Sample records for ocean woce section

  1. IOC-WMO Intergovernmental WOCE panel. First session

    International Nuclear Information System (INIS)


    Ocean currents are an important mechanism by which the present-day climate system moves heat and salt from one latitude band to another. Meteorologists have long been able to quantify the large scale atmospheric circulation by mapping surface pressure. It is only in the coming decade that advances in satellite altimetry, deep floats and surface drifters will permit the design of programmes to determine the ocean circulation in a global and a quantitative sense. The World Ocean Circulation Experiment (WOCE) is such a programme. The WOCE Implementation Plan, also published in 1986, established the elements of the WOCE Field Programme that are necessary to achieve those scientific goals. Core project working groups and scientific panels ensure that the most effective balance of tools such as hydrography, subsurface floats, satellites and moorings are deployed to meet the scientific objective. WOCE is closely related to the International Geosphere Biosphere Programme (IGBP) and the World Climate Research Programme (WCRP). Various aspects of global climate change science are encompassed by WOCE. The heat balance of the earth involves incoming energy, mainly radiation received through the tropics, and outgoing energy, radiated fairly uniformly around the globe. A large amount (more than half) of the total heat flux is moved laterally across the globe by the oceans. Sea surface temperature is now determined globally by satellite. The Joint Global Ocean Flux Study is addressing the global carbon cycle. Tracers such as tritium, freon, have helped to qualitatively describe ocean sections. Drifting buoys have helped to describe surface ocean circulation and ALACE floats (pop-up) are describing intermediate layer circulation. Precision satellite radar altimetry has helped demonstrate the variability of ocean currents on a global scale

  2. NODC Standard Product: World Ocean Circulation Experiment (WOCE) Global Data Resource (GDR), versions 1-3, on CD-ROM and DVD (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC produced twelve (12) CD-ROMs containing WOCE Version 1 project data in the summer of 1998. NODC produced fifteen (15) CD-ROMs containing WOCE Version 2 project...

  3. Low-frequency variability of meridional transport in the divergence zone of the North Atlantic subtropical and subpolar gyres. The WOCE section A2; Niederfrequente Variabilitaet meridionaler Transporte in der Divergenzzone des nordatlantischen Subtropen- und Subpolarwirbels. Der WOCE-Schnitt A2

    Energy Technology Data Exchange (ETDEWEB)

    Lorbacher, K.


    The subinertial, climate relevant variability of the large-scale ocean circulation in the northern North Atlantic and its integral key parameters such as the advective transports of mass (volume), heat and freshwater are determined from observations alone using the hydrographic data from seven realisations of the so-called '48 N'-section between the English Channel and the Grand Banks of Newfoundland. The data consist of five available sets of the WOCE/A2-section during the Nineties for the years 1993, 1994, 1996, 1997, 1998 and of two previous transatlantic cruises in April of 1957 and 1982. The realisations of the WOCE/A2-section were carried out in the same season (May to July), except for the cruise in October 1994. The '48 N'-section follows the divergence zone of the mainly wind-driven subtropical gyre and the more complex, with respect to the forcing, subpolar gyre. In the central Westeuropean and Newfoundland Basins the section runs a few degrees south of the line of zero wind stress curl (curl{sub z}{tau}). In the West, the WOCE/A2-section turns northwest to cross the boundary current regime perpendicularly. Therefore, this quasi-zonal hydrographic section covers all large-scale circulation elements on the regional scale that contribute essentially to the ocean circulation on the global scale - the Meridional Overturning Circulation (MOC). The transport estimates are given as the sum of the three transport components of a quasi-steady, large-scale ocean circulation: The ageostrophic Ekman-, and the two geostrophic components, the depth-independent, barotropic or Sverdrup- and the baroclinic component. To maintain the mass balance over the plane of the section the compensation of each component is assumed. In the case of the baroclinic component the balance is achieved through a suitable choice for a surface of 'no-motion'. The absolute meridional velocity as a function of the zonal distance along the section and depth is

  4. Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; December 1, 1994 - January 22, 1996) (NODC Accession 0115009) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115009 includes chemical, discrete sample, physical and profile data collected from R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE...

  5. Isotopes as tracers of the oceanic circulation: Results from the World Ocean Circulation Experiment

    International Nuclear Information System (INIS)

    Schlosser, P.; Jenkins, W.J.; Key, R.; Lupton, J.


    During the past decades, natural and anthropogenic isotopes such as tritium ( 3 H), radiocarbon ( 14 C), 3 He, or the stable isotopes of water have been used in studies of the dynamics of natural systems. Early applications of tracers to studies of the ocean were directed at determination of circulation patterns and mean residence times of specific water masses, as well as estimates of mixing coefficients. These exploratory studies suggested that tracers can add significantly to our understanding of the oceanic circulation. In order to fully exploit this potential, the first global tracer study, the GEochemical Ocean SECtions Study (GEOSECS), was launched. From the GEOSECS results it was immediately apparent that very close coordination of tracer programs with physical oceanography studies is required for full utilization of tracer data. During the 1980s plans for the World OCean Experiment (WOCE) were developed. As part of its Hydrographic Program (WHP), especially during the one-time survey, a set of tracers were measured on a global scale with unprecedented spatial resolution (both lateral and vertical). The original plan included a larger number of tracers (CFCs, 3 H/ 3 He, 14 C, 39 Ar, stable isotopes of water, helium isotopes, 228 Ra, 90 Sr, 137 Cs, 85 Kr) than could actually be measured systematically (CFCs, 3 H/ 3 He, 14 C, H 2 18 O/H 2 16 O, helium isotopes). Nevertheless, the resulting data set, which presently is under evaluation, exceeds those obtained from pre-WOCE tracer studies by a wide margin. In this contribution, we describe the existing WOCE data set and demonstrate the type of results that can be expected from its interpretation on the basis of a few selected examples. These examples include: (1) the application of tritium and 3 He to studies of the ventilation of the upper waters in the Pacific Ocean, (2) the spreading of intermediate water in the Pacific and Indian oceans as derived from the distribution of 3 He, and (3) the evaluation of

  6. The NOSAMS sample preparation laboratory in the next millenium: Progress after the WOCE program

    International Nuclear Information System (INIS)

    Gagnon, Alan R.; McNichol, Ann P.; Donoghue, Joanne C.; Stuart, Dana R.; Reden, Karl von


    Since 1991, the primary charge of the National Ocean Sciences AMS (NOSAMS) facility at the Woods Hole Oceanographic Institution has been to supply high throughput, high precision AMS 14 C analyses for seawater samples collected as part of the World Ocean Circulation Experiment (WOCE). Approximately 13,000 samples taken as part of WOCE should be fully analyzed by the end of Y2K. Additional sample sources and techniques must be identified and incorporated if NOSAMS is to continue in its present operation mode. A trend in AMS today is the ability to routinely process and analyze radiocarbon samples that contain tiny amounts ( 14 C analysis has been recognized as a major facility goal. The installation of a new 134-position MC-SNICS ion source, which utilizes a smaller graphite target cartridge than presently used, is one step towards realizing this goal. New preparation systems constructed in the sample preparation laboratory (SPL) include an automated bank of 10 small-volume graphite reactors, an automated system to process organic carbon samples, and a multi-dimensional preparative capillary gas chromatograph (PCGC)

  7. Determination of Carbon Dioxide, Hydrograohic, and Chemical Parameters During the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 3 May - 4 July, 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center


    This report discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and partial pressure of CO2 (pCO2) at hydrographic stations during the cruise of research vessel (R/V) Nathaniel B. Palmer in the Southern Indian Ocean on the S04I Section as a part of the Joint Global Ocean Flux Study (JGOFS)/World Ocean Circulation Experiment (WOCE). The carbon-related measurements were sponsored by the U.S. Department of Energy (DOE). The expedition started in Cape Town, South Africa, on May 3, 1996, and ended in Hobart, Australia, on July 4, 1996. Instructions for accessing the data are provided. The TCO2 was measured in discrete water samples using the Lamont-Doherty Earth Observatory (LDEO) coulomteric system with an overall precision of ±1.7 μmol/kg. TALK was determined by potentiometric titration with an overall precision of ±1.7 μmol/kg. During the S04I cruise pCO2 was also measured using the LDEO equilibrator-gas chromatograph system with a precision of 0.5% (including the station-to-station reproducibility) at a constant temperature of 4.0ºC. The R/V Nathaniel B. Palmer S04I data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of the oceanographic data files and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  8. The NOSAMS sample preparation laboratory in the next millenium: Progress after the WOCE program

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Alan R. E-mail:; McNichol, Ann P.; Donoghue, Joanne C.; Stuart, Dana R.; Reden, Karl von


    Since 1991, the primary charge of the National Ocean Sciences AMS (NOSAMS) facility at the Woods Hole Oceanographic Institution has been to supply high throughput, high precision AMS {sup 14}C analyses for seawater samples collected as part of the World Ocean Circulation Experiment (WOCE). Approximately 13,000 samples taken as part of WOCE should be fully analyzed by the end of Y2K. Additional sample sources and techniques must be identified and incorporated if NOSAMS is to continue in its present operation mode. A trend in AMS today is the ability to routinely process and analyze radiocarbon samples that contain tiny amounts (<100 {mu}g) of carbon. The capability to mass-produce small samples for {sup 14}C analysis has been recognized as a major facility goal. The installation of a new 134-position MC-SNICS ion source, which utilizes a smaller graphite target cartridge than presently used, is one step towards realizing this goal. New preparation systems constructed in the sample preparation laboratory (SPL) include an automated bank of 10 small-volume graphite reactors, an automated system to process organic carbon samples, and a multi-dimensional preparative capillary gas chromatograph (PCGC)

  9. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, March 29 - May 12, 1994)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A.


    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and the fugacity of CO{sub 2} (fCO{sub 2}) at hydrographic stations during the R/V Meteor oceanographic cruise 28/1 in the South Atlantic Ocean (Section A8). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Recife, Brazil, on March 29, 1994, and ended after 35 days at sea in Walvis Bay, Namibia, on May 12, 1994. Instructions for accessing the data are provided. TCO{sub 2} was measured using two single-operator multiparameter metabolic analyzers (SOMMA) coupled to a coulometer for extracting and detecting CO{sub 2} from seawater samples. The overall precision and accuracy of the analyses was {+-}1.17 {micro}mol/kg. For the second carbonate system parameter, the fCO{sub 2} was measured in discrete samples by equilibrating a known volume of liquid phase (seawater) with a known volume of a gas phase containing a known mixture of CO{sub 2} in gaseous nitrogen (N{sub 2}). After equilibration, the gas phase CO{sub 2} concentration was determined by flame ionization detection following the catalytic conversion of CO{sub 2} to methane (CH{sub 4}). The precision of these measurements was less than or equal to 1.0%. The R/V Meteor Cruise 28/1 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data retrieval routine files, a readme file, and this printed documentation that describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  10. Oceanic uptake of CO2 re-estimated through δ13C in WOCE samples

    International Nuclear Information System (INIS)

    Lerperger, Michael; McNichol, A.P.; Peden, J.; Gagnon, A.R.; Elder, K.L.; Kutschera, W.; Rom, W.; Steier, P.


    In addition to 14 C, a large set of δ 13 C data was produced at NOSAMS as part of the World ocean circulation experiment (WOCE). In this paper, a subset of 973 δ 13 C results from 63 stations in the Pacific Ocean was compared to a total number of 219 corresponding results from 12 stations sampled during oceanographic programs in the early 1970s. The data were analyzed in light of recent work to estimate the uptake of CO 2 derived from fossil fuel and biomass burning in the oceans by quantifying the δ 13 C Suess effect in the oceans. In principle, the δ 13 C value of dissolved inorganic carbon (DIC) allows a quantitative estimate of how much of the anthropogenic CO 2 released into the atmosphere is taken up by the oceans, because the δ 13 C of CO 2 derived from organic matter (∼2.7 percent) is significantly different from that of the atmosphere (∼0.8 percent). Our new analysis indicates an apparent discrepancy between the old and the new data sets, possibly caused by a constant offset in δ 13 C values in a subset of the data. A similar offset was reported in an earlier work by Paul Quay et al. for one station that was not included in their final analysis. We present an estimate for this assumed offset based on data from water depths below which little or no change in δ 13 C over time would be expected. Such a correction leads to a significantly reduced estimate of the CO 2 uptake, possibly as low as one half of the amount of 2.1 GtC yr -1 (gigatons carbon per year) estimated previously. The present conclusion is based on a comparison with a relatively small data set from the 70s in the Pacific Ocean. The larger data set collected during the GEOSECS program was not used because of problems reported with the data. This work suggests there may also be problems in comparing non-GEOSECS data from the 1970s to the current data. The calculation of significantly lower uptake estimates based on an offset-related problem appears valid, but the exact figures are

  11. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.


    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  12. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean; TOPICAL

    International Nuclear Information System (INIS)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.


    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity[measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2

  13. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (November 2-December 5, 1996) and A24, A20, and A22 (May 30-September 3, 1997)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.M.


    This documentation describes the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) total alkalinity (TALK), and partial pressure of CO{sub 2} (pCO{sub 2}) at hydrographic stations on the North Atlantic Ocean sections AR24, A24, A20, and A22 during the R/V Knorr Cruises 147-2, 151-2, 151-3, and 151-4 in 1996 and 1997. Conducted as part of the World Ocean Circulation Experiment (WOCE), the expeditions began at Woods Hole, Massachusetts, on October 24, 1996, and ended at Woods Hole on September 3, 1997. Instructions for accessing the data are provided. A total of 5,614 water samples were analyzed for discrete TCO{sub 2} using two single-operator multiparameter metabolic analyzers (SOMMAs) coupled to a coulometer for extracting and detecting CO{sub 2}. The overall accuracy of the TCO{sub 2} determination was {+-} 1.59 {micro}mol/kg. The TALK was determined in a total of 6,088 discrete samples on all sections by potentiometric titration using an automated titration system developed at the University of Miami. The accuracy of the TALK determination was {+-} 3 {micro}mol/kg. A total of 2,465 discrete water samples were collected for determination of pCO{sub 2} in seawater on sections A24, A20, and A22. The pCO{sub 2} was measured by means of an equilibrator-IR system by scientists from Lamont-Doherty Earth Observatory. The precision of the measurements was estimated to be about {+-} 0.15%, based on the reproducibility of the replicate equilibrations on a single hydrographic station. The North Atlantic data set is available as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of 12 ASCII data files, one Ocean Data View-formatted data file, a NDP-082 ASCII text file, a NDP-082 PDF file, and this printed documentation, which describes the contents and format of all files, as well as the procedures and methods used to obtain the data.

  14. Northern and southern water masses in the equatorial Atlantic: Distribution of nutrients on the WOCE A6 and A7 lines

    Digital Repository Service at National Institute of Oceanography (India)

    Oudot, C.; Morin, P.; Baurand, F.; Wafar, M.V.M.; Le Corre, P.

    In the framework of the WOCE Hydrographic Program, two trans-Atlantic CTDO/tracer sections with closely-spaced stations, along 7 degrees 30'N and 4 degrees 30'S (WHP Lines A6 and A7), and two meridional sections, along 3 degrees 50'W and 35 degrees...

  15. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate (United States)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.


    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  16. Measurements of the total CO2 concentration and partial pressure of CO2 in seawater during WOCE expeditions in the South Pacific Ocean

    International Nuclear Information System (INIS)

    Takahashi, T.; Goddard, J.G.; Chipman, D.W.; Rubin, S.I.


    During the first year of the grant, we participated in three WOCE expeditions (a total of 152 days at sea) in the South Pacific Ocean, and the field phase of the proposed investigation has been successfully completed. The total CO 2 concentration and pCO 2 were determined at sea in 4419 water samples collected at 422 stations. On the basis of the shipboard analyses of SIO Reference Solutions for CO, and a comparison with the results of previous expeditions, the overall precision of our total CO 2 determinations is estimated to be about ±2 uM/kg. The deep water data indicate that there is a CO 2 maximum centered about 2600 meters deep. This appears to represent a southward return flow from the North Pacific. The magnitude and distribution of the CO, maximum observed along the 135.0 degrees W meridian differ from those observed along the 150.5 degrees W meridian due to Tuamotu Archipelago, a topographic high which interferes with the southward return flow. The surface water pCO 2 data indicate that the South Pacific sub-tropical gyre water located between about 15 degrees S and 50 degrees S is a sink for atmospheric CO 2

  17. Topex/Poseidon: A United States/France mission. Oceanography from space: The oceans and climate (United States)


    The TOPEX/POSEIDON space mission, sponsored by NASA and France's space agency, the Centre National d'Etudes Spatiales (CNES), will give new observations of the Earth from space to gain a quantitative understanding of the role of ocean currents in climate change. Rising atmospheric concentrations of carbon dioxide and other 'greenhouse gases' produced as a result of human activities could generate a global warming, followed by an associated rise in sea level. The satellite will use radar altimetry to measure sea-surface height and will be tracked by three independent systems to yield accurate topographic maps over the dimensions of entire ocean basins. The satellite data, together with the Tropical Ocean and Global Atmosphere (TOGA) program and the World Ocean Circulation Experiment (WOCE) measurements, will be analyzed by an international scientific team. By merging the satellite observations with TOGA and WOCE findings, the scientists will establish the extensive data base needed for the quantitative description and computer modeling of ocean circulation. The ocean models will eventually be coupled with atmospheric models to lay the foundation for predictions of global climate change.

  18. Water temperature, salinity, oxygen and other data collected from NOAA Ship Ka'imimoana and Moana Wave in the North Pacific Ocean from 1988-10-30 to 1989-11-29 (NODC Accession 9100012) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hawaii Ocean Time-series data in this accession were collected as part of World Ocean Circulation Experiment (WOCE) conducted by Marine Laboratory, University of...

  19. Transport of North Pacific 137Cs labeled waters to the south-eastern Atlantic Ocean (United States)

    Sanchez-Cabeza, J. A.; Levy, I.; Gastaud, J.; Eriksson, M.; Osvath, I.; Aoyama, M.; Povinec, P. P.; Komura, K.


    During the reoccupation of the WOCE transect A10 at 30°S by the BEAGLE2003 cruise, the SHOTS project partners collected a large number of samples for the analysis of isotopic tracers. 137Cs was mostly deposited on the oceans surface during the late 1950s and early 1960s, after the atmospheric detonation of large nuclear devices, which mostly occurred in the Northern Hemisphere. The development of advanced radioanalytical and counting techniques allowed to obtain, for the first time in this region, a zonal section of 137Cs water concentrations, where little information existed before, thus constituting an important benchmark for further studies. 137Cs concentrations in the upper waters (0-1000 m) of the south-eastern Atlantic Ocean are similar to those observed in the south-western Indian Ocean, suggesting transport of 137Cs labeled waters by the Agulhas current to the Benguela Current region. In contrast, bomb radiocarbon data do not show this feature, indicating the usefulness of 137Cs as a radiotracer of water mass transport from the Indian to the South Atlantic Ocean.

  20. Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, D.; Raj, B.; Shenoi, S.S.C.

    ]); monthly evaporation from the Southampton Oceanography Centre (SOC) data (Josey et al. [1998]), and monthly 2openbulletby 2openbulletsurface currents in the tropical Indian Ocean, based on 1985-2002 trajecto- ries of drogued WOCE drifters (Shenoi et al..., Deep-Sea Re- search II, 50, 2111?2127, 2003. Josey, S. A., E. C. Kent, and P. K. Taylor, The Southampton Oceanography Centre (SOC) Ocean - Atmosphere Heat, Mo- mentum and Freshwater Flux Atlas, Tech. Rep. 6, Southamp- ton Oceanography Centre, 1998...

  1. Carbon Isotope (d13C) in dissolved inorganic carbon and other physical and biogeochemical variables synthesized across the global ocean from February 17, 1991 to February 21, 2005 (NODC Accession 0110496) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of d13C in DIC were compiled mainly from WOCE and CLIVAR cruises. The dataset also contains other physical and biogeochemical variables.

  2. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Millero, F.J.


    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}), total alkalinity (TALK), and pH at hydrographic stations during the R/V Hesperides oceanographic cruise in the Atlantic Ocean (Section A5). Conducted as part of the Work Ocean Circulation Experiment (WOCE), the cruise began in Cadiz, Spain, on July 14, 1992, and ended in Miami, Florida, on August 15, 1992. Measurements made along WOCE Section A5 included CTD pressure, temperature, salinity, and oxygen; and bottle salinity, oxygen, phosphate, nitrate, nitrite, silicate, TCO{sub 2}, TALK, and pH. The TALK, TCO{sub 2}, and pH were determined from titrations of seawater collected at 33 stations. The titration systems for measuring TALK and TCO{sub 2} were calibrated in the laboratory with certified reference materials (CRMs) before the cruise to ensure traceable results. Standard reference seawater provided by Andrew Dickson of Scripps Institution of Oceanography (SIO) was used at sea to monitor the performance of the titration systems. The results agree with the laboratory results to {+-} 2 {micro}mol/kg for TALK and {+-} 1 {micro}mol/kg for TCO{sub 2}. The titration systems used to measure pH were calibrated with TRIS seawater buffers prepared in the laboratory and measured with an H{sub 2}, Pt/AgCl, Ag electrode. The initial electromotive force (emf) of the titrations was used to determine the pH. The values of pH are thought to be reliable to {+-} 0.01 and are internally consistent with the measured values of TALK and TCO{sub 2} to {+-} 7 {micro}mol/kg. The measured carbon dioxide system parameters have been used to calculate the in situ values of the fugacity of CO{sub 2} (fCO{sub 2}) for the surface water. The surface results are briefly discussed.

  3. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng


    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  4. Role of the ocean in climate changes (United States)

    Gulev, Sergey K.


    The present program aimed at the study of ocean climate change is prepared by a group of scientists from State Oceanographic Institute, Academy of Science of Russia, Academy of Science of Ukraine and Moscow State University. It appears to be a natural evolution of ideas and achievements that have been developed under national and international ocean research projects such as SECTIONS, WOCE, TOGA, JGOFS and others. The two primary goals are set in the program ROCC. (1) Quantitative description of the global interoceanic 'conveyor' and it's role in formation of the large scale anomalies in the North Atlantic. The objectives on the way to this goal are: to get the reliable estimates of year-to-year variations of heat and water exchange between the Atlantic Ocean and the atmosphere; to establish and understand the physics of long period variations in meridianal heat and fresh water transport (MHT and MFWT) in the Atlantic Ocean; to analyze the general mechanisms, that form the MHT and MFWT in low latitudes (Ekman flux), middle latitudes (western boundary currents) and high latitudes (deep convection) of the North Atlantic; to establish and to give quantitative description of the realization of global changes in SST, surface salinity, sea level and sea ice data. (2) Development of the observational system pointed at tracing the climate changes in the North Atlantic. This goal merges the following objectives: to find the proper sites that form the inter annual variations of MHT; to study the deep circulation in the 'key' points; to develop the circulation models reflecting the principle features of interoceanic circulation; and to define global and local response of the atmosphere circulation to large scale processes in the Atlantic Ocean.

  5. Decadal trends in deep ocean salinity and regional effects on steric sea level (United States)

    Purkey, S. G.; Llovel, W.


    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  6. Response of an eddy-permitting ocean model to the assimilation of sparse in situ data (United States)

    Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.


    The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.

  7. Decadal Variability of Total Alkalinity in the North Pacific Ocean (United States)

    Cross, J. N.; Carter, B. R.; Siedlecki, S. A.; Alin, S. R.; Dickson, A. G.; Feely, R. A.; Mathis, J. T.; Wanninkhof, R. H.; Macdonald, A. M.; Mecking, S.; Talley, L. D.


    Recent observations of acidification-driven shoaling of the calcium carbonate saturation horizon in the North Pacific have prompted new interest in carbonate cycling in this region, particularly related to impacts on biogenic calcification at the surface layer. Some estimates project that the impacts of OA on alkalinity cycling are beginning to emerge. Here, we present total alkalinity concentrations along a meridional transect of the North Pacific (WOCE, CLIVAR, and US GO-SHIP line P16N; 152 °W) over a period of three decades. The largest source of variability in alkalinity concentrations is related to North Pacific circulation, particularly in the surface mixed layer. Precise normalization of these data reveal some small spatial and temporal variability in the background. We explore these decadal trends in the context of decadal oscillations, ocean biogeochemical cycles, and global change processes such as ocean acidification.

  8. Meridional overturning and large-scale circulation of the Indian Ocean (United States)

    Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John


    The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.

  9. Anomalous Heat Budgets in the Interior Pacific Ocean on Seasonal- to -Timescales and Gyre Spacescales (United States)

    White, Warren; Cayan, Daniel R.; Lindstrom, Eric (Technical Monitor)


    This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage over the Pacific Ocean from 20 degrees S to 60 degrees N through the synthesis of World Ocean Circulation Experiment (WOCE) products over 7 years from 1993-1999. We utilize WOCE reanalysis products from the following sources: diabatic heat storage (DHS) from the Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from the Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). We interpolate these products onto a common grid, allowing the seasonal cycle of DHS to be modeled for comparison with that observed. Everywhere latent heat flux residuals dominate sensible heat flux residuals and shortwave heat flux residuals dominate longwave heat flux residuals, both comparable in magnitude to the residual horizontal heat advection. We find the root-mean-square (RMS) of the differences between observed and model residual DHS tendencies to be less than 15 W per square meters everywhere except in the Kuroshio extension. Comparable COADS and NCEP products perform better than ECMWF products in the extra-tropics, while the NCEP product performs best in the tropics. Radiative and turbulent air-sea heat flux residuals computed from ship-born measurements perform better than those computed from satellite cloud and wind measurements. Since the RMS differences derive largely from biases in measured wind speed and cloud fraction, least-squares minimization is used to correct the residual Ekman heat advection and air-sea heat flux. Minimization reduces RMS differences less than 5 W per square meters except in the Kuroshio extension, suggesting how winds, clouds, and exchange coefficients in the NCEP, ECMWF, and ESR products can be improved.

  10. Decadal changes in the CaCO3 saturation state along 179°E in the Pacific Ocean (United States)

    Murata, Akihiko; Saito, Shu


    To assess degrees of ocean acidification, we mainly investigated decadal changes in the saturation state of seawater with respect to aragonite (Ωarg), which is a more vulnerable mineral form of CaCO3, along the 179°E meridian (WOCE P14N) in the Pacific Ocean. We found a maximum decrease of Ωarg of -0.48 (-0.034 a-1) at 200-300 dbar (isopycnal surfaces of 24.0-25.8 kg m-3) at 20°N. Between 1993 and 2007, the saturation horizon rose by 17 dbar (1.2 dbar a-1) at latitudes 10°N-50°N. Although ΔΩarg mostly reflected changes in normalized dissolved inorganic carbon (ΔnCT), it was larger than could be explained by anthropogenic CO2 storage alone. Decomposition of ΔnCT revealed that ΔΩarg was enhanced by approximately 50% by a non-anthropogenic CO2 contribution represented by changes in apparent oxygen utilization. Our results suggest that ocean acidification can be temporarily accelerated by temporal changes in oceanic conditions.

  11. Summary report on marine research 1988.

    CSIR Research Space (South Africa)



    Full Text Available , Estuaries/ Marine Linefish, Marine Pollution, Ocean Engineering and a South African contribution to the World Ocean Circulation Experiment (WOCE). This report includes brief statements on the activities of each of these programmes in 1988 and emphasizes...

  12. International organisation of ocean programs: Making a virtue of necessity (United States)

    Mcewan, Angus


    When faced with the needs of climate prediction, a sharp contrast is revealed between existing networks for the observation of the atmosphere and for the ocean. Even the largest and longest-serving ocean data networks were created for their value to a specific user (usually with a defence, fishing or other maritime purpose) and the major compilations of historical data have needed extensive scientific input to reconcile the differences and deficiencies of the various sources. Vast amounts of such data remain inaccessible or unusable. Observations for research purposes have been generally short lived and funded on the basis of single initiatives. Even major programs such as FGGE, TOGA and WOCE have been driven by the dedicated interest of a surprisingly small number of individuals, and have been funded from a wide variety of temporary allocations. Recognising the global scale of ocean observations needed for climate research, international cooperation and coordination is an unavoidable necessity, resulting in the creation of such bodies as the Committee for Climatic Changes and the Ocean (CCCO), with the tasks of: (1) defining the scientific elements of research and ocean observation which meet the needs of climate prediction and amelioration; (2) translating these elements into terms of programs, projects or requirements that can be understood and participated in by individual nations and marine agencies; and (3) the sponsorship of specialist groups to facilitate the definition of research programs, the implementation of cooperative international activity and the dissemination of results.

  13. Global ocean monitoring for the World Climate Research Programme. (United States)

    Revelle, R; Bretherton, F


    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment

  14. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics (United States)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.


    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  15. Introduction to Special Section on Oceanic Responses and Feedbacks to Tropical Cyclones (United States)

    Zhou, Lei; Chen, Dake; Karnauskas, Kristopher B.; Wang, Chunzai; Lei, Xiaotu; Wang, Wei; Wang, Guihua; Han, Guijun


    Tropical cyclones (TCs) are among the most destructive natural hazards on Earth. The ocean can have dramatic responses to TCs and further imposes significant feedbacks to the atmosphere. A comprehensive understanding of the ocean-TC interaction is a challenging hindrance for improving the simulation and prediction of TCs and therefore avoidance of human and economic losses. A special section of JGR-Oceans was thus organized, in order to have a broad summary of latest progress in ocean-TC interactions. This introduction presents a brief overview of the contributions found in this collection. We hope it can also shed light on recent advance and future challenges in the studies on the oceanic responses and feedbacks to TCs.

  16. Biogeochemical proxies in Scleractinian corals used to reconstruct ocean circulation

    International Nuclear Information System (INIS)

    Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.


    We utilize monthly 14 C data derived from coral archives in conjunction with ocean circulation models to address two questions: 1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and 2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ( 14 C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral 14 C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution Δ 14 C time-series such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change. (author)

  17. Combined simulation of carbon and water isotopes in a global ocean model (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna


    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  18. Pelagic ecology of the South West Indian Ocean Ridge seamounts: Introduction and overview (United States)

    Rogers, A. D.


    The Indian Ocean was described by Behrman (1981) as the "Forlorn Ocean", a region neglected by science up to the late-1950s. For example, the Challenger Expedition from 1872 to 1876 largely avoided the Indian Ocean, sailing from Cape Town into Antarctic waters sampling around the Prince Edward Islands, Kerguelen Island and Crozet Islands before heading to Melbourne. From 1876 to the 1950s there were expeditions on several vessels including the Valdivia, Gauss and Planet (Germany), the Snellius (Netherlands), Discovery II, MahaBiss (United Kingdom), Albatross (Sweden), Dana and Galathea (Denmark; Behrman, 1981). There was no coordination between these efforts and overall the Indian Ocean, especially the deep sea remained perhaps the most poorly explored of the world's oceans. This situation was largely behind the multilateral effort represented by the International Indian Ocean Expedition (IIEO), which was coordinated by the Scientific Committee for Ocean Research (SCOR), and which ran from 1959-1965. Work during this expedition focused on the Arabian Sea, the area to the northwest of Australia and the waters over the continental shelves and slopes of coastal states in the region. Subsequently several large-scale international oceanographic programmes have included significant components in the Indian Ocean, including the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE). These studies were focused on physical oceanographic measurements and biogeochemistry and whilst the Indian Ocean is still less understood than other large oceans it is now integrated into the major ocean observation systems (Talley et al., 2011). This cannot be said for many aspects of the biology of the region, despite the fact that the Indian Ocean is one of the places where exploitation of marine living resources is still growing (FAO, 2016). The biology of the deep Indian Ocean outside of the Arabian Sea is particularly poorly understood given the presence

  19. Temperature, salinity and other measurements found in dataset OSD taken from the L'ATALANTE, MARION DUFRESNE (Call sign FNGB; built 1973; IMO 7208388) and other platforms in the Mediterranean, Antarctic and other locations from 1991 to 1997 (NODC Accession 0000721) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle and CTD data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected from multiple institutions in support of WOCE and...

  20. CARINA TCO2 data in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. Wanninkhof


    Full Text Available Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 cruises in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged in a new data base: the CARINA (CARbon IN the Atlantic Project. These data have gone through rigorous quality control (QC procedures so as to improve the quality and consistency of the data as much as possible. Secondary quality control, which involved objective study of data in order to quantify systematic differences in the reported values, was performed for the pertinent parameters in the CARINA data base. Systematic biases in the data have been tentatively corrected in the data products. The products are three merged data files with measured, adjusted and interpolated data of all cruises for each of the three CARINA regions (Arctic Mediterranean Seas, Atlantic and Southern Ocean. Ninety-eight cruises were conducted in the "Atlantic" defined as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we report the details of the secondary QC which was done on the total dissolved inorganic carbon (TCO2 data and the adjustments that were applied to yield the final data product in the Atlantic. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments were applied to TCO2 measurements for 17 of the cruises in the Atlantic Ocean region. With these adjustments, the CARINA data base is consistent both internally as well as with GLODAP data, an oceanographic data set based on the WOCE Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, regional oceanic carbon inventories, uptake rates and model validation.

  1. Ocean water temperature from data loggers from the HALE-ALOHA Moorings in the North Pacific Ocean as part of the Joint Global Ocean Flux (JGOFS), the World Ocean Circulation Experiment (WOCE), and Hawaii Ocean Time-series (HOT) from 24 April 1998 to 03 May 1999 (NODC Accession 9900212) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean water temperature data were collected from data loggers attached to the HALE-ALOHA Moorings in the North Pacific Ocean from 24 April 1998 to 03 May 1999. Data...

  2. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  3. OceanSITES format and Ocean Observatory Output harmonisation: past, present and future (United States)

    Pagnani, Maureen; Galbraith, Nan; Diggs, Stephen; Lankhorst, Matthias; Hidas, Marton; Lampitt, Richard


    SITES initiative has always been truly international, and in Europe the first project to include OceanSITES as part of its outputs was ANIMATE(2002-2005), where 3 moorings and 5 partners shared equipment, methods and analysis effort and produced their final outputs in OceanSITES format. Subsequent European projects, MERSEA(2004-2008) and EuroSITES (2008-2011) built on that early success and the current European project FixO3 encompasses 23 moorings and 29 partners, all of whom are committed to producing data in OceanSITES format. The global OceanSITES partnership continues to grow; in 2014 the Australian Integrated Marine Observing System ( IMOS) started delivering data to the OceanSITES FTP, and files and India, South Korea and Japan are also active members of the OceanSITES community. As illustrated in figure 1 the OceanSITES sites cover the entire globe, and the format has now matured enough to be taken up by other user groups. GO-SHIP, a global, ship-based hydrographic program, shares technical management with OceanSITES through JCOMMOPS, and has its roots in WOCE Hydrography. This program complements OceanSITES and directly contributes to the mooring data holdings by providing repeated CTD and bottle profiles at specific locations. GO-SHIP hydrographic data adds a source of timeseries profiles and are provided in the OceanSITES file structure to facilitate full data interoperability. GO-SHIP has worked closely with the OceanSITES program, and this interaction has produced an unexpected side benefit - all data in the GO-SHIP database will be offered the robust and CF-compliant OceanSITES format beginning in 2015. The MyOcean European ocean monitoring and forecasting project has been in existence since 2009, and has successfully used the OceanSITES format as a unifying paradigm. MyOcean daily receives hundreds of data files from across Europe, and distributes the data from drifter buoys, moorings and tide gauges in OceanSITES format. These in-situ data are essential for both

  4. Fritz Schott's Contributions to the Understanding of the Ocean Circulation (United States)

    Visbeck, M.


    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  5. Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean

    NARCIS (Netherlands)

    Salt, L.A.; van Heuven, S.M.A.C.; Claus, M.E.; Jones, E.M.; de Baar, H.J.W.


    Observations along the southwestern Atlantic WOCE A17 line made during the Dutch GEOTRACESNL programme (2010-2011) were compared with historical data from 1994 to quantify the changes in the anthropogenic component of the total pool of dissolved inorganic carbon (Delta C-ant). Application of the

  6. Sharing Data in the Global Ocean Observing System (Invited) (United States)

    Lindstrom, E. J.; McCurdy, A.; Young, J.; Fischer, A. S.


    We examine the evolution of data sharing in the field of physical oceanography to highlight the challenges now before us. Synoptic global observation of the ocean from space and in situ platforms has significantly matured over the last two decades. In the early 1990’s the community data sharing challenges facing the World Ocean Circulation Experiment (WOCE) largely focused on the behavior of individual scientists. Satellite data sharing depended on the policy of individual agencies. Global data sets were delivered with considerable delay and with enormous personal sacrifice. In the 2000’s the requirements for global data sets and sustained observations from the likes of the U.N. Framework Convention on Climate Change have led to data sharing and cooperation at a grander level. It is more effective and certainly more efficient. The Joint WMO/IOC Technical Commission on Oceanography and Marine Meteorology (JCOMM) provided the means to organize many aspects of data collection and data dissemination globally, for the common good. In response the Committee on Earth Observing Satellites organized Virtual Constellations to enable the assembly and sharing of like kinds of satellite data (e.g., sea surface topography, ocean vector winds, and ocean color). Individuals in physical oceanography have largely adapted to the new rigors of sharing data for the common good, and as a result of this revolution new science has been enabled. Primary obstacles to sharing have shifted from the individual level to the national level. As we enter into the 2010’s the demands for ocean data continue to evolve with an expanded requirement for more real-time reporting and broader disciplinary coverage, to answer key scientific and societal questions. We are also seeing the development of more numerous national contributions to the global observing system. The drivers for the establishment of global ocean observing systems are expanding beyond climate to include biological and

  7. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean (United States)

    Feely, Richard A.; Sabine, Christopher L.; Byrne, Robert H.; Millero, Frank J.; Dickson, Andrew G.; Wanninkhof, Rik; Murata, Akihiko; Miller, Lisa A.; Greeley, Dana


    Based on measurements from the WOCE/JGOFS global CO2 survey, the CLIVAR/CO2 Repeat Hydrography Program and the Canadian Line P survey, we have observed an average decrease of 0.34% yr-1 in the saturation state of surface seawater in the Pacific Ocean with respect to aragonite and calcite. The upward migrations of the aragonite and calcite saturation horizons, averaging about 1 to 2 m yr-1, are the direct result of the uptake of anthropogenic CO2 by the oceans and regional changes in circulation and biogeochemical processes. The shoaling of the saturation horizon is regionally variable, with more rapid shoaling in the South Pacific where there is a larger uptake of anthropogenic CO2. In some locations, particularly in the North Pacific Subtropical Gyre and in the California Current, the decadal changes in circulation can be the dominant factor in controlling the migration of the saturation horizon. If CO2 emissions continue as projected over the rest of this century, the resulting changes in the marine carbonate system would mean that many coral reef systems in the Pacific would no longer be able to sustain a sufficiently high rate of calcification to maintain the viability of these ecosystems as a whole, and these changes perhaps could seriously impact the thousands of marine species that depend on them for survival.

  8. Decadal Anthropogenic Carbon Storage Along P16 and P02 (United States)

    Carter, B. R.; Feely, R. A.; Talley, L. D.; Cross, J. N.; Macdonald, A. M.; Mecking, S.; Siedlecki, S. A.


    The Pacific Ocean has the largest ocean basin anthropogenic carbon (Canth) inventory due to the large size of the basin. We estimate anthropogenic carbon (Canth) concentrations and decadal storages along the meridional P16 and zonal P02 lines since the mid 90s using a modified version of the extended multiple linear regression (EMLR) technique with data from the WOCE, CLIVAR, and GO-SHIP occupations of these lines. We present our estimates and map the aragonite saturation state (ΩA) decreases and saturation horizon shoaling resulting from continued Canth storage. The average storage rate was larger along both sections during the most recent decade (2000's to 2010's) than during the previous decade (1990's to 2000's), especially along P02. Significant decadal concentration increases were found in the mixed layers, shallow thermoclines, mode waters, and portions of the intermediate water masses.

  9. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre (United States)

    Donnelly, Matthew; Leach, Harry; Strass, Volker


    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  10. Observations of the southern East Madagascar Current and undercurrent and countercurrent system (United States)

    Nauw, J. J.; van Aken, H. M.; Webb, A.; Lutjeharms, J. R. E.; de Ruijter, W. P. M.


    In April 2001 four hydrographic sections perpendicular to the southern East Madagascar Current were surveyed as part of the Agulhas Current Sources Experiment. Observations with a vessel mounted and a lowered ADCP produced information on the current field while temperature, salinity, oxygen and nutrient data obtained with a CTD-Rosette system, gave information on the water mass structure of the currents southeast of Madagascar. The peak velocity in the pole-ward East Madagascar Current through these four sections had a typical magnitude of ˜110 cm/s, while the width of this current was of the order of 120 km. The mean pole-ward volume transport rate of this current during the survey above the 5°C isotherm was estimated to be 37 ± 10 Sv. On all four sections an undercurrent was observed at intermediate depths below the East Madagascar Current. Its equator-ward transport rate amounted to 2.8 ± 1.4 Sv. Offshore of the East Madagascar Current the shallow South Indian Ocean Countercurrent was observed. This eastward frontal jet coincided with the barotropic and thermohaline front that separates the saline Subtropical Surface Water from the fresher Tropical Surface Water in the East Madagascar Current. The near-surface geostrophic flow of the East Madagascar Current, derived from satellite altimetry data from 1992 to 2005, suggests a strong variability of this transport due to eddy variability and interannual changes. The long-term pole-ward mean transport of the East Madagascar Current, roughly estimated from those altimetry data amounts to 32 Sv. The upper-ocean water mass of the East Madagascar Current was very saline in 2001, compared to WOCE surveys from 1995. Comparison of our undercurrent data with those of the WOCE surveys in 1995 confirms that the undercurrent is a recurrent feature. Its water mass properties are relatively saline, due to the presence of water originating from the Red Sea outflow at intermediate levels. The saline water was advected from the

  11. Dissolved inorganic carbon, and total alkalinity and other chemical and physical data obtained during the R/V Meteor cruise along the WOCE Section A02b in the North Atlantic Ocean from 1997-06-11 to 1997-07-03 (NODC Accession 0115159) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115159 includes chemical, discrete sample, physical and profile data collected from METEOR in the Arabian Sea, Arctic Ocean, Gulf of Aden, Gulf of...

  12. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 1992-02-26 to 1993-04-14 (NODC Accession 9700264) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS. Data were collected by Oregon State University (OSU) as part of the World Ocean Circulation...

  13. Magnetic Mineralogy of a Complete Oceanic Crustal Section (IODP hole 1256D) (United States)

    Krasa, D.; Herrero-Bervera, E.; Acton, G.; Rodriguez Durand, S.


    Oceanic crust is the carrier of the marine magnetic anomalies and is therefore a valuable archive of geomagnetic information. Hole 1256D, which was drilled during ODP leg 206 and IODP expeditions 309 and 312, was the first to retrieve a core comprising of an entire sequence of oceanic crust down to the gabbro. This provides a unique opportunity to study the carriers of the marine magnetic anomalies. We used reflected light microscopy, scanning electron microscopy and energy dispersive x-ray analysis in addition to rock magnetic measurements to study the grain size, morphology, composition, and alteration state of the magnetic minerals. This comprehensive data set allows us not only to understand the magnetic stability of the minerals but also the mode and timing of remanence acquisition. The extrusive layer contains dendritic, low-temperature (LT) oxidized titanomagnetites (TMs) typical for mid- ocean ridge basalts (MORBs). The initial composition of these is close to previously reported values for MORB TMs with an ulvöspinel content of about 60%. The degree of LT oxidation remains fairly constant across the whole extrusive part of the section with an oxidation parameter z=0.6. Therefore, the increase in Curie temperature from 200C at the top to about 500C at the bottom of the extrusives cannot be accounted for by LT oxidation alone. Instead, we favor a model involving submicron inversion of LT oxidized TMs to an intergrowth of TMs and nonmagnetic phases, where the Ti-content of the TM phase is continuously decreasing with depth due to higher inversion temperatures. In the underlying sheeted dykes and gabbros, TMs precipitated as the primary opaque phase, as well. Due to the slower cooling rate, these particles are in most cases oxy-exsolved and form lamellar intergrowths of Ti- poor TMs and ilmenite. After emplacement, these minerals were altered to a much higher degree than the extrusive lavas. Secondary minerals frequently replace the original TMs, and the

  14. 22 CFR 228.21 - Ocean transportation. (United States)


    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Ocean transportation. 228.21 Section 228.21... for USAID Financing § 228.21 Ocean transportation. (a) The Cargo Preference Act of 1954, Section 901(b... transportation services is determined by the flag registry of the vessel. (1) When the authorized source for...

  15. The Ocean as a teaching tool: the first MOOC on Ocean Literacy (United States)

    Santin, Selvaggia; Santoro, Francesca


    Education its broader understanding (in both formal and informal settings) serves as a high potential channel to reach young citizens. As a lack of sufficient 'Ocean Literacy' has been identified in many countries, this clearly presents a barrier for citizens to engage in ocean responsible behaviour or consider ocean-related careers. In order to sensitize and enable teachers and students to incorporate ocean literacy into educational programmes we build up a first Massive Open Online Course on Emma Platform, an European Multiple MOOC Aggregator that provides a system for the delivery of free, open, online courses in multiple languages from different European universities. Almost 500 students were enrolled from all over the world and we proposed a multi-perspective approach building on the UNESCO experience in the field of education for sustainable development. The course had two sections: a narrative format which introduces to the Ocean Literacy principles, focusing on how to incorporate them into lessons with tips, advice, references and activities; and an interactive section with webinairs which covers contemporary and emerging issues such as seafood, marine pollution and human health, simulating a "real-world experiences" with a problems-solutions approach.

  16. 46 CFR 151.03-39 - Ocean. (United States)


    ... HAZARDOUS MATERIAL CARGOES Definitions § 151.03-39 Ocean. A designation for all vessels normally navigating the waters of any ocean or the Gulf of Mexico more than 20 nautical miles offshore. ... 46 Shipping 5 2010-10-01 2010-10-01 false Ocean. 151.03-39 Section 151.03-39 Shipping COAST GUARD...

  17. Investigation of carbon dioxide in the central South Pacific Ocean (WOCE Sections P-16C and P-17C) during the TUNES/2 expedition of the R/V Thomas Washington, July--August, 1991. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Goddard, J.G.; Rubin, S.; Chipman, D.W.; Sutherland, S.C.


    This report summarizes the results of carbon dioxide and associated hydrographic measurements made during the oceanographic expedition, TUNES/2, aboard the R/V Thomas Washington in the central South Pacific Ocean. During the 40 day expedition, the total carbon dioxide concentration in 1000 seawater samples were determined using a coulometer system and the pCO(sub 2) in 940 seawater samples were determined using an equilibrator/gas chromatograph system. The alkalinity values in 900 water samples were computed using these measurements. In addition, 156 coulometric measurements were made for the Certified Reference Solutions (Batch No. 6) and yielded a mean value of 2303.2 +or- 1.5umol/kg. The chemical characteristics for the major water masses have been determined.

  18. 46 CFR 90.10-25 - Ocean. (United States)


    ... Terms Used in This Subchapter § 90.10-25 Ocean. Under this designation shall be included all vessels navigating the waters of any ocean or the Gulf of Mexico more than 20 nautical miles offshore. ... 46 Shipping 4 2010-10-01 2010-10-01 false Ocean. 90.10-25 Section 90.10-25 Shipping COAST GUARD...

  19. 46 CFR 188.10-51 - Ocean. (United States)


    ... Terms Used in This Subchapter § 188.10-51 Ocean. Under this designation shall be included all vessels navigating the waters of any ocean, or the Gulf of Mexico more than 20 nautical miles offshore. ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean. 188.10-51 Section 188.10-51 Shipping COAST GUARD...

  20. Evidence for Late Permian-Upper Triassic ocean acidification from calcium isotopes in carbonate of the Kamura section in Japan (United States)

    Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.


    Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate

  1. Red Sea Intermediate Water at the Agulhas Current termination (United States)

    Roman, R. E.; Lutjeharms, J. R. E.


    The inter-ocean exchange of water masses at the Agulhas Current termination comes about through the shedding of rings, and this process plays an important role in the global thermohaline circulation. Using several hydrographic sections collected during the ARC (Agulhas Retroflection Cruise), MARE (Mixing of Agulhas Rings Experiment) and WOCE (World Ocean Circulation Experiment), this investigation aims to establish the degree to which Red Sea Intermediate Water (RSIW) is involved in this exchange and at what level of purity. To this end a wide range of hydrographic parameters were used. Upstream from the Agulhas Current retroflection water with clear RSIW origin is shown to move downstream on both the landward and seaward sides of the Agulhas Current with the highest water sample purity or water-mass content exceeding 15%. The least mixed water was found close to the continental shelf. At the retroflection the RSIW purity shows considerable variability that ranges between 5% and 20%. This suggests that RSIW moves down the current in patches of considerably varying degrees of previous mixing. This pattern was also observed in a ring sampled during the ARC experiment. The MARE sections in turn indicate that at times RSIW may be entirely absent in the Agulhas Current. RSIW is therefore shown to travel down the current as discontinuous filaments, and this intermittency is reflected in its presence in Agulhas Rings. From the sections investigated it is therefore clear that any calculation of RSIW fluxes involved in inter-ocean exchange can only be done on the basis of event scales. RSIW not trapped in Agulhas Rings flows east with the Agulhas Return Current.

  2. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.


    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  3. Enhanced Ocean Scatterometry

    NARCIS (Netherlands)

    Fois, F.


    An ocean scatterometer is an active microwave instrument which is designed to determine the normalized radar cross section (NRCS) of the sea surface. Scatterometers transmit pulses towards the sea surface and measure the reflected energy. The primary objective of spaceborne scatterometers is to

  4. Global distribution of temperature and salinity profiles from profiling floats as part of the World Ocean Circulation Experiment (WOCE) project, from 1994-11-07 to 2002-01-19 (NCEI Accession 0000936) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-Salinity profile and pressure data were collected by using profiling floats in a world-wide distribution from 07 November 1994 to 19 January 2002. Data...

  5. Bistatic High Frequency Radar Ocean Surface Cross Section for an FMCW Source with an Antenna on a Floating Platform

    Directory of Open Access Journals (Sweden)

    Yue Ma


    Full Text Available The first- and second-order bistatic high frequency radar cross sections of the ocean surface with an antenna on a floating platform are derived for a frequency-modulated continuous wave (FMCW source. Based on previous work, the derivation begins with the general bistatic electric field in the frequency domain for the case of a floating antenna. Demodulation and range transformation are used to obtain the range information, distinguishing the process from that used for a pulsed radar. After Fourier-transforming the autocorrelation and comparing the result with the radar range equation, the radar cross sections are derived. The new first- and second-order antenna-motion-incorporated bistatic radar cross section models for an FMCW source are simulated and compared with those for a pulsed source. Results show that, for the same radar operating parameters, the first-order radar cross section for the FMCW waveform is a little lower than that for a pulsed source. The second-order radar cross section for the FMCW waveform reduces to that for the pulsed waveform when the scattering patch limit approaches infinity. The effect of platform motion on the radar cross sections for an FMCW waveform is investigated for a variety of sea states and operating frequencies and, in general, is found to be similar to that for a pulsed waveform.

  6. Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP? (United States)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.


    The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.

  7. Responding to oil spills in the open ocean environment

    International Nuclear Information System (INIS)

    Wood, A.E.


    The primary objectives in responding to any oil spill is to control the source of the spill, then, contain, collect, and recover the spilled product. Accomplishing those objectives is an immense challenge. It becomes much more difficult when attempted in the open ocean environment due to the more complex logistical and communications problems one encounters when operating miles from the nearest land. Often times, too, the response must be coordinated with either a salvage operation, a fire-fighting operation, a well control operation or a combination of any of these. There have been volumes of papers comparing the relative merits of mechanical recovery, in-situ burning, dispersant application, and bioremediation in responding to open ocean spills. Although each approach deserves special consideration in different circumstances, this presentation focuses on mechanical methods; the specialized equipment and operational tactics that are best utilized in responding to a major spill in the open ocean. This paper is divided into two sections. The first section, Equipment Used in Open Ocean Spills, addresses in general terms, the special equipment required in an offshore response operation. The second section, entitled Operational Tactics Used In Open Ocean Spills offers an overview of the tactics employed to achieve the general objectives of containment, collection, recovery, and temporary storage

  8. IODP Expedition 324: Ocean Drilling at Shatsky Rise Gives Clues about Oceanic Plateau Formation

    Directory of Open Access Journals (Sweden)

    Jörg Geldmacher


    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 324 cored Shatsky Rise at five sites (U1346–U1350 to study processes of oceanic plateau formation and evolution. Site penetrations ranged from 191.8 m to 324.1 m with coring of 52.6 m to 172.7 m into igneous basement at four of the sites. Average recovery in basement was 38.7%–67.4%. Cored igneous sections consist mainly of variably evolved tholeiiticbasalts emplaced as pillows or massive flows. Massive flows are thickest and make up the largest percentage of section on the largest and oldest volcano, late Jurassic age Tamu Massif; thus, it may have formed at high effusion rates. Such massive flows are characteristic of flood basalts, and similar flows were cored at Ontong Java Plateau. Indeed, the similarity of igneous sections at Site U1347 with that cored on Ontong Java Plateau implies similar volcanic styles for these two plateaus. On younger, smaller Shatsky Rise volcanoes, pillow flows are common and massive flows thinner andfewer, which might mean volcanism waned with time. Cored sediments from summit sites contain fossils and structures implying shallow water depths or emergence at the time of eruption and normal subsidence since. Summit sites also show pervasive alteration that could be due to high fluid fluxes. A thick section of volcaniclastics cored on Tamu Massif suggests that shallow, explosive submarine volcanism played a significant role in the geologic development of the plateau summit. Expedition 324 results imply that Shatsky Risebegan with massive eruptions forming a huge volcano and that subsequent eruptions waned in intensity, forming volcanoes that are large, but which did not erupt with unusually high effusionrates. Similarities of cored sections on Tamu Massif with those ofOntong Java Plateau indicate that these oceanic plateaus formed insimilar fashion.

  9. NOAA's Role in Sustaining Global Ocean Observations: Future Plans for OAR's Ocean Observing and Monitoring Division (United States)

    Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney


    The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.

  10. GLODAPv2 data exploration and extraction system (United States)

    Krassovski, Misha; Kozyr, Alex; Boden, Thomas


    The Global Ocean Data Analysis Project (GLODAP) is a cooperative effort of investigators funded for ocean synthesis and modeling projects by the U.S. National Oceanic and Atmospheric Administration (NOAA), Department of Energy (DOE), and National Science Foundation (NSF). Cruises conducted as part of the WOCE, JGOFS, and NOAA Ocean-Atmosphere Carbon Exchange Study (OACES) over the decade of the 1990s generated oceanographic data of unparalleled quality and quantity. GLODAPv2 is a uniformly calibrated open-ocean data product containing inorganic carbon and carbon-relevant variables. This new product includes data from approximately one million individual seawater samples collected from over 700 cruises during the period 1972-2013. Extensive quality control and subsequent calibration were carried out for salinity, oxygen, nutrient, carbon dioxide, total alkalinity, pH, and chlorofluorocarbon data. The Carbon Dioxide Information and Analysis Center (CDIAC), serving as the primary DOE disseminator for climate data and information, developed database and web accessible systems that permit users worldwide to query and retrieve data from the GLODAPv2 collection. This presentation will showcase this new system, discuss technologies used to build the GLODAPv2 resource, and describe integration with a metadata search engine provided by CDIAC as well.

  11. Simulation of multistatic and backscattering cross sections for airborne radar (United States)

    Biggs, Albert W.


    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  12. 46 CFR 30.10-45 - Ocean-TB/O. (United States)


    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ocean-TB/O. 30.10-45 Section 30.10-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-45 Ocean—TB/O. Under this designation shall be included all tank vessels normally navigating the waters of any ocean or...

  13. Compilation of ocean circulation and other data from ADCP current meters, CTD casts, tidal gauges, and other instruments from a World-Wide distribution by Oregon State University and other institutions as part of World Ocean Circulation Experiment (WOCE) and other projects from 24 November 1985 to 30 December 2000 (NODC Accession 0000649) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation and other data were collected from a World-Wide distribution by Oregon State University (OSU) and other institutions as part of...

  14. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane


    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  15. Ocean Acidification | Smithsonian Ocean Portal (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  16. Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02 (United States)

    Carter, B. R.; Feely, R. A.; Mecking, S.; Cross, J. N.; Macdonald, A. M.; Siedlecki, S. A.; Talley, L. D.; Sabine, C. L.; Millero, F. J.; Swift, J. H.; Dickson, A. G.; Rodgers, K. B.


    A modified version of the extended multiple linear regression (eMLR) method is used to estimate anthropogenic carbon concentration (Canth) changes along the Pacific P02 and P16 hydrographic sections over the past two decades. P02 is a zonal section crossing the North Pacific at 30°N, and P16 is a meridional section crossing the North and South Pacific at 150°W. The eMLR modifications allow the uncertainties associated with choices of regression parameters to be both resolved and reduced. Canth is found to have increased throughout the water column from the surface to 1000 m depth along both lines in both decades. Mean column Canth inventory increased consistently during the earlier (1990s-2000s) and recent (2000s-2010s) decades along P02, at rates of 0.53 ± 0.11 and 0.46 ± 0.11 mol C m-2 a-1, respectively. By contrast, Canth storage accelerated from 0.29 ± 0.10 to 0.45 ± 0.11 mol C m-2 a-1 along P16. Shifts in water mass distributions are ruled out as a potential cause of this increase, which is instead attributed to recent increases in the ventilation of the South Pacific Subtropical Cell. Decadal changes along P16 are extrapolated across the gyre to estimate a Pacific Basin average storage between 60°S and 60°N of 6.1 ± 1.5 PgC decade-1 in the earlier decade and 8.8 ± 2.2 PgC decade-1 in the recent decade. This storage estimate is large despite the shallow Pacific Canth penetration due to the large volume of the Pacific Ocean. By 2014, Canth storage had changed Pacific surface seawater pH by -0.08 to -0.14 and aragonite saturation state by -0.57 to -0.82.

  17. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.


    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  18. Other relevant papers in physical oceanography

    International Nuclear Information System (INIS)

    Nyffeler, F.


    During the past few years, significant progress has occurred in the field of physical oceanography partly as a consequence of developing cooperation and international participation in well-coordinated ocean research programmes. Although these programs were not designed specifically to address CRESP problems, many have proved to be directly relevant to CRESP objectives. For example, MODE, POLYMODE, and Tourbillon were intensive site-specific experiments that included studies of dispersion processes throughout the water column. NOAMP and GME were also site specific, involved the entire water column, and even stressed near-bottom and suspended-sediment processes. Others, (e.g., WOCE) are larger in scope and include extensive observations of the general circulation of entire ocean basins. As a whole, they contribute immensely to improving the data base for exchange and transport processes and thereby for the verification and validation of both regional-scale and general-circulation ocean models. That, in turn, is directly relevant to radiological assessments. Selected papers deriving from experiments such as these are discussed and referenced below

  19. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD (United States)


    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  20. The great challenges in Arctic Ocean paleoceanography

    International Nuclear Information System (INIS)

    Stein, Ruediger


    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 10 6 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  1. Focus: knowing the ocean: a role for the history of science. (United States)

    Rozwadowski, Helen M


    While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.

  2. Rock Magnetic Characterization Through an Intact Sequence of Oceanic Crust, IODP Hole 1256D

    NARCIS (Netherlands)

    Herrero-Bervera, E.; Acton, G.; Krasá, D.; Rodriguez, S.; Dekkers, M.J.


    Coring at Site 1256 (6.736◦N, 91.934◦W, 3635 m water depth) during Ocean Drilling Program (ODP) Leg 206 and Integrated Ocean Drilling Program (IODP) Expeditions 309 and 312 successfully sampled a complete section of in situ oceanic crust, including sediments of Seismic Layer 1, lavas and dikes of

  3. Impact of hydrothermalism on the ocean iron cycle. (United States)

    Tagliabue, Alessandro; Resing, Joseph


    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  4. 75 FR 13537 - Clean Water Act Section 303(d): Notice of Call for Public Comment on 303(d) Program and Ocean... (United States)


    ... evaluate regional coral reef responses to changes in climate and ocean chemistry. Limnology and... Science 86 157-164 (2010). Hoegh-Guldberg, O. Coral reefs under rapid climate change and ocean...) from the atmosphere. Ocean acidification is not a climate process, but instead directly affects ocean...

  5. Detecting the progression of ocean acidification from the saturation state of CaCO3 in the subtropical South Pacific (United States)

    Murata, Akihiko; Hayashi, Kazuhiko; Kumamoto, Yuichiro; Sasaki, Ken-ichi


    Progression of ocean acidification in the subtropical South Pacific was investigated by using high-quality data from trans-Pacific zonal section at 17°S (World Ocean Circulation Experiment section P21) collected in 1994 and 2009. During this 15 year period, the CaCO3 saturation state of seawater with respect to calcite (Ωcal) and aragonite (Ωarg) in the upper water column (Pacific Ocean.

  6. Measurements within the Pacific-Indian oceans throughflow region (United States)

    Fieux, M.; Andrié, C.; Delecluse, P.; Ilahude, A. G.; Kartavtseff, A.; Mantisi, F.; Molcard, R.; Swallow, J. C.


    Two hydrographic (θ, S, O 2) and trichlorofluoromethane (F-11) sections were carried out between the Australian continental shelf and Indonesia, in August 1989, on board the R.V. Marion Dufresne. The sections lie in the easternmost part of the Indian Ocean where the throughflow between the Pacific Ocean and the Indian Ocean emerges. They allow us to describe the features of the water-property and circulation fields of the throughflow at its entrance in the Indian Ocean. Between the Australian continental shelf and Bali, the Subtropical and Central waters are separated from the waters of the Indonesian seas by a sharp hydrological front, located around 13°30 S, below the thermocline down to 700 m. Near the coast of Bali, upwelling occurs in the near-surface layer under the effect of the southeast monsoon; at depth, between 300 m to more than 800 m, a water mass of northern Indian Ocean origin was present. From the characteristics of the bottom water found in the Lombok basin, the maximum depth of the Java ridge which separates the Lombok basin from the Northwest Australian basin lies around 3650 m. Off Sumba, Savu, Roti and Timor channels a core of low salinity and high oxygen content near-surface water was found in the axis of each channel, which suggests strong currents from the interior Indonesian seas towards the Indian Ocean. The entrance of the deep water flowing in the opposite direction, from the Indian Ocean to the Timor basin, was marked below 1400 m to the sill depth, through an increase of salinity and oxygen content. The flow reversal, observed briefly by a Pegasus direct current profiler in the Timor strait, was located at 1200 m depth. During the southeast monsoon, the net (geostrophic + Ekman) transport calculated on the section Australia-Bali give an estimate of the throughflow between 0 and 500 m of 22 ± 4 × 10 6 m 3 s -1 towards the Indian Ocean, with a concentration of the transport in the upper layers (19 × 10 6 m 3 s -1 in 0-200 m) and

  7. Environmental impacts of ocean disposal of CO2. First quarterly report, September 1--September 30, 1994

    International Nuclear Information System (INIS)

    Tester, J.W.


    This paper is divided into five sections (corresponding to five tasks) which all must be considered in order to determine the ultimate environmental impact of ocean disposal of CO 2 . The sections are: ambient physical and chemical properties of the ocean; CO 2 loadings (i.e. quantities and purities of CO 2 ) produced using different capture technologies; methods of CO 2 transport and injection, and their associated physical/chemical perturbations; environmental impacts for the scenarios outlined in section the previous section; and other considerations including legal issues, public perception, and monitoring requirements

  8. Meeting of the eighth session of the scientific advisory committee of the world climate impact assessment and response strategies programme, Budapest, 1-4 October 1991

    International Nuclear Information System (INIS)


    The World Climate Data and Monitoring Programme continued its help in improving climate data management. The World Climate Applications and Services Programme has developed an inventory of climate application related activities in WMO member countries. Other developments have been the encouragement of national climate programme development and projects related to mitigation of drought. The World Climate Research Programme is organized through seven main projects: Climate model development; Research on climate processes; Global Energy and Water Cycle Experiments (GEWEX); Tropical Ocean and Global Atmosphere (TOGA); World Ocean Circulation Experiment (WOCE); Study of global change; Scientific exploration of satellite data, in particular in the areas of clouds and the hydrological cycle, transport of greenhouse gases and their distribution in the atmosphere, global ocean circulation and transport of heat and chemicals, polar climate and sea ice, surface hydrological processes and their relation to vegetation. The World Climate Impact Studies Programme (WCIP) in 1990/91 was structured to give to: (i) Greenhouse Gases/Climate Change; (ii) Coordination of Climate Impact Activities; (iii) Methods of Climate Impact Assessment; (iv) Monitoring of erosion, flooding, desertification and high urban atmospheric pollution

  9. Temperature profile data from STD/CTD casts from the MELVILLE from the Indian Ocean for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project, 06 December 1977 to 21 April 1978 (NODC Accession 8200055) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MELVILLE from the Indian Ocean from December 6, 1977 to April 21, 1978. Data were...

  10. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge

    NARCIS (Netherlands)

    Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R.


    The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris

  11. Long-term oceanic changes prior the end-Triassic mass extinction (United States)

    Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph


    A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic

  12. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE) (United States)

    Greely, T. M.; Lodge, A.


    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  13. 46 CFR 11.522 - Service requirements for assistant engineer (limited oceans) of steam and/or motor vessels. (United States)


    ... oceans) of steam and/or motor vessels. 11.522 Section 11.522 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Engineer Officer § 11.522 Service requirements for assistant engineer (limited oceans) of... assistant engineer (limited oceans) of steam and/or motor vessels is three years of service in the...

  14. Arctic Ocean Scientific Drilling: The Next Frontier

    Directory of Open Access Journals (Sweden)

    Ruediger Stein


    Full Text Available The modern Arctic Ocean appears to be changing faster than any other region on Earth. To understand the potential extent of high latitude climate change, it is necessary to sample the history stored in the sediments filling the basins and covering the ridges of the Arctic Ocean. These sediments have been imaged with seismic reflection data, but except for the superficial record, which has been piston cored, they have been sampled only on the Lomonosov Ridge in 2004 during the Arctic Coring Expedition (ACEX-IODP Leg 302; Backman et al., 2006 and in 1993 in the ice-free waters in the Fram Strait/Yermak Plateau area (ODP Leg 151; Thiede et al., 1996.Although major progress in Arctic Ocean research has been made during the last few decades, the short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution are poorly known compared to the other oceans. Despite the importance of the Arctic in the climate system, the database we have from this area is still very weak. Large segments of geologic time have not been sampled in sedimentary sections. The question of regional variations cannot be addressed.

  15. Timing of the Toarcian Ocean Anoxic Event (Early Jurassic) from correlation of astronomically forced global stratigraphic sections (United States)

    Huang, C.; Hinnov, L. A.; Hesselbo, S. P.


    The Early Toarcian Oceanic Anoxic Event (OAE) in the Early Jurassic Period is associated with a major negative carbon isotope excursion (CIE), mass extinction, marine transgression and global warming. The Toarcian OAE is thought to have been caused by flood basalt magmatism, and may have been a trigger for mass extinction. However, these proposed causes of the Toarcian OAE and associated biotic crisis are not adequately resolved by a precise chronology. The duration of the Toarcian OAE has been estimated to be anywhere from ~0.12 to ~0.9 Myr, most recently 0.74 to 3.26 Myr from U-Pb dating. The CIE associated with the Toarcian OAE has a similar pattern at numerous localities, and there is evidence for astronomical forcing of marine carbon isotopes. Here we estimate a duration of ~625 kyr for the main negative CIE, ~860 kyr for the polymorphum zone and >1.58 Myr for the levisoni zone based on 405-kyr astronomical eccentricity tuning of the marine section at Peniche (Portugal). This 405-kyr tuned series provides a ~2.5 Myr continuous high-resolution chronology through the Early Toarcian. There are 6, or possibly 7 short eccentricity cycles in the main CIE interval at Peniche. To confirm this astronomically based estimate, we analyzed five other sections at Yorkshire (UK), Dotternhausen (Germany), Valdorbia (Italy), Mechowo (Poland) and Serrucho, Neuquén (Argentina), from marine and terrestrial carbon isotopic series. These six stratigraphic sections from Early Jurassic western Tethys and eastern Panthalassa record the Toarcian OAE with ~6 prominent carbon isotope cycles in the CIE that provide us a 600 ± 100 kyr duration. The Peniche 405 kyr-tuned series indicates that the pre- and post-CIE intervals experienced strong precession-eccentricity-forced climate change, whereas the CIE interval is marked by dominant obliquity forcing. These dramatic and abrupt changes in astronomical response in the carbon isotopes point to fundamental shifting in the Early Toarcian

  16. Temperature profile data collected using bottle and CTD casts from the KNORR from the Atlantic Ocean for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project, 24 July 1972 to 30 March 1973 (NODC Accession 8500008) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profile and other data were collected using bottle and CTD casts from KNORR in the Atlantic Ocean from July 24, 1972 to...

  17. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  18. Enhancing Ocean Research Data Access (United States)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter


    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  19. Causes of strong ocean heating during glacial periods (United States)

    Zimov, N.; Zimov, S. A.


    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface

  20. Studying ocean acidification in the Arctic Ocean (United States)

    Robbins, Lisa


    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  1. A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project (United States)

    Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.


    In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene

  2. Ocean tides (United States)

    Hendershott, M. C.


    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  3. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (United States)


    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1440 Pacific Ocean at Kwajalein...

  4. HAB outreach using multimedia: integrating ocean research and ...

    African Journals Online (AJOL)

    The 'Special topics' section features freshwater blooms, ocean colour, detection methods and research on South African HABs. This online resource is augmented by educational activities (www.bigelow. org/edhab) that allow teachers to use the topic of HABs as a vehicle to investigate the role that algae play in our ...

  5. Modeling study on nuclide transport in ocean - an ocean compartment method

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Suh, Kyung Suk; Han, Kyoung Won


    An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and interaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean method. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves. (Author)

  6. Hydrothermal impacts on trace element and isotope ocean biogeochemistry. (United States)

    German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H


    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  7. Birth of an oceanic spreading center at a magma-poor rift system. (United States)

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto


    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  8. Ocean Prediction Center (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  9. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University


    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  10. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim


    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  11. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. (United States)


    ... Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean... part. (2) No person or vessel may enter or navigate within this security zone unless authorized to do...

  12. Dissolved Inorganic Carbon (DIC), Total Alkalinity, Oxygen and other Hydrographic and Chemical Data Obtained During the R/V Polarstern Cruise ARKXXVII/1 (EXPOCODE 06AQ20120614) along the CLIVAR Repeat Section 75N in the North Atlantic Ocean from 2012-06-14 to 2012-07-15 (NCEI Accession 0162432) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This cruise is a part of the CLIVAR/GO-SHIP Repeat Sections observations from the research ships along the section 75N. NCEI Accession 0162432 includes discrete...

  13. Ocean One: A Robotic Avatar for Oceanic Discovery

    KAUST Repository

    Khatib, Oussama; Yeh, Xiyang; Brantner, Gerald; Soe, Brian; Kim, Boyeon; Ganguly, Shameek; Stuart, Hannah; Wang, Shiquan; Cutkosky, Mark; Edsinger, Aaron; Mullins, Phillip; Barham, Mitchell; Voolstra, Christian R.; Salama, Khaled N.; L'Hour, Michel; Creuze, Vincent


    The promise of oceanic discovery has long intrigued scientists and explorers, whether with the idea of studying underwater ecology and climate change or with the hope of uncovering natural resources and historic secrets buried deep in archaeological sites. This quest to explore the oceans requires skilled human access, yet much of the oceans are inaccessible to human divers; nearly ninetenths of the ocean floor is at 1 km or deeper [1]. Accessing these depths is imperative since factors such as pollution and deep-sea trawling threaten ecology and archaeological sites. While remotely operated vehicles (ROVs) are inadequate for the task, a robotic avatar could go where humans cannot and still embody human intelligence and intentions through immersive interfaces.

  14. Ocean One: A Robotic Avatar for Oceanic Discovery

    KAUST Repository

    Khatib, Oussama


    The promise of oceanic discovery has long intrigued scientists and explorers, whether with the idea of studying underwater ecology and climate change or with the hope of uncovering natural resources and historic secrets buried deep in archaeological sites. This quest to explore the oceans requires skilled human access, yet much of the oceans are inaccessible to human divers; nearly ninetenths of the ocean floor is at 1 km or deeper [1]. Accessing these depths is imperative since factors such as pollution and deep-sea trawling threaten ecology and archaeological sites. While remotely operated vehicles (ROVs) are inadequate for the task, a robotic avatar could go where humans cannot and still embody human intelligence and intentions through immersive interfaces.

  15. The Fram Strait integrated ocean observatory (United States)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.


    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  16. Motionally-induced electromagnetic fields generated by idealized ocean currents (United States)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  17. The Ocean Literacy Campaign (United States)

    Schoedinger, S. E.; Strang, C.


    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL:

  18. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik


    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  19. Blue ocean strategy. (United States)

    Kim, W Chan; Mauborgne, Renée


    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  20. Chapter 1. Impacts of the oceans on climate change. (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard


    further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

  1. Organophosphorus esters in the oceans and possible relation with ocean gyres

    International Nuclear Information System (INIS)

    Cheng, Wenhan; Xie, Zhouqing; Blais, Jules M.; Zhang, Pengfei; Li, Ming; Yang, Chengyun; Huang, Wen; Ding, Rui; Sun, Liguang


    Four organophosphorus esters (OPEs) were detected in aerosol samples collected in the West Pacific, the Indian Ocean and the Southern Ocean from 2009 to 2010, suggesting their circumpolar and global distribution. In general, the highest concentrations were detected near populated regions in China, Australia and New Zealand. OPE concentrations in the Southern Ocean were about two orders of magnitude lower than those near major continents. Additionally, relatively high OPE concentrations were detected at the Antarctic Peninsula, where several scientific survey stations are located. The four OPEs investigated here are significantly correlated with each other, suggesting they may derive from the same source. In the circumpolar transect, OPE concentrations were associated with ocean gyres in the open ocean. Their concentrations were positively related with average vorticity in the sampling area suggesting that a major source of OPEs may be found in ocean gyres where plastic debris is known to accumulate. -- Highlights: •We provide OPE concentrations in aerosols in a circumpolar expedition. •We find strong anthropogenic source of OPE pollution. •We suggest potential relationship between ocean gyres and OPE pollution. -- Our work provides a circumpolar investigation on OPEs in the Southern Ocean and we suggest a possibility that ocean currents and gyres may act as important roles in global transport of OPEs

  2. Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge (United States)

    Craig, Timothy J.; Parnell-Turner, Ross


    Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated

  3. Faster recovery of a diatom from UV damage under ocean acidification. (United States)

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan


    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ocean acidification genetics - Genetics and genomics of response to ocean acidification (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are applying a variety of genetic tools to assess the response of our ocean resources to ocean acidification, including gene expression techniques, identification...

  5. 78 FR 32556 - Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD (United States)


    ... FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and Information The... Atlantic Ocean in Ocean City, MD. In recent years, there have been unfortunate instances of jets and planes...

  6. Proceedings of oceans '91

    International Nuclear Information System (INIS)



    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  7. An inventory of Arctic Ocean data in the World Ocean Database (United States)

    Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.


    The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (" target="_blank">

  8. Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland

    DEFF Research Database (Denmark)

    Fenty, Ian; Willis, Josh K.; Khazendar, Ala


    the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA's five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased...... melting due to ocean-ice interaction. OMG will track ocean conditions and ice loss at glaciers around Greenland through the year 2020, providing critical information about ocean-driven Greenland ice mass loss in a warming climate....

  9. White Oak Creek Embayment site characterization and contaminant screening analysis

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.


    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed 137 Cs concentrations [> 10 6 Bq/kg dry wt (> 10 4 pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of 137 Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h 1 1 m above the soil surface

  10. Sediment distribution in the oceans : the Atlantic between 10° and 19°N

    NARCIS (Netherlands)

    Collette, B.J.; Ewing, J.I.; Lagaay, R.A.; Truchan, M.

    Between 10° and 19°N the North Atlantic Ocean has been covered by four east-west crossings and one north-south section at 60°W, using a continuous seismic reflection recorder (air gun). The northernmost section extends to the Canary Islands. The region comprises a great variety of phenomena:

  11. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María


    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  12. Ocean water cycle: its recent amplification and impact on ocean circulation (United States)

    Vinogradova, Nadya


    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  13. Pb, Nd and Sr isotopes in oceanic ferromanganese deposits and ocean floor basalts

    International Nuclear Information System (INIS)

    O'Nions, R.K.; Carter, S.R.; Cohen, R.S.; Evensen, N.M.; Hamilton, P.J.


    The Pb-, Nd-, and Sr-isotope compositions of oceanic ferromanganese deposits, together with the Nd- and Sr-isotope compositions of altered ocean-floor basalts, are here reported. These data are used to evaluate these metals as sources in both the oceans and ocean ferromanganese deposits and the extent to which ocean-floor basalts may be a source of, or a sink for, these metals. (author)

  14. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014


    Yao, Wenjun; Shi, Jiuxin


    Basin-scaled freshening of Antarctic Intermediate Water (AAIW) is reported to have dominated South Atlantic Ocean during period from 2005 to 2014, as shown by the gridded monthly means Argo (Array for Real-time Geostrophic Oceanography) data. The relevant investigation was also revealed by two transatlantic occupations of repeated section along 30° S, from World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated by the opposing salinity increase o...

  15. Ethane ocean on Titan (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.


    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  16. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

    International Nuclear Information System (INIS)

    Roy, T.; Matear, R.; Rayner, P.; Francey, R.


    Using an atmospheric inversion model we investigate the southern hemisphere ocean CO 2 uptake. From sensitivity studies that varied both the initial ocean flux distribution and the atmospheric data used in the inversion, our inversion predicted a total (ocean and land) uptake of 1.65-1.90 Gt C/yr. We assess the consistency between the mean southern hemisphere ocean uptake predicted by an atmospheric inversion model for the 1991-1997 period and the T99 ocean flux estimate based on observed pCO 2 in Takahashi et al. (2002; Deep-Sea Res II, 49, 1601-1622). The inversion can not match the large 1.8 Gt C/yr southern extratropical (20-90 deg S) uptake of the T99 ocean flux estimate without producing either unreasonable land fluxes in the southern mid-latitudes or by increasing the mismatches between observed and simulated atmospheric CO 2 data. The southern extratropical uptake is redistributed between the mid and high latitudes. Our results suggest that the T99 estimate of the Southern Ocean uptake south of 50 deg S is too large, and that the discrepancy reflects the inadequate representation of wintertime conditions in the T99 estimate

  17. Global Ocean Phytoplankton (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.


    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  18. First evaluation of MyOcean altimetric data in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per


    The MyOcean V2 preliminary (V2p) data set of weekly gridded sea level anomaly (SLA) maps from 1993 to 2009 over the Arctic region is evaluated against existing altimetric data sets and tide gauge data. Compared with DUACS V3.0.0 (Data Unification and Altimeter Combination System) data set, MyOcean...... V2p data set improves spatial coverage and quality as well as maximum temporal correlation coefficient between altimetry and tide gauge data. The estimated amplitude of sea level annual signal and linear sea level trend from MyOcean data set are evaluated against altimetry from DUACS and RADS (Radar...... Altimeter Database System), the SODA (Simple Ocean Data Assimilation) ocean reanalysis and tide gauge data sets from PSMSL (Permanent Service for Mean Sea Level). The results show that the MyOcean data set fits in-situ measurements better than DUACS data set with respect to amplitude of annual signal...

  19. The Southern Ocean Observing System


    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise


    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  20. Ship Track for The Hidden Ocean Arctic 2005 - Office of Ocean Exploration (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the US Coast Guard icebreaker Healy during the "Hidden Ocean Arctic 2005" expedition sponsored by the National Oceanic and Atmospheric Administration...

  1. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  2. Ocean surface partitioning strategies using ocean colour remote Sensing: A review (United States)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.


    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and

  3. Ocean acidification postcards (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.


    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit:

  4. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014


    W. Yao; J. Shi; X. Zhao


    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity...

  5. Ejecta from Ocean Impacts (United States)

    Kyte, Frank T.


    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  6. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L


    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  7. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.


    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  8. 40 CFR 227.16 - Basis for determination of need for ocean dumping. (United States)


    ... and methods of disposal or recycling available, including without limitation, storage until treatment facilities are completed, which have less adverse environmental impact or potential risk to other parts of... ocean dumping. 227.16 Section 227.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  9. Apparent changes in the climatic state of the deep North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Roemmich, D; Wunsch, C


    Determination of any long-term changes in the large-scale characteristics of the deep ocean circulation would be an important clue in understanding the climatic interactions of the ocean and atmosphere. In the summer of 1981, the RV Atlantis II reoccupied two transatlantic sections at nominal latitudes of 24/sup 0/30'N and 36/sup 0/16'N with a conductivity-temperature-depth instrument (CTD). One purpose of the work was to make a comparison with previous surveys conducted during the International Geophysical Year (IGY), when sections were obtained in October 1957 and April-May 1959. The authors report here that significant warming occurred in an ocean-wide band from 700 m to 3,000 m with a maximum temperature difference of 0.2 ..pi..C. These changes are sufficient to expand the water column by several centimeters. The historical temperature-salinity curve was apparently unchanged. Interannual changes in local water mass characteristics have been proposed previously. Perhaps it would be most surprising if no changes were seen to occur. What remains obscure is the significance of these changes and the extent to which they represent long-term climate trends, or merely the minor and random fluctuations to be expected in any complex fluid system.

  10. 33 CFR 334.1420 - Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing... (United States)


    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing range. 334.1420 Section 334.1420... AND RESTRICTED AREA REGULATIONS § 334.1420 Pacific Ocean off Orote Point, Apra Harbor, Island of Guam...

  11. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses (United States)

    Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin


    Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.

  12. Ocean Observations of Climate Change (United States)

    Chambers, Don


    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  13. Ocean Uses: Hawaii (PROUA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  14. New Editors Appointed for Sections of Journal of Geophysical Research (United States)


    New editors have been appointed for the Atmospheres, Biogeosciences, and Oceans sections of the Journal of Geophysical Research (JGR). Joost de Gouw (NOAA, Boulder, Colo.) and Renyi Zhang (Texas A&M, College Station) are filling the vacancies of retiring Atmospheres section editors John Austin and Jose Fuentes. De Gouw and Zhang join the continuing editors Steven Ghan and Yinon Rudich. Sara Pryor (Indiana University, Bloomington) is joining the Atmospheres section editorial board as an associate editor now; she will transition to editor in January 2010.

  15. Magnetization of lower oceanic crust and upper mantle (United States)

    Kikawa, E.


    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  16. OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products (United States)

    Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.


    The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively ( The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output ( with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability ( under the NGI Ecosystem Data Assembly Center (EDAC) project ( Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed ( this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS ( Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas

  17. 75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation (United States)


    .... SUMMARY: The EPA is designating the Guam Deep Ocean Disposal Site (G- DODS) as a permanent ocean dredged... administration of ocean disposal permits; (2) development and maintenance of a site monitoring program; (3... include: (1) Regulating quantities and types of material to be disposed, including the time, rates, and...

  18. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio


    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  19. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.


    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  20. A dynamically consistent analysis of circulation and transports in the southwestern Weddell Sea

    Directory of Open Access Journals (Sweden)

    M. Yaremchuk

    Full Text Available An inverse model is applied for the analysis of hydrographic and current meter data collected on the repeat WOCE section SR4 in the Weddell Sea in 1989–1992. The section crosses the Weddell Sea cyclonic gyre from Kapp Norvegia to the northern end of the Antarctic Peninsula. The concepts of geostrophy, conservation of planetary vorticity and hydrostatics are combined with advective balances of active and passive properties to provide a dynamically consistent circulation pattern. Our variational assimilation scheme allows the calculation of three-dimensional velocities in the section plane. Current speeds are small except along the coasts where they reach up to 12 cm/s. We diagnose a gyre transport of 34 Sverdrup which is associated with a poleward heat transport of 28×1012 W corresponding to an average heat flux of 15 Wm–2 in the Weddell Sea south of the transect. This exceeds the estimated local flux on the transect of 2 Wm–2. As the transect is located mostly in the open ocean, we conclude that the shelf areas contribute significantly to the ocean-atmosphere exchange and are consequently key areas for the contribution of the Weddell Sea to global ocean ventilation. Conversion of water masses occuring south of the section transform 6.6±1.1 Sv of the inflowing warm deep water into approximately equal amounts of Weddell Sea deep water and Weddell Sea bottom water. The volume transport of surface water equals in the in- and outflow. This means that almost all newly formed surface water is involved in the deep and bottom water formation. Comparison with the results obtained by pure velocity interpolation combined with a hydrographic data subset indicates major differences in the derived salt transports and the water mass conversion of the surface water. The differences can be explained by deviations in the structure of the upper ocean currents to which shelf areas contribute significantly. Additionally a

  1. Springer handbook of ocean engineering

    CERN Document Server

    Xiros, Nikolaos


    The handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes but is not limited to; an overview of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies, and ocean vehicles and automation. The handbook will be of interest to practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore, and marine engineering and naval architecture.

  2. Riding the ocean waves

    International Nuclear Information System (INIS)

    Yemm, Richard


    It is claimed that important developments over the past five years mean that there will be a range of competing pre-commercial wave-energy systems by 2002. The generation costs should be on a par with biomass schemes and offshore wind systems. The environmental advantages of wave energy are extolled. Ocean Power Delivery (OPD) have produced a set of criteria to be satisfied for a successful wave power scheme and these are listed. OPD is responsible for the snake-like Pelamis device which is a semi-submerged articulated series of cylindrical sections connected through hinged joints. How the wave-induced movement of the hinges is used to generate electricity is explained. The system is easily installed and can be completely removed at the end of its life

  3. Concentrations and isotopic compositions of neodymium in the eastern Indian Ocean and Indonesian straits (United States)

    Jeandel, Catherine; Thouron, Danièle; Fieux, Michèle


    Four profiles of Nd concentration and isotopic composition were determined at two stations in the eastern Indian Ocean along a north/south section between Bali and Port-Hedland and at two others in the Timor and Sumba straits. Neodymium concentrations increase with depth, between 7.2 pmol/L at the surface to 41.7 pmol/L close to the bottom. The ɛ Nd of the different water masses along the section are -7.2 ± 0.2 for the Indian Bottom Waters and -6.1 ± 0.2 for the Indian Deep Waters. The intermediate and thermocline waters are less radiogenic at st-10 than at st-20 (-5.3 ± 0.3 and -3.6 ± 0.2, respectively). In the Timor Passage and Sumba Strait, ɛ Nd of the Indonesian waters is -4.1 ± 0.2 and that of the North Indian Intermediate Waters is -2.6 ± 0.3. These distinct isotopic signals constrain the origins of the different water masses sampled in the eastern Indian Ocean. They fix the limit of the nonradiogenic Antarctic and Indian contributions to the southern part of the section whereas the northern part is influenced by radiogenic Indonesian flows. In addition, the neodymium isotopic composition suggests that in the north, deep waters are influenced by a radiogenic component originating from the Sunda Arch Slope flowing deeper than 1200 m, which was not documented previously. Mixing calculations assess the conservativity of ɛ Nd on the scale of an oceanic basin. The origin of the surprising radiogenic signal of the NIIW is discussed and could result from a remobilization of Nd sediment-hosted on the Java shelf, requiring important dissolved/particulate exchange processes. Such processes, occurring in specific areas, could play an important role in the world ocean Nd budget.

  4. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    NARCIS (Netherlands)

    Nisumaa, A.-M.; Pesant, S.; Bellerby, R.G.J.; Delille, B.; Middelburg, J.J.; Orr, J.C.; Riebesell, U.; Tyrrell, T.; Wolf-Gladrow, D.; Gattuso, J.P.


    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean

  5. Remote Sensing of Ocean Color (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  6. Arctic Ocean Model Intercomparison Using Sound Speed (United States)

    Dukhovskoy, D. S.; Johnson, M. A.


    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  7. Monitoring of ocean storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)


    It has been proposed that atmospheric CO2 accumulation could be slowed by capture of CO2 from point sources and subsequent storage of that CO2 in the ocean. If applied, such sequestration efforts would need to be monitored for compliance, effectiveness, and unintended consequences. Aboveground inspection and monitoring of facilities and practices, combined with ocean observations, could assure compliance with ocean sequestration guidelines and regulations. Ocean observations could be made using a variety of sensors mounted on moorings or underwater gliders. Long-term effectiveness and leakage to the atmosphere must be estimated from models, since on large spatial scales it will be impossible to observationally distinguish carbon stored by a project from variable concentrations of background carbon. Furthermore, the ocean naturally would absorb roughly 80% of fossil fuel CO2 released to the atmosphere within a millennium. This means that most of the CO2 sequestered in the ocean that leaks out to the atmosphere will be reabsorbed by the ocean. However, there is no observational way to distinguish remaining carbon from reabsorbed carbon. The science of monitoring unintended consequences in the deep ocean interior is at a primitive state. Little is understood about ecosystems of the deep ocean interior; and even less is understood about how those ecosystems would respond to added CO2. High priority research objectives should be (1) to improve our understanding of the natural ecosystems of the deep ocean, and (2) to improve our understanding of the response of these ecosystems to increased oceanic CO2 concentrations and decreased ocean pH.

  8. Ocean energy

    International Nuclear Information System (INIS)


    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  9. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity. (United States)

    Anbar, A D; Yung, Y L; Chavez, F P


    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  10. Proceedings of international workshop on utilization of nuclear power in oceans (N'ocean 2000)

    International Nuclear Information System (INIS)

    Yamaji, A.; Nariyama, N.; Sawada, K.


    Human beings and the ocean have maintained close relations for a long time. The ocean produced the life at very old time and human beings have been benefited by ocean, particularly in Japan that is surrounded by the ocean. In the utilization of nuclear power in ocean, Japan has been very active from the beginning of the development of nuclear power. The nuclear powered ship MUTSU has been developed and completed the experimental voyage. Besides the nuclear powered ship, we are using the ocean for the transportation of radioactive materials. This International Workshop aimed at offering further information about nuclear utilization in oceans such as icebreakers, deep-sea submarines, high speed carriers, floating plant, desalination and heating plants, radioactive materials transport ships, and so on. The discussions on the economical, environmental and scientific effects are included. The 36 of the present papers are indexed individually. (J.P.N.)

  11. Ocean Uses: California (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  12. Our Changing Oceans: All about Ocean Acidification

    International Nuclear Information System (INIS)

    Rickwood, Peter


    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment’s resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source

  13. Ocean transport and variability studies of the South Pacific, Southern, and Indian Oceans (United States)

    Church, John A.; Cresswell, G. R.; Nilsson, C. S.; Mcdougall, T. J.; Coleman, R.; Rizos, C.; Penrose, J.; Hunter, J. R.; Lynch, M. J.


    The objectives of this study are to analyze ocean dynamics in the western South Pacific and the adjacent Southern Ocean and the eastern Indian Ocean. Specifically, our objectives for these three regions are, for the South Pacific Ocean: (1) To estimate the volume transport of the east Australian Current (EAC) along the Australian coast and in the Tasman Front, and to estimate the time variability (on seasonal and interannual time scales) of this transport. (2) To contribute to estimating the meridional heat and freshwater fluxes (and their variability) at about 30 deg S. Good estimates of the transport in the western boundary current are essential for accurate estimates of these fluxes. (3) To determine how the EAC transport (and its extension, the Tasman Front and the East Auckland Current) closes the subtropical gyre of the South Pacific and to better determine the structure at the confluence of this current and the Antarctic Circumpolar Current. (4) To examine the structure and time variability of the circulation in the western South Pacific and the adjacent Southern Ocean, particularly at the Tasman Front. For the Indian Ocean: (5) To study the seasonal interannual variations in the strength of the Leeuwin Current. (6) To monitor the Pacific-Indian Ocean throughflow and the South Equatorial and the South Java Currents between northwest Australia and Indonesia. (7) To study the processes that form the water of the permanent oceanic thermocline and, in particular, the way in which new thermocline water enters the permanent thermocline in late winter and early spring as the mixed layer restratifies. For the Southern Ocean: (8) To study the mesoscale and meridional structure of the Southern Ocean between 150 deg E and 170 deg E; in particular, to describe the Antarctic frontal system south of Tasmania and determine its interannual variability; to estimate the exchanges of heat, salt, and other properties between the Indian and Pacific Oceans; and to investigate the

  14. Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems (United States)

    Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.


    For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.

  15. Ocean Station Vessel (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  16. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.


    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  17. Long-term oceanic changes prior the end-Triassic mass extinction

    DEFF Research Database (Denmark)

    Clemence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas Rudolph


    , the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed...... of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform...

  18. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    to the theoretical solution of the equatorial waves [Matsuno, 1966] and the phase speed of the baroclinic mode, the wave that has meridional current on the equator with a quasi-biweekly period is the anti-symmetric mixed Rossby-gravity wave. In the wave... and conclusions are given in section 5. 2. Field Experiment, Data, and Methods 2.1. MISMO Ocean Observation [8] The goal of MISMO was to observe atmospheric conditions and variability associated with intraseasonal disturbances and resulting ocean responses...

  19. Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon (United States)

    Grammer, G. L.; Fallon, S. J.; Izzo, C.; Wood, R.; Gillanders, B. M.


    To explore the transport of carbon into water masses from the surface ocean to depths of ∼ 1000 m in the southwest Pacific Ocean, we generated time series of radiocarbon (Δ14C) from fish otoliths. Otoliths (carbonate earstones) from long-lived fish provide an indirect method to examine the "bomb pulse" of radiocarbon that originated in the 1950s and 1960s, allowing identification of changes to distributions of 14C that has entered and mixed within the ocean. We micro-sampled ocean perch (Helicolenus barathri) otoliths, collected at ∼ 400- 500 m in the Tasman Sea, to obtain measurements of Δ14C for those depths. We compared our ocean perch Δ14C series to published otolith-based marine surface water Δ14C values (Australasian snapper (Chrysophrys auratus) and nannygai (Centroberyx affinis)) and to published deep-water values (800-1000 m; orange roughy (Hoplostethus atlanticus)) from the southwest Pacific to establish a mid-water Δ14C series. The otolith bomb 14C results from these different depths were consistent with previous water mass results in the upper 1500 m of the southwest Pacific Ocean (e.g. World Ocean Circulation Experiment and Geochemical Ocean Sections Study). A comparison between the initial Δ14C bomb pulse rise at 400-500 m suggested a ventilation lag of 5 to 10 yr, whereas a comparison of the surface and depths of 800-1000 m detailed a 10 to 20 yr lag in the time history of radiocarbon invasion at this depth. Pre-bomb reservoir ages derived from otolith 14C located in Tasman Sea thermocline waters were ∼ 530 yr, while reservoir ages estimated for Tasman Antarctic intermediate water were ∼ 730 yr.

  20. Ocean Physicochemistry versus Climate Change


    Góralski, Bogdan


    It is the dwindling ocean productivity which leaves dissolved carbon dioxide in the seawater. Its solubility is diminished by the rise in ocean water temperature (by one degree Celsius since 1910, according to IPCC). Excess carbon dioxide is emitted into the atmosphere, while its growing concentration in seawater leads to ocean acidification. Ocean acidification leading to lowering pH of surface ocean water remains an unsolved problem of science. My today’s lecture will mark an attempt at ...

  1. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean (United States)

    You, Yuzhu


    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow

  2. pH (on total scale) and other variables collected from surface undewray observations using Durafet pH electrode and Chloride Ion Selective Electrode and other instruments from NOAA Ship Ronald H. Brown in the North Atlantic Ocean and South Atnaltic Ocean from during the CLIVAR/GO-SHIP Repeat Section A13.5_2010 (EXPOCODE 33RO20100308) from 2010-03-08 to 2010-04-17 (NCEI Accession 0162231) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An automated underway pH system was operated in the hydro lab of NOAA Ship Ronald H. Brown during the CLIVAR/GO-SHIP Repeat Section A13.5 cruise in 2010. pH was...

  3. People and Oceans. (United States)

    NatureScope, 1988


    Discusses people's relationship with oceans, focusing on ocean pollution, use, and protective measures of the sea and its wildlife. Activities included are "Mythical Monsters"; "Globetrotters"; "Plastic in the Sea"; and "Sea of Many Uses." (RT)

  4. Ocean Disposal Sites (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  5. 3He and chlorofluorocarbons (CFC) in the Southern Ocean

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Jamous, D.; Mantisi, F.; Memery, L.; Universite Paris 6


    The distribution of 3 He across the Southern Ocean is depicted on the basis of a meridional section between Antarctica and South Africa measured during the INDIGO-3 survey (1988). A core of δ 3 He values above 10% is observed south of the Polar Front, associated with very low CFC concentrations. This 3 He enriched layer is documented from the GEOSECS and INDIGO 3 He data in the Southern Ocean. It is found at a density level around θ σ =27.8 in all the waters close to Antarctica (i.e. south of 50 degS). Its zonal distribution suggests that it is likely that it originates from the central/eastern Pacific. Hence, it provides an indication of the deep Pacific waters in the Antarctic Circumpolar Current, which are not easily detectable from the standard hydrographic parameters. (author). 19 refs.; 8 figs

  6. EPA Issues November 15, 2010 Memorandum: Integrated Reporting and Listing Decisions Related to Ocean Acidification (United States)

    The memorandum provides information to assist regions and states in preparing and reviewing Integrated Reports related to ocean acidification (OA) impacts under Sections 303(d), 305(b) and 314 of the Clean Water Act (CWA).

  7. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.


    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  8. Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty (United States)

    Romanou, Anastasia; Marshall, John


    Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.

  9. Measuring progress of the global sea level observing system (United States)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  10. The Ocean: Our Future (United States)

    Independent World Commission On The Oceans; Soares, Mario


    The Ocean, Our Future is the official report of the Independent World Commission on the Oceans, chaired by Mário Soares, former President of Portugal. Its aim is to summarize the very real problems affecting the ocean and its future management, and to provide imaginative solutions to these various and interlocking problems. The oceans have traditionally been taken for granted as a source of wealth, opportunity and abundance. Our growing understanding of the oceans has fundamentally changed this perception. We now know that in some areas, abundance is giving way to real scarcity, resulting in severe conflicts. Territorial disputes that threaten peace and security, disruptions to global climate, overfishing, habitat destruction, species extinction, indiscriminate trawling, pollution, the dumping of hazardous and toxic wastes, piracy, terrorism, illegal trafficking and the destruction of coastal communities are among the problems that today form an integral part of the unfolding drama of the oceans. Based on the deliberations, experience and input of more than 100 specialists from around the world, this timely volume provides a powerful overview of the state of our water world.

  11. The Role of Mid-Atlantic Ocean Data Portal in Supporting Ocean Planning

    Directory of Open Access Journals (Sweden)

    Richard G. Lathrop


    Full Text Available The Mid-Atlantic Regional Council on the Ocean (MARCO was established in 2009 to enhance the vitality of the region's ocean ecosystem and economy. One of MARCO's first action items was the development of the Mid-Atlantic Ocean Data Portal to serve as an on-line platform to engage stakeholders across the region with the objective of improving their understanding of how ocean resources and places are being used, managed, and conserved. A key component is the Marine Planner, an interactive map-based visualization and decision support tool. These types of on-line tools are becoming increasingly popular means of putting essential data and state-of-the-art visualization technology into the hands of the agencies, industry, community leaders, and stakeholders engaged in ocean planning. However, to be effective, the underlying geospatial data has to be seen as objective, comprehensive, up-to-date and regionally consistent. To meet this challenge, the portal utilizes a distributed network of web map services from credible and authoritative sources. Website analytics and feedback received during the review and comment period of the 2016 release of the Mid-Atlantic Ocean Action Plan confirm that the Data Portal is viewed as integral to this ocean planning process by the MidAtlantic Regional Planning Body and key stakeholders. While not all stakeholders may agree with specific planning decisions, there is broad based agreement on the need for better data and making access to that data widely available.

  12. Ocean heat content variability and change in an ensemble of ocean reanalyses (United States)

    Palmer, M. D.; Roberts, C. D.; Balmaseda, M.; Chang, Y.-S.; Chepurin, G.; Ferry, N.; Fujii, Y.; Good, S. A.; Guinehut, S.; Haines, K.; Hernandez, F.; Köhl, A.; Lee, T.; Martin, M. J.; Masina, S.; Masuda, S.; Peterson, K. A.; Storto, A.; Toyoda, T.; Valdivieso, M.; Vernieres, G.; Wang, O.; Xue, Y.


    Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0-300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993-2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997-2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997-2009. Annual time series of global and hemispheric OHC change for 0-700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization `shock' over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (±1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady

  13. 137Cs in the western South Pacific Ocean

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Wang Zhongliang


    The 137 Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by γ spectrometry using a low background Ge detector. The 137 Cs activities ranged from 1.4 to 2.3 Bq m -3 over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137 Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137 Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137 Cs inventory over the depth interval 100-1000 m increased from 400 ± 30 Bq m -2 to 560 ± 30 Bq m -2 during the period from 1973 to 1992. The total 137 Cs inventories in the western South Pacific Ocean ranged from 850 ± 70 Bq m -2 in the Coral Sea Basin to 1270 ± 90 Bq m -2 in the South Fiji Basin. Higher 137 Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137 Cs inventories were 1.9-4.5 times (2.9 ± 0.7 on average) and 1.7-4.3 times (3.1 ± 0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137 Cs deposition density in 10 o latitude by 10 deg. longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137 Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137 Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137 Cs from

  14. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.


    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  15. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.


    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  16. Cesium-137 contamination in Arctic Ocean ice

    International Nuclear Information System (INIS)

    Meese, D.; Tucker, W.; Cooper, L.; Larsen, I.L.; Grebmeier, J.


    Sea ice and ice-borne sediment samples were collected across the western Arctic basin on the joint US/Canada Arctic Ocean Section during August 1994. Samples were processed on board and returned at the completion of the cruise to Oak Ridge National Laboratory for analysis. Sediment was observed on the surface and in the ice from the southern ice limit in the Chukchi Sea to the North Pole. Preliminary results on the ice-borne sediment samples show widespread elevated concentrations of 137 Cs, ranging from 4.9 to 73 mBq g dry weight -1 . An analysis of the measurements indicate that sea ice is primary transport mechanism by which contaminated sediments are redistributed throughout the Arctic Ocean and possibly exported into the Greenland Sea and North Atlantic through Fram Strait. The wide variability in the ice-borne sediment concentrations of 137 Cs measured along the transect argues that contaminants incorporated on the Siberian shelves can follow much more variable trajectories than is suggested by mean ice drift calculations. 2 figs

  17. Toward a Sociology of Oceans. (United States)

    Hannigan, John


    Despite covering around 70 percent of the earth's surface, the ocean has long been ignored by sociology or treated as merely an extension of land-based systems. Increasingly, however, oceans are assuming a higher profile, emerging both as a new resource frontier, a medium for geopolitical rivalry and conflict, and a unique and threatened ecological hot spot. In this article, I propose a new sociological specialty area, the "sociology of oceans" to be situated at the interface between environmental sociology and traditional maritime studies. After reviewing existing sociological research on maritime topics and the consideration of (or lack of consideration) the sea by classic sociological theorists, I briefly discuss several contemporary sociological approaches to the ocean that have attracted some notice. In the final section of the paper, I make the case for a distinct sociology of oceans and briefly sketch what this might look like. One possible trajectory for creating a shared vision or common paradigm, I argue, is to draw on Deleuze and Guattari's dialectical theory of the smooth and the striated. Même s'il couvre 70% de la surface de la Terre, l'océan a été longtemps ignoré en sociologie ou traité comme une extension des systèmes terrestres. De plus en plus, toutefois, l'océan retient l'attention, en étant vu comme une nouvelle frontière en termes de ressources, un médium pour les rivalités et les conflits géopolitiques, et un lieu écologique névralgique et unique. Dans cet article, je propose une nouvelle spécialisation sociologique, la 'sociologie des océans', se situant dans l'interface entre la sociologie environnementale et les études maritimes traditionnelles. Après une recension de la recherche sociologique existante sur les sujets maritimes et la prise en compte (ou l'absence de prise en compte) de l'océan par les théoriciens de la sociologie classique, je discute brièvement quelques approches sociologiques contemporaines de l

  18. Bioenergetics of photoheterotrophic bacteria in the oceans. (United States)

    Kirchman, David L; Hanson, Thomas E


    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)


    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  20. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification


    Nisumaa Anne-Marin; Pesant Stephane; Bellerby Richard G J; Delille Bruno; Middelburg Jack J; Orr James C; Riebesell Ulf; Tyrrell Toby; Wolf-Gladrow Dieter A; Gattuso Jean-Pierre


    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additional...

  1. Coastal processes study at Ocean Beach, San Francisco, CA: summary of data collection 2004-2006 (United States)

    Barnard, Patrick L.; Eshleman, Jodi; Erikson, Li H.; Hanes, Daniel M.


    Ocean Beach in San Francisco, California, contains a persistent erosional section in the shadow of the San Francisco ebb tidal delta and south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. Coastal managers have been discussing potential mediation measures for over a decade, with little scientific research available to aid in decision making. The United States Geological Survey (USGS) initiated the Ocean Beach Coastal Processes Study in April 2004 to provide the scientific knowledge necessary for coastal managers to make informed management decisions. This study integrates a wide range of field data collection and numerical modeling techniques to document nearshore sediment transport processes at the mouth of San Francisco Bay, with emphasis on how these processes relate to erosion at Ocean Beach. The Ocean Beach Coastal Processes Study is the first comprehensive study of coastal processes at the mouth of San Francisco Bay.

  2. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Tilbrook, Bronte


    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 30 0 S to 50 0 S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing

  3. Progress toward a Km-scale neutrino detector in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Stokstad, R.G.


    The best particles for observing distant objects are photons and neutrinos. Because of the neutrino`s weak interaction cross section, detectors suitable for astronomy must be very large and well shielded from cosmic rays. Eventually, a detector with the order of a square km of effective area will be needed for systematic observations of distant point sources such as active galactic nuclei. Prototype detectors are currently being developed at several sites in the ocean, at Lake Baikal, and in Antarctica. This talk summarizes the status of the projects that use the deep ocean for the detector medium and shielding: DUMAND, NESTOR and ANTARES. Technical developments will be needed for a future km-scale detector; progress on one of these, a digital electronic system, is also described.

  4. Progress toward a Km-scale neutrino detector in the deep ocean

    International Nuclear Information System (INIS)

    Stokstad, R.G.


    The best particles for observing distant objects are photons and neutrinos. Because of the neutrino's weak interaction cross section, detectors suitable for astronomy must be very large and well shielded from cosmic rays. Eventually, a detector with the order of a square km of effective area will be needed for systematic observations of distant point sources such as active galactic nuclei. Prototype detectors are currently being developed at several sites in the ocean, at Lake Baikal, and in Antarctica. This talk summarizes the status of the projects that use the deep ocean for the detector medium and shielding: DUMAND, NESTOR and ANTARES. Technical developments will be needed for a future km-scale detector; progress on one of these, a digital electronic system, is also described

  5. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A


    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  6. 33 CFR 329.12 - Geographic and jurisdictional limits of oceanic and tidal waters. (United States)


    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Geographic and jurisdictional limits of oceanic and tidal waters. 329.12 Section 329.12 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DEFINITION OF NAVIGABLE WATERS OF THE UNITED STATES...

  7. Ocean deoxygenation in a warming world. (United States)

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas


    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  8. The ocean planet. (United States)

    Hinrichsen, D


    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  9. The Southern Ocean's role in ocean circulation and climate transients (United States)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.


    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  10. Operational Ocean Modelling with the Harvard Ocean Prediction System (United States)

    2008-11-01 TNO-rapportnummer TNO-DV2008 A417 Opdrachtnummer Datum november 2008 Auteur (s) dr. F.P.A. Lam dr. ir. M.W. Schouten dr. L.A. te Raa...area of theory and implementation of numerical schemes and parameterizations, ocean models have grown from experimental tools to full-blown ocean...sound propagation through mesoscale features using 3-D coupled mode theory , Thesis, Naval Postgraduate School, Monterey, USA. 1992. [9] Robinson

  11. Environmental Studies, Section V: Oceanography. Learning Carrel Lesson 6.15: Pollution of the Oceans. Study Guide and Script. (United States)

    Boyer, Robert; And Others

    This is one of a series of 14 instructional components of a semester-long, environmental earth science course developed for undergraduate students. The course includes lectures, discussion sessions, and individual learning carrel lessons. Presented are the study guide and script for a learning carrel lesson on pollution of the oceans. The slides,…

  12. 77 FR 15052 - National Ocean Council-National Ocean Policy Draft Implementation Plan (United States)


    ... charge for Federal agencies to implement the National Ocean Policy, the National Ocean Council developed... dollars a year to the national economy, and are essential to public health and national security. Next...

  13. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection (United States)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.


    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  14. Oceanic Channel of the IOD-ENSO teleconnection over the Indo-Pacific Ocean (United States)

    Yuan, Dongliang; Wang, Jing; Zhao, Xia; Zhou, Hui; Xu, Tengfei; Xu, Peng


    The lag correlations of observations and model simulated data that participate the Coupled Model Intercomparison Project phase-5 (CMIP5) are used to study the precursory teleconnection between the Indian Ocean Dipole (IOD) and the Pacific ENSO one year later through the Indonesian seas. The results suggest that Indonesian Throughflow (ITF) play an important role in the IOD-ENSO teleconnection. Numerical simulations using a hierarchy of ocean models and climate coupled models have shown that the interannual sea level depressions in the southeastern Indian Ocean during IOD force enhanced ITF to transport warm water of the Pacific warm pool to the Indian Ocean, producing cold subsurface temperature anomalies, which propagate to the eastern equatorial Pacific and induce significant coupled ocean-atmosphere evolution. The teleconnection is found to have decadal variability. Similar decadal variability has also been identified in the historical simulations of the CMIP5 models. The dynamics of the inter-basin teleconnection during the positive phases of the decadal variability are diagnosed to be the interannual variations of the ITF associated with the Indian Ocean Dipole (IOD). During the negative phases, the thermocline in the eastern equatorial Pacific is anomalously deeper so that the sea surface temperature anomalies in the cold tongue are not sensitive to the thermocline depth changes. The IOD-ENSO teleconnection is found not affected significantly by the anthropogenic forcing.

  15. Ocean heat content variability in an ensemble of twentieth century ocean reanalyses (United States)

    de Boisséson, Eric; Balmaseda, Magdalena Alonso; Mayer, Michael


    This paper presents a ten-member ensemble of twentieth century Ocean ReAnalyses called ORA-20C. ORA-20C assimilates temperature and salinity profiles and is forced by the ECMWF twentieth century atmospheric reanalysis (ERA-20C) over the 1900-2010 period. This study attempts to identify robust signals of ocean heat content change in ORA-20C and detect contamination by model errors, initial condition uncertainty, surface fluxes and observing system changes. It is shown that ORA-20C trends and variability in the first part of the century result from the surface fluxes and model drift towards a warmer mean state and weak meridional overturning circulation. The impact of the observing system in correcting the mean state causes the deceleration of the warming trend and alters the long-term climate signal. The ensemble spread reflects the long-lasting memory of the initial conditions and the convergence of the system to a solution compatible with surface fluxes, the ocean model and observational constraints. Observations constrain the ocean heat uptake trend in the last decades of the twentieth century, which is similar to trend estimations from the post-satellite era. An ocean heat budget analysis attributes ORA-20C heat content changes to surface fluxes in the first part of the century. The heat flux variability reflects spurious signals stemming from ERA-20C surface fields, which in return result from changes in the atmospheric observing system. The influence of the temperature assimilation increments on the heat budget is growing with time. Increments control the most recent ocean heat uptake signals, highlighting imbalances in forced reanalysis systems in the ocean as well as in the atmosphere.

  16. Preventing blue ocean from turning into red ocean: A case study of a room escape game


    Gündüz, Şafak


    The weariness of competitive business environment has made it one of the hot topics of recent business management literature to find ways to escape from the intense Red Ocean by creating a Blue Ocean where there is no competition. Rene and Mauborgne’s Blue Ocean Strategy (2004) provides a reasonable solution for this issue. Blue Ocean Strategy studies demonstrate that every blue ocean will eventually turn red due to fast entries into the market and the literature leaves a gap in understanding...

  17. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy


    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  18. Evidences of Seasonal Variation in Altimetry Derived Ocean Tides in the Subarctic Ocean

    Directory of Open Access Journals (Sweden)

    Hok Sum Fok


    Full Text Available While the barotropic ocean tides in the deep ocean are well modeled to ~2 cm RMS, accurate tidal prediction in the ice-covered polar oceans and near coastal regions remain elusive. A notable reason is that the most accurate satellite altimeters (TOPEX/Jason-1/-2, whose orbits are optimized to minimize the tidal aliasing effect, have spatial coverage limited to largely outside of the polar ocean. Here, we update the assessment of tidal models using 7 contemporary global and regional models, and show that the altimetry sea surface height (SSH anomaly residual after tidal correction is 9 - 12 cm RMS in the Subarctic Ocean. We then address the hypothesis whether plausible evidence of variable tidal signals exist in the seasonally ice-covered Subarctic Ocean, where the sea ice cover is undergoing rapid thinning. We first found a difference in variance reduction for multi-mission altimeter SSH anomaly residuals during the summer and winter seasons, with the residual during winter season 15 - 30% larger than that during the summer season. Experimental seasonal ocean tide solutions derived from satellite altimetry reveals that the recovered winter and summer tidal constituents generally differ by a few cm in amplitude and tens of degrees in phase. Relatively larger seasonal tidal patterns, in particular for M2, S2 and K1 tides, have been identified in the Chukchi Sea study region near eastern Siberia, coincident with the seasonal presence and movement of sea ice.

  19. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria


    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  20. Oceanic ferromanganese deposits: Future resources and past-ocean recorders

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Nair, R.R.; Parthiban, G.; Pattan, J.N.

    decades following the Mero's publication witnessed global "Nodule Rush". The technological leaders of those years like US, Germany, Japan, France, New-Zealand, and USSR have conducted major scientific expeditions to the Central Pacific to map...-Mn-(Cu+Ni+Co) in ferromanganese deposits from the Central Indian Ocean (Source: Jauhari, 1987). OCEANIC FERROMANGANESE DEPOSITS 45 DISTRIBUTION The nodules occur invariably in almost all the deep-sea basins witnessing low sedimentation rates. But abundant ore grade deposits...

  1. The Vertical Profile of Ocean Mixing (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.


    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  2. Ocean Quality


    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis


    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  3. Ocean Research - Perspectives from an international Ocean Research Coordination Network (United States)

    Pearlman, Jay; Williams, Albert, III


    The need for improved coordination in ocean observations is more urgent now given the issues of climate change, sustainable food sources and increased need for energy. Ocean researchers must work across disciplines to provide policy makers with clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions asked over the last 100 years at the time and space scales that are relevant. Programs like GLOBEC moved us forward but we are still challenged by the disciplinary divide. Interdisciplinary problem solving must be addressed not only by the exchange of data between the many sides, but through levels where questions require day-to-day collaboration. A National Science Foundation-funded Research Coordination Network (RCN) is addressing approaches for improving interdisciplinary research capabilities in the ocean sciences. During the last year, the RCN had a working group for Open Data led by John Orcutt, Peter Pissierssens and Albert Williams III. The teams has focused on three areas: 1. Data and Information formats and standards; 2. Data access models (including IPR, business models for open data, data policies,...); 3. Data publishing, data citation. There has been a significant trend toward free and open access to data in the last few years. In 2007, the US announced that Landsat data would be available at no charge. Float data from the US (NDBC), JCOMM and OceanSites offer web-based access. The IODE is developing its Ocean Data Portal giving immediate and free access to ocean data. However, from the aspect of long-term collaborations across communities, this global trend is less robust than might appear at the surface. While there are many standard data formats for data exchange, there is not yet widespread uniformity in their adoption. Use of standard data formats can be encouraged in several ways: sponsors of

  4. Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, E.S.; Antrim, L.D.; Pinza, M.R.; Gardiner, W.W.; Kohn, N.P.; Gruendell, B.D.; Mayhew, H.L.; Word, J.Q.; Rosman, L.B. [Battelle Marine Sciences Laboratory, Sequim, Washington (United States)


    The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.

  5. Blue Ocean Thinking (United States)

    Orem, Donna


    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  6. Communicating Ocean Acidification (United States)

    Pope, Aaron; Selna, Elizabeth


    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  7. A simple model of the effect of ocean ventilation on ocean heat uptake (United States)

    Nadiga, Balu; Urban, Nathan


    Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.

  8. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay


    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  9. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses (United States)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun


    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have

  10. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations (United States)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll


    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  11. Smithsonian Ocean Portal | Find Your Blue (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor life. These two are in the middle of a courtship. VIEW ARCHIVE Ocean Optimism Success Stories in Ocean

  12. Ocean Thermal Extractable Energy Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew [Lockheed Martin Corporation, Bethesda, MD (United States)


    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  13. Climate change feedbacks on future oceanic acidification

    International Nuclear Information System (INIS)

    McNeil, Ben I.; Matear, Richard J.


    Oceanic anthropogenic CO 2 uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO 2 -related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by ∼15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO 2 solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO 2 levels, not climate change induced modifications in the ocean

  14. Transport of Antarctic bottom water through the Kane Gap, tropical NE Atlantic Ocean

    NARCIS (Netherlands)

    Morozov, E.G.; Tarakanov, R.Y.; van Haren, H.


    We study low-frequency properties of the Antarctic Bottom Water (AABW) flow through the Kane Gap (9° N) in the Atlantic Ocean. The measurements in the Kane Gap include five visits with CTD (Conductivity-Temperature-Depth) sections in 2009–2012 and a year-long record of currents on a mooring using

  15. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    Directory of Open Access Journals (Sweden)

    A.-M. Nisumaa


    Full Text Available The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1 gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2 transform the information into common framework, and (3 make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS and the European Project on Ocean Acidification (EPOCA. A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA – The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

    Data access:

  16. The deep ocean under climate change (United States)

    Levin, Lisa A.; Le Bris, Nadine


    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  17. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations (United States)

    Jessen, P. G.; Chen, S.


    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  18. Tides. Ocean Related Curriculum Activities. (United States)

    Marrett, Andrea

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  19. Pteropod Ecology and Physiology in Relation to Natural Variability in Carbonate Chemistry (United States)

    Lawson, G. L.; Maas, A. E.; Wang, A. Z.; Bergan, A. J.; Wiebe, P. H.; Blanco-Bercial, L.; Lavery, A.; Copley, N. J.


    The thecosomatous pteropods are a group of aragonite-shelled zooplankton thought to be particularly vulnerable to ocean acidification. We seek to gain insight into both basic questions of pteropod biology and potential responses to ocean acidification by combining field sampling with shipboard experimental manipulations, capitalizing on natural spatial variability in modern-day carbonate chemistry between and within the Atlantic and Pacific Oceans. Two cruises were conducted, in 2011 and 2012, along open-ocean transects running between 35 and 50°N in the NW Atlantic and NE Pacific; strong differences in environmental conditions exist between these regions, as well as along the Pacific transect, notably in aragonite compensation and oxygen minimum depths. The transects overlapped with portions of WOCE/CLIVAR lines A20 and P17N and measurements of carbonate chemistry provided insight into rates of chemical change as well as information on the pteropods' chemical environment. The abundance and diversity of pteropods varied substantially within and between the study regions. Depth-stratified net sampling during day and night indicated that multiple pteropod species undertook the typical diel vertical migration employed by many zooplankton species as an anti-predation strategy; the amplitude of this migration differed among species as well as within sub-populations of certain cosmopolitan species found in both oceans. Shipboard experiments of short-duration (<18 hrs, intended to mimic the duration of diel vertical migrations to depth) exposing eight species of pteropod to high CO2 and low O2 found no effect of CO2 alone on metabolic rate and an effect of low O2 or interactive effect of CO2 and O2 only in two Atlantic species not known to naturally encounter low oxygen in their biogeographic range. The implications of these various findings to our understanding of the response of pteropods to environmental change will be discussed.

  20. Ocean Acidification Product Suite (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  1. ocean_city_md.grd (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  2. Ocean Disposal Site Monitoring (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  3. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.


    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  4. California Ocean Uses Atlas (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  5. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  6. Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle (United States)

    Perez, Americus d. C.; Faustino-Eslava, Decibel V.; Yumul, Graciano P.; Dimalanta, Carla B.; Tamayo, Rodolfo A.; Yang, Tsanyao Frank; Zhou, Mei-Fu


    The volcanic section of the Middle Oligocene Amnay Ophiolite in Mindoro, Philippines has previously been shown to be of normalmid-oceanic ridge basalt (NMORB) composition. Here we report for the first time an enriched mantle component that is additionally recorded in this crustal section. New whole rock major and trace element data are presented for nine mafic volcanic rocks from a section of the ophiolite that has not been previously examined. These moderately evolved tholeiitic basalts were found to have resulted from the bulk mixing of ˜10% ocean island basalt components with depleted mantle. Drawing together various geochemical characteristics reported for different rock suites taken as representatives of the South China Sea crust, including the enriched MORB (EMORB) and NMORB of the East Taiwan Ophiolite, the NMORB from previous studies of the Amnay Ophiolite and the younger ocean floor eruptives of the Scarborough Seamount-Reed Bank region, a veined mantle model is proposed for the South China Sea mantle. The NMORB magmatic products are suggested to have been derived from the more depleted portions of the mantle whereas the ocean island basalt (OIB) and EMORB-type materials from the mixing of depleted and veined/enriched mantle regions.

  7. Downscaling Ocean Conditions: Initial Results using a Quasigeostrophic and Realistic Ocean Model (United States)

    Katavouta, Anna; Thompson, Keith


    Previous theoretical work (Henshaw et al, 2003) has shown that the small-scale modes of variability of solutions of the unforced, incompressible Navier-Stokes equation, and Burgers' equation, can be reconstructed with surprisingly high accuracy from the time history of a few of the large-scale modes. Motivated by this theoretical work we first describe a straightforward method for assimilating information on the large scales in order to recover the small scale oceanic variability. The method is based on nudging in specific wavebands and frequencies and is similar to the so-called spectral nudging method that has been used successfully for atmospheric downscaling with limited area models (e.g. von Storch et al., 2000). The validity of the method is tested using a quasigestrophic model configured to simulate a double ocean gyre separated by an unstable mid-ocean jet. It is shown that important features of the ocean circulation including the position of the meandering mid-ocean jet and associated pinch-off eddies can indeed be recovered from the time history of a small number of large-scales modes. The benefit of assimilating additional time series of observations from a limited number of locations, that alone are too sparse to significantly improve the recovery of the small scales using traditional assimilation techniques, is also demonstrated using several twin experiments. The final part of the study outlines the application of the approach using a realistic high resolution (1/36 degree) model, based on the NEMO (Nucleus for European Modelling of the Ocean) modeling framework, configured for the Scotian Shelf of the east coast of Canada. The large scale conditions used in this application are obtained from the HYCOM (HYbrid Coordinate Ocean Model) + NCODA (Navy Coupled Ocean Data Assimilation) global 1/12 degree analysis product. Henshaw, W., Kreiss, H.-O., Ystrom, J., 2003. Numerical experiments on the interaction between the larger- and the small-scale motion of

  8. The deep ocean under climate change. (United States)

    Levin, Lisa A; Le Bris, Nadine


    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  9. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)


    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes

  10. Ocean Sediment Thickness Contours (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  11. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro


    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  12. A simple model of the effect of ocean ventilation on ocean heat uptake

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Series of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.

  13. Ship track for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Life on the Edge 2003: Exploring Deep Ocean Habitats" expedition sponsored by the National Oceanic and Atmospheric...

  14. A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean (United States)

    Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew


    Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.

  15. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone (United States)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.


    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  16. Alteration of submarine volcanic rocks in oxygenated Archean oceans (United States)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.


    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  17. Ocean sea-ice modelling in the Southern Ocean around Indian

    Indian Academy of Sciences (India)

    An eddy-resolving coupled ocean sea-ice modelling is carried out in the Southern Ocean region (9∘–78∘E; 51∘–71∘S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7∘E; 70.7∘S) and Bharati (76.1∘E; 69.4∘S). The realistic simulation of the surface variables, namely, sea ...

  18. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.


    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  19. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.


    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  20. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.


    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  1. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others


    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  2. Numerical Modeling of Ocean Circulation (United States)

    Miller, Robert N.


    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  3. Ocean Sense: Student-Led, Real-Time Research at the Bottom of the Ocean - Without Leaving the Classroom (United States)

    Pelz, M.; Hoeberechts, M.; McLean, M. A.; Riddell, D. J.; Ewing, N.; Brown, J. C.


    This presentation outlines the authentic research experiences created by Ocean Networks Canada's Ocean Sense program, a transformative education program that connects students and teachers with place-based, real-time data via the Internet. This program, developed in collaboration with community educators, features student-centric activities, clearly outlined learning outcomes, assessment tools and curriculum aligned content. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. Data from these observatories are fundamental to lessons and activities in the Ocean Sense program. Marketed as Ocean Sense: Local observations, global connections, the program introduces middle and high school students to research methods in biology, oceanography and ocean engineering. It includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. Connection to place and local relevance of the program is enhanced through an emphasis on Indigenous and place-based knowledge. The program promotes of cross-cultural learning with the inclusion of Indigenous knowledge of the ocean. Ocean Sense provides students with an authentic research experience by connecting them to real-time data, often within their own communities. Using the freely accessible data portal, students can curate the data they need from a range of instruments and time periods. Further, students are not restricted to their local community; if their question requires a greater range of

  4. Climate change feedbacks on future oceanic acidification


    McNeil, Ben I.; Matear, Richard J.


    Oceanic anthropogenic CO2 uptake will decrease both the pH and the aragonite saturation state (Ωarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Ωarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO2-related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean ...

  5. Ship Sensor Observations for The Hidden Ocean Arctic 2005 - Office of Ocean Exploration (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the US Coast Guard icebreaker Healy during the "The Hidden Ocean Arctic 2005" expedition sponsored by the...

  6. Ocean energy

    International Nuclear Information System (INIS)


    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  7. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  8. Electromagnetic exploration of the oceanic mantle. (United States)

    Utada, Hisashi


    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques.

  9. Ocean plankton. Structure and function of the global ocean microbiome. (United States)

    Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer


    Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  10. NCEI Standard Product: World Ocean Database (WOD) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Ocean Database (WOD) is the world's largest publicly available uniform format quality controlled ocean profile dataset. Ocean profile data are sets of...

  11. The Indian Ocean as a Connector (United States)

    Durgadoo, J. V.; Biastoch, A.; Boning, C. W.


    The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?

  12. Multidecadal-scale adjustment of the ocean mixed layer heat budget in the tropics: examining ocean reanalyses (United States)

    Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming


    Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends

  13. Ocean Uses: Oregon and Washington (PROUA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  14. Ocean Networks Canada's "Big Data" Initiative (United States)

    Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.


    Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and

  15. Equatorial Indian Ocean productivity during the last 33 kyr and possible linkage to Westerly Jet variability

    Digital Repository Service at National Institute of Oceanography (India)

    Punyu, V.R.; Banakar, V.K.; Garg, A.

    The top 1 m radiocarbon dated section of a 5.6 m long sediment core retrieved from the Equatorial Indian Ocean is studied for productivity changes in response to climate variability that have taken place during the last ~33 kyr. The robust...

  16. ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change (United States)

    Weiss, N.; Wood, J. H.


    The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.

  17. Energy from rivers and oceans

    International Nuclear Information System (INIS)



    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  18. HYbrid Coordinate Ocean Model (HYCOM): Global (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...

  19. Satellite Ocean Color Sensor Design Concepts and Performance Requirements (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan


    800 nanometers with three additional discrete near infrared (NIR) and shortwave infrared (SWIR) ocean aerosol correction bands. Also, to avoid drift in sensor sensitivity from being interpreted as environmental change, climate change research requires rigorous monitoring of sensor stability. For SeaWiFS, monthly lunar imaging accurately tracked stability at an accuracy of approximately 0.1% that allowed the data to be used for climate studies [2]. It is now acknowledged by the international community that future missions and sensor designs need to accommodate lunar calibrations. An overview of ocean color remote sensing and a review of the progress made in ocean color remote sensing and the variety of research applications derived from global satellite ocean color data are provided. The purpose of this chapter is to discuss the design options for ocean color satellite radiometers, performance and testing criteria, and sensor components (optics, detectors, electronics, etc.) that must be integrated into an instrument concept. These ultimately dictate the quality and quantity of data that can be delivered as a trade against mission cost. Historically, science and sensor technology have advanced in a "leap-frog" manner in that sensor design requirements for a mission are defined many years before a sensor is launched and by the end of the mission, perhaps 15-20 years later, science applications and requirements are well beyond the capabilities of the sensor. Section 3 provides a summary of historical mission science objectives and sensor requirements. This progression is expected to continue in the future as long as sensor costs can be constrained to affordable levels and still allow the incorporation of new technologies without incurring unacceptable risk to mission success. The IOCCG Report Number 13 discusses future ocean biology mission Level-1 requirements in depth.

  20. Crustal Ages of the Ocean Floor - Poster (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  1. Modeling Europa's Ice-Ocean Interface (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.


    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  2. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification. (United States)

    Munday, Philip L


    Ocean acidification, caused by the uptake of additional carbon dioxide (CO 2 ) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change 5 , 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO 2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this

  3. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy (United States)

    Altalo, M. G.


    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  4. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)


    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  5. One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Z; Xi, P


    A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.

  6. Ocean acidification in a geoengineering context (United States)

    Williamson, Phillip; Turley, Carol


    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  7. Southern Ocean carbon-wind stress feedback (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason


    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  8. Aperture averaging in strong oceanic turbulence (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya


    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  9. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  10. 78 FR 5717 - Safety Zone; Military Ocean Terminal Concord Safety Zone, Suisun Bay, Military Ocean Terminal... (United States)


    ...-AA00 Safety Zone; Military Ocean Terminal Concord Safety Zone, Suisun Bay, Military Ocean Terminal... Guard is establishing a safety zone in the navigable waters of Suisun Bay near Military Ocean Terminal Concord, CA in support of military onload and offload operations. This safety zone is established to...

  11. Topography and distribution of central graben in Okinawa Trough Miyoko Section (United States)

    Luan, X.; Qin, Y.


    Based on geophysical data obtained by R/V "Science 1¡± of Institute of Oceanology, Chinese Academy of Sciences (IOCAS) and R/V "Xiangyanghong 9¡± of State Oceanic Administration (SOA) in a 200 km long area of Okinawa Trough Miyoko Section recent years, we show the topography and distribution of central graben in great detail for the first time. Central graben within Miyoko Section is separated into 9 discontinuous segments by strike slip faults, from north to south namely Laoshan, Huangdao, Jiaonan, Jiaozhou, Pingdu, Jimo, Laixi, Chengyang and Licang Segment respectively, and shows a dextral echelon pattern in general. By cross shapes, three types of central graben can be distinguished, namely U type, V type and half graben. U type is the most common central graben among those found in our study area. The depth of central graben is from 40 m to 250 m, wide from 6 km to 14 km, length from 17 km to 33 km. The largest water depth of Miyoko Section is 2244.4 m, found at the east side of north end bottom of Chengyang Segment (125°19.3'E, 25°49.8'N). Within the dextral echelon pattern, Huangdao, Chengyang, Licang Segment moves to the west relatively to Laoshan, Laixi and Chengyang Segment respectively, showing a local sinistral echelon pattern. The striking direction of central graben is N60°E roughly, that is 15° more to the east comparing to the striking of the Okinawa Trough. There is 6 km long overlap distance between Laixi Segment and Chengyang Segments, simile with an overlap spreading center in the Mid-Ocean Ridge. Two volcanic chains, the central axis volcanic chain which located within the central graben and the island arc volcanic chain which located at the west side of Ryukyu Island Arc are clearly found in this section. The island volcanic chain has a good continuity, but the axis volcanic chain is sporadic comparatively. From seismic profile, we understand that the development of central axis volcanic chain is after the development of central graben

  12. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.


    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  13. Ocean Science for Decision-Making: Current Activities of the National Research Council's Ocean Studies Board (United States)

    Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.


    The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.

  14. Building a Global Ocean Science Education Network (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.


    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See

  15. The oceanic sediment barrier

    International Nuclear Information System (INIS)

    Francis, T.J.G.; Searle, R.C.; Wilson, T.R.S.


    Burial within the sediments of the deep ocean floor is one of the options that have been proposed for the disposal of high-level radioactive waste. An international research programme is in progress to determine whether oceanic sediments have the requisite properties for this purpose. After summarizing the salient features of this programme, the paper focuses on the Great Meteor East study area in the Northeast Atlantic, where most oceanographic effort has been concentrated. The geological geochemical and geotechnical properties of the sediments in the area are discussed. Measurements designed to determine the rate of pore water movement through the sediment column are described. Our understanding of the chemistry of both the solid and pore-water phases of the sediment are outlined, emphasizing the control that redox conditions have on the mobility of, for example, naturally occurring manganese and uranium. The burial of instrumented free-fall penetrators to depths of 30 m beneath the ocean floor is described, modelling one of the methods by which waste might be emplaced. Finally, the nature of this oceanic environment is compared with geological environments on land and attention is drawn to the gaps in our knowledge that must be filled before oceanic burial can be regarded as an acceptable disposal option. (author)

  16. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge (United States)

    McLean, M. A.; Brown, J.; Hoeberechts, M.


    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  17. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. (United States)

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J


    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  18. Interactions of the tropical oceans. Rev.ed.

    International Nuclear Information System (INIS)

    Latif, M.; Barnett, T.P.


    We have investigated the interactions of the tropical oceans on interannual time scales by conducting a series of uncoupled atmospheric and oceanic general circulation experiments and hybrid coupled model simulations. Our results illustrate the key role of the El Nino/Southern Oscillation (ENSO) phenomenon in generating interannual variability in all three tropical ocean basins. Sea surface temperature (SST) anomalies in the tropical Pacific force via a changed atmospheric circulation SST anomalies of the same sign in the Indian Ocean and SST anomalies of the opposite sign in the Atlantic. However, although air-sea interactions in the Indian and Atlantic Oceans are much weaker than those in the Pacific, they contribute significantly to the variability in these two regions. The role of these air-sea interactions is mainly that of an amplifyer by which the ENSO induced signals are enhanced in ocean and atmosphere. This process is particularly important in the tropical Atlantic region. We investigated also whether ENSO is part of a zonally propagating ''wave'' which travels around the globe with a time scale of several years. Consistent with observations, the upper ocean heat content in the various numerical simulations seems to propagate slowly around the globe. SST anomalies in the Pacific Ocean introduce a global atmospheric response which in turn forces variations in the other tropical oceans. Since the different oceans exhibit different response characteristics to low-frequency wind changes, the individual tropical ocean responses can add up coincidentally to look like a global wave, and that appears to be the situation. In particular, no evidence is found that the Indian Ocean can significantly affect the ENSO cycle in the Pacific. Finally, the potential for climate forecasts in the Indian and Atlantic Oceans appears to be enhanced if one includes, in a coupled way, remote influences from the Pacific. (orig.)

  19. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications (United States)

    Johnson, G. C.; Chambers, D. P.


    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  20. Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization (United States)

    Westberry, Toby K.; Behrenfeld, Michael J.; Milligan, Allen J.; Doney, Scott C.


    Significant effort has been invested in understanding the role of iron in marine ecosystems over the past few decades. What began as shipboard amendment experiments quickly grew into a succession of in situ, mesoscale ocean iron fertilization (OIF) experiments carried out in all three high nutrient low chlorophyll (HNLC) regions of the world ocean. Dedicated process studies have also looked at regions of the ocean that are seasonally exposed to iron-replete conditions as natural OIF experiments. However, one problem common to many OIF experiments is determination of biological response beyond the duration of the experiment (typicallyfloristic shifts in the phytoplankton community. Further, a consistent pattern of decreased satellite fluorescence efficiency (FLH:Chl or ϕf) following OIF is observed that is in agreement with current understanding of phytoplankton physiological responses to relief from iron stress. The current study extends our ability to retrieve phytoplankton physiology from space-based sensors, strengthens the link between satellite fluorescence and iron availability, and shows that satellite ocean color analyses provide a unique tool for monitoring OIF experiments.

  1. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick


    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  2. Dynamics of a Snowball Earth ocean. (United States)

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli


    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  3. IODE OceanTeacher


    Brown, M.; Pikula, L.; Reed, G.


    The OceanTeacher website and CD-ROM publication have proven to be powerful and flexible tools for marine data and information management training. There are two segments of OceanTeacher: marine data management and marine information management. The IODE trainers have created an encyclopedic Resource Kit covering all aspects of the subjects. Through continual updates, the Kit provides the latest versions of popular public-domain software, documentation for global and regional datasets, docu...

  4. Depth of origin of ocean-circulation-induced magnetic signals (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik


    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  5. Life cycle assessment of ocean energy technologies




    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  6. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  7. Deep Ocean Contribution to Sea Level Rise (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.


    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  8. Global Ocean Carbon and Biogeochemistry Coordination (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur


    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  9. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms (United States)

    Williams, P.


    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database ( This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  10. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling?

    Directory of Open Access Journals (Sweden)

    A. Bory


    Full Text Available Atmospheric inputs to the ocean of dust originating from Africa are compared with downward dust flux in the oceanic water column. Atmospheric fluxes were estimated using remote-sensing-derived dust optical thickness and parameters from a transport/deposition model (TM2z. Oceanic fluxes were measured directly over/in two regions of contrasting primary productivity of the northeastern tropical Atlantic (one mesotrophic and one oligotrophic, located at about 500 and 1500 km off Mauritania underlying the offshore dust plume. In both regions, estimates of annual atmospheric dust inputs to the ocean surface are lower than, but of the same order of magnitude as, oceanic fluxes (49.5 and 8.8 mg.m-2 .d-1 in the mesotrophic and oligotrophic regions. Part of this mismatch may reflect both a general flaw in the dust grain size distribution used in transport models, which likely underestimates large particles, and/or lateral advection to each region of dustier surface waters from upstream, where dust deposition is higher. Higher-frequency temporal coupling between atmospheric and oceanic fluxes seems to be primary-productivity dependent, as hypothesized in previously reported studies.Key words. Atmospheric composition and structure (aerosols and particles; geochemical cycles Oceanography: biological and chemical (geochemistry

  11. Satellite Ocean Heat Content Suite (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  12. Response of Halimeda to ocean acidification: Field and laboratory evidence (United States)

    Robbins, L.L.; Knorr, P.O.; Hallock, P.


    Rising atmospheric pCO2 levels are changing ocean chemistry more dramatically now than in the last 20 million years. In fact, pHvalues of the open ocean have decreased by 0.1 since the 1800s and are predicted to decrease 0.1-0.4 globally in the next 90 years. Ocean acidification will affect fundamental geochemical and biological processes including calcification and carbonate sediment production. The west Florida shelf is a natural laboratory to examine the effects of ocean acidification on aragonite production by calcareous green algae. Scanning electron microscopy (SEM) of crystal morphology of calcifying organisms reveals ultrastructural details of calcification that occurred at different saturation states. Comparison of archived and recent specimens of calcareous green alga Halimeda spp. from the west Florida shelf, demonstrates crystal changes in shape and abundance over a 40+ year time span. Halimeda crystal data from apical sections indicate that increases in crystal concentration and decreases in crystal width occurred over the last 40+ years. Laboratory experiments using living specimens of Halimeda grown in environments with known pH values were used to constrain historical observations. Percentages of organic and inorganic carbon per sample weight of pooled species did not significantly change. However, individual species showed decreased inorganic carbon and increased organic carbon in more recent samples, although the sample sizes were limited. These results indicate that the effect of increased pCO 2 and decreased pH on calcification is reflected in the crystal morphology of this organism. More data are needed to confirm the observed changes in mass of crystal and organic carbon. ?? Author(s) 2009.

  13. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. (United States)

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D


    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  14. Are Global In-Situ Ocean Observations Fit-for-purpose? Applying the Framework for Ocean Observing in the Atlantic. (United States)

    Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.


    There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of

  15. Economics of ocean ranching: experiences, outlook and theory

    National Research Council Canada - National Science Library

    Ragnar Arnason


    "The author distinguishes between ocean fish farming and ocean ranching. The distinguishing characteristic of ocean ranching is that the released species are unassisted once released into the ocean...

  16. The study of the ocean from space

    Energy Technology Data Exchange (ETDEWEB)

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S


    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  17. Measuring ocean acidification: new technology for a new era of ocean chemistry. (United States)

    Byrne, Robert H


    Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world's oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbonate saturation states. The susceptibility of some young, fast-growing calcareous organisms to adverse impacts highlights the potential for biological and economic consequences. Many important aspects of seawater CO2 chemistry can be only indirectly observed at present, and important but difficult-to-observe changes can include shifts in the speciation and possibly bioavailability of some life-essential elements. Innovation and invention are urgently needed to develop the in situ instrumentation required to document this era of rapid ocean evolution.

  18. OW ASCAT Ocean Surface Winds (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  19. A New Paradigm for New Oceans (United States)

    Foulger, G. R.; Doré, A. G.; Franke, D.; Geoffroy, L.; Gernigon, L.; Hole, M.; Hoskuldsson, A.; Julian, B. R.; Kusznir, N.; Martinez, F.; Natland, J. H.; Peace, A.; Petersen, K. D.; Schiffer, C.; Stephenson, R.; Stoker, M. S.


    The original simple theory of plate tectonics had to be refined to accommodate second-order geological features such as back-arc basins and continental deformation zones. We propose an additional refinement that is required by complexities that form and persist in new oceans when inhomogeneous continental lithosphere/tectosphere disintegrates. Such complexities include continual plate-boundary reorganizations and migrations, distributed continental material in the ocean, propagating and dying ridges, and sagging, flexing and tilting in the oceans and at continent-ocean boundary zones. Reorganizations of stress and motion persist, resulting in variable orientations over short distances, tectonic reactivations, complex plate boundary configurations including multiple triple junctions, and the formation and abandonment of oceanic microplates. Resulting local compressions and extensions are manifest as bathymetric anomalies, vertical motions, and distributed volcanism at various times and places as the new ocean grows. Examples of regions that exhibit some or all of these features include the North Atlantic, the Rio Grande Rise/Walvis Ridge region of the South Atlantic, and the Seychelles-Mauritius region in the Indian Ocean. We suggest that these complexities arise as a result of the formation of new spreading plate boundaries by rifts propagating through continental lithosphere/tectosphere that is anisotropic as a result of inherited structure/composition and/or a sub-lithospheric mantle destabilized by lithospheric-controlled processes. Such scenarios result in complicated disintegration of continents and local persistent dynamic instability in the new ocean.

  20. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean (United States)

    Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.


    Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and

  1. Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b

    DEFF Research Database (Denmark)

    Kuypers, M.M.M.; Blokker, P.; Hopmans, E.C.


    The sources for both soluble and insoluble organic matter of the early Albian (∼112 Myr) oceanic anoxic event (OAE) 1b black shales of the Ocean Drilling Program (ODP) site 1049C (North Atlantic Ocean off the coast of Florida) and the Ravel section of the Southeast France Basin (SEFB) were...... in C/C ratios was used to estimate that up to ∼40% of the organic matter of the SEFB and up to ∼80% of the organic matter of ODP site 1049C preserved in the black shales is derived from archaea. Furthermore, it is shown that, even though there are apparent similarities (high organic carbon (OC) content......, distinct lamination, C-enrichment of OC) between the black shales of OAE1b and the Cenomanian/Turonian (∼94 Myr) OAE, the origin of the organic matter (archaeal versus phytoplanktonic) and causes for C-enrichment of OC are completely different....

  2. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.


    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  3. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.


    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  4. IODP Expedition 340T: Borehole Logging at Atlantis Massif Oceanic Core Complex

    Directory of Open Access Journals (Sweden)

    Donna Blackman


    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 340T returned to the 1.4-km-deep Hole U1309D at Atlantis Massif to carry out borehole logging including vertical seismic profiling (VSP. Seismic, resistivity, and temperature logs were obtained throughout the geologic section in the footwall of this oceanic core complex. Reliable downhole temperature measurements throughout and the first seismic coverage of the 800–1400 meters below seafloor (mbsf portionof the section were obtained. Distinct changes in velocity, resistivity, and magnetic susceptibility characterize the boundaries of altered, olivine-rich troctolite intervals within the otherwise dominantly gabbroic se-quence. Some narrow fault zones also are associated with downhole resistivity or velocity excursions. Small deviations in temperature were measured in borehole fluid adjacent to known faults at 750 mbsf and 1100 mbsf. This suggests that flow of seawater remains active along these zones of faulting and rock alteration. Vertical seismic profile station coverage at zero offsetnow extends the full length of the hole, including the uppermost 150 mbsf, where detachment processes are expected to have left their strongest imprint. Analysis of wallrock properties, together with alteration and structural characteristics of the cores from Site U1309, highlights the likely interplay between lithology, structure, lithospheric hydration, and core complex evolution.

  5. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.


    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model...... the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  6. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification


    Sun, S; Eisenman, I; Stewart, AL


    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  7. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)


    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  8. B-DEOS: British Dynamics of Earth and Ocean systems- new approaches for a multidisciplinary ocean observing system in the Atlantic and S Ocean (United States)

    Schultz, A.; Lampitt, R. S.


    Advances in theoretical understanding of the natural systems in the sea and in the Earth below have been closely associated with new data sets made possible by technological advances. The plate tectonic revolution, the discovery of hydrothermal circulation, and many other examples can be attributed to the application of innovative new technology to the study of the sea. A consortium of research groups and institutions within the United Kingdom is planning a system of multidisciplinary ocean observatories to study the components of, and linkages between the physical, chemical and biological processes regulating the earth-ocean-atmosphere-biosphere system. An engineering feasibility design study has been completed which has resulted in a robust and flexible design for a telecommunications/power buoy system, and a UK NERC Thematic Programme is in the advanced planning stage. Representatives of the US, Japan, France, Portugal, Spain, Germany and other countries have been involved in consultations, and a coordinated international effort is expected to develop throughout the Atlantic and S Oceans, with collaborations extended to observatories operated by cooperating partners in other regions. The B-DEOS observatory system is designed to allow studies on scales of order cm to 1000 km, as well as to supplement on larger spatial scales the emerging global ocean and seafloor solid earth observatory network. The facility will make it possible to obtain requisite long-term synoptic baseline data, and to monitor natural and man-made changes to this system by: 1) Establishing a long-term, permanent and relocatable network of instrumented seafloor platforms, moorings and profiler vehicles, provided with power from the ocean surface and internal power supplies, and maintaining a real- or near-real time bidirectional Internet link to shore. 2) Examining the time varying properties of these different environments (solid earth, ocean, atmosphere, biosphere), exploring the links

  9. Characterizing the chaotic nature of ocean ventilation (United States)

    MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew


    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.

  10. OW CCMP Ocean Surface Wind (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  11. Polar ocean stratification in a cold climate. (United States)

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H


    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  12. New Hampshire / Southern Maine Ocean Uses Atlas (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  13. World Ocean Atlas 2005, Salinity (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  14. World Ocean Atlas 2005, Temperature (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  15. MyOcean Information System : achievements and perspectives (United States)

    Loubrieu, T.; Dorandeu, J.; Claverie, V.; Cordier, K.; Barzic, Y.; Lauret, O.; Jolibois, T.; Blower, J.


    MyOcean system ( objective is to provide a Core Service for the Ocean. This means MyOcean is setting up an operational service for forecasts, analysis and expertise on ocean currents, temperature, salinity, sea level, primary ecosystems and ice coverage. The production of observation and forecasting data is distributed through 12 production centres. The interface with the external users (including web portal) and the coordination of the overall service is managed by a component called service desk. Besides, a transverse component called MIS (myOcean Information System) aims at connecting the production centres and service desk together, manage the shared information for the overall system and implement a standard Inspire interface for the external world. 2012 is a key year for the system. The MyOcean, 3-year project, which has set up the first versions of the system is ending. The MyOcean II, 2-year project, which will upgrade and consolidate the system is starting. Both projects are granted by the European commission within the GMES Program (7th Framework Program). At the end of the MyOcean project, the system has been designed and the 2 first versions have been implemented. The system now offers an integrated service composed with 237 ocean products. The ocean products are homogeneously described in a catalogue. They can be visualized and downloaded by the user (identified with a unique login) through a seamless web interface. The discovery and viewing interfaces are INSPIRE compliant. The data production, subsystems availability and audience are continuously monitored. The presentation will detail the implemented information system architecture and the chosen software solutions. Regarding the information system, MyOcean II is mainly aiming at consolidating the existing functions and promoting the operations cost-effectiveness. In addition, a specific effort will be done so that the less common data features of the system (ocean in

  16. Designing Tools for Ocean Exploration. Galapagos Rifts Expedition--Grades 9-12. Overview: Ocean Exploration. (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity teaches about the complexity of ocean exploration, the technological applications and capabilities required for ocean exploration, the importance of teamwork in scientific research projects, and developing abilities necessary to do scientific inquiry. The activity provides learning objectives, a list of needed materials, key…

  17. The oceanic tides in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. Genco

    Full Text Available The finite element ocean tide model of Le Provost and Vincent (1986 has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski's solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.

  18. OceanSITES RAMA daily in-situ data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OceanSITES daily in-situ data. OceanSITES Global Tropical Moored Buoy Array Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA)...

  19. The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models

    International Nuclear Information System (INIS)

    Chuck, A.; Tyrrell, T.; Holligan, P.M.; Totterdell, I.J.


    A recent study of coupled atmospheric carbon dioxide and the biosphere found alarming sensitivity of next-century atmospheric pCO 2 (and hence planetary temperature) to uncertainties in terrestrial processes. Here we investigate whether there is similar sensitivity associated with uncertainties in the behaviour of the ocean carbon cycle. We investigate this important question using three models of the ocean carbon cycle of varying complexity: (1) a new three-box oceanic carbon cycle model; (2) the HILDA multibox model with high vertical resolution at low latitudes; (3) the Hadley Centre ocean general circulation model (HadOCC). These models were used in combination to assess the quantitative significance (to year 2100 pCO 2 ) of potential changes to the ocean stimulated by global warming and other anthropogenic activities over the period 2000-2100. It was found that an increase in sea surface temperature and a decrease in the mixing rate due to stratification give rise to the greatest relative changes in pCO 2 , both being positive feedbacks. We failed to find any comparable large sensitivity due to the ocean

  20. Zoogeography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.S.S.

    The distribution pattern of zooplankton in the Indian Ocean is briefly reviewed on a within and between ocean patterns and is limited to species within a quite restricted sort of groups namely, Copepoda, Chaetognatha, Pteropoda and Euphausiacea...

  1. Exploring the southern ocean response to climate change (United States)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire


    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  2. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. (United States)


    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... (WSMC) at Vandenberg AFB, California. (3) The impacting of missile debris from launch operations will...

  3. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones (United States)

    Atkinson, D. E.


    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  4. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science (United States)

    Holloway, A. E.


    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  5. NCEP Global Ocean Data Assimilation System (GODAS) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GODAS dataset is a real-time ocean analysis and a reanalysis. It is used for monitoring, retrospective analysis as well as for providing oceanic initial...

  6. Performance of the ocean state forecast system at Indian National Centre for Ocean Information Services

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Sirisha, P.; Sandhya, K.G.; Srinivas, K.; SanilKumar, V.; Sabique, L.; Nherakkol, A.; KrishnaPrasad, B.; RakhiKumari; Jeyakumar, C.; Kaviyazhahu, K.; RameshKumar, M.; Harikumar, R.; Shenoi, S.S.C.; Nayak, S.

    The reliability of the operational Ocean State Forecast system at the Indian National Centre for Ocean Information Services (INCOIS) during tropical cyclones that affect the coastline of India is described in this article. The performance...

  7. Magnetically-driven oceans on Jovian satellites (United States)

    Gissinger, C.; Petitdemange, L.


    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  8. The Southern Ocean biogeochemical divide. (United States)

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L


    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  9. Ocean eddies and climate predictability. (United States)

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo


    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  10. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  11. Ocean Color (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  12. International Ocean Symposium (IOS) 1996; Kokusai kaiyo symposium 1996

    Energy Technology Data Exchange (ETDEWEB)



    This is a proceedings of the International Ocean Symposium 1996. On the first day of the symposium, the following were given with a theme `The Ocean, Can She Save Us`: Underwater research and future of mankind as a commemorative speech; The ocean, can she save us -- trying to discover the true figure of the ocean as a keynote speech. Panel discussion was held on The global environment and the infinite potential of the ocean. On the second day, an approach was made mostly from a cultural aspect with a theme `The Ocean and the Japanese.` The following were given: Human links between east and west as a commemorative speech; The ocean and Japanese culture as a keynote speech; Civilization spanning across oceans as a panel discussion. The Japanese have been developing their individual technologies in shipbuilding, shipping, and ocean development, have been raised by Mother Ocean, and have lived together. Ocean has been supplying humans food, water, oxygen, marine routes, and even dream and hope. The environmental pollution is the result of the human greediness. It is fear and friendship between humans and ocean that can save humans and ocean.

  13. Revealing the timing of ocean stratification using remotely sensed ocean fronts (United States)

    Miller, Peter I.; Loveday, Benjamin R.


    Stratification is of critical importance to the circulation, mixing and productivity of the ocean, and is expected to be modified by climate change. Stratification is also understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Hence it would be prudent to monitor the stratification of the global ocean, though this is currently only possible using in situ sampling, profiling buoys or underwater autonomous vehicles. Earth observation (EO) sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This paper describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and discusses preliminary results in comparison with in situ data and simulations from 3D hydrodynamic models. In certain regions, this method can reveal the timing of the seasonal onset and breakdown of stratification.

  14. Ocean tides for satellite geodesy (United States)

    Dickman, S. R.


    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  15. Seasonality in ocean microbial communities. (United States)

    Giovannoni, Stephen J; Vergin, Kevin L


    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  16. The Interaction of Ocean Waves and Wind (United States)

    Janssen, Peter


    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  17. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter


    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  18. Chaotic advection in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Koshel' , Konstantin V; Prants, Sergei V [V.I. Il' ichev Pacific Oceanological Institute, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok (Russian Federation)


    The problem of chaotic advection of passive scalars in the ocean and its topological, dynamical, and fractal properties are considered from the standpoint of the theory of dynamical systems. Analytic and numerical results on Lagrangian transport and mixing in kinematic and dynamic chaotic advection models are described for meandering jet currents, topographical eddies in a barotropic ocean, and a two-layer baroclinic ocean. Laboratory experiments on hydrodynamic flows in rotating tanks as an imitation of geophysical chaotic advection are described. Perspectives of a dynamical system approach in physical oceanography are discussed. (reviews of topical problems)

  19. The ocean sampling day consortium

    DEFF Research Database (Denmark)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo


    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate...... the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our...

  20. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  1. Oceans 2.0 API: Programmatic access to Ocean Networks Canada's sensor data. (United States)

    Heesemann, M.; Ross, R.; Hoeberechts, M.; Pirenne, B.; MacArthur, M.; Jeffries, M. A.; Morley, M. G.


    Ocean Networks Canada (ONC) is a not-for-profit society that operates and manages innovative cabled observatories on behalf of the University of Victoria. These observatories supply continuous power and Internet connectivity to various scientific instruments located in coastal, deep-ocean and Arctic environments. The data from the instruments are relayed to the University of Victoria where they are archived, quality-controlled and made freely available to researchers, educators, and the public. The Oceans 2.0 data management system currently contains over 500 terabytes of data collected over 11 years from thousands of sensors. In order to facilitate access to the data, particularly for large datasets and long-time series of high-resolution data, a project was started in 2016 create a comprehensive Application Programming Interface, the "Oceans 2.0 API," to provide programmatic access to all ONC data products. The development is part of a project entitled "A Research Platform for User-Defined Oceanographic Data Products," funded through CANARIE, a Canadian organization responsible for the design and delivery of digital infrastructure for research, education and innovation [1]. Providing quick and easy access to ONC Data Products from within custom software solutions, allows researchers, modelers and decision makers to focus on what is important: solving their problems, answering their questions and making informed decisions. In this paper, we discuss how to access ONC's vast archive of data programmatically, through the Oceans 2.0 API. In particular we discuss the following: Access to ONC Data Products Access to ONC sensor data in near real-time Programming language support Use Cases References [1] CANARIE. Internet:; accessed March 6, 2017.

  2. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model (United States)

    Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy


    During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate

  3. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Directory of Open Access Journals (Sweden)

    M. Ödalen


    Full Text Available During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air–sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment

  4. Sustaining observations of the unsteady ocean circulation. (United States)

    Frajka-Williams, E


    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Oceanic magmatic evolution during ocean opening under influence of mantle plume (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya


    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  6. Ocean Disposal of Dredged Material (United States)

    Permits and authorizations for the ocean dumping of dredged material is issued by U.S. Army Corps of Engineers. Information is provided about where to dispose dredged material and the process for obtaining an ocean dumping permit for dredged material.

  7. NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media (United States)

    Keener-Chavis, P.


    "Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website ( It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed

  8. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present (United States)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.


    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  9. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans

    Directory of Open Access Journals (Sweden)

    Hayley Evers-King


    Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.

  10. Navigating a sea of values: Understanding public attitudes toward the ocean and ocean energy resources (United States)

    Lilley, Jonathan Charles

    In examining ocean values and beliefs, this study investigates the moral and ethical aspects of the relationships that exist between humans and the marine environment. In short, this dissertation explores what the American public thinks of the ocean. The study places a specific focus upon attitudes to ocean energy development. Using both qualitative and quantitative methods, this research: elicits mental models that exist in society regarding the ocean; unearths what philosophies underpin people's attitudes toward the ocean and offshore energy development; assesses whether these views have any bearing on pro-environmental behavior; and gauges support for offshore drilling and offshore wind development. Despite the fact that the ocean is frequently ranked as a second-tier environmental issue, Americans are concerned about the state of the marine environment. Additionally, the data show that lack of knowledge, rather than apathy, prevents people from undertaking pro-environmental action. With regard to philosophical beliefs, Americans hold slightly more nonanthropocentric than anthropocentric views toward the environment. Neither anthropocentrism nor nonanthropocentrism has any real impact on pro-environmental behavior, although nonanthropocentric attitudes reduce support for offshore wind. This research also uncovers two gaps between scientific and public perceptions of offshore wind power with respect to: 1) overall environmental effects; and 2) the size of the resource. Providing better information to the public in the first area may lead to a shift toward offshore wind support among opponents with nonanthropocentric attitudes, and in both areas, is likely to increase offshore wind support.

  11. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing (United States)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert


    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  12. South African Climates: Highlights From International Ocean Discovery Program Expedition 361 (United States)

    Hemming, S. R.; Hall, I. R.; LeVay, L.


    International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel, at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and the Cape Basin were targeted to reconstruct the history of the Greater Agulhas Current System over the past 5 Ma. The Agulhas Current transports 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. The main objectives of the expedition were to document the oceanographic properties of the Agulhas Current through tectonic and climatic changes during the Plio-Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, to address the influence of the Agulhas Current on African terrestrial climates and potential links to Human evolution. Additionally, the Expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will, and to constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. Here we highlight some of the expedition successes and show how it has made major strides toward fulfilling each of these objectives. The recovered sequences allowed complete spliced stratigraphic sections

  13. Superficial mineral resources of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Hashimi, N.H.; Gujar, A; Valsangkar, A

    The sea floor of the Indian Ocean and the continental margins bordering the ocean are covered by a wide variety of terrigenous, biogenous and anthigenic mineral deposits. The biogenous deposits in the Indian Ocean comprise the corals on shallow...

  14. Variational Data Assimilation for the Global Ocean (United States)


    ocean includes the Geoid (a fixed gravity equipotential surface ) as well as the MDT, which is not known accurately enough relative to the centimeter...scales, including processes that control the surface mixed layer, the formation of ocean eddies, meandering ocean J.A. Cummings (E3) nography Division...variables. Examples of this in the ocean are integral quantities, such as acous^B travel time and altimeter measures of sea surface height, and direct

  15. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform (United States)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.


    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  16. Enhanced deep ocean ventilation and oxygenation with global warming (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.


    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  17. Gravity Field Atlas of the S. Ocean (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Gravity Field Atlas of the Southern Ocean from GEOSAT is MGG Report 7. In many areas of the global ocean, the depth of the seafloor is not well known because...

  18. Scientific Drilling in the Arctic Ocean: A challenge for the next decades (United States)

    Stein, R.; Coakley, B.


    Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the

  19. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence


    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  20. Masirah – the other Oman ophiolite: A better analogue for mid-ocean ridge processes?

    Directory of Open Access Journals (Sweden)

    Hugh Rollinson


    Full Text Available Oman has two ophiolites – the better known late Cretaceous northern Oman (or Semail ophiolite and the lesser known and smaller, Jurassic Masirah ophiolite located on the eastern coast of the country adjacent to the Indian Ocean. A number of geological, geochronological and geochemical lines of evidence strongly suggest that the northern Oman ophiolite did not form at a mid-ocean ridge but rather in a supra-subduction zone setting by fast spreading during subduction initiation. In contrast the Masirah ophiolite is structurally part of a series of ophiolite nappes which are rooted in the Indian Ocean floor. There are significant geochemical differences between the Masirah and northern Oman ophiolites and none of the supra-subduction features typical of the northern Oman ophiolite are found at Masirah. Geochemically Masirah is MORB, although in detail it contains both enriched and depleted MORB reflecting a complex source for the lavas and dykes. The enrichment of this source predates the formation of the ophiolite. The condensed crustal section on Masirah (ca. 2 km contains a very thin gabbro sequence and is thought to reflect its genesis from a cool mantle source associated with the early stages of sea-floor spreading during the early separation of eastern and western Gondwana. These data suggest that the Masirah ophiolite is a suitable analogue for an ophiolite created at a mid-ocean ridge, whereas the northern Oman ophiolite is not. The stratigraphic history of the Masirah ophiolite shows that it remained a part of the oceanic crust for ca. 80 Ma. The chemical variability and enrichment of the Masirah lavas is similar to that found elsewhere in Indian Ocean basalts and may simply reflect a similar provenance rather than a feature fundamental to the formation of the ophiolite.

  1. Air-Sea Coupling Over The Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopika, N.

    S, where thermocline domes, the ocean is tightly coupled to the atmosphere [Reverdin, 1987; Murtugudde and Busalacchi, 1999; Xie et al, 2002] and therefore expected to influence the regional climate variability. In recent years Saji et al. [1999] showed... the forcing- response pattern of the ocean-atmosphere as a coupled system. For example, the anomalous ocean-atmosphere coupled phenomena like Indian Ocean Dipole mode produces anomalous atmospheric and oceanic condition that influence regional climate...

  2. Ocean FEST (Families Exploring Science Together) (United States)

    Bruno, B. C.; Wiener, C. S.


    Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In

  3. Environmental science: Oceans lose oxygen (United States)

    Gilbert, Denis


    Oxygen is essential to most life in the ocean. An analysis shows that oxygen levels have declined by 2% in the global ocean over the past five decades, probably causing habitat loss for many fish and invertebrate species. See Letter p.335

  4. U.S. ocean acidification researchers: First national meeting (United States)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather


    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee ( held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  5. Modeling of oceanic vortices (United States)

    Cushman-Roisin, B.

    Following on a tradition of biannual meetings, the 5th Colloquium on the Modeling of Oceanic Vortices was held May 21-23, 1990, at the Thayer School of Engineering at Dartmouth College, Hanover, N.H. The colloquium series, sponsored by the Office of Naval Research, is intended to gather oceanographers who contribute to our understanding of oceanic mesoscale vortices via analytical, numerical and experimental modeling techniques.

  6. Optimizing Ocean Space: Co-siting Open Ocean Aquaculture (United States)

    Cobb, B. L.; Wickliffe, L. C.; Morris, J. A., Jr.


    In January of 2016, NOAA's National Marine Fisheries Service released the Gulf Aquaculture Plan (GAP) to manage the development of environmentally sound and economically sustainable open ocean finfish aquaculture in the Gulf of Mexico (inside the U.S. Exclusive Economic Zone [EEZ]). The GAP provides the first regulatory framework for aquaculture in federal waters with estimated production of 64 million pounds of finfish, and an estimated economic impact of $264 million annually. The Gulf of Mexico is one of the most industrialized ocean basins in the world, with many existing ocean uses including oil and natural gas production, shipping and commerce, commercial fishing operations, and many protected areas to ensure conservation of valuable ecosystem resources and services. NOAA utilized spatial planning procedures and tools identifying suitable sites for establishing aquaculture through exclusion analyses using authoritative federal and state data housed in a centralized geodatabase. Through a highly collaborative, multi-agency effort a mock permitting exercise was conducted to illustrate the regulatory decision-making process for the Gulf. Further decision-making occurred through exploring co-siting opportunities with oil and natural gas platforms. Logistical co-siting was conducted to reduce overall operational costs by looking at distance to major port and commodity tonnage at each port. Importantly, the process of co-siting allows aquaculture to be coupled with other benefits, including the availability of previously established infrastructure and the reduction of environmental impacts.

  7. Ocean climate and seal condition

    Directory of Open Access Journals (Sweden)

    Crocker Daniel E


    Full Text Available Abstract Background The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. Results The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Conclusion Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  8. Ocean Ridges and Oxygen (United States)

    Langmuir, C. H.


    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  9. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  10. The future of the oceans past. (United States)

    Jackson, Jeremy B C


    Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable.

  11. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann


    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  12. Biogeochemical linkage between atmosphere and ocean in the eastern equatorial Pacific Ocean: Results from the EqPOS research cruise (United States)

    Furutani, H.; Inai, Y.; Aoki, S.; Honda, H.; Omori, Y.; Tanimoto, H.; Iwata, T.; Ueda, S.; Miura, K.; Uematsu, M.


    Eastern equatorial Pacific Ocean is a unique oceanic region from several biogeochemical points of view. It is a remote open ocean with relatively high marine biological activity, which would result in limited influence of human activity but enhanced effect of marine natural processes on atmospheric composition. It is also characterized as high nutrient low chlorophyll (HNLC) ocean, in which availability of trace metals such as iron and zinc limits marine primary production and thus atmospheric deposition of these trace elements to the ocean surface is expected to play an important role in regulating marine primary production and defining unique microbial community. High sea surface temperature in the region generates strong vertical air convection which efficiently brings tropospheric atmospheric composition into stratosphere. In this unique eastern equatorial Pacific Ocean, EqPOS (Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmospheric Study) research cruise was organized as a part of SOLAS Japan activity to understand biogeochemical ocean-atmospheric interaction in the region. Coordinated atmospheric, oceanic, and marine biological observations including sampling/characterization of thin air-sea interfacial layer (sea surface microlayer: SML) and launching large stratospheric air sampling balloons were carried out on-board R/V Hakuho Maru starting from 29 January for 39 days. Biogeochemically important trace/long-lived gases such as CO2, dimethyl sulfide (DMS), and some volatile organic carbons (VOCs) both in the atmosphere and seawater were continuously monitored and their air-sea fluxes were also observed using gradient and eddy-covariance techniques. Atmospheric gas measurement of CO2, CH4, N2O, SF6, CO, H2, Ar and isotopic composition of selected gases were further extended to stratospheric air by balloon-born sampling in addition to a vertical profiling of O3, CO2, and H2O with sounding sondes. Physical and chemical properties of marine

  13. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)


    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  14. Tropical Dominance of N2 Fixation in the North Atlantic Ocean (United States)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.


    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in Pacific basins.

  15. The Ocean's Carbon Factory: Ocean Composition. The Growth Patterns of Phytoplankton Species (United States)

    Gregg, Watson


    According to biological data recorded by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite, the ocean contains nearly half of all the Earth's photosynthesis activity. Through photosynthesis, plant life forms use carbon from the atmosphere, and in return, plants produce the oxygen that life requires. In effect, ocean chlorophyll works like a factory, taking carbon and "manufacturing" the air we breathe. Most ocean-bound photosynthesis is performed by single-celled plants called phytoplankton. "These things are so small," according to Michael Behrenfeld, a researcher at NASA Goddard Space Flight Center, "that if you take hundreds of them and stack them end-to-end, the length of that stack is only the thickness of a penny". The humble phytoplankton species plays a vital role in balancing the amounts of oxygen and carbon dioxide in the atmosphere. Therefore, understanding exactly how phytoplankton growth works is important.

  16. Restricted Inter-ocean Exchange and Attenuated Biological Export Caused Enhanced Carbonate Preservation in the PETM Ocean (United States)

    Luo, Y.; Boudreau, B. P.; Dickens, G. R.; Sluijs, A.; Middelburg, J. J.


    Carbon dioxide (CO2) release during the Paleocene-Eocene Thermal Maximum (PETM, 55.8 Myr BP) acidified the oceans, causing a decrease in calcium carbonate (CaCO3) preservation. During the subsequent recovery from this acidification, the sediment CaCO3 content came to exceed pre-PETM values, known as over-deepening or over-shooting. Past studies claim to explain these trends, but have failed to reproduce quantitatively the time series of CaCO3 preservation. We employ a simple biogeochemical model to recreate the CaCO3 records preserved at Walvis Ridge of the Atlantic Ocean. Replication of the observed changes, both shallowing and the subsequent over-deepening, requires two conditions not previously considered: (1) limited deep-water exchange between the Indo-Atlantic and Pacific oceans and (2) a ~50% reduction in the export of CaCO3 to the deep sea during acidification. Contrary to past theories that attributed over-deepening to increased riverine alkalinity input, we find that over-deepening is an emergent property, generated at constant riverine input when attenuation of CaCO3 export causes an unbalanced alkalinity input to the deep oceans (alkalinization) and the development of deep super-saturation. Restoration of CaCO3 export, particularly in the super-saturated deep Indo-Atlantic ocean, later in the PETM leads to greater accumulation of carbonates, ergo over-shooting, which returns the ocean to pre-PETM conditions over a time scale greater than 200 kyr. While this feedback between carbonate export and the riverine input has not previously been considered, it appears to constitute an important modification of the classic carbonate compensation concept used to explain oceanic response to acidification.

  17. Arctic Ocean circulation during the anoxic Eocene Azolla event (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan


    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  18. Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?

    Energy Technology Data Exchange (ETDEWEB)

    Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)


    A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)

  19. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes (United States)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel


    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  20. Environmental issues and challenges. Tomorrow's Ocean

    International Nuclear Information System (INIS)

    Livingston, H.


    In this Un Year of the Ocean -1998- multiple activities are focusing the attention of the public, policy-makers, and media on the planet's largest natural resource. As the new millennium approaches, there is an increasing urgency to highlight the ocean's role in a broad range of human activities and to heighten awareness about the need to preserve this vital resource for the future. The health and understanding of the oceans will continue to be of critical concern for the foreseeable future. Among these many activities is a major event, led by the IAEA, to focus attention on the ocean - the International Symposium on Marine Pollution to be held in Monaco. 5-9 October 1998. This article briefly reviews major issues being examined at the Symposium that affect the ocean's health and future, and highlights cooperative initiatives involving and the IAEA and its global partners. Other featured articles in this edition of the IAEA Bulletin present contemporary examples of how the IAEA's Marine Environment Laboratory (MEL) in Monaco is serving the interests of countries in matters pertaining to the quality of the ocean environment. They address not only the activities of MEL itself, but also those organized in association with other IAEA departments, UN agencies and international organizations

  1. How ocean acidification can benefit calcifiers. (United States)

    Connell, Sean D; Doubleday, Zoë A; Hamlyn, Sarah B; Foster, Nicole R; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Sarà, Gianluca; Russell, Bayden D


    Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO 2 ) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO 2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this calcifier was greater at vent sites (with near-future CO 2 levels). Furthermore, translocation experiments demonstrated that ocean acidification did not drive increases in gastropod abundance directly, but indirectly as a function of increased habitat and food (algal biomass). We conclude that the effect of ocean acidification on algae (primary producers) can have a strong, indirect positive influence on the abundance of some calcifying herbivores, which can overwhelm any direct negative effects. This finding points to the need to understand ecological processes that buffer the negative effects of environmental change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state (United States)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey


    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  3. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates


    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  4. ONR Ocean Wave Dynamics Workshop (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  5. A Trip Through the Virtual Ocean: Understanding Basic Oceanic Process Using Real Data and Collaborative Learning (United States)

    Hastings, D. W.


    How can we effectively teach undergraduates the fundamentals of physical, chemical and biological processes in the ocean? Understanding physical circulation and biogeochemical processes is essential, yet it can be difficult for an undergraduate to easily grasp important concepts such as using temperature and salinity as conservative tracers, nutrient distribution, ageing of water masses, and thermocline variability. Like many other topics, it is best learned not in a lecture setting, but working with real data: plotting values, making predictions, and making mistakes. Part I: Using temperature and salinity values from any location in the world ocean (World Ocean Atlas), combined with an excellent user interface (, students are asked to answer a series of specific questions related to ocean circulation. Using established temperature and salinity values to characterize different water masses, students are able to identify various water masses and gain insight to physical circulation processes. Questions related to ocean circulation include: How far south and at what depth does NADW extend into the S. Atlantic? Is deep water formed in the North Pacific? How and why does the depth of the thermocline vary with latitude in the Atlantic Ocean? How deep does the Mediterranean Water descend as it leaves the Straits of Gibraltar? How far into the Atlantic can you see the influence of the Amazon River? Is there any Antarctic Bottom Water in the North Pacific? Collaborating with another student typically leads to increased engagement. Especially in large lecture settings, where one teacher is not able to address student questions or concerns, working in pairs or in groups of three is best. Part II: Using the same web-based viewer and data set students are subsequently assigned one oceanic property (phosphate, nitrate, silicate, O2, or AOU) and asked to construct three different plots: 1) vertical depth profile at one location; 2) latitude vs. depth

  6. Importance of ocean salinity for climate and habitability. (United States)

    Cullum, Jodie; Stevens, David P; Joshi, Manoj M


    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.

  7. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)


    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  8. Puget Sound ocean acidification model outputs - Modeling the impacts of ocean acidification on ecosystems and populations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC OA team will model the effects of ocean acidification on regional marine species and ecosystems using food web models, life-cycle models, and bioenvelope...

  9. Marine Biology Activities. Ocean Related Curriculum Activities. (United States)

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  10. Oceanic Anoxic Event 1b: insights and new data from the Poggio le Guaine section (Umbria-Marche Basin) (United States)

    Sabatino, Nadia; Sprovieri, Mario; Coccioni, Rodolfo; Salvagio Manta, Daniela; Gardin, Silvia; Baudin, François


    The upper Aptian to lower Albian interval (~114-109 Ma) represents a crucial period during Earth's history, with a major evolution in the nature of mid-Cretaceous tectonics, sea level, climate, and marine plankton communities. Interestingly, it also includes multiple prominent black shale horizons that are the sedimentary expression of oceanic anoxic event (OAE) 1b. An high-resolution planktonic foraminiferal and calcareous nannofossil biostratigraphy in combination with an integrated study of multiple geochemical proxies (δ13Ccarb, δ13Corg, TOC, HI, CaCO3, trace elements/Al ratios) of the late Aptian-early Albian OAE 1b has been performed on the pelagic sedimentary sequence of Poggio le Guaine (Umbria-Marche Basin, central Italy). A comparison of the newly collected stable isotope carbon curve with the records from the Vocontian Basin (SE France), DSDP Site 545 and Hole 1049C provided a reliable and precise identification of the four main prominent black shale levels (113/Jacob, Kilian, Urbino/Paquier and Leenhardt) that definitively punctuate the OAE 1b. The studied record shows an increase in the marine organic carbon accumulation rate, in particular in the 113/Jacob and Urbino/Paquier levels. In the other black shales, TOC values are metals. The results suggest an increase in organic carbon burial rates during the OAE 1b due to the effect of enhanced surface productivity, as supported by a major increase in Ba/Al, and reduced bottom water ventilation. Noteworthy, the Kilian and Urbino/Paquier levels from the PLG section are characterized by the absence of correlative shifts in δ13Ccarb and δ13Corg. The increase in the δ13Corg, values in these levels is explained by an increase in the relative contribution of δ13C enriched marine planktonic archaeal biomass, while the concomitant negative excursions recorded in the δ13Ccarb could reflect a major contribution of isotopically light terrestrial carbonate ions from increased continental runoff during

  11. Ocean images in music compositions and folksongs (United States)

    Liu, C. M.


    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  12. Bringing an Ocean to School. (United States)

    MacMillan, Mark W.


    Describes a school program in which two sixth-grade science classes researched, created, and put together an ocean museum targeted at kindergarten through eighth graders who are geographically distanced from the ocean. Details the process for investigating topical areas, organizing teams of students, researching, writing, creating displays, and…

  13. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.


    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  14. The Market as an Institution for Zoning the Ocean (United States)

    Clinton, J. E.; Hoagland, P.


    In recent years, spatial conflicts among ocean users have increased significantly, particularly in the coastal ocean. Ocean zoning has been proposed as a promising solution to these conflicts. Strikingly, most ocean zoning proponents focus on a centralized approach, involving government oversight, planning, and spatial allocations. We hypothesize that a market may be more efficient for allocating ocean space, because it tends to put ocean space in the hands of the highest valued uses, and it does not require public decision-makers to compile and analyze large amounts of information. Importantly, where external costs arise, a market in ocean space may need government oversight or regulation. We develop four case studies demonstrating that private allocations of ocean space are taking place already. This evidence suggests that a regulated market in ocean space may perform well as an allocative institution. We find that the proper functioning of a market in ocean space depends positively upon the strength of legal property rights and supportive public policies and negatively upon the number of users and the size of transaction costs.

  15. Changing Arctic Ocean freshwater pathways. (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike


    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  16. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada


    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  17. Variability, interaction and change in the atmosphere-ocean-ecology system of the Western Indian Ocean. (United States)

    Spencer, T; Laughton, A S; Flemming, N C


    Traditional ideas of intraseasonal and interannual climatic variability in the Western Indian Ocean, dominated by the mean cycle of seasonally reversing monsoon winds, are being replaced by a more complex picture, comprising air-sea interactions and feedbacks; atmosphere-ocean dynamics operating over intrannual to interdecadal time-scales; and climatological and oceanographic boundary condition changes at centennial to millennial time-scales. These forcings, which are mediated by the orography of East Africa and the Asian continent and by seafloor topography (most notably in this area by the banks and shoals of the Mascarene Plateau which interrupts the westward-flowing South Equatorial Current), determine fluxes of water, nutrients and biogeochemical constituents, the essential controls on ocean and shallow-sea productivity and ecosystem health. Better prediction of climatic variability for rain-fed agriculture, and the development of sustainable marine resource use, is of critical importance to the developing countries of this region but requires further basic information gathering and coordinated ocean observation systems.

  18. OW NASA MODIS Aqua Ocean Color (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Moderate Resolution Imaging Spectroradiometer...

  19. The oceanic literary reading mind : An impression

    NARCIS (Netherlands)

    Burke, M.


    The mind and brain processes of the literary reading mind are most accurately defined as oceanic: the mind is an ocean. This is the essential premise that I put forward in my book Literary Reading, Cognition and Emotion: An Exploration of the Oceanic Mind (Routledge, 2011).1 The statement is of

  20. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography


    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  1. Pteropods in Southern Ocean ecosystems (United States)

    Hunt, B. P. V.; Pakhomov, E. A.; Hosie, G. W.; Siegel, V.; Ward, P.; Bernard, K.


    To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO 2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group. Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m -3 (max = 800 ind m -3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m -3 (max = 2681 ind m -3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m -3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed 40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes. Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also



    Arnberg, maj


    Full version unavailable due to 3rd party copyright restrictions. For decades, humans have impacted marine ecosystems in a variety of ways including contamination by pollution, fishing, and physical destruction of habitats. Global change has, and will, lead to alterations in in a number of abiotic factors of our ocean in particular reduced oxygen saturation, salinity changes, elevated temperature (ocean warming or OW) and elevated carbon dioxide (ocean acidification or OA). Now and in the...

  3. An open ocean record of the Toarcian oceanic anoxic event

    Directory of Open Access Journals (Sweden)

    D. R. Gröcke


    Full Text Available Oceanic anoxic events were time intervals in the Mesozoic characterized by widespread distribution of marine organic matter-rich sediments (black shales and significant perturbations in the global carbon cycle. These perturbations are globally recorded in sediments as carbon isotope excursions irrespective of lithology and depositional environment. During the early Toarcian, black shales were deposited on the epi- and pericontinental shelves of Pangaea, and these sedimentary rocks are associated with a pronounced (ca. 7 ‰ negative (organic carbon isotope excursion (CIE which is thought to be the result of a major perturbation in the global carbon cycle. For this reason, the lower Toarcian is thought to represent an oceanic anoxic event (the T-OAE. If the T-OAE was indeed a global event, an isotopic expression of this event should be found beyond the epi- and pericontinental Pangaean localities. To address this issue, the carbon isotope composition of organic matter (δ13Corg of lower Toarcian organic matter-rich cherts from Japan, deposited in the open Panthalassa Ocean, was analysed. The results show the presence of a major (>6 ‰ negative excursion in δ13Corg that, based on radiolarian biostratigraphy, is a correlative of the lower Toarcian negative CIE known from Pangaean epi- and pericontinental strata. A smaller negative excursion in δ13Corg (ca. 2 ‰ is recognized lower in the studied succession. This excursion may, within the current biostratigraphic resolution, represent the excursion recorded in European epicontinental successions close to the Pliensbachian/Toarcian boundary. These results from the open ocean realm suggest, in conjunction with other previously published datasets, that these Early Jurassic carbon cycle perturbations affected the active global reservoirs of the exchangeable carbon cycle (deep marine, shallow marine, atmospheric.

  4. Coherent Multidecadal Atmospheric and Oceanic Variability in the North Atlantic: Blocking Corresponds with Warm Subpolar Ocean (United States)

    Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.


    Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.

  5. Geoengineering Downwelling Ocean Currents. A Cost Assessment

    International Nuclear Information System (INIS)

    Zhou, S.; Flynn, P.C.


    Downwelling ocean currents carry carbon into the deep ocean (the solubility pump), and play a role in controlling the level of atmospheric carbon. The formation of North Atlantic Deep Water (NADW) also releases heat to the atmosphere, which is a contributor to a mild climate in Europe. One possible response to the increase in anthropogenic carbon in the atmosphere and to the possible weakening of the NADW is modification of downwelling ocean currents, by an increase in carbon concentration or volume. This study assesses the costs of seven possible methods of modifying downwelling currents, including using existing industrial techniques for exchange of heat between water and air. Increasing carbon concentration in downwelling currents is not practical due to the high degree of saturation of high latitude surface water. Two of the methods for increasing the volume of downwelling currents were found to be impractical, and four were too expensive to warrant further consideration. Formation of thicker sea ice by pumping ocean water onto the surface of ice sheets is the least expensive of the methods identified for enhancing downwelling ocean currents. Modifying downwelling ocean currents is highly unlikely to ever be a competitive method of sequestering carbon in the deep ocean, but may find future application for climate modification

  6. Process studies of the carbonate system in coastal and ocean environments of the Atlantic Ocean

    NARCIS (Netherlands)

    Salt, L.A.


    The increase in anthropogenic, atmospheric carbon dioxide (CO2) has been largely mitigated by ocean uptake since the start of the Industrial Revolution, with the Atlantic Ocean providing the largest store of anthropogenic carbon. The thesis of Lesley Salt examines how the uptake of CO2 varies in

  7. Near-inertial waves and deep ocean mixing (United States)

    Shrira, V. I.; Townsend, W. A.


    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  8. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A


    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  9. A Southern Ocean variability study using the Argo-based Model for Investigation of the Global Ocean (AMIGO) (United States)

    Lebedev, Konstantin


    The era of satellite observations of the ocean surface that started at the end of the 20th century and the development of the Argo project in the first years of the 21st century, designed to collect information of the upper 2000 m of the ocean using satellites, provides unique opportunities for continuous monitoring of the Global Ocean state. Starting from 2005, measurements with the Argo floats have been performed over the majority of the World Ocean. In November 2007, the Argo program reached coverage of 3000 simultaneously operating floats (one float in a three-degree square) planned during the development of the program. Currently, 4000 Argo floats autonomously profile the upper 2000-m water column of the ocean from Antarctica to Spitsbergen increasing World Ocean temperature and salinity databases by 12000 profiles per month. This makes it possible to solve problems on reconstructing and monitoring the ocean state on an almost real-time basis, study the ocean dynamics, obtain reasonable estimates of the climatic state of the ocean in the last decade and estimate existing intraclimatic trends. We present the newly developed Argo-Based Model for Investigation of the Global Ocean (AMIGO), which consists of a block for variational interpolation of the profiles of drifting Argo floats to a regular grid and a block for model hydrodynamic adjustment of variationally interpolated fields. Such a method makes it possible to obtain a full set of oceanographic characteristics - temperature, salinity, density, and current velocity - using irregularly located Argo measurements (the principle of the variational interpolation technique entails minimization of the misfit between the interpolated fields defined on the regular grid and irregularly distributed data; hence the optimal solution passes as close to the data as possible). The simulations were performed for the entire globe limited in the north by 85.5° N using 1° grid spacing in both longitude and latitude. At the

  10. Assessing global carbon burial during Oceanic Anoxic Event 2, Cenomanian-Turonian boundary event (United States)

    Owens, J. D.; Lyons, T. W.; Lowery, C. M.


    Reconstructing the areal extent and total amount of organic carbon burial during ancient events remains elusive even for the best documented oceanic anoxic event (OAE) in Earth history, the Cenomanian-Turonian boundary event ( 93.9 Ma), or OAE 2. Reports from 150 OAE 2 localities provide a wide global distribution. However, despite the large number of sections, the majority are found within the proto-Atlantic and Tethyan oceans and interior seaways. Considering these gaps in spatial coverage, the pervasive increase in organic carbon (OC) burial during OAE2 that drove carbon isotope values more positive (average of 4‰) can provide additional insight. These isotope data allow us to estimate the total global burial of OC, even for unstudied portions of the global ocean. Thus, we can solve for any `missing' OC sinks by comparing our estimates from a forward carbon-isotope box model with the known, mapped distribution of OC for OAE 2 sediments. Using the known OC distribution and reasonably extrapolating to the surrounding regions of analogous depositional conditions accounts for only 13% of the total seafloor, mostly in marginal marine settings. This small geographic area accounts for more OC burial than the entire modern ocean, but significantly less than the amount necessary to produce the observed isotope record. Using modern and OAE 2 average OC rates we extrapolate further to appropriate depositional settings in the unknown portions of seafloor, mostly deep abyssal plains. This addition significantly increases the predicted amount buried but still does not account for total burial. Additional sources, including hydrocarbon migration, lacustrine, and coal also cannot account for the missing OC. This difference points to unknown portions of the open ocean with high TOC contents or exceptionally high TOC in productive marginal marine regions, which are underestimated in our extrapolations. This difference might be explained by highly productive margins within the

  11. The positive relationship between ocean acidification and pollution. (United States)

    Zeng, Xiangfeng; Chen, Xijuan; Zhuang, Jie


    Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate of marine organisms as a result of biotoxicity and eutrophication, facilitating ocean acidification to varying degrees. Here we review the complex interactions between ocean acidification and pollution in the context of linkage of multiple stressors to marine ecosystems. The synthesized information shows that pollution-affected respiration acidifies coastal oceans more than the uptake of anthropogenic carbon dioxide. Coastal regions are more vulnerable to the negative impact of ocean acidification due to large influxes of pollutants from terrestrial ecosystems. Ocean acidification and pollution facilitate each other, and thus coastal environmental protection from pollution has a large potential for mitigating acidification risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle (United States)

    Latto, Rebecca; Romanou, Anastasia


    In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in

  13. Promoting Ocean Literacy through American Meteorological Society Programs (United States)

    Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth


    American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences ( Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.

  14. California Ocean Uses Atlas: Industrial sector (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  15. California Ocean Uses Atlas: Fishing sector (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  16. Regional Ocean Modeling System (ROMS): CNMI (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 7-day, 3-hourly forecast for the region surrounding the Commonwealth of the Northern Mariana Islands (CNMI) at approximately...

  17. Global Ocean Currents Database (GOCD) (NCEI Accession 0093183) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ocean Currents Database (GOCD) is a collection of quality controlled ocean current measurements such as observed current direction and speed obtained from...

  18. Assessing ocean alkalinity for carbon sequestration (United States)

    Renforth, Phil; Henderson, Gideon


    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  19. Downscaling the climate change for oceans around Australia

    Directory of Open Access Journals (Sweden)

    M. A. Chamberlain


    Full Text Available At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere.

    A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model.

    The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly (< 3 yr, indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections.

    Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change

  20. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul


    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  1. Regional Ocean Modeling System (ROMS): Samoa (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 7-day, 3-hourly forecast for the region surrounding the islands of Samoa at approximately 3-km resolution. While considerable...

  2. Regional Ocean Modeling System (ROMS): Guam (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 6-day, 3-hourly forecast for the region surrounding Guam at approximately 2-km resolution. While considerable effort has been...

  3. Regional Ocean Modeling System (ROMS): Oahu (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 7-day, 3-hourly forecast for the region surrounding the island of Oahu at approximately 1-km resolution. While considerable...

  4. 75 FR 45606 - Interagency Ocean Policy Task Force-Final Recommendations of the Interagency Ocean Policy Task Force (United States)


    .../oceans or by writing to The Council on Environmental Quality, Attn: Michael Weiss, 722 Jackson Place, NW., Washington, DC 20503. FOR FURTHER INFORMATION CONTACT: Michael Weiss, Deputy Associate Director for Ocean and...

  5. Models for ecological models: Ocean primary productivity (United States)

    Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.


    The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life.  Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(.  As an example, consider the Coastal Gulf of Alaska (CGOA) region.

  6. Climate, carbon cycling, and deep-ocean ecosystems. (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S


    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  7. View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California (United States)

    Busby, Cathy; Fackler Adams, Benjamin; Mattinson, James; Deoreo, Stephen


    The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U-Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111-110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane. The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent

  8. Comparative Study on the Electrical Properties of the Oceanic Mantle Beneath the Northwest Pacific Ocean (United States)

    Toh, H.


    responses as well. It, however, should be also noted here that the penetration depth beneath Site WPB is significantly smaller than that beneath Site NWP because the solar activity has been very low since 2006. References Ichiki, M., K. Baba, H. Toh and K. Fuji-ta, An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, Gondwana Research, 16, 545?562, doi:10.1016/, 2009. Salisbury MH et al (2006) 2. Leg 195 Synthesis: Site 1201?A geological and geophysical section in the West Philippine Basin from the 660-km discontinuity to the mudline. Proc. Ocean Drilling Program, Scientific Reports 195:27. Shipboard Scientific Party of ODP Leg 191 (2000) Northwest Pacific seismic observatory and hammer drill tests, Proc. Ocean Drilling Program, Initial Reports 191. Toh, H., Y. Hamano and M. Ichiki, Long-term seafloor geomagnetic station in the northwest Pacific: A possible candidate for a seafloor geomagnetic observatory, Earth Planets Space, 58, 697-705, 2006. Toh, H., Y. Hamano, M. Ichiki and H. Utada, Geomagnetic observatory operates at the seafloor in the Northwest Pacific Ocean, Eos, Trans. Am. Geophys. Union, 85, 467/473, DOI: 10.1029/2004EO450003, 2004.

  9. How ocean lateral mixing changes Southern Ocean variability in coupled climate models (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.


    The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.

  10. Ocean Acidification (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  11. Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs

    Directory of Open Access Journals (Sweden)

    Laura Bianucci


    Full Text Available While ocean acidification was first investigated as a global phenomenon, coastal acidification has received significant attention in recent years, as its impacts have been felt by different socio-economic sectors (e.g., high mortality of shellfish larvae in aquaculture farms. As a region that connects land and ocean, the Salish Sea (consisting of Puget Sound and the Straits of Juan de Fuca and Georgia receives inputs from many different sources (rivers, wastewater treatment plants, industrial waste treatment facilities, etc., making these coastal waters vulnerable to acidification. Moreover, the lowering of pH in the Northeast Pacific Ocean also affects the Salish Sea, as more acidic waters get transported into the bottom waters of the straits and estuaries. Here, we use a numerical ocean model of the Salish Sea to improve our understanding of the carbonate system in Puget Sound; in particular, we studied the sensitivity of carbonate variables (e.g., dissolved inorganic carbon, total alkalinity, pH, saturation state of aragonite to ocean and freshwater inputs. The model is an updated version of our FVCOM-ICM framework, with new carbonate-system and sediment modules. Sensitivity experiments altering concentrations at the open boundaries and freshwater sources indicate that not only ocean conditions entering the Strait of Juan de Fuca, but also the dilution of carbonate variables by freshwater sources, are key drivers of the carbonate system in Puget Sound.

  12. Climate Ocean Modeling on Parallel Computers (United States)

    Wang, P.; Cheng, B. N.; Chao, Y.


    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  13. Physical and meteorological data from the Tropical Atmosphere Ocean (TAO) array in the tropical Pacific Ocean (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Atmosphere Ocean (TAO) Array of 55 moored buoys spans the tropical Pacific from longitudes 165°E to 95°W between latitudes of approximately 8°S and...

  14. Climate change impact on future ocean acidification

    International Nuclear Information System (INIS)

    McNeil, Ben


    Full text: Elevated atmospheric C02 levels and associated uptake by the ocean is changing its carbon chemistry, leading to an acidification. The implications of future ocean acidification on the marine ecosystem are unclear but seemingly detrimental particularly to those organisms and phytoplankton that secrete calcium carbonate (like corals). Here we present new results from the Australian CSIRO General Circulation Model that predicts the changing nature of oceanic carbon chemistry in response to future climate change feedbacks (circulation, temperature and biological). We will discuss the implications of future ocean acidification and the potential implications on Australia's marine ecosystems

  15. On the role of sea surface temperature variability over the Tropical Indian Ocean in relation to summer monsoon using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Muraleedharan, P.M.; Sathe, P.V.

    shipping tained from the Physical Oceanography Data Archives Centre (PODAAC) of the Jet Propulsion Laboratory, U.S.A. We have excluded the data for the period July*Ocean Remote Sensing Section, National Institute of Oceanog- raphy, Dona Paula, Goa, India... and the central Indian Ocean are highly correlated with the mon-January 0.43 20.00002 April 0.54 20.00053 soon rainfall over the western and central parts of India July 0.44 20.04 during the same week. Based on 80 years of ship data October 0.18 20.00014 (1900...

  16. Time of Emergence of Ocean Interior Acidification and De-oxygenation in a Water Mass Framework (United States)

    Coronado, M.; Frenger, I.; Froelicher, T. L.; Rodgers, K. B.; Schlunegger, S.; Sasano, D.; Ishii, M.


    Potential marine ecosystem stressors, such as acidification and de-oxygenation, are expected to impact biology over the course of the 21st century. Detection of these changes in ocean biogeochemistry is made complicated by the background natural variability of the climate system (Frölicher et al., 2007 and Rodgers et al., 2015). Here we present a novel method for the interpretation of ocean interior measurement for environmental change. We use a water mass framework to compare a high-frequency repeat hydrographic section at 165E in the Pacific (Sasano et al., 2015) with initial condition ensemble experiments ran with GFDL's Earth System Model (ESM2M). In this study, "emergence" for a trend occurs when an anthropogenic signal (either modeled or observed) exceeds the noise (envelope of spread amongst ensemble members, generated by internal variability). By using a water mass as opposed to the standard depth framework, we remove the effects of anthropogenic trends and internal variability of deepening isopycnals, allowing for greater emergence of bio-geochemical signals. We find that emergence of anthropogenic trends in acidification and omega aragonite emerge sooner and with greater confidence than do trends in ocean interior oxygen concentrations. More broadly, this study demonstrates the utility of applying initial condition ensembles to interpret ocean interior variability and trends, rather than the traditional practice of using observations to validate models.

  17. Ocean Worlds Analog Systems in the Hadal Ocean: Systematic Examination of Pressure, Food Supply, Topography, and Evolution on Hadal Life (United States)

    Shank, T. M.; German, C.; Machado, C.; Bowen, A.; Drazen, J.; Yancey, P.; Jamieson, A.; Rowden, A.; Clark, M.; Heyl, T.; Mayor, D.; Piertney, S.; Ruhl, H.


    Key questions on life’s evolution are being pursued in Earth’s hadal ocean, Earth’s only analog to Europa’s ocean. A recent WHOI-JPL partnership is developing an armada of autonomous underwater drone vehicles to explore of Earth’s and Europa’s oceans.

  18. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study

    Directory of Open Access Journals (Sweden)

    A. Lindenthal


    Full Text Available In high-nutrient–low-chlorophyll regions, phytoplankton growth is limited by the availability of water-soluble iron. The eruption of Kasatochi volcano in August 2008 led to ash deposition into the iron-limited NE Pacific Ocean. Volcanic ash released iron upon contact with seawater and generated a massive phytoplankton bloom. Here we investigate this event with a one-dimensional ocean biogeochemical column model to illuminate the ocean response to iron fertilisation by volcanic ash. The results indicate that the added iron triggered a phytoplankton bloom in the summer of 2008. Associated with this bloom, macronutrient concentrations such as nitrate and silicate decline and zooplankton biomass is enhanced in the ocean mixed layer. The simulated development of the drawdown of carbon dioxide and increase of pH in surface seawater is in good agreement with available observations. Sensitivity studies with different supply dates of iron to the ocean emphasise the favourable oceanic conditions in the NE Pacific to generate massive phytoplankton blooms in particular during July and August in comparison to other months. By varying the amount of volcanic ash and associated bio-available iron supplied to the ocean, model results demonstrate that the NE Pacific Ocean has higher, but limited capabilities to consume CO2 after iron fertilisation than those observed after the volcanic eruption of Kasatochi.

  19. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission


    Sampling a complete section of the ocean crust to the Moho was the original inspiration for scientific ocean drilling, and remains the main goal of the 21st Century Mohole Initiative in the IODP Science Plan. Fundamental questions about the composition, structure, and geophysical characteristics of the ocean lithosphere, and about the magnitude of chemical exchanges between the mantle, crust and oceans remain unresolved due to the absence of in-situ samples and measurements. The geological nature of the Mohorovičić discontinuity itself remains poorly constrained. "Mission Moho" is a proposal that was submitted to IODP in April 2007, with the ambition to drill completely through intact oceanic crust formed at a fast spreading rate, across the Moho and into the uppermost mantle. Although, eventually, no long-term mission was approved by IODP, the scientific objectives related to deep drilling in the ocean crust remain essential to our understanding of the Earth. These objectives are to : - Determine the geological meaning of the Moho in different oceanic settings, determine the in situ composition, structure and physical properties of the uppermost mantle, and understand mantle melt migration, - Determine the bulk composition of the oceanic crust to establish the chemical links between erupted lavas and primary mantle melts, understand the extent and intensity of seawater hydrothermal exchange with the lithosphere, and estimate the chemical fluxes returned to the mantle by subduction, - Test competing hypotheses of the ocean crust accretion at fast spreading mid-ocean ridges, and quantify the linkages and feedbacks between magma intrusion, hydrothermal circulation and tectonic activity, - Calibrate regional seismic measurements against recovered cores and borehole measurements, and understand the origin of marine magnetic anomalies, - Establish the limits of life in the ocean lithosphere. The "MoHole" was planned as the final stage of Mission Moho, which requires

  20. Marine information technology - Indian Ocean scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.; Gouveia, A.D.; Navelkar, G.S.; Singh, K.

    Marine and coastal information is necessary for sound decision making about sustainable utilisation of our oceanic and coastal resources. Due to inadequate data management tools, lack of information technology benefits in the minds of the ocean...

  1. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    The measurement of ocean waves has been of particular interest, as wave data and understanding of wave phenomena are essential to ocean engineering, coastal engineering and to many marine operations. The National Institute of Oceanography, Goa...

  2. Atlantic Surfclam and Ocean Quahog Survey (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Atlantic Surfclam and Ocean Quahog Survey has covered an area from Cape Hatteras to Georges Bank. The survey was conducted every two or three...

  3. OW NASA SeaWIFS Ocean Color (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)...

  4. Influencing a Vision for the Future Ocean (United States)

    Macko, S. A.


    The ocean is the major source of nutrition for billions of people, while employing millions of workers, and generating trillions of dollars for the world economy. Clearly, the ocean is central to human well-being. As vast as our ocean and its resources are, they are not infinite. And today the ocean is under tremendous pressure from human activity - including unsustainable and illegal fishing, marine pollution, and climate-related impacts. We have created a special January-term class that offered students exposure to the utilization of the oceans' resources through a mixture of in-class work and field experiences. The course addressed not only fundamentals of marine science, but also legalities and ethics on aspects of culturing and capturing marine animals, with an emphasis on aquaculture and sustainability for wild fisheries. We limited the course to a manageble number (18) with transport in 3 vans, and overnighting at convenient hotels near the sites. Various trips to locations where the ocean is being maricultured and/or marketed allowed students to explore both the extant ocean while complementing class activities with speakers dealing with fishery product distribution and aquaculture with laboratory experiences at UVa. Locations for field trips included the National Aquarium in Baltimore, Washington, Virginia Beach and Baltimore seafood markets, Virginia aquaculture facilities and the Virginia Aquarium in Virginia Beach.

  5. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa


    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  6. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick


    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  7. The origin of blue-green window and the propagation of radiation in ocean waters (United States)

    Reghunath, A. T.; Venkataramanan, V.; Suviseshamuthu, D. Victor; Krishnamohan, R.; Prasad, B. Raghavendra


    A review of the present knowledge about the origin of blue-green window in the attenuation spectrum of ocean waters is presented. The various physical mechanisms which contribute to the formation of the window are dealt separately and discussed. The typical values of attenuation coefficient arising out of the various processes are compiled to obtain the total beam attenuation coefficient. These values are then compared with measured values of attenuation coefficient for ocean waters collected from Arabian sea and Bay of Bengal. The region of minimum attenuation in pure particle-free sea water is found to be at 450 to 500 nm. It is shown that in the presence of suspended particles and chlorophyll, the window shifts to longer wavelength side. Some suggestions for future work in this area are also given in the concluding section.

  8. It is the time for oceanic seabirds: Tracking year-round distribution of gadfly petrels across the Atlantic Ocean (United States)

    Ramos, Raul; Carlile, Nicholas; Madeiros, Jeremy; Ramirez, Ivan; Paiva, Vitor H.; Dinis, Herculano A.; Zino, Francis; Biscoito, Manuel; Leal, Gustavo R.; Bugoni, Leandro; Jodice, Patrick G.R.; Ryan, Peter G.; Gonzalez-Solis, Jacob


    AimAnthropogenic activities alter and constrain the structure of marine ecosystems with implications for wide-ranging marine vertebrates. In spite of the environmental importance of vast oceanic ecosystems, most conservation efforts mainly focus on neritic areas. To identify relevant oceanic areas for conservation, we assessed the year-round spatial distribution and spatio-temporal overlap of eight truly oceanic seabird species of gadfly petrels (Pterodroma spp.) inhabiting the Atlantic Ocean.LocationAtlantic Ocean.MethodsUsing tracking data (mostly from geolocators), we examined year-round distributions, the timing of life-cycle events, and marine habitat overlap of eight gadfly petrel species that breed in the Atlantic Ocean.ResultsWe compiled 125 year-round tracks. Movement strategies ranged from non-migratory to long-distance migrant species and from species sharing a common non-breeding area to species dispersing among multiple non-breeding sites. Gadfly petrels occurred throughout the Atlantic Ocean but tended to concentrate in subtropical regions. During the boreal summer, up to three species overlapped spatio-temporally over a large area around the Azores archipelago. During the austral summer, up to four species coincided in a core area in subtropical waters around Cape Verde, and three species shared habitat over two distinct areas off Brazil. The petrels used many national Exclusive Economic Zones, although they also exploited offshore international waters.Main conclusionsTracking movements of highly mobile vertebrates such as gadfly petrels can provide a powerful tool to evaluate and assess the potential need for and location of protected oceanic areas. As more multispecies, year-round data sets are collected from wide-ranging vertebrates, researchers and managers will have greater insight into the location of biodiversity hotspots. These can subsequently inform and guide marine spatial planning efforts that account for both conservation and

  9. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions (United States)

    Lin, J.; Zhu, J.


    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  10. Zooplankton Data - Ocean Survival of Salmonids (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A study to evaluate the role of changing ocean conditions on growth and survival of juvenile salmon from the Columbia River basin as they enter the Columbia River...

  11. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model (United States)

    Gnanaseelan, C.; Deshpande, Aditi


    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  12. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene (United States)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.


    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  13. Atlantic and indian oceans pollution in africa (United States)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  14. Temperature and upwelling / downwelling irradiance data from drifting buoy in the Southern Oceans as part of the Joint Global Ocean Flux Study/Southern Ocean (JGOFS/Southern Ocean) project, from 1994-12-25 to 1998-06-28 (NODC Accession 9900183) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and upwelling / downwelling irradiance data were collected using drifting buoy in the Southern Oceans from December 25, 1994 to June 28, 1998. Data were...

  15. Biogeochemical studies of selenium in the Indian Ocean

    International Nuclear Information System (INIS)

    Hattori, H.; Nakaguchi, Y.; Hiraki, K.; Kimura, M.; Koike, Y.


    Selenium that is a one of trace essential elements exists mainly in the chemical form of Se(IV), Se(VI) and organic selenium in ocean. Moreover, the monitoring of the selenium species has become a matter of interest as a mean of estimating their influence in biological processes in ocean. In recent works, some investigators reported that Se(IV) shows nutrient-type especially like silica's behavior, Se(VI) shows an approximately constant value, and the biological activities control the distribution of organic selenium. However, these reports were not included the whole world's oceans. It is necessary to research several oceans for the explication of fate on selenium. We investigated at the most interesting area - the Eastern Indian Ocean where should play a key role in global ocean's cycle for acquiring the new knowledge of selenium species at first

  16. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System (United States)

    Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di, Lorenzo E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; Levin, J.; McWilliams, J.C.; Miller, A.J.; Moore, A.M.; Powell, T.M.; Shchepetkin, A.F.; Sherwood, C.R.; Signell, R.P.; Warner, J.C.; Wilkin, J.


    Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems. 

  17. What Happens to Bio-degradables in the Ocean? Due to the increasing amount of plastic that ends up in the ocean there is much alarm about it killing sea life from ingestion and changing chemical properties of the ocean. But what really happens t these products in the ocean, and how do they affect the ocean. (United States)

    Lavoie, A.


    What Happens to Bio-degradables in the Ocean? Due to the increasing amount of plastic that ends up in the ocean there is much alarm about it killing sea life from entanglement and ingestion and changing chemical properties of the ocean. Our society is trying to take action by purchasing and using materials that claim to be biodegradable. But how long do these materials take to degrade in ocean water and do they actually change the water composition? Answering these questions will determine if one should invest in these materials as an alternative to plastic.

  18. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005-2014 (United States)

    Yao, Wenjun; Shi, Jiuxin; Zhao, Xiaolong


    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL), which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer). The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea-air model simulations.

  19. Finite element analysis of thermal convection in deep ocean sediments

    International Nuclear Information System (INIS)

    Gartling, D.K.


    Of obvious importance to the study and engineering of a seabed disposal is the determination of the temperature and fluid flow fields existing in the sediment layer and the perturbation of these fields due to the implantation of localized heat sources. The fluid mechanical and heat transfer process occurring in oceanic sediments may be characterized as free (or natural) convection in a porous material. In the case of an undisturbed sediment layer, the driving force for the natural circulation of pore water comes from the geothermal heat flux. Current theories for heat flow from the sea floor suggest the possibility of large scale hydrothermal circulation in the oceanic crust (see e.g., Ribando, et al. 1976) which is in turn coupled with a convection process in the overlying sediment layer (Anderson 1980, Anderson, et al. 1979). The introduction of a local heat source, such as a waste canister, into a saturated sediment layer would by itself initiate a convection process due to buoyancy forces. Since the mathematical description of natural convection in a porous medium is of sufficient complexity to preclude the use of most analytic methods of analysis, approximate numerical procedures are often employed. In the following sections, a particular type of numerical method is described that has proved useful in the solution of a variety of porous flow problems. However, rather than concentrate on the details of the numerical algorithm the main emphasis of the presentation will be on the types of problems and results that are encountered in the areas of oceanic heat flow and seabed waste disposal

  20. Estimation of 129I inventory in the oceans

    International Nuclear Information System (INIS)

    Xuegao Chen; Xue Liu; Peng Yi; Zhongbo Yu; Hohai University, Nanjing; Ala Aldahan; Uppsala University, Uppsala; Li Chen; Desert Research Institute, Las Vegas, NV; Goran Possnert


    Spatial distribution of oceanic 129 I inventory presented here is based on collection of data from published literatures coupled with model calculation using ArcGIS software tools. A total of 363 thiessen polygons were created for the oceans in order to cover the tremendous variability in distribution of 129 I data range. The results indicate that total 129 I oceanic inventory is approximately 7310 kg, which is mainly stored in the region of the North Atlantic and the Arctic Oceans. The concentrations of 129 I in the oceans are 3-4 orders of magnitude higher than the pre-anthropogenic level reflecting effects of post 1945 anthropogenic activities. (author)

  1. Ocean Striations Detecting and Its Features (United States)

    Guan, Y. P.; Zhang, Y.; Chen, Z.; Liu, H.; Yu, Y.; Huang, R. X.


    Over the past 10 years or so, ocean striations has been one of the research frontiers as reported in many investigators. With suitable filtering subroutines, striations can be revealed from many different types of ocean datasets. It is clear that striations are some types of meso-scale phenomena in the large-scale circulation system, which in the form of alternating band-like structure. We present a comprehensive study on the effectiveness of the different detection approaches to unveiling the striations. Three one-dimensional filtering methods: Gaussian smoothing, Hanning and Chebyshev high-pass filtering. Our results show that all three methods can reveal ocean banded structures, but the Chebyshev filtering is the best choice. The Gaussian smoothing is not a high pass filter, and it can merely bring regional striations, such as those in the Eastern Pacific, to light. The Hanning high pass filter can introduce a northward shifting of stripes, so it is not as good as the Chebyshev filter. On the other hand, striations in the open ocean are mostly zonally oriented; however, there are always exceptions. In particular, in coastal ocean, due to topography constraint and along shore currents, striations can titled in the meridional direction. We examined the band-like structure of striation for some selected regions of the open ocean and the semi-closed sub-basins, such as the South China sea, the Gulf of Mexico, the Mediterranean Sea and the Japan Sea. A reasonable interpretation is given here.

  2. Upper ocean physical processes in the Tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Ram, P.S.

    This monograph is the outcome of an attempt by the authors to present a synthesis of the studies on physical processes in the Tropical Indian Ocean (TIO) in relation to air-sea interaction, monsoon/climate variability and biological productivity...

  3. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres


    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  4. Plastic debris in the open ocean. (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M


    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  5. Lagrangian ocean analysis: Fundamentals and practices (United States)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.


    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.

  6. Plastic debris in the open ocean (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.


    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  7. The land/ocean temperature contrast in natural variability


    Tyrrell, Nicholas Luke


    In global warming scenarios, global land surface temperatures (T_land) warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/ocean warming temperature contrast. This land/ocean contrast is not only due to the different heat capacities of the land and ocean as it exists for transient and equilibrium scenarios. Similarly, the interannual variability of T_land is larger than the covariant interannual SST variability, leading to a land/ocean ...

  8. Evidence for infragravity wave-tide resonance in deep oceans. (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko


    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  9. Ship Sensor Observations for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Life on the Edge 2003: Exploring Deep Ocean Habitats" expedition sponsored by...

  10. Biogeochemical Reactions Under Simulated Europa Ocean Conditions (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.


    Galileo data have demonstrated the probable presence of a liquid water ocean on Europa, and existence of salts and carbon dioxide in the satellite's surface ice (e.g., Carr et al., 1998; McCord et al., 1999, Pappalardo et al., 1999; Kivelson et al., 2000). Subsequently, the discovery of chemical signatures of extinct or extant life in Europa's ocean and on its surface became a distinct possibility. Moreover, understanding of Europa's potential habitability is now one of the major goals of the Europa Orbiter Flagship mission. It is likely, that in the early stages of Europa's ocean formation, moderately alkaline oceanic sulfate-carbonate species and a magnetite-silicate mantel could have participated in low-temperature biogeochemical sulfur, iron and carbon cycles facilitated by primitive organisms (Zolotov and Shock, 2004). If periodic supplies of fresh rock and sulfate-carbonate ions are available in Europa's ocean, then an exciting prospect exists that life may be present in Europa's ocean today. In our laboratory, we began the study of the plausible biogeochemical reactions under conditions appropriate to Europa's ocean using barophilic psychrophilic organisms that thrive under anaerobic conditions. In the near absence of abiotic synthetic pathways due to low Europa's temperatures, the biotic synthesis may present a viable opportunity for the formation of the organic and inorganic compounds under these extreme conditions. This work is independent of assumptions regarding hydrothermal vents at Europa's ocean floor or surface-derived oxidant sources. For our studies, we have fabricated a high-pressure (5,000 psi) reaction vessel that simulates aqueous conditions on Europa. We were also successful at reviving barophilic psychrophilic strains of Shewanella bacterium, which serve as test organisms in this investigation. Currently, facultative barophilic psychrophilic stains of Shewanella are grown in the presence of ferric food source; the strains exhibiting iron

  11. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization (United States)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.


    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  12. Scientists’ perspectives on global ocean research priorities

    Directory of Open Access Journals (Sweden)

    Murray Alan Rudd


    Full Text Available Diverse natural and social science research is needed to support policies to recover and sustain healthy oceans. While a wide variety of expert-led prioritization initiatives have identified research themes and priorities at national and regional scale, over the past several years there has also been a surge in the number of scanning exercises that have identified important environmental research questions and issues ‘from the bottom-up’. From those questions, winnowed from thousands of contributions by scientists and policy-makers around the world who participated in terrestrial, aquatic and domain-specific horizon scanning and big question exercises, I identified 657 research questions potentially important for informing decisions regarding ocean governance and sustainability. These were distilled to a short list of 67 distinctive research questions that, in an internet survey, were ranked by 2179 scientists from 94 countries. Five of the top 10 research priorities were shared by respondents globally. Despite significant differences between physical and ecological scientists’ priorities regarding specific research questions, they shared seven common priorities among their top 10. Social scientists’ priorities were, however, much different, highlighting their research focus on managerial solutions to ocean challenges and questions regarding the role of human behavior and values in attaining ocean sustainability. The results from this survey provide a comprehensive and timely assessment of current ocean research priorities among research-active scientists but highlight potential challenges in stimulating crossdisciplinary research. As ocean and coastal research necessarily becomes more transdisciplinary to address complex ocean challenges, it will be critical for scientists and research funders to understand how scientists from different disciplines and regions might collaborate and strengthen the overall evidence base for ocean

  13. Ocean Margins Programs, Phase I research summaries

    Energy Technology Data Exchange (ETDEWEB)

    Verity, P. [ed.


    During FY 1992, the DOE restructured its regional coastal-ocean programs into a new Ocean Margins Program (OMP), to: Quantify the ecological and biogeochemical processes and mechanisms that affect the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; Define ocean-margin sources and sinks in global biogeochemical cycles, and; Determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or export to the interior ocean. Currently, the DOE Ocean Margins Program supports more than 70 principal and co-principal investigators, spanning more than 30 academic institutions. Research funded by the OMP amounted to about $6.9M in FY 1994. This document is a collection of abstracts summarizing the component projects of Phase I of the OMP. This phase included both research and technology development, and comprised projects of both two and three years duration. The attached abstracts describe the goals, methods, measurement scales, strengths and limitations, and status of each project, and level of support. Keywords are provided to index the various projects. The names, addresses, affiliations, and major areas of expertise of the investigators are provided in appendices.

  14. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.


    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  15. The ocean-atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean

    NARCIS (Netherlands)

    Manola, Iris; Selten, F. M.; De Ruijter, W. P M; Hazeleger, W.


    In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the

  16. Increase in acidifying water in the western Arctic Ocean (United States)

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun


    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  17. The oceanic chemistry of the U- and Th-series nuclides

    International Nuclear Information System (INIS)

    Cochran, J.K.


    The subject is discussed under the headings: input and removal of U- and Th-series nuclides in the oceans; uranium (input to the oceans; in the coastal ocean; in the open ocean; in sediment pore water; removal from the oceans; sources and sinks of 234 U in the oceans); thorium (scavenging in the deep sea; 230 Th and 231 Pa balance; removal from the coastal and surface ocean); Ra-226 and Ra-228; radon (in surface waters; near bottom 222 Rn as a tracer for vertical mixing); lead-210; polonium-210. (U.K.)

  18. Coupled atmosphere-ocean models of Titan's past (United States)

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis


    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  19. Subsurface Ocean Tides in Enceladus and Other Icy Moons (United States)

    Beuthe, M.


    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  20. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent (United States)

    Melankholina, E. N.; Sushchevskaya, N. M.


    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.