akan terurai dan menguap sehingga hanya menyisakan arang karbon dengan struktur kerangka atom karbon yang sesuai dengan struktur kerangka dasar rantai polimer. Kemudian karbon hasil prolisis tersebut dipanaskan lebih lanjut pada suhu 750-950oC sambil dialiri gas CO2 selama 1 jam. Pada kondisi ini karbon akan mengalami proses gasifikasi parsial sehingga terbentuk karbon dengan porositas tinggi. Melalui rekayasa proses polimerisasi dan karbonisasi dihasilkan material karbon berpori yang mayoritas porinya adalah mikropori dengan ukuran pori efektif < 2 nm yang dapat dikategorikan sebagai CMS yang dapat dipergunakan untuk memisahkan campuran gas N2-O2.  Pada penelitian ini dihasilkan CMS dengan selektifitas kinetis DN2/DO2 sekitar 3.

  5. N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil

    Directory of Open Access Journals (Sweden)

    P. Rosenkranz

    2006-01-01

    Full Text Available Trace gas exchange of N2O, NO/NO2 and CH4 between soil and the atmosphere was measured in a typical Mediterranean pine (Pinus pinaster forest during two intensive field campaigns in spring and autumn 2003. Furthermore, gross and net turnover rates of N mineralization and nitrification as well as soil profiles of N2O and CH4 concentrations were determined. For both seasons a weak but significant N2O uptake from the atmosphere into the soil was observed. During the unusually dry and hot spring mean N2O uptake was −4.32 µg N m-2 h-1, whereas during the wet and mild autumn mean N2O uptake was −7.85 µg N m-2 h-1. The observed N2O uptake into the soil was linked to the very low availability of inorganic nitrogen at the study site. Organic layer gross N mineralization decreased from 5.06 mg N kg-1 SDW d-1 in springtime to 2.68 mg N kg-1 SDW d-1 in autumn. Mean NO emission rates were significantly higher in springtime (9.94 µg N m-2 h-1 than in autumn (1.43 µg N m-2 h-1. A significant positive correlation between NO emission rates and gross N mineralization as well as nitrification rates was found. The negative correlation between NO emissions and soil moisture was explained with a stimulation of aerobic NO uptake under N limiting conditions. Since NO2 deposition was continuously higher than NO emission rates the examined forest soil functioned as a net NOx sink. Observed mean net CH4 uptake rates were in spring significantly higher (−73.34 µg C m-2 h-1 than in autumn (−59.67 µg C m-2 h-1. Changes in CH4 uptake rates were strongly negatively correlated with changes in soil moisture. The N2O and CH4 concentrations in different soil depths revealed the organic layer and the upper 0.1 m of mineral soil as the most important soil horizons for N2O and CH4 consumption.

  6. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    Science.gov (United States)

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  7. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions.

    Directory of Open Access Journals (Sweden)

    Daniel R H Graf

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and the predominant ozone depleting substance. The only enzyme known to reduce N2O is the nitrous oxide reductase, encoded by the nosZ gene, which is present among bacteria and archaea capable of either complete denitrification or only N2O reduction to di-nitrogen gas. To determine whether the occurrence of nosZ, being a proxy for the trait N2O reduction, differed among taxonomic groups, preferred habitats or organisms having either NirK or NirS nitrite reductases encoded by the nirK and nirS genes, respectively, 652 microbial genomes across 18 phyla were compared. Furthermore, the association of different co-occurrence patterns with enzymes reducing nitric oxide to N2O encoded by nor genes was examined. We observed that co-occurrence patterns of denitrification genes were not randomly distributed across taxa, as specific patterns were found to be more dominant or absent than expected within different taxonomic groups. The nosZ gene had a significantly higher frequency of co-occurrence with nirS than with nirK and the presence or absence of a nor gene largely explained this pattern, as nirS almost always co-occurred with nor. This suggests that nirS type denitrifiers are more likely to be capable of complete denitrification and thus contribute less to N2O emissions than nirK type denitrifiers under favorable environmental conditions. Comparative phylogenetic analysis indicated a greater degree of shared evolutionary history between nosZ and nirS. However 30% of the organisms with nosZ did not possess either nir gene, with several of these also lacking nor, suggesting a potentially important role in N2O reduction. Co-occurrence patterns were also non-randomly distributed amongst preferred habitat categories, with several habitats showing significant differences in the frequencies of nirS and nirK type denitrifiers. These results demonstrate that the denitrification pathway is highly modular, thus

  8. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye.

    Science.gov (United States)

    Gillette, K; Malone, R W; Kaspar, T C; Ma, L; Parkin, T B; Jaynes, D B; Fang, Q X; Hatfield, J L; Feyereisen, G W; Kersebaum, K C

    2018-03-15

    Anthropogenic perturbation of the global nitrogen cycle and its effects on the environment such as hypoxia in coastal regions and increased N 2 O emissions is of increasing, multi-disciplinary, worldwide concern, and agricultural production is a major contributor. Only limited studies, however, have simultaneously investigated NO 3 - losses to subsurface drain flow and N 2 O emissions under corn-soybean production. We used the Root Zone Water Quality Model (RZWQM) to evaluate NO 3 - losses to drain flow and N 2 O emissions in a corn-soybean system with a winter rye cover crop (CC) in central Iowa over a nine year period. The observed and simulated average drain flow N concentration reductions from CC were 60% and 54% compared to the no cover crop system (NCC). Average annual April through October cumulative observed and simulated N 2 O emissions (2004-2010) were 6.7 and 6.0kgN 2 O-Nha -1 yr -1 for NCC, and 6.2 and 7.2kgNha -1 for CC. In contrast to previous research, monthly N 2 O emissions were generally greatest when N loss to leaching were greatest, mostly because relatively high rainfall occurred during the months fertilizer was applied. N 2 O emission factors of 0.032 and 0.041 were estimated for NCC and CC using the tested model, which are similar to field results in the region. A local sensitivity analysis suggests that lower soil field capacity affects RZWQM simulations, which includes increased drain flow nitrate concentrations, increased N mineralization, and reduced soil water content. The results suggest that 1) RZWQM is a promising tool to estimate N 2 O emissions from subsurface drained corn-soybean rotations and to estimate the relative effects of a winter rye cover crop over a nine year period on nitrate loss to drain flow and 2) soil field capacity is an important parameter to model N mineralization and N loss to drain flow. Published by Elsevier B.V.

  9. Hot moments of N2O transformation and emission in tropical soils from the Pantanal and the Amazon (Brazil)

    DEFF Research Database (Denmark)

    Liengaard, Lars; Figueiredo, Viviane; Markfoged, Rikke

    2014-01-01

    Tropical wetland soils emit large amounts of nitrous oxide (N2O), especially following wetting of drained soil. We investigated seasonally drained wetland soils from the Pantanal and the Amazon, both with a natural high nitrate content and low pH. Here we report the effect of wetting on the produ......Tropical wetland soils emit large amounts of nitrous oxide (N2O), especially following wetting of drained soil. We investigated seasonally drained wetland soils from the Pantanal and the Amazon, both with a natural high nitrate content and low pH. Here we report the effect of wetting...

  10. Problems of creating fuel elements for fast gas-cooled reactors working on N2O4-dissociating coolant

    International Nuclear Information System (INIS)

    Nesterenko, V.B.; Zelensky, V.F.; Kolykhan, L.I.; Karpenko, G.V.; Krasnorutsky, V.S.; Isakov, V.P.; Ashikhmin, V.P.; Permyakov, L.N.

    1985-01-01

    A variant of fast gas-cooled reactors is one using dissociating N 2 O 4 nitrogen tetroxide as a coolant. This type of reactors is promising because of great thermal effects of dissociation reactions while heating and recombination while cooling; small latent heat of evaporation; high heat transfer coefficient owing to additional heat transfer in a chemical reaction; high N 2 O 4 density in a gas state at operation parameters. The mentioned advantages give possibility to create a small turbine, heat exchange apparatus and to get high heat production in the active zone. All this opens new ways to increase power plants effectiveness

  11. Measurements of HNO3 and N2O5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign

    Science.gov (United States)

    Zheng, J.; Zhang, R.; Fortner, E. C.; Volkamer, R. M.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gaeggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

    2008-11-01

    An ion drift-chemical ionization mass spectrometer (ID-CIMS) was deployed in Mexico City between 7 and 31 March to measure gas-phase nitric acid (HNO3) and dinitrogen pentoxide (N2O5 during the Mexico City Metropolitan Area (MCMA)-2006 field campaign. The observation site was located at the Instituto Mexicano del Petróleo in the northern part of Mexico City urban area with major emissions of pollutants from residential, vehicular and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and early morning. The concentration of HNO3 increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and then declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good agreement between the two HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with submicron-sized aerosol nitrate, suggesting that the gas-particle partitioning process was a major factor in determining the gaseous HNO3 concentration. Losses by irreversible reactions with mineral dust and via dry deposition also could be important at this site. Most of the times during the MCMA 2006 field campaign, N2O5 was found to be below the detection limit (about 30 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio at the surface (>100 ppb) during the night. An exception occurred on 26 March 2006, when about 40 ppt N2O5 was observed during the late afternoon and early evening hours under cloudy conditions before the build-up of NO at the surface site. The results revealed that during the MCMA-2006 field campaign HNO3 was primarily produced from the reaction of OH with NO2 and regulated by gas/particle transfer and dry deposition. The production of HNO3 from N2O5 hydrolysis during the nighttime was small because of

  12. Modeling the CO2 and N2O Emissions From Stover Removal for Biofuel Production From Continuous Corn Production in Iowa

    Science.gov (United States)

    Paustian, K.; Killian, K.; Brenner, J.

    2003-12-01

    and become a net source of CO2. Estimates of N2O emissions from soil ranged from 1.4 to 2.8 kg N2O-N ha-1 yr-1 across all counties, tillage systems and residue removal rates. The magnitude of these values is consistent with direct measurements of N2O flux.

  13. Quantum Cascade Laser Measurements of Line Intensities, N2-, O2- and Ar- Collisional Broadening Coefficients of N2O in the  3 Band Near 4.5  m

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-04-19

    This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 μm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190-2202 cm-1 spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous experimental data available in the literature: the discrepancies being less than 4% for most of the probed transitions. The spectroscopic data reported here are very useful for the design of sensors used to monitor the abundance of N2O in earth\\'s atmosphere. © The Author(s) 2016.

  14. Quantum Cascade Laser Measurements of Line Intensities, N2-, O2- and Ar- Collisional Broadening Coefficients of N2O in the  3 Band Near 4.5  m

    KAUST Repository

    Es-sebbar, Et-touhami; Deli, Meriem; Farooq, Aamir

    2016-01-01

    This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 μm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190-2202 cm-1 spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous experimental data available in the literature: the discrepancies being less than 4% for most of the probed transitions. The spectroscopic data reported here are very useful for the design of sensors used to monitor the abundance of N2O in earth's atmosphere. © The Author(s) 2016.

  15. Molecular approaches to understand the regulation of N2O emission from denitrifying bacteria - model strains and soil communities (Invited)

    Science.gov (United States)

    Frostegard, A.; Bakken, L. R.

    2010-12-01

    Emissions of N2O from agricultural soils are largely caused by denitrifying bacteria. Field measurements of N2O fluxes show large variations and depend on several environmental factors, and possibly also on the composition of the denitrifying microbial community. The temporal and spatial variation of fluxes are not adequately captured by biogeochemical models, and few options for mitigations have been invented, which underscores the need to understand the mechanisms underlying the emissions of N2O. Analyses of denitrification genes and transcripts extracted from soils are important for describing the system, but may have limited value for prediction of N2O emissions. In contrast, phenotypic analyses are direct measures of the organisms’ responses to changing environmental conditions. Our approach is to combine phenotypic characterizations using high-resolution gas kinetics, with gene transcription analyses to study denitrification regulatory phenotypes (DRP) of bacterial strains or complex microbial communities. The rich data sets obtained provide a basis for refinement of biochemical and physiological research on this key process in the nitrogen cycle. The strength of this combined approach is illustrated by a series of experiments investigating effects of soil pH on denitrification. Soil pH emerges as a master variable determining the microbial community composition as well as its denitrification product ratio (N2O/N2), with higher ratio in acid than in alkaline soil. It is therefore likely that emissions of N2O from agro-ecosystems will increase in large parts of the world where soil pH is decreasing due to intensified management and increased use of chemical fertilizers. Considering its immense implications, surprisingly few attempts have been made to unravel the mechanisms involved in the pH-control of the product stoichiometry of denitrification. We investigated the kinetics of gas transformations (O2, NO, N2O and N2) and transcription of functional genes

  16. Seismic and Biological Sources of Ambient Ocean Sound

    Science.gov (United States)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  17. CH4 and N2O emissions embodied in international trade of meat

    International Nuclear Information System (INIS)

    Caro, Dario; Caldeira, Ken; LoPresti, Anna; Davis, Steven J; Bastianoni, Simone

    2014-01-01

    Although previous studies have quantified carbon dioxide emissions embodied in products traded internationally, there has been limited attention to other greenhouse gases such as methane (CH 4 ) and nitrous oxide (N 2 O). Following IPCC guidelines, we estimate non-CO 2 emissions from beef, pork and chicken produced in 237 countries over the period 1990–2010, and assign these emissions to the country where the meat is ultimately consumed. We find that, between 1990 and 2010, an average of 32.8 Mt CO 2 -eq emissions (using 100 year global warming potentials) are embodied in beef, pork and chicken traded internationally. Further, over the 20 year period, the quantity of CO 2 -eq emissions embodied in traded meat increased by 19%. The largest trade flows of emissions embodied in meat were from Brazil and Argentina to Russia (2.8 and 1.4 Mt of CO 2 -eq, respectively). Trade flows within the European region are also substantial: beef and pork exported from France embodied 3.3 Mt and 0.4 Mt of CO 2 -eq, respectively. Emissions factor of meat production (i.e. CO 2 -eq emissions per kg of meat) produced depend on ambient temperature, development level, livestock category (e.g. cattle, pork, and chicken) and livestock management practices. Thus, trade may result in an overall increase of GHG emissions when meat-consuming countries import meat from countries with a greater emissions intensity of meat production rather than producing the meat domestically. Comparing the emissions intensity of meat production of trading partners, we assess trade flows according to whether they tend to reduce or increase global emissions from meat production. (letter)

  18. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Science.gov (United States)

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  19. Synergy of FexCe1−xO2 mixed oxides for N2O decomposition

    NARCIS (Netherlands)

    Perez-Alonso, F.J.; Melián-Cabrera, I.; López Granados, M.; Kapteijn, F.; Fierro, J.L.G.

    2006-01-01

    Fe–Ce mixed oxides prepared by coprecipitation showed considerable synergy in N2O decomposition when compared with pure metal oxide counterparts. The mixed system also displayed higher stability in reaction at high temperature. Through characterisation by XRD, XPS and TPR, the activity–stability

  20. Synergy of FexCe1-xO2 mixed oxides for N2O decomposition

    NARCIS (Netherlands)

    Perez-Alonso, FJ; Melian Cabrera, Ignacio; Granados, ML; Kapteijn, F; Fierro, JLG

    2006-01-01

    Fe-Ce mixed oxides prepared by coprecipitation showed considerable synergy in N2O decomposition when compared with pure metal oxide counterparts. The mixed system also displayed higher stability in reaction at high temperature. Through characterisation by XRD, XPS and TPR, the activity-stability

  1. Nitrogen availability, water-filled pore space, and N2O-N fluxes after biochar application and nitrogen fertilization

    NARCIS (Netherlands)

    Carvalho, Márcia Thaís De Melo; Madari, Beáta Emoke; Bastiaans, Lammert; Oort, Pepijn Adrianus Johannes Van; Leal, Wesley Gabriel De Oliveira; Souza, Diego Mendes De; Santos, Roberto Carlos Dos; Matsushige, Iva; Maia, Aline De Holanda Nunes; Heinemann, Alexandre Bryan; Meinke, Holger

    2016-01-01

    The objective of this work was to investigate the impact of the application of wood biochar, combined with N fertilizations, on N2O-N fluxes, nitrogen availability, and water-filled pore space (WFPS) of a clayey Oxisol under rice (wet season) and common bean (dry season) succession. Manual static

  2. Catalytic Activity of Cobalt Grafted on Ordered Mesoporous Silica Materials in N2O Decomposition and CO Oxidation.

    Czech Academy of Sciences Publication Activity Database

    Kuboňová, L.; Peikertová, P.; Mamulová Kutláková, K.; Jirátová, Květa; Słowik, G.; Obalová, L.; Cool, P.

    2017-01-01

    Roč. 437, AUG 2017 (2017), s. 57-72 ISSN 2468-8231 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : mesoporous ordered silica * cobalt * N2O decomposition Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering

  3. Effects of N2O plasma treatment on perhydropolysilazane spin-on-dielectrics for inter-layer-dielectric applications

    International Nuclear Information System (INIS)

    Park, Kyoung-Seok; Ko, Pil-Seok; Kim, Sam-Dong

    2014-01-01

    Effects of the N 2 O plasma treatment (PT) on perhydropolysilazane spin-on-dielectric (PHPS SOD) were examined as potential inter-layer-dielectrics (ILDs) for sub-30 nm Si circuits. The spin-coated PHPS (18.5 wt.%) ILD layers converted at 650 °C were integrated with the 0.18 μm Si front-end-of-the line process. A modified contact pre-cleaning scheme using N 2 O PT produced more uniform and stable contact chain resistances from the SOD ILDs than the case of pre-cleaning only by buffered oxide etcher. Our analysis shows that this enhancement is due to the minimized carbon contamination on the PHPS side-wall surface densified by PT. - Highlights: • Perhydropolysilazane (PHPS) layer is evaluated as a Si interlayer dielectric. • Examine effects of the N 2 O plasma treatment (PT) on PHPS spin-on-dielectrics (SODs) • Significantly improved metal contact resistances are achieved using the N 2 O PT. • Contact resistance enhancement by PT is due to the minimized carbon contamination

  4. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye

    Science.gov (United States)

    Anthropogenic perturbation of the global nitrogen cycle and its effects on the environment such as hypoxia in coastal regions and increased N2O emissions is of increasing, cross-disciplinary, worldwide concern, and agricultural production is a major contributor. Only limited studies, however, have s...

  5. Analysis of products of thymine irradiated by 18O8+ ion beam in N2O saturated aqueous solution

    International Nuclear Information System (INIS)

    Cai Xichen; Wei Zengquan; Li Wenjian; Liang Jianping; Li Qiang

    1999-01-01

    Some methods of capillary gas chromatography, such as GC, GC-MS GC-FT-IR, are used to analyze the products of thymine irradiated by 18 O 8+ ion beam in N 2 O saturated aqueous solution. From the results of GC-MS the molecular weight of products can be determined, and from the results of GC-FT-IR some molecular structure information of products can be obtained. By this way the products, 5,6-Dihydro-thymine, 5-Hydroxyl-5-Methylhydantoin, 5-Hydroxyl-6-Hydro-thymine, 5-Hydro-6-Hydroxyl thymine, 5-Hydroxymethyluracil, Trans-Thymine glycol, Cis-Thymine glycol and dimers are determined without separation of them from samples. Though these products are as same as those products of thymine irradiated by γ rays in N 2 O saturated aqueous solution, the mechanism of thymine irradiated by heavy ion beam in aqueous solution is different from that by γ rays. The main products of thymine irradiated by 18 O 8+ ion beam in N 2 O saturated aqueous solution are hydroxyl adducts at 5-6 band of thymine, while the main products of thymine irradiated by γ ray in N 2 O saturated aqueous solution are dimers of thymine

  6. The Effects of Land-Use Change from Grassland to Miscanthus x giganteus on Soil N2O Emissions

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-09-01

    Full Text Available A one year field trial was carried out on three adjacent unfertilised plots; an 18 year old grassland, a 14 year old established Miscanthus crop, and a 7 month old newly planted Miscanthus crop. Measurements of N2O, soil temperature, water filled pore space (WFPS, and inorganic nitrogen concentrations, were made every one to two weeks. Soil temperature, WFPS and NO3− and NH4+ concentrations were all found to be significantly affected by land use. Temporal crop effects were also observed in soil inorganic nitrogen dynamics, due in part to C4 litter incorporation into the soil under Miscanthus. Nonetheless, soil N2O fluxes were not significantly affected by land use. Cumulative yearly N2O fluxes were relatively low, 216 ± 163, 613 ± 294, and 377 ± 132 g·N·ha−1·yr−1 from the grassland, newly planted Miscanthus, and established Miscanthus plots respectively, and fell within the range commonly observed for unfertilised grasslands dominated by perennial ryegrass (Lolium perenne. Higher mean cumulative fluxes were measured in the newly planted Miscanthus, which may be linked to a possible unobserved increase immediately after establishment. However, these differences were not statistically significant. Based on the results of this experiment, land-use change from grassland to Miscanthus will have a neutra